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1 Introduction

Polyps are small protruding mounds that may develop througthe intestinal sys-
tem. The ones that are located in the large bowel, or cole@ederred to as colorectal
polyps. Colorectal cancer that may develop from them is drte@most commonly
diagnosed type of cancer, responsible for about 12% of atexarelated deaths. For
males it is the third ranked cause of cancer related moytafiier lung and prostate can-
cer. For female it is also ranked third, after breast and kargeer. In The Netherlands,
each year about 9000 people are diagnosed with the disedseas than 4000 die as
a result from it. (source: KWF kanker bestrijding).

About 95% of all cases of colon cancers arise from adenomsatolyps, that are ini-
tially benign [11]. Due to genetic mutations, such polypsedep from the top layer of
epithelium cells that make up the colon surface. By the m®c# oncogenesis a polyp
may evolve stepwise from small tubular adenomas to largeadas and eventually to
carcinomas [17]. Thatis, due to cell proliferation, theacolvall thickens and bulges out
and thereby undergoes a morphological change without whahdetection by means
of imaging techniques such as computerized tomography ¢€optical colonoscopy
would not be possible.

Polyps are initially not cancerous. Unfortunately, theseichance of gradual de-
velopment into malignancy, and, this chance is relatedsteite. For polyps of about
five millimeter in diameter the transition from healthy tiesto malignancy may take
up more than ten years. However, for polyps of about ten méter in diameter this
time span is reduced to five years [71] and for even largemsalye transition may take
place in an even shorter time. The good news is, that, the pogigalignant polypoid
stadium, offers a time window for screening and removal,tang, prevention.

Itis proposed that polyps with a diameter smaller than 6 nguire no further action,
whereas polyps equal to and larger than 10 mm should be rehigveolonoscopy [22,
146]. There is debate over the need for polypectomy for 6-Qoiypps. Surveillance
for growth with CT colonography has been suggested as a bafaative [12, 146].

Another concensus is reached on the effectiveness of segeeihigh risk and symp-
tomatic patient groups, including those with a known hdeaglirisk for colon cancer.
There is, unfortunately, much less agreement on the neeadifeening of asymptomatic
populations [54].

A standard method to examine a patient is by means of optatahoscopy. This
is accomplished by inserting a colonoscope into the anugharadvancing it slowly
into the rectum and through the colon. Images of the colon aral projected on a
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video screen or can be observed directly through the scape€fil.1). Unfortunately,
the technique has a couple of drawbacks. First, there is 8 ggkafor complications.
Moreover, direct visual inspection requires the colon tcleansed. To that end, pa-
tients undergo an extensive laxative preparation, whitiasnain cause for low patient
acceptance [123]. Also, polyps may be missed due to theddpening angle of the
camera in combination with the highly structured naturenef¢olon. In an ideal situa-
tion colonoscopy is only applied to patients known to haitenge) polyps, so that they
may be instantly removed.

Figure 1.1: Images from inside the colon during a colonogcbipthe left image a polyp
is being removed using a polypectomy snare. The image orgheghows
the colon after removal of the polyp.

An innovation which partly avoids these drawbacks is CT oolygraphy, which is
a radiological technique which employs computerized toraplgy. The methods dis-
cussed in this thesis apply to the data as obtained by the tatthnique. It is briefly
described below.

1.1 CT colonography

CT colonography (CTC) was presented in 1994 [131] as a tgdenwith which a 3D
image of a patient’'s abdomen is recorded by a CT scannerkéJajitical colonoscopy,

the technique is non-invasiv@nd does not require sedation. CTC has been studied
extensively over the last years [5, 29, 34, 39,41, 48,5345,

Traditionally, the images are visually inspected by a coration of slice by slice
inspection and volume renderings [96]. Two factors hamipeirispection. Segments of
the colon may be collapsed and stool may be present in tha.c8tool typically has an
attenuation similar to tissue and thus may yields falsepnétation of the colon surface

LApart from a small radiation dose
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location. In order to reduce the sensitivity to these ast#ait is clinical practice to scan
patients twice (in prone and supine position). Typical expon times per patient is
about 20-30 minutes [96, 132].

Figure 1.2: Grey image slice through a 3D volume obtainedh T Colonography
(left). Isosurface rendering at -750 HU of the colon (right)

An important aspect that is used in deciding on a patiergatinent is the polyp size.
It is measured from the largest object diameter in crossas®dtviews or in volume
renderings. For this digital calipers are used (See figuBe Iln optical colonoscopy
size is also an important aspect, but the technique prowdese additional textural
information, such as the blood vessel structure that majnalte decision taking).

Patients harboring polyps larger than or equal to ten métenare to be scheduled
for optical colonoscopy, such that the polyp can be remonedediately. Such polyps
inhibit a large risk for cancer. Smaller polyps, with a sizvieen fivé and ten mil-
limeter, inhibit a smaller risk. They are removed neveehs| in case the patient is
scheduled for optical colonoscopy due to the presence @¢ lpolyps. Otherwise the
patient is rescheduled for a scan at a later time. Polypsawize smaller than five (or
six) millimeter are considered to inhibit a small risk andytltannot be found with high
sensitivity and specificity. They are usually ignored.

