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1 Introdu
tion
Polyps are small protruding mounds that may develop throughout the intestinal sys-
tem. The ones that are located in the large bowel, or colon, are referred to as colorectal
polyps. Colorectal cancer that may develop from them is one of the most commonly
diagnosed type of cancer, responsible for about 12% of all cancer related deaths. For
males it is the third ranked cause of cancer related mortality, after lung and prostate can-
cer. For female it is also ranked third, after breast and lungcancer. In The Netherlands,
each year about 9000 people are diagnosed with the disease and more than 4000 die as
a result from it. (source: KWF kanker bestrijding).

About 95% of all cases of colon cancers arise from adenomatous polyps, that are ini-
tially benign [11]. Due to genetic mutations, such polyps develop from the top layer of
epithelium cells that make up the colon surface. By the process of oncogenesis a polyp
may evolve stepwise from small tubular adenomas to large adenomas and eventually to
carcinomas [17]. That is, due to cell proliferation, the colon wall thickens and bulges out
and thereby undergoes a morphological change without whichtheir detection by means
of imaging techniques such as computerized tomography (CT)or optical colonoscopy
would not be possible.

Polyps are initially not cancerous. Unfortunately, there is a chance of gradual de-
velopment into malignancy, and, this chance is related to its size. For polyps of about
five millimeter in diameter the transition from healthy tissue to malignancy may take
up more than ten years. However, for polyps of about ten millimeter in diameter this
time span is reduced to five years [71] and for even larger polyps the transition may take
place in an even shorter time. The good news is, that, the longpremalignant polypoid
stadium, offers a time window for screening and removal, andthus, prevention.

It is proposed that polyps with a diameter smaller than 6 mm require no further action,
whereas polyps equal to and larger than 10 mm should be removed by colonoscopy [22,
146]. There is debate over the need for polypectomy for 6-9mmpolyps. Surveillance
for growth with CT colonography has been suggested as a safe alternative [12,146].

Another concensus is reached on the effectiveness of screening of high risk and symp-
tomatic patient groups, including those with a known hereditary risk for colon cancer.
There is, unfortunately, much less agreement on the need forscreening of asymptomatic
populations [54].

A standard method to examine a patient is by means of optical colonoscopy. This
is accomplished by inserting a colonoscope into the anus andthen advancing it slowly
into the rectum and through the colon. Images of the colon wall are projected on a
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CHAPTER 1. INTRODUCTION

video screen or can be observed directly through the scope (figure 1.1). Unfortunately,
the technique has a couple of drawbacks. First, there is a small risk for complications.
Moreover, direct visual inspection requires the colon to becleansed. To that end, pa-
tients undergo an extensive laxative preparation, which isthe main cause for low patient
acceptance [123]. Also, polyps may be missed due to the limited opening angle of the
camera in combination with the highly structured nature of the colon. In an ideal situa-
tion colonoscopy is only applied to patients known to harbor(large) polyps, so that they
may be instantly removed.

Figure 1.1: Images from inside the colon during a colonoscopy. In the left image a polyp
is being removed using a polypectomy snare. The image on he right shows
the colon after removal of the polyp.

An innovation which partly avoids these drawbacks is CT colonography, which is
a radiological technique which employs computerized tomography. The methods dis-
cussed in this thesis apply to the data as obtained by the latter technique. It is briefly
described below.1.1 CT 
olonography
CT colonography (CTC) was presented in 1994 [131] as a technique with which a 3D
image of a patient’s abdomen is recorded by a CT scanner. Unlike optical colonoscopy,
the technique is non-invasive1 and does not require sedation. CTC has been studied
extensively over the last years [5,29,34,39,41,48,53,93,145].

Traditionally, the images are visually inspected by a combination of slice by slice
inspection and volume renderings [96]. Two factors hamper the inspection. Segments of
the colon may be collapsed and stool may be present in the colon. Stool typically has an
attenuation similar to tissue and thus may yields false interpretation of the colon surface

1Apart from a small radiation dose
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1.1. CT COLONOGRAPHY

location. In order to reduce the sensitivity to these artifacts, it is clinical practice to scan
patients twice (in prone and supine position). Typical inspection times per patient is
about 20-30 minutes [96,132].

Figure 1.2: Grey image slice through a 3D volume obtained with CT Colonography
(left). Isosurface rendering at -750 HU of the colon (right).

An important aspect that is used in deciding on a patient’s treatment is the polyp size.
It is measured from the largest object diameter in cross sectional views or in volume
renderings. For this digital calipers are used (See figure 1.3). (In optical colonoscopy
size is also an important aspect, but the technique providessome additional textural
information, such as the blood vessel structure that may aidin the decision taking).

Patients harboring polyps larger than or equal to ten millimeter are to be scheduled
for optical colonoscopy, such that the polyp can be removed immediately. Such polyps
inhibit a large risk for cancer. Smaller polyps, with a size between five2 and ten mil-
limeter, inhibit a smaller risk. They are removed nevertheless, in case the patient is
scheduled for optical colonoscopy due to the presence of large polyps. Otherwise the
patient is rescheduled for a scan at a later time. Polyps witha size smaller than five (or
six) millimeter are considered to inhibit a small risk and they cannot be found with high
sensitivity and specificity. They are usually ignored.

The main drive behind the development of CT colonography compared to optical
colonoscopy is the expected higher patient acceptance [122]. It was concluded that
patients with an increased risk for colorectal cancer preferred CT colonography above
colonoscopy even if there was a 20% chance for subsequent colonoscopic investigation.
A role of CT colonography in screening is to pre-select patients with polyps such that
only patients with polyps are sent to colonoscopy. Another advantage of CT colonogra-
phy is that it aids colonoscopy by localizing the lesion and hence increasing the overall
sensitivity.

2Sometimes a size of six millimeter is used.

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Manual size measurement in CT Colonography using digital calipers. The
operator selects two points on each side of the polyp. The distance between
the points is used as a measure for polyp size. The size is either measured in
2D cross sectional views (a) or in 3D isosurface renderings (b).

The sensitivity and specificity of colonoscopy and CT colonography was assessed
in a number of studies [5, 29, 33, 34, 39, 41, 48, 53, 93, 145]. The performance of CT
colonography is generally compared to a golden standard obtained with colonoscopy. It
is estimated that CT colonography has a sensitivity of around 85-95% [5, 122]. A large
study on 3000+ patients from an increased risk population concludes that CT colonog-
raphy and colonoscopy have a similar sensitivity [55].

A drawback of manual inspection of CT data is the large amountof data which has to
be analyzed. A typical CT dataset consists of 250-700 slices(depending on scanner type
and settings). As discussed above, it is clinical practice to scan patients twice, in prone
and supine position, to increase sensitivity, but simultaneously doubling the amount of
data. The development of CT colonography for large screening programs preferably
involves automation to facilitate the large amount of data.That is, a Computer Aided
Detection System (CAD) is needed to detect suspicious siteson the colon surface. Ide-
ally, instead of inspection of the full colon only a few suspicious sites are presented to
the radiologist.

This thesis discusses several aspects of such a system.1.2 Automated dete
tion
A number of key issues are associated with the automation of polyp detection. Similarly
to manual inspection, patient preparation is important. The use of extensive laxative
preparation may remove most fecal remains, however, the ones that remain are often
difficult to distinguish from polyps or tissue. This may be resolved by the use of tag-
ging. Tagging has the advantage that fecal remains and fluid are easily discriminated
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1.2. AUTOMATED DETECTION

from tissue by means of their intensity (which is increased). However, for automated
detection, the use of a contrast agents introduces the risk that polyps are fully or par-
tially covered by (bright) fluid, which hampers its detection. In such situations, digital
techniques [99] are required to remove the tagging from the images before applying
detection algorithms. The techniques presented in this thesis are intended to be applied
to data that have been digitally cleansed first. The multicenter validation (chapter 7),
includes results obtained from data without applying digital cleansing.

Another issue, specific to automated detection, is false detections on either the ileoce-
cal valve, or the rectal tube (with insufflated balloon-tipped catheter), which both have
characteristics similar to polyps. This thesis has ignoredthe issue of detections on ileo-
cecal valve. It is addressed in a number of other studies [68,110]. In chapter 7 the issue
of false detections on the rectal tube is discussed.

Currently, there is an ongoing debate [32, 38, 89, 92, 102, 119] on the prevalence and
clinical significance of so called ’flat’ polyps. The term ‘flat’ usually defines elevations
less than 1 cm in diameter with a polyp height that is less thanhalf of its width and which
have a plaguelike morphology. Because these lesions are generally less conspicuous
than polypoid lesions, they can be more difficult to detect both in optical colonoscopy
as well as CTC. In [89] it is argued that, although flat lesionsremain a diagnostic chal-
lenge they do not represent a major drawback to widespread CTC screening. In [102] it
is argued that "completely flat lesions are exceedingly rare". This thesis does not specif-
ically address the detection of flat polyps, but, the techniques developed in chapters 4
and 5 are designed to detect any elevations from surroundingsurfaces before ordering
them based on size and intensity measures. As such flat polypsmay be detected by
techniques proposed in this work.

The aim of automated detection of colorectal polyps is to reduce inspection time,
without sacrificing detection sensitivity and specificity.This is achieved by presenting
to the expert, only the most suspicious sites, allowing the expert to skip inspection of the
obvious polyp free parts of the colon. In this context, two distinct roles for Computer
Aided Detection (CAD) are acknowledged [39, 83, 86, 116]. Insituations where CAD
is 2nd reader, after a human expert, the sites are to be presented in an orderly fashion,
such that the most prominent ones missed by the expert are shown first. In the other
case, where CAD is to be first reader, an absolute measure of ’polypness’ is required,
instead of a relative ranking. Additionally, as a first reader, information is required,
which allows performing a diagnosis. That is, information which relates to the chance
to develop cancer, such as a measure for the polyp size.

The polyp detection pipeline consists of three steps (figure1.4): segmentationof the
colon wall from the CT images;detection(and segmentation) of suspicious sites (polyp
candidates); and ranking followed byclassification[43,103,107,141,143].
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CHAPTER 1. INTRODUCTION

Figure 1.4: Three steps of a typical detection scheme.

The first step is relatively simple due to the high contrast between tissue outside and
air inside the colon which allows for a segmentation of the colon from the 3D CT volume
by a fixed threshold. The threshold is roughly set to halfway the value for tissue and air.
User interaction is sometimes used to discard air in the small intestines, lungs or other
air containing organs.

Proper patient preparation is important to avoid two main causes for failing segmen-
tation. First of all, remaining stool has very little contrast with tissue and, if present in
the colon, may lead to false positive detections or polyps submerged in stool may be
missed. The use of contrast agent to tag stool present in the colon is common practice
nowadays. Advanced segmentation techniques were proposedto sustain 3D viewing
[98]. Secondly, proper distention is vital to avoid collapsed segments. This thesis does
not further address the issue of colon segmentation. The reader is referred to [69].

The second step, the detection of suspicious sites on the colon wall, is performed to
discard large parts of colon wall, which are ’obviously’ nonpolypoid. The aim of this
step is to retain a high sensitivity. The specificity may be rather low, as it is to be im-
proved in a subsequent supervised pattern recognition step. A large number of methods
have been proposed for candidate detection. The most commonapproach is to focus
on the characteristic protruding shape of polyps. It involves measures that describes
the local shape of the colon wall and they are often compared to values expected for
polypoid shapes[20,49,56,75,76,82,103,111,143,147]. Chapters2 and3 of this thesis
contribute to such an approach.

Others have looked at probabilistic models [70] or statistical methods to analyze tem-
plate similarity measures [35]. A number of papers focus on analyzing the deformation
properties of the colon wall [1,62,63,130] and again othershave proposed to incorporate
wall thickness measures [79].

In the chapters 4 to 6 a novel approach is proposed which, instead focuses on the
amount of colon surface displacement due to polyp growth.

The third step of the detection pipeline involves the discrimination of the candidate
regions into polyps and non polyps. A number of papers proposed to include a pro-
cessing step to reduce the number of false positive findings in the previous step [67,72]
or have looked into false positive reduction by focussing explicitly on detection of the
ileocecal valve an or rectal tube [7, 67, 110]. The most successfull strategy seems to be
one, involving supervised pattern recognition using gold standard expert labeling of CT
data sets, for which both an optical colonoscopy and CT colonography ground truth is
available [50,52,113].
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1.3. THESIS ORGANIZATION1.3 Thesis organization
This thesis focuses on the second and third step of the detection pipeline: finding can-
didate sites followed by ranking and classification.

The analysis of the colon surface shape requires the computation of image derivatives.
Their measurement is particularly complicated due to the highly folded structure. This
prevents the use of large filter kernels. Inchapter 2 a technique is proposed that uses
normalized convolution with a specially devised weightingterm in order to optimize the
trade off between noise suppression and structure induced bias.

A new algorithm for segmentation of polyps is presented inchapter 3. It operates on
a triangulated isosurface and takes into consideration thelocal mesh orientation and ver-
tex position. The algorithm starts with and expands an initial seed, located somewhere
on the protruding surface. Based on the resulting segmentation the algorithm estimates
the size of the object.

Using a similar explicit triangulation of the colon surface, in chapter 4a new method
is proposed for the detection of candidate sites. It is basedon the notion that polyps have
introduced a deformation to the colon surface. The method estimates the colon surface
dislocation and candidate sites are obtained by selecting the regions with a dislocation
larger than an optimized threshold. The method is tested in the context of a supervised
classification scheme, based on features obtained from the deformation field and the
grey level image.

Chapter 5 proposes a method that is based on the same principle. Complementary
to the previous approach, this method operates directly on the grey level voxels, rather
than a triangulated isosurface. It is proved, that the second principle curvature is suf-
ficient to estimate the amount of deformation. A classification scheme based on linear
logistic regression is proposed that explicitly keeps large polyps away from the decision
boundary. Again, the method is assessed in the context of a supervised classification
scheme.

In chapter 6 a polyp segmentation method is evaluated. Unlike the methodfrom
chapter 3, the segmentation is obtained directly from the deformation field. The per-
formance of the method is assessed by comparison to expert size measurements on
phantom data and true polyps.

Candidate detection typically renders a lot of candidates to sustain maximum sen-
sitivity. Hence, the number of objects from the target class(polyps) is relatively low.
This large imbalance of the prevailing classes typically hampers classifier design and
training. Furthermore, the classifier should take into account the increased clinical rel-
evance of larger polyps. The lastchapter 7 in this thesis discusses the consequences of
these characteristics for the design of the classification system. A novel, low-complex,
classification system is proposed that orders the polyps according to clinical relevance.
This chapter also serves to demonstrate the overall performance of a CAD system based
on the techniques presented in this thesis.
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2 On normalized 
onvolution forthe measurement of imagederivatives in highly stru
turedsurroundings
This chapter discusses the trade-off between noise reduction while retaining the image
structures when computing image differentials. A scheme ispresented which allows to
incorporate confidence values into the measurement. This scheme is evaluated with an
application for finding protruding regions in 3D CT images ofthe human colon from
differentials up to second order.

Based on:

C. van Wijk, R. Truyen, R.E. van Gelder, L.J. van Vliet, F.M. Vos,On normalized convolution
to measure curvature features for automatic polyp detection, MICCAI 2004 [128]
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CHAPTER 2. ON NORMALIZED CONVOLUTION FOR THE MEASUREMENT
OF IMAGE DERIVATIVES IN HIGHLY STRUCTURED SURROUNDINGS2.1 Introdu
tion

Noisy data asks for a certain amount of regularization, whereas thin or small image
structures require a very small filter kernel. Violating thefirst requirement yields a
noisy result (stochastic error) whereas violating the second causes a substantial bias
in the derivatives (systematic error). For example, both errors hamper the curvature
measurement in 3D CT images of the human colon in which case finding a trade-off
between the conflicting requirements is very difficult due tothe presence of small folded
structures on the colon wall of only a few voxels wide (see Figure 2.1).

In this chapter we present a novel method to adapt the size andshape of the filter
kernels to the local image data. The method avoids the systematical error due to mix-
ing of nearby image structures and is optimized for noise reduction. However, using
irregular shaped filter kernels requires a space-variant normalization of the derivative
filters. Therefore we present an intuitive framework for deriving normalized differential
convolution of arbitrary order (Section 2.2.1). In section2.2.3 we present a scheme to
compute space-variant kernels from the local image structure.

Derivatives in 3D images can be computed by convolution withderivatives of Gaus-
sian kernels. In order to adapt the Gaussian (derivative) kernels to the local geome-
try they are multiplied with a confidence function which is extracted from the local
image structure. This additional weighting requires re-normalization as well as a (re-
)orthogonalization. The technique which takes care of bothis normalized convolution
([28,61])

The performance of the new method is assessed on both simulated as well as CT
data. For the detection of polyps the resulting image derivatives can be combined into
principal curvatures,κ1 andκ2 (Thirion and Gourdon [120]). Based on the principal
curvatures a number of polyp detectors can be constructed. Yoshida [141] uses primarily
the shape index and curvedness. The shape index is given bySI = 1

2 − 1
π atan(κ1+κ2

κ1−κ2
)

and the curvedness is given byCV =

√

k2
1+k2

2
2 .2.2 Methods2.2.1 A least squares approa
h to normalized 
onvolution

The following assumes a 2D image (extension to 3D image spaceis straightforward).
Consider a local neighbourhood ofN×N pixels fi that is modeled by a Taylor expansion
around the center of the local neighbourhood (indicated by 0):

fi = I(0)+xiIx(0)+yiIy(0)+
x2

i Ixx(0)

2!
+

y2
i Iyy(0)

2!
+

2xiyi Ixy(0)

2!
+R(i) (2.1)
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2.2. METHODS

Figure 2.1: Small kernel overlaying multiple image structures

in which I indicates the ’true’, underlying image function andi is a linear index. Using
terms up to the second order and substitutingη1 = I(0), η2 = Ix(0), ..., Equation 2.1 is
rewritten as:





f1
...
fN2



 ≈
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1 x1 y1 0.5x2
1 0.5y2

1 x1y1
... ... ... ... ... ...
1 xN2 yN2 0.5x2

N2 0.5y2
N2 xN2yN2









η1

...
η6



 (2.2)

The local neighbourhood can be depicted as a point in anN2-dimensional space spanned
by the orthonormal basis{ei}. A new set of basis vectorsb j = {1, x ,y, xx

2 , yy
2 , xy} are

the basis functions of the Taylor expansion (i.e. the columns of the matrix in Equation
2.2). Thus,{η1,η2,η3,η4,η5,η6} are the coordinates of the signal on the new basis and
directly yield the first and second order derivatives. It canbe stated that:

f i
e = Bη j

b + r (2.3)

Equation 2.3 merely rewrites Equation 2.2, implying that the signal f on basisei is
approximated by the so-called basis tensorB times the coordinates off on basisb j ,
(η j

b), with a residualr . It must be emphasized that, in general, the basis functionscan
be freely selected and need not be orthonormal. Our basis wasmerely chosen to comply
with the Taylor expansion. The objective now is to find the newcoordinatesη j

b by
minimizing the errorε = ‖ f −Bη‖ = ( f −Bη)2. The result is the general least squares
solution to 2.3:

(BTB)−1BT f i
e = η j

b (2.4)

with (BTB)−1BT the pseudo-inverse ofB.
To reduce the influence of points further away from the neighbourhood center we mul-
tiply the set of equations in eq. 2.2 by a (rotation invariant) matrix Â, with A = ÂTÂ.
TheN2×N2 diagonal matrixA contains spatial weights and is called the applicability
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function.
Â f i

e = ÂBη j
b. (2.5)

Multiplication with Â is allowed as long as it does not yield a singular system of equa-
tions. Similarly, each equation in (2.5) can be multiplied again by other weights. It is
now clear how confidence levels assigned to each neighbour can be incorporated. The
result is a double weighted least squares solution:

(BTACB)−1BTAC f i
e = η j

b (2.6)

with the diagonal matrixC = ĈTĈ holding the confidence value of each neighbor.2.2.2 Normalized 
onvolution and Gaussian derivatives
In the previous section the signal was expanded using a Taylor polynomial. However,
the choice for the basis is not limited to it. The advantages of the Taylor expansion
is that image derivatives are obtained directly from the coefficients (η). Other basis
functions are also possible and one in particular leads to the well known Gaussian n-jet.

The Gaussian kernel is given by the functional

G(x,σ) = e−
x2

2σ2 = e−x̂2
(2.7)

with x̂ = x√
2σ

The n-th Gaussian derivatives can be written as the Gaussianfunction times a Hermite
polynomial of order n. One aspect of Hermite polynomials is that they belong to a family
of orthogonal functions on the infinite interval (−∞,∞) with the weighting functione−x2

.
Therefore, using Hermite polynomials, together with an applicability function given by

Â = e−
x̂2
2 , A = ÂTÂ leads to kernels given by:

(BTAB)−1BTA (2.8)

The matrixBTAB is diagonal as each element is given by:

∑
x

Hi(x)AHj(x) = 2i+ j i!
√

πδi j (2.9)

One consequence of the orthogonality of Gaussian basis functions is, the the projections
of the signal onto each basis function can be computed independently. Additionally the
termBTA give the well know Gaussian derivative kernels:H(x̂)ne−x̂2

.
Unfortunately, when the the confidence values assigned to the local neighborhood are

not constant, the orthogonality is lost and the inversion inequation 2.8 is not trivial. It
needs to be recomputed for each local neighborhood separately.
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2.3. RESULTS2.2.3 Lo
al 
on�den
e values
The framework presented in the previous section accommodates normalized space variant-
kernels. The confidence values which are inserted into the regularization are computed
locally and will adapt the kernel to the local image structure. The goal is to assign high
confidence to voxels on the image structure under consideration and a low confidence
to other structures. Such structures might be neighboring folds, changes in tissue struc-
tures, the opposite side of a fold, etc.
We propose the following scheme to compute the confidence values.

1. Segment the air to find the air-tissue interface. Usually this is achieved by simple
thresholding. We use a dynamic threshold [9] to allow for a correct segmentation
of geometries affected by partial volume effects.

2. Compute for all voxels the distance to the air-tissue interface. We perform two
distance transforms. One to compute the distance to air. From this we subtract a
second distance transform, the distance to tissue. This operation results in positive
values for air and negative values for tissue. On the colon wall the values of the
distance transform are zero.

3. Compute the gradient of the distance transform which willact as a normal vector
field. We will use these normals to distinct between different structures.

Steps 1 to 3 can be computed for the entire image at once. In contrast the following
step is a local one to be incorporated in the convolution process. To distinguish between
different geometries one can remark that the surface normalof the structure under con-
sideration will differ from that of the direct neighboring structures.

