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Abstract
Beat detection is an important MIR research
area. Due to its growing usage in multimedia
applications, the need for systematic ways to
evaluate beat detectors is growing too. This re-
search tests RhythmExtractor2013, a pipeline
offered by Essentia, an open-source music
analysis library used in research and indus-
try. The annotated test samples, taken from
four open-source datasets - GTZAN, Ball-
room, SMC MIREX and MDB Drums, had
tempo transformations (uniform, randomized,
incremental and decremental tempo changes)
applied to them and put to test against the
aforementioned extractor. F-measure was cho-
sen to calculate the extractor’s accuracy. The
results show, that the accuracy is affected
mostly by the presence of steady rhythm and
drums, but also by the window size during
the result calculation process, with the worst
scores appearing when the samples are slowed
down.
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1 Introduction
Music Information Retrieval (MIR) is a growing research
field which tackles the problem of managing music in
digital format and working with it [1]. MIR is an interdis-
ciplinary area where theoretical and practical knowledge
of music and engineering is required in order to perform
various tasks. Nevertheless, despite MIR seemingly be-
ing a very niche field, the outcomes of researches are
being used by industrial companies, such as Spotify for
music retrieval and music recommendation [2], Shazam
for audio recognition [3], Sony (Sony R&D Center) for
noise cancelling or source separation [4] but also in other
machine learning tasks, such as audio alignment, cover
song identification, query by humming and query by tap-
ping [5].

In order to represent music in a digital format to be
able to use it in MIR tasks, features have to be extracted
from audio files. Low-level features can be extracted
from music clips to find out information, such as, loud-
ness and MFCC’s (Mel-frequency cepstral coefficients),
and these can be consecutively used to extract high-level
features, such as, genre, mood or tags. As there are not
so many open-source music databases available (due to
copyright issues) and the ones which are available are
fairly small, researchers turn to crowd-sourced public
datasets, such as AcousticBrainz, which contain acoustic
information about all kinds of musical pieces [6]. Such
platforms allow individuals to calculate these features of-
fline and upload them for everyone to use. As this allows
for duplicate music clips to be analysed, problems arise
when the extracted features of identically sounding mu-
sic files are represented differently and influences subse-
quent stages of various pipelines. This can happen due to
a number of reasons, for instance, (i) different audio en-
codings (mp3, wav, ogg to name a few), as suggested by
Liem and Mostert [7], (ii) skewed datasets where not so
popular musical concepts appear rarer and therefore bi-
ases transfer downstream the pipeline when learning [8]
and (iii) musical transformations which are impercept-
able to a human ear, e.g., adding small amounts of noise.
Indeed, Sturm et al. [9] have shown that even small per-
turbations already increase the probability of false nega-
tives.

There are, nonetheless, transformations which should
be reflected by the output. For instance, pitch estima-
tion models will produce different results on pitch shifted
samples. In general, some pipelines might drop impor-
tant information or produce a lot of meaningless infor-
mation about the input when it is affected by transforma-
tions of various magnitudes while very robust pipelines
might not suffer so much. For example, some feature
extractors might not capture important elements of mu-
sic recordings (e.g., frequencies of various percussive in-
struments) which could then in turn affect beat extraction
algorithms [10].

Kim et al. [11] already showed that certain transforma-
tions, such as tempo changes, pitch shifting and adding
noise, reduce the performance of neural network archi-
tectures, in particular VGG-like. These results open a
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new gate for more in-depth studies which take into ac-
count other music processing pipelines, more transfor-
mations and different magnitudes of these transforma-
tions. On top of that, to be able to weigh the effect of
such transformations on processing pipelines, it is also
necessary to understand the perceptual effect of the mag-
nitudes of the transformations. It is necessary to iden-
tify meaningful relations between different genres and
musical transformations which in turn requires an under-
standing of what features should be extracted from and
therefore what variations of pipelines should be applied
to an audio clip of a particular musical style. The remain-
der of this paper will focus on temporal transformations
with the hope to shed more light on on what level they
affect Essentia’s1 beat tracking pipelines and draw a re-
lation between the transformations and the pipelines in
order to strengthen the expectations about the outputs.

