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Abstract: This paper uses a recently proposed measure of hydrological model complexity in a model 
selection exercise. It demonstrates that a robust hydrological model is selected by penalizing model 
complexity while maximizing a model performance measure.  This especially holds when limited data 
is available. Here by a robust model, we mean a model that predicts a variable of interest conditioned 
on future input forcing better than a model that is fitted on limited data. We demonstrate this on a 
rainfall-runoff model structure, SAC-SMA, using MOPEX data set of Guadalupe river basin.  
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1 INTRODUCTION 

 
It is widely accepted that more complex models tend to overfit data especially when data, in terms of 
its information content, is scarce (Gupta and Sorooshian, 1983; Vapnik, 2002; Pande et al, 2009; 
Renard et al., 2010; Arkesteijn and Pande, 2013; Pande et al, 2012). As a result, predictions on future 
forcing data are often inaccurate. This is not to suggest that one should always select a model of 
minimum complexity. A model should be selected in a manner that trades off model complexity with 
its performance on a given sample of data and the tradeoff should be such that the selected model’s 
performance on future unseen data is amongst the best. If a hydrological model can be selected in 
such a manner, it will be a choice that is robust in predicting future unseen data. Numerous studies 
have therefore focussed on considering model complexity in model selection problems (Schwarz, 
1978; Jakeman and Hornberger, 1993; Young et al., 1996; Cavanaugh and Neath, 1999; Pande, 
2005; Ye et al., 2008; Gelman et al., 2008; Schoups et al, 2008; Pande et al, 2009; Clement, 2011; 
Arkesteijn and Pande, 2013; Pande et al, 2012). 
 
This paper utilizes a measure of complexity recently proposed by Arkesteijn and Pande (2013) and 
uses it to penalize hydrological model selection. The measure of complexity is based on bounding the 
behaviour of how a model simulation deviates from its expected value (estimated on many 
realizations of input forcing) at any time step. A rationale for such an approach is that a more complex 
model should have larger such deviation than a less complex model. This statement therefore 
provides a definition of what we mean by model complexity. Arkesteijn and Pande (2013) showed that 
such a deviation of any hydrological model for a given sample size can be quantified, thereby 
measuring its complexity. They also showed that the bounds can also be used to bind the rates of 
convergence of model performances, measured by Mean Absolute Errors, to its expected values. 
This statement also provides a framework within which model complexity, as per our definition, and 
sample size bind predictive uncertainty. As a result, an expression for complexity regularized robust 
model selection can be obtained such that model performance on a given data set trades off with its 
complexity and the size of available data. 
 
In comparison, Bayesian approaches to complexity regularized model selection trade off the log 
likelihood value with parameter dimensionality or trade off the log likelihood value with the 
determinant of its Hessian at the parameter value that maximizes the likelihood (Ye et al, 2008; 
Marshall et al, 2005). The implicit measure of complexity in such approaches is the Hessian of the 
log-likelihood function at the optimum. However, unlike the approach presented here, it is application 
specific (in particular with respect to the variable of prediction interest) since the Hessian of the log-
likelihood value at the optimum needs to be estimated. An approach that appears similar to the one 
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presented here is ROPE that is based on the concept of data depth functions (Bardossy and Singh, 
2008). Both the approaches share the philosophy of interpreting robustness geometrically. However, 
the two approaches appear to diverge in the use of data of the variable of prediction interest. Also, 
ROPE is conditioned on the model structure that is being used. What this means to comparing 
‘robust’ performances of models selected from two different model structures, in comparison to the 
approach presented here, remains to be explored.  
 
Two hydrological model structures, SAC-SMA and SIXPAR, are considered. Their complexities are 
measured and compared. Then the complexity regularized model selection algorithm of Arkesteijn 
and Pande (2013) is used on SAC-SMA model structure for predicting runoff in the Guadalupe river 
basin, USA. The paper provides evidence that complexity regularized SAC-SMA models perform 
better on unseen data than when SAC-SMA models are selected without controlling for their 
complexity. This also provides evidence that complexity regularized model selection as presented 
here controls overfitting.    
 
2 METHODOLOGY 
 
2.1 Model Structures and Data set 
 
The two model structures that are considered are SAC-SMA and SIXPAR. SAC-SMA is a complex 
model structure with two layer reservoir architecture and a nonlinear percolation conceptualization. 
The two upper zone reservoirs represent a free water zone and a tension water zone, wherein the 
former controls the percolation to the lower zones while the tension water zone mainly controls the 
evaporation and feeds the free water zone. The percolation is a nonlinear complex function of 
demand from the lower reservoirs and available supply of water from the upper zone reservoirs. Both 
the upper and lower zones also control the flows. The SIXPAR model structure, which is a conceptual 
simplification of the SAC-SMA model with one upper and lower zone, excludes evaporation and the 
concept of tension water zones but retains the complex conceptualization of percolation.  Additional 
details on the models can be found elsewhere (Burnash, 1995; Duan et al, 1992; Arkesteijn and 
Pande, 2013). 
 