1. Assign neighboring voxels to belong to the current structure by taking the inner
product of the normal at the neighborhood center with the normal of a neighbor.
A threshold on this value (e.g. >0) classifies the neighbor and sets its confidence
value to zero or one.

An example of a region selected by the above scheme is given inFigure 2.2 . Note that
the confidence values are weighted with the applicability function in the regularization
process.2.3 Results
The performance of the space-variant filtering is assessed on both simulated objects
as well as CT data. Two test images were created to test the computation of radii of
curvature with both the isotropic method as well as the new method. The first image,
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Figure 2.2:Constructed confidence values for a neighborhood of132 pixels. The neigh-
borhood center is indicated by the black dot.

displayed in Figure 2.3a, is a 3D cylinder (only cross-section shown) which was con-
structed using the error function with aσ of 2. The cylinder has a radius of 18 pixels.
Gaussian noise was added to the images. The standard deviation of the noise was 4%
of the contrast (intensity difference between air and tissue). The second test image con-
tains two 3D cylinders, their centers separated by 40 pixels. The image was constructed
by multiplying two separate cylinder images after which noise was added.

Figure 2.3 shows that noise affects the derivative computation at small scales (a and
b). Increasing the (isotropic) scale of the operator improves the results (c), but adjacent
structures inside the footprint of the filter spoil the final result (d).
The isotropic Gaussian derivative filtering fails to returnthe correct curvatures. In this
paper we propose to improve the curvature measurement by introducing space variant
kernels. The performance is compared to the isotropic method in Figure 2.4a. The result
of the isotropic method are repeated on the left cylinder. The results obtained with the
proposed method are plotted on the right cylinder. It is clear that in the region where the
two cylinders are close together the method using isotropickernels fails to give correct
curvature values, while the new method returns correct results
The new method does not suffer from the systematic error introduced when using isotropic
filters. The cost is a small increase in a stochastic error dueto the fact that the incorpo-
ration of confidence levels into the filtering in effect reduces the number of voxels used
to suppress noise. However, the specific choice of confidencelevels based on the local
structure allows to discard just those voxels which would have introduced a systematic
error. In other words our method optimizes the trade-off between noise reduction and
preservation of image structure.
The shape index is computed from the principal curvatures and is often used to select
polyp candidates by means of thresholding. Applying such classification to the image
in Figure 2.4a yield Figure 2.4b. The isotropic method will result in a classification of a
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(a) (b)

(c) (d)

Figure 2.3:Trade-off between noise suppression and resolution. On several positions
on the edge the normal direction (line direction) and radiusof curvature
(line length) are plotted. From left to right: (a) noise freeimage, small scale
σ = 1. (b) Gaussian noise added,σ = 1. (c) computation at larger scale
suppresses the noise,σ = 3. At larger scale (σ = 3) incorrect curvature and
gradient direction are obtained close to neighboring structures (d).

large part of the cylinder to a ridge-like structure. The newmethod correctly classifies
all the voxels to a rut-like structure (8c).
To demonstrate the performance of the method on CT data, a scheme similar to [76] is
applied. Yoshida et al. use the the shape index and curvedness to select the set of polyp
candidates. In [76] thresholds were presented for the shapeindex (between 0.9 and 1.0)
and for curvedness(0.05mm−1 and 0.25mm−1). We applied the same scheme using
hysteresis thresholding [76] to investigate the performance with respect to the candidate
selection step. Initial test results on a few patients show promising results. The power
of the method is clearly demonstrated in Figure 2.5 and Table2.1 which are obtained by
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Figure 2.4:Radius of curvature (left) and shape index (middle,right) computed on two
cylinders (Only a cross section of the cylinders is shown). On several posi-
tions on the edge the gradient (line direction) and radius ofcurvature (line
length) are plotted. Left cylinder: isotropic method. The gradient direction
is obtained using isotropic Gaussian kernels (σ = 3). Right cylinder: both
gradient direction and radius of curvature are obtained with space variant
kernels (σ = 3).
The middle image shows the classification by shape index computed by the
isotropic method. The isotropic method classifies large part of the cylinders
to a ridge like structure. The new method (right) using spacevariant kernels
classifies all voxels correctly.

applying the method to a small dataset(200×200×100 voxels) containing one polyp
(approx. 4 mm). The new method detects the polyp and finds one false positive. The
isotropic method detects three false positives and misses the true positive.
From the demonstration of our method both on simulated data as well as CT data we
feel confident that space-variant kernels will yield fewer false positives. Especially for
small polyps the new method is likely to increase the sensitivity. However, we are aware
that the performance of the operator can only be assessed by statistical validation on a
large number of datasets.

id method cluster size label
1 isotropic 9 false positive
2 isotropic 28 false positive
3 isotropic 86 false positive
4 space-variant 31 true positive
5 space-variant 3 false positive

Table 2.1:Detection results. The isotropic method detects 3 false positives. The space
variant method detection the true positive and one (small) false positive. The
results were obtained by filtering withσ = 3.
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Figure 2.5:One slice from the 3D Ct dataset. Voxels labelled as belonging to polyps
(white). The new method finds the polyp (left). The isotropicmethod fails
to find the polyp and selects a false positive. The results were obtained by
filtering withσ = 3.2.4 Con
lusions

The measurement of curvature in CT data for the detection of polyps is difficult due to
the highly folded colon. Therefore noise suppression with larger isotropic filters is not
possible. We have shown that with a specific formulation of normalized convolution
using a local Taylor expansion space-variant kernels can beused. In addition we have
shown that space-variant kernels can be constructed which discards just those voxels
belonging to neighboring image geometries. Thereby the derivative filtering optimizes
the trade-off between noise suppression and preservation of local image structure.
The assessment of the method by simulated images shows that the space-variant filtering
outperforms isotropic filtering. Also, on CT data the new method seems to indicate a
higher sensitivity and higher specificity. However, the authors do realize an investigation
on more data is needed to be conclusive on the overall improvement of polyp detection.
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3 Segmentation and sizemeasurement of polyps in CT
olonography
In this chapter a new method is proposed for the automatic measurement of polyp size.
It operates on a triangulated isosurface and takes into consideration the local orienta-
tion and position of the mesh. The algorithm starts with and expands an initial seed,
located somewhere on the protruding surface. Based on the resulting segmentation the
algorithm estimates the size of the object. We assess the performance by comparison to
expert size measurements on phantom data.

Based on:

J.J. Dijkers, C. van Wijk, F. M. Vos, J. Florie, Y.C. Nio, H.W.Venema, R. Truyen, L.J. van
Vliet, Segmentation and size measurement of polyps in CT colonography,MICCAI 2005 [26]
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CHAPTER 3. SEGMENTATION AND SIZE MEASUREMENT OF POLYPS IN CT
COLONOGRAPHY3.1 Introdu
tion

Colorectal cancer is one of the most commonly diagnosed types of cancer. Specifi-
cally, the American Cancer Society predicts 145,000 new cases and 56,000 deaths from
colorectal cancer for 2005 [3]. Polyps are a well-known precursor to such carcinoma.
Not surprisingly, it has been shown that early removal of polyps ensures a decrease in
incidence [121].

In recent years, CT colonography has been proposed as a noninvasive alternative to
traditional polyp detection by colonoscopy [42, 96]. In CT colonography, the colon
structure is often visualized from an endoluminal perspective by means of surface or
volume rendering. Recently, methods have been proposed to support the inspection by
a computer aided detection (CAD) system indicating suspectlocations [106, 141]. The
size of a detected polyp is an important aspect for diagnosisand decision making. It
is generally accepted that polyps with diameter < 5mm require no direct further action,
whereas larger polyps should be removed via colonoscopy. Typically, the size of polyps
is measured in colonoscopy by comparison with an open biopsyforceps. In CT colonog-
raphy, it is usually measured in reformatted images, in which the largest polyp diameter
is selected for size measurement. However, polyp sizes thusmeasured by human experts
can show significant inter- and intra-observer variability.

Clearly, an automated method is needed to enable more accurate measurement of
polyp size. As a side effect, such a procedure is also useful in CAD algorithms. Auto-
mated polyp detection is usually based on sophisticated pattern recognition techniques
that take into account many features measured on tentatively selected candidates (e.g.
size, area, average shape index etcetera). Proper segmentation is crucial to perform
reliable feature measurement.

The existing methods for colonic polyp segmentation (such as Summers et al. [52,
103] and Yoshida et al. [77]) are especially designed to workdirectly on the 3D CT
data. Such an approach is hindered by not operating on a specifically defined region of
interest c.q. the colon surface. Hence, segmentation of polyps which are by definition
protrusions of the colon surface is not a trivial task.

In this paper we present a new method for semi-automatic segmentation of polyp-like
structures. Additionally, a technique is described to automatically measure polyp sizes
using this algorithm. Our method assumes that the colon surface has been identified as a
region of interest. Moreover, it is asserted that a candidate location has been identified;
in our system by a vertex detection step based on the measuredshape index [128]. We
will compare the size measurement by our algorithm with thatof physicians in a set of
phantom objects (in which the size is known a priori).
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3.2. POLYP SEGMENTATION

Figure 3.1: Schematic overview of segmentation procedure.3.2 Polyp segmentation
The description below assumes that the colon wall is described by a triangular mesh.
However, the basic ideas of the method are not restricted to amesh based surface repre-
sentation of the colon wall; they can as well be implemented to work on a voxel based
model. An additional advantage of our method is that the segmentation requires no user
input, that is all parameters are drawn from the underlying data.

Outline of segmentation procedure. Ideally, a polyp could be described as a rather
spherical, symmetric mound on a background shape (see e.g. Figure 3.2a). One could
intuitively delineate a polyp by the inflection points on both sides. However, these points
may not be easily identifiable due to the curvature of the background shape (e.g. a fold).

Hence, we model a polyp to have a symmetry axis that goes through the center point
(Pc) in which the apical surface normals converge, and the mean position (Pm) calculated
from the polyps surface points. The edge of the polyp is defined by the points at which
the surface normals tend to deflect from the center point (we will formalize this below).

Initially, a single position or a small patch indicates a point on the polyp candidate
[128]. Since the center and mean points may not be robustly determined from such a
seed patch, the polyp segmentation procedure is set up as an iterative process. During
each cycle of this process neighboring vertices are added ifcertain criteria are met. The
process terminates when no more points are added. An overview of the procedure is
shown in figure 3.1.
Computing the center and mean points.As depicted in Figure 3.2a, the surface nor-
mals on the polyp apex tend to converge in a center point. Thispoint (Pc) is found by
minimizing the sum of the distances (di) to all normals (~ni). The surface normals are
calculated by Gaussian derivatives the underlying 3D CT data at a scale of 2mm. This
scale was determined experimentally such that no polyps aremissed. The distances can
be computed according to:

di = ‖~ni × (Pi −Pc)‖/‖~ni‖ (3.1)

wherePi is a point on the patch and x denotes the vector outer product.Additionally, a
mean point (Pm) is associated with a patch. The position of the mean is simply computed
by averaging the positions of all vertices:Pm = 1

N ∑Pi. The mean and the center points
define a centerline (dashed in Figure 3.2b). Henceforth it iscalled the polyp axis.

Adding points to a seed patchPoints are to be added to a seed patch until the local
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Figure 3.2: Schematic representation of a patch (dashed curve) on the colon wall. Figure
(a) shows how convergent normals define a center point; figure(b) shows
how the minimized distancedi is defined for surface pointPi; figure (c)
shows how the anglesα andβ are defined.

Figure 3.3: Schematic representation of a polyp (dashed curve) on a flat background
(left) and on a fold (right).

surface normal tends to deviate fromPc. To formalize the stopping criterion, consider
first a sphere on a flat background. Let us defineα as the angle between the line from
the center point (Pc) to the vertex (Pi) and the normal at the position of the vertex (see
Figure 3.2c). Clearly, on top of the polypα is small (exactly zero on a spherical cap,
see Figure 3.3). The angleα increases while moving to periphery of the polyp. Right
outside the polyp the angle is given by (compare with Figure 3.3):

αedge= arccos

[

Pedge−Pc) ·~n
∥

∥Pedge−Pc
∥

∥ · ‖~n‖

]

(3.2)

in which Pedgeis defined as in Figure 3.3 and~n is the normal at pointPedge. We assume
that the ideal threshold-value lies somewhere between these extreme values (respec-
tively 0 andαedge). The required midway point is closely approximated by the angle
calculated via (compare with Figure 3.3):

αmid = arccos[(Pm−Pc)/R] (3.3)

Thus,α < αmid yields a safe stopping criterion for adding neighboring vertices to a
polyp on a flat background. On a fold, however, the angleα remains small (see Fig.
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3.3. EXPERIMENTS AND RESULTS

3.3). Let us defineβ as the angle between the polyp axis and the line between the vertex
and the center point (as in Figure 3.2c):

β = arccos

[

(P−Pc) · (Pm−Pc)

‖P−Pc‖ · ‖Pm−Pc‖

]

(3.4)

At the edge of the polypβ is given byβedge= αedge. Typically,β continues to increase
while moving onto the fold. Consequently,β < βedgeyields a logical stopping criterion
for a polyp on a fold. It should be noticed that the two posed criteria are mutually
exclusive: the sidepoints of a polyp on a fold do not meet the criterion of α < αmid.
On the other hand, points besides a polyp on flat background donot fulfill β < βedge.
Also, the anglesαmid andβedge are both dependent on the shape of a polyp. Flatter
polyps tend to have lower values forαmid andβedge than more protruding polyps. In
other words, the threshold values automatically depend on the polyp shape.

All vertices neighboring a seed patch that match the conditions are accepted and
added at once to yield a new seed. Consequently, the outcome does not depend on the
order in which points are processed. Clearly, if none of the vertices match the criteria,
no points are added and the current patch is considered the final, segmented polyp. Oth-
erwise, all steps are iterated.

Automated size measurement.The size measurements for polyps are based upon the
segmented patches. The edges of these patches are projectedalong the polyp axis onto
a plane. An ellipse is fitted to these points in 2D space by computation of the first and
second order moments. This is in accordance with the currentmedical practice in the
Academic Medical Center where the polyp size is characterized by its largest diameter.3.3 Experiments and results
The performance of the method was assessed by comparing the automated size mea-
surement with those of radiologists using scans of a colon phantom. We have looked
into several aspects to test our approach:

• Inter-observer variability of radiologists

• Intra-observer variability of radiologists and our method

• Accuracy and precision of the radiologists and our method

Experimental data. All data was acquired using a Mx8000 multislice CT-scanner
(Philips Medical Systems, Best, the Netherlands) using thesame scanning protocol for
all scans (scan parameters: 120 kV, 100 mAs, 4 x 2.5 mm collimation, pitch 1.25, stan-
dard reconstruction filter, and a 180o interpolation algorithm).
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Object Lucite Objects (lengthxheight) [mm] Plasticine Objects (lengthxheight) [mm]

1 10.0 x 5.0 19 x 9

2 10.0 x 2.5 17 x 8

3 8.0 x 4.0 14 x 10

4 8.0 x 2.0 14 x 8

5 6.0 x 3.0 12 x 8

6 5.0 x 2.5 11 x 11

7 4.0 x 2.0 11 x 5

8 - 6 x 5

Table 3.1: Dimensions of the phantom objects; of all lucite objects two specimens were
used.

The phantom consisted of a lucite cylinder into which fabricated polyps were inserted.
At first, the phantom contained 10 hemispherical lucite objects of various sizes, and 4
objects with reduced height (2 mm) in order to mimic flat lesions. Subsequently, 8
asymmetric objects from plasticine were inserted in the phantom (maximum width 6-19
mm). The size of all objects (see Table 3.1) was measured by sliding calipers. The
phantom was placed in a cylinder, 34 cm in diameter that was filled with water to arrive
at a signal to noise ratio comparable to that in patient data.The two phantoms with
lucite and plasticine polyps respectively were scanned twice: in the axial plane of the
cylinder, and an orthogonal plane (see Figure 3.5).

The size of all objects was measured in the CT scans by two radiologists and by our au-
tomated method. The radiologists measured the objects in multiplanar reformatted CT
images. Each object was measured twice, along the main axes as perceived by the physi-
cian. The largest value was taken as the polyp size. The automatic measurements were
done as described previously. For that purpose, an arbitrary seed point was manually
indicated somewhere on the polyp surface.

Inter-observer variability of the radiologists. Figure 3.4a,b contains the graphs dis-
playing the measurements of one radiologist against those of the other. Clearly, radi-
ologist A tends to measure larger diameters compared to radiologist B. The average
difference of their measurements was 1.2mm for the lucite objects and 3.1mm for the
plasticine objects. The standard deviation of the absolutedifference was 0.7mm for the
lucite objects and 2.7mm for the plasticine objects.

Intra-observer variability of the radiologists and the automatic method. The intra-
observer variability is assessed by the difference in size measured in the axial scan
versus the measurement on the same object in the orthogonal scan. It must be conceded
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Inter-observer variability in polyp size for lucite (a) and plasticine (b) ob-
jects. Intra-observer variability in polyp size for lucite(c) and plasticine
(d) objects. Accuracy and precision of size measurement forlucite (e) and
plasticine (f) objects. 25
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(a) (b)

(c) (d)

Figure 3.5: Single slice from each scan. From a-d: lucite polyps axially, plasticine
polyps axially, plasticine polyps orthogonally and lucitepolyps orthogo-
nally.

that this involves two different scans of the same object. Weassume, however, that it
allows for a good approximation of the intra-observer variability.

Figure 3.4c,d shows the measurements of the observers in onescan versus the mea-
surement in the other. Apparently, neither the radiologists nor the automatic method
shows a bias. The average absolute difference between the two measurements on the
lucite objects was 1.0mm and 0.8mm for the two radiologists and 0.5mm for the au-
tomatic technique. The standard deviation of the absolute difference was 0.9, 1.0 and
0.5mm respectively. For the plasticine objects the averageabsolute differences were
2.6, 3.2 and 1.1mm and the standard deviations 2.2, 2.1 and 1.1mm respectively.

Accuracy and precision. The accuracy and precision of the observers is defined by
comparison to sliding calipers (see Figure 3.4e,f). The measurements of both radiol-
ogists appear to be slightly biased. This can be explained bythe procedure of always
selecting the larger of two measurements as the size of the polyp. The bias in the au-
tomatic method is less pronounced, but not completely absent. It can be explained by
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Lucite Plasticine

mean diff. [mm] std. dev. [mm] mean diff. [mm] std. dev. [mm]

Rad. A 1.6 0.9 7 5

Rad. B 0.8 1.0 4 5

Automatic -0.2 1.2 -1 1.2

Table 3.2: Mean difference and standard deviation of difference between observers and
sliding calipers measurements for the lucite objects and the plasticine objects.

notifying that all points (except due to noise) on a segmented hemispherical polyp sur-
face are projected inside a circle with the diameter of the polyp. An ellipse fitted through
the contour points yields a small underestimation of the true size. Clearly, one might
correct for all these biases in a calibration step. Specifically noticeable, is the higher
precision of the automatic method on the plasticine objects, indicated by the smaller
spread of values around the line of identity.

As shown in table 3.2, the automatic method shows a smaller systematic error than
the radiologists. There is no significant difference in the precision (std. dev.) for the
(symmetric) lucite objects between the automatic system and the radiologists. However,
for the irregular plasticine objects the precision of the automatic system remains the
same, whereas the precision of the radiologists decreases significantly.3.4 Con
lusions & future work
The size of a colonographically detected polyp is importantfor diagnosis and decision
making. The size measurement by human observers is generally considered to be impre-
cise and inaccurate. In this paper we presented a method for the automatic segmentation
of polyp-like structures. The polyp size was automaticallyderived from the segmenta-
tion result. It was shown that our algorithm yields a smallerbias than the measurements
from radiologists: on average 1mm or less for the automatic method and between 1 and
7mm for the radiologists, depending on the irregularity of the object. Even more impor-
tant, the algorithm is consistent irrespective of the polypshape. As opposed to that, the
radiologists show a four times larger variation for the irregularly shaped objects. It is
this irregularity which occurs in practice.

A good polyp segmentation algorithm is also useful for automatic polyp detection
algorithms. It allows for extraction of features such as volume, surface area, average
grey-value etcetera. Such features may improve the specificity of CAD algorithms.
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4 Dete
tion of protrusions on
urved folded surfa
es appliedto automated dete
tion in CT
olonography
In this chapter a new method is proposed for the detection of polyp candidate sites
on the colon surface. It is based on the notion that polyp tissue growth introduces a
local deformation of the colon surface. The method estimates the original ’undeformed’
surface position by solving a nonlinear partial differential equation. Candidate sites are
obtained by comparing the two surfaces. The method is assessed by a supervised clas-
sification, based on features obtained from the deformationfield and the grey level CT
image.

Published as:

C. van Wijk, V.F. van Ravesteijn, F.M. Vos, R. Truyen, A.H. deVries, J. Stoker, L.J. van Vliet,
Detection of protrusions in curved folded surfaces appliedto automated polyp detection in CT

colonography, MICCAI 2006 [130]
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CHAPTER 4. DETECTION OF PROTRUSIONS ON CURVED FOLDED
SURFACES APPLIED TO AUTOMATED DETECTION IN CT COLONOGRAPHY4.1 Introdu
tion
CT colonography is a modern, noninvasive method to inspect the large bowel. It enables
to screen for colorectal polyps by way of images rendered from an endoluminal perspec-
tive. Polyps are well-known precursors to colon cancer. Thesize of a detected polyp
is an important indication for diagnosis and decision making. It is generally accepted
that polyps with a diameter smaller than 5mm require no direct further action, whereas
polyps larger than 10mm should be removed. The policy with patients harboring polyps
with a size between 5mm and 10mm is to have a follow-up CT-scanseveral years later.

Unfortunately, current colonographic visualization techniques are still rather time
consuming. More important, large polyps are sometimes missed. Therefore, meth-
ods have been proposed to support the inspection by way of computer aided diagnosis
(CAD). A large number of such schemes are proposed in the literature [2,36,47,60,79,
103, 107, 140]. Like most CAD systems, automated polyp detection usually consist of
three basic steps: (1) segmentation of the colon wall; (2) candidate generation and (3)
supervised pattern recognition.

A good approximation to the true colon wall (defining the region of interest) is ob-
tained rather easily due to the large contrast between tissue and air/CO2 inside the colon.
However, partial volume effects may affect the image intensity at thin colonic folds.
Still, most techniques use a thresholding at a fixed value of around -650 Hu.