The main drive behind the development of CT colonographypamed to optical
colonoscopy is the expected higher patient acceptancd.[122vas concluded that
patients with an increased risk for colorectal cancer pre¢eCT colonography above
colonoscopy even if there was a 20% chance for subsequamastopic investigation.
A role of CT colonography in screening is to pre-select pasi@vith polyps such that
only patients with polyps are sent to colonoscopy. Anotldeaatage of CT colonogra-
phy is that it aids colonoscopy by localizing the lesion ardde increasing the overall
sensitivity.

2Sometimes a size of six millimeter is used.
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Figure 1.3: Manual size measurement in CT Colonographygudiigital calipers. The
operator selects two points on each side of the polyp. Thardis between
the points is used as a measure for polyp size. The size & @itbasured in
2D cross sectional views (a) or in 3D isosurface renderibs (

The sensitivity and specificity of colonoscopy and CT colgnaphy was assessed
in a number of studies [5, 29, 33, 34, 39, 41, 48, 53, 93, 14%le performance of CT
colonography is generally compared to a golden standagadraat with colonoscopy. It
is estimated that CT colonography has a sensitivity of addB595% [5,122]. A large
study on 3000+ patients from an increased risk populatiorlcoles that CT colonog-
raphy and colonoscopy have a similar sensitivity [55].

A drawback of manual inspection of CT data is the large amoftidata which has to
be analyzed. A typical CT dataset consists of 250-700 s{aegsending on scanner type
and settings). As discussed above, it is clinical practicgcan patients twice, in prone
and supine position, to increase sensitivity, but sim@arsly doubling the amount of
data. The development of CT colonography for large screepmegrams preferably
involves automation to facilitate the large amount of dathat is, a Computer Aided
Detection System (CAD) is needed to detect suspicious aitéke colon surface. Ide-
ally, instead of inspection of the full colon only a few suspus sites are presented to
the radiologist.

This thesis discusses several aspects of such a system.

1.2 Automated detection

A number of key issues are associated with the automatioolgppletection. Similarly

to manual inspection, patient preparation is importante Tike of extensive laxative
preparation may remove most fecal remains, however, the thad remain are often
difficult to distinguish from polyps or tissue. This may baoted by the use of tag-
ging. Tagging has the advantage that fecal remains and ftai@asily discriminated
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from tissue by means of their intensity (which is increasdddwever, for automated

detection, the use of a contrast agents introduces theh&kpblyps are fully or par-

tially covered by (bright) fluid, which hampers its deteatidn such situations, digital

techniques [99] are required to remove the tagging from theges before applying
detection algorithms. The techniques presented in th&gtae intended to be applied
to data that have been digitally cleansed first. The multerevalidation (chapter 7),

includes results obtained from data without applying digiteansing.

Another issue, specific to automated detection, is falsectiens on either the ileoce-
cal valve, or the rectal tube (with insufflated balloon-ggdpcatheter), which both have
characteristics similar to polyps. This thesis has igndinedssue of detections on ileo-
cecal valve. It is addressed in a number of other studied i, In chapter 7 the issue
of false detections on the rectal tube is discussed.

Currently, there is an ongoing debate [32, 38, 89, 92, 102,41 the prevalence and
clinical significance of so called 'flat’ polyps. The term tflasually defines elevations
less than 1 cm in diameter with a polyp height that is less ttaédfrof its width and which
have a plaguelike morphology. Because these lesions aeralgnless conspicuous
than polypoid lesions, they can be more difficult to dete¢hbo optical colonoscopy
as well as CTC. In [89] it is argued that, although flat lesiteraain a diagnostic chal-
lenge they do not represent a major drawback to widespre&lsCiieening. In [102] it
is argued that "completely flat lesions are exceedingly'rareis thesis does not specif-
ically address the detection of flat polyps, but, the techesgdeveloped in chapters 4
and 5 are designed to detect any elevations from surroursdirigces before ordering
them based on size and intensity measures. As such flat polggsbe detected by
techniques proposed in this work.

The aim of automated detection of colorectal polyps is taicedinspection time,
without sacrificing detection sensitivity and specificifyhis is achieved by presenting
to the expert, only the most suspicious sites, allowing ¥ped to skip inspection of the
obvious polyp free parts of the colon. In this context, twstidict roles for Computer
Aided Detection (CAD) are acknowledged [39, 83, 86, 116]sitnations where CAD
is 2nd reader, after a human expert, the sites are to be peds@nan orderly fashion,
such that the most prominent ones missed by the expert avendirgt. In the other
case, where CAD is to be first reader, an absolute measurelgpipess’ is required,
instead of a relative ranking. Additionally, as a first readeformation is required,
which allows performing a diagnosis. That is, informationieh relates to the chance
to develop cancer, such as a measure for the polyp size.