The paper adapts the following structure: section 2
will in depth describe research goals and rationale; sec-
tion 3 will talk about methodology of the research and its
setup. Section 4 will summarize and give the analysis of
the results of the experiments. In section 5, a global dis-
cussion over the results will be given, including the lim-
itations. Lastly, section 6 will talk about the integrity of
the research followed by the conclusion and future work
recommendations in section 7.

2 Research Goals
This research explores the topic of testing the robust-
ness of music processing pipelines with inputs affected
by musically meaningful transformations. Two classes
of such transformations can be identified: supposedly
relevant and irrelevant ones to the pipeline’s objective.
For example, adding volume is relevant for calculating
dynamic complexity [12] but not for calculating tempo.
The topic then poses a few main assumptions: (i) inputs
having relevant transformations affect pipelines in a cor-
rect way and (ii) inputs having irrelevant transformations
do not affect robust pipelines. In other words, the more
robust the pipeline, the more invariant it is to the (irrel-
evant) transformations [8]. For instance, MusiCNN [13]
audio tagging pipeline has an enforced pitch invariance
in its inner workings and therefore does not get influ-
enced by inputs affected by pitch shifts. Conversely, if
an input having a relevant transformation is created for
the purpose of testing, a robust pipeline will produce a
correct output.

Musical beat, being the “basic rhythmic unit of a mea-
sure” [14], is one of the most important building blocks
of a musical piece. In digital audio, beat is one the fea-
tures which “encapsulates most of the meaningful infor-
mation of an audio track” [15, p.2]. Nowadays beat de-
tection is used in various ways and applications, such
as video editing2, rhythm games3, synchronization with

1Essentia, https://essentia.upf.edu/
2Filmora, https://filmora.wondershare.com/get-creative/ed

it-video-to-beat.html
3Beat Saber, h t t p s : / / b e a t s a b e r . c o m/; Bemuse,

other media4 and other MIR tasks: automated rhythm
transcription [16], chord extraction [17] and music simi-
larity [18]. Beat extraction is of high importance in MIR
research and industry and therefore it is important to
test the robustness of these pipelines as failing pipelines
might propagate to the other parts of applications and
make overall performance of them not satisfiable.

This research will explore the assumption (i) and will
answer the question how tempo input transformations af-
fect Essentia’s beat extraction algorithms? This paper
will focus on testing an algorithm provided by Essentia,
namely RhythmExtractor20135. It is an an open-source
library for music analysis which nowadays is being used
in industry6 and offline research to extract various infor-
mation about audio clips [19]. Two different methods
of RhythmExtractor2013 will be tested: multifeature7,
which was proposed by Zapata et al. [20] and degara8,
proposed by Degara et al. [21]. The research will try to
answer the main question with the help of the following
sub-questions: what musically meaningful transforma-
tions can be applied to inputs, what data can be used to
test the extractor, what measure can be used to test the
accuracy of the extractor, how does the accuracy change
with regards to the musical transformations, what can be
deduced from the results and what are their causes.

3 Methodology and Setup
This section will describe the methodology and setup of
the experiment: what transformations are applied to the
test samples, what data is used to test the RhythmExtrac-
tor2013 and what evaluation strategy is applied to the
results.

3.1 Musical Transformations
To understand what a musically meaningful transforma-
tions is, we can break down the term into two parts,
namely, how an audio can be transformed and what is
the musical meaning of it. The purpose of such distinc-
tion is to identify transformations which “accomplish a
musically meaningful effect” [22, p.109]. As an exam-
ple, Table 1 summarizes some of the possible transfor-
mations.