Finding candidate objects on the colon surface is a much morechallenging task. Sum-
mers et al. [103, 104, 107] propose to use methods from differential geometry. In [104]
a triangle mesh is extracted from 3D CT data after which principal curvatures were
computed by fitting a 4th order b-spline to local neighborhoods with a 5 mm radius.
Candidates were generated by selecting regions with a positive1 mean curvature.

Yoshida et al. [140, 141] use the shape index and curvedness to find candidate ob-
jects on the colon wall. The shape index and curvedness are functions of the principal
curvaturesκ1 andκ2:

SI =
1
2
− 1

π
arctan(

κ1+κ2

κ1−κ2
) and CV=

√

κ2
1 +κ2

2

2
(4.1)

and are computed using a Gaussian-shaped window (aperture).
Alternatively, Kiss et al. [58] generate candidates by searching for convex regions

on the colon wall. Their method fits a sphere to the surface normal field. The side
on which the center of the fitted sphere is found (in tissue or in air) determines the
classification of the surface as convex or concave. Roughly 90% of the colon wall is
classified as concave, that is as ’normal’. To the remaining part of the colon surface a
generalized Hough transformation is applied using a spherical model. Candidate objects

1Throughout this paper we assume that the surface normal is pointing into the colon.
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are generated by finding local maxima in the parameter space created by the Hough
transformation.

Simply selecting regions on the colon that protrude inwardsyield too many candi-
dates. Therefore, thresholds on mean curvature, principalcurvatures, sphericity ratio
and/or shape index are used as restrictive criteria. Unfortunately, their values are sen-
sitive to e.g. the CT image noise level and the size of the local neighborhood used to
compute them. Generally, the thresholds are set conservative in order not to harm the
sensitivity.

All of the above CAD schemes are based on the modelling of an approximately spher-
ical polypoid shape, although, many polyps are often far from symmetric, let alone
spherical. Therefore, the candidate generation step of these schemes is characterized by
low specificity and much effort is needed to improve specificity while preserving a high
sensitivity.

The problems associated with modelling polyps as sphericalprotrusions are presented
in figure 4.1. It shows the(κ1, κ2)-space. The horizontal axis shows the first principal
curvature,κ1. The vertical axis shows the second principal curvature,κ2. Since the
first principal curvature is by definition larger than or equal to the second (κ1 ≥ κ2) all
convex points on the colon lie inside the region given byκ2 > 0 andκ1 ≥ κ2. Points
on perfectly spherical protrusions lie on the lineκ1 = κ2 (SI = 1). On the other hand,
perfect cylindrical folds lie on the lineκ2 = 0 (SI = 0.75).

Objects with a larger radius yield smaller principal curvature values and therefore
show up closer to the origin. Additionally larger polyps tend to be more asymmetric and
therefore more fold-like when described by the shape index.Both large and small polyps
are found close to the borders defined by the thresholds onSI andCV as indicated in
figure 4.1. As a consequence the criteria used to limit the number of candidate detections
are at least as stringent for the larger polyps as for the smaller ones. Notice that this
behavior is in conflict with clinical decision making, whichdictates that large polyps
are more important than smaller ones, since the former have alarger probability to
develop into colon cancer.

To comply with clinical practice, one needs a candidate generation step steered by
parameters that directly reflect polyp size, such that variations in thresholds only affect
the CAD system’s sensitivity for small polyps.

In this paper, we introduce a method to estimate the physiological, background shape
of the colon wall. Polyp candidates are detected as a local deviation from the back-
ground. Our method locally flattens/deforms the colon wall in order to ’remove’ the
protrusions. The amount of displacement needed for this deformation is used as a mea-
sure of ’protrudness’ of the underlying lesion. Regions where this measure has a high
value are considered as candidate polyps, after which the protrusion measure together
with a few additional features is used in supervised patternrecognition.
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Figure 4.1: Left: the four thick lines enclose a region in the(κ1, κ2)-space. The curved
lines represent thresholds on the curvedness, while the straight lines enclose
the region given by 0.9 < SI ≤ 1. The center image shows theκ1 andκ2

values as measured on candidate objects. (See results section) The light
grey objects are false positives. The circles are TP that have a largest shape
index of at least 0.9. The black squares represent TP as well but have a
largest shape index smaller than 0.9. The right image shows atypical polyp
shape.4.2 Methods

A typical polypoid shape is shown in Figure 4.1(right). Suppose that the points on
convex parts of the polyp (the polyp head) are iteratively moved inwards. In effect this
will ’flatten’ the object. At a certain amount of deformationthe surface flattening is
such that the complete protrusion is removed. That is, the surface looks like as if the
object was never there. This is the key concept on which the method is based.

A more formal presentation follows from the description of the surface shape using
the principal curvatures. Protrusions are defined as those regions on the surface where
the second principal curvature is larger than zero (This implies of course that the first
and largest principal curvature is larger than zero as well).

The method then deforms the surface until the second principal curvature is smaller
or equal to zero. Clearly, this will only affect structures that are curved in two directions
like polyps and will not deform curved structures like folds. Folds typically bend in one
direction only and have a first principal curvature larger than zero and a second principal
curvature around zero.

Figure 4.1 illustrates how polyps modelled as spherical mounds are found near the
line κ1 = κ2 with κ2 > 0. From here on we drop the spherical model and note that polyp
’heads’ are characterized by aκ2 > 0. Consequently all regions on the colon wall where
κ2 > 0 are considered as candidate objects.

The requirementκ2 > 0 is less strict than used in most other state of the art systems,
which put restrictions on the curvature values. For exampleby limiting the allowed
shape index values to:SI > 0.8. One might argue that this will lead to many more
candidates. This is unarguably true. We will show, however,that the proposed method
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does not require any thresholds other thanκ2 > 0. Moreover, the deformation method
described below leads to a quantitative measure of the polypprotrudness and therefore
permits ordering of the generated candidate objects in a wayintuitive to the radiologist.
In effect this will reduce the number of candidates that are passed to the classification.4.2.1 Surfa
e evolution
The method employs surface evolution on triangle meshes [24]. The triangle mesh is
generated by the marching cubes algorithm applied to the 3D CT data using a threshold
of -750 Hu. A typical mesh size consist of around 106 vertices.

In [24] a method was presented to rapidly remove rough features (noise) from irreg-
ularly triangulated data. It was based on the diffusion equation:

∂Xi

∂ t
= λL(Xi), with L(Xi) = (

1
N1

∑
j∈1ring

Xj)−Xi (4.2)

whereL(Xi) is a discrete (1-ring) estimate of the Laplacian at vertexi. X are the po-
sitions of the mesh points,N1 is the number of vertices in the 1-ring neighborhood of
vertexXi andλ is the diffusion coefficient. The solution at timet was found using a
backward Euler method which translated the problem into a matrix-vector equation

(I −λdtL) X̄t+1 = X̄t (4.3)

The matrixM = I − λdtL is sparse and its structure is given by the mesh one-ring
relations,X̄ is a vector containing all mesh points andI is the identity matrix. This
system can be solved efficiently using the bi-conjugate gradient method [91].

In [24] the diffusion was applied to all mesh points. A well known effect of prolonged
diffusion on the complete mesh is global mesh shrinking and in [24] a solution was
proposed by compensating for the reduction of the mesh volume.

We, however, apply the diffusion only to a limited number of mesh points, namely the
points whereκ2 > 0. The majority of points have negative or zero second principal cur-
vature and remain at their original position. They provide the boundary conditions for
the other points. Therefore, in contrast to the method suggested in [24] global shrinking
is not an issue and we can search for the steady state solutionof the diffusion equation:

∂Xi

∂ t
= L(Xi) = 0 (4.4)

The discrete Laplacian estimates the new position of vertexXi by a linear combination
of its 1-ring neighbors,Xj . Rewriting equation 4.4 then yields a matrix-vector equation:

(
1
N1

∑
j∈1ringi

Xj)−Xi = M X̄ = 0 (4.5)
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Fortunately,M is sparse and its structure is given by the 1-ring mesh relations. The
number of non-zero elements on each row equals the number of 1-ring member vertices.
Like the backward Euler formulation this equation can also be solved efficiently using
the bi-conjugate gradient method [91].

It is well known that the solution to the Laplace equation minimizes the membrane
energy subject to the imposed boundary conditions. However, our objective is not to
minimize the mean curvature, but to minimize the second principal curvature. There-
fore, we extend the above equation by introducing a ’force’ term. The resulting equation
is a Poisson equation:

L(X̄) = F̄(κ2) (4.6)

This equation reads as follows: the new positions of the meshpoints are found by
initially moving each mesh vertex to a position as prescribed by the Laplacian operator.
Subsequently, the term on the right hand side ’pushes back’ the point such that the
resulting second principal curvature is zero.

The force termF̄ is designed to depend onκ2 and is updated after solving equation
4.6. In other words we solve (4.6) iteratively. The force term is initialized withL̄(X)
such that we start with:

F̄ t=0 = L(X̄) (4.7)

Thus, the ’force field’F̄ initially balances the displacement prescribed by the Laplacian
and leaves the mesh unaltered. After each iterationF̄ is updated with:

F̄ t+1 = F̄t −κ t
2
A1ring

2π
n̄ (4.8)

whereA1ring is the surface area of the 1-ring neighborhood and ¯n is the vertex normal.
The last term can be interpreted as a correction term. Note that if κ2 is positive‖F̄‖
should be relaxed. On the other hand, the magnitude of the reduction term additionally
depends on the sampling density of the mesh. If the sampling is dense andA1−ring small
the magnitude of the correction term should be small. Sinceκ2 equals the reciprocal
of the radius of the surface tangent circle (R= 1

κ2
) in κ2-direction, the term2π

κ2
2

is half

of the area of the fitting sphere. Therefore, the displacement R needed to remove the
curvature in second principal direction is normalized by the ratio of these two areas.
The estimated displacement is given by:

dest = R
A1ring

2π/κ2
2

= κ2
A1ring

2π
(4.9)

The resulting displacement of the mesh points yields a deformed mesh which is an
estimate of how the colon wall looks like in the absence of protrusions. The amount of
displacement of each mesh point (e.g. in millimeters) is a quantitative measure of the
’protrudness’. Candidate objects are generated by applying a threshold on the displace-
ment field.
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4.3. RESULTS4.3 Results
The performance of the method was tested using clinical datafrom a large, previous
study [123]. Automatic polyp detection was executed in three steps: (1) segmentation
of the colon wall via the marching cubes algorithm; (2) candidate generation using
protrudness; (3) supervised pattern recognition involving a linear classifier and only a
few features.4.3.1 Experimental data
A total of 249 consecutive patients at increased risk for colorectal cancer were in-
cluded in a previous study [123]. These patients underwent CT colonography before
colonoscopy, which served as the gold standard. All patients were scanned in both
prone and supine position. The size of a polyp identified during CT colonography was
measured in reformatted images, in which the largest polyp diameter was selected for
size measurement. Polyp size was also measured during colonoscopy by comparison
with an open biopsy forceps of known size. The colonoscopy findings were matched
with the CT data. 13 patients were selected that contain 1/3 of the polyps larger than 5
mm from the complete study. This yielded 64 polyps larger than 5 mm. 34 of 64 polyps
could be identified in both the prone and the supine CT scan and30 were identified on
either scan but not on the other. Consequently, there were 98example objects in total.

Figure 4.4 (left) shows a histogram of the CT size-measurements. The majority of
objects have a size between 5 and 7 mm. 42 are smaller than 5 mm and are considered
as clinically unimportant. 28 are in the range [5,6]mm, 63 are in the range (6,10]mm
and 32 are larger than 10mm.4.3.2 Candidate generation
A typical result is given in figure 4.2. It shows three renderings of the colon wall surface.
In the left picture an isosurface volume rendering of a 7 mm large polyp is shown. The
polyp is situated on a folded colon structure. The middle picture shows the deformed
mesh (visualized by a mesh rendering). The protrusion is ’removed’, demonstrating how
the colon may have looked like in the absence of the polyp. Theright image shows the
original mesh with the segmentation obtained by thresholding the protrusion measure at
a value of 0.1mm

An other example is presented in figure 4.3. The left picture shows an isosurface
volume rendering. In the center of the picture a large (14mm)non-spherical polyp is
situated between two folds. The middle picture shows the segmentation as obtained
by hysteresis thresholding the shape index using values 0.8and 0.9 and curvedness
values in the range: 0.05<CV<0.25. The same thresholds wereused in [141] to generate
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Figure 4.2: Example of the deformation applied to a polyp on afold. Left: the orig-
inal colon surface with a polyp on a fold (isosurface volume rendering).
Middle: the deformed surface mesh with the polyp ’removed’ (mesh ren-
dering). Right: the obtained segmentation by thresholdingthe displacement
field (mesh rendering).

candidate objects. The shape index and curvedness were computed by fitting a 2nd order
polynomial to the mesh using a local neighborhood with 5mm radius.

Due to the irregularity of the protrusion several segments of the polyp have been
found. The right picture shows the segmentation as a result of thresholding the protru-
sion measure (value 0.1mm). A more coherent segmentation has been obtained.

Our method applied to the 13 patients yielded 1578 candidateobjects (including the
true positives), which is±60 per dataset. A total of 3 polyps (between 5mm and 6mm)
were missed in the candidate generation step. In contrast, if a threshold of 0.9 on the
shape index was used to segmented candidates a total of 16 polyps would have been
missed. (See figure 4.1 (middle)). From the segmented candidates the vertex with
largest shape index value was found. For this vertex theκ1 andκ2 values are plotted in
figure 4.1 (middle). This plot does not include the 3 missed polyps.4.3.3 CAD performan
e
The candidate generation step was used as an input to supervised pattern recognition.
In figure 4.4 we show ROC curves based on a linear classifier applied to four features:
the maximum protrusion found on a candidate object; the sizeof the object measured
as proposed in [26]; volume, obtained from the enclosed volume between the original
mesh and the deformed mesh and the percentage of SI values forthe vertices on the
segmented surface patch, that is within the range of 0.65< SI < 0.85. The latter value
is expected to attain high values on folded structures.

Three lines in figure 4.4 (right) show the performance of the system for different size
classes. The data was generated in a leave-one-patient out manner.

The large polyps (>10mm) are found with 100% sensitivity at aFP rate of 13 per

36



4.4. CONCLUSIONS

Figure 4.3: Segmentation of irregular objects. Left: isosurface volume rendering; Mid-
dle: segmentation obtained by hysteresis thresholding on the shape index;
Right: segmentation obtained by thresholding the protrusion measure.

dataset and 90% sensitivity at 2 FP per dataset. The ROC for polyps larger than 6 mm
(including those larger than 10mm) show that 80% sensitivity is obtained at the cost of
4 FP per dataset. A 95% sensitivity is obtained at the cost of 10 FP per dataset. The
results for polyps larger than 5mm are similar to the resultsfor polyps larger than 6mm.
However, 100% sensitivity is not reached. This is due to the fact that in the candidate
generation step 3 polyps between 5mm and 6mm have been missed.

The plots in figure 4.4 demonstrate that the specificity of theCAD system is even
higher if the sole purpose of the system is for diagnostic purposes only, namely to de-
cide whether a patient has or has not any polyps. The left plotshows how many false
positives have been assigned a higher posterior probability than the first large polyp
(>=10mm). It follows that for 7 out of 13 patients the first object is a polyp. For one
patient three false positives have a higher posterior probability than the first polyp. Note
that the total number of patients is 11 (and not 13). This is due to the fact that 2 pa-
tients did not have polyps larger than 10mm. The right plot shows the number of false
positives with a higher posterior probability than any of the polyps larger than 6mm (in-
cluding those larger than 10mm). Note that including the smaller polyps improves the
results. Apparently some of the small polyps are assigned a higher posterior probability
than the large ones.4.4 Con
lusions
We have presented a method to detect protruding objects on curved surfaces. It was used
to generate candidate objects for automated polyp detection. The method works by lo-
cally flattening the colon wall in order to ’remove’ protrusions. Actually, the colon
surface is deformed until the second principal curvature issmaller than or equal to
zero. Therefore, only those structures are affected that are curved in two directions,
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Figure 4.4: Left two: Polyp size distribution (left) and ROCcurve for the supervised
pattern recognition based on protrusion plus three additional features (right).
Right two: Histogram of the number of false positives per patient presented
to an expert before a true positive polyp is found (ordering by the posterior
probabilities). The left picture shows the number of FP before a polyp larger
than 10mm is considered (if there is one in the dataset). For 7patients the
first object presented is a large polyp. For one patient 3 FP are presented
before a large TP is presented. The right plot shows the the number of FP
before a polyp larger than 5 mm is encountered.
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like polyps. Folds remain unaltered. The amount of displacement needed for flatten-
ing/deformation is used as a measure of ’protrudness’ of theobject.

A threshold on the deformation field is the only parameter needed for candidate gen-
eration. This is a clear advantage over methods that involvemany restriction criteria.
Another advantage is that the deformation field immediatelyallows for the computation
of additional features such as the object’s volume.

We have shown that a simple linear classifier involving only four features already
yields 95% sensitivity at the cost of about 10 FP per dataset.

Clearly, the algorithm must be extensively tested. We do realize an investigation on
more data involving more complex classifiers is needed to be conclusive on the overall
improvement of polyp detection. However, the current results give an indication that the
protrusion measure may enhance polyp detection schemes.
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Today’s computer aided detection (CAD) systems for CT colonography (CTC) enable
automated detection and segmentation of colorectal polyps. We present a paradigm shift
by proposing a method that measures the amount of protrudedness of a candidate object
in a scale adaptive fashion. One of the main results is that the performance of the candi-
date detection depends only on one parameter, the amount of protrusion. Additionally
the method yields correct polyp segmentation without the need of an additional segmen-
tation step. The supervised pattern recognition involves aclear distinction between size
related features and features related to shape or intensity. A Mahalanobis transforma-
tion of the latter facilitates ranking of the objects using alogistic classifier. We evaluate
two implementations of the method on 84 patients with a totalof 57 polyps larger than
or equal to 6 mm. We obtained a performance of 95% sensitivityat 4 false positives per
scan for polyps larger than or equal to 6 mm.

Accepted for publication:
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Colonic Polyps on Implicit Isosurfaces by Second PrincipalCurvature Flow, IEEE-TMI
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CHAPTER 5. DETECTION AND SEGMENTATION OF COLONIC POLYPS ON
IMPLICIT ISOSURFACES BY SECOND PRINCIPAL CURVATURE FLOW5.1 Introdu
tion

Protrusions of a surface embedded in a 3D image are difficult to detect. The challenge
increases even further if the surface itself is highly structured and interacts with the
protruding elements. Such a problem is the detection of polyps in CT colonography
(CTC), a minimal invasive technique for examining the colonsurface (cf. Fig. 5.1).
There is an increasing interest in computer aided detection(CAD) systems for polyp
detection in CTC data to assist the radiologist [21,58,62,78,105,112,133]. Such a CAD
system typically consists of three consecutive steps: colon segmentation; detection of
polyp candidates; and supervised classification of candidates as polyps or non-polyps
[51,138].

Adenomatous polyps are important precursors to colon cancer and develop due to
genetic mutations in the mucosa cells [17]. This process of oncogenesis leads to en-
hanced cell proliferation causing the polyp to grow and to evolve from a small adenoma
into a large adenoma into a carcinoma. This induces a morphological change to the
colon surface1, that manifests itself as tissue protruding into the lumen.The deforma-
tion is an important property which is used in the detection by radiologists as well as
gastroenterologists.

Practically all CAD systems for polyp detection analyze thelocal curvature of the
colon surface, which is subsequently used to compute shape descriptors such as shape
index or curvedness [103, 141]. Computation of the curvature values is typically done
in ’one shot’ on a single predetermined scale, which is defined as the effective size of
the area over which the image features are calculated. We will maintain this definition
throughout the paper.

We propose a new paradigm for the detection and segmentationof polyps that ef-
fectively copes with the highly structured environment. The novelty of the approach is
in computing an intensity change field, which removes protruding elements from the
underlying data, while leaving the highly structured foldsintact. The deformation algo-
rithm is described by a partial differential equation (PDE)that is steered by the second
principal curvature.

In order to demonstrate the efficiency of the method, we make use of a pattern recog-
nition system introduced by us in [125]. The paper involved polyp detection based on
the explicit representation of the colon surface. The method proved to generalize well
and lead to satisfying results. It encouraged us to further investigate the candidate de-
tection system. Presently, we propose a technique based on an implicit representation of
the colon surface, which enables a number of improvements over the explicit model. A
concise description of the classifier is contained, since itis only indirectly related to the
paper’s main objective. This allows us to fully go into all facets associated with second

1Not all colonic lesions grow into protruding polyps. It is estimated that approximately 10% of the
lesions are so-called flat adenomas [?, 38].
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(a) (b)

Figure 5.1: Isosurface renderings (at -650 HU) of the colon surface showing typical
polyps in their structured surroundings.

principal curvature flow.5.1.1 Previous work
For the detection of candidate regions, Summers et al. [103]proposed to use the mean
and Gaussian curvature. They were computed by methods from differential geometry,
by fitting a 4th order b-spline to local 5 mm radius neighborhoods of a triangulated
isosurface [104]. Candidates were generated by selecting arange of mean and Gaussian
curvature values. Additionally, a large number of other shape criteria were used ([137]:
Table 2), to limit the number of false positive detections. Similarly, Yoshida et al. [141]
used the shape index and curvedness to find candidate objectson the colon surface.
The shape indexSI and curvednessCV are functions of the principal curvatures of the
surface:

SI =
1
2
− 1

π
arctan(

κ1+κ2

κ1−κ2
),

CV =

√

κ2
1 +κ2

2

2
, (5.1)

with κ1 andκ2 the maximum and minimum principal curvature respectively.A Gaussian-
shaped window (aperture) of fixed size was used to compute thecurvatures from the 3D
CT data.

Alternatively, Kiss et al. [58] proposed to use a sphere fitting method to generate
candidates. The colon surface was classified as convex depending on the side on which
the center of the fitted sphere was found, either in tissue or in air. This method classifies
roughly 90% of the colon surface as concave, that is as ’normal’. To the remaining part
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of the colon surface a generalized Hough transformation wasapplied using a spherical
model. Candidate objects were generated by finding local maxima in the parameter
space created by the Hough transformation.

Konukoglu et al. [62, 63] proposed a method that is in some sense the inverse of the
approach that is proposed in the current paper. Effectively, a wall evolution algorithm
is described based on a level-set formulation that regularizes and enhances polyps as a
preprocessing step to CTC CAD algorithms. The underlying idea is to evolve the polyps
towards spherical protrusions on the colon wall while keeping other structures, such as
haustral folds, relatively unchanged. Thereby, the performance of CTC CAD algorithms
is potentially improved, especially for smaller polyps.