The polyp detection pipeline consists of three steps (figue segmentationof the
colon wall from the CT imagesietection(and segmentation) of suspicious sites (polyp
candidates); and ranking followed biassification[43, 103,107, 141, 143].
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Colon » Candidate ,
Segmentation Detection

Classification [ | Results

CT Ilmage [ "

Figure 1.4: Three steps of a typical detection scheme.

The first step is relatively simple due to the high contrasiveen tissue outside and
air inside the colon which allows for a segmentation of tHewérom the 3D CT volume
by a fixed threshold. The threshold is roughly set to halfwemalue for tissue and air.
User interaction is sometimes used to discard air in thelsgntabtines, lungs or other
air containing organs.

Proper patient preparation is important to avoid two maumsea for failing segmen-
tation. First of all, remaining stool has very little cordtravith tissue and, if present in
the colon, may lead to false positive detections or polygsrsrged in stool may be
missed. The use of contrast agent to tag stool present irotbhe s common practice
nowadays. Advanced segmentation techniques were proposadtain 3D viewing
[98]. Secondly, proper distention is vital to avoid collagsegments. This thesis does
not further address the issue of colon segmentation. Thiereareferred to [69].

The second step, the detection of suspicious sites on tbe eall, is performed to
discard large parts of colon wall, which are 'obviously’ noolypoid. The aim of this
step is to retain a high sensitivity. The specificity may kibealow, as it is to be im-
proved in a subsequent supervised pattern recognition Atigge number of methods
have been proposed for candidate detection. The most compymoach is to focus
on the characteristic protruding shape of polyps. It ineslvneasures that describes
the local shape of the colon wall and they are often comparealues expected for
polypoid shapes[20,49,56,75,76,82,103,111, 143, 14¥dper2 and3 of this thesis
contribute to such an approach.

Others have looked at probabilistic models [70] or stai@gdtmethods to analyze tem-
plate similarity measures [35]. A number of papers focusralyaing the deformation
properties of the colon wall [1,62,63,130] and again otherse proposed to incorporate
wall thickness measures [79].

In the chapters 4 to 6 a novel approach is proposed whichgddstocuses on the
amount of colon surface displacement due to polyp growth.

The third step of the detection pipeline involves the disanation of the candidate
regions into polyps and non polyps. A number of papers pregds include a pro-
cessing step to reduce the number of false positive findmtse previous step [67, 72]
or have looked into false positive reduction by focussingliekly on detection of the
ileocecal valve an or rectal tube [7,67,110]. The most ss&fcd strategy seems to be
one, involving supervised pattern recognition using gtdeshdard expert labeling of CT
data sets, for which both an optical colonoscopy and CT agoaphy ground truth is
available [50,52,113].
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1.3 Thesis organization

This thesis focuses on the second and third step of the aetgupeline: finding can-
didate sites followed by ranking and classification.

The analysis of the colon surface shape requires the cotmgruid image derivatives.
Their measurement is particularly complicated due to tighliifolded structure. This
prevents the use of large filter kernels. dmapter 2 a technique is proposed that uses
normalized convolution with a specially devised weightiegn in order to optimize the
trade off between noise suppression and structure induasd b

A new algorithm for segmentation of polyps is presentechiapter 3. It operates on
a triangulated isosurface and takes into consideratiolotta¢ mesh orientation and ver-
tex position. The algorithm starts with and expands anah#ed, located somewhere
on the protruding surface. Based on the resulting segnmentdie algorithm estimates
the size of the object.

Using a similar explicit triangulation of the colon surfagechapter 4a new method
is proposed for the detection of candidate sites. It is basdte notion that polyps have
introduced a deformation to the colon surface. The methbohates the colon surface
dislocation and candidate sites are obtained by seledimgegions with a dislocation
larger than an optimized threshold. The method is testeldarcontext of a supervised
classification scheme, based on features obtained frometfwgndation field and the
grey level image.

Chapter 5 proposes a method that is based on the same principle. Coraplary
to the previous approach, this method operates directihemtey level voxels, rather
than a triangulated isosurface. It is proved, that the sg:@oimciple curvature is suf-
ficient to estimate the amount of deformation. A classifaascheme based on linear
logistic regression is proposed that explicitly keepsdarglyps away from the decision
boundary. Again, the method is assessed in the context gpergaed classification
scheme.

In chapter 6 a polyp segmentation method is evaluated. Unlike the metiod
chapter 3, the segmentation is obtained directly from tHerdetion field. The per-
formance of the method is assessed by comparison to exgerimgasurements on
phantom data and true polyps.

Candidate detection typically renders a lot of candidabesusstain maximum sen-
sitivity. Hence, the number of objects from the target cigssyps) is relatively low.
This large imbalance of the prevailing classes typicallgnpars classifier design and
training. Furthermore, the classifier should take into aotthe increased clinical rel-
evance of larger polyps. The lagdtapter 7in this thesis discusses the consequences of
these characteristics for the design of the classificatstes. A novel, low-complex,
classification system is proposed that orders the polypsrditg to clinical relevance.
This chapter also serves to demonstrate the overall peafocenof a CAD system based
on the techniques presented in this thesis.