The whole experiment consists of four tempo transfor-
mations:

1. Tempo change of the whole clip. A clip is time-
stretched by every value from the interval [0.5; 2.0]
with steps of 0.01.

https://bemuse.ninja/; Bilter Fubble, https://test-bilter- fubb
le.herokuapp.com

4BeatSync, http://www.beatsynclights.com/
5Documentation available here: https://essentia.upf.edu/ref

erence/std RhythmExtractor2013.html
6List of companies using Essentia: https://essentia.upf.edu

/applications.html
7Multifeature, https://essentia.upf.edu/reference/std BeatT

rackerMultiFeature.html
8Degara, https://essentia.upf.edu/reference/std BeatTrack

erDegara.html
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2. Random changes in tempo throughout the audio in
the interval [0.5; 2.0] of the original speed. The au-
dio is cropped at every time stamp provided by the
ground truths. The amount of random shifts in a
clip is equal to the amount of time intervals in the
ground truths.

3. Incremental tempo change throughout the song in
the interval [1.0; 2.0] of the original speed. The
clips are cropped at every time stamp provided by
the ground truths. The steps of the tempo increase
are equal to the interval size (2.0 - 1.0 = 1.0) divided
by the amount of resulting clips.

4. Decremental tempo change throughout the song in
the decreasing interval [1.0; 0.5]. The clips are
cropped at every time stamp provided by the ground
truths. The steps of the tempo decrease are equal
to the interval size (1.0 - 0.5 = 0.5) divided by the
amount of resulting clips.

In the rest of the paper, these transformations will be
referred to as experiments #1 to #4. The transformations
themselves are performed with the help of the PyRubber-
band9, a Python wrapper, widely used by the community
for audio stretching.

Transformation
(effect) Musical meaning

Pitch shifting Modulation, transposition

Time stretching Different BPM/tempo,
ritenuto10, accelerando11

Tremolo Vibrato
Chorus Number of voices

Echo, reverb Performance acoustics
Gain Dynamics

Table 1: Possible transformations and their musical
meanings.

3.2 Dataset
To be able to perform the experiments, a special dataset
was deliberately created. It includes samples from four
open-source datasets, namely GTZAN [23], Ballroom
[24], SMC MIREX [25] and MDB Drums [26] and a
new dataset was created (visualised in Figure 1). In to-
tal, the new dataset contains 364 audio clips split into
two main categories. The first category contains sam-
ples which have a steady, regular rhythm, that allows for
“easy” beat tracking. The second category has the oppo-
site: 218 audio clips which have an unsteady rhythm and
therefore pose difficulties for beat tracking algorithms.
The existing research on the evaluation of beat track-
ing algorithms shows that it is important to have not
only easy to track samples but also challenging ones, as

9PyRubberband, https://github.com/bmcfee/pyrubberband
10Musical term for slowing down.
11Musical term for speeding up.

Figure 1: Visualization of the new dataset, the splits, the
number of samples in each split and their abbreviations for

references in later section.

is done, for instance, in [27]. Zapata et al. [28] sug-
gests that testing pipelines on a dataset where the ma-
jority of the samples fall under the “easier songs” cat-
egory might produce a result which is “optimistic” and
does not reflect the general performance when applied
to all music genres. This idea is reinforced by Davies
and Böck [29], where they indicate that it can be diffi-
cult to understand the true performance of the pipeline if
non-supervised12 data sampling is done, where the pro-
portion of non-trivial audio clips is unknown. In [30] it is
also claimed, that “easy” samples are not enough to test
the beat tracking pipelines as they do not provide tempo
changes, which are important part of the research aimed
at beat tracking algorithms.

The “difficult” (unstable rhythm) category contains
audio samples taken from the SMC MIREX dataset. The
subset includes recordings of solo instrumental pieces,
songs and orchestral works which have a great deal of
rhythmical freedom and depend on a performer’s inter-
pretation. The SMC MIREX was made to “add diversity
to existing collections” [25, p.5] and is used as a “dif-
ficult” set in [31] and [29]. Therefore, it is also suit-
able for this experiment. The “easy” (stable rhythm)
category contains songs taken from GTZAN, Ballroom
and MDB Drums datasets. Chiu et al. [32] found that
the best performance of the their proposed beat track-
ing model was achieved with samples which have drums
in them. It is additionally suggested, that, because of
this, “tailored trackers for percussive and non-percussive
sounds” [32, p.4] would be beneficial to build. For
this reason, the “easy” category is further split into two
subcategories: one containing samples where beats are
clearly expressed by drums and the other one contain-
ing samples where beats are mostly felt with harmonic
changes and drums are not present. The exception is
MDB Drums dataset, which, in addition to full mixes,
provides separate audio stems. Having this extra free-
dom, 23 mixes without drums were produced and are
used in tests against full mixes. The distinction between

