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Abstract

Through exploratory scenario development, this study delves into the environmental impacts of European com-
mercial aviation. Climate targets and the adoption of alternative aviation fuels (AAF) following ReFuelEU Avi-
ation are assessed, considering e-fuel produced from direct air capture (DAC) and hydrogen aircraft. A novel
method is applied, combining the generation of prospective life cycle inventories based on integrated assessment
models with technology forecasting, system dynamics, and scenario development. This enables reflection on not
only aircraft performance, but also fuel production, aircraft manufacturing, and fleet dynamics. Although there
are limitations, including the relatively simple approach to system dynamics and limited data availability, clear
conclusions can be drawn. Even for high-growth trajectories of air traffic, the total fuel demand of aviation could
stagnate by 2035 under highly ambitious circumstances. Lower air traffic would require less ambitious circum-
stances. Combined with the reduced impact of AAF on aviation-induced cloudiness modelled here, the radiative
forcing associated with aviation could reach a peak by 2050. However, the current scope of ReFuelEU Aviation
does not prevent this peak from being eclipsed again by 2070. To prevent this, themandate for a 70% share of AAF
by 2050 should be followed upwith amandate for a 100% share. Thereby, warming neutrality is within reach – pro-
vided the necessary technologies can be implemented at scale. Hydrogen propulsion makes more efficient use of
resources than e-fuel does, which is relevant for some impact categories, but less so for climate change as assessed
here. When considering the magnitude of radiative forcing, present projections fall short. Estimating a budget of
CO2 emissions through a grandfathering approach of the targets set by ICAO and IATA, the budget is exceeded by
2070, even with the most optimistic technological advancements. Critical here is the high use of fossil fuel leading
up to 2035, for which there are no timely technological solutions. Lacking offsetting opportunities that are reliable,
large-scale, and long-term, the only option is to restrict the volume of air traffic. Reducing traffic to 70% of the
2019 passenger-kilometers can be sufficient to respect the CO2 limit, even without optimistic developments in
aircraft technology. This challenges conventional narratives, which advocate against demand management, claim-
ing this would limit technological innovation. Thereby, evidence is created in support of the degrowth discourse
which has gained momentum in recent decades. To ensure that aviation can provide long-term societal benefits,
near-future flight activity must be redistributed to future generations. Given the boundaries and uncertainties of
the presented scenarios, a much-needed discussion is encouraged: what share of global environmental limits is
aviation – and within that, European aviation – entitled to?
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1
Introduction

Today, the global economy is largely reliant on abundant, energy-dense fossil resources. The resulting greenhouse
gas (GHG) emissions have brought about a warming of global surface temperatures of around 1.09°C (IPCC,
2022). Through the Paris Agreement, the international community aims to limit this warming “to well below
2°C” to mitigate environmental catastrophe (UNFCCC, 2015, p. 3). Far-reaching socio-technical transitions are
required to realise the required decrease in GHG emissions. This thesis explores what this means for the aviation
sector. First, the present situation is described alongside a discussion of research performed so far (Section 1.1).
Based on this, the research question is formulated (Section 1.2).

1.1. Problem situation and previous work
Among climate change mitigation efforts, one prominent area of focus is energy systems. Electricity from re-
newable energy sources, notably including wind and solar, is already on track to make a large contribution to
decarbonisation (IEA, 2022b). However, many sectors cannot be decarbonised through electrification alone. This
is where molecular hydrogen (H2) might come in. Hydrogen from renewable sources can replace hydrogen gener-
ated from fossil methane (CH4), but also has further potential as a link in novel low-carbon process chains (IEA,
2022a). In the transportation sector – most critically, aviation and shipping – this creates a promising route to
synthetic and bio-based fuels (Barke et al., 2022; IEA, 2022a).

The air transport sector has become a linchpin of the global economy, but it is also a large contributor to envi-
ronmental degradation (Grobler et al., 2019; Lee et al., 2021). The European Parliament and the Council recently
agreed on the ReFuelEU Aviation proposal – part of the Fit-for-55 package – which outlines that alternative fuels
should form 70% of use by 2050 (European Parliament & Council of the European Union, 2023). A number of in-
dustry reports have been published, which describe similar – or more ambitious – developments (see, e.g., ATAG,
2021; ICAO, 2022d; NLR and SEO, 2021). Such ambitions raise concerns regarding the availability of sustainable
energy sources, particularly when considering the growth in air traffic currently projected. Many have argued for
curbing this growth at a regional or global level, including Jaramillo et al. (2022), Sacchi et al. (2023), Kito et al.
(2023), and the IEA (2023). However, industry reports point towards reductions in air traffic leading to reduced in-
vestment towards new technologies (ICAO, 2022a; NLR & SEO, 2021) and argue that technological development
is “more nuanced and effective” than demand management in reducing emissions (ATAG, 2021, p. 39).

To understand these challenges and explore possible solutions, an interdisciplinary approach is required. In-
dustrial ecology is a field of research concerned with the material and energy flows which make up society’s

1



2 Chapter 1. Introduction

metabolism, extending to the effects which these flows have on the natural world. Among the tools employed
by industrial ecologists is life cycle assessment (LCA): a framework through which the environmental impacts
of a product or service system can be quantified from cradle to grave (Guinée et al., 2002; ISO 14040:2006; ISO
14044:2006). In recent years, strides have been made in adapting this framework to the evaluation of emerg-
ing technologies and socio-technical transitions through so-called prospective LCA (see, e.g., Sacchi et al., 2022;
Thonemann et al., 2020; van der Giesen et al., 2020). Such techniques have successfully been used to scale-up and
evaluate a novel technology in a future setting (see, e.g., Ballal et al., 2023; Barke et al., 2022; Delpierre et al., 2021).

However, studies on aviation fuels typically present considerable knowledge gaps in understanding the impact
and uncertainty of their respective technologies. For many studies, scenarios are limited to a variety of sources
for electricity or production feedstock. They do not contextualise the wider development and implementation of
the technologies at hand, which greatly depend on scaling up technologies such as water electrolysis, direct air
capture (DAC), carbon capture and storage (CCS), and carbon capture and utilisation (CCU) (Ballal et al., 2023;
Leblanc et al., 2022; van der Giesen et al., 2014). When a single, best-guess scenario is analysed, the resulting
analysis cannot account for unexpected developments (positive or negative) in these technologies’ adoption. In
this light, Delpierre et al. (2021) stand out, as both optimistic and pessimistic scenarios are formulated. Ballal
et al. (2023) recommend further work in this direction, suggesting that aviation fuels are analysed in the context
of wider societal scenarios. Knowledge gaps are not limited to fuel production. Kossarev et al. (2023) point out
the further work that can be done in evaluating future aircraft. Bicer and Dincer (2017) and Ratner et al. (2019)
recommend further investigation into necessary changes to (local) infrastructure.

Uncertainty in the performance of technologies in a future setting is underexplored, which extends to under-
standing how these technologies might affect environmental impacts over time, over the course of their imple-
mentation. There have been several studies which model how the impact of aviation on climate change might
progress, as aircraft technology, operations, and fuels change. However, these typically only focus on the immedi-
ate emissions of flight, greatly simplifying the impacts of fuel production (see, e.g., Grewe et al., 2021) or excluding
this stage entirely (see, e.g., Klöwer et al., 2021). This ignores signals from technology-level research, which illus-
trates a wide breadth of outcomes based on the background system alone. Possible alternatives in the background
system are included in the AeroMAPS tool (formerly CAST) (“AeroMAPS”, 2023; Planès et al., 2021). It is notable
that this tool allows the user to change and combine a variety of settings, including air traffic, technology, fuel
supply, and operations. It appears that the only work considering a sector-level perspective over time with a fully
documented LCA is that of Sacchi et al. (2023). The present work aims to combine a rigorous LCA methodology,
following Sacchi et al. (2023), with the approach to scenario exploration demonstrated by Planès et al. (2021).

1.2. Research question
To contribute to the societal challenges laid out in Section 1.1 while making a scientific contribution to the knowl-
edge gaps described, the following two-part research question is formulated:

Considering hydrogen-based fuels for European commercial aviation, (1) to what extent can environmental
impacts be reduced and (2) under what conditions are climate targets met?

This research question enables a broad exploration of possible futures for the commercial aviation sector, from the
perspective of hydrogen-based fuels. To answer it, the potential conditions of the sector are defined. This includes
determining ranges for technological improvement of established technologies, such as conventional hydrocarbon
(HC) aircraft, as well as emerging technologies, such as hydrogen aircraft. Additionally, how the demand for air
transport evolves over time and how this is translated into yearly flight movements plays an important role. To
define these dimensions more precisely, Section 1.3 elaborates on the key concepts of the research question.
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1.3. Definition and scoping of key concepts
This section elaborates on several key concepts in the main research question. This way, a definition and scope is
provided for how these concepts are understood within the context of this research.

1.3.1. European commercial aviation
International agreements generally define the aviation emissions allocated to a particular region based on the
flights departing from that region. This approach is used here as well. In the context of this research, ‘Europe’
is defined as a selection of countries closely aligned in their approach to reducing GHG emissions, being the Eu-
ropean Union (EU), the European Free Trade Association (EFTA), which includes Iceland, Norway, Switzerland,
and Liechtenstein, and additionally, the United Kingdom. This geographical definition is adopted from the Desti-
nation 2050 report (NLR & SEO, 2021). This is referred to here as EU+.

To evaluate commercial aviation, the scope is limited to passenger transport on scheduled flights. It can there-
fore be described in terms of revenue passenger-kilometres (RPK). Non-scheduled flights and all-cargo flights are
excluded primarily for pragmatic reasons. Scheduled passenger transport is the largest and most-discussed sec-
tion of air transport. By choosing this scope, the assumptions required for this study are restricted to only this
section. Further information on how this concept is operationalised is provided in Section 2.3.

1.3.2. Hydrogen-based fuels
Several technologies are emerging to enable the transition away from fossil-kerosene-based aviation fuel. Broadly,
these can be divided into drop-in fuels; non-drop-in fuels, the most discussed of which is liquid hydrogen; and
battery-electric propulsion (Detsios et al., 2023). Drop-in and non-drop-in fuels can be grouped under the labels
alternative aviation fuels (AAFs) or sustainable aviation fuels (SAFs), although some reserve the latter for drop-in
fuels alone.

Ongoing research has resulted in several promising production pathways for SAFs. The most technologically
mature are those based on hydroprocessed esters and fatty acids (HEFA) – which use feedstock such as vegetable
oils and waste cooking oil or animal fats – followed by other biomass processes based on the Fischer-Tropsch
process (FT) or the alcohol-to-jet route (AtJ), which can accept a range of woody or agricultural biomass (Detsios
et al., 2023). These SAFs still have limited production capacity, but are furthermore limited by the availability of
appropriate feedstock, also in the future (Habermeyer et al., 2023; Krogh et al., 2022). Because of this, there is an
interest in promoting fuels based on renewable electricity: e-fuels. In their purest form, e-fuels are synthesised
based ondirect air capture (DAC) of carbondioxide andhydrogen obtained fromwater electrolysis (van derGiesen
et al., 2014). This pathway is also known as power-to-liquid (PtL). However, the definition typically extends to
synthetic fuels where hydrogen from electrolysis is combined with carbon from a point source (such as industrial
flue gas) or excess carbon from a biomass process (Ballal et al., 2023). Because of the limitations of biomass, this
thesis focuses on the role of electricity to produce alternative aviation fuels. The scope is further limited to e-fuel
production using carbon from DAC. For the sake of simplicity, carbon from point sources is also excluded, as it is
a form of delayed (generally) fossil emission.

Hydrogen (H2) itself, particularly when stored in liquid form (LH2), is also considered as a sustainable fuel for
aviation. It is not a drop-in fuel: hydrogen has a distinctly differentmolecular makeup compared to currently used
hydrocarbons, therefore requiring that storage and use on aircraft is adapted accordingly (Kossarev et al., 2023).
The first narrow-body hydrogen-powered aircraft is thought to enter the market in 2035 (Airbus, 2023). Other
non-drop-in fuels have also been proposed, such as liquid natural gas (LNG) or ammonia (NH3) (Bicer & Dincer,
2017; Gangoli Rao et al., 2020), but these have not received the rapidly growing attention that LH2 has, and are
excluded from the scope of this study.
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This study therefore considers hydrocarbon e-fuel and hydrogen propulsion as the two alternatives to fossil
kerosene. Here, the term “hydrogen-based fuels” will be used to refer to these alternatives. This term is not part
of the typical nomenclature surrounding alternative aviation fuels, nor is it suggested here that it should be. The
term is merely used to differentiate the energy carriers of interest from the broader collection of alternative fuels.
The production of these fuels as considered in this research is described in more detail in Section 2.5.

1.3.3. ReFuelEU Aviation
After a multi-year process, legislative bodies of the European Union came to an agreement on new rules for the
aviation sector, titled ReFuelEU Aviation (European Parliament & Council of the European Union, 2023). Most
importantly, this regulation prescribes a number of increasing SAF shares that must be met when considering at
least 95% of departures from airports in the European Union1. These shares are described in Table A.7 (European
Parliament & Council of the European Union, 2023, article 4). The regulation also provides additional provisions,
in order to maintain the competitiveness of European aviation and to avoid burden shifting2. It is important
to highlight that only hydrogen-based fuels are included in this study. In reality, a combination of routes can
be expected. Technical maturity currently favours certain bio-fuels, which are imagined to contribute the vast
majority of AAF required in the coming decades. For the reasons given in Section 1.3.2, these fuels are excluded
from this study. This limitation is discussed in Section 4.2.2.

1.3.4. Aviation climate targets
In contemporary aviation roadmaps, a recurring concept is that of achieving so-called climate-neutral aviation by
2050. This has multiple possible definitions. Sacchi et al. (2023) define flight-CO2 neutrality, warming neutrality,
and climate-neutrality. Warming neutrality “requires that the [radiative] forcing is stabilized at the 2050 level”
(Sacchi et al., 2023, p. 2). This is broader than flight-CO2 neutrality, which only considers warming from fossil
CO2 emissions during flight, neglecting greenhouse gas emissions elsewhere in the system, as well as the non-
CO2 climate forcers associated with flight emissions. The definition of Sacchi et al. (2023) for climate-neutrality is
stricter, requiring that radiative forcing is not stabilised, but rather brought to net-zero by implementing additional
negative-emissions technologies. Such use of negative-emission technologies is outside of the scope of the present
study, so the focus will be on warming neutrality, assessing warming both with and without the inclusion of non-
CO2 effects.

In addition to the trend in warming beyond 2050, which the above definitions consider, there is the question
of what magnitude of warming the aviation sector should remain within. This has become a subject of discussion
(see, e.g., Delbecq et al., 2023), but this discussion is still emerging, and challenging to fully operationalise. There-
fore, the approach of Kito et al. (2023) is used, who quantify a climate budget for Japanese aviation based on the
emission limits for CO2 of the International Civil Aviation Organization (ICAO) and the International Air Trans-
port Association (IATA), leaving other climate forcers outside of the scope of this target. This is a grandfathering
approach, assuming that the historical share of aviation emissions can be maintained into the future. The limits
are based on the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). In short, this
scheme aims to offset CO2 emissions from international aviation which exceed the yearly limit, which is quanti-

1Therefore, the geographic scope of this study is not precisely aligned with the scope of ReFuelEU Aviation. However, the relevance of the
regulation to the EU Emissions Trading System (EU ETS) means that Iceland, Liechtenstein, Switzerland, and Norway are also affected. The
United Kingdom has left the EU ETS, but might link its emissions trading scheme to EU ETS in the future (“Participating in the UK ETS”,
2023). However, the 2023 update of the roadmap to decarbonise aviation in the United Kingdom, put forward by industry actors, drastically
increases the ambitions regarding SAF, to 75% of fuel by 2050 (Sustainable Aviation, 2023, p. 6) – in line with the 70% of ReFuelEU Aviation.

2For example, by discouraging fuel tankering – where an operator coming from outside the EU could minimise the purchase of relatively
expensive SAF blends within the EU, by carrying a surplus of relatively cheap fossil kerosene from its departure airport, thereby increasing the
share of fossil kerosene, while also causing additional emissions in transporting this additional fuel (European Parliament & Council of the
European Union, 2023, article 5).



1.4. Thesis structure 5

fied as 85% of such emissions in 2019 (ICAO, 2023, p. 5). Note that other greenhouse gasses are only considered
to a limited extent (ICAO, 2022c). This scheme extends to 2035, after which the aspiration is to achieve net-zero
by 2050 (IATA, 2022). Although CORSIA is an offsetting scheme, rather than a means to physically limit aviation
emissions, there are clear challenges to effective, large-scale offsetting, such as their present efficacy (see, e.g., Bad-
gley et al., 2022; Unearthed, 2021) and their proposition for long-term impact reduction (see, e.g., Stuart et al.,
2019). Therefore, offsets are excluded from the present analysis, but are discussed in Section 4.2.4.