2 On normalized convolution for
the measurement of image
derivatives in highly structured
surroundings

This chapter discusses the trade-off between noise reduatiile retaining the image
structures when computing image differentials. A schenpeasented which allows to
incorporate confidence values into the measurement. Thense is evaluated with an
application for finding protruding regions in 3D CT imagestioé human colon from
differentials up to second order.

Based on:

C. van Wijk, R. Truyen, R.E. van Gelder, L.J. van Vliet, F.MxsyOn normalized convolution
to measure curvature features for automatic polyp detactidlCCAI 2004 [128]



CHAPTER 2. ON NORMALIZED CONVOLUTION FOR THE MEASUREMENT
OF IMAGE DERIVATIVES IN HIGHLY STRUCTURED SURROUNDINGS

2.1 Introduction

Noisy data asks for a certain amount of regularization, w&a®rthin or small image
structures require a very small filter kernel. Violating fimst requirement yields a
noisy result (stochastic error) whereas violating the sdatauses a substantial bias
in the derivatives (systematic error). For example, botbrerhamper the curvature
measurement in 3D CT images of the human colon in which cade§ra trade-off
between the conflicting requirements is very difficult duth®presence of small folded
structures on the colon wall of only a few voxels wide (seauFe2.1).

In this chapter we present a novel method to adapt the sizeslzayae of the filter
kernels to the local image data. The method avoids the sgs$ieaherror due to mix-
ing of nearby image structures and is optimized for noiseicedn. However, using
irregular shaped filter kernels requires a space-variamalization of the derivative
filters. Therefore we present an intuitive framework forideg normalized differential
convolution of arbitrary order (Section 2.2.1). In sectih@.3 we present a scheme to
compute space-variant kernels from the local image strectu

Derivatives in 3D images can be computed by convolution @éhvatives of Gaus-
sian kernels. In order to adapt the Gaussian (derivativejeke to the local geome-
try they are multiplied with a confidence function which igrexted from the local
image structure. This additional weighting requires reamadization as well as a (re-
Jorthogonalization. The technique which takes care of Imtiormalized convolution
([28,61])

The performance of the new method is assessed on both sadwdatwell as CT
data. For the detection of polyps the resulting image davies.can be combined into
principal curvaturesk, andk» (Thirion and Gourdon [120]). Based on the principal
curvatures a number of polyp detectors can be constructeshitfa [141] uses primarily
the shape index and curvedness. The shape index is giv&h iay% — %atan(M)

K1—K2
o k2 +k2
and the curvedness is given 6y = y/ -15-2.

2.2 Methods

2.2.1 A least squares approach to normalized convolution

The following assumes a 2D image (extension to 3D image sigasteaightforward).
Consider a local neighbourhoodNfx N pixels f; that is modeled by a Taylor expansion
around the center of the local neighbourhood (indicated)by 0

fi = 1(0) +14(0) + yily(0) + -2 s SEARD) @)

10
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Figure 2.1: Small kernel overlaying multiple image struetu

in which| indicates the 'true’, underlying image function aind a linear index. Using
terms up to the second order and substitutjng- | (0), N2 = 1x(0), ..., Equation 2.1 is
rewritten as:

f1 1 x y1 05% 05y2 xy1 N1

fn2 1 X2 Yn2 0.5X§I2 0.5y§2 XN2YN2 Ne

The local neighbourhood can be depicted as a point Madimensional space spanned
by the orthonormal basige }. A new set of basis vectoly = {1, x,y, %, %, xy} are

the basis functions of the Taylor expansion (i.e. the cosimirthe matrix in Equation
2.2). Thus{n1,n2,n3, N4, Ns, N} are the coordinates of the signal on the new basis and
directly yield the first and second order derivatives. It barstated that:

fi=Bnl +r (2.3)

Equation 2.3 merely rewrites Equation 2.2, implying that #ignalf on basisg is
approximated by the so-called basis tenBaimes the coordinates df on basisbj,
(ntj)), with a residuat. It must be emphasized that, in general, the basis functans
be freely selected and need not be orthonormal. Our basisweey chosen to comply
with the Taylor expansion. The objective now is to find the nmmdinates*ltj) by
minimizing the erroe = || f —Bn| = (f —Bn)2. The result is the general least squares
solution to 2.3: .

(B™B) BT fl=n] (2.4)

with (BTB)~1BT the pseudo-inverse &.

To reduce the influence of points further away from the neaginbood center we mul-
tiply the set of equations in eq. 2.2 by a (rotation invananatrix A, with A = ATA.
The N2 x N2 diagonal matrixA contains spatial weights and is called the applicability

11
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function. o
Afi=ABn,. (2.5)

Multiplication with A is allowed as long as it does not yield a singular system ofequ
tions. Similarly, each equation in (2.5) can be multipliggia by other weights. It is
now clear how confidence levels assigned to each neighbouseacorporated. The
result is a double weighted least squares solution:

(BTACB)'BTACf,=n/] (2.6)

with the diagonal matrixC = C’C holding the confidence value of each neighbor.