12In this case random, not checked manually, from untrust-
worthy sources.
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Čivas January 2022

drum and drumless samples allows to investigate whether
the overall performance of the beat tracking pipelines on
“easy” samples is affected by the presence of percussive
instruments.

The regular beat subset was composed with the help
of the Mean Mutual Agreement (MMA) score calculated
in [28]. As an indication to how difficult it is for an algo-
rithm to calculate beats of a song, MMA ranks musical
genres from the most difficult (lowest score) to the easi-
est (highest score) ones. It is important to mention, that
although MMA score is based on music genres, genre,
as a metric, is disregarded in the experiment. However,
the samples from the datasets were taken according to
their music genre labels, namely, the set with drums in-
cludes disco, pop and hip-hop from GTZAN and the
set without drums contains classical from GTZAN and
waltz (which could be considered as a subgenre of classi-
cal) from Ballroom. MDB Drums dataset includes sam-
ples form a range of genres too and hence poses more
real-world challenges. Nevertheless, in the beat tracking
applications mentioned previously, these systems come
early in the pipeline (e.g, chord extraction) or are ex-
pected to produce an output independently of genre (light
synchronization), so genre labels were used only as a
helping tool to create a new dataset. Even though “clas-
sical” falls below the MMA threshold of 1.5, [28] does
not disclose what kind of samples were used for the ex-
periment; hence it is difficult to judge whether the score
was affected by the presence of rhythmical freedom (e.g,
rubato) in the clips. To eliminate this doubt, only hand-
picked (by manual listening) “classical” clips with steady
rhythm are used in this dataset.

The beat annotations for GTZAN samples were taken
from [33], for SMC MIREX - from [25], MDB Drums -
from [26] and for Ballroom - from [34]. As far as MIR
community is concerned, the validity of ground truth is a
topic of discussions itself (e.g., [7]) as annotations made
even by domain experts can be subject to inaccuracies
and biases [35]. However, such ground truths with anno-
tations are currently widely used in evaluation strategies
and provide the most robust way of testing pipelines and
so are trusted and used in this research too.

3.3 Evaluation
Even though in [28] it was found that multifeature
method is more “accurate” (with regards to their pro-
posed evaluation strategy) and degara runs much faster,
this research will disregard the run-time of these
pipelines because the purpose of the experiment is to
evaluate the robustness of these methods towards musi-
cal transformations. From the beat tracking evaluation
strategies summarized in [30], F-measure (or F-score; a
measure of a test’s accuracy) was chosen as it is widely
used to evaluate not only the beat tracking systems but
information retrieval systems in general. The measure is
calculated from two metrics, precision and recall. The
former metric corresponds to a fraction of how many
beats were identified correctly from all of the beats calcu-
lated by the algorithm and the latter metric corresponds

to the fraction of how many beats were correctly identi-
fied from the beats which are in the ground truths.

For humans too it is not all the time easy to exactly
identify where a beat is. Time stamps need to be dis-
cretized from the continuous time domain and that brings
its own challenges. Whilst producing ground truths, do-
main experts use various technologies, such as Sonic Vi-
sualizer 13, to try to extract exact times when ticks appear.
That does not mean, however, that a beat time stamp ex-
tracted by an algorithm is not correct if it is not exactly
equal to the ground truth. The results of [36] show, that
when people are asked to tap in synchrony with a click,
in general, the taps precede the click by 30 − 50 ms. This
means, that there always is a window in which if a beat
falls it can perceptually still be considered correct. In this
research two sizes of windows are considered: 70 ms, as
chosen in [37] for beat tracker evaluation, and 40 ms (the
interval average from [36]) as 70 ms tapping delay for a
musical ear can already seem big and sound ‘off time’.