Conventionally, the shape-based candidate detection methods [37, 62, 78, 82, 103,
141] apply several conservative thresholds to the mean curvature, principal curvatures,
sphericity ratio and/or shape index to generate candidate regions.5.1.2 Problem de�nition
We identify a number of challenges that are associated with the detection of polyp can-
didates. First, optimization of the parameters is always complicated by the limited avail-
ability of training examples. This may lead to overtrainingfor a specific patient popula-
tion, patient preparation, scanning hardware or scanning protocol. Thus, it is preferred
to keep the number of restrictive criteria to a minimum.

Second, to achieve good discrimination power and accurate measurement [127] of
lesion size, precise ’delineation’ (or segmentation) of the candidate is needed. Although
a number of methods are available for segmentation purposes[1, 26, 137], adding such
a separate step would introduce more parameters to the CAD pipeline and should be
avoided. Fuzzy segmentation methods using sophisticated pattern recognition tech-
niques might preclude this problem.

A third challenge is associated with the computation of the first and second order
derivatives, which are needed to compute the principal curvatures and to characterize
local shape. The derivative operators must act on a range of sizes and should not have
optimal performance for a specific size only. Ideally, the scale should adapt to the
underlying image structure. To our knowledge no research has been performed to either
analyze the effect of scale or to determine the optimal scalefor polyp detection. It is
partly addressed in [111] by performing the curvature computation on a high resolution
triangulated isosurface mesh thereby limiting the low passfiltering across the isosurface.
Furthermore, some research on scale selection for CTC in general has been performed
in [27,66].

Last, detecting large polyps is (clinically) more important than detecting smaller ones.
One would like to have this built into the CAD system. In otherwords, the detection
method must perform optimal for large polyps.
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A steadily growing number of papers ([18, 40, 84, 105, 108, 115, 141]) report on the
performance of specific polyp detection algorithms. Unfortunately, a proper comparison
of algorithms is complex due to differences in prevalence, patient preparation, scanning
protocol, and determination of the ground truth.

We aim to convey some general requirements for polyp detection systems:

1. It should not involve many parameters which need to be tuned in the presence of
a limited number of polyps;

2. A separate segmentation step should be avoided when it adds more parameters;

3. It must be able to cope with the whole range of polyp sizes encountered in prac-
tice,;

4. It should take into account the increased clinical relevance of larger polyps;

5. It should be robust to variations in the imaging process (e.g. radiation dose, but
also scan resolution, orientation and patient preparation)5.1.3 Obje
tive

We aim to introduce a new paradigm for the detection of protruding regions on highly
structured surfaces embedded in a 3D image. Polyps are assumed to have introduced a
deformation to the originally healthy colon surface. We will describe a novel method to
reconstruct the data without these protrusions. Effectively, the technique aims to ‘undo’
the deformation by modifying the underlying intensities sothat the protruding shape is
no longer there.

The proposed method does not require any assumptions on the lesion shape such as
axial-symmetry, sphericity or lesion size, other than thatit protrudes. It works well for
highly irregular protruding objects. Lesion candidates are generated using only a single
threshold. Small variations of the threshold affect the detection sensitivity of the smaller
polyps first. Additionally, the resulting segmentations include the complete object (both
head and neck).

In earlier work [130] we proposed a scheme that operated on anexplicit representa-
tion of the colon surface, which was obtained by a triangulation of the isosurface at -
650 HU. Only information of this particular isophote was used to estimate the structured
surface without the protrusions. Possible beneficial information from other isophotes,
with higher or lower intensities, was ignored. The scheme proposed in this paper differs
fundamentally by acting on an implicit representation of the colon surface. That is, it
uses information from other isophotes as well. Consequently, there is no need for op-
timizing the intensity level of the isosurface. Another advantage of this method is that
topological complexities and complex mesh processing tasks, such as mesh generation
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and mesh smoothing, are avoided. We will compare both methods and demonstrate
that the two techniques are to some extent complementary. Moreover, exploiting the
complementary aspects will be shown to lead to improved sensitivity.5.2 Methodology5.2.1 Materials
A total of 84 patients with an increased risk for colorectal cancer were consecutively in-
cluded in a previous study [122]. All data were acquired using a Mx8000 multislice CT
scanner (Philips Healthcare, Best, The Netherlands) usingthe same scanning protocol
for all scans (120 kV, 100 mAs, 4x2.5 mm collimation, pitch 1.25, standard reconstruc-
tion filter). Slice thickness was 3.2 mm. All patients adhered to an extensive laxa-
tive regime without taking a tagging agent with their diet. All patients underwent CT
colonography before colonoscopy. The patients were scanned in both prone and supine
position; thus, a total of 168 scans were used in our study. The findings of colonoscopy
served as the golden standard. Polyp size was also measured during colonoscopy by
comparison with an open biopsy forceps of known size. A research fellow annotated
the location of polyps in all CT scans. For the 84 patients, 108 polyps were annotated.
The number of polyps with a size larger than or equal to 6 mm was57 and the number of
polyps larger than or equal to 10 mm was 32. Fig. 5.2 shows a histogram of the optical
colonoscopy size-measurements. Conventionally, polyps which are smaller than 6 mm
are considered clinically unimportant. Therefore, they were not used in the performance
analysis. The peak at 10 mm polyp size is caused by the fact that in clinical practice
only a few bins are used: smaller than 6 mm, between 6 and 10 mm and larger than or
equal to 10 mm.

Experts labelled the polyps in CT data based on the optical colonoscopy findings
without using CAD. A candidate generated by the CAD system was labelled as a true
positive if an annotation was within 5 mm from any of the voxels in the candidate and
was not closer to any other candidate. A margin of 5 mm was usedto accommodate
inaccurate localization by the expert. Especially for the explicit method, such a margin
is needed to accommodate annotation inside the polyp. To be able to make a proper
comparison between the two methods, the same margin is used for both techniques.5.2.2 Method
A typical polypoid shape is shown in Fig. 5.3(a). Suppose that the points on the convex
region of the polyp (the polyp head) are iteratively moved inwards. In effect this process
will ‘flatten’ the object (Fig. 5.3(c)). Note that the convexregion expands during the
process and will ultimately include the polyp neck as well. After a certain amount of
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Figure 5.2: Distribution of sizes obtained during colonoscopy of 57 polyps larger than
or equal to 6 mm in 84 patients from a previous study [122]. Onepolyp of
45 mm is not visible in the histogram.

deformation, the surface flattening is such that the protrusion is completely removed.
That is, the surface looks like as if the object was never there. This is the key concept
on which the method is based.

Before formalizing on the operator we first have a closer lookat the second order dif-
ferential properties of the implicit surface embedded in a three-dimensional voxel space.
The colon can be considered as a long elongated structured tube. For a perfect cylinder
shape the principal curvatures are smaller than or equal to zero everywhere. However,
the colon contains many folds, i.e. structures which are bended only in one direction:
the first principal curvature is larger than zero, whereas, the second principal curvature
is close to zero. Protruding objects, such as polyps, have positive values for the first and
second principal curvature. Therefore, an operator is designed to affect only on points
with a positive second principal curvature and in such a way that the second principal
curvature decreases. Repeated application of the operatorwill eventually yield an image
where the second principal curvature is smaller than or equal to zero everywhere.

Consider once more the schematic representation of a polyp in Fig. 5.3(a). The dis-
tinction between the head (κ1 > 0, κ2 > 0) and neck (κ1 > 0, κ2 ≤ 0) regions of the
object is made by the sign of the second principal curvature.On the line connecting
the inflection points A and B in the figure (separating the regions ’head’ and ’neck’) the
Gaussian curvature is zero. The proposed method initially adapts the head region only.
It will now be demonstrated that such adaptation leads to an expansion of this region.

To that end, Fig. 5.3(b) shows a planar cross section throughA, spanned by the lo-
cal gradient vector and the direction of the second principal curvature. Let us merely
consider the curve emanating from this cross section. The steepness of this curve cor-
responds to its first derivative; the curvature correspondsto its second derivative and is
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’head’

’neck’

κ1,κ2 > 0

κ1 > 0,κ2 ≤ 0
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(a)

A
f (x+dx)− f (x)

y= f (x)
dx

(b) (c)

Figure 5.3: Schematic illustration of the deformation process. (a) Three regions (head,
neck and periphery) are distinguished. (b) The second principal curvature
κ2 is zero at the border between the head and neck region. (c) Thehead
region expands during the deformation process.

given by:

κ = − ∆y
|∇y| , (5.2)

in which ∆y represents the second derivative of the curve. By convention κ has a sign
opposite to that of the second derivative. Observe that thiscurvature is positive on the
’head’ side from A and negative on the ’neck’ side from A; the curvature equals zero in
A. At the position of A the second derivative is:

∆y =
d2 f
dx2 = lim

dx→0

f (x+dx)− f (x)
dx − f (x)− f (x−dx)

dx

dx
= 0. (5.3)

A reduction of the protrusion in the head region implies thatthe value off (x+dx) in
(5.3) is lowered. Consequently, the second derivative in A (∆y) becomes negative, and
the curvature (κ) positive. Thus, the zero crossing of the second derivativewill shift
outwards in Fig. 5.3(b) and the head region will expand into the neck region.

The effect of repeatedly reducing the protrusion is illustrated in Fig. 5.3(c). The
points with zero second principal curvature shift from A1 to A4 and B1 to B4. Even-
tually, the protrusion is flattened over the complete shape,i.e. both the head and neck
regions. Although the initial delineation of the head region of the structure (in which
the deformation is started) may be affected by noise, the area of operation eventually
spreads to the entire polyp area. It is this property that makes the procedure robust. The
results section contains some examples to illustrate the method’s efficacy.5.2.3 Se
ond prin
ipal 
urvature �ow
A scheme to remove protruding elements from a curve in 2D is the Euclidean shortening
flow [80]. A similar approach can be taken in 3D, for which the flow is governed by:

∂ I
∂ t

= −g(κ1,κ2) |∇I | , (5.4)
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with κ1 andκ2 the first and second principal curvatures,|∇I | the gradient magnitude of
the input imageI , andg(·) a curvature dependent function characterizing the flow. The
principal curvatures can be derived from the trace of the Hessian matrixH:

H =





Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



 , (5.5)

with x, y andz the image coordinates andIi j the second derivativeIi j = ∂ 2I/∂ i∂ j. In
gauge coordinates the Hessian is a diagonal matrix with terms [126]: Igg, Iuu and Ivv.
The first term is the second derivative in gradient direction; the second and third terms
are the second derivatives in the directions of the principal curvatures of the isosurface
perpendicular to the gradient vector. The latter two relateto the principal curvatures of
the isosurface:

Iuu = −κ1 |∇I | ,
Ivv = −κ2 |∇I | . (5.6)

With the definition of inward normals, the second principal curvature in the colon is ev-
erywhere smaller than or equal to zero, except on protrudingregions. Here, both the first
and second principal curvatures are positive and the corresponding second derivatives
are negative.

g(κ1,κ2) may be defined in various ways [81], e.g. by the mean curvature[13,44] or
the Gaussian curvature. We require thatg(κ1,κ2) is continuous, especially at locations
where the sign ofκ2 changes, to avoid a discontinuous deformation. Moreover, it must
be small on folds with a small positive value ofκ2 so that the deformation on such
locations is small. Reversely, the response to polyps with two large principal curvatures
should be large. Accordingly, we solve the following nonlinear PDE:

∂ I
∂ t

=

{

Ivv (κ2 > 0)
0 (κ2 ≤ 0)

. (5.7)

Thus, only at protruding regions the image intensity is reduced by an amount propor-
tional to the local second derivative in the direction ofκ2.5.2.4 Implementation
The proposed method is applied to voxels on and around the colon surface. This region
of interest (ROI) is defined by a mask. First, a binary image isobtained by thresholding
the CT image at -650 HU. Subsequently the mask is generated byapplying the exclusive
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or (XOR) operation to an eroded and a dilated version of the binary image. The number
of iterations for the dilation and erosion should be such that the full air-colon transition
is included in the resulting mask image. We used a conservative value of 10 mm for the
radius of the erosion and dilation kernels.

The partial differential equation (5.7) is solved for the voxels in the ROI defined pre-
viously. The intensities of voxels outside the ROI are not altered and serve as Dirichlet
boundary conditions. The left hand side of (5.7) is discretized by a forward difference
scheme:

∂ I
∂ t

=
I t+1− I t

dt
+O(dt). (5.8)

The right hand side of (5.7) requires computation of first andsecond order derivatives.
The first order derivative is determined by the local orientation of the normal field. An
accurate estimate is required to prevent diffusion of information across isophotes, lead-
ing to blurry effects. Unfortunately, simple central difference derivative operators are
known to have rather poor rotation invariance [94]. Therefore, the first and second order
derivatives are computed after a (second order) Taylor expansion in a 3x3x3 neighbor-
hood [120]. They are used to computeIvv.

The image values are modified in a semi-implicit manner comparable to a Gauss-
Seidel scheme, meaning that some of the underlying intensity values are at timet +1,
while others are at timet:

I t+1 =

{

I t + ∆t
(∆x)2 I t+1/2

vv (κ2 > 0)

I t (κ2 ≤ 0)
, (5.9)

in which I t+1/2
vv indicates that it is computed with information from time stepst andt +1.

For Laplace’s equation, numerical stability is guaranteedif the term∆t/(∆x)2 is smaller
than 1

6 [124]. Therefore, the maximum time step for which stabilityis attained depends
on the direction in which the voxel size is smallest (typically in-plane): (∆t)max = 1

6 ·
(∆x)2. Note that this is a conservative value since we only use the principal second
derivative,Ivv, instead of the full Laplacian:Igg+ Iuu+ Ivv. The aspects of stability,
convergence and correctness for similar problems have beenelaborately discussed in
[80]. For a more formal discussion, see [4] and also [124]. Inpractice, we have never
encountered a problem concerning the stability and convergence of the solution.

Summarizing, the algorithm acts only on the head regions in which κ2 > 0. A new
intensity is assigned by (5.9) to each voxel within such a region. Subsequently, the
principal curvatures are recomputed. Some of the voxels which initially had zero or
negative second principal curvature will now be in the head region and will be added
to the area of operation. In this way, during iteration, the area of operation will expand
from the head into the neck region.

An obvious stopping criterion would be to track the amount ofintensity change dur-
ing iterations and stop when the amount of intensity change at a particular iteration is
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lower than some predefined value. Unfortunately, this leadsto an underestimate of the
protrusion of large objects, with a low value for the second derivative even when the
protrusion may be quite large. In our implementation, we have taken a heuristic ap-
proach. After each iteration, the number of voxels that are added to the convex region
is counted. The algorithm stops when this number is zero.

A crucial property of the method is that the effective kernelscale increases with each
iteration. Such adaptation occurs since the curvature calculation continuously uses the
result from the previous step. In effect, the scale ’adapts’to the underlying image struc-
ture, because a small protrusion will require less iterations to be flattened into the back-
ground than a large one. In other words, the effective scale varies locally as the number
of iterations needed to reach a ‘steady state’ differs from location to location. Simul-
taneously, the area of operation, which is delimited by zerosecond principal curvature,
also changes during iterations. By definition, the head region of a structure is adapted
first, but subsequently the area of operation extends to the neck region (see Fig. 5.3). Ex-
isting methods typically estimate curvature values in ’oneshot’ by selecting one scale
of derivative operators a priori. A limitation of the current method may be associated
with protruding objects with smallκ2. Such structures deform slowly due to small cur-
vature. It will be demonstrated that the detection of large polyps is not hampered by this
limitation (see Section 5.3.2).

Fig. 5.4 demonstrates that the method works well also for highly irregular shapes.
The first row shows the isosurface (rendered at -650 HU) at different stadia of the de-
formation process. During the first iterations only the two protruding regions on the left
and right side of the polyp are affected. In later stages these two regions merge and also
the middle part is deformed. The steady state solution and the resulting segmentation
by thresholding is shown in the last two pictures of the first row. The second row shows
the shape index (SI) computed from Gaussian derivatives obtained using different scales
(σ = 2,4,8,12mm), red corresponds toSI = 1, magenta toSI = 0.75 (e.g. on folds).
The third row shows the regions withSI larger than 0.8. The example demonstrates that
scale has a profound effect on the resultingSI values. All polyps in our dataset that
are larger than 10 mm have multiple separated head regions when ’observed’ at a small
scale (see Fig. 5.11b for the performance of our algorithm onlarge objects).5.2.5 Candidate segmentation
The steady state yields new intensities for voxels, particularly in protruding regions. We
will now demonstrate that the intensity change is a measure for the amount of displace-
ment of the isosurface.

Let~x represent a position in which the intensityI t=t0(~x) is halfway the intensities of
the colon lumen and the tissue. Furthermore, the algorithm is asserted to displace the
isosurface through~x by a small amountδ (smaller than the width of the point spread
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Figure 5.4: Demonstration of polyp detection by the curvature flow (first row). The
second and third row show results as obtained by thresholding the Shape
Index, computed at different scales. See text for details.

function (PSF)) after some iterations att = ti. Then, the intensityI t=ti(~x) can be com-
puted via a first order Taylor series expansion:

I t=ti(~x) = I t=t0(~x)+δ ·∇I t=t0(~x)+ ε. (5.10)

Notice thatδ refers to a hypothetical step size corresponding to a small displacement
of the isosurface. Reversely, a small change in intensity relates linearly to the amount
of displacement. However, large displacements of the isosurface cannot be described as
such. The intensity change levels off for displacements larger than the PSF width:

I t=t∞(~x) = I t=t0(~x)−C
2

, (5.11)

in whichC denotes the total contrast over the transition from lumen totissue (typically
around 1000 HU).

The sketch in Fig. 5.5 illustrates the relation between the intensity change (before and
after deformation) and the colon surface displacement, halfway the air-tissue transition.
Clearly, the intensity change is monotonically increasingwith increasing displacement
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Figure 5.5: Sketch of the relation between colon surface displacement and the observed
intensity change for positions halfway the step edge. The relation depends
on the apparent local scale of the PSF, i.e. the scale in the direction of the
surface normal. Often, the scanner resolution is not isotropic: the in-plane
resolution is larger than the out-of-plane resolution. As aconsequence, the
relation depends also on the direction of surface displacement.

of the isosurface. This would permit a segmentation by a simple threshold on the in-
tensity change if the data were isotropic, but unfortunately CT data often are not. The
in-plane resolution is frequently higher than the resolution in scanning direction (z). In
other words, the apparent scale of the PSFσapparentdepends on the direction of the colon
surface normal. Consequently, the relation between intensity change and colon surface
displacement (cf. Fig. 5.5) depends on the orientation of the protruding structure. To
solve this problem, the derivative kernels are made anisotropic such that the apparent
scale will be isotropic and equal to a certain target scaleσtarget. The kernel scaleσi , in

the directioni ∈ {x,y,z}, is computed byσi =
√

σ2
target−σ2

apparent,i, in which σapparent,i

is the apparent (anisotropic) scale of the PSF. Polyp candidate regions are segmented by
thresholding the intensity change field, followed by a labelling operation. The threshold
value is 100 HU corresponding to the threshold of 0.4mm surface displacement as used
in [130] for data with an assumed Gaussian PSF [97] withσ = 1.6mm2.5.2.6 Features for 
lassi�
ation
For each candidate object, five features are computed. Thesefeatures relate to the two
properties that are primarily used by a radiologist: shape of a candidate and intensity dis-
tribution inside a candidate. We explicitly make this distinction since only size descrip-
tors permit a ranking of the candidate objects in a way that relates to clinical relevancy.
Accordingly, size related features will be treated differently than the other features in
the pattern recognition step. Conventionally, polyp size is defined as the single largest

2Halfway the air-tissue transition:∇I t=t0 = C
σ
√

2π = 1000
1.6

√
2π ≈ 250HU/mm, thus 100HU, 0.4mm, i.e.

equal to the threshold used in [130].
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Figure 5.6: Feature space of the maximum and minimum intensities for each candidate
region. Annotated polyps are depicted by black dots and havemaximum
intensities around 0 HU (tissue) and minimum intensities around -650 HU.
Only one in every 20 false positives is shown as a grey dot.

diameter, excluding the stalk. We compute it automaticallyusing the method described
in [26], which not only returns the largest diameter (LongAxis), but also the shortest
diameter (ShortAxis). These are the first two size related features that are used in the
classification. Notice that their ratio incorporates shapeinformation. The third feature
is the maximum intensity change (MaxIntChange) within eachsegmented region (can-
didate). It directly relates to the isosurface displacement (cf. Fig. 5.5). For larger polyps
the values of this feature will be large and vice versa. The fourth and fifth features used
for classification are the 5 and 95 percentile intensities inside the candidate. We em-
ploy these percentile values and not the minimum and maximumintensities to increase
the robustness against noise. For simplicity, we will referto these two features as the
minimum (MinHU) and maximum (MaxHU) intensity values inside the objects. Notice
that all features depend on the intensity change field since all are computed over the
segmented volume of a candidate. Only the MaxIntChange feature is directly derived
from the intensity change field in the segmented volume, the others are computed from
the original CT data.5.2.7 Classi�er training
It was mentioned previously that the intensity features do not directly allow for an or-
dering of the candidates. As an example, consider the feature space of MinHU and
MaxHU shown in Fig. 5.6. The black dots denote true positive candidates and the grey
dots denote false positive candidates.

The distribution of polyps is somewhat Gaussian, and there is a large overlap with the
non-polyps. The latter do not show a simple distribution in this space. For these rea-
sons, these two features are not useddirectly for classifier training. Instead, we compute
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Figure 5.7: Polyp (10 mm) at different stages of the intensity deformation (after 0, 10,
40, 80 and 160 iterations of (5.9)) . First row: original data; second row:
overlay showing the intensity changes larger than 100 HU (the color scale
was truncated at 650 HU; third row: isosurface renderings (at -650 HU).

the Mahalanobis distance to the polyp class center. Such a mapping orders the candi-
dates by the distance to the center of the Gaussian, i.e. the center of the polyp class
yield zero Mahalanobis distance. Notice that the center andwidth of the Gaussian are
to be determined on independent training data. This strategy mimics the use of a Gaus-
sian one-class classifier [114]. Complementary, the remaining features (MaxIntChange,
LongAxis, ShortAxis) relate to size and are directly used toorder the candidates. The
ranking of the candidates imposes that changes in the decision boundary affects the
classification in an ordered fashion.