 

Parameter Range Parameter Range 

UZTWM[mm] 1-150 UZWFM[mm] 1 - 150 

UZK[day-1] 0.1-0.5 PCTIM[-] 0-0.1 

ADIMP[-] 0-0.4 RIVA[-] 0 

ZPERC[-] 1-250 REXP[-] 1 – 5 

LZTWM[mm] 1-1000 LZFSM[mm] 1-1000 

LZFPM[mm] 1-1000 LZSK[day-1] 0.01-0.25 

LZPK[day-1] 0.0001-0.025 PFREE[-] 0.0-0.6 

RSERV[-] 0.3 SIDE[-] 0 

 
Table 1. Parameter ranges for SAC-SMA model structure. 

 
 
Table 1 provide the ranges of the parameters used for SAC-SMA model structure. The parameters for 
SIXPAR model structure are obtained from SAC-SMA parameters following a routine called TRANS.  
 
The role of TRANS transformation is to ensure that the parameter sets of SIXPAR are ‘equivalent’ to 
SAC-SMA so that difference in complexity between the two models is only due to differences in the 
two structures (Arkesteijn and Pande, 2013). The complexity algorithm, used in step 2 of Algorithm 1 
is then applied. 
  
TRANS (transformation routine):  
The upper and lower zone storage capacity of SIXPAR is the sum of respective upper and lower zone 
storage capacities of SAC-SMA model structure.  
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UZ = UZTWM + UZFWM 
BM = LZTWM + LZFSM + LZFPM 
 
The upper and lower zone recession parameters are the geometric mean of upper zone recession 
parameters and the geometric mean of the lower zone recession parameters.  
 
UK = UZK 

BK =            
 
The percolation parameters off both the model structures are kept the same. 
z = zperc 
x = rexp. 
 
The data used is the Guadalupe River Basin in United States from the MOPEX data set (Duan et al, 
2006). Daily potential evaporation, rainfall and streamflow data for a period of 1948-1970 is used. The 
models used are forced using max(P-PE,0) where P (mm/day) is the daily precipitation and PE 
(mm/day) is daily potential evaporation. Daily streamflow is then used to select complexity regularized 
or unregularized SAC-SMA models.    
 
 
2.2 Algorithms 
 
The following algorithm samples parameters for a model structure, estimates its complexity based on 
Algorithm 2 of Arkesteijn and Pande (2013) and uses it to select a model from the model structure 
such that its complexity is regularized.  
 
Algorithm 1 (Complexity Regularized Model Selection): 
1. Sample P parameter sets for SAC-SMA. A model corresponding to each such parameter is thus 
obtained.  

2. For 10000 values of   between (10
-3

, 10
3
) on a logarithmic scale, calculate                

where    is mean absolute error estimated on a data set D of size N (a measure of model 

performance) and        is the measure of complexity obtained for a model using Algorithm 2 of 
Arkesteijn and Pande (2013).   
3. For each  , determine the minimum of    over the P different parameter sets (and hence models). 
The minimum of    yields an optimal parameter set. 

4. Calculate        (mean absolute error) for each optimal set corresponding to each value of   

obtained in step 3 on another data set D’, independent of D, of length N’. 
5. Minimize    this time over different values of c and denote by   

  and   
  the parameter set and c 

corresponding to the minimum thus obtained. 
6. Calculate           for parameter set   

  on a third independent data set D” of length N”. 

 

In step 2 of the algorithm, the function of complexity has the form           
  

 
 

  

 
 where h then 

represents the set           . Step 5 of the algorithm produces the parameters of a model that is 
selected by regularizing its complexity. For this, a complexity regularized risk function    defined in 
step 2 is minimized. Since the tradeoff parameter c defines how mean absolute error trades off with 
the complexity measure, it is first estimated on an independent data set before the complexity 
regularized risk function    is put to use. Step 6 of the algorithm validates the performance of 
complexity regularized SAC-SMA model that can then be compared with a SAC-SMA model that is 
selected without complexity regularization. 
 
 
3 RESULTS 
 
The Algorithm1 is implemented for P = 500 parameters of SAC-SMA sampled from the parameter 
ranges specified in Table 1. Three different lengths of D are considered, N = 1/6, 1/3, and ½ year, to 
simulate small sample sizes available for model selection. The lengths of D’ and D” are N’ = N” = 5 
years. All are independent data sets. In order to demonstrate that complexity algorithm of Arkesteijn 
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and Pande (2013) detects a more complex model structure from a competing set of structures, we 
use a TRANS transformation on SIXPAR model structure that is a conceptual simplification of SAC-
SMA. The TRANS routine has been described in section 2.1.  
 