4 Result Analysis
This section presents results acquired from the experi-
ments described in section 3.

4.1 Experiment #1
The transformation in experiment #1 changes the tempo
of the whole audio clip. Table 2 presents the means and
standard deviations of F-measures per song subset across
all time stretch values ([0.5; 2.0]) calculated with multi-
feature method and using 70 ms window:

Dataset mean SD

GTZAN 0.754 0.111
MDB DRUM 0.732 0.121

MDB NO DRUM 0.526 0.075
GTZAN BALL 0.509 0.043

SMC 0.374 0.065

Table 2: Experiment #1 results

The overall resulting scores across the experiments
show a tendency where beats are recognized better from
the samples with drums in them. For example, Figure 2
and Figure 3 show the results of the experiment #1 on
the MDB dataset, where beats were calculated on sam-
ples with and without the drum stems respectively. The
blue line indicates the average F-measure across all sam-
ples, the red dashed line is a fitted curve on the average,
the light blue filling represents the standard deviation of
the F-measure and the three remaining lines are plots of
randomly picked result instances (the names of the audio
samples are indicated in the legend). It can be seen from
the plots, that the average F-measure is higher and the
standard deviation is smaller of the samples with drums
in them. Experiment #1 on GTZAN dataset with drums

13Sonic Visualizer, https://www.sonicvisualiser.org/
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(Figure 4) provides somewhat similar results seen in Fig-
ure 2 and results of the GTZAN BALL subset (Figure
5) show similar tendencies to Figure 3. Two differ-

Figure 2: MDB DRUM, multifeature, 70 ms

Figure 3: MDB NO DRUM, multifeature, 70 ms

Figure 4: GTZAN dataset, multifeature, 70 ms

ent collections of the same type showing similar results
reinforce the assumption that RhythmExtractor2013 per-
forms better on audio clips with drums in them with re-
gards to the uniform tempo changes. The tracks which
have most unstable curves in the plots also include am-
plified guitars, present in rock and metal genres, a lot
of extra off-beat percussive noises, present in electronic
music, are not of very high quality or have reverb, which
leads to the distinction among noise and beats harder to
identify.

Figure 5: GTZAN BALL, multifeature, 70 ms

Figure 6: SMC dataset, multifeature, 70 ms

Results of songs with irregular rhythm are not op-
timistic. Figure 6 shows the plot of the experiment
#1 on SMC dataset. It can be observed, that the av-
erage F-measure scores are relatively low compared to
the previous figures, with untransformed audios (×1.0
speed) scoring on average ≈0.373, compared to ≈0.823
of MDB DRUM, ≈0.627 of MDB NO DRUM, ≈0.897
of GTZAN and ≈0.579 of GTZAN BALL.

4.2 Experiment #2
The transformation in experiment #2 makes many ran-
dom tempo changes throughout the audio clip. Ta-
ble 3 presents the means and standard deviations of F-
measures per song subset calculated with multifeature
method and using 70 ms window:

Dataset mean SD

GTZAN 0.433 0.101
MDB DRUM 0.425 0.095

GTZAN BALL 0.408 0.084
MDB NO DRUM 0.385 0.073

SMC 0.342 0.085
Table 3: Experiment #2 results

During this experiment the clips were randomly sped
up or slowed down at various time stamps. That, as a
consequence, increased their rhythmical irregularity. Re-
sults show, that all of the ‘regular beat’ subsets suffered
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from this transformation and the accuracy of all subsets
dropped significantly, almost 2 times in some cases com-
pared to the scores of untransformed sets. Nevertheless,
subsets with clips with drums still scored the highest, ten-
dency present also in experiment #1.