It may be expected that far more small candidates are detected than large ones due to
noise and the small ‘effective’ scale on small objects. Consider a connected number of
pixels affected by positively signed noise. Such coherent regions may mimic small ob-
jects with positive principal curvature. The derivatives computed from the 3x3x3 Taylor
expansion experience a small amount of regularization. Consequently, the little blurring
may leave small noise protrusions on an otherwise smooth surface. This is confirmed
by the distribution of the false positive candidates with respect to the MaxIntChange
feature, which resembles an exponential distribution. Concurrently, we have observed
that the polyps denoted by black dots in 5.6 are approximately uniformly distributed.
Therefore, the ratio of the posterior probabilities must follow an exponential decay as
a function of MaxIntChange. This is a situation in which a logistic classifier [135] is
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Figure 5.8: Typical results for four polyps. Each column shows the results for a different
polyp. The first two rows show grey value cross sections before and after
intensity deformation. The third row shows the segmentation masks which
are obtained by thresholding the intensity change at a levelof 100 HU. The
last two rows show isosurface renderings (at -650 HU) of the polyps before
and after intensity deformation.
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optimal.
The linear logistic classifier involves estimating the posterior probabilitiesp(ωi |x)

instead of the class distributionsp(x|ωi). These posterior distributions are assumed to
be the sigmoidal functions. This is a valid assumption when the classes are Gaussian
distributed, or, as in our case, one of the class distributions is exponentially decreasing,
while the other is more or less uniformly distributed. A maximum likelihood estimation
is performed to find the linear direction in the data that bestfits these assumed sigmoidal
distribution functions. Using the posterior probabilities instead of the class-dependent
distribution functions makes this classifier less sensitive to the large class imbalance.

As such, the problem is treated as a regression problem rather than a traditional two-
class pattern recognition task. In other words, one searches for a linear direction in
which the sigmoidal pdfs best describe the data. The performance of the classifier will
be assessed by a 5-fold, 10 times repeated cross validation (see below).5.3 Experiments and results
The proposed method is applied to the detection of colonic polyps in CT colonography
data of 84 patients (see above). We will first show qualitative results. The sensitivity
and specificity of the candidate detection step of the CAD system will be given for
varying thresholds on the MaxIntChange feature. The results of the complete CAD
system after classifier training will be given at the end of this section. We will include
the results obtained by the method that involves an explicit(mesh) representation of the
colon surface [130] for comparison. The FROC curves were calculated from a leave-
one-patient out cross-validation. A polyp was counted as a true positive CAD detection
if it was found in at least one of the two scanned positions (prone or supine).

The mean computation time per patient on a PC with a Pentium 4 processor (3.0 GHz)
and 2 GB memory was 4 minutes.5.3.1 Qualitative analysis
Fig. 5.7 illustrates how the intensities are modified duringthe deformation process and
how this affects the position of the isosurface. The first rowof grey valued images show
cross sections through the polyp after 0, 10, 40, 80 and 160 iterations of (5.9). The
second row shows images with an overlay of a color map of the intensity change for
voxels with a change of more than 100 HU. The color bar gives anindication of the
amount of change in the polyp compared to its surroundings (< 100 HU; the scale of
the color bar was truncated at 650 HU). To appreciate the three dimensional structure,
the last row shows isosurface renderings (at -650 HU.) that clearly show the gradual
deformation of the polyp, while its surroundings stay almost unaltered.
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Figure 5.9: Each row shows a false positive. First row: example of stool. Air inside
object is clearly visible on first image. Second row: stool ona fold. The
original data is shown in the first and third column. The data after deforma-
tion by curvature flow is shown in columns two and four.

Fig. 5.8 shows the final outcome for a number of other polyps. The first two rows
show grey-valued cross sections, respectively before and after the intensity deformation.
The third row shows an overlay of the segmentation as obtained by thresholding the
intensity change between the images in the first two rows at a level of 100 HU. The
bottom two rows show isosurface renderings (at -650 HU) of the polyps before and after
the deformation. The images demonstrate that the intensitydeformation method yields
probable estimates of the colon surface. This even applies to objects situated in highly
structured surroundings, such as the polyp in the first column. The second column
shows the result for a 6 mm polyp. It is situated on an almost flat background. The
isosurface rendering containing the colon surface after deformation shows hardly any
residual protrusion. The third column displays an elongated polyp on a strongly folded
part of the colon. After deformation some residual protrusion can still be observed,
albeit small compared to the original protrusion. The same holds for the polyp in the
fourth column. This is a classical pedunculated polyp on a narrow stem. The head
region is removed, while the stem remains.

Approximately 60% of the false positives are stool and 30% ofthe false positives are
on folds. Among the remaining false positives are detections on the illeocecal valve.
All these objects had a shape and structure that closely resemble a polyp (two examples
are contained in Fig. 5.9).
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Figure 5.10: FROC curves showing the candidate detection sensitivity versus the num-
ber of false positives for (a) the mesh based and (b) the currently proposed
technique. The numbers in (a) denote the threshold on the deformation
field in mm and in (b) the threshold on the intensity change field in HU.5.3.2 Performan
e of the 
andidate dete
tion

Fig. 5.10 serves to show that our choice of thresholds is not affecting the detection
sensitivity. Both figures (a and b) contain a free-response receiver operating character-
istic (FROC) curve for the candidate detection step. Fig. 5.10(a) was obtained using
the method that involves an explicit (mesh) representationof the colon surface [130]
and Fig. 5.10(b) was based on the method presented in the current paper. The inde-
pendent variable along the curves is the threshold on the displacement of the mesh,
respectively the intensity change. In either case a lower threshold returns more candi-
date objects. Reversely, as the threshold is increased, fewer candidates are found, but
also some polyps may be missed. For the full CAD system (see below) we have chosen
a threshold for which at least 100% sensitivity is achieved on an independent training
set. For the mesh based method this resulted in a threshold of0.4 mm displacement.
For the intensity deformation method we use a threshold of 100 HU on the intensity
change. The smaller number of false positives of the mesh representation is due its
description by fewer points (about 500000) than the implicit representation (about 10
million points). Notice that the large number of false positives at this stage is irrelevant:
the overall performance of the system is determined after classifying the candidates (see
below).5.3.3 Results after 
lassi�
ation
Fig. 5.11 shows the overall performance of both the proposedand the mesh based
method [130]. The figure shows the performance for the detection of polyps for two
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Figure 5.11: FROC curves depicting the performance of classification for the mesh
based (explicit) and the currently proposed (implicit) technique. The
FROC curves were computed by a five times repeated ten-fold cross-
validation.

size ranges: larger than or equal to 6 mm (including those larger than 10 mm), and
larger than or equal to 10 mm. Apparently, the performance ofthe two methods is com-
parable. Both techniques perform better on the larger polyps. A sensitivity of 95% for
polyps≥ 6 mm is achieved at an average false positive rate of 4-6 per scan. For polyps
≥ 10 mm, a sensitivity of 95% is obtained at about 4 false positives per scan.

For our data, approximately 50% of the false positives are stool and 40% are on folds.
Among the remaining false positives are detections on the illeocecal valve. All these
objects have a shape and internal structure that closely resemble a polyp (two examples
are contained in Fig. 5.9.5.3.4 A 
ombined approa
h
In practice we found that particularly the false detectionsof both methods were to some
extent uncorrelated. For instance, the mesh based method typically had false detections
emanating from the partial volume effect (PVE) as it operates on a single isophote,
whereas the current method was more robust because it took the full transition (air-
tissue) into account. Reversely, the current method is inherently sensitive to intensity
variations within tissue, especially in thin folds, whereas such problems are excluded in
the mesh based method in which feature measurement is confined to the isosurface.

The two methods were combined as follows. The location of thecandidates of both
methods were compared. A consensus voting was used to acceptcandidates only if an
overlapping candidate was found by the other method, in which case they were linked.
Candidates with a vote from only one method were discarded. Fig. 5.12 confirms that
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Figure 5.12: Feature space of the maximum displacement (explicit method) vs. the max-
imum intensity change (implicit method). The black dots correspond to
polyps and the grey dots to false detections. Two regions (encircled by
dash-dotted lines top-left and bottom-right) with false detections (grey
dots) can be observed in which the depicted features are uncorrelated and
complementary.

there is complementary information in the two methods. It contains a scatter plot of
the MaxIntChange feature versus the maximum displacement of the mesh as obtained
by the mesh based method. It can be seen that these correlate well for polyps (black
dots). Two regions with false detections (grey dots) can also be observed in which the
depicted features are uncorrelated (top-left and bottom-right in both graphs). One region
has rather low MaxIntChange, but concurrently quite large maximum displacement of
the mesh; another region is characterized by a large MaxIntChange, but a low maximum
mesh displacement.

Fig. 5.11 also contains an FROC curve of the combined approach. It demonstrates
improved performance by exploiting the complementary aspects of the two approaches
particularly on polyps≥ 6 mm.5.4 Dis
ussion and 
on
lusion
A novel method was presented which detects polyps based on their protruding character
irrespective of the actual shape. The method modifies image intensities at locations of
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protruding objects. This is achieved by finding a steady state solution of a nonlinear
PDE with the recorded image as input. We showed that the intensity change relates
to the displacement of iso-contours. We also demonstrated how this relation is made
invariant to the anisotropic resolution and sampling of thescanner. This allows for a
simple segmentation of polyp candidates by applying a single threshold on the inten-
sity change field. We proposed a measure for the detection of polyp candidates, which
directly relates to polyp size, and not to polyp shape. This measure orders detected
structures according to size which, in effect, keeps increasingly larger objects further
away from the decision boundary. In other words, this limitsthe risk of missing large
polyps. Also, our method does not make a specific choice for the scale for the com-
putation of the 1st and 2nd order derivative operators. The iterative character of the
method changes the intrinsic scale of the image (local and anisotropic): the aperture
of observation (window size of the operation times the number of iterations) inherently
increases.

We have chosen to adapt the convergence criteria of the posedPDE to the local data.
Effectively, the deformation of a region stops when it does not expand anymore. This
yields a stopping criterion which is data dependent and doesnot need user interaction.
However, the criterion is rather strict as can be seen from Fig. 5.8 (third column), in
which case the protrusion was not completely removed. A highnoise level might pre-
vent the algorithm from segmenting the entire polyp area. The (second order) Taylor
expansion in a 3x3x3 neighborhood will effectively deal with the noise practically en-
countered in low-dose (20 mAs) scans.

The performance of the method on so-called flat polyps requires further research.
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6 Automati
 polyp sizemeasurement for CT
olonography based on aprotrusion estimation method
In this chapter a polyp segmentation algorithm is evaluated. The method is based on
the technique proposed in chapter 4. The performance of the method is assessed by
comparison to expert size measurements on phantom data and true polyps.

Published as:
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Vliet, J. Stoker, F. M. Vos,Protrusion method for automated estimation of polyp size

on CT colonography, AJR 2008 [127]
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CHAPTER 6. AUTOMATIC POLYP SIZE MEASUREMENT FOR CT
COLONOGRAPHY BASED ON A PROTRUSION ESTIMATION METHOD6.1 Introdu
tion

Computed tomography (CT) colonography is a minimally invasive procedure that is
advocated for the detection of colorectal cancer and polyps[131]. The size of a detected
polyp is of primary importance for diagnosis and decision making since it relates to
the risk of malignancy [74]. Accordingly, it is proposed that polyps with a diameter
smaller than 6 mm require no further action, whereas polyps equal to and larger than
10 mm should be removed by colonoscopy [22, 146]. There is debate over the need
for polypectomy for 6-9mm polyps. Surveillance for growth with CT colonography has
been suggested as a safe alternative [146]. A reliable measurement technique is required
in this scenario.

The focus in this paper is on accuracy and measurement variability. Accuracy is de-
fined as the mean difference between a measurement method andthe reference standard.
A systematic error is asignificantmean difference, which may be due over- or under-
estimation by the method under investigation. The measurement variability is defined
as the standard deviation of the mean difference. Notice that a method may be highly
accurate, but at the same time have a large measurement variability or vice versa.

Lesion size is best defined as the single largest diameter of the polyp head, excluding
the stalk. It is usually measured in 2D reformatted images orin endoluminal 3D display
[15,90,144]. In either case, significant measurement variability was reported contingent
on the experience of the observer and the viewing display used [15].

Figure 6.1: Phantom colon with plasticine objects. Photograph shows two halves of a
cylinder inserted into a tight-fit second cylinder before scanning.

Automated techniques were introduced in order to enhance the measurement reli-
ability [14, 26]. It was reported that automatic and manual 3D measurements were
more accurate than manual 2D measurement on polyps in a humancolectomy speci-
men [118]. The measurements were done on the resected specimen that was insufflated
and submerged in a container with 0.9% saline solution. However, later it was found
that 3D measurement had the largest systematic error in a study that included polyps
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from a CT colonography study in which colonoscopy was the reference standard [16].
(Semi-)automatic measurement was found to have superior inter - and intra1 -observer
variability compared to manual 2D measurement with spherical, polyp-like phantom
objects [14]. In other work, though, it was observed that automated and manual ap-
proaches have comparable inter-observer agreement [118].The latter observation was
confirmed in [16]. Several factors might explain the conflicting results: the types of
objects used (phantom objects versus patient data), noise characteristics and scanner
resolution, reader variations (inter and intra), and reliability of the reference standard in
patient studies (colonoscopy).

This paper studies the accuracy and measurement variability of an automatic mea-
surement technique [130] under varying scanning conditions using both phantom data
and patient data. The performance of the algorithm was compared to both 2D and 3D
manual measurement by human observers. For the phantom datathis was done for two
different slice thicknesses and two orientations of the phantom data in the scanner. All
data was acquired using a 64 slice CT scanner. We hypothesizethat the measurement
variability of automatic measurement will be higher than the intra and inter-observer
variability of a human reader.6.2 Materials & methodsPhantom Data
A phantom consisted of an air-containing, lucite cylinder (length 10 cm; internal diam-
eter 5 cm, see Fig. 6.1) into which artificial polyps were inserted. First, scans of the
phantom containing seven hemispherical lucite objects (diameter 4-10mm) were made.
Subsequently, 15 asymmetric objects from plasticine (largest diameter 4-19mm) were
inserted in the phantom. The orientation of the main axes of the latter objects was arbi-
trarily chosen to be either parallel or orthogonal to the main axis of the phantom. The
size of all objects (see Table 6.1) was measured by sliding calipers defining the refer-
ence standard. All scans were made with the phantom placed ina cylinder, 34 cm in
diameter that was filled with water.Patient Data
Polyps were included from scans of 10 patients (6 male, 4 female; mean age 59 years,
range 30 - 74) selected from an ongoing CT colonography study. This study con-
cerned patients at increased risk for colorectal cancer. All these patients underwent
CT colonography succeeded by colonoscopy which was video taped. The selection of

1The method presented in [14] is semi-automatic and requiresthe user to indicate a start point for
polyp segmentation & size measurement. Presumably, the user interaction causes some measurement
variability
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Acrylic Resin Plasticine Polyps

4 4 4.5
5 6 5
6 6 5.5
8 6 6.5
8 8 7
10 8 7.5
10 9 7.5

10 8
12 8
12 8.5
13 9.5
13 10
14 10.5
14 11.5
19 11.5
19 13.5

Table 6.1: Reference Sizes (mm) of Phantom Objects and Polyps

patients for the present study was based on the polyp size measured during colonoscopy,
which was required to be larger than 5 mm in diameter, irrespective of shape or loca-
tion. All such polyps in patients that were examined in the period from 31 March 2006
to 30 August 2006 were included. For the present study the size of the polyps was re-
measured on the colonoscopy video by two experienced gastroenterologists who were
aware of the aim of the present study. The gastroenterologists were blinded for the
CT colonography size measurements (see below) as well as theinitial colonoscopy size
measurements. The retrospective measurements were performed by comparison to an
open biopsy forceps (size 8 mm) and to a caliper tool (size 10 mm) if available (4/16
cases). The mean retrospective size measurement served as the reference standard for
polyp size. In the 10 patients 16 polyps were present, 9 polyps between 6 and 10 mm
in diameter in 8 patients and 7 polyps with a diameter of 10 mm or larger in 5 patients
(Table 6.1).

The colonoscopy findings were matched with the colonographydata by a research
fellow who was not involved in the present study. The CT colonography study was
approved by the medical ethical committee of the hospital. The patients were informed
a priori by letter as well as verbally of the study purpose andgave written consent.CT Imaging
CT scanning of the phantom as well as the patients was performed on a 64-slice CT
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scanner (Brilliance, Philips Medical Systems, Best, The Netherlands). The scan param-
eters: 100 mAs. 120 kV, 64 x 0.625 mm collimation, pitch 0.98,standard reconstruction
filter (‘C’).

The phantom (Fig. 6.1) was scanned in two positions: parallel and under an angle of
45 degrees with respect to the axis of the scanner. This was done to obtain an oblique
orientation of the main polyp axes with respect to the scanning direction. The field-of-
view was fixed at 300 mm. The phantom in parallel orientation was scanned once with
a slice thickness of 3.0 mm; the slice thickness was 0.9 mm forall other scans.

All patients drank 4 liter polyethylene glycol solution (KleanPrep, Helsinn Birex
Pharmaceuticals Ltd, Dublin, Ireland), which is a hyperosmolar cathartic agent, com-
bined with 4*50 ml tagging material (meglumine joxitalamate, 300 mg I/ml, Telebrix,
Guerbet, Roissy, France) for bowel preparation, starting on the day before the exami-
nation. The colon was distended by automatic insufflation ofCO2 to a maximum of
20 mm Hg or maximum patient tolerance. The patients were scanned in both prone
and supine position. The field of view varied between 286 and 440 mm2. The slice
thickness was 0.9 mm.Automati
 polyp measurement
The automated size measurement method is part of a Computer Aided Detection (CAD)
scheme for automatic polyp detection [130]. The scheme usesa method which estimates
the deformation the colon wall in order to digitally remove apresumed lesion. Schemat-
ically the method is explained in Fig. 6.2. Suppose that the points on the convex parts
of the polyp (i.e. the ‘protruding’ part) are iteratively moved inwards. Effectively, this
will ’flatten’ the object. After a certain amount of deformation the surface flattening is
such that the protrusion is removed. Thus, the surface lookslike as if the object was
never there. The amount of displacement is a measure of ’protrudedness’. A polyp is
delimited by thresholding the deformation field. The size measurement is obtained by
‘fitting’ an ellipse [118]. The size of a polyp is measured by the largest ellipse diame-
ter. The automatic polyp measurement was implemented on a proprietary, experimental
version of the ViewForum workstation (ViewForum 6.1; Philips Medical Systems; Best;
The Netherlands).Manual polyp measurement
An abdominal radiologist (observer 1) and a research fellow(observer 2) independently
measured the size of all objects. Observer 1 had a previous experience of more than
500 colonoscopy verified CT colonography examinations at the start of the study. Ob-
server 2 had a previous experience of more than 350 of such examinations. Both had no
knowledge of the reference standard, were blinded to any measurements by themselves
for the same object (in the other scans) as well as each other’s measurements. The mea-
surements were performed on a commercially available imageprocessing workstation
(ViewForum, Philips Medical Systems, Best, The Netherlands).
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Figure 6.2: Diagram shows cross section of an idealized polyp with deformed surface
for estimation of protrusion.

The 3D display was obtained by isosurface volume rendering into an enhanced 3D
viewing method (unfolded cube images) [132]. The transfer function comprised a
threshold at -650 HU (making the voxels below this thresholdcompletely transparent).
The 3D measurements were obtained using electronic calipers. The viewing software
used for this study allowed manual navigation for optimizing the endoluminal vantage
point and the placement of caliper points in the 3D space. Theobservers were instructed
to maneuver orthogonally over the object and measure the maximum diameter.

The 2D measurement also required navigating orthogonally over an object. Subse-
quently, a reformatted cross section through the object wasshown, that could be rotated
to identify the longest linear dimension. A window/level setting of 1300/0 for the phan-
tom and 1250/-50 for the patient data was applied. The difference accounts for the
slight increased attenuation of the plasticine, which was measured to be 100 HU. The
observers could freely zoom in/out. The size of the object was determined using elec-
tronic calipers. The interval between 2D and 3D measurementon the same object was a
few hours during which approximately 100 other measurements took place. This setup
was chosen to avoid observer bias. The cases were presented in random order. Thus,
the order in which 2D measurements were done differed from the order in which the
3D measurements were done. The objects in the phantom and thetrue polyps were
measured twice by both observers using both methods. The interval between two mea-
surements (2D and 3D) on the same object in the same scan was atleast four weeks.
Recall bias was further reduced as both observers evaluatedmore than 50 other CT
colonography examinations during the interval periods.Out
ome parameters and statisti
al analysis
The measurements were used for these assessments: The accuracy and measurement
variability of the observers and the algorithm was determined by comparing the first
measurements on the phantom objects in parallel orientation with the reference stan-
dard. Additionally, the accuracy of the measurements on true polyps was determined
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by comparison to the retrospective colonoscopic size measurements. Moreover, we
counted how often the critical category of a polyp was changed by the measurement
(for instance a polyp measured to be 6-9 mm by an observer and 10 mm or larger by
the reference standard). The intra-observer variability was determined by comparing
the initial measurements on the scan with the phantom in parallel orientation with those
made on the same scan four weeks later. In the same way the intra-observer variability
of the measurements on the true polyps was determined. Inter-observer variability was
explored by comparing the first measurements of the two observers on the phantom in
parallel orientation. Likewise, the inter-observer variability of the first measurements on
the true polyps was determined. The variability due to differences in the orientation of
the phantom in the scanner was assessed by comparing the firstmeasurements from the
observers and the algorithm on the scans with the phantom in parallel and oblique ori-
entation. The influence of slice thickness was studied by comparing the measurements
from the observers and the algorithm on the phantom scans with slice thickness of 0.9
mm and 3.0 mm. Student’s t-test was applied to assess any systematic mean difference
between paired measurements. The standard deviation of themean difference was cal-
culated to express the measurement variability. A Bartletttest [101] was first applied
to test the assumption that standard deviations across measurement series were equal
(e.g. the standard deviations as in Fig. 6.3a). If the 0-hypothesis of equal variance was
rejected, then the (squared) standard deviations were compared by means of the F-test.