2.2.2 Normalized convolution and Gaussian derivatives

In the previous section the signal was expanded using a Tpglgnomial. However,

the choice for the basis is not limited to it. The advantagethe® Taylor expansion

is that image derivatives are obtained directly from theffements (7). Other basis

functions are also possible and one in particular leadsstovidll known Gaussian n-jet.
The Gaussian kernel is given by the functional

X2

G(x,0)=¢€ 22 =% 2.7)

with X = ﬁ
The n-th Gaussian derivatives can be written as the Gaussiation times a Hermite
polynomial of order n. One aspect of Hermite polynomialb& they belong to a family

of orthogonal functions on the infinite interval ¢, o) with the weighting functior .
Therefore, using Hermite polynomials, together with anligapility function given by

A

2 AT A .
A=e"z, A= ATAleads to kernels given by:
(BTAB)~1BTA (2.8)
The matrixBT ABis diagonal as each element is given by:

5 Hi0AHj (0 = 2 ity 3 29)

One consequence of the orthogonality of Gaussian basidasas, the the projections
of the signal onto each basis function can be computed imakgmly. Additionally the
termBT A give the well know Gaussian derivative kerndiﬁ(:i)ne*’zz.

Unfortunately, when the the confidence values assignecttimtal neighborhood are
not constant, the orthogonality is lost and the inversioedoation 2.8 is not trivial. It
needs to be recomputed for each local neighborhood selyarate

12
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2.2.3 Local confidence values

The framework presented in the previous section accomrasdarmalized space variant-
kernels. The confidence values which are inserted into thdagzation are computed
locally and will adapt the kernel to the local image strueturhe goal is to assign high
confidence to voxels on the image structure under considaerahd a low confidence
to other structures. Such structures might be neighbodlusf changes in tissue struc-
tures, the opposite side of a fold, etc.

We propose the following scheme to compute the confidenceesal

1. Segment the air to find the air-tissue interface. Usuhbllyis achieved by simple
thresholding. We use a dynamic threshold [9] to allow for aett segmentation
of geometries affected by partial volume effects.

2. Compute for all voxels the distance to the air-tissueriate. We perform two
distance transforms. One to compute the distance to aim fne we subtract a
second distance transform, the distance to tissue. Thratpe results in positive
values for air and negative values for tissue. On the coldhthwa values of the
distance transform are zero.

3. Compute the gradient of the distance transform whichagillas a normal vector
field. We will use these normals to distinct between diffésgtructures.

Steps 1 to 3 can be computed for the entire image at once. knasbithe following
step is a local one to be incorporated in the convolutiongsecTo distinguish between
different geometries one can remark that the surface nawfribk structure under con-
sideration will differ from that of the direct neighborintygctures.

1. Assign neighboring voxels to belong to the current stmecby taking the inner
product of the normal at the neighborhood center with thenabof a neighbor.
A threshold on this value (e.g. >0) classifies the neighbdrsats its confidence
value to zero or one.

An example of a region selected by the above scheme is givielgime 2.2 . Note that
the confidence values are weighted with the applicabilibction in the regularization
process.

2.3 Results

The performance of the space-variant filtering is assesadubth simulated objects
as well as CT data. Two test images were created to test thputation of radii of
curvature with both the isotropic method as well as the newhote The first image,
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CHAPTER 2. ON NORMALIZED CONVOLUTION FOR THE MEASUREMENT
OF IMAGE DERIVATIVES IN HIGHLY STRUCTURED SURROUNDINGS

Figure 2.2:Constructed confidence values for a neighborhoati®Bpixels. The neigh-
borhood center is indicated by the black dot.

displayed in Figure 2.3a, is a 3D cylinder (only cross-sgcshown) which was con-
structed using the error function withaof 2. The cylinder has a radius of 18 pixels.
Gaussian noise was added to the images. The standard dewétihe noise was 4%
of the contrast (intensity difference between air and 8$stlihe second test image con-
tains two 3D cylinders, their centers separated by 40 piXdis image was constructed
by multiplying two separate cylinder images after whichsaoivas added.

Figure 2.3 shows that noise affects the derivative comjutat small scales (a and
b). Increasing the (isotropic) scale of the operator impsahe results (c), but adjacent
structures inside the footprint of the filter spoil the finadult (d).

The isotropic Gaussian derivative filtering fails to rettine correct curvatures. In this
paper we propose to improve the curvature measurement tmguting space variant
kernels. The performance is compared to the isotropic nadgthbigure 2.4a. The result
of the isotropic method are repeated on the left cylindee f@sults obtained with the
proposed method are plotted on the right cylinder. It isrdleat in the region where the
two cylinders are close together the method using isotrkgrinels fails to give correct
curvature values, while the new method returns correcttsesu

The new method does not suffer from the systematic erravdioiced when using isotropic
filters. The cost is a small increase in a stochastic errotaltige fact that the incorpo-
ration of confidence levels into the filtering in effect redsi¢the number of voxels used
to suppress noise. However, the specific choice of confidiewets based on the local
structure allows to discard just those voxels which woublgehatroduced a systematic
error. In other words our method optimizes the trade-offiveein noise reduction and
preservation of image structure.