4.3 Experiment #3
The transformation in experiment #3 increments the
tempo throughout the song. Table 4 shows the means and
standard deviations of F-measures per song subset calcu-
lated with multifeature method and using 70 ms window:

Dataset mean SD

GTZAN 0.832 0.137
MDB DRUM 0.802 0.137

MDB NO DRUM 0.742 0.166
GTZAN BALL 0.742 0.178

SMC 0.573 0.218

Table 4: Experiment #3 results

The results of the experiment #3 show that subtle ad-
ditions of rhythmical instability do not drastically affect
the scores, although it can negatively impact them, as can
be seen for GTZAN dataset. The growth in scores (for
SMC, GTZAN BALL and MDB NO DRUM), com-
pared to the scores of untransformed audios, could po-
tentially be explained by the window size. When a song
becomes fast, the beats can come very close to one an-
other. Consecutively, when a window size is applied on
ground truths during the calculations, the intervals might
overlap. Falsely detected beats now have a higher chance
to fall into one of those intervals and this leads to increase
in true positives and decrease in false positives, which
has a positive impact when calculating the F-measure.
Finally, datasets with clips with drums in them scored
the highest, as in both previous experiments.

4.4 Experiment #4
The transformation in experiment #4 decrements the
tempo throughout the song. Table 5 displays the means
and standard deviations of F-measures per song subset
calculated with multifeature method and using 70 ms
window:

Dataset mean SD

MDB DRUM 0.778 0.163
MDB NO DRUM 0.706 0.190

GTZAN 0.688 0.176
GTZAN BALL 0.646 0.230

SMC 0.400 0.181

Table 5: Experiment #4 results

Similarly to the results of the experiment #1, slow-
ing down the songs and increasing rhythmical instabil-
ity had the biggest impact on GTZAN set. The audio
quality of the songs in the GTZAN dataset is originally

somewhat poor and the experiment degraded it further.
The process of clipping and stitching the songs has pro-
duced audible pops which could have influenced the beat
tracker. On the other hand, the increase in scores for the
MDB NO DRUM and GTZAN BALL sets can also be
related to the same reason. The sometimes audible on-
beat pops could have helped the beat tracker to identify
more true positives. Nonetheless, as with the other exper-
iments, a set with drums (MDB) has scored the highest.

4.5 Window size
For the experiments #2, #3 and #4, result changes were
observed when scores were calculated with a window
size of 40 ms (multifeature). The pairs of the means and
standard deviations of deltas (magnitudes only) across all
datasets for these experiments turned out to be (0.061,
0.012), (0.037, 0.010) and (0.070, 0.044) respectively.

For the experiment #1, changing the window size
made an observable difference too. Figure 7 shows the
plot of the experiment #1 on the SMC dataset with 40 ms
window. By comparing it to the results of calculations
with the window size of 70 ms (Figure 6), it was found
that the mean and standard deviation of deltas (magni-
tudes only) are 0.099 and 0.010 respectively. The results
of the rest of the datasets are given in Table 6.

Dataset mean SD

GTZAN BALL 0.117 0.036
SMC 0.099 0.010

GTZAN 0.077 0.070
MDB NO DRUM 0.075 0.017

MDB DRUM 0.032 0.017

Table 6: Window size change effect on experiment #1,
multifeature

Figure 7: SMC dataset, multifeature, 40 ms

The results show that the window size is a crucial pa-
rameter in accuracy calculations and can affect the score
by up to ±12% with high probability.

4.6 Parameter method
No significant changes were observed when comparing
the results of multifeature and degara methods. The re-

6
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sults show that, on average, not even 1% difference can
be observed between the methods. Table 7 summarizes
the means and standard deviations of deltas across all
datasets per experiment:

Experiment mean SD

#1 0.005 0.027
#2 0.008 0.013
#3 0.002 0.014
#4 0.005 0.018

Table 7: Absolute values of means and standard
deviations of deltas, 70 ms

5 Discussion and Limitations
Even though the results give insight into how Essentia’s
beat tracking algorithms perform on various music clips,
they inevitably lack the ability to generalize perfectly.
The experiments collectively show a high standard de-
viation, which indicates that the results might not be so
reliable after all. This is the outcome due to a number of
reasons. Firstly, the datasets used are quite small. Such
experiments require a lot of samples in order to be able to
draw very general conclusions, but only a fraction of the
world’s music is open-source and publicly available, let
alone the annotated clips. Secondly, the dataset size led
to an imperfect split. For instance, the MDB set contains
only 23 samples of a variety of genres. Some of them,
metal, jazz, fall below the MMA score of 1.5 despite
them having a steady rhythm. On the other hand, some
samples in SMC set have drums in them even though
their rhythm is unstable. Overall, more distinctive sub-
sets could be made, but that would result in a very few
samples in each of them.

Apart from that, transformations affect the audio qual-
ity. When listening back to the transformed audios, some
anomalies can be heard. When the songs are sped up
by large magnitudes, incidental pops and distortions ap-
pear. These then can be falsely detected by the algo-
rithm and influence the result. Moreover, when the songs
are slowed down, the sound events become artificially
stretched. This results in unwanted additional sounds
and notes being prolonged, e.g., a simple quick sound-
ing snare drum hit now becomes a longer, tenuto14 like
noisy sound. Beats themselves, therefore, are stretched
and might not be detected due to their length. Figure 8
visualises how a beat is affected by a time stretch as time
progresses.

Several other properties have an impact on the results.
Firstly, having percussive sounds is advantageous for a
beat tracker. It is clear that RhythmExtractor2013 is more
accurate with more confidence on samples with drums in
them. Interestingly, this result is observed not only on the
original audios, but also on the transformed ones, which
reinforces the conclusion made in [32] and reveals a gap
in the capabilities of the algorithm. Moreover, rhythm

14A musical term for sustaining the note for its whole length.

Figure 8: Beat sounds affected by time stretch. Top line:
original audio, bottom line: slowed down audio

stability affects the beat tracking accuracy too. The re-
sults show that RhythmExtractor2013 performed worst
across all experiments on the SMC dataset, which con-
tains songs with irregular rhythm. Finally, presence of
timbral qualities similar to those of percussive sounds,
e.g, amplified guitars, electronic effects, have negative
influence. This should be taken into account when creat-
ing test sets.

6 Responsible Research
The research was conducted with respect to the princi-
ples defined in the Netherlands Code of Conduct for Re-
search Integrity [38]. Honesty is preserved by objec-
tively discussing the results and providing clear explana-
tions about their validity. Scrupulousness is preserved
by using scientific methods to conduct the research and
experiments from start to end. The data for the experi-
ment was carefully selected according to its design but
it was in no ways fabricated or manipulated. However,
the data has been acquired from a “secondary” source.
This has been transparently indicated in the previous
chapters and the implications of that have been discussed
(sections 3.3.22-24 of the conduct). The research is, in
essence, independent as it has no influence from non-
scholarly, such as political or commercial, sources. The
author of the paper claims full responsibility if plagia-
rism or conflict of interest is found.

The experiment can be easily replicated and work can
be continued on it as data and the code can be acquired
from 4TU.ResearchData15 (3.3.25). In addition, the pa-
per has all of the references of papers from which inspi-
ration for ideas was taken or statements were reinforced
(3.4.29). A potential bias on the results can be identified
in the lack of diversity of the music samples used for the
experiments. Unfortunately, due to the legal matters of
music distribution, only free, publicly available samples
could be used. Besides, due to the limited availability of
the ground truth annotations, which were an integral part
of the whole research, the datasets stayed unavoidably
small.

7 Conclusions and Future Work
This paper has presented the evaluation of Essentia’s
RhythmExtractor2013 by conducting an experiment in

15The repository identifier (DOI): https://doi.org/10.4121/18
274532
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which tempo of audio samples was affected in various
ways. The results across the experiments unanimously
show, that the comfort zone of the RhythmExtractor2013
contains samples which have steady rhythm and drums in
them, steady rhythm, in fact, having more weight. How-
ever, whilst analysing the scores, a number of obstacles
have been identified. First of all, the datasets used for the
experiments are relatively small. More samples should
be used to achieve more general and better results. The
research has shown, that there is a need for collecting
a large and very diverse dataset with beat annotations.
Moreover, other parameters - genre of the song, window
size during the calculations - can affect the results too.