Bland-Altman plots2 were used to visualize potential trends in the difference between
measurements and/or trends in the standard deviation. A trend in the Bland-Altman plot
was detected by a linear regression analysis. Such a trend was considered significant
if the regression coefficient differed significantly from zero by a t-test. The outcomes
were stratified by observer and by the type of measurement method (2D or 3D). In any
case, a p-value less than 0.05 was considered to indicate a significant difference.6.3 Results
For clarity only the most prominent outcomes are reported; any comparison that is not
explicitly reported, did not yield a significant difference. Results on phantom data is
consistently reported first, followed by results on patientdata. Notice, that the Bland-
Altman plots (figures 6.3 to 6.5) explicitly include mean differences and corresponding
standard deviations in the plot legends.6.3.1 A

ura
y and measurement variabilityPhantom data

2The Bland-Altman plot depicts horizontally the average of two corresponding measurements and ver-
tically the difference.
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Figure 6.3: Observer performance on CT with respect to reference standard. a and b,
Bland-Altman plot shows data for phantom (a) and for true polyps (b).

Fig. 6.3(a) shows the Bland-Altman plot in which the measurements on the phantom
data are compared to the reference standard. A systematic error was found for the au-
tomatic measurement and for observer 2, 3D (p < 0.01, for both). The measurement
variability of the automatic method was significantly smaller than all those of the ob-
servers, except for observer 1, 3D (automatic: 0.86mm; O1: 1.76mm (2D), 0.96 (3D);
O2: 1.34mm (2D), 1.45 mm (3D)).Patient data
The Bland-Altman plot on the patient data is shown in Fig. 6.3(b). On patient data,
observer 2 made systematic errors with both 2D and 3D measurement. There were no
statistically significant differences between the automatic method and both 2D and 3D
manual measurement regarding measurement variability. Linear regression revealed a
significant trend in the automatic measurements, i.e. a significantly larger measurement
error with a larger polyp size. All the approaches changed the critical category of 4/16
polyps, except for observer 2 3D, by whom 1/16 polyps changedcategory.6.3.2 Intra-observer variabilityPhantom data
Fig. 6.4(a) shows Bland-Altman plots of intra-observer variability on the phantom data.
The phantom objects resulted in intra-observer variability that was not significantly dif-
ferent between the observers for both 2D and 3D. Patient data. Likewise, Fig. 6.4(b)
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shows the outcome for the polyps. Again, the intra-observervariability was not sig-
nificantly different between the observers for 2D, but the variability was significantly
different (p-value: 0.035) for 3D measurement.6.3.3 Inter-observer variabilityPhantom data
Fig. 6.4(c) shows the Bland-Altman plot illustrating the inter-observer variability for
2D and 3D measurement for the phantom data. A statistically significant mean size
difference of 1.43 mm on the phantom objects was found between the 3D measurements
of the two observers (p < 0.01). The inter-observer variability of 2D measurement was
significantly larger than the variability of 3D measurement(p-value<<0.01).Patient data
Fig. 6.4(d) shows the Bland-Altman plot of the inter-observer variability for 2D and 3D
measurement on true polyps. Observer II underestimated thepolyp size compared to
observer I (by 1.48 mm for 2D and 1.54 mm for 3D).The inter-observer variability of
2D and 3D measurement were not significantly different for the true polyps.6.3.4 Orientation of the phantom in the s
annerPhantom data3.
There were no significant mean size differences between the measurements on the phan-
tom objects in different orientation, neither for the automatic method nor for the ob-
servers. Fig. 6.5a shows the Bland-Altman plot illustrating the variability due to vary-
ing object orientation. The measurement variability of theautomatic measurements was
significantly smaller than the variability of the observersfor 2D measurement (for both:
p < 0.001). The variability of the automatic measurement wasalso smaller than the vari-
ability of the 3D measurements by the observers, but the difference was not significant.6.3.5 Sli
e thi
knessPhantom data4.
Fig. 6.5b shows the Bland-Altman plot illustrating the variability due to different slice
thicknesses. Statistically significant mean size differences were only found between the
3D measurements both observers (p < 0.01). The variability of the automatic measure-
ment was not significantly different from that of the observers.
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Figure 6.4: Intra observer and interobserver variability of 2D and 3D measurements. a
and b, Bland-Altman plots show intra observer variability of two repeated
measurements of same phantom object (a) and of same true polyp (b). c
and c, Bland-Altman plots show interobserver variability of corresponding
measurements of phantom object (c) and of true polyp (d).
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Figure 6.5: a and b, Bland-Altman plot shows measurement variability due to change in
orientation of phantom in scanner for automated method and manual mea-
surement by both observers (a). Bland-Altman plot shows measurement
variability in phantom data due to differences in scanner anisotropy for au-
tomated method and manual measurements by both observers (b).6.4 Dis
ussion

Our study shows that for phantom data the measurement variability of the automatic
method was smaller than the measurement variability of the observers when either the
orientation5 of a phantom or the slice thickness6 was varied. This may show that the
reader variation of the automatic method is less sensitive to such data variations. More-
over, the automatic approach had a smaller variation than the observers in comparison
to the reference standard7. This difference could be explained by the intra observer
variation, which is nonexistent for the automatic method bydefinition. We found that
one observer made a systematic error (i.e. consistent undersizing, for both 2D and 3D
measurement) on the patient data. We attribute this to a different perception of the polyp
boundaries by this observer. The automatic method had the largest measurement vari-
ability, although it did not differ significantly from any manual approach. The large vari-
ability may be explained due to a systematic error which increases with polyp size (Fig.
6.3b). The measurement variability (Fig. 6.3b) on polyps isconsiderably larger than the
corresponding variability found on the phantom objects (Fig. 6.3a). The increase could
be explained by imprecision and inaccuracy in the referencestandard (colonoscopy).

5Significant for 2D, not significant for 3D measurement
6Significant for 3D, not significant for 2D measurement.
7Significant for one observer, not for the other.
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Conventionally, polyp size is measured by the single largest polyp diameter either
in 2D or 3D, although other ways to quantify size (e.g. by means of the volume)
were explored as well (see e.g. [14, 139]). Conflicting results were reported previously
[16,90,118] regarding whether 2D or 3D measurement is preferred and how such man-
ual measurement relates to automatic methods. Pickhardt etal found that manual 3D
measurement is significantly more accurate than manual 2D measurement [90]. The ob-
served underestimation of 2D measurement was attributed tothe suboptimal alignment
of the standard orthogonal MPR’s to the polyp axis. The studywas based on phantom
data as well as patient data (colonoscopy served as the reference for the polyps). We
reduced the pitfall of selecting the proper cross-section in 2D measurement by letting
the observers navigate orthogonally over a polyp in the 3D display. A reformatted cross
section through the object was shown, that could be manipulated to find the longest di-
mension of the object. Simultaneously, the orientation of the reformatted cross-section
was visualized in the 3D display, but the measurement had to be done in the reformatted
image.

Burling et al found that the greatest measurement error was made by the manual 3D
approach [16]. Burling indicated that 3D measurement is prone to subjective cursor
placement, e.g. due to varying angle and direction from which a lesion is viewed [15].
Both studies by Burling included true polyps and colonoscopy served as the golden
standard. In our experiments, the observers were aware of the difficulty of positioning
electronic calipers in 3D views. Accordingly, they checkedtheir placement carefully.
Then again, Taylor et al found that automated and manual 3D polyp measurements were
more accurate than manual 2D measurement in a human colectomy specimen (irrespec-
tive of observer experience) [118].

We opted to include both phantom data and patient data since observable differences
regarding 2D versus 3D measurement might relate to the typesof objects that were used
(phantom vs true polyps) and the accuracy of the reference standard (sliding calipers
vs. colonoscopic size measurement). Our 2D measurements onthe phantom data show
a larger variability than our 3D measurements as orientation of the objects in the scan-
ner is varied. Moreover, we found larger variability for 2D measurement than for 3D
measurement on the phantom data by comparison to the reference standard. The latter
finding confirms previous reported results of Pickardt et al [90]. We hypothesize that
more complex manipulations are needed for 2D (manual) measurement. Still, results
for the true polyps did not reveal differences, which could be due to the inaccuracy
of colonoscopic measurement (see below). The encountered indifference concerning
patient data agrees with Taylor et al [118].

One of the observers made a systematic error (under estimation) for the polyps. Such
a difference in observer measurement confirms the findings ofBurling et al [15].

The automatic measurements on the phantom show a smaller variability than both
manual methods, in the comparison with the reference standard. However, the automatic
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method has a systematic error on the phantom data. The reported bias of the automatic
measurement may be partially explained by the low threshold(-750 HU) applied to
segment the phantom (compared to a value of -650 HU for manualmeasurement as in
[132].) Certainly, the objects will appear larger as the threshold is lowered, but its value
of -750HU yields optimal sensitivity and specificity for automated polyp detection in a
CAD system [130].

Any systematic error might be corrected for by a proper calibration. This holds for the
measurements by observers as well as an automatic approach.The systematic difference
between the observers regarding 2D as well as 3D measurementsignifies that separate
correction values may be needed. In other words, it might indicate that observers need
to be calibrated individually to avoid systematic errors. Calibration would require a
procedure in which an established collection of objects (the size of which is known
exactly) is measured to determine the accuracy attained by an observer. Subsequently,
an eventual systematic error should be subtracted from all subsequent measurements.

Previously, Burling et al [14] described a “fully automatic” technique that is initiated
by two software seeds and proceeds in a region growing scheme. Another (technical)
paper introduced an automatic technique that starts by placing a seed point on the polyp,
from which a patch is grown over the polyp surface [25]. The current method merely
requires user interaction to indicate a specific protrusion. By definition, repeated mea-
surement using our approach, either initiated by the same oranother observer, yields
exactly the same result irrespective of seed placement. Since other programs use differ-
ent methods to measure size, the current results for automated measurement are limited
to the software used by us.

A limitation of our work is in the restricted number of polypoid objects that we used.
Clearly, an unlimited number of shapes may be encountered inclinical practice. For
practical reasons we selected a limited number of phantom shapes that we considered
relevant for the hypothesis tested. Notice that no criteriaregarding lesion shape were
applied to select the true polyps. Also, a limitation is in the slightly denser material of
phantom objects compared to true polyps (by approximately 100 HU). We used w/l =
1300/0 in the phantom and 1250/-50 on patient data to have a similar appearance upon
2D measurement and minimize the effect. We hypothesize thatthe influence on the
automated method may be neglected since the algorithm does not use the underlying
CT values.

Another limitation is the precision of the reference standard for the colonoscopy mea-
surements, which increases the total variation for all readers (automatic and manual) on
patient data. It is well known that the colonoscopy measurements come with errors
[30, 95]. Consequently, the reported standard deviations of measured true polyp size
compared to the reference standard may be too pessimistic.

We conclude that our work indicates that there is reduced variability in measured
polyp size by the automatic method in phantom data. The automatic measurement has
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a variability that is in the same range as manual methods on patient data. A clear ad-
vantage of the automated method is that it does not suffer from intra-observer variation.
Moreover, the automatic method may be calibrated once, whereas each observer may
require individual calibration. Therefore, automatic size measurement may well con-
tribute to a practical evaluation strategy.A
knowledgments
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7 Computer aided dete
tion ofpolyps in CT 
olonographyusing logisti
 regression
We present a computer aided detection (CAD) system for computed tomography colonog-
raphy that orders the polyps according to clinical relevance. The CAD system consists
of two steps: candidate detection and supervised classification. The characteristics of
the detection step lead to specific choices for the classification system. The candidates
are ordered by a linear logistic classifier (logistic regression) based on only three fea-
tures: the protrusion of the colon wall, the mean internal intensity and a feature to dis-
card detections on the rectal enema tube. This classifier cancope with a small number
of polyps available for training, a large imbalance betweenpolyps and non-polyp can-
didates, a truncated feature space, unbalanced and unknownmisclassification costs, and
an exponential distribution with respect to candidate sizein feature space. Our CAD
system was evaluated with data sets from four different medical centers. For polyps
larger than or equal to 6 mm we achieved sensitivities of respectively 95%, 85%, 85%,
and 100% with 5, 4, 5, and 6 false positives per scan over 86, 48, 141, and 32 patients.
A cross-center evaluation in which the system is trained andtested with data from dif-
ferent sources showed that the trained CAD system generalizes to data from different
medical centers and with different patient preparations. This is essential to application
in large-scale screening for colorectal polyps.

Based on:

V. F. van Ravesteijn, C. van Wijk, F. M. Vos, R. Truyen, J.F. Peters, L. J. van Vliet,
Computer-Aided Detection of Polyps in CT Colonography Using Logistic Regression,

IEEE-TMI, 29(1), 2010
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CHAPTER 7. COMPUTER AIDED DETECTION OF POLYPS IN CT
COLONOGRAPHY USING LOGISTIC REGRESSION7.1 Introdu
tion

Cancer is the second leading cause of mortality due to cancerin the western world [3].
Paradoxically, perhaps, is that it is preventable for a large part or at least curable if
detected early. Adenomatous colorectal polyps are considered important precursors to
colon cancer [11, 73, 85]. It has been shown that screening for such polyps can sig-
nificantly reduce the incidence of colon cancer [31, 136]. Computed tomography (CT)
colonography (CTC) is a rapidly evolving technique for screening, but the interpretation
of the data sets is still time-consuming. Computer aided detection (CAD) of polyps may
enhance the efficiency and also increase the sensitivity. This is specifically important
for large-scale screening. Recent studies show that the sensitivity of CAD systems is
already comparable to the sensitivity of optical colonoscopy [78,105,109] and radiolo-
gists using CTC [142].

The best indicator of the risk that a polyp is malignant or turns malignant over time
is size [90]. The consensus [146] is that patients with a polyp of at least 10 mm must be
referred to optical colonoscopy for polypectomy and it is adviced that diminutive polyps
(≤ 5 mm) should not even be reported [88, 117]. There is still debate over the need for
polypectomy for 6–9 mm polyps. Surveillance for growth withCT colonography has
also been suggested.7.1.1 Related work
CAD algorithms for polyp detection in CT colonography usually consist of candidate
detection followed by supervised classification. Candidate detection aims at 100% sen-
sitivity for polyps larger than 6 mm which goes at the expenseof hundreds of false
positives (FPs) per scan. The task of supervised classification is to reduce the number
of detections to about a handful without sacrificing the sensitivity too much.

For the detection of polyp candidates, Summers et al. [103, 104] proposed to use
methods from differential geometry in which the principal curvatures were computed
by fitting a fourth order B-spline to local neighborhoods with a 5 mm radius. Can-
didates were generated by selecting regions of elliptic curvature with a positive mean
curvature [104]. Yoshida et al. [141, 143] used the shape index and curvedness to find
candidate objects on the colon wall. The shape index and curvedness are functions of the
principal curvatures of the surface, which were computed ina Gaussian-shaped window
(aperture). Alternatively, Kiss et al. [59] generated candidates by searching for convex
regions on the colon wall. Their method fitted a sphere to the surface normal field. The
type of material in which the center of the fitted sphere was found (in tissue or in air)
determined the classification of the surface as either convex or concave. As a result,
roughly 90% of the colon wall was labeled as concave, that is ’normal’. Subsequently,
a generalized Hough transformation using a spherical modelwas applied to the convex
surface regions. Candidate objects were generated by searching for local maxima in the
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Table 7.1: Properties of the data sets
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parameter space of the Hough transformation. Kiss et al. characterized the shape of the
candidate by comparing the spherical harmonics with those of the polypoid models in a
database [57].

Apart from the different candidate detection algorithms, there is a wide variety in
the design of the pattern recognition system, ranging from low-complex systems like
linear discriminant classifiers to classification systems using multiple neural networks.
Yoshida and Näppi used linear and quadratic discriminant classifiers [77, 141, 143] as
well as Jerebko et al. [49]. Wang et al. [134] uses a two-levelclassifier with a further un-
specified linear discriminant classifier in the second level. The first level of this classifier
consisted of a normalization procedure, which was specially designed and had four pa-
rameters. Sundaram et al. [111] classified the candidates based on a single heuristically
designed score using curvature information of the candidate patches. Göktürk et al. [35]
employed a support vector machine for classification, in which it was assumed that after
a transformation by the kernel function, the data were linearly separable. This implicitly
required minimal mixing between polyps and false detections. Jerebko et al. [50] and
Zheng et al. [148] used a committee of support vector machines. Neural networks were
also used by Jerebko et al. [50] and Näppi et al. [65,78] for classification, and by Suzuki
et al. [113] for the reduction of false detections on the rectal enema tube.

To conclude, many different proposals for a classification system for computer aided
detection of polyps have been presented. However, the motivation for a specific de-
sign of the classification system is often unclear. Moreover, proper comparison between
classification systems is difficult due to the different candidate detection systems and
feature extraction methods. One may reason that the optimization of complex classifi-
cation systems (with large number of parameters or features) may be complicated by the
limited availability of training examples. This could leadto overtraining to a specific
patient population or patient preparation.

A steadily growing number of papers (e.g. [10, 23, 35, 49, 57,59, 62, 77, 105, 130,
134, 141]) reported on the performance of polyp detection algorithms (see Yoshida and
Näppi [142] for a review on CAD systems for CTC). However, theresults can not eas-
ily be compared due to large differences in the data sets usedfor evaluation (see also
Section 7.2.1).7.1.2 Obje
tive
Candidate detection typically renders a lot of candidates to sustain maximum sensitivity.
Hence, the number of objects from the target class (polyps) is relatively low. This large
imbalance of the prevailing classes typically hampers classifier design and training. A
further complication is that the misclassification costs for objects from the two classes
are unknown and certainly very different. This paper discusses the consequences of
these characteristics for the design of the classification system.

We aim to design a novel, low-complex, classification systemthat orders the polyps
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according to clinical relevance. It implicitly takes into account that the misclassifica-
tion costs of polyps increase with lesion size. In other words, larger polyps are more
important than smaller ones and the problem is not considered as a mere two-class clas-
sification task, but rather as a regression problem. With this in mind, we distinguish
two types of features in the design of the classification system. First, there are fea-
tures that facilitate an ordering of the candidates. These are the features that directly
relate to the lesion size. Second, there are features which will be shown to render a
Gaussian distribution. In order to keep the classifier simple and to prevent the use of
complex combination strategies, these features are mappedinto features of the first type
by a Mahalanobis distance (MD) mapping. This strategy is used to discard outliers
and mimics the use of a Gaussian one-class classifier [114]. It will be shown that this
two-level classification system is effective over data fromvarious sources.

The technical novelty of our paper is to approach the classification task as a regression
problem. Such a strategy requires that features are orderedaccording to relevance. A
mechanism is introduced to map features that are not orderedas such into features that
do have the ordering property. It will be demonstrated that the Mahalanobis distance
to the target class mean is appropriate for the current problem. Imposing the ordering
may be achieved for any other problem provided that the distance to the most typical
representation of the target class can be defined.7.2 Data des
ription and feature design
A CAD system for CTC starts with the acquisition of CT colonography data. In these
data, candidate objects are detected and segmented. The segmented candidates are typ-
ically characterized by features describing, for instance, the candidate’s shape and its
internal intensity distribution. Such data serve as input for the classification system. All
preprocessing steps will be addressed in this section.7.2.1 CT 
olonography data
Data sets from four different medical centers were used to evaluate the performance
of our system. Data sets from different sources differ in polyp prevalence, the patient
preparation, the scanning protocol, the protocol for determining the ground truth, and
the type of rectal tube used for colon distension during CT examination1. An arbitrary
number of patients were randomly selected from each source,irrespective of the number
of polyps and their shape. The most important characteristics of the data sets are shown
in Table 7.1. More details may be retrieved from the references included in the table. All
patients adhered to an extensive laxative regime. The reference standard (ground truth)

1Information about the patient preparation can be retrievedfrom the reference in cluded in Table 7.1.
However, the specific data set we used is not described.
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(a) Before deformation (b) Before deformation (c) After deformation (d) After deformation

(e) Before deformation (f) Before deformation (g) After deformation (h) After deformation

Figure 7.1: The candidate detection method applies a non-linear ’flattening’ operation
to the colon wall. The protrusion field is defined as the difference in posi-
tion of the colon wall before (a–b,e–f) and after (c–d, g–h) application of the
operation. The coloring (b,d,f,h) indicates the protrusion of the mesh ver-
tices of detected candidates (blue denotes a large protrusion and red denotes
a protrusion of 0.2 mm, i.e. the low hysteresis threshold). Notice that the
folds are hardly affected by the operation.
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for data sets ’A’, ’B’ and ’C’ was optical colonoscopy. An expert radiologist served
as the reference for data set ’D’. Radiologists retrospectively indicated the location of
polyps by annotating a point in the 3D data set based on the reference standard. The
candidate segmentations (see below) were labeled by comparison to these annotations.
Data sets ’A’, ’B’ and ’C’ consisted of scans in both prone andsupine positions. A
polyp was counted as a true positive CAD detection if it was found in at least one of
the two scanned positions. Only dataset ’A’ has been used during development of the
system.7.2.2 Candidate dete
tion
Polyps are often described as objects that protrude from thecolon wall. For that reason,
the candidate detection method is designed to detect all objects that protrude from the
colon wall, irrespective of their shape. Suppose that the points on the convex parts of
a protruding object are iteratively moved inwards. Effectively, this will ’remove’ the
object. After a certain amount of deformation, the protrusion is completely removed
and the colon wall appears ’normal’. The amount of deformation as a result of the
operation is a measure of ’protrudedness’. Fig. 7.1 illustrates this process by showing
images before and after application of the non-linear ‘flattening’ operation.

Practically, the colon wall was represented by a triangle mesh, which was obtained
by thresholding the CT colonography data at -750 Hounsfield units (HU). A non-linear
PDE [130] was solved to remove all protruding structures from the mesh that displayed
a positive second principal curvature. A similar approach that acts directly on the grey
valued image is presented in [129]. In this procedure, the global shape of the colon
including the folds was retained, since these structures display a second principal cur-
vature that is smaller than or equal to zero. The protrusion field was computed by the
position difference of the mesh vertices before and after processing. Subsequently, hys-
teresis thresholding was applied to this field to detect and segment the candidates. The
high threshold on the protrusion was 0.4 mm and determines the sensitivity. The value
of 0.4 mm was selected since it yields 100% sensitivity per polyp annotation in our
training set. All retained regions of the colon surface wereaugmented by adding the ad-
jacent mesh points with a protrusion of at least 0.2 mm (the low threshold). The regions
thus obtained form the segmented candidates.7.2.3 Features
Radiologists that evaluate CTC data primarily use two properties of a candidate for
classification: the shape and the voxel intensities inside the candidate. There is still
debate about the optimal way to analyze CTC data. Radiologists using the 3D rendering
of the colon (virtual colonoscopy) detect polyps based on shape, but they will often
fall back to the 2D representation (grey values) before a final decision is made. Using
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the 2D representation, both the internal intensities and the shape are assessed, although
shape is often hard to extract from the grey-value images. The features used in the
presented CAD system are based on the same two properties that are primarily used by
radiologists.

Shape was previously described by the shape index and curvedness [143], mean cur-
vature, average principal curvatures and sphericity ratio[103, 104] and spherical har-
monics [57]. An alternative method to measure shape, which is based on the protrusion
field, will be introduced (see Section 7.2.3, below).

The internal intensity of the candidates has been found before to be a discriminative
feature to discard a large number of false detections [10,49,77,134]. It may be expected
that due to the partial volume effect false detections arisethat have low internal intensity.
False detections that are stool often have air inside, whichalso lowers the intensity.
Such information about the candidates will be included through statistics on the voxel
intensities inside the object (see Section 7.2.3, below).

At last, it was experimentally found that many false positives turned out to be detec-
tions on the rectal enema tube (RET) (previously also reported in [46,113]). Therefore,
a third feature will be proposed to discard such false detections (see Section 7.2.3, be-
low).Shape feature from protrusion �eld
Polyps are conventionally characterized by the single largest diameter, excluding the
stalk [90,127]. However, Fig. 7.2(a) shows that this measure does not distinguish polyps
from false detections well. It appears that especially among the less protruding candi-
dates (≤ 2 mm), the candidates with the larger diameters are predominantly false detec-
tions. Alternatively, it might be natural to select the maximum protrusion of a candidate
as a feature, but it appears that a lot of polyps have only modest protrusion. As an il-
lustration, Figs. 7.2(c) and (d) show two candidates that have approximately the same
maximum protrusion but a completely different appearance.The first candidate (candi-
date ’c’) has a large diameter, but does not resemble a polyp at all, whereas the second
candidate (candidate ’d’) with a small diameter does so. To conclude, a large diameter
relative to the maximum protrusion indicates a non-polypoidal shape (candidate ’c’) and
a small diameter or a relative low protrusion points to a small clinically irrelevant can-
didate. A feature that is derived from the thresholded protrusion field should therefore
include the size of a candidate as well as the ratio between the largest diameter and the
maximum protrusion. Moreover, the feature should characterize the whole segmented
area instead of the extrema (like the largest diameter or themaximum protrusion).

We designed a feature that takes into account both the protrusion as well as the lateral
size of the object. Effectively, it measures the percentageof the area of the candidate
that has a protrusion larger than a certain thresholdT. This feature is further denoted
asΦT . A large circumference as well as shallow edges lead to relatively large areas
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(a) (b)

(c) (d)

Figure 7.2: (a)–(b) Scatter plots of features calculated for data set ’A’. Grey dots denote
false detections and black dots indicate polyps≥ 6 mm. Note that each
polyp may appear as two separate dots in the scatter plot, since each patient
is scanned twice. (a) The maximum protrusion versus the single largest
diameter of a candidate. The threshold of the candidate detection can be
seen at a maximum protrusion of 0.4 mm. (b)ΦT(T=0.6mm) versus the
largest diameter. (c–d) Two candidates with the same maximum protrusion
that are ordered differently according toΦT .
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with protrusion belowT and result in a low response. Thus, this feature favors compact
objects with steep edges. Fig. 7.2(b) shows that according to ΦT (T=0.6mm) candi-
date ’d’ is indeed favored over candidate ’c’. Ordering the candidates based onΦT is
thus expected to improve the performance of the CAD system over simply using the
maximum diameter alone.Intensity features
Consider all mesh vertices that are part of the segmentationmask of a candidate object
(see Section 7.2.2). For each vertex, a weighted average of colon wall intensities was
calculated along the line segment from the vertex under consideration to the center of
mass of the candidate’s vertices. The weight of the intensity of each voxel depends on
the Gaussian scaled squared-distance between the intensity and the maximum intensity
along the line segment. The tonal scaleσt used for weighting was set to 140 HU. This
value is substantially larger than two times the image noise(previously measured to be
43.4 HU for data acquired with 50 mAs [97]). Consequently,σt facilitated that the edges
of the candidate contributed less to the weighted average than the internal voxels of the
candidate. In other words, the candidate’s true internal intensity was emphasized. The
center of mass falling inside the polyp is supported by the smooth apex of polyps.

Subsequently, the mean (fI ,mean), median (fI ,median), maximum (fI ,max), minimum
( fI ,min), and standard deviation (fI ,std) were determined from the weighted averages of
all vertices. The latter four were only used in the classifierselection stage (see Sec-
tion 7.5.1).Feature for suppressing 
andidates on the re
tal enema tube
The rectal enema tube is a prominent source of false positiveclassifications [46, 113].
This is because the tube’s attenuation in CT is similar to that of tissue. Moreover, the
size and shape (25 mm in diameter) resembles a large polyp. Cross-sectional examples
of a rectal enema tube are shown in Fig. 7.3(a). To suppress the false detections on the
rectal tubes, a feature has been developed to distinguish these false detections from the
other candidates. For each candidate it was measured how much ’field-of-view’ (FOV)
the candidate ’blocks’ as seen from the rectal enema tube (Fig. 7.3(b)):

fFOV =
1

4π ∑
points∈candidate

A1−ring
(~qi ·~ni)

||~qi||3
(7.1)

in which~qi is the vector from a mesh pointi of the candidate to an arbitrary point on
the rectal tube,~ni is the vertex normal, andA1−ring is the surface area of the one-ring
neighborhood defined as the average area of the cells adjacent to the point of interest.
A positive value means that the candidate is bended away fromthe tube and a negative
value indicates that the candidate is bended towards the tube.
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Figure 7.3: (a) Example of a rectal enema tube in data set ’A’ as seen in different slices
of a CT image. (b) A schematic explanation of the responses offFOV. (c) A
scatter plot of the mean radius versusfFOV. The grey dots are false detec-
tions and the black dots are polyps. In the text we identify the four clusters.
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Fig. 7.3(c) shows a scatter plot of false detections (grey) and true polyps (black) with
fFOV on the horizontal axis and with the mean radius of the candidates on the vertical
axis. The mean radius is calculated as a weighted sum of the distances of all mesh
pointsi to the center of gravity of the candidate,||~r i||, weighted by the area of the one-
ring neighborhoodA1−ring,i . Apparently, four clusters are identifiable in this feature
space: candidates at the end of the tube have negative valuesfor fFOV and a rather small
mean radius (dotted line); candidates on the balloon also yield negativefFOV, but come
with a large mean radius (dashed line); candidates inside the tube have positive response
for fFOV (dash-dotted); and candidates that are not related to the tube have negligible
blocking and form an elongated cluster centered atfFOV=0 (solid line). To conclude,
non-zero values of this feature tend to indicate detectionson the rectal enema tube.7.3 Chara
teristi
s of the feature spa
e
A first prerequisite for clinical application is that the system has high sensitivity for the
detection of polyps. To limit the risk of missing a polyp in the candidate detection step,
this step unavoidably yields a large number of detections. Consequently, the number
of objects from the two classes is severely unbalanced. For instance, only 0.3% of the
candidates detected in data set ’A’ were polyps≥6 mm. Any classifier relies heavily
on the few polyp examples. Complex classifiers may not be expected to generalize well
to other data sets, because they are typically sensitive to small changes in training data.
Furthermore, the misclassification costs for objects from the two classes are unbalanced
and unknown: a missed polyp is far more troublesome than a false positive classifica-
tion. Finally, it has to be realized that the size of a polyp indicates the risk of it becoming
malignant.

A part of the feature space is presented in Figs. 7.4(a–b) by two scatter plots. It can
be seen that the distribution of the polyps is rather uniformwith respect toΦT , though
it appears truncated at a certain level (ΦT ≈ 55%). This occurs because polyps<6 mm
are not clinically relevant and were therefore excluded a priori (i.e. not annotated in the
data). The false detections display a different behavior. As our focus is on irregularities
on the colon surface (protruding objects), it may be expected that far more candidates
with small protrusion are detected than candidates with large protrusion, e.g. due to nat-
ural fluctuations of the colon wall and noise. This can also beseen in the distribution of
the candidates with respect to the maximum protrusion in Fig. 7.5(a) and with respect
to ΦT in Fig. 7.5(b) (dotted curves). An exponential decaying function fitted to the dis-
tribution is also shown (solid curves). Thus, one must not only reckon with many false
detections, the false detections are also unevenly distributed in the feature space. Fi-
nally, it can be observed that the classes largely overlap and that the way the candidates
were generated imposes abrupt cluster boundaries, which may hamper density based
classifiers. The abrupt cluster boundaries can be seen atΦT = 0% andΦT = 100%
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(a) (b)

(c) (d)

Figure 7.4: Scatter plots demonstrating the distribution of the candidates for data set ’A’.
The grey dots are false detections and the black dots are polyps. (a) Mean
intensity vs.ΦT . (b) Mean intensity vs. maximum intensity. (c) The same
feature space as (a) with the output of the negated Mahalanobis distance
mapping on the vertical axis. This mapping is introduced in Section 7.4.1.
(d) The influence of the mapping onfI ,mean. Note that candidates with a
high and low mean intensity have a lower mapped feature than the polyps.
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in Fig. 7.4(a).
We approach the classification problem not just as a two-class classification task,

but rather as a regression problem. In other words, the classification system should be
designed to facilitate a clinically relevant ordering of the candidates. Ideally, this means
that the polyps should be ranked above the false detections and that the larger polyps are
ranked above the smaller polyps. The classifier that is used in the regression analysis
should be robust to the large class imbalance, the uneven distribution of candidates
in the feature space, and the abrupt boundaries in the feature space. Moreover, the
classification system as a whole must be low-complex in orderto be robust to variations
in the data sets from different sources.7.4 The 
lassi�
ation system
This section describes a classification system that fulfillsthe demands derived in the
previous section. It is schematically depicted in Fig. 7.6.The input feature vector con-
sists of two types of features, namely those suitable for ordering the candidates (fO)
and those allowing for density estimation and outlier rejection ( fD). The features of
the first type are directly used in the regression analysis, whereas the other features
are mapped first by a Mahalanobis distance mapping. Subsequently, regression anal-
ysis leads to an ordering. The ordering can then be used to compute FROC curves to
estimate the performance. Three discriminant classifiers will be applied in the regres-
sion problem (see Section 7.5): the normal-based linear discriminant classifier (LDC)
[135], the normal-based quadratic discriminant classifier(QDC) [135] and the logistic
discriminant classifier [135].

We did not opt for support vector machine (SVM) classifiers due to the large class
overlap. Due to this large overlap, it is not expected that a unique classification boundary
can be found confidently. Moreover, we did not opt for neural networks too because,
obviously, multi-layer neural networks based solutions may increase complexity. On the
other hand, one can think of low-complex neural networks, like single layer networks
with sigmoidal transfer functions (as used in [50,65,78]).However, these are known to
be closely related to the logistic classifier.7.4.1 Mahalanobis distan
e mapping
Let us assume that, for a certain subset of features, a Gaussian properly describes the
distribution of the objects from the target class, i.e. the polyps. One might say that the
mean of this distribution corresponds to a typical representation of a polyp (“the most
polyp-like polyp”). Moreover, the Mahalanobis distance tothe mean of the polyp class
may act as an efficient feature to reject outliers, i.e. objects not belonging to the target
class. This procedure compares to the operation of a Gaussian one-class classifier [114].
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Figure 7.5: Distribution of (a) the maximum protrusion and (b) ΦT of the false detec-
tions in data set ’A’ (dotted curves). Exponential decayingfunctions were
fitted to the distributions (solid curves).
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d(x) = d(fO, m1, m2)

Figure 7.6: Schematic representation of the classificationsystem. The classification
starts with a feature vector consisting of features suitable for ordering (fO)
and features suitable for density estimation (fD). The feature setsfD,1 and
fD,2 are processed through two mappings. An ordering of the candidates
is determined by regression that incorporates both the features fO and the
outputs of the mappings,m1 andm2. The ordering may be thresholded for
classification in order to construct FROC curves.

Instead of comparing this distance to a preset threshold, the (negated) Mahalanobis
distance is used as a feature. The mean of the polyp class was derived from the train
data set. Consequently, this acts as a mapping transformingone or more features into
a single feature. The output feature is suitable for ordering the candidates, since zero
Mahalanobis distance (the mean of the Gaussian) is considered most polyp-like. The
feature can thus be used in the regression analysis. In practice, the mapping was applied
to fFOV and fI ,mean. Effectively, candidates on the rectal tubes as well as candidates
with an abnormal intensity are rejected. Fig. 7.4 illustrates the influence of the mapping
on fI ,mean.

In comparison to Wang et al. [134], our mapping replaces the normalization procedure
of their two-level classifier. This allows us to use a standard technique from statistical
pattern recognition to determine the parameters of the mapping.7.4.2 Normal-based dis
riminant 
lassi�ers
Let us consider the linear normal-based discriminant classifier (LDC) to represent a
common, low-complexity type of classifier. Such an LDC includes a weighted sum of
the covariance matrices of both classes, in which the weights are the prior probabilities.
In the case of a large class imbalance, however, as in the polyp detection problem, the
prior of the minority class is extremely small. As a consequence, the weighted sum is
almost identical to the covariance matrix of the majority class and the covariance matrix
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of the minority class is neglected. In other words, contraryto common preference, the
detection of objects from the minority (target) class is largely based on information of
the objects from the majority (outlier) class. One might conceive this as the opposite of
a one-class classifier, which typically uses information about the target class only.

One might consider a quadratic normal-based discriminant classifier (QDC) instead,
since it does not weight the covariance matrices by the priorprobabilities. One un-
derlying problem here is that the classes have non-Gaussiandistributions. In order to
capture a polyp inside the tip of the quadratic decision boundary, simultaneously an ex-
ponentially increasing number of false positives are included (see Fig. 7.5). The more
conservative linear decision boundary will make a different error to detect such a polyp,
but this error is less pronounced. What is more, the quadratic classifier depends strongly
on the covariance matrix of the polyp class. This covariancematrix might be somewhat
unstable, however, due to the limited number of polyps.7.4.3 Logisti
 dis
riminant 
lassi�er
It was previously demonstrated that the false detections are distributed in an exponential
fashion with respect to size andΦT (see Fig. 7.5). Fig. 7.4 illustrated that the polyps are
somewhat uniformly distributed. This implies that the ratio of the posterior probabilities
must also follow an exponential function, which is represented in the next relation:

log

(

p(x|ωp)

p(x|ω f )

)

= d(x) (7.2)

in which d(x) is the linear discriminant function of the feature vector and ωp andω f

denote the polyp class and the false detection class, respectively. One can recognize in
Eq. 7.2 the assumption made by a logistic classifier, which corresponds to sigmoidal
posterior probability density functions:

p(ω f ,x) =
1

1+exp(d(x))
, p(ωp,x) = 1− p(ω f ,x). (7.3)

The linear logistic classifier estimates the posterior probabilities p(ωi |x) instead of the
class-dependent distributionsp(x|ωi) [135]. These posterior distributions are assumed
to be the sigmoidal functions. This is a valid assumption when e.g. the classes are dis-
tributed Gaussian, or, as in this case, one of the distributions is exponentially decreasing
while the other is more or less uniform. Then, a maximum likelihood (ML) estimation
is made to find the linear direction in the data that best fits these assumed sigmoidal
posterior functions. This ML estimator will give the weights of the discriminant func-
tion d(x). Using the posterior probabilities instead of the class-dependent distribution
functions makes this classifier less sensitive to the large class imbalance.
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Classifier selection aims at choosing the best method for theregression analysis in our
classification system (see Fig. 7.6). Three classifiers willbe analyzed: the LDC, the
QDC and the logistic classifier (see Section 7.4). The specific choice will be based on
two types of analysis: FROC analysis using a variety of sets of features in order to select
the best classifier for the problem (instead of the best classifier for a specific feature set),
and stability analysis by bootstrapping the training set.

The feature vectorF in Fig. 7.6 consists of three features:ΦT , fI ,meanand fFOV. ΦT

is related to the size of the candidates and is therefore directly used in the regression
analysis, thusfO = {ΦT}. The Mahalanobis distance mapping is applied to the other
two features prior to the regression analysis. It is appliedto fD,1 = { fI ,mean} to sort
all candidates based on the mean intensity in order of increasing distance to the normal
tissue values of polyps; and tofD,2 = { fFOV} to aid discarding the candidates on the
rectal tube. The added value of these features and the influence of the mappings will be
analyzed in Section 7.5.2.

In practice, the usefulness of a CAD system depends on whether it will generalize to
data sets from different sources. The robustness of the complete system will be tested
in Section 7.5.3 by means of an evaluation using data sets from four different medical
centers (see Section 7.2.1).7.5.1 Classi�er sele
tion: performan
e and stability
The performance of the classifiers was analyzed by means of FROC analysis. The
FROC curves were calculated for a large pool of different feature sets to secure that
the classifier selection step is not dependent on a certain choice of features. The FROC
curves were calculated from a repeated ten-fold cross-validation. Only data set ’A’ was
used in this learning phase to remain completely independent of the other data sets.

The aggregate of the different sets of features employed in the experiment will be
called the feature pool. This pool was not created in order toselect the best features, but
merely to study the performance of the classifiers without choosing a specific feature
set first. If some feature set were chosen first (before the classifier selection step), one
might select the best classifier for the specific set of features and not necessarily the
classifier which is best for the problem at hand. The feature pool consisted of 29 sets of
features chosen from a total of nine different features: three protrusion-based features
ΦT with various thresholdsT: 0.5, 0.6 and 0.7 mm; the features related to the intensity
(i.e. the mean, maximum, minimum and median intensity and the standard deviation of
the intensity) andfFOV to discard candidates on the rectal tubes. Each set contained at
most five features of which one was chosen from the set of protrusion-based features.

An FROC curve was computed for each classifier and for each setof features from the
pool. The average FROC curve for a classifier is shown in Fig. 7.7. The standard devia-
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Figure 7.7: FROC curves averaged over all feature sets for the LDC, QDC and logistic
classifiers.

Table 7.2: Instability of various classifiers

Classifier Instability Percentage (%)

Logistic 33.7 0.11

QDC 220.0 0.76

LDC 15.6 0.05

tion that was derived from the variation between the FROC curves for different feature
sets was less than 0.03 FPs per scan for sensitivities below 95%. The FROC curves
reveal that the logistic classifier and the QDC do not differ in their performance as their
FROC curves almost completely overlap. The performance of LDC was significantly
worse by approximately 15 times the standard deviation.

The second criterion used for classifier selection was the stability of the classifiers.
This stability was assessed by means of bootstrapping the training set. This results
in a perturbed orientation of the classifiers, which consequently leads to a number of
differently classified candidates. The average number of different decisions is then used
as a measure of instability [100]. Table 7.2 lists the instability measures. The table
clearly shows that the logistic classifier and the LDC are themost stable classifiers. The
instability has been measured for a sensitivity of 85%, but the results generalize well to
other sensitivity levels, i.e. different locations of the decision boundary.

More specifically, it is noticeable that the LDC is much more stable than the QDC.
This is explained by the covariance matrix estimated by the LDC being nearly identical
to the covariance matrix of the majority class, which barelychanges due to bootstrap-
ping. On the other hand, the QDC also estimates a covariance matrix for the polyp class.
Because of the low number of polyps, bootstrapping leads to adifferent covariance ma-
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trix for the polyp class. This is reflected by the poor instability of the QDC. The logistic
classifier is expected to be more stable since it poses an assumption onto the relative
posterior probabilities of the two classes rather than estimating both (class-dependent)
probability distribution functions.

To conclude, it is shown that the logistic classifier combines a good performance in
terms of FROC analysis with a good stability value. Therefore, the logistic classifier
will be used as the regressor in the classification system.7.5.2 Outlier reje
tion by Mahalanobis distan
e mapping
Let us now look into the performance of outlier rejection by the Mahalanobis distance
mapping. The starting point of our analysis is the FROC curvegenerated by the logistic
classifier usingΦT with a thresholdT of 0.6 mm, andfI ,mean(prior to mapping). FROC
curves are computed for data sets ’A’ and ’C’. Among other differences, these data sets
differ in the type of rectal tubes used and the administration of a fecal tagging agent (see
also Table 7.1).

Fig. 7.8(a) shows the FROC curves for data set ’A’. In this data set, no fecal tagging
agent was administered to the patients. As a consequence, only false detections with low
mean intensities were present. This means that this featureis already suitable for order-
ing the candidates. MappingfI ,mean did not result in a significantly different FROC
curve; for this reason and for the purpose of clarity the curves with the ’unmapped’
fI ,mean are not shown. The solid curve is the FROC curve of a system with only the
MD( fI ,mean) andΦT . The dotted line is obtained when the featurefFOV is added di-
rectly, without prior Mahalanobis distance mapping; the dash-dotted FROC curve is the
outcome when a mapped version of this feature is used instead. The improvement by
adding this feature may be a reduction up to 25–50% of the number of false positives
depending on the required sensitivity (see arrows). The error bars denote two times the
standard deviation of the number of false positives over allscans.

The results for data set ’C’ are shown in Fig. 7.8(b). In contrast to data set ’A’,
patients from this data set were administered a fecal tagging agent. As a consequence, it
may be expected that the Mahalanobis distance mapping offI ,meanhas a larger influence
due to the presence of both candidates with a low mean intensity as candidates with a
high mean intensity. Here again, the solid curve corresponds to classification usingΦT

and fI ,mean. Similar to the analysis of data set ’A’, the featurefFOV is added and the
MD-mapping is applied to this feature and tofI ,mean. In contrast to the rectal tubes
in data set ’A’, the tubes in this data set did not have a balloon attached, but included
a marker of high attenuation material. Because of this, lesscandidates on the rectal
tubes were found and those which were found could often be easily discarded by means
of their intensity. As a consequence, adding the featurefFOV may be expected not to
improve the performance. This is confirmed by the dotted line, indicating no significant
improvement. Again, for the purpose of clarity, the FROC curves with the ’unmapped’
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Figure 7.8: FROC curves that indicate the added value of the featurefFOV and the use
of the Mahalanobis distance mapping. (a) Data set ’A’ with and without
fFOV. Using the Mahalanobis distance mapping leads to a small increase in
performance. (b) Data set ’C’ with and withoutfFOV and with the unmapped
and mapped mean intensity feature. The graph reveals that itis an absolute
necessity to apply the mapping in the case of fecal-tagged data.
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Table 7.3: Results of the candidate detection system
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’A’ 94 93 99 59 59 100 28 678

’B’ 49 38 78 28 28 100 12 334

’C’ 340 297 87 176 174 99 53 698

’D’ 8 8 100 8 8 100 8026

Total 491 436 89 271 269 99 102 736

fFOV are not shown in this figure, as they do not differ significantly. Observe that adding
fFOV does not lead to worse results.

The second step was to compute the same FROC curves with the mapped mean in-
tensity feature. A striking improvement can be seen. This result can be explained by
the fact that in this case there are both false detections with lower mean intensity as
there are false detections with higher mean intensity. According to these results, only
the mapped features will be used in further FROC analyzes.7.5.3 Multi 
enter evaluation
An important aspect of a CAD system for CT colonography is itsability to generalize
to data sets differing in a variety of aspects. The generalization power of the presented
system will be investigated by FROC analysis and a cross-center evaluation.

The patients from data sets ’A’, ’B’ and ’C’ were scanned in both prone and supine
positions. At the basis of this conventional approach is that a polyp is not always visible
in both CT scans, e.g. due to suboptimal distension or remaining fluid rests. Con-
sequently, a polyp may not be annotated in both scans. Let us initially focus on the
annotated polyp ’findings’ to assess the performance of the candidate detection step.

The candidate detection returned 88.8% (436/491) of the annotated findings≥ 6 mm
in total (see Table 3). The preparation of the patients is at the basis of the differences
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in the number of missed findings. The patients of data set ’A’ had undergone an ex-
tensive preparation. This might explain the fact that the system detected almost all
annotations in this data set (93/94). On the other hand, dataset ’B’ appeared to con-
tain a large amount of residual fluid (confirmed by [99]). Consequently, many polyps
were obscured by fecal remains, reducing the detection rateto 77.6% (38/49). Data set
’C’ had less contrast-enhanced fluid in the colon, which resulted in a higher detection
rate of 87.4% (297/340). The percentage of polyps detected in either scan was 99.0%
(269/271) (sensitivity is conventionally measured in thisway [8]).

Fig. 7.9 shows the results of the cross-center evaluation. It is generally known that
a large amount of features decreases the generalization power of a classifier, especially
when the data sets differ as much as the four data sets of our study. Therefore, we
consciously limited the number of features in this evaluation to the three features de-
scribed before:ΦT with a threshold 0.6 mm, MD( fI ,mean), and MD( fFOV). Each graph
in Fig. 7.9 corresponds to one test set; the line styles in thefigures indicate the specific
data set on which the classifier was trained. In the case of testing and training on the
data from the same medical center, a ten-fold, repeated cross-validation was performed.
The standard deviation indicated in the graphs is estimatedas the standard deviation of a
binomial distribution [19] and depends on the number of polyps and the sensitivity. This
standard deviation characterizes the variation in the FROCcurves when a new subset is
drawn from the same distribution.

It can be seen that in all graphs, the FROC curves for classifiers trained on the dif-
ferent data sets are generally within one standard deviation from each other. In other
words, the same performance is attained no matter on which data set the classifier is
trained. Concurrently, there are small differences in the performance of the CAD sys-
tem for the four data sets. Despite this, all yield a sensitivity larger than 85% at the
cost of five false positive detections per scan. Four polyps in data set ’B’ remained un-
detected at 86% (25/29) sensitivity. The missed polyps wereall reviewed by a fellow
researcher with a background in CAD of polyps in CTC. All missed polyps were cov-
ered by contrast-enhanced material in at least one of the twoscans and were annotated
in only one position. Consequently (no electronic cleansing was used), the CAD system
did not get a second chance of finding these polyps. In data set’C’, fourteen polyps re-
mained undetected by the CAD system at 90% sensitivity. The false negatives consisted
of tumors with lobulated shapes, polyps covered by fecal remains, ‘non-protruding’
polyps annotated as a flat polyp by the radiologists and polyps that were located be-
tween haustral folds. Even though data set ’D’ contained only one scan per patient, the
FROC curves for this data set compete with the FROC curves forthe other data sets.

In conclusion, the FROC curves for the different data sets show that the CAD system
is independent on the specific data set used for training. Thedifferences between the
curves are a result of the administration of a fecal tagging agent, the preparation of the
patients and natural fluctuations in the appearance of the polyps in the data sets.
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Figure 7.9: Each graph shows the results of classifying a certain data set, using four
different classifiers that are each trained on one of the fourdata sets. The
line style indicates the data set on which is trained. When the same data set
is used for training and classifying, a ten-fold, repeated cross-validation was
used.
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7.6. DISCUSSION AND CONCLUSION7.6 Dis
ussion and 
on
lusion
We developed a classification system based on logistic regression for computer aided
detection of polyps in CT colonography data. Typically, there are unbalanced and un-
known misclassification costs and a huge class imbalance. The latter occurs because
there are only a few examples of the abnormality class in a shear endless sea of normal
’healthy’ samples. Our classification system can cope with the aforementioned charac-
teristics by carrying out a regression analysis instead of classifying the candidates into
one of the two classes. The ordering correlates with the clinical relevance of the can-
didates. The exponential distribution of the candidates and the small number of polyps
available for training led to the use of the logistic classifier for regression. The logistic
classifier is low-complex and proved to be stable.

Candidates were detected based on their protrudedness fromthe colon wall. A fea-
ture derived from the protrusion field was sensitive for candidates that had steep edges
and large protrusion. Other features used were the internalintensity distribution, and a
feature to discard detections on the rectal tubes.

The features were divided into two types of features, namelyfeatures that allowed di-
rectly an ordering of the candidates and features that were well described by a Gaussian
density distribution. The features of the second type were mapped by a Mahalanobis
distance mapping to impose an ordering. This mapping was chosen because it emulates
a Gaussian one-class classifier. In this way, outlier rejection was incorporated into the
classification system.

After discarding the candidates on the rectal tubes, polypsand non-polyps could be
distinguished using only information about the protrusionand the internal intensity of
the candidates. The observed sensitivity was comparable tothe sensitivity of radiolo-
gists using CTC [87,105,123] and competed with other CAD systems [49,78,105,109].
It was also shown that the CAD system generalizes well to datasets from different
medical centers.

To conclude, we introduced a low-complex CAD system that took into account all
the characteristics of the classification problem. These characteristics will frequently
occur in medical image processing problems. The Mahalanobis distance mapping in
conjunction with logistic regression is generally applicable to obtain a clinically relevant
ordering of the candidates. For automatic polyp detection,the generalization to data
sets from different medical centers and with different patient preparations is essential to
application in large-scale screening.A
knowledgment
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8 Con
lusions
Adenomatous polyps are small protruding mounds that may develop throughout the
entire intestinal system. The ones that are located in the large bowel, or colon, are
referred to as colorectal polyps. Such polyps may develop into colon cancer, one of
the most commonly diagnosed types of cancer. Fortunately, there is a time window for
early detection and removal of colorectal polyps, and thus prevention of cancer.

The main goal of this thesis was to develop methods for automatic detection of col-
orectal polyps from CT data. These methods cover three important aspects in the detec-
tion pipeline:detectionof suspicious sites on the colon wall,segmentationof the site,
permitting size assessment and feature extraction, and, the classificationof these sites
into polyps and non polyps, or the ranking based on a measure of polypness. Various
techniques have been developed:

• Space variant filtering improves the measurement of image derivatives in highly
structured environments. This aids in the detection of initial polyp candidates in
strongly folded segments of the colon.

• Polyps can be accurately segmented by means of constrained propagation over the
colon surface. The developed method starts from an initial seed that is obtained
either by user interaction or by an automated method.

• The amount of colon wall deformation due to polyp tissue growth can be accu-
rately measured. Two novel methods have been developed thatdetect and segment
polyps with high sensitivity using a single threshold.

• Correct segmentation of polypoid objects is important in clinical decision making.
The methods for protrusion estimation yield accurate segmentations that compare
to manual size measures.

• A low-complex classification system was developed. It is based on logistic re-
gression that effectively orders the polyps according to clinical relevance.

103



CHAPTER 8. CONCLUSIONS8.1 Improvement 
ompared to dete
tion based onshape index
The measurement of curvature in CT data for the detection of polyps is a difficult task
for two reasons. The protrusions are not only embedded in a highly folded colon surface,
but the protruding objects also have an irregular shape which gives rise to an enormous
spread in curvature values depending on the amount of the regularization. Whereas the
irregular shape and size would require a rather large filter that matches the size of the
unknown underlying object, the highly folded nature of the colon restricts the size in
order to avoid mixing with surrounding structures. Therefore, noise suppression with
large isotropic filters is not possible. We have shown that with a specific formulation
of normalized convolution using a local Taylor expansion, space-variant kernels can be
constructed. In addition we have shown that these local kernels should be constructed by
discarding voxels belonging to neighboring image geometries. Thereby the derivative
filtering optimizes the trade-off between noise suppression and preservation of local
image structure. The assessment of the method by simulated images shows that the
space-variant filtering outperforms isotropic filtering.

In chapter 3 we presented an algorithm for the automatic segmentation of polyp-like
structures on triangulated isosurfaces. It was shown that our algorithm yields a smaller
bias than the measurements from radiologists: on average 1mm or less for the automatic
method and between 1 and 7mm for the radiologists, dependingon the irregularity of
the object.8.2 Protrusion dete
tion
In chapter 4 and 5 two novel methods have been developed to detect protruding objects.
They aim to estimate the deformation of the colon surface that is introduced by polyp
growth. This is achieved by finding a steady state solution ofa nonlinear PDE with the
recorded image as input.

It was shown that the displacement of iso-contours relates to a change in image in-
tensities in protruding regions in the image. This relationwas made invariant to the
anisotropic resolution and sampling. A segmentation of polyp candidates was obtained
by applying a single threshold to the deformation field.

From the segmentations several features were extracted that directly relate to polyp
size, and not to polyp shape. As a consequence ordering with respect to size is possible
which, in effect, keeps increasingly larger objects further away from decision bound-
aries. In other words, this limits the risk of missing large polyps. Also, the method does
not make a specific choice for the scale of the computation of the 1st and 2nd order
derivative operators. The iterative character of the method automatically changes the
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intrinsic scale of the image (local and anisotropic): the aperture of observation (window
size of the operation times the number of iterations) increases until convergence.

Another advantage of the new approach is the fact that as a by-product good seg-
mentation and size measures of the polypoid objects are obtained. In chapter 6 the seg-
mentation method was evaluated and compared to a manual measurement. The study
shows that for phantom data the measurement variability of the automatic method was
smaller than the measurement variability of the observers when either the orientation of
a phantom or the slice thickness was varied. This indicates that the automatic method is
less sensitive to such data variations. Moreover, the automatic approach had a smaller
variation than the observers in comparison to the referencestandard.8.3 Classi�
ation
A novel classification system based on logistic regression was proposed. It orders the
candidates by a linear logistic classifier (logistic regression) based on only three fea-
tures. This classifier can cope with a small number of polyps available for training, a
large imbalance between polyps and non-polyp candidates, atruncated feature space,
unbalanced and unknown misclassification costs, and an exponential distribution with
respect to candidate size in feature space.

A clear distinction was made between those features that aresuitable for ordering
the candidates according to size, and those allowing for density estimation and outlier
rejection. The features of the second type are transformed into a single feature by a
Mahalanobis distance mapping. Together with features of the first type they are used in
a regression analysis. The outcome leads to an ordered set from which FROC curves
were extracted to estimate the classification performance.8.4 Evaluation
We tested the robustness of the CAD system based on methods from chapters 4 to 7 by
a cross-center evaluation in which the system is trained andtested with data from four
different medical centers (307 patients). For polyps larger than or equal to 6 mm we
achieve sensitivities of respectively 95%, 85%, 85%, and 100% with 5, 4, 5, and 6 false
positives per scan over 86, 48, 141, and 32 patients.

Note that the data differs not only in patient preparation, but also in scanning protocol.
Permutation of the training set among the different centersshowed that the CAD system
generalizes well under these varying conditions. The observed sensitivity was compara-
ble (>85%) to the sensitivity of radiologists using CTC and competed with other CAD
systems with only a limited number of false positives.
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CHAPTER 8. CONCLUSIONS8.5 Challenges for future resear
h
A number of challenges lie ahead in computerized screening for colorectal polyps.Towards s
reening. CAD systems have not yet established themselves in the clinic.

Several recent studies indicate a complementary role in CT colonography, when
CAD is used as second reader [6,10]. However, more research is needed to evalu-
ate the use of CAD systems under varying conditions such as patient preparation
and scanner types.Colon Cleansing Advances in CT Colonography includes the use of contrast agents
to tag fecal remains inside to colon. This allows for accurate localization of the
colon wall with limited patient preparation. The evaluation of such data requires
computerized techniques for both enhanced 3D visualization and automated de-
tection. Digital cleansing aims to segment the colon surface in the presence of
tagged intraluminal remains. Currently, the effect of digital cleansing on the per-
formance of automated detection is unclear. Further research is needed to achieve
good performance as digital cleansing is combined with CAD.Flat Polyps Current techniques to detect colorectal cancer, such as optical colonoscopy
and CT Colonography, are based on the assumption that the neoplasms are poly-
poid. However, recent studies have demonstrated that colorectal cancer can also
arise from nonpolypoid colorectal neoplasms [102]. The latter types are more dif-
ficult to detect because there are only subtle changes to the normal mucosa. The
same holds for automated detection of those so called flat polyps. The detection
of flat polyps will require new techniques including new features for classifica-
tion. There is no clear indication that CT imaging is sufficiently discriminating as
these lesions do not lead to large deformations nor image contrast. Several papers
indicate that there is a high risk of flat polyps to be cancerous at the time of diag-
nosis [64,92]. This may inspire new developments in MRI colonography, which,
despite its reduced imaging resolution, may provide alternative or additional con-
trast.
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Summary
Automated Detection of Polyps for CT Colonography

In this thesis algorithms are proposed for the automated detection of colorectal polyps
in 3D CT images. Polyps develop due to excessive tissue growth resulting in the colon
surface to bulge out into the lumen. As a result the colon shape changes. This change
may be detected by automated techniques. It usually involves three steps: colon seg-
mentation, candidate detection and candidate classification. This thesis focuses on the
second and third step: finding candidate sites followed by ranking and classification.
The most common approach in computer aided detection of polyps is to focus on the
characteristic protruding shape of polyps. Although we contributed to this approach as
well, the main contribution of this thesis is the invention of a novel approach which
measures the amount of colon surface displacement due to polyp growth.

Image derivatives play a crucial role in measuring local shape. Their measurement
at or near the colon surface is particularly difficult due to its highly folded structure.
This prevents the use of large filter kernels. We extend the technique of normalized
convolution with a specially devised weighting term in order to optimize the trade off
between noise suppression and structure induced bias.

To assess the clinical importance of detected objects, a reliable measure of polyp size is
needed. We present a new algorithm for the segmentation of polyps in 3D CT images.
It operates on a triangulated isosurface and takes into consideration the local orienta-
tion and position of the mesh. The algorithm starts with and expands an initial seed,
located somewhere on the protruding surface. Based on the resulting segmentation the
algorithm estimates the size of the object. We assess the performance by comparison to
expert size measurements on phantom data and true polyps.

Through the invention of a method called “second principal curvature flow” applied to
an explicit triangulation of the colon surface, we propose anew method for the detection
of candidate sites. It is based on the notion that polyps haveintroduced a local defor-
mation of the colon surface. The method estimates the original ’undeformed’ surface
position by solving a nonlinear partial differential equation. Candidate sites are obtained
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by selecting the regions where the mesh displacement is larger than an optimized thresh-
old. The method is assessed by a supervised classification, based on features obtained
from the deformation field and the grey level image.

The same principle can also be applied directly to the 3-D volumetric data, in which
case the method operates directly on the grey level voxels, rather than a triangulated
isosurface. It is shown, that the use of the second principalcurvature is sufficient to es-
timate the amount of deformation due to the growth of a polyp.A classification scheme
based on linear logistic regression is proposed that explicitly keeps large polyps away
from the decision boundary. Again, the method’s performance is assessed by means of
supervised classification.

The aforementioned detection method has another advantageover the traditional ap-
proach based on polyp shape: as a byproduct a good polyp segmentation is obtained.
The accuracy of the segmentation is assessed by a comparisonto expert size measure-
ments of phantom data and true polyps. The conclusion of thiswork is that for phantom
data, the automated method shows a reduced variability withrespect to manual size
measures. For patient data the automatic method shows a variability that is in the same
range as manual measurement.

We conclude, by proposing a method that orders the candidates by a linear logistic
classifier (logistic regression). It uses only three features: the protrusion of the colon
wall, the mean internal intensity and a feature to discard detections on the rectal enema
tube. This classifier can cope with a small number of polyps available for training, a
large imbalance between polyps and non-polyp candidates, atruncated feature space,
unbalanced and unknown misclassification costs, and an exponential distribution with
respect to candidate size in feature space. Our complete CADsystem (detection +
classification) was evaluated with data sets from four different medical centers (307
patients). For polyps larger than or equal to 6 mm we achieve sensitivities >85%, with
6 false positives per scan. A cross-center evaluation in which the system is trained and
tested with data from different sources showed that the trained CAD system generalizes
to data from different medical centers and with different patient preparations.
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Samenvatting
Automatische Detectie van Poliepen in CT Colonografie

In dit proefschrift worden algoritmen voorgesteld ten behoeven van de automatische
detectie van colorectale poliepen in 3D CT beelden. Poliepen ontwikkelen zich door
excessieve weefsel groei, met als resultaat een uitstulping van de darmwand. Als resul-
taat hiervan verandert de vorm van de darm. Deze veranderingkan worden gedetecteerd
met behulp van automatische technieken. Meestal gebeurt dit in drie stappen: darm seg-
mentatie, kandidaat detectie en classificatie. Dit proefschrift spitst zich toe op de tweede
en derde stap: het vinden van kandidaat locaties in de darm, gevolgd door een ranking
en classificatie. De meest gebruikelijke methoden in gecomputeriseerde detectie richten
zich op de karakteristieke vorm van poliepen. Alhoewel dit proefschrift ook bijdraagt
aan deze methoden, is de grootste bijdrage de uitvinding vaneen nieuwe aanpak waarbij
de verplaatsing van de darmwand, als gevolg van poliep groei, gemeten wordt.

Beeld afgeleiden spelen een cruciale rol in het meten van vorm. Het meten ervan op
of bij de darmwand is moeilijk in het bijzonder, door zijn sterk gevouwen structuur.
Dit belet het gebruik van grote filters. In dit proefschrift wordt de techniek van genor-
maliseerde convolutie gebruikt, met een speciaal toegepaste wegingsterm, om de afweg-
ing tussen ruis onderdrukking en door structuur geïnduceerde afwijkingen te optimalis-
eren.

Om de klinische belangrijkheid van gedetecteerde objectente beoordelen is een be-
trouwbare maat voor poliep grootte nodig. Dit proefschriftpresenteert een nieuw algo-
ritme voor het segmenteren van poliepen in 3D CT beelden. Hetwerkt op een getrian-
guleerd iso intensiteitsoppervlak en houdt rekening met delokale oriëntatie en positie
van het mesh. Het algoritme groeit een gebied, startende vanuit een initieel punt, gepo-
sitioneerd ergens op het uitstulpende poliep achtige object. Het algoritme gebruikt de
resulterende segmentatie om de grootte van het object te schatten. De prestatie van
het algoritme wordt beoordeeld door expert metingen te vergelijken met automatisch
gemeten grootte voor zowel fantoom objecten als ook poliepen.

Door middel van de uitvinding van de methode genaamd “secondprincipal curvature
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flow”, toegepast op een getrianguleerd iso intensiteitsoppervlak, stelt dit proefschrift een
nieuwe methode voor voor de detectie van poliep kandidaat locaties. Het is gebaseerd op
de observatie dat poliepen de darmwand lokaal deformeren. De methode schat de locatie
van de originele “onvervormde” darmwand door het oplossen van een niet lineaire par-
tiele differentiaalvergelijking. Kandidaat locaties worden verkregen door het selecteren
van die gebieden waar de mesh verplaatsing groter is dan een geoptimaliseerde drem-
pelwaarde. De methode is beoordeeld door middel van gesuperviseerde classificatie op
basis van eigenschappen verkregen uit het deformatie veld en de grijswaarden van het
beeld.

Hetzelfde principe kan worden toegepast op de 3D grijswaarde data, in welk geval de
methode direct gebruikt maakt van de voxel data in plaats vaneen getrianguleerd iso
intensiteitsoppervlak. In dit proefschrift wordt aangetoond dat het gebruik van tweede
hoofdkromming voldoende is om de hoeveelheid vervorming door poliep groei te schat-
ten. Een classificatie gebaseerd op lineaire logistische regressie is voorgesteld, waarbij
grote poliepen expliciet ver weg van beslissingsgrenzen wordt gehouden. Ook deze
methode is beoordeeld aan de hand van gesuperviseerde classificatie.

De bovengenoemde detectie methode heeft nog een ander voordeel boven traditionele
methoden gebaseerd op poliep vorm: als bijproduct wordt eengoede poliep segmentatie
verkregen. De nauwkeurigheid van deze segmentatie is beoordeeld door een vergelijk
met expert grootte metingen van fantomen en poliepen. De conclusie van dit werk is
dat voor fantoom data de automatische methode een kleinere variatie vertoont. Voor
patiënt data laat de automatische methode een variabiliteit zien die vergelijkbaar is als
handmatig meten.

Het proefschrift concludeert met een voorstel van een methode waarbij de kandidaten
worden gerangschikt door een lineaire logistische classificator (logistische regressie).
Er worden drie eigenschappen gebruikt: een maat voor de uitpuiling van de darmwand;
de gemiddelde intensiteit in het object en eigenschappen die detecties op de rectale buis
kan onderscheiden. Deze classificator kan overweg met kleine aantallen poliepvoor-
beelden bij training, grote klasse onbalans tussen poliep en niet poliep kandidaten, een
afgekapte eigenschappenruimte, ongebalanseerde en onbekende classificatie kosten en
een exponentiele verdeling met betrekking tot de kandidaatgrootte. Het complete CAD
systeem (detectie + classificatie) is geëvalueerd met data uit vier verschillende cen-
tra (307 patiënten). Voor poliepen grote dan 6mm wordt een gevoeligheid bereikt van
>85% met 6 fout positieven per scan. Een centra-overschrijdende evaluatie waarbij het
systeem is getraind en getest met data van verschillende origine laat zien dat het ge-
trainde CAD systeem goed gerealiseerd voor data van verschillende centra en patiënt
voorbereiding.
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