In order to further operationalise these targets, the temporal scope is defined, starting in 2024 and ending
in 2070. For the purpose of this study, all European aviation is considered, including domestic flights. Fur-
thermore, although “one-time construction and manufacturing activities” are explicitly excluded from CORSIA
(ICAO, 2022c, p. 4), this study includes the life cycles of fuel production plants and aircraft manufacturing, as
well as their respective end-of-life phases, as such activities are expected to become increasingly relevant in the
coming decades (see, e.g., Arblaster, 2023). Airport activities (construction, ground operations, amenities, etc.)
are excluded in these policies as well as in the present research. How the climate impact of aviation is quantified
and assessed is elaborated on further in Section 2.8.

1.4. Thesis structure
The methods and materials of this research are explained in Chapter 2. To improve reproducibility further, ad-
ditional information is provided in Appendix A and Appendix B. The results, including sensitivity analyses, are
presented and briefly discussed in Chapter 3, with additional results being included in Appendix C. This leads to
Chapter 4, where the key findings and limitations are discussed. Finally, conclusions and recommendations are
presented in Chapter 5.





2
Methods and materials

To answer the research question, an LCA is conducted by coupling temporally explicit inventory data to a system
of stock-and-flow models. Section 2.1 describes the general workflow of this system. Scenarios are developed as
described in Section 2.2. The system is then broken down further, first describing how the demand element of
the reference flow is defined (Section 2.3), followed by the system dynamics (Section 2.4), and then how these
translate to the LCA inventories and impact assessment. Finally, the approach to sensitivity analysis is presented
(Section 2.9).

2.1. General approach
The prospective life cycle assessment has the functional unit of providing air transport to all passengers departing
from EU+ countries each year from 2024 to 2070 inclusive. Section 1.3 described the scope of this functional unit.
Reference flows can be defined as providing this function in the context of a particular scenario. The general ap-
proach to this is illustrated in Figure 2.1. The structure of the service system, from a life cycle inventory perspective,
is illustrated in Figure 2.2. Many of the unit processes are quantified using stock-and-flowmodels (see Section 2.4).
In short, these stock-and-flow models quantify activities based on the dynamic demand for aircraft and aviation
fuels, passing information to each other in a manner reflecting conventional LCA logic. The economic flows feed-
ing into these stock-and-flow models are evaluated using version 2.9.2 of the Activity Browser (Steubing et al.,
2020). The stock-and-flow models and subsequent impact assessment are performed using custom python scripts.
Foresight principles, as explained in Section 2.2, are used to define the scenario dimensions (Table 2.1), the value
of which directly influences elements of the life cycle inventories and/or stock-and-flow models.

Scenario
dimensions
see Table 2.1

Stock-and-
flow models
see Figure 2.3

Life cycle
inventories
see Figure 2.2

Environmental
impacts

Scenario
construction

Figure 2.1: Flowchart of the approach, illustrating how the environmental impacts of a certain scenario are quantified by feeding the
scenario dimensions into a connected system of life cycle inventories and stock-and-flow models. Elements are labelled with the table or

figure which expands on their content.
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Figure 2.2: Flowchart of the LCA model. Unit processes with a “fleet” label are quantified with the connected stock-and-flow model. AC:
aircraft, DAC: direct air capture, FT: Fischer-Tropsch process, liq.: liquefaction, PEM: proton exchange membrane.

2.2. Scenario development
Thedevelopment of scenarios is primarily inspired by the work of Delpierre et al. (2021) and Langkau et al. (2023).
Their frameworks are simplified to reduce the dependence on participatory methods, which are beyond the scope
of the present research, although being important to the field of foresight. The initial probability space is con-
structed through an iterative approach, by determining which processes contributed the most to the results, and
secondly, what uncertainty ranges could be identified for the inventory parameters of these processes. This leads to
a number of dimensions with possible values (Table 2.1). Here, these possible values can lead to a total of 7776 sce-
narios. Several steps are taken in order to reduce this to a more manageable number. Combinations of variables
which are judged to be inconsistent with each other are ruled out. Additionally, each dimension is considered
based on its influence on the results. Dimensions with little influence on the results are relegated to sensitivity
analysis. Reviewing the remaining scenario field, a small number of scenarios are selected for further discussion.
These scenarios are selected considering distinctiveness in dimensions and results. Furthermore, their internal
consistency is motivated through a causal loop diagram (Figure A.4) and brief narrative description (Section 3.1).

2.3. European air transport demand
Asdescribed in Section 1.3.1, European aviation is defined based on the scheduled passenger flights departing from
the EU+ geographic scope. FollowingGrewe et al. (2021), the whole sector is approximated based on narrow-body
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Table 2.1: Overview of all scenario dimensions considered and their possible values. For each value, an indication is given of its meaning. For
dimensions describing a difference in fuel or energy demand, this refers to the energy content of fuel used per revenue passenger-kilometer
(RPK). AAF: alternative aviation fuel, gen.: generation, w.r.t.: with respect to, GMST: global mean surface temperature, HC: hydrocarbon.

Dimensions and related section(s) Possible values Indication of meaning

AAF volume No ReFuelEU Aviation Current AAF share (0.05%) is maintained

Section 2.5 ReFuelEU Aviation as-is AAF share increases to 70% in 2050 and stagnates

ReFuelEU Aviation extended AAF share increases to 70% in 2050 and 100% in 2060

Air traffic volume High growth Yearly RPK for 2070 is 2.77 times 2019 value

Section 2.3 Base growth Yearly RPK for 2070 is 1.96 times 2019 value

Low growth Yearly RPK for 2070 is 1.37 times 2019 value

Degrowth Yearly RPK for 2070 is 0.70 times 2019 value

HC aircraft technology Business as usual 2050 gen. has 22% fuel saving w.r.t. present-day gen

Sections 2.6.1 and 2.6.3 Optimistic improvements 2050 gen. has 34-38% fuel saving w.r.t. present-day gen.

Breakthrough improvements 2050 gen. has 50% fuel saving w.r.t. present-day gen.

H2 aircraft technology No hydrogen aircraft H2 aircraft do not see any commercial entry into service

Sections 2.6.1 and 2.6.3 Low performance 120-140% energy demand of contemporary HC aircraft

Medium performance 100-115% energy demand of contemporary HC aircraft

High performance 95-90% energy demand of contemporary HC aircraft

AAF production technology Worst-case performance Low-end values and improvements over time

Section 2.6.2 Base performance Mid-range values and improvements over time

Best-case performance High-end values and improvements over time

Operational performance Business as usual Payload load factor stagnates at 80%

Section 2.6.4 Optimistic improvements Payload load factor increases to 90% by 2050

Hydrogen source Water electrolysis with wind energy 0.5-0.6 kg CO2-eq per 1 kg H2 in 2040

Section 2.7 Water electrolysis with grid mix 0.6-1.7 kg CO2-eq per 1 kg H2 in 2040

Prospective hydrogen market mix 3.3-10.5 kg CO2-eq per 1 kg H2 in 2040

Background system ∼2.5°C GMST increase by 2100 33 g CO2-eq per 1 kWh grid electricity in 2040

Section 2.7 ∼1.7°C GMST increase by 2100 32 g CO2-eq per 1 kWh grid electricity in 2040

∼1.3°C GMST increase by 2100 12 g CO2-eq per 1 kWh grid electricity in 2040
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aircraft and wide-body aircraft. Segments are created to divide traffic based on aircraft type, distance flown, and
destination (intra-EU+ or extra-EU+), based on flight data from 2019 (EUROCONTROL, 2022a). This results in
eight segments serviced by narrow-body aircraft andfive segments serviced bywide-body aircraft (see SectionA.2).
Each of these segments is given a reference flight distance and an estimate for the share of RPK that could be
serviced with hydrogen aircraft, should these be introduced (Table A.1).

For the sake of simplicity, 2019 is the only year with bottom-up construction of the segments. For subsequent
years, the segments are multiplied by historical and projected trends (EUROCONTROL, 2022b, 2023). Note that
this approach to future traffic means that the relative distribution of air traffic among segments is kept constant.
This limitation is discussed in Section 4.2.1. EUROCONTROL bases its trends on factors such as airport capacity
and economic forecasts, with uncertainties such as environmental pressure, resulting in a ‘low’ traffic projection
with low growth after 2024. However, there have also been calls for a decrease in total air traffic, rather than
a mere reduction in growth. A recent example of this can be found in the report commissioned by the Dutch
House of Representatives of Populytics (2023). In their panel consultation of the Dutch population on how to
achieve national climate targets, some of the most favoured options related to restricting aviation. On average,
participants chose to reduce the number of flights by 30% and, additionally, to ban flights to destinations within
600 km (Populytics, 2023, p. 19). Extrapolating these findings to the EU+, a fourth scenario is added in which
RPK decreases from 2024 through 2034, before stagnating at 70% of the 2019 RPK1 (Figure A.3, Table A.2).

2.4. Fleet dynamics
There are several functions present in the system which are not met by a singular unit process, but by a com-
bination of many units, potentially including in a mix of characteristics across units (Figure 2.2). In this study,
such a group of units is referred to as a fleet. At any given time, there is an aircraft fleet serving each demand
section (see Section 2.3), each fleet consisting of multiple types and generations (see Section 2.6.1). Such fleets
are also constructed for various functions in the fuel production chain, which are similarly given generations (see
Section 2.6.3).

There aremultiple approaches possible in the characterisation of fleets. Twomain approaches are distinguished.
Thefleet can consist of persistent units. Thisway, the characteristics of the fleet can be defined entirely by its inflows
and outflows (see, e.g., Kito et al., 2023; NLR and SEO, 2021). New technologies affect the fleet through these
flows. Another approach is to forego persistent units and to parametrically describe the fleet itself as a function
of time, rather than doing so based on its inflows and outflows. This can be done by defining a progression in
the composition of the fleet (see, e.g., Delbecq et al., 2022; Grewe et al., 2021), or by directly representing the
fleet composition through a singular process (see, e.g., Sacchi et al., 2023). In the present research, the choice is
made for persistent units. One benefit of this approach is that, once the persistent units which make up the fleet
are defined, it becomes relatively straightforward to attach their respective cradle-to-gate and end-of-life phases.
Another benefit is that it allows for some discussion of efficiency improvement as a function of fleet dynamics.
However, at the same time, inflows and outflows determined through a simple set of rules might deviate more
strongly from the patterns observed or expected from reality, when compared to an approach which described the
fleet composition directly (see Section 4.2.1).

For each of the fleets constructed (see Section 2.1), some basic rules are used in a stock-and-flow model (Fig-
ure 2.3). These rules utilise certain characteristics, such as the year from which a generation of units can enter
the fleet, how much a unit can contribute to the function of the fleet per time interval, and at what age the unit
will retire. Precise descriptions of these values are presented in Appendix A. For each time interval, units which

1As with other scenarios, the development of air traffic is applied equally to all segments. The simplification is made that any shift to-
wards larger aircraft and further destinations stemming from the 30% reduction is balanced out by the short distance ban not being directly
implemented to short distance segments.
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Figure 2.3: Stock-and-flow diagrams. The stock-and-flow models are connected to each other in order to quantify life cycle inventories. To
illustrate the working of the model, only three stocks are shown for each diagram. In practise, the number of stocks depends on the assumed

number of generations. These diagrams are shown on a larger scale in Section A.1. ASK: available seat-kilometers, RPK: revenue
passenger-kilometer.

have reached their retirement age leave the fleet2, at which point enough new units enter in order for the fleet to
meet its function for the present time interval. The new units always come from themost recent generation. There
are additional rules for the introduction of hydrogen aircraft (Figure 2.3b). Segments of passenger transport (see
Section 2.3) are co-defined by what share of the segment could be satisfied with hydrogen aircraft. Both hydrogen
aircraft and hydrocarbon aircraft are introduced according to this share3. In several cases, this results in a decrease
in e-fuel required (see Section 2.5). If, after retirement, there are more units in a fleet than required to meet the
present function, only a portion of this fleet is deployed for that time interval.

Fleets are initiated in the first year of the analysis based on a distribution of ages for the starting year, the
values of which are reported in Section A.3 and Section A.4. This distribution is then used to determine the
generational composition of the fleet, again using themost recent generation available for each year. Subsequently,
this composition is scaled in order to supply the fleet’s function for the starting year. From this starting fleet, the
rules of the previous paragraph can be applied. This is done iteratively until the final year of the analysis is reached,
being 2070. Note that this approach to temporal scope is different from its usual implementation: the temporal
scope also sets a strict boundary for when environmental flows are accounted. Impacts occurring outside of this
temporal scope, but which do enable the product system somehow are effectively cut off4. Beyond this technicality,

2Note that an aircraft leaving a fleet is not necessarily synonymous with its retirement. It is common for airlines from more economically
developed countries to replace aircraft well before their retirement age, selling on the older aircraft to another airline (see, e.g., Cox et al., 2018;
Kito, 2021). In this study, the simplification is made that aircraft leaving the fleet immediately enter end-of-life.

3For example: if a segment is described as being able to accommodate 50% of RPK with hydrogen aircraft, 50% of the RPK deficit will be
met with hydrogen aircraft, provided there is a generation of hydrogen aircraft with suitable introduction year (i.e., not an introduction year
in the future) and suitable range. Using this approach, the demand for both hydrocarbon and hydrogen aircraft does not radically shift within
one generation.

4For example, the majority of aircraft used in the first time interval of the simulation were manufactured previously. The impacts of their
cradle-to-gate phase (and use prior to this time interval) are excluded. Another example is aircraft and AAF production plants introduced for
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the extent of the analysis can be considered cradle-to-grave. However, there are some notable cut-offs, which
are included in Figure 2.2. These include the construction and operations of airport buildings, as well as the
construction of fuel distribution and storage infrastructure, both of which were excluded due to a lack of data that
aligns with the temporal scope considered. Further cut-offs are discussed alongside the processes they are cut off
from, in Section 2.6.

2.5. Fuel supply
As introduced in Section 1.3.3, the introduction of AAF is modelled here based on the ReFuelEU Aviation rules.
These describe the minimum volume of compliant AAF that must be used in a given period, mostly relating to
a specific calendar year. The fuels considered here are fossil kerosene, e-fuel, and liquid hydrogen. ReFuelEU
Aviation specifies that hydrogen should be considered based on energy content, but does not specify this for drop-
in fuels (European Parliament & Council of the European Union, 2023, article 4). As each of these fuels has a
different energy density, they are evaluated based on their lower heating value (LHV)5 when determining the
share of AAF in the total fuel supply.

In addition to the ReFuelEU Aviation timeline, two additional possibilities are considered (Table A.7). One
is a reference case, where there is no increase to the present volume of AAF, being around 0.05% (EASA, 2022).
Another extends the ReFuelEU Aviation volumes beyond their current scope of 2050, to align with the temporal
scope extending to 2070. Following the general trend of the rules as-is, fossil kerosene is phased out completely
by 2060.

The logical order applied when quantifying the fuel supply starts from the reference flow, with the air traffic
demands being used to construct the aircraft fleets (Figure 2.3b). For each time interval, the activity of the aircraft
fleet requires a certain volume of hydrocarbon fuels (here, fossil kerosene and e-fuel) and liquid hydrogen. In
scenarios that comply to a certain minimum volume of AAF, all liquid hydrogen forms a contribution to this min-
imum, with the remainder being achieved by defining the quantity of e-fuel required within the total hydrocarbon
demand. The number of hydrogen aircraft is, in principle, independent from this minimum: if hydrogen aircraft
are available, they are added to the fleet for their full potential. E-fuel and liquid hydrogen requirements are met
by the respective AAF infrastructure fleets (see Section A.4). As mentioned in Section 2.4, it is possible for the
introduction of hydrogen aircraft to outpace increases to the minimum AAF share, in which case only a fraction
of the AAF infrastructure fleets which experience a surplus are deployed.

2.6. Unit processes modelling
The general logic and dynamics of the simulation have been described so far. The following sections describe how,
within this framework, the inventories are created which quantify the total environmental flows across the service
system.

2.6.1. Aircraft
The aircraft modelled to construct the fleets described in Section 2.4 are first based on existing reference aircraft,
after which future aircraft are imagined. The existing aircraft are the Airbus A320 and A320neo, representing
generation 0 and generation 1 for narrow-body aircraft in this study, and the Boeing 777-300 and Airbus A350-
900, representing generation 0 and generation 1 for wide-body aircraft. This choice of reference aircraft is adopted

use in the final time interval. The full impacts of their cradle-to-gate phases are included, but only see a fraction of their lifetime use within the
temporal scope. This approach is different from how unit processes are typically determined, which might consider that since these systems
only see a fraction of their lifetime use within this scope, their cradle-to-gate impacts should also only be accounted for a fraction of the total.
The choice is made against this convention, as even this partial use requires the existence of the full system at that point in time.

5This is taken to be 43 MJ kg−1 for fossil kerosene, 45 MJ kg−1 for e-fuel, and 120 MJ kg−1 for liquid hydrogen.
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from Grewe et al. (2021). Future aircraft adjust the inventories created for these aircraft in some way. The fuel use
and emissions of aircraft are determined based on a variety of sources and, in the case of future aircraft, depend
on the scenario values considered (see Section 2.6.3). For the sake of simplicity, the aircraft cradle-to-gate and
end-of-life processes are considered to be constant across scenarios – although, within the logic of the scenarios,
there would be considerable differences in the design and manufacture of future aircraft.

Both the cradle-to-gate and end-of-life processes of aircraft are based primarily on Cox et al. (2018), who
construct inventories based on the (assumed) material composition of the aircraft (Table B.1) and adding to this
flows of electricity, heat, and dust, parameterised to aircraft operating empty weight – rather than considering the
production of specific components such as the airframe, electrical systems, or interior furnishing. Two notable
changes are applied to these inventories. First, Cox et al. (2018) exclude the so-called buy-to-fly ratio, effectively
assuming that no manufacturing waste is created. However, the creation and disposal of waste are influential met-
rics for the manufacturing phase (Arblaster, 2023). This is therefore incorporated based on industry estimates
(Bachmann et al., 2017; Orefice et al., 2019; Timmis et al., 2015; see Section B.1). Secondly, to account for hy-
drogen aircraft likely having a relatively higher empty operating weight than contemporary hydrocarbon aircraft,
their mass is increased by 10%, based on Kossarev et al. (2023). However, no change to their relative material
composition is considered. End-of-life processes are adapted directly from Cox et al. (2018). Inventories for each
aircraft generation are provided in Section B.6.

2.6.2. Fuel well-to-tank
The required supply of fossil kerosene, e-fuel, and liquid hydrogen for each scenario is determined as described
in Section 2.5. These values are used to quantify the production chains of these three fuels. For fossil kerosene,
this is simply done by connecting a relevant background process (see Section 2.7). For the AAFs, the main plants
required along their production chain are treated as dynamic fleets (see Section 2.4). The following paragraphs
briefly describe how the performance of these fleets is determined across scenarios, with further information in
Sections B.2, B.3, and B.4, and with inventories in Section B.6. Inventories for construction and end-of-life phases
of plants are generated using premise (see Section 2.7). This is the case for all background flows, which includes
the sorbent used for direct air capture.

The scenarios which consider all hydrogen to be produced from water electrolysis use proton exchange mem-
brane (PEM) electrolysers. Three scenarios are defined for technological performance, based on estimates reported
by the IEA (2019), with some adjustments (Delpierre et al., 2021; Sacchi et al., 2022). Hydrogen taken from a mar-
ket mix is generated using the work of Wei et al. (in preparation) – in these cases, the market composition changes
according to the background scenario considered, but there is no longer a distinction between performance sce-
narios. Hydrogen distribution is based on Sacchi et al. (2023). For use on hydrogen aircraft, hydrogen is liquefied
after distribution (Smith&Mastorakos, 2023). Liquefaction is represented by its operational energy demand alone.
Transportation and boil-off losses are each estimated as 1%, resulting in the emission of hydrogen to air.

The sorbent-based direct air capture (DAC) system considered is based on the inventories of Terlouw et al.
(2021). The worst-case scenario does not consider any improvements over time, while learning rates for the base
and best-case scenarios are developed by comparing and combining a number of sources (Fuss et al., 2018; Hanna
et al., 2021; Qiu et al., 2022). Note that these inventories are strictly affected by the AAF performance scenario
dimension. As a deployment rate for DAC is assumed in the calculation of the learning rates, one can reflect on the
consistency between this dimension and the dimension of the background system, which incorporates the degree
of climate change mitigation.

The performance of e-fuel production is determined by comparing the work of Atsonios et al. (2023), König
et al. (2015), and Rojas-Michaga et al. (2023). Each of these reports a plant design focused on the production
of synthetic kerosene. Plants utilising a Fischer-Tropsch process are multifunctional, so some assumptions are
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required in order to arrive at mono-functional processes. To this end, physical allocation centred around lower
heating value (LHV) is applied, in line with literature. The production process is simplified to flows of CO2, H2,
and electricity. Due to a lack of data, cooling water and waste water are cut off. Because the Fischer-Tropsch
process itself is well-established, these inventories are not considered to change over time.

2.6.3. Fuel tank-to-wing
The fuel tank-to-wing phase (i.e., combustion) distinguishes between the three fuels, while also accounting for the
aircraft using the fuel and aspects of the flight itself. The flight is split up into the landing and take-off cycle (LTO),
where emissions are relatively low to the ground, and climb/cruise/descent (CCD), where emissions are higher up.
Inventories for hydrocarbon fuels are based on Winther and Rypdal (2023), with the addition of metal impurities
of fossil kerosene, which are taken from the ecoinvent 3.9.1 database (Wernet et al., 2016). E-fuel is assumed to not
have these metal impurities, nor sulphur impurities, meaning that no sulphur oxides (SOx) are formed – the same
assumptions asmade in earlier work (Arblaster, 2023). The combustion of hydrogen ismodelled based onMitchell
and Hobson (2023). Note that the emissions of hydrogen aircraft are based on a gas turbine, rather than a fuel
cell-driven electric powertrain, while their fuel consumption considers both as possibilities. This simplification
is discussed in Section 4.2.3. The inventories are reported in Section B.6. Inventories are expressed per 1 MJ fuel
use, with separate inventories for LTO and CCD. Fuel use for LTO is assumed to be consistent across flights, while
CCD scales with the flight distance (see Section A.2). For each fuel, the inventories per 1 MJ are the same for each
aircraft type, based on the recent reference aircraft (see Section 2.6.1). The exception to this is the old reference
aircraft, which have separately generated inventories.

The fuel use of future hydrocarbon aircraft is estimated by combining a number of different sources. Grewe et
al. (2021) combine insights from various experts to determine the improvements to conventional aircraft concepts
that could be realised, although they recognise that this would be challenging to achieve. This forms the optimistic
scenario. Some speculate that even larger improvements are possible, for example when introducing new aircraft
concepts (see, e.g., ICAO, 2022b). To simulate this, the optimistic values of Cox et al. (2018) are adopted, named
here the breakthrough scenario. Finally, the business-as-usual case of Cox et al. (2018), based on historical trends,
is adopted as third scenario (Table A.5). Values for fuel use of future hydrocarbon aircraft are applied directly
to LTO and CCD fuel uses and their respective inventories (Table A.4). For hydrogen aircraft, the estimations
reported by ICAO (2022b, pp. 88-89) are used. These express three scenarios for the fuel use of hydrogen aircraft,
relative to their contemporary conventional aircraft6, while accounting for payload capacity (Table A.6). These
values align with estimates reported elsewhere (see, e.g., NLR, 2022; Smith and Mastorakos, 2023; Adler and
Martins, 2023; or the review of Delbecq et al., 2023). The assumption that wide-body hydrogen aircraft could
enter the market in 2050 is also adopted (see Section A.2).

2.6.4. Operational improvements
With the exception of the COVID-19 pandemic, the load factor of passenger aircraft has historically improved
to reach around 80%. Under optimistic conditions, this can reach 90% (Cox et al., 2018). Increasing the load
factor increases the mass to be transported – and therefore, the required fuel. However, there is considerable
deviation among values quantifying this relationship (Arblaster, 2023). Another trend in commercial aviation,
particularly in Europe, is the focus on inefficiencies stemming from air traffic management – optimising how the
aircraft is flown (see, e.g., EUROCONTROL, 2022b). Both of these factors should not be ignored, but they are
also challenging to quantify, as well as playing a smaller role overall when compared to aircraft technology or

6Note that ICAO (2022b) report performance of hydrogen aircraft relative to contemporary tube-and-wing aircraft. It is unlikely that effi-
ciencies assumed for hydrocarbon aircraft in the breakthrough case can be achieved with a tube-and-wing concept, considering the optimistic
efficiencies reported by Grewe et al. (2021). Therefore, the fuel efficiency of hydrogen aircraft is overestimated in the breakthrough scenario.
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alternative fuels. Therefore, these operational improvements are simplified into a single metric: if improvements
are introduced, the load factor gradually increases from 80% in 2024 to 90% by 2050, without any additional fuel
requirements. Any increases to fuel use stemming from the increasing load factor are thereby assumed to be
balanced out by improvements to traffic efficiency.

2.7. Prospective background LCI data
The inventories created through themethods described abovemake use of economic activities notmodelledwithin
this work, but directly adopted from another source. It is through these activities that the service system connects
itself to the background. The background databases used here are each generated using the python library premise
(Sacchi et al., 2022), version 1.8.0. This library enables the transformation of an ecoinvent database – in this case,
ecoinvent 3.9.1 with the cut-off systemmodel (seeWernet et al., 2016)7 – to align with the regions and scenarios of
an integrated assessmentmodel (IAM), while furthermore creating a number of additional inventories, not present
in the original database. IAMs link human processes, such as the energy system, to environmental processes, such
as climate change, through a series of key attributes (e.g., Stehfest et al., 2014). Such models can inform policy
makers on how policy responses might affect society and its impacts on the environment (Stehfest et al., 2014).
To frame the use of these models, the scientific community has created so-called Shared Socioeconomic Pathways
(SSPs) (Riahi et al., 2017). These are narratives which each describe plausible societal pathways. Together, the SSPs
facilitate the exploration of, and subsequent understanding of, the uncertainty the future holds. An early example
of applying the output of an IAM to transform the background database used for prospective LCA is the work of
Mendoza Beltran et al. (2020). The premise library makes the generation of such databases more accessible.

Background databases are generated following three future pathways, following the approach of Wei et al. (in
preparation): the pathways “SSP2-NDC”, “SSP2-PkBudg1150”, and “SSP1-PkBudg500” of the REMIND model
(Luderer et al., 2022) are used, representing scenarios with a global mean surface temperature (GMST) increase by
2100 of around 2.5°C, 1.7°C, and 1.3°C, respectively8. To approximate the timeline of these pathways, databases are
generated with a time interval of five years (i.e., for 2020, 2025, 2030, etc.). Flows exported from these background
databases to connect to the foreground are then linearly interpolated to align with the one-year time interval
maintained in this work. The “EUR” region of REMIND is assumed to be representative of the geographic region
considered.

2.8. Impact assessment
Aviation has several environmental effects, noise, air quality degradation, and climate change being among the
most prevalent. The focus of the present research is on climate change. A topic of increasing interest in this
regard is the non-CO2 effects of aviation. The most prevalent of these are caused by nitrogen oxides (NOx) and
by condensation of water into contrails, resulting in aviation-induced cloudiness. Both of these, when introduced
at high altitudes, have both warming and cooling components to their effects (Lee et al., 2021). Although climate
targets are mostly geared towards CO2, with a minor focus on other greenhouse gasses (see Section 1.3.4), such
additional climate forcers should not be ignored. However, despite being increasingly well-understood, their short
lifespan when compared to CO2 makes it challenging to assess their warming impacts holistically (see, e.g., the
discussion of Ballal et al., 2023). In response to observing this same challenge when comparing CO2 and methane
(CH4), Allen et al. (2021) develop the linear-warming-equivalent (LWE) metric, which transforms a time series of

7Note that there is an exception to this: the prospective hydrogen markets used in the sensitivity analysis are those produced by Wei et al.
(in preparation), who use ecoinvent 3.8 as input.

8Thereby, the SSP2-PkBudg1150 scenario achieves the goal of the Paris Agreement, the SSP1-PkBudg500 scenario achieves an ambitious
interpretation of it (to limit GMST increase to below 1.5°C), and the SSP2-NDC scenario implements the nationally determined contributions
(NDCs) set in the context of international climate action, although these still fall short of meeting the Paris Agreement. Note that for each of
these scenarios, ambitious climate policy is required beyond what has been implemented so far.
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emissions into the radiative forcing expected over that same time period and into the future. Sacchi et al. (2023)
adapt this metric to aviation non-CO2 effects. This approach is much less robust than the dynamic models used,
for example, by Grewe et al. (2021) and Grobler et al. (2019), but greatly reduces computational demand.

An additional impact to consider here is contrail formation. Sacchi et al. (2023) evaluate this based on the
distance flown, rather than any specific environmental flow. Doing so, they also consider how particulate matter
emissions affect the formation of ice crystals, based on Burkhardt et al. (2018), as these factors are influenced by
fuel properties – as synthetic fuels contain less impurities and result in less nucleation sites – which in turn influ-
ence the radiative forcing of contrails. The impact model of Sacchi et al. (2023) is applied to quantify the LWE
impact of emissions, with some adaptions to the quantification of ice crystals, as well as the scope and impact of
NOx emissions (motivated and detailed in Section B.5). Three cases are considered: evaluating all climate forcers,
excluding aviation non-CO2 effects, and only considering CO2 itself. This third approach is used to determine
whether the CO2 emission limit is respected. In principle, the first approach – considering all climate forcers – in-
dicateswhether thewarming-neutrality target is achieved, although itmust be noted that there ismuch uncertainty
regarding non-CO2 effects, especially when evaluating future technologies. This is why the other two approaches
are included too. The ICAO/IATA limits for CO2 emissions are also evaluated using the LWE metric. Since these
limits are expressed relative to the CO2 emissions of 2019 (see Section 1.3.4), the model created is run for 2019
flight activity. This results in the target and the future emissions being generated using the same assumptions.

To the best of the author’s knowledge, climate change is the only impact category for which LCA-adapted
metrics have been developed to consider the cumulative impact of emissions over time. Still, it is valuable to
consider how the environmental flows quantified for each time interval affect other impact categories. This is
done by calculating the impact for each year in the analysis, obtaining a time series of impacts. No discount rates
or prospective characterisation factors are applied. The midpoint characterisation models used here are those of
the EF family (v3.1), as recommended by the European Commission (2021). However, the “water use” impact
category is excluded, as the emission of water to air plays a prominent role in its calculation. In the context of this
research, water is primarily emitted because of fuel combustion, rather than the abstraction of water resources.
This choice is further motivated by data limitations on the water flows of e-fuel plants (see Section 2.6.2).

2.9. Sensitivity analysis
Due to the nature of this research, a broad range of possible future values is assessed. However, as described in
Section 2.1, not all of the possible values identified are included in the main results. A number of dimensions
of Table 2.1 are left out of the main discussion for the sake of simplicity. The focus of the sensitivity analysis is
therefore on how these parameters affect the results and what might be overlooked by the choices made. This
consists of exploring the operational improvements, fuel production technology, the background system, and the
source of hydrogen used.
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Results

Executing the methods described in Chapter 2 provides a wide array of results. This chapter highlights the key
outcomes relevant to the research question in Section 3.4.1. To better understand the systemdynamics of this work,
additional results have been generated (Section 3.2), including results for impact categories other than climate
change (Section 3.5). Finally, there is the sensitivity analysis (Section 3.6). Each of the following sections includes
a brief discussion of the results. This lays the foundation for the discussion presented in Chapter 4.

3.1. Representative scenarios
As described in Section 2.2, the initial array of possible scenarios is reduced step by step. Concerning the internal
consistency of scenarios, scenarios which do not include ReFuelEU Aviation are considered to be incompatible
with scenarios which do include hydrogen aircraft. If environmental ambitions are too low to set requirements for
AAF volumes, it stands to reason that the ambition to develop commercially viable hydrogen aircraft is also too
low. Hydrogen produced from water electrolysis using the grid mix is combined with a background system in line
with a ∼1.7°C increase to global mean surface temperature by 2100 (i.e., in line with the Paris Agreement). This
choice ismade to be consistent with the context of ReFuelEUAviation. The existing legislature aims to produce the
hydrogen-based fuels discussed here using renewable energy. However, arguments can be made regarding what
constitutes a fair or representative assessment of the energy system. The additional electricity required for e-fuels
could delay the phasing out of fossil resources across the electricitymarket as awhole – a relationship not quantified
within the scope of this research. By using a Paris-compliant background scenario, the full electricity system is
considered, while still having the AAF produced almost entirely from renewables. For the sake of simplicity and to
facilitate the comparison between scenarios, these values are set for all scenarios outside of the sensitivity analysis.
Finally, only the base-performance of AAF infrastructure and the business-as-usual operational performance are
considered for now. This is because these dimensions were found to have a limited influence on the results (see
SectionC.4). After these steps, there are four dimensions differentiating the scenarios remaining: theAAF volume,
the air traffic volume, and the technological performances of hydrocarbon and hydrogen aircraft.