Moreover, striving for the realistically most flawless
evaluation system, several aspects need to be considered
to a greater extent: identifying atomic properties of songs
(percussion, rhythm, frequency range, instrumentation,
etc.), grouping songs by these properties to create distinct
subsets and understanding how third-party libraries can
affect musical transformations (e.g., how the audio sam-
ples are time stretched, what parameters can be passed to
algorithms to get the most realistic stretched version). To
abide by Richard Rogers’ thought, that ‘there is no one-
size-fits-all solution’16, there could, perhaps, be sepa-
rate beat trackers which individually are superior to each
other with regards to these properties and could be used
together to achieve the best results.

In addition to open-source, licence free libraries, such
as Essentia, or crowd-sourced public datasets, such as
AcousticBrainz, there is at least one more service which
provides its users with audio features, namely Spotify
Web API17. Developer terms and conditions18 do not
specify limitations on its academic usage19, therefore it
could be a valuable helping tool in evaluating other beat
tracking systems. Before the API could be incorporated
in any research, it is firstly necessary to discern how
trustworthy and accurate the beat data is. If reliable, the
API could potentially contribute to filling the gap of lim-
ited amount of ground truth annotations for beats. With
this, also more musically diverse test datasets could be
collected.

As the research reveals, RhythmExtractor2013 is, to a
certain degree, led astray by the tempo transformations.
Essentia has more audio feature extractors which can
also be confronted with various musically transformed
audio samples. In addition to showcasing the results of
this research, the paper also aims to spark the readers
with creativity in designing evaluation systems for music
analysis pipelines.

16Taken from https://www.brainyquote.com/quotes/richard
rogers 613230

17Documentation for audio features: https://developer.spotif
y.com/documentation/web-api/reference/#/operations/get-aud
io-analysis

18Developer terms and conditions: https://developer.spotify.
com/terms/

19The paper does not claim responsibility for the legal usage
of the API, this should be further investigated.
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Čivas January 2022

[12] S. Streich. Music Complexity a multi-faceted de-
scription of audio content. PhD thesis, Universitat
Pompeu Fabra, 2007.

[13] Jordi Pons and Xavier Serra. musicnn: Pre-trained
convolutional neural networks for music audio tag-
ging, 2019.

[14] The Editors of Encyclopaedia Britannica. beat,
1998. Accessed: Nov. 21, 2021. [Online]. Avail-
able: https://www.britannica.com/art/beat-music.

[15] A. Kratimenos, K. Avramidis, C. Garoufis, A. Zlat-
intsi, and P. Maragos. Augmentation methods on
monophonic audio for instrument classification in
polyphonic music. In European Signal Processing
Conference, volume 2021-January, pages 156–160,
2021.

[16] Christopher Raphael. Automated rhythm transcrip-
tion. In ISMIR 2001, 2nd International Symposium
on Music Information Retrieval, Indiana Univer-
sity, Bloomington, Indiana, USA, October 15-17,
2001, Proceedings, 2001.

[17] Juan P. Bello and Jeremy Pickens. A robust mid-
level representation for harmonic content in music
signals. In ISMIR 2005 - 6th International Confer-
ence on Music Information Retrieval, ISMIR 2005 -
6th International Conference on Music Information
Retrieval, pages 304–311, 2005. 6th International
Conference on Music Information Retrieval, IS-
MIR 2005 ; Conference date: 11-09-2005 Through
15-09-2005.

[18] Daniel P. W. Ellis, Courtenay V. Cotton, and
Michael I. Mandel. Cross-correlation of beat-
synchronous representations for music similarity.
In 2008 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 57–60,
2008.

[19] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez,
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