The shape index is computed from the principal curvaturesisioften used to select
polyp candidates by means of thresholding. Applying suelsification to the image
in Figure 2.4a yield Figure 2.4b. The isotropic method veRult in a classification of a
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S

(@) (b)

S

(©) (d)

Figure 2.3 Trade-off between noise suppression and resolution. Oerakpositions
on the edge the normal direction (line direction) and radafscurvature
(line length) are plotted. From left to right: (a) noise freeage, small scale
o = 1. (b) Gaussian noise added,= 1. (c) computation at larger scale
suppresses the noise,= 3. At larger scale § = 3) incorrect curvature and
gradient direction are obtained close to neighboring stuses (d).

large part of the cylinder to a ridge-like structure. The maethod correctly classifies
all the voxels to a rut-like structure (8c).

To demonstrate the performance of the method on CT data,easchimilar to [76] is
applied. Yoshida et al. use the the shape index and curvetimsslect the set of polyp
candidates. In [76] thresholds were presented for the shap& (between 0.9 and 1.0)
and for curvednesg.05mnt ! and 025mnT1). We applied the same scheme using
hysteresis thresholding [76] to investigate the perforceamith respect to the candidate
selection step. Initial test results on a few patients shwnsing results. The power
of the method is clearly demonstrated in Figure 2.5 and Talllevhich are obtained by
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OF IMAGE DERIVATIVES IN HIGHLY STRUCTURED SURROUNDINGS

g

Figure 2.4:Radius of curvature (left) and shape index (middle,riglathputed on two

cylinders (Only a cross section of the cylinders is shown).s€veral posi-
tions on the edge the gradient (line direction) and radiuswivature (line
length) are plotted. Left cylinder: isotropic method. Thradjent direction
is obtained using isotropic Gaussian kernats=£ 3). Right cylinder: both
gradient direction and radius of curvature are obtainedwspace variant
kernels ¢ = 3).
The middle image shows the classification by shape indexechjpy the
isotropic method. The isotropic method classifies large pathe cylinders
to aridge like structure. The new method (right) using spaaant kernels
classifies all voxels correctly.

S1=0.75
(ridge)

)

applying the method to a small datag200x 200x 100 voxels) containing one polyp
(approx. 4 mm). The new method detects the polyp and findsalse positive. The

isotropic method detects three false positives and missetsue positive.

From the demonstration of our method both on simulated dateedl as CT data we

feel confident that space-variant kernels will yield fewadsé& positives. Especially for
small polyps the new method is likely to increase the sevitsitHowever, we are aware
that the performance of the operator can only be assessddtistisal validation on a

large number of datasets.

id method cluster size label

1 isotropic 9 false positive
2 isotropic 28 false positive
3 isotropic 86 false positive
4 | space-variant 31 true positive
5 | space-variant 3 false positive

Table 2.1:Detection results. The isotropic method detects 3 falséipes. The space
variant method detection the true positive and one (smalbefpositive. The

results were obtained by filtering with = 3.
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’ 1. 1

e e

Figure 2.5:0ne slice from the 3D Ct dataset. Voxels labelled as belantpnpolyps
(white). The new method finds the polyp (left). The isotrapethod fails
to find the polyp and selects a false positive. The resulte wktained by
filtering witho = 3.

2.4 Conclusions

The measurement of curvature in CT data for the detectiomlypg is difficult due to
the highly folded colon. Therefore noise suppression vétiyér isotropic filters is not
possible. We have shown that with a specific formulation afmadized convolution
using a local Taylor expansion space-variant kernels camsbd. In addition we have
shown that space-variant kernels can be constructed wisclards just those voxels
belonging to neighboring image geometries. Thereby theatere filtering optimizes
the trade-off between noise suppression and preservdtional image structure.

The assessment of the method by simulated images showsétstdce-variant filtering
outperforms isotropic filtering. Also, on CT data the new hoet seems to indicate a
higher sensitivity and higher specificity. However, thehaus do realize an investigation
on more data is needed to be conclusive on the overall impremeof polyp detection.

17






3 Segmentation and size
measurement of polyps in CT
colonography

In this chapter a new method is proposed for the automaticurement of polyp size.
It operates on a triangulated isosurface and takes intodenasion the local orienta-
tion and position of the mesh. The algorithm starts with axgpbeds an initial seed,
located somewhere on the protruding surface. Based on$h#ing segmentation the
algorithm estimates the size of the object. We assess tf@pance by comparison to
expert size measurements on phantom data.

Based on:

J.J. Dijkers, C. van Wijk, F. M. Vos, J. Florie, Y.C. Nio, H.Wenema, R. Truyen, L.J. van
Vliet, Segmentation and size measurement of polyps in CT colguiogtd | CCAI 2005 [26]

19



CHAPTER 3. SEGMENTATION AND SIZE MEASUREMENT OF POLYPS IN CT
COLONOGRAPHY

3.1 Introduction

Colorectal cancer is one of the most commonly diagnosedstgbeancer. Specifi-
cally, the American Cancer Society predicts 145,000 newsasad 56,000 deaths from
colorectal cancer for 2005 [3]. Polyps are a well-known prsor to such carcinoma.
Not surprisingly, it has been shown that early removal of/pslensures a decrease in
incidence [121].

In recent years, CT colonography has been proposed as avaeivia alternative to
traditional polyp detection by colonoscopy [42, 96]. In Cdlanography, the colon
structure is often visualized from an endoluminal perspedty means of surface or
volume rendering. Recently, methods have been proposegfms the inspection by
a computer aided detection (CAD) system indicating suspeetions [106, 141]. The
size of a detected polyp is an important aspect for diagragisdecision making. It
is generally accepted that polyps with diameter < 5mm requir direct further action,
whereas larger polyps should be removed via colonoscomycaly, the size of polyps
Is measured in colonoscopy by comparison with an open bifmpsgps. In CT colonog-
raphy, it is usually measured in reformatted images, in wihie largest polyp diameter
is selected for size measurement. However, polyp sizestieasured by human experts
can show significant inter- and intra-observer variability

Clearly, an automated method is needed to enable more éeaueasurement of
polyp size. As a side effect, such a procedure is also usef@AD algorithms. Auto-
mated polyp detection is usually based on sophisticatedrpatecognition techniques
that take into account many features measured on tentaseé&cted candidates (e.g.
size, area, average shape index etcetera). Proper segjoemgacrucial to perform
reliable feature measurement.

The existing methods for colonic polyp segmentation (siclbammers et al. [52,
103] and Yoshida et al. [77]) are especially designed to vebr&ctly on the 3D CT
data. Such an approach is hindered by not operating on dispéigidefined region of
interest c.q. the colon surface. Hence, segmentation gppalhich are by definition
protrusions of the colon surface is not a trivial task.

In this paper we present a new method for semi-automatic eetgtion of polyp-like
structures. Additionally, a technique is described to entically measure polyp sizes
using this algorithm. Our method assumes that the coloasetias been identified as a
region of interest. Moreover, it is asserted that a candittatation has been identified;
in our system by a vertex detection step based on the measiape index [128]. We
will compare the size measurement by our algorithm with tfigthysicians in a set of
phantom objects (in which the size is known a priori).
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3.2. POLYP SEGMENTATION

I YES
COMPUTE CHECK NO

SEED PATCH centersmEan [ SOMPUTE L nEiGHBORING [ APDACCEFTED VERTeES SESNENIED
OF PATCH VERTICES ?

Figure 3.1: Schematic overview of segmentation procedure.

3.2 Polyp segmentation

The description below assumes that the colon wall is desdrily a triangular mesh.
However, the basic ideas of the method are not restrictedrtestn based surface repre-
sentation of the colon wall; they can as well be implementeadrk on a voxel based
model. An additional advantage of our method is that the segation requires no user
input, that is all parameters are drawn from the underlyiaigd

Outline of segmentation procedure. Ideally, a polyp could be described as a rather
spherical, symmetric mound on a background shape (see iggrer3.2a). One could
intuitively delineate a polyp by the inflection points onlbstdes. However, these points
may not be easily identifiable due to the curvature of the gemknd shape (e.g. a fold).
Hence, we model a polyp to have a symmetry axis that goesghrthe center point
(P;) in which the apical surface normals converge, and the mesitign (P,) calculated
from the polyps surface points. The edge of the polyp is définethe points at which
the surface normals tend to deflect from the center point (iéosmalize this below).
Initially, a single position or a small patch indicates amjan the polyp candidate
[128]. Since the center and mean points may not be robustgrdeed from such a
seed patch, the polyp segmentation procedure is set up éarative process. During
each cycle of this process neighboring vertices are add=itdin criteria are met. The
process terminates when no more points are added. An oweofi¢he procedure is
shown in figure 3.1.
Computing the center and mean points.As depicted in Figure 3.2a, the surface nor-
mals on the polyp apex tend to converge in a center point. gdiist (P;) is found by
minimizing the sum of the distanced) to all normals {i). The surface normals are
calculated by Gaussian derivatives the underlying 3D C@ dafa scale of 2mm. This
scale was determined experimentally such that no polypsased. The distances can
be computed according to:

di = || x (R —PRe)|l /[T ] (3.1)

whereR is a point on the patch and x denotes the vector outer produictitionally, a
mean pointBy) is associated with a patch. The position of the mean is sicghputed
by averaging the positions of all vertice3;, = ﬁz P. The mean and the center points
define a centerline (dashed in Figure 3.2b). Henceforthciiled the polyp axis.

Adding points to a seed patchPoints are to be added to a seed patch until the local
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COLONOGRAPHY

Figure 3.2: Schematic representation of a patch (dash&d)ooin the colon wall. Figure
(a) shows how convergent normals define a center point; fif)rehows
how the minimized distancd; is defined for surface poirRR; figure (c)
shows how the angles and are defined.

Figure 3.3: Schematic representation of a polyp (dashederun a flat background
(left) and on a fold (right).

surface normal tends to deviate frd?n To formalize the stopping criterion, consider

first a sphere on a flat background. Let us detinas the angle between the line from

the center pointR;) to the vertex ) and the normal at the position of the vertex (see
Figure 3.2c). Clearly, on top of the polypis small (exactly zero on a spherical cap,

see Figure 3.3). The angteincreases while moving to periphery of the polyp. Right
outside the polyp the angle is given by (compare with Figugg: 3

I:)edge_ Pc)'ﬁ
Hpedge— PCH : ||ﬁ||

in which Peggelis defined as in Figure 3.3 ammids the normal at poinBeqqe We assume
that the ideal threshold-value lies somewhere betweere taggeme values (respec-
tively 0 andaeqgd. The required midway point is closely approximated by thgla
calculated via (compare with Figure 3.3):

Oedge= arccos[ (3.2

Omig = arccoy(Pn—F:) /R (3.3)

Thus,a < amiq yields a safe stopping criterion for adding neighboringiees to a
polyp on a flat background. On a fold, however, the argleemains small (see Fig.
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3.3. EXPERIMENTS AND RESULTS

3.3). Let us defing8 as the angle between the polyp axis and the line between ttexve
and the center point (as in Figure 3.2¢):

(P—Pe) - (Pn—Py)

B = arccos
[P —Fell - |[Pm—Fell

(3.4)

At the edge of the poly is given byBeqge= Aedge Typically, B continues to increase
while moving onto the fold. Consequenty,< Beqgeyields a logical stopping criterion
for a polyp on a fold. It should be noticed that the two posatega are mutually
exclusive: the sidepoints of a polyp on a fold do not meet titercon of a < dmig.
On the other hand, points besides a polyp on flat backgrountbttulfill B < Begge
Also, the anglesimig and Beqge are both dependent on the shape of a polyp. Flatter
polyps tend to have lower values fagg and Beqge than more protruding polyps. In
other words, the threshold values automatically depenti@polyp shape.

All vertices neighboring a seed patch that match the camutiare accepted and
added at once to yield a new seed. Consequently, the outcoesendt depend on the
order in which points are processed. Clearly, if none of teitices match the criteria,
no points are added and the current patch is considered glesagmented polyp. Oth-
erwise, all steps are iterated.

Automated size measurementThe size measurements for polyps are based upon the
segmented patches. The edges of these patches are prajlectgdhe polyp axis onto
a plane. An ellipse is fitted to these points in 2D space by edatipn of the first and
second order moments. This is in accordance with the cumexdlical practice in the
Academic Medical Center where the polyp size is chara&driw its largest diameter.

3.3 Experiments and results

The performance of the method was assessed by comparingitihated size mea-
surement with those of radiologists using scans of a colanf@m. We have looked
into several aspects to test our approach:

¢ Inter-observer variability of radiologists
¢ Intra-observer variability of radiologists and our method
e Accuracy and precision of the radiologists and our method

Experimental data. All data was acquired using a Mx8000 multislice CT-scanner
(Philips Medical Systems, Best, the Netherlands) usingémee scanning protocol for
all scans (scan parameters: 120 kV, 100 mAs, 4 x 2.5 mm cdibmgpitch 1.25, stan-
dard reconstruction filter, and a 1800 interpolation aliponi).
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‘ Object ‘ Lucite Objects (lengthxheight) [mmj Plasticine Objects (lengthxheight) [mn{]

1 10.0x5.0 19x9
2 10.0x 2.5 17x8
3 8.0x4.0 14 x 10
4 8.0x2.0 14x8
5 6.0x3.0 12x8
6 5.0x2.5 11x11
7 4.0x2.0 11x5
8 6x5

Table 3.1: Dimensions of the phantom objects; of all lucligeots two specimens were
used.

The phantom consisted of a lucite cylinder into which fadted polyps were inserted.
At first, the phantom contained 10 hemispherical lucite clisjef various sizes, and 4
objects with reduced height (2 mm) in order to mimic flat lesio Subsequently, 8
asymmetric objects from plasticine were inserted in thenpdra (maximum width 6-19
mm). The size of all objects (see Table 3.1) was measuredidinglcalipers. The
phantom was placed in a cylinder, 34 cm in diameter that wiasl fitith water to arrive
at a signal to noise ratio comparable to that in patient datse two phantoms with
lucite and plasticine polyps respectively were scanneddawin the axial plane of the
cylinder, and an orthogonal plane (see Figure 3.5).

The size of all objects was measured in the CT scans by twoloaists and by our au-
tomated method. The radiologists measured the objects hphanar reformatted CT
images. Each object was measured twice, along the main apeseeived by the physi-
cian. The largest value was taken as the polyp size. The atiitomeasurements were
done