From the four remaining dimensions, three sets of representative scenarios are selected based on air traffic:
high growth, low growth, and degrowth. The choice is made to couple the air traffic volume to the performance
of future aircraft technologies. This relationship is illustrated in a causal loop diagram (Figure A.4) and narrative
description in the following paragraph. Each set is given three fuel scenarios. The first fuel scenario serves as a
reference. It sees no increase in the AAF volume share compared to 2025. The other two scenarios implement the
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extended version of ReFuelEU Aviation: once with the introduction of hydrogen aircraft, and once without. This
way, the three scenarios in each set have counterparts with a similar fuel supply in the other sets, resulting in a
total of nine scenarios (Table 3.1).

A supporting narrative for these scenarios is as follows: in the high-growth scenario, the fuel efficiency imper-
ative of the aviation sector enabled it to maintain its substantial growth, which in turn provided space for revolu-
tionary aircraft technologies to mature. In combination with broad public support, this enabled the construction
of AAF infrastructure at rates thought impossible. Conversely, in the degrowth scenario, a lack of resources re-
inforces the slow development of AAF infrastructure and halts technological breakthroughs. This, in turn, limits
the traffic that can be achieved within stringent environmental regulations, further restricting available resources.
The low-growth scenario finds itself in between these two extremes. Note that it is not a given that the relation-
ships illustrated by these narratives hold true, but that efficiency improvements in transportation are considered to
stimulate demand (see, e.g., Devezas, 2020; Font Vivanco et al., 2015). These basic narratives could be approached
in a more robust way, but are sufficient within the scope of the present research.

3.2. Fleet activity
The introduction of new aircraft depends on the progression of air traffic and on whether hydrogen aircraft are
introduced or not (Figure 3.1). Since hydrogen aircraft were modelled to have the same number of seats and
lifetime use as their hydrocarbon equivalents (see Section A.3), whether hydrogen aircraft are introduced or not
does not affect the number of aircraft in the fleet, but one-to-one displaces hydrocarbon aircraft with a hydrogen
equivalent, dependent on the potential attributed to the air traffic segments.

It can be observed from Figure 3.1 that, under a constant growth rate, there is little difference in how quickly
a new generation becomes the majority of the fleet. However, when observing the degrowth scenario (Figure 3.1e
and f), the step change in growth that air traffic sees around 2035 results in a corresponding change in required
aircraft deliveries. By 2045, the second-generation aircraft make up a notably larger portion of the fleet when
compared to the other scenarios. The low demand for new aircraft in 2024-2034 can be imagined as aircraft man-
ufacturers primarily delivering to growing markets, with these markets slowing down by the time that European
aviation has stopped shrinking. The pattern created in this period repeats itself twenty years later, resulting in
a relatively slow uptake of third-generation aircraft. This is a consequence of the simplifications governing the
system dynamics.

The number of aircraft corresponds to the growth in air traffic, but fuel use is also closely related to the pro-
gression of aircraft technologies. Observing the scenarios without ReFuelEU Aviation (Figure 3.2a), these factors
balance each other out such that, although the yearly fuel use differs across scenarios, their trends after 2035 are
quite similar. This illustrates the stark contrasts between low-end and high-end projections for aircraft efficiency.
The differences in total fuel use can be explained by the diverging traffic realised up to 2035, when aircraft efficien-
cies are similar across scenarios. There is also a considerable range in the efficiency of future hydrogen aircraft
(see Table A.6), which is reflected in the yearly demand for AAF (Figure 3.2b). However, even though hydrogen
aircraft require more fuel, these scenarios show that this does not translate to an increased demand for hydrogen,
even when assuming low-performance hydrogen aircraft (Figure 3.2c). This is because, in this study, the use of
liquid hydrogen displaced some of the e-fuel that is required within the ReFuelEU rules. The production of 1 MJ
e-fuel requires more hydrogen than the production of 1 MJ liquid hydrogen1.

1Accounting for losses, fuelling an aircraft with 1 MJ liquid hydrogen required that around 1.02 MJ hydrogen is produced. For base-
case performance of AAF infrastructure, 1 MJ e-fuel requires around 1.61 MJ hydrogen. Note that other inputs across the system are not
considered in this comparison.
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Table 3.1: Overview of the nine representative scenarios selected. Each column corresponds to a scenario, the construction of which is
motivated in Section 3.1. Scenarios are defined and labelled into three sets (HG, LG, DG), where each set contains three scenarios for the fuel

supply (I, II, III). HG: high-growth air traffic with high-performance aircraft technologies; LG: low-growth air traffic with
medium-performance aircraft technologies; DG: degrowth of air traffic with low-performance aircraft technologies; I: no ReFuelEU

Aviation; II: ReFuelEU Aviation extended, no introduction of hydrogen aircraft; III: ReFuelEU Aviation extended with the introduction of
hydrogen aircraft. AAF: alternative aviation fuel, HC: hydrocarbon.

Dimensions Possible values Combination of values selected for each scenario

AAF volume No ReFuelEU Aviation HG.I LG.I DG.I

ReFuelEU Aviation as-is

ReFuelEU Aviation extended HG.II HG.III LG.II LG.III DG.II DG.III

Air traffic volume High growth HG.I HG.II HG.III

Base growth

Low growth LG.I LG.II LG.III

Degrowth DG.I DG.II DG.III

HC aircraft Business as usual DG.I DG.II DG.III

technology Optimistic improvements LG.I LG.II LG.III

Breakthrough improvements HG.I HG.II HG.III

H2 aircraft No hydrogen aircraft HG.I HG.II LG.I LG.II DG.I DG.II

technology Low performance DG.III

Medium performance LG.III

High performance HG.III

AAF production Worst-case performance

technology Base performance HG.I HG.II HG.III LG.I LG.II LG.III DG.I DG.II DG.III

Best-case performance

Operational Business as usual HG.I HG.II HG.III LG.I LG.II LG.III DG.I DG.II DG.III

performance Optimistic improvements

Hydrogen source Water electrolysis with wind energy

Water electrolysis with grid mix HG.I HG.II HG.III LG.I LG.II LG.III DG.I DG.II DG.III

Prospective hydrogen market mix

Background ∼2.5°C GMST increase by 2100

system ∼1.7°C GMST increase by 2100 HG.I HG.II HG.III LG.I LG.II LG.III DG.I DG.II DG.III

∼1.3°C GMST increase by 2100
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Figure 3.1: Results for the representative scenarios in the progression of fleet size, in number of aircraft, and of fleet composition, illustrating
(a, c, e) scenarios which have no introduction of hydrogen aircraft (with or without ReFuelEU Aviation), and (b, d, f) scenarios which do see
the introduction of hydrogen aircraft. Note that this is a visualisation of the number of aircraft and that, due to differences between aircraft

types, a visualisation of distance flown by each generation (gen.) would be different.

3.3. Climate impacts
Across scenarios, the evolution of yearly CO2 emissions aligns closely with the yearly use of fossil kerosene (com-
pare Figure 3.2a and Figure 3.3a). The alternative aviation fuels show no improvement initially compared to cases
without ReFuelEU, but as their share increases, the share of renewable electricity in the gridmix increases too. This
low-carbon grid mix also explains, in part, why the differences in impact between scenarios with and without hy-
drogen aircraft are very limited, only showing noticeable difference in CO2 emissions after 2050 (Figure 3.3a).
Despite these minimal differences, the introduction of hydrogen aircraft does bring an advantage when it comes
to the yearly demand for hydrogen (see Figure 3.2c). Comparing air traffic scenarios in 2070, there are stark con-
trasts in radiative forcing (Figure 3.3b), although all scenarios succeed in greatly reducing CO2 emissions by 2060
(Figure 3.3a). The low-growth and high-growth scenarios overshoot the CO2 target, as discussed in Section 3.4.2.

3.4. Climate targets
Theclimate impact of the representative scenarios were reviewed in Section 3.3. Now, the climate targets described
in Section 2.8 are evaluated, considering all main scenario dimensions.

3.4.1. Warming neutrality
Around half of the scenarios shown fit some definition of warming neutrality (Figure 3.4), which was defined by
comparing the radiative forcing of the years 2050 and 2070, as described in Section 2.8. This is particularly the
case when including non-CO2 effects of flight, where all but two scenarios in which ReFuelEUAviation is extended
display a decrease in radiative forcing from 2050 to 2070. This can be attributed in particular to the decrease in



3.4. Climate targets 21

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fo
ss

il 
ke

ro
se

ne
 u

se
 [E

J] (a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
A

F 
us

e [
EJ

]

(b)

2030 2040 2050 2060 2070
year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
2 p

ro
du

ct
io

n 
[E

J]

(c)

20% of European 
 production in 2050

20% of EU supply in 2030

high-performance AC with high growth
mid-performance AC with low growth
low-performance AC with degrowth

no ReFuelEU, no H2 AC
ReFuelEU extended, no H2 AC
ReFuelEU extended, with H2 AC

Figure 3.2: Results for nine reference scenarios on timeline for (a) fossil kerosene use, (b) use alternative aviation fuels, and (c) the demand
for hydrogen production. Note the near-overlap of ReFuelEU scenarios within the same air traffic scenario in (a) and of all scenarios without
ReFuelEU in (b) and (c). Yearly demand for hydrogen is contextualised based on the supply of hydrogen (10 million tonnes production and
10 million tonnes import) that the European Commission has set as target for 2030 (European Commission, 2023) and production in Europe
in 2050 estimated based on the IEA “net zero emissions” scenario (Wei et al., in preparation). Energy content of fuels is expressed in terms of

lower heating value. AC: aircraft, AAF: alternative aviation fuels.

cloudiness associated with AAF. Even without increasing the AAF share to 100%, a few of the degrowth scenarios
illustrate that the decreases in cloudiness and the fuel use of future aircraft could outweigh the long-termwarming
of CO2. However, it bears repeating that there is much uncertainty surrounding these short-term climate forcers.
When only considering CO2 emissions (Figure 3.4b), the effect of the fuel supply is less pronounced, with fuel
efficiency standing out more. These graphs show that warming neutrality, as it was defined here, can be achieved
for each growth scenario, provided the described aircraft technologies and low-impact fuel supply can be achieved.

3.4.2. Cumulative CO2 emissions
As described in Section 1.3.4, the yearly CO2 limit until 2035 is defined as 85% of the applicable 2019 emissions.
Running the model created based on 2019 flight activity, a value of 150 × 109 kg CO2 is obtained2. Evaluating the
target based on this value, only a handful of scenarios stay within the limit (Figure 3.4a). In any case, the degrowth

2This is slightly higher than the relevant emissions determined by EASA (2022), who report 147 × 109 kg CO2 for 2019. Note that some
additional factors are considered in the present study, while others – such as all-cargo transport – were excluded. This is why a figure generated
using these assumptions is used, rather than the one reported by EASA.
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Figure 3.3: Results for nine reference scenarios on timeline for (a) CO2 emissions and (b) radiative forcing, showing lines for both all climate
forcers (originating above) and CO2 only (originating below). AC: aircraft, incl.: including.

demand scenario is required. If ReFuelEUAviation is implemented as-is, the high-end technological development
is required for both hydrocarbon aircraft and hydrogen aircraft. If the introduction of AAF is increased further
after 2050, all degrowth scenarios manage to stay within the limit to varying degrees, except when hydrocarbon
aircraft see business-as-usual improvements and hydrogen aircraft are excluded, in which case the limit is missed
by less than 1%. The other demand scenarios overshoot the limit by a minimum of 35%, many cases seeing an
overshoot of over 100%, even when implementing ReFuelEU Aviation.

As can be observed from Figure 3.3, that all conventional growth scenarios overshoot the CO2 target is a result
of their high emissions prior to 2060. These are driven by a high use of fossil kerosene. Fossil kerosene’s share of
the fuel supply is a feature of ReFuelEU Aviation, so without assuming a sizeable decrease in traffic, these impacts
can only be avoided with AAF deployment far beyond the regulatory minimum. This has clear implications for
narratives surrounding future aviation, to be discussed in Section 4.1.

3.5. Additional impact categories
The quantification of environmental flows can not only be used to determine impacts on climate change, but also
for other impact categories (see Section 2.8). Quantifying these impacts year-by-year – without adjustments to the
LCIA methods – a variety of trends emerges (Figure C.4). A selection of impact categories are shown in Figure 3.5
to discuss these trends. Across impact categories, there is no substantial increase or decrease in yearly impacts if
no increase in AAF is implemented. The curves generally follow a shape similar to the fossil kerosene demand
(compare to Figure 3.2a), indicating the contribution of the fuel system. If a version of ReFuelEUAviation is imple-
mented, some impact categories still generally follow this trend, while a few show notable co-benefits, and several
others show clear trade-offs, increasing as a result of large-scale AAF production. An example from this first group
is “eutrophication: terrestrial” (Figure 3.5b), as this is tied to in-flight NOx emissions. For the same reason, clear
co-benefits can be observed for this impact category with the introduction of hydrogen aircraft. The second group,
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Figure 3.4: Heat map depicting the results for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2
emissions, (c) warming neutrality when considering all surface-level GHGs, and (d) warming neutrality when considering all climate forcers,

including flight non-CO2 effects. Each sub-plot depicts the same scenarios. Values for scenarios which meet the requirement (i.e., values
≤100) are shown in bold. AC: aircraft, HC: hydrocarbon, RF: radiative forcing.

for which both AAFs considered results in co-benefits, includes “ecotoxicity: freshwater” (Figure 3.5d), although
no impact categories benefit as much as climate change and the “energy resources: non-renewable” category. Fur-
ther attention needs to be given to the impact categories which see moderate or large increases over time, such
as “material resources: metals/minerals” (Figure 3.5a) and “particulate matter formation” (Figure 3.5c). These
impacts originate in the background system and are largely caused by the large quantities of electricity required
by hydrogen-based fuels.
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(a) material resources: metals/minerals
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(d) ecotoxicity: freshwater
 [1012 CTUe] vs year
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Figure 3.5: Results for nine reference scenarios on timeline for additional impact categories from the EF 3.1 method, showing (a) material
resources: metals/minerals, (b) eutrophication: terrestrial, (c) particulate matter formation, and (d) ecotoxicity: freshwater. Impact

categories are evaluated year-by-year, without considering environmental flows from prior years. AC: aircraft, CTUe: comparative toxic units
for ecotoxicity, N-eq: nitrogen-equivalent, Sb-eq: antimony-equivalent.

This variety of trends is indicative of insights that cannot be obtained by evaluating climate change alone. The
array of technological solutions considered within this study do not mitigate damages in these impact categories,
but in some cases exacerbate them, resulting in burden shifting. However, as the majority of these impacts are cre-
ated somewhere in the background system, they should be considered alongside the limitations of the prospective
background databases used. For example, these do not incorporate future metal economies and opportunities to
improve recycling (see Steubing et al., 2023). Although these impact categories warrant further investigation, this
is beyond the scope of this thesis.

3.6. Sensitivity analyses
The sensitivity analyses described in Section 2.9 are conducted and presented as two sets, each with a focus on the
climate targets (i.e., to be compared with Section 3.4). First, the factors which were excluded due to their limited
influence on the results are discussed, being operational improvements and the technological performance of
AAF production. Next, the dimensions concerning the hydrogen source and background system are explored.
The corresponding figures can be found in Section C.4.
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3.6.1. Minor dimensions
Which performance level of AAF technology is considered has some influence. Particularly when considering
the low-performance end of the spectrum, several scenarios no longer meet the climate targets (Figure C.5 and,
e.g., Figure C.7). Scenarios which entirely rely on e-fuel to replace fossil kerosene appear to be the most affected.
Logically so, as the low-end performance of Fischer Tropsch plants identified from literature is considerably dif-
ferent from the base-case (see Appendix B). On the other hand, the difference between base-case and best-case
performance is much less pronounced in the results. It should be noted that these ranges were determined for a
narrow selection of technologies. Should entirely different technologies be considered instead, the range of values
would consequently be broader.

Implementing the operational improvements described in Section 2.6.4 does result in a clear decrease in CO2

emissions (Figure C.5). However, concerning the CO2 limit, this only affects a few of the degrowth cases to push
them below the maximum. Since the improvements were assumed to be realised to their maximum extent by
2050, they have little effect on the warming trend from 2050 to 2070, although there are a few edge cases where
this change is relevant (Figure C.6).

3.6.2. Background system and hydrogen source
Section 3.1 discussed how a background aligned with the Paris Agreement and hydrogen production together
from the grid mix forms a consistent setting for the ReFuelEU Aviation narratives considered. Alternative hydro-
gen sources – i.e., replacing grid electricity with electricity from offshore wind or by implementing the prospective
hydrogen production mixes described by Wei et al. (in preparation) – and alternative background systems – i.e.,
SSP2-NDC or SSP1-PkBudg500 (see Section 2.7) – can considerably alter the results. Even the most optimistic
progression of the hydrogen production mix drastically narrows the conditions under which climate targets are
achieved (Figure C.11). For less optimistic mixes, the CO2 limit is fully out of reach, with only warming neutrality
being potentially possible when considering all climate forcers (Figure C.13 and Figure C.16). The mix created
for the SSP2-NDC scenario even shows the possibility of hydrogen-based fuels producing a worse outcome than
simply sticking with fossil kerosene (Figure C.16a). However, it should be noted that these less optimistic mixes
assume that overall hydrogen production sees limited growth in the coming decades – an assumption which is
incompatible with the volumes required for ReFuelEU Aviation as modelled here (see Figure 3.2c). Still, the ob-
servation can be made that hydrogen-based fuels using steam methane reforming – even to a limited extent – face
a much larger challenge in meeting climate targets (Figure C.11a).

When comparing Section 3.4 to gridmixes and wind electricity across scenarios, changes are generally limited.
The most extreme differences can be observed from wind energy in the ∼1.3°C scenario (Figure C.9) and from
grid electricity in the ∼2.5°C scenario (Figure C.15). In both cases, the general trends observed in Section 3.4 are
unaffected, primarily affecting groups of scenarios where only a fraction meet the targets, to increase/decrease the
share of this fraction. Overall, it is clear that the metrics illustrated here do not reward efficient use of hydrogen
if hydrogen production has a near-zero climate impact3. As such, additional impact categories should not be
neglected in the assessment of hydrogen-based fuels (see Section 3.5).

3It is even the case that the introduction of low-performance hydrogen aircraft can be detrimental to the overall targets compared to
hydrocarbon aircraft (see, e.g., scenarios for ReFuelEU as-is in Figure C.9). This is because the method through which ReFuelEU Aviation
is implemented means that the increases to the total fuel supply of low-efficiency hydrogen aircraft can be translated into a larger volume of
fossil kerosene being used while still meeting the minimum AAF share. This relationship holds true for all scenarios, but is only detrimental
to hydrogen aircraft when hydrogen has a near-zero climate impact.





4
Discussion

Having presented the results in Chapter 3, the following sections reflect on the key findings (Section 4.1), and
discuss some of the main limitations of this work (Section 4.2).

4.1. Key findings
Observing the scenarios presented in Chapter 3, several findings stand out. The progression of aircraft technolo-
gies considered could offset growth in air traffic, meaning a stagnation or decrease in the yearly demand of avi-
ation fuels beyond 2035. Because of this, warming neutrality can be achieved when comparing 2050 to 2070
(Figure 3.4d). However, for this to be the case, the adoption of AAF must be continued after 2050, beyond 70%.
These relationships align with the findings of Grewe et al. (2021), but are not obvious from the work of Sacchi et al.
(2023), who disregard technological improvements beyond 2050.

Whether hydrogen is used to fuel liquid hydrogen aircraft or in the production of e-fuel bears little conse-
quence to the overall trend of the results. The relatively low efficiency of e-fuel production has little impact, due
to the low climate impact of hydrogen production modelled here (compare Figure 3.2c and Figure 3.3b). How-
ever, this finding does not hold true if these systems are not overwhelmingly powered by renewable energy, in
which case overall impacts are larger, with the introduction of hydrogen aircraft resulting in more pronounced
benefits (e.g., Figure C.13a). The potential advantages of hydrogen aircraft become even more apparent when con-
sidering additional impact categories, such as material resources: metals/minerals and eutrophication: terrestrial
(Figure 3.5). So, hydrogen aircraft could make a substantial impact by 2070, but benefits with respect to e-fuels are
context-dependent. Such benefits are particularly pronounced for high-performance hydrogen aircraft, but even
low-performance hydrogen aircraft show overall gains.

Despite the result that technological breakthroughs could balance out high growth in traffic, all scenarios with
positive growth fall short of respecting the CO2 limit. Central here is the use of fossil kerosene, which cannot
be decoupled from growth prior to 2035 (Figure 3.2a). Leading up to 2035, the CO2 emissions of scenarios with
positive growth consume the budget to such a degree that, even under the most optimistic conditions considered,
they far surpass the CO2 limit by 2070. An absolute decrease in emissions prior to 2035 is required in order to
respect this limit. Hypothetically, one way to achieve this is if the deployment of AAF far outpaces the regulatory
minimum. However, the aviation sector is unlikely to achieve this on its own accord. Concerning past environ-
mental targets, Jamie and Keith (2022) determined that the aviation sector has often “replaced or abandoned its
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commitments and targets without explanation, and, since the targets are voluntary, faced no consequences for do-
ing so” (p. 52). A particular trend that is repeating itself now is the promise that future technologies will achieve
certain efficiencies, while emissions grow in the short andmedium term. Given that such past promises have fallen
short, it would be unwise to expect the current generation of voluntary promises to unfold differently. Therefore,
decreasing emissions prior to 2035 must rely on air traffic demand management.

The degrowth narrative described in Section 3.3 is by no means universally desired, yet a decline in air traffic
could be a step towards a prosperous, just, and joyful society, rather than a diversion. The societal value of the
sector in its current form is debatable1. Beyond aviation, there is increasing evidence that economic growth cannot
be aligned with environmental objectives (see, e.g., Hickel and Kallis, 2020)2. The mitigation of growth brings
disadvantages to some stakeholders in the short term, but could be advantageous to all in the long term. Kito
et al. (2023) frame this trade-off as “intergenerational equity” (p. 11): if aviation uses up its climate budget in the
coming decades, future generations cannot enjoy the same benefits of flight enjoyed by some so far. In order to
avoid this inequity, a drastic temporal redistribution of flight activity is required. Delbecq et al. (2023) frame the
conversation differently, focusing on what a “fair share” of societal budgets for aviation looks like. Perhaps, some
growth might be justifiable with regards to the climate budget, but can the same then be said about the demand
for biomass or renewable electricity? Figure 3.2c indicates that hydrogen availability could certainly be a concern,
especially after 2050.

One could argue that the growth of the aviation sector is a direct result of the technological advancements
in aircraft technology achieved over the past century (see, e.g., Devezas, 2020). Perhaps, the case could be made
that these achievements would not have existed, had air transport demand historically been much lower. Even
though the existence of this relation is not a given, this research shows that the trend in demand is more critical to
the safeguarding of climate targets than the development of breakthrough aircraft technologies is. However, the
rapid deployment of low-impact fuels remains a high priority, regardless of other factors. These findings enable a
necessary discussion on the value of aviation to current and future generations.

4.2. Limitations
This research is limited. The following sections describe a number of key limitations and how these relate to what
conclusions can (or cannot) be drawn.

4.2.1. Simplification of trends
The systemdynamics and scenario development explored in this work relied on a number of simplifications. These
narrowed the scope of the research and limit to what extent the findings can be generalised. Two of the trends
that were left out of the scope are the shift towards larger aircraft and the shift towards longer flights (see, e.g.,
Cox et al., 2018; NLR and SEO, 2021). These trends could slightly reduce the impacts per RPK. However, since
RPK trajectories were in part based on projections for the number of flights (see Section 2.3), it is more likely that
neglecting these trends results in underestimating the total impacts.

Another trend that has been observed is the shift towards shorter aircraft lifetimes (see, e.g., Kito, 2021).
Shorter aircraft lifetimes speed up the introduction of new generations. Thereby, fuel efficiency improves more
rapidly – this has a substantial benefit, but becomes economically disadvantageous before its full environmental

1In their statistical analysis of British households, Baltruszewicz et al. (2023) conclude that there is “no association between air travel
and improved mental health, loneliness, or subjective well-being” (p. 7). However, they do find considerable inequality in air traffic energy
footprints, linked primarily to the financial situation of the households analysed. Köves and Bajmócy (2022) describe how the current “eco-
modernist” narratives surrounding aviation are logical to stakeholders in the sector itself, but prevent the influence of alternative – perhaps,
necessary – narratives.

2The alternative narrative – gearing the economy towards well-being, foregoing the pursuit of increasing consumption and production –
dates back at least to the Limits to Growth report (Meadows et al., 1972). This report shows how overshoot in pollution and resource use could
lead the system to collapse. Empirical data from the 50 years since this report shows the same basic behaviour (see, e.g., Nebel et al., 2023).
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potential is reached (Kito et al., 2023). In the present study, aircraft lifetimes were consistently set to 22 years
(see Section A.3). Reducing this to 15 or 10 years would have a substantial influence on the results. This is not
represented within the scenario space. However, for this trend and the ones discussed in the previous paragraph,
it must be pointed out that the purpose of this study is exploratory. As such, a broad range of possible scenarios
was considered, with the most optimistic scenarios for fuel efficiency going beyond optimistic expert judgement
(see Section 2.6.3). Considering the potential impact of additional scenario dimensions can be done by reflecting
on the spaces between scenarios and by consulting the sensitivity analyses (Section 3.6).

A different factor not considered is the possibility of substitution or rebound effects, such as an air-to-rail shift.
Although this is beyond the scope of this thesis, it can reasonably be assumed that scenarios with lower air traffic
would see such an effect to a certain extent. However, this concept is perhaps less relevant than onemight imagine.
A majority of aviation traffic cannot be substituted by an attractive rail journey and substituting those which can
has a limited effect (Dobruszkes et al., 2022; ICCT, 2022; Kito et al., 2023). The difference in long-distance flights
between air traffic scenarios should therefore not be imagined as being replaced by an equivalent journey by rail
or road. This also has consequences for what recommendations can be provided (see Chapter 5).

4.2.2. Aviation bio-fuels
This study considered the transition from fossil kerosene to hydrogen-based fuels. However, as introduced in Sec-
tion 1.3.2, bio-based aviation fuels are also expected to play a large role. Acknowledging this, the results presented
here require some additional discussion. Firstly, scaling up bio-kerosene within the framework used here would
not change the total fuel demand (Figure 3.2a and b), but it would mean that less additional hydrogen is required
for each of the scenarios (Figure 3.2c), due to the biogenic hydrogen conserved in bio-fuel processes. Both hy-
drogen production capacity and biomass availability could be limiting factors, so a trade-off between these two
cannot be made when only evaluating hydrogen-based fuels. However, the focus of this study – being, environ-
mental impacts and climate targets of aviation – can still be discussed despite this limitation in scope. Although
the present-day electricity mix makes hydrogen-based fuels unattractive when compared to bio-kerosene (see,
e.g., Ballal et al., 2023; Habermeyer et al., 2023), provided there is abundant electricity from renewable sources
available, e-fuels can be expected to have a lower climate change impact than bio-fuels (see, e.g., Penke et al., 2021;
van der Giesen et al., 2014). Therefore, the sensitivity analyses based on wind energy are representative of themost
optimistic case regarding the climate impact of AAF (Figures C.9, C.12, and C.14). As discussed in Section 3.6,
these sensitivity analyses show limited influence on the overall results. It can therefore not be claimed that the find-
ings of this study rely on an overestimation of impacts. Still, this limitation should be kept in mind: no scenario
generated in this study can be taken as a prediction of future impacts. Rather, the range of scenarios considered
collectively give some insight into the breadth of possible future impacts.

4.2.3. Non-CO2 effects of flight
Non-CO2 climate forcers play a large role in the total warming caused by aviation. Figure C.2 breaks this down,
showing that aviation-induced cloudiness in particular has a high contribution. This figure shows uncertainty
ranges for the radiative forcing impact of the estimated emissions, adopted from Lee et al. (2021) via Sacchi et al.
(2023). However, a number of additional assumptions are made, which increase the uncertainty regarding these
impacts further. These are addressed in the following paragraphs.

As described in Section 2.6, all impacts from flight emissions (with the exception of aviation-induced cloudi-
ness) were assumed to scale linearly with fuel use. This does not reflect reality, as the formation of NOx, CO, and
particulate matter – to name a few examples – is tied to combustion properties which are changing along with
engine technology. Cox et al. (2018) find that, for the period 1970-2020, NOx emissions decreased faster than fuel
use, resulting in a decrease of the NOx emission index (EI; emission mass per mass fuel use) which they project to
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continue in coming decades. Quadros et al. (2021), however, observe that choices in technological development
have lead to an increase in the NOx EI. They expect that it will take decades for this trend to fully reverse, driven
by a decrease in EI from wide-body aircraft, while the EI continues to increase for narrow-body aircraft. Grewe
et al. (2021), on the other hand, expect the reverse: a decrease in NOx EI for narrow-body aircraft and an increase
for wide-body aircraft. Because of this uncertainty among experts, the choice was made to maintain a constant EI
for all substances.

The atmospheric influence of substances such as NOx is also simplified. In reality, these are time and location
dependent (Dahlmann et al., 2016; Grobler et al., 2019). The radiative efficiencies adopted from Lee et al. (2021)
are not region-specific, but global. They are also not temporally universal, as background changes to atmospheric
composition – and resulting responses – are not accounted for.

Recall that the in-flight emissions of hydrogen aircraft were modelled here assuming hydrogen combustion,
although the fuel efficiency explicitly does consider the possibility of an electric powertrain powered by a hydrogen
fuel cell. A fuel cell would completely eliminate NOx and would affect contrail formation. While it is expected
that all hydrogen aircraft would produce contrails more frequently than hydrocarbon aircraft, this is thought to
be offset by a much lower optical depth and reduced lifetime of the resulting cloudiness (see, e.g., Gierens, 2021).
An important factor here is the reduction in soot created, resulting in much lower nucleation of ice crystals (see
Section B.5). Note that the present quantification in this regard is relatively optimistic when compared to other
work (see, e.g., Kossarev et al., 2023). These factors should be kept in mind when considering the results, but
have limited impact on what conclusions can be drawn beyond the limitations already evident from the present
approach to quantifying non-CO2 impacts.

It is for the above reasons that results which exclude these non-CO2 effects are also shown and discussed.
Although there is confidence that non-CO2 effects have a strong warming effect, their particular magnitudes and
trendsmust be approachedwith caution in the context of the present research. In the same vein, note that warming
itself can trigger additional climate forcers (see, e.g., ArmstrongMcKay et al., 2022), which should be kept inmind
when reflecting on warming neutrality as it was evaluated here.

4.2.4. Economic measures and offsetting
Important to understanding the implications of this research is that the aviation sector does not commit itself
to meeting the climate targets evaluated here by reducing its own emissions. CORSIA is an offsetting scheme.
Broadly, the idea is that the aviation sector contributes to preventing emissions in other sectors, or enables negative
emissions directly (see, e.g., ATAG, 2021). As these measures were not included here, it is not surprising that the
conventional scenarios do not meet the emission limit. If one assumes that, at any given time, the aviation sector
has economic measures at its disposal with which to balance excess emissions, naturally, any scenario could meet
the emission limit. However, such an assumption cannot be justified. For one, the efficacy of existing offsetting
programs is questionable (see, e.g., Badgley et al., 2022; Unearthed, 2021). A cap-and-trade arrangement can, in
principle, be effective, but requires either enough sectors to emit below their cap, or the introduction of negative-
emission technologies. This makes the narrative of the aviation sector particularly volatile, as it relies on a narrow
imagining of the future, undermining alternative futures and policies (see, e.g., Köves and Bajmócy, 2022; Stuart
et al., 2019). Furthermore, an element of the present research that should not be overlooked is its geographical
scope. Can it be justified that European aviation appropriates a large share of the limited capacity for offsetting,
ahead of regions which are less prepared for the large-scale deployment of AAF? It might be feasible to maintain
compliance with CORSIA in this way for some time, but this raises the same questions of equity brought up in
Section 4.1, rather than rendering these questions moot. In short, the possibility of effective economic measures
can add an additional dimension to the discussion of Section 4.1, but it does not invalidate its core observations
and, in any case, remains uncertain.
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Conclusions and recommendations

This thesis aimed to contribute to how the future of commercial aviation in Europe is envisioned and discussed.
This was done by considering a two-part research question:

Considering hydrogen-based fuels for European commercial aviation, (1) to what extent can environmental
impacts be reduced and (2) under what conditions are climate targets met?

This research questions was answered through a detailed exploration of the recent ReFuelEU Aviation rules, while
considering other measures to mitigate the environmental impacts of aviation. By focusing on hydrogen-based fu-
els – here meaning e-fuel and hydrogen aircraft – the intricacies of bio-kerosene were avoided, while still arriving
at a robust discussion of the AAF supply, potential levels of technological improvements, and possible trajectories
for the air traffic volume. Observing that there is a lack of extensive scenario exploration which utilises a detailed
LCA method, a novel method was applied, which combined best practises in prospective LCA with a temporally
explicit approach to the LCI and LCIA phases – adapting elements from Grewe et al. (2021), Langkau et al. (2023),
and Sacchi et al. (2023), among others. Inventories for future technologies were introduced using a system dynam-
ics approach. The scope and combination of methods allows for a dialogue with industry road maps, particularly,
Destination 2050 (NLR & SEO, 2021). These methods are appropriate for the study at hand, although with clear
limitations. Due to restrictions to the practical scope, participatory elements typical to forecasting were excluded,
the scenario field and subsequent quantification were simplified, and economic measures to balance excess emis-
sions were excluded. Combined, this means that there is still much uncertainty between a particular description
of future trends and what impacts themodel created here describes. This is to be expected. Within the exploratory
context of this research, salient observations can be made none the less.

To answer the first part of the research question, it is clear that commercial aviation can greatly reduce its
emission of GHGs, provided that it can utilise hydrogen-based fuels based on water electrolysis with renewable
electricity on a large scale. High-performance future aircraft technologies can play an important role in this as
well: a majority of impacts stay within the fuel lifecycle, although shifting from fuel use to fuel production. In
the same vein, the introduction of liquid hydrogen aircraft could be preferred over hydrocarbon aircraft powered
by e-fuel. This assumes that there are no strong differences in non-CO2 effects between a hydrogen aircraft and
one powered by e-fuel. In general, the benefit of fuel efficiency is less pronounced for climate change than it is
for other impact categories. When considering the progression of climate impacts over time – as was also done
for the second part of the research question – warming neutrality from 2050 to 2070 appears possible, especially
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if the AAF share keeps increasing beyond the 2050 timeline of ReFuelEU Aviation. The ambition of the aviation
sector to become “climate neutral” therefore seems, by some definition, attainable. Additionally, the warming
from CO2 emissions over time was compared to CO2 limits described by ICAO and IATA. This revealed that none
of the scenarios using an air traffic projection based on EUROCONTROL forecasts stayed within this limit, even
in the most optimistic cases. In the absence of a reliable mechanism to permanently offset excess emissions, this
necessitates a drastic increase in the ambitions for AAF deployment of ReFuelEU and/or a progression of air traffic
below the low-growth EUROCONTROL forecast. Here, it was found that, if supplementing ReFuelEU Aviation
with a 100%AAF target for 2060, a reduction to 70% of the 2019 RPK volume by 2035 could be sufficient to respect
the emission limit, even if aircraft performance follows a business-as-usual trajectory – rather than the optimistic
or breakthrough trajectories often imagined.

Future research on this topic should consider the limitations highlighted in Section 4.2. These limitations were
the most influential to contextualising this specific study. Looking more broadly, a range of additional recommen-
dations can be formulated. In the representative scenarios presented here, a dependency between air traffic and
technological improvement was incorporated. Such dependencies emerge from subjective narratives. This illus-
trates the value of participatory research to forecasting. In this light, the stock-and-flowmodels constructed could
also benefit from such co-creation, as stakeholders might disagree with the relevance, direction, or magnitude of
relationships modelled1. Such considerations are particularly relevant for functional units such as the one used
here – quantifying all air traffic within the scope, rather than a service-level value (i.e., per revenue passenger-
kilometer). The present work shows the disparities between these two approaches to the functional unit (see
Section C.2). This is relevant to considering that technologies are introduced over time and can have effects be-
yond the product level (see, e.g., Font Vivanco et al., 2015). As such, a service-level perspective does not allow any
reflection on cumulative impacts or climate budgets. Sector-level assessments are by no means a novel concept,
but have only received limited attention in the discussion of (prospective) LCA so far (see, e.g., Laurent et al., 2018;
Rupcic et al., 2023). As best-practises take shape, this perspective should not be neglected.

Considering the future of the aviation sector, it is clear that the presumption of growth must be challenged, as
discussed above (see also, e.g., Delbecq et al., 2023; Gössling and Humpe, 2024; Köves and Bajmócy, 2022; Sacchi
et al., 2023). Pursuing technological breakthrough might be alluring, but should not distract from the urgency of
impact mitigation. In short, shared imaginations of possible futures should draw from more diverse perspectives
than the one promoted by the aviation sector. Considering a lack of solutions to mitigating the near-term impacts
of aviation, demand management should be considered. The report by Populytics (2023) which inspired the de-
growth pathway for air traffic shows that such policies could see popular support. There, a reduction of air traffic
was framed as one potential lever among many to achieve the desired climate targets, and was tied to expanding
high-speed rail infrastructure. However, as discussed in Section 4.2.1, the difference in air traffic scenarios cannot
be explained based on a direct air-to-rail shift for the same destination. Demandmanagement must be considered
more broadly: substituting a transatlantic holiday destination with one closer to home. Furthermore, focusing on
reducing short-distance flights could have an adverse effect, shifting airport and airspace capacity towards addi-
tional long-distance flights, creating a net increase in emissions. Therefore, it is critical to focus on metrics such
as the total fuel used, rather than the number of (short-distance) flights. Still, a relatively sharper reduction in
short-distance flights when compared to other distance segments might be a logical step towards mitigating the
short-term social cost of demand management. This should also be considered alongside (the mitigation of) the
social costs of climate change. Promoting an equitable distribution of flight activity within and between regions
for present and future generations will require creative policy solutions. This work illustrates the urgency with
which these solutions are required.

1For example, while this work treats the air traffic volume as an input variable, which contributes to defining the fuel use, Gössling and
Humpe (2024) consider the possibility that air traffic depends on the availability of fuel. Such an approach is further removed from the typical
logic of LCA, but might be a (more) relevant perspective to stakeholders.
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A
Extended description of system modelling

In this appendix, the descriptions of the modelling approach provided in Chapter 2 are supplemented.

A.1. Stock-and-flow diagrams
In Figure A.1 and Figure A.2, the stock-and-flow diagrams introduced in Figure 2.3a and Figure 2.3b are displayed
on a larger scale.

A.2. Air traffic demand segments
The research database of EUROCONTROL (2022a) is used, which lists each flight recorded in its airspace for four
months of the year (March, June, September, and December). Each of these flights is filtered and divided into
segments using the characteristics market segment, departing airport, arrival airport, actual distance flown, and
aircraft type. To approximate the use of narrow-body and wide-body aircraft types, the most-used types reported
by the ICCT (2022) are filtered from the data. Regional aircraft and commuter aircraft, which contribute a small
minority of emissions, are excluded from the analysis. Next, the number of seats reported by the ICCT (2022)
for these aircraft are used as a basis to determine the available seat-kilometers (ASK), which are converted to
revenue passenger-kilometers (RPK) assuming an occupation factor of 80%. Recognising that there is a trade-off
between analytical resolution and computational burden, the choice is made to group these RPK values into a
few bins, based on flight distance. This results in a number of segments, each of which is defined by a reference
distance, its quantity of revenue passenger-kilometers (RPK) estimated for 2019, and an estimate for the share
of RPK that could be serviced with hydrogen aircraft, should these be introduced (Table A.1). The assumption
that hydrogen aircraft could, in theory, foresee all intra-EU+ flights is taken from NLR and SEO (2021). Consider
here that hydrogen aircraft are introduced gradually, so not all airports would require adapted infrastructure in
2035 already. As wide-body hydrogen aircraft are unlikely to enter the market prior to 2050, they are not typically
represented in road maps. Here, the assumption is made that by 2050, some airports outside of the EU+ will
have hydrogen infrastructure, allowing for a gradual introduction of wide-body hydrogen aircraft equivalent to
a potential of 0.5. In principle, this would mean that narrow-body extra-EU+ segments should also be given a
non-zero potential after 2050, but this is neglected here.

Until 2029, values from EUROCONTROL (2023) for en-route service units (an expression of aircraft size and
payload) are adopted. From 2030 onward, the values from EUROCONTROL (2022b) for flight numbers are used,

41



42 Appendix A. Extended description of system modelling

Plant X
in fleet

Plant Y
in fleet

Plant Z
in fleet

A

A

Composition
of fleet

Plant X
retirement age

Plant X
introduction year

Inflow of
plant X, Y, Z

(to further calculation)

Activity of
plant X, Y, Z

(to further calculation)

Outflow of
plant X, Y, Z

(to further calculation)

C

Production
capacity of plant X

Production
capacity of fleet

B
Production

required

C

Production
deficit/surplus

in fleet

D

Deficit met by
plant X

Deficit met by
plant Z

C D

B

Deficit met
by plant Y

C

D

Legend

source/sink

valve

converter

stock
duplicate of
[ ] converterconnector

flow

[ ]

Latest
plant

Production capacity
of plant Y

Production capacity
of plant Z

Plant Y
retirement age

Plant Z
retirement age

Plant Y
introduction year

Plant Z
introduction year

Figure A.1: Stock-and-flow diagram for the AAF fleets. The AAF fleets are connected to each other and to the aircraft operations through
further calculations in order to determine the production required from each fleet.
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Figure A.2: Stock-and-flow diagram for the aircraft fleets. For each segment of flights, a fleet is generated, the results of which are used for
further calculation. ASK: available seat-kilometer, RPK: revenue passenger-kilometer.
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Table A.1: Characteristics and initial conditions of air traffic segments.

Aircraft type Destination Bin [km] Reference flight [km] Air traffic in 2019 [RPK] H2 aircraft potential [-]

Narrow-body Intra-EU+ (0, 1000] 500 1.71 × 1011 1

Narrow-body Intra-EU+ (1000, 2000] 1500 3.58 × 1011 1

Narrow-body Intra-EU+ (2000, 3000] 2500 1.24 × 1011 1

Narrow-body Intra-EU+ >3000 3500 2.34 × 1010 1

Narrow-body Extra-EU+ (0, 1000] 500 4.39 × 109 0

Narrow-body Extra-EU+ (1000, 2000] 1500 3.95 × 1010 0

Narrow-body Extra-EU+ (2000, 3000] 2500 7.47 × 1010 0

Narrow-body Extra-EU+ >3000 3500 6.58 × 1010 0

Wide-body Intra-EU+ (0, 4000] 2000 9.85 × 109 1

Wide-body Extra-EU+ (0, 4000] 2000 1.49 × 1010 0.5

Wide-body Extra-EU+ (4000, 6000] 5000 1.21 × 1011 0.5

Wide-body Extra-EU+ (6000, 8000] 7000 1.80 × 1011 0.5

Wide-body Extra-EU+ >8000 9000 2.27 × 1011 0.5

as no en-route service units values are provided. Note again that the approach used here couples the overall trend
to that of each of the individual segments, but that these trends can differ in reality. The trend towards larger
aircraft and further flight distances means that the projected flight numbers would mean a larger increase in RPK
than portrayed here.
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Figure A.3: Visualisation of the air traffic scenarios for temporal scope of 2024-2070. RPK: revenue passenger-kilometers.

A.3. Aircraft stock-and-flow model
This section expands on some of the elements described in Section 2.4, specific to aircraft fleets. In order to create
these fleets, an initial age distribution is defined, as well a retirement age. In 2018, the mean age of aircraft was
around 11 years, but distributed in a way such that new aircraft (0-5 years old) were almost twice as common as
older aircraft (15-20 years old) (Grewe et al., 2021). However, in the meantime, the COVID-19 pandemic has
disrupted the aviation sector. Furthermore, there are a number of factors influencing aircraft lifetime, and the
general trend seems to be towards a relatively short lifetime, when compared to the design lifetime of 25-30 years
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Table A.2: Overview of revenue passenger-kilometers (RPK) in air traffic scenarios, shown relative to RPK in 2019.

Year High-growth traffic Base-growth traffic Low-growth traffic Degrowth traffic

2019 1.00 1.00 1.00 1.00

2025 1.18 1.11 1.04 0.92

2030 1.36 1.22 1.08 0.79

2035 1.49 1.29 1.11 0.70

2040 1.62 1.37 1.14 0.70

2050 1.94 1.55 1.22 0.70

2060 2.32 1.74 1.29 0.70

2070 2.77 1.96 1.37 0.70

Table A.3: Characteristics of reference aircraft used in fleet construction and the generation of inventories. OEW: operating empty weight,
NB: narrow-body, WB: wide-body, gen.: generation.

Introduction [year] Seating capacity [-] Yearly operations [km/year] OEW [kg]

NB gen. 0 1988 180 2.26 × 106 4.26 × 104

NB gen. 1 2016 189 2.26 × 106 4.26 × 104

NB gen. 2 2035 189 2.26 × 106 3.96 × 104

NB gen. 2 (H2) 2035 189 2.26 × 106 4.36 × 104

NB gen. 3 2050 189 2.26 × 106 3.71 × 104

NB gen. 3 (H2) 2050 189 2.26 × 106 4.09 × 104

WB gen. 0 1995 360 4.07 × 106 1.61 × 105

WB gen. 1 2015 350 4.07 × 106 1.42 × 105

WB gen. 2 2035 350 4.07 × 106 1.33 × 105

WB gen. 3 2050 350 4.07 × 106 1.26 × 105

WB gen. 3 (H2) 2050 350 4.07 × 106 1.38 × 105

(see, e.g., Kito, 2021). Due to the structure of the stock-and-flow model, the initial distribution of ages assumed
can have a profound influence on the progression of fleet turnover. In order to limit the cascading effect the initial
age distribution can have, a uniform distribution is opted for, assuming a maximum age of 22 years – keeping
the mean age around 11 years, with turnover faster than the maximum design lifetime, but still longer than more
optimistic projections (see, e.g., Delbecq et al., 2022). This maximum age is also used to determine when aircraft
retire as the fleet progresses.

In addition to aircraft age, the stock-and-flowmodel illustrated in FigureA.2 uses variables such as theASKper
aircraft per year (see also SectionA.2) and the introduction year of each aircraft. ASK is determined bymultiplying
the seats of an aircraft by its yearly distance flown. An overview of these variables is provided in Table A.3. Seat
capacity and introduction years of reference aircraft are taken fromNLR and SEO (2021), with the introduction of
future aircraft generally aligning with works such as Delbecq et al. (2022), EUROCONTROL (2022b), Grewe et al.
(2021), ICAO (2022d), and NLR and SEO (2021). For the sake of simplicity, the seat capacity of future aircraft is
set equal to that of their respective present-day counterpart. In a sense, this neglects the trend of increasing seat
densification (see, e.g., Cox et al., 2018; NLR and SEO, 2021), but this assumption also justifies themethod through
which efficiencies from literature are adopted, which are described as a factor of energy per ASK (see Section 2.6.3).
The distances per year are adopted from Cox et al. (2018). These are also used for hydrogen aircraft, although in
reality, these have more complicated ground operations, likely increasing the time that must be spent between
flights. This assumption results in an underestimation of impacts related to the production of hydrogen aircraft.
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Table A.4: Performance of the reference aircraft used for the landing and take-off (LTO) phase and the climb/cruise/descent (CCD) phase of
reference flight distances. NB: narrow-body, WB: wide-body, gen.: generation.

Flight phase NB gen. 0 (Airbus A320) NB gen. 1 (Airbus A320neo)

Fuel use LTO 3.23 × 104 2.60 × 104

Fuel use CCD, 500km 7.19 × 104 6.40 × 104

Fuel use CCD, 1500km 1.90 × 105 1.64 × 105

Fuel use CCD, 2500km 3.09 × 105 2.66 × 105

Fuel use CCD, 3500km 4.30 × 105 3.70 × 105

Flight phase WB gen. 0 (Boeing 777-300) WB gen. 1 (Airbus A350-900)

Fuel use LTO 1.02 × 105 8.42 × 104

Fuel use CCD, 2000km 7.11 × 105 5.84 × 105

Fuel use CCD, 5000km 1.77 × 106 1.44 × 106

Fuel use CCD, 7000km 2.46 × 106 2.01 × 106

Fuel use CCD, 9000km 3.32 × 107 2.59 × 106

A.4. AAF infrastructure stock-and-flow model
This section expands on some of the elements described in Section 2.4, specific to AAF infrastructure fleets. First,
the step from aircraft fleets to fuel demand is explained (Section A.4.1), followed by its conversion to the required
AAF supple (Section A.4.2), leading to characteristics specific to AAF infrastructure used in creating its fleets
(Section A.4.3).

A.4.1. Total fuel demand
The fuel demand of the reference aircraft is determined using the EMEP/EEA calculation sheet for aviation emis-
sions (Winther & Rypdal, 2023). Fuel use and emissions for the four existing reference aircraft are determined
for a number of distances. The emissions per unit fuel are determined separately for LTO and CCD phases (see
Section B.6), but these in any case still require the fuel quantity per phase. For CCD phases, this is determined
for each reference distance by assuming a linear progression between the two closest distances available in the
calculation sheet. The results of this process are presented in Table A.4.

As described in Section 2.6.3, the fuel efficiency of reference aircraft also serves as input for the fuel demand of
future aircraft. The differences in fuel efficiency for each of the three hydrocarbon aircraft scenarios is shown in Ta-
ble A.5. The efficiencies for future hydrogen aircraft with respect to contemporary hydrocarbon aircraft – adopted
from ICAO (2022b) – are reproduced in Table A.6. From these tables, the fuel demand of each aircraft modelled
can be determined for each reference flight. This way, the total fuel demand for each time step is calculated in
terms of the energy content required as liquid hydrogen and as hydrocarbon aviation fuel.

A.4.2. Required AAF supply
Having calculated the total volume of aviation fuels required (see Section A.4.1), the demand for liquid hydrogen
is known. Next, the share of hydrocarbon fuel that is met by AAF is determined (Table A.7). Related fleets are con-
structed and deployed to match these shares precisely. The compliance per time interval is modelled by assuming
a linear progression between the left and right milestones shown in Table A.7. To illustrate, minimum shares at
𝑡1 and 𝑡3 of 5% and 10% respectively are assumed to result in a share of 7.5% at 𝑡2. The remaining hydrocarbon
fuel demand is met by fossil kerosene.
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Table A.5: Scenarios for the fuel use of future hydrocarbon aircraft. Fuel use is expressed relative to the first generation of aircraft in the same
type (e.g., performance of WB gen. 3 is reported relative to WB gen. 1). NB: narrow-body, WB: wide-body, gen.: generation.

Type and generation Business as usual Optimistic improvements Breakthrough improvements

NB gen. 1 1.00 1.00 1.00

NB gen. 2 0.87 0.78 0.70

NB gen. 3 0.78 0.62 0.50

WB gen. 1 1.00 1.00 1.00

WB gen. 2 0.87 0.82 0.70

WB gen. 3 0.78 0.66 0.50

Table A.6: Scenarios for the fuel use of future hydrogen aircraft. Fuel use is expressed relative to the performance of their contemporary
hydrocarbon generation (e.g., WB gen. 3 (H2) is reported relative to WB gen. 3), see Table A.5. NB: narrow-body, WB: wide-body, gen.:

generation.

Type and generation Low-performance Mid-performance High-performance

NB gen. 2 (H2) 1.2 1.15 0.95

NB gen. 3 (H2) 1.2 1.15 0.95

WB gen. 3 (H2) 1.4 1 0.9

Table A.7: Minimum share of AAF in the three AAF volume scenarios considered. Values represent the minimum share of AAF in the total
fuel supply when evaluated based on LHV.

Year No ReFuelEU ReFuelEU as-is ReFuelEU extended

2024 0.0005 0.0005 0.0005

2025 0.0005 0.02 0.02

2030 0.0005 0.06 0.06

2035 0.0005 0.2 0.2

2040 0.0005 0.34 0.34

2045 0.0005 0.42 0.42

2050 0.0005 0.7 0.7

2060 0.0005 0.7 1.00

2070 0.0005 0.7 1.00
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Table A.8: Characteristics of AAF plants used in fleet construction and the generation of inventories.

Plant type Unit of output Yearly output capacity Max. age [year]

PEM electrolysis plant MJ H2 1.78 × 107 20

DAC plant kg CO2 1.00 × 108 20

Fischer-Tropsch plant MJ e-fuel 2.35 × 1011 30

Hydrogen liquefaction plant MJ H2 9.90 × 107 20

A.4.3. Characteristics of AAF infrastructure
As described in Section 2.4, each element of AAF infrastructure was given certain characteristics in order to con-
struct the related fleets, as was done for aircraft in Section A.3. In contrast to the discussion on the starting age
distribution for aircraft, this variable is much less relevant for AAF infrastructure, since only a small fraction of
the total fuel supply is met with AAF at the start of the temporal scope. To reflect that even this small fraction
is relatively young, the simplification is made that all AAF infrastructure in use during the first time interval was
constructed in the interval prior. This assumption has a negligible effect on the analysis.

The performance of AAF plants is quantified in Appendix B. However, the construction of fleets requires a
few additional features. Specifically, the maximum age of each plant and its yearly production capacity. These are
provided in Table A.8 and are determined based on the same sources discussed in Appendix B.

A.5. Causal loop diagram
As introduced in Section 1.1, there is a perception that efficiency improvements in aviation are tied to an increase
in air traffic. This work does nothing to prove or disprove this concept, but uses it as an input in the scenario
construction and point of reflection. To illustrate this relationship, a causal loop diagram is created, based on
perspectives observed in industry reports (ICAO, 2022a; NLR & SEO, 2021) (Figure A.4). As can be observed, the
outer loop constitutes a reinforcing feedback (i.e., there is an even number of negative relations). Many additional
variables and relations could be added to this image. For example, capital investment towards low-impact aviation
and how this connects to the expenditure and revenue of the aviation sector is much more nuanced than depicted
here, including policy dimensions and market dynamics.
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Figure A.4: Simple causal loop diagram illustrating the relations between the development of aircraft technology and the volume of air traffic.
Several variables which do not contribute to this narrative are included in grey, to illustrate potential ways in which the diagram can be

expanded.
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Extended description of life cycle

inventories and impacts

The following sections expand on the life cycle inventory analysis phase, described in Chapter 2. Note that Sec-
tion B.6 includes an additional spreadsheet file in its contents, which is available alongside this thesis.

B.1. Aircraft manufacturing and disposal
As introduced in Section 2.6.1, the inventories for aircraft manufacturing and disposal were adopted from Cox
et al. (2018) with a few adjustments. The aircraft material composition was maintained, but buy-to-fly ratios were
introduced to quantify manufacturing waste (Table B.1). Based on estimates reported in literature, these are here
assumed to be 8:1 for aluminium alloy (Timmis et al., 2015), 1.5:1 for composites (Bachmann et al., 2017), and
2.2:1 for other materials (Orefice et al., 2019). No conceptual distinction is made between manufacturing waste
and end-of-life waste, besides their respective positioning in the aircraft life cycle. The assumptions of Cox et al.
(2018) regarding what background data to use are largely adopted, using nickle as a proxy for the miscellaneous
mass fraction and scrap copper as a proxy for miscellaneous and titanium waste. The names of the background
inventories used are reported in Section B.6. Note that, instead of using the inventory for carbon fibre-reinforced
composite (CFRP) included by Cox et al. (2018), background inventories generated by premise for carbon fibre
and epoxy resin are included separately. This requires assuming a fibre mass fraction, which was chosen to be
68.5% – aligning with the common fibre volume fraction of 60% (see, e.g., Arblaster, 2023). No inventories for
milling or composite forming were included, under the assumption that the heat and energy flows generalised by
Cox et al. (2018) cover such activities to a sufficient degree.

Operating empty weights of future aircraft (Table A.3) were similarly correlated with the trend quantified by
Cox et al. (2018). As discussed in Section 2.6.1, it is a simplification to assume that these are unaffected by the
dimensions of aircraft performance. However, the small contribution of the aircraft system itself to the life cycle
means that this assumption has little impact on the results.

B.2. Hydrogen production, distribution, and liquefaction
Three sources for hydrogen are considered. The market mix is adapted directly from the hydrogen production
mixes described by Wei et al. (in preparation). These combine the typical hydrogen production process of steam

49
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Table B.1: Material composition of reference aircraft, as share of operating empty weight. Within a given generation, all aircraft types are
assumed to have the same composition. CFRP: carbon fibre-reinforced composite, gen.: generation.

Material Gen. 0 Gen. 1 Gen. 2 Gen. 3

Aluminium alloy 0.68 0.48 0.29 0.15

CFRP 0.14 0.33 0.51 0.65

Steel 0.12 0.11 0.1 0.09

Titanium 0.04 0.05 0.06 0.06

Miscellaneous 0.02 0.03 0.04 0.05

methane reforming (SMR) with several water electrolysis technologies: alkaline electrolysers (AE), proton ex-
change membrane (PEM) electrolysers, and solid oxide electrolysis cells (SOEC), as well as a small volume of
biomass gasification. At present, AE is the more common technology for water electrolysis, but PEM is expected
to become the dominant technology in the coming decades. For the other two hydrogen scenarios, only PEM
is considered, in one case powered by grid electricity and in the other case, powered by offshore wind1. For the
market case, the technological progression described by Wei et al. (in preparation) is used. As this only generates
inventories up to 2050, the 2050 inventories are reused for subsequent years. For the other two cases, three scenar-
ios for technological progression are created by combining the efficiencies for electricity use reported by Delpierre
et al. (2021) with those reported by the IEA (2019) for 2019, 2030, and 2050 (Table B.2). For plants constructed
between these years, a linear progression between the two flanking years is assumed. No improvements beyond
2050 are considered. This general approach is used for all plants with a performance that evolves over time. For
water use, the three scenarios are based on high- and low-end estimates found in literature. Ideally, water use is as
low as 9 kg kg−1, however, a more typical value is around 10 kg kg−1 (Delpierre et al., 2021). Some report values
as high as 14 kg kg−1 (in premise, see Sacchi et al., 2022). In principle, one could consider multi-functionality
here, as oxygen is a co-product of water electrolysis. However, this is not considered as an additional functional
flow here, and is excluded from the inventory.

Distribution of hydrogen is based on Sacchi et al. (2023), requiring 3.2 kWhkg−1 electricity for compression.
Furthermore, a loss of 1% is considered, which contributes hydrogen emissions to the air. Although estimates
for hydrogen transportation infrastructure exist (by truck, by ship, by natural gas pipeline, etc.) this element is
excluded here due to high uncertainty.

For hydrogen aircraft, the hydrogen is liquefied. There is no inventory available for the construction of a
liquefaction plant. This is therefore cut off. Smith andMastorakos (2023) collect a variety of electricity demands for
liquefaction, including the (future) year for which the value is reported. This results in three scenarios: a high-end
and low-end, which are constant over time, and amid-performance value which aligns with the improvement over
time estimated by Smith and Mastorakos (2023) (Table B.2). An additional 1% loss occurs between liquefaction
and fuel use. Much higher boil-off losses have been estimated, but it is considered that the majority of the boil-off
could be recovered (see, e.g., IEA, 2019).

B.3. Direct air capture
Using premise, inventories for a sorbent-based direct air capture plant – and accompanying sorbent – are generated
(see Section 2.7). The base performance of such a system is here modelled after Terlouw et al. (2021), using the
values for a system using a heat pump, thereby only requiring input of sorbent and electricity (values for 2020 in
Table B.3). For the best-case scenario, the assumption is made that waste heat can be sourced – for example by

1As shown in Section B.6, the offshore wind cases use an inventory for a 1-3 MW turbine, localised to the Netherlands. The transformation
from high voltage to medium voltage is accounted for.
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Table B.2: Inputs for hydrogen production, compression, and liquefaction in the three performance scenarios. The transportation/boil-off
losses are accounted after compression and after liquefaction. For some flows, the value changes depending on the construction year of the

plant, as described in the text. PEM: proton exchange membrane.

Inputs per process [unit] Year Worst-case performance Base performance Best-case performance

PEM plant

Electricity [kWh/MJ] 2019 4.96 × 10−1 4.55 × 10−1 4.15 × 10−1

2030 4.41 × 10−1 4.28 × 10−1 4.08 × 10−1

2050 4.15 × 10−1 3.81 × 10−1 3.75 × 10−1

Water, deionised [kg/MJ] all 1.17 × 10−1 8.33 × 10−2 7.50 × 10−2

Hydrogen compression for transport

Electricity [kWh/MJ] all 2.67 × 10−2 2.67 × 10−2 2.67 × 10−2

Hydrogen liquefaction

Electricity [kWh/MJ] 2020 1.25 × 10−1 8.67 × 10−2 5.00 × 10−2

2050 1.25 × 10−1 5.00 × 10−2 5.00 × 10−2

integration with other elements of the e-fuel production chain (see, e.g., Rojas-Michaga et al., 2023) – eliminating
the need for a heat pump.

In the worst-case scenario, no improvements over time to the operational efficiency is assumed. For other
cases, learning rates (LRs) are assumed. Based on expert judgement, Qiu et al. (2022) estimate a LR of 0-5% for
energy and 5-15% for sorbent, with an optimal value of 18% and 50%, respectively. Using their method, at each
time step, the operational performance (𝐷𝑡) relative to the initial performance (𝐷0) can be described following
Equation B.1, while accounting for the optimal value that can be attained (𝐷min). Here, log2 (𝑋𝑡/𝑋0) represents
how often the global capacity has doubled with respect to the initial capacity. Hanna et al. (2021) also estimate a
LR for energy: 2%, without a maximum reduction, and without a LR for sorbent consumption. Based on these
two works, optimal values of Qiu et al. (2022) are adopted, with base case LRs of 2.5% and 5% for energy and
sorbent respectively, and best-case LRs of 5% and 15%, respectively. The capacity over time for these two cases is
based on Fuss et al. (2018), who estimate a potential global capacity in 2050 of 0.5–5 GtCO2/yr. In line with this
range, an initial capacity of of 0.003 GtCO2/yr in 2020 is linearly increased by 0.08 and 0.16 GtCO2/yr/yr for the
base and best-case performance scenarios respectively. This leads to respective global capacities in 2070 of 4 and
8 GtCO2/yr. These capacities are combined with the LRs following Equation B.1 for time intervals of five years
(Table B.3).

𝐷𝑡 = (𝐷0 − 𝐷min) × (1 − LR)log2(𝑋𝑡/𝑋0) + 𝐷min (B.1)

B.4. E-fuel production
The Fischer-Tropsch production route for e-fuel, using syn-gas (CO and H2) as input, was modelled in detail by
Van der Giesen et al. (2014). Using premise (see Section 2.7), inventories based on this work for the construction
and demolition of the plants are generated. In contrast to other plants, where inventories for construction and
demolition are created separately, these are combined here, meaning that the demolition phase is shifted back in
time to coincide with the construction phase (see Section B.6). This has a limited influence on the results.

Sacchi et al. (2023) also base their inventories for the performance of gas-to-liquid plants on Van der Giesen et
al. (2014). However, in recent years, life cycle inventories for such plants have become more robust. Although the
basic principles have been around for decades, there is still much opportunity to fine-tune efficiencies, depending
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Table B.3: Inputs for direct air capture in the three performance scenarios. DAC: direct air capture.

DAC plant Year Worst-case performance Base performance Best-case performance

Electricity [kWh/kg] 2020 1.13 1.13 5.00 × 10−1

2025 1.13 9.80 × 10−1 3.75 × 10−1

2030 1.13 9.61 × 10−1 3.61 × 10−1

2035 1.13 9.49 × 10−1 3.53 × 10−1

2040 1.13 9.42 × 10−1 3.48 × 10−1

2045 1.13 9.36 × 10−1 3.43 × 10−1

2050 1.13 9.31 × 10−1 3.40 × 10−1

2055 1.13 9.27 × 10−1 3.37 × 10−1

2060 1.13 9.23 × 10−1 3.35 × 10−1

2065 1.13 9.20 × 10−1 3.33 × 10−1

2070 1.13 9.17 × 10−1 3.31 × 10−1

Sorbent [kg/kg] 2020 3.00 × 10−3 3.00 × 10−3 3.00 × 10−3

2025 3.00 × 10−3 2.54 × 10−3 1.98 × 10−3

2030 3.00 × 10−3 2.49 × 10−3 1.90 × 10−3

2035 3.00 × 10−3 2.46 × 10−3 1.87 × 10−3

2040 3.00 × 10−3 2.44 × 10−3 1.84 × 10−3

2045 3.00 × 10−3 2.43 × 10−3 1.83 × 10−3

2050 3.00 × 10−3 2.41 × 10−3 1.81 × 10−3

2055 3.00 × 10−3 2.40 × 10−3 1.80 × 10−3

2060 3.00 × 10−3 2.40 × 10−3 1.79 × 10−3

2065 3.00 × 10−3 2.39 × 10−3 1.78 × 10−3

2070 3.00 × 10−3 2.38 × 10−3 1.78 × 10−3
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Table B.4: Inputs for e-fuel production in the three performance scenarios.

Fischer-Tropsch plant Worst-case performance Base performance Best-case performance

Electricity [kWh/MJ] 2.00 × 10−2 2.00 × 10−2 2.00 × 10−2

H2 [MJ/MJ] 2.30 1.59 1.37
CO2 input [kg/MJ] 9.36 × 10−2 8.62 × 10−2 7.61 × 10−2

CO2 emissions [kg/MJ] 2.46 × 10−2 1.72 × 10−3 7.07 × 10−3

on the assessment method and on what metrics are prioritised (see, e.g., Koj et al., 2019; van den Oever et al.,
2022). Unlike hydrogen production or DAC, these efficiencies are rarely discussed as something that depends
on technology improving over time, but more typically as something that depends on choices regarding process
modelling and optimisation using existing technologies. Therefore, literature describing Fischer-Tropsch plants
and reporting appropriate metrics are compared in order to understand the range of possible performances.

The works of Atsonios et al. (2023), König et al. (2015), and Rojas-Michaga et al. (2023) are consulted, for their
detailed performance descriptions. Each of them report a carbon-utilisation (CU) factor, representing the share of
carbon atoms entering the system which end up in a gaseous, liquid, or solid product. Assuming that e-fuel has a
hydrogen-to-carbon ratio of 2.15 (van der Giesen et al., 2014), the CU can be used to determine the required input
of CO2 from DAC and the output of lost CO2. As Fischer-Tropsch plants are multifunctional, the CU reported is
assumed to hold for e-fuel as well. Multi-functionality could also be resolved by economic allocation, for example,
but this would no longer ensure that carbon atoms present in each product are balanced exactly against carbon
atoms entering the plant. Therefore, a physical allocation approach is taken, in line with literature (see, e.g., Ballal
et al., 2023; van der Giesen et al., 2014). Synthesis gas that does not end up in the products is typically still
recovered for energy. Some assume that this fulfils any electricity or heat inputs required (e.g., van der Giesen
et al., 2014), but a small electricity input is typically included. The three levels of plant performance are defined
by first assuming that each requires 0.02 kWhMJ−1 electricity across scenarios – this value is similar to those
reported by Atsonios et al. (2023), König et al. (2015), and Rojas-Michaga et al. (2023). Next, the input of H2 is
determined based on a “hydrogen-to-liquid” efficiency, which is defined by combining the inputs of electricity,
heat, and hydrogen (by LHV) and dividing this by the product outputs (by LHV). These were found to be 63.9%
(König et al., 2015), 69.4% (Atsonios et al., 2023), and 42.2% (Rojas-Michaga et al., 2023). The outer values are
used to determine the best-case and worst-case hydrogen use, while a value of 60% is selected for the base case
(Table B.4). As with the CU, there is an assumption that performance reported for the plant in general holds when
only considering the production of e-fuel. Cooling water and waste water are excluded from the inventories due
to a lack of data.

B.5. Non-CO2 effects
Burkhardt et al. (2018) create a model to consider how changing the number of soot particles generated influences
the life cycle of aviation-induced cloudiness (AIC). Adapting their results, Sacchi et al. (2023) create a logarithmic
expression for ice crystal formation based on the hydrogen content of the fuel (Equation B.2), assuming that the
change in ice particles when compared to fossil kerosene (Equation B.3) correlates to a reduction in radiative
forcing (Equation B.4). Sacchi et al. (2023) assume a hydrogen mass fraction in fossil kerosene of 13.73% and in
e-fuel of 15.29%. This latter value aligns with the 2.15 H/C ratio considered in the present work (see Section 2.6.2).
Note that this determines the change in radiative forcing by considering the ice particles expected from the average
mixture of hydrocarbon fuels, while Sacchi et al. (2023) first calculate the ice particles, independent of the fuel mix
– switching this around effectivelymakesmore use of the logarithmic relation, resulting in relatively lower radiative
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forcing at small shares of e-fuel.

𝑛ice particles = 9.407 × 1023 × 𝑒(𝑙𝑛(0.2475)×
𝑚H2

𝑚total
×100) (B.2)

Δ𝑛ice particles, fuel = 1 − 𝑛ice particles, fuel

𝑛ice particles, 100% fossil kerosene
(B.3)

ΔRFfuel = 1 − 0.048 × 19.2Δ𝑛ice particles, fuel (B.4)

These equations are geared towards e-fuel, but liquid hydrogen – with a hydrogen content of 100% – could
show very different behaviour. Although the empirical evidence is limited, hydrogen aircraft are likely to produce
contrails more frequently than those burning hydrocarbon fuels, but the shorter lifetime and lower optical depth
of these contrails would result in an overall reduction in radiative forcing when compared to fossil kerosene (see,
e.g., Gierens, 2021). Whether this reduction is larger than can be expected from e-fuel is unclear. Kossarev et al.
(2023) choose to set the AIC of hydrogen aircraft equal to that of aircraft using synthetic fuels, although stating that
this is a conservative estimate. The same approach is used here, thus setting the AIC impact of hydrogen aircraft
to 34.05% of the AIC impact of flights fossil kerosene. Note, however, that Kossarev et al. (2023) only considered
a reduction to 40% at most. The quantification applied in the present study is therefore particularly optimistic to
AIC.

Sacchi et al. (2023) only consider the portion of flight above 9 km to contribute to contrail formation. However,
the distance-based impacts described by Lee et al. (2021) already consider that some distances flown do not result
in aviation-induced cloudiness, including the influence of altitude. To not double count these considerations, I
apply all calculations of non-CO2 effects to flight emissions at all altitudes. Furthermore, Sacchi et al. (2023) flip
their logic around for NOx, only considering emissions below 9 km. This does not reflect the altitude-dependent
effects of NOx. However, at the same time, their implementation of the LWE metric assumes that the short-term
warming impact of NOx persists for the same duration as its long-term influence on methane. These assumptions
respectively greatly underestimate and greatly overestimate the impact of NOx, possibly resulting in a net overesti-
mation of radiative forcing [R. Sacchi, personal communication, 13 December 2023]. Here, the assumed lifetime
of NOx effects is changed to be 0.267 years, based on Fuglestvedt et al. (2010), although it should be noted that the
implementation of LWE remains highly simplified.

B.6. Inventory spreadsheets
The attached spreadsheet file reports the foreground inventories, including the influence of related scenario di-
mensions. The background inventories used are generated by premise (see Section 2.7). This means that not all
background processes listed are present in the ecoinvent 3.9.1 database. Note that further combination of the ac-
tivities towards the reference flow (Figure 2.2) is not included in these spreadsheets, since these flows depend on
additional models, rather than a single scenario dimension (see Section 2.4).



C
Additional results

This chapter includes figures which support themain text, but provide no direct insight to the understanding of the
research question. This includes contribution analyses (Section C.1) and the figures generated for the sensitivity
analyses (Section C.4).

C.1. Contribution analysis
Figure C.1 shows the contribution analysis of life cycle phases to the environmental flows of CO2 emissions. Life
cycle phases are defined by isolating various activities from the full life cycle. The manufacturing and disposal of
aircraft are combined into the “aircraft system” and the construction and demolition of AAF plants are combined
into “AAF infrastructure”. As fossil kerosene is not modelled using a fleet of plats, but is directly connected from
the background system, its well-to-tank activities are considered as a separate phase. As can be observed, fuel pro-
duction and use dominates the contributions. CO2 from the combustion of e-fuel is reflected in the negative y-axis
by CO2 drawn from the atmosphere by DAC, but as can be seen for the period 2060-2070, there are additional ac-
tivities in the infrastructure and operations phases which result in a net positive balance of emissions. It is notable
that infrastructure emissions (construction and demolition) form a sizeable share of these residual emissions, as
these activities are (1) excluded from CORSIA (see Section 1.3.4) and (2) simplified and only partially reflected in
the present inventories (see Section 2.6.2). This highlights that these activities should not be overlooked.

Figure C.2 shows the contributions to the LWE metric, broken down by climate forcer. As can be observed,
the magnitude of both CO2 and non-CO2 radiative forcing is highly affected by the air traffic volume scenario,
but also by whether or not the AAF share is increased. The difference between whether hydrogen aircraft are
introduced or not is reflected in a shift in impact from NOx to water (under “flight - other”), but both only form a
limited contribution. However, it must be noted that the LWE model adapted from Sacchi et al. (2023) is a heavily
simplified one, and that non-CO2 effects in general are highly uncertain (see Section 4.2.3 and Section B.5).

C.2. System performance metrics
Figure C.3 illustrates a number of performance metrics for the nine representative scenarios. These metrics are
relative to the volume of fuel supply or air traffic volume, thereby providing insight into how the differences in
technological performance and fleet progression affect the scenarios. As can be observed, the differences in aircraft
technologies have considerable effect (Figure C.3b), but this does not translate into notably different trends with
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Figure C.1: Contributions to CO2 emissions to the environment for nine reference scenarios, broken down by by life cycle phase. Since the
e-fuel modelled uses CO2 from direct air capture, there is a negative component to the contribution analysis. AAF: alternative aviation fuel.

respect to CO2 intensity, provided ReFuelEU is implemented (Figure C.3a and Figure C.3c). In the scenarios
modelled, a difference in the fuel intensity of flight of – for example – 50% in 2060 has little effect on the trend in
CO2 intensity (or in total CO2 emissions) when examined with respect to the respective values of decades prior.
However, this does not mean that such differences are trivial. Not only are the trends for other impact categories
affected in considerably different ways (seeSection 3.5), but the meaning of such a difference in CO2 emissions
could be much more meaningful in 2060 than from a present-day perspective.

C.3. All other impact categories

Figure C.4 illustrates the progression of the EF 3.1 impact categories. A selection of these impact categories is
highlighted and discussed in Section 3.5.
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Figure C.2: Contributions to LWE for nine reference scenarios, broken down by climate forcer. Uncertainty ranges for radiative forcing
efficiencies of emissions are given for 5% and 95% certainty, based on the values adapted from Lee et al. (2021) (see Section 2.8). Alongside

near-surface and in-flight CO2 emissions, aviation-induced cloudiness (“cirrus”) is the largest contributor.

C.4. Sensitivity analyses
This section includes four figures demonstrating the influence of dimensions which were initially excluded due to
their limited influence, as well as eight figures representing each of the alternative values for the source of hydrogen
or the background system. These figures are discussed in Section 3.6.
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Figure C.3: Results for nine reference scenarios on timeline, showing the performance in (a) the CO2-intensity of the fuel supply, considering
fuel infrastructure, operations, and use (but excluding the aircraft system), (b) the fuel-intensity per revenue passenger-kilometer (RPK), and
(c) the CO2-intensity per RPK, considering all activities within the scope. Intensities per RPK were obtained by dividing the total fuel supply
and CO2 emissions, respectively, by the total RPK volume. Note that CO2 is the only greenhouse gas considered in this figure. AC: aircraft.
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Figure C.5: Heat map depicting the results for cumulative CO2 emissions, when considering the additional scenario dimensions of
operational improvements (opp. impr.) and technological performance of AAF production. Values for scenarios which meet the

requirement (i.e., values ≤100) are shown in bold. AC: aircraft.
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Figure C.6: Heat map depicting the results for warming neutrality of CO2 emissions only, when considering the additional scenario
dimensions of operational improvements (opp. impr.) and technological performance of AAF production. Values for scenarios which meet

the requirement (i.e., values ≤100) are shown in bold. AC: aircraft.
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Figure C.7: Heat map depicting the results for warming neutrality of all surface-level GHG emissions, when considering the additional
scenario dimensions of operational improvements (opp. impr.) and technological performance of AAF production. Values for scenarios

which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft.
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Figure C.8: Heat map depicting the results for warming neutrality of all emissions, when considering the additional scenario dimensions of
operational improvements (opp. impr.) and technological performance of AAF production. Values for scenarios which meet the

requirement (i.e., values ≤100) are shown in bold. AC: aircraft.
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Figure C.9: Heat map depicting the results of the SSP1-PkBudg500 scenario with hydrogen produced through water electrolysis from
wind, for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all

surface-level GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios.
Values for scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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Figure C.10: Heat map depicting the results of the SSP1-PkBudg500 scenario with hydrogen produced through water electrolysis from the
grid mix, for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all

surface-level GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios.
Values for scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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 incl. flight non-CO2 [%]

Figure C.11: Heat map depicting the results of the SSP1-PkBudg500 scenario with the prospective hydrogen mix from Wei et al. (in
preparation), for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all
surface-level GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios.

Values for scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.



C.4. Sensitivity analyses 67

business-as-usual HC AC 
 performance with high growth

optimistic HC AC 
 performance with high growth

breakthrough HC AC 
 performance with high growth

business-as-usual HC AC 
 performance with base growth

optimistic HC AC 
 performance with base growth

breakthrough HC AC 
 performance with base growth

business-as-usual HC AC 
 performance with low growth

optimistic HC AC 
 performance with low growth

breakthrough HC AC 
 performance with low growth

business-as-usual HC AC 
 performance with degrowth

optimistic HC AC 
 performance with degrowth

breakthrough HC AC 
 performance with degrowth

441 251 253 247 237 199 194 192 187

403 235 237 231 223 190 187 184 181

362 217 218 214 207 180 177 176 172

351 205 207 202 195 167 164 162 158

323 193 195 191 185 160 158 156 153

292 180 181 178 173 153 151 149 147

280 168 170 166 161 140 138 136 134

259 159 160 158 153 135 133 132 130

236 149 150 148 144 129 128 127 125

171 108 109 107 104

159 103 104 102

146

93 92 91 89

99 90 89 88 87

97 98 96 94 86 85 85 83

(a) Share of CO2 RF budget used by 2070 
 based on ICAO/IATA limit [%]

176 131 132 129 126 104 101 101

165 125 126 124 121 101

153 119 120 118 115

164 124 125 123 120 101

154 119 120 118 116

144 114 115 113 111

153 118 119 117 115

145 114 115 113 111

136 110 110 109 107

141 112 112 111 109

134 108 109 108 106

127 105 105 104 103

100

99 99 98

99 97 96 96

99 98 97

99 97 97 96

97 95 95 94

99 97 96 96

97 95 95 94

95 94 93 93

96 95 94 94

95 94 93 93

93 92 92 92

(b) RF in 2070 compared to 2050, 
 CO2 only [%]

0

25

50

75

100

125

150

175

200
no

 R
eF

ue
lE

U
 w

ith
 

 n
o 

H
2 A

C

Re
Fu

el
EU

 as
-is

 w
ith

 
 n

o 
H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 lo

w
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 m

id
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 h

ig
h-

pe
rfo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 n

o 
H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 lo

w
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 m

id
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 h

ig
h-

pe
rfo

rm
an

ce
 H

2 A
C

business-as-usual HC AC 
 performance with high growth

optimistic HC AC 
 performance with high growth

breakthrough HC AC 
 performance with high growth

business-as-usual HC AC 
 performance with base growth

optimistic HC AC 
 performance with base growth

breakthrough HC AC 
 performance with base growth

business-as-usual HC AC 
 performance with low growth

optimistic HC AC 
 performance with low growth

breakthrough HC AC 
 performance with low growth

business-as-usual HC AC 
 performance with degrowth

optimistic HC AC 
 performance with degrowth

breakthrough HC AC 
 performance with degrowth

170 126 129 126 122 101 100

158 120 122 119 116

146 113 115 112 110

158 119 121 119 116

148 114 115 113 111

137 108 109 107 105

147 113 115 112 110

139 108 110 108 106

130 103 105 103 101

135 106 108 106 104

129 103 104 102 101

122

99 97

98 97 96 94

94 94 93 91

97 97 95 94

95 94 93 92

92 91 90 89

94 94 93 92

92 91 90 90

90 89 88 88

91 91 90 89

90 89 88 88

99 100 99 97 88 87 87 86

(c) RF in 2070 compared to 2050, 
 excl. flight non-CO2 [%]

no
 R

eF
ue

lE
U

 w
ith

 
 n

o 
H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 n

o 
H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 lo

w
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 m

id
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 as
-is

 w
ith

 
 h

ig
h-

pe
rfo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 n

o 
H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 lo

w
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 m

id
-p

er
fo

rm
an

ce
 H

2 A
C

Re
Fu

el
EU

 ex
te

nd
ed

 w
ith

 
 h

ig
h-

pe
rfo

rm
an

ce
 H

2 A
C

151 135 140 137 135

147 132 137 134 132

143 129 134 131 130

137 123 127 124 122

133 120 124 122 120

129 117 121 119 118

124 112 116 113 112

121 110 113 111 109

117 107 111 109 107

113 102 105 103 102

110 100 103 101 100

107 101

99 99 98 99

96 97 97 97

94 95 95 95

91 91 91 91

89 90 89 89

87 88 87 88

84 85 84 84

82 83 83 83

81 82 81 81

79 79 79 79

77 78 77 78

98 99 98 76 76 76 77

(d) RF in 2070 compared to 2050, 
 incl. flight non-CO2 [%]

Figure C.12: Heat map depicting the results of the SSP2-PkBudg1550 scenario with hydrogen produced through water electrolysis from
wind, for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all

surface-level GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios.
Values for scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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Figure C.13: Heat map depicting the results of the SSP2-PkBudg1550 scenario with the prospective hydrogen mix from Wei et al. (in
preparation), for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all
surface-level GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios.

Values for scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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Figure C.14: Heat map depicting the results of the SSP2-NDC scenario with hydrogen produced through water electrolysis from wind, for
(a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all surface-level

GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios. Values for
scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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Figure C.15: Heat map depicting the results of the SSP2-NDC scenario with hydrogen produced through water electrolysis from the grid
mix, for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all

surface-level GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios.
Values for scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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Figure C.16: Heat map depicting the results of the SSP2-NDC scenario with the prospective hydrogen mix from Wei et al. (in preparation),
for (a) cumulative CO2 emissions and (b) warming neutrality when considering only CO2 emissions, (c) when considering all surface-level
GHGs, and (d) when considering all climate forcers, including flight non-CO2 effects. Each sub-plot depicts the same scenarios. Values for

scenarios which meet the requirement (i.e., values ≤100) are shown in bold. AC: aircraft, RF: radiative forcing.
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