 
Figure 1. Asymptotic complexities (value of F(h,N) for N sufficiently large or   ) of SACSMA and 

SIXPAR. 500 parameters from the ranges specified in Table 1 are used to estimate SACSMA 
complexity. TRANS routine is then used to sample corresponding parameters for SIXPAR and its 

complexity is then estimated. 
 
Figure 1 demonstrates that when the effect of hydrological parameter magnitudes (Pande et al, 2012; 
Arkesteijn and Pande, 2013) is controlled by using the TRANS routine, the complexity algorithm of 
Arkesteijn and Pande (2013) finds that SAC-SMA is ‘structurally’ more complex than SIXPAR model 
structure.  
 
We now provide evidence of how complexity regularized model selection yields robust model 
selection that avoids overfitting especially on small sample sizes. In order to do so, we first measure 
the ‘robustness’ of regularized and unregularized model selection, where the selection is done out of 
P sampled parameters sets (see step 1 of Algorithm 1). For example, an unregularized SAC-SMA 
model is the one out of P (=500) sampled models that minimizes the Mean Absolute Error (MAE) on 
data set D of size N. 
 
The robustness of a model selection method is measured by comparing the performance of 
regularized (or unregularized) model with the performance of the remaining P-1 models on 
independent data sets. The role of independent data sets is to mimic future unseen data. A less 
robust model selection is expected to yield a model that performs more often poorer than remaining 
P-1 models on independent data sets. A comparison of the robustness of complexity regularized 
versus non-regularized SAC-SMA model selection then follows.  
 
Figure 2B shows the distribution of the difference in MAE between SAC-SMA model corresponding to 

    and models corresponding to the remaining 499 parameter sets. Negative values imply that MAE 
of unregularized SAC-SMA model is smaller than another SAC-SMA (from amongst the remaining 
499 parameters). We observe signs of overfitting at small values of N (1/6 and 1/3 year) even 
amongst the few competing models (only P = 500 models corresponding to the sampled parameters) 
that are considered as can be seen from the mass of the box plots lying to the right side of 0. 
Nonetheless N = ½ year appears to be sufficiently large for SAC-SMA to model the Guadalupe river 

basin since the     model performs better than the remaining 499 models.      
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Figure 2. Distribution of the difference between the performance (measured by Mean Absolute Error) 

of SACSMA models corresponding to A) complexity regularized optimal parameter set   
  and all 499 

other parameter sets and B) unregularized optimal parameter set     and all 499 other parameter sets 
on 5 year test sets D” starting from years specified along the y–axis. 

 
Meanwhile Figure 2A shows the performance of complexity regularized SAC-SMA model, 
represented by   

 , in terms of its difference from the remaining 499 models. The same P = 500 
sampled parameters are used as in Figure 5B. In comparison with Figure 5B, regularized SAC-SMA 
model is a more robust choice (from amongst other competing 499 models) for predicting daily 
streamflow on 1960-1964 dataset when the model is selected on small sample sizes of 1/6 and 1/3 
year. This can be seen from less mass of the boxplots lying to the right of 0 when compared with the 
performance of unregularized SAC-SMA performance for 1960-1964. The performance of complexity 
regularized SAC-SMA, when selected at sample sizes 1/6 and 1/3 year, is almost always smaller than 
other 499 models when evaluated on all 3 independent 5 year data sets.  
 
However the performance of regularized SAC-SMA is not significantly different from the performance 
of unregularized SAC-SMA if all 3 independent data sets are considered. It appears that 
unregularized SAC-SMA model selection selects a model that is almost as close in its representation 
of the underlying processes as the model selected by complexity regularized model selection. One 
possible reason may be that SAC-SMA has a model structure that is well constrained and not prone 
to overfitting. Yet another reason may be that we only sampled P = 500 parameter sets. A more 
appropriate parameter set may be revealed if an exhaustive parameter sampling is undertaken. 
 
 
4 CONCLUSIONS 
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A complexity regularized model selection approach was presented. Complexity of SAC-SMA model 
structure was quantified based on Arkesteijn and Pande (2013) and used to demonstrate that SAC-
SMA is (indeed) structurally more complex than SIXPAR when the effect of the magnitude of 
parameters on model complexity is controlled for. Evidence was also provided that complexity 
regularized selection avoids overfitting of models to small data sizes. This demonstrates the utility of 
complexity regularized model selection, which can be extended to transferability of models in space, 
not just in time as was demonstrated here.  
 
The difference in the performance of regularized versus unregularized SAC-SMA was limited possibly 
either due to the nature of SAC-SMA model structure (the structure is perhaps well constrained) or 
due to limited number of sampled parameters (P=500). Limited parameters were sampled due to the 
computational burden of computing complexity. A future study is envisaged where the computational 
burden of computing complexity will be minimized so that the number of parameter samples can be 
increased. Further in depth investigations into the concept of model complexity presented here are 
also envisaged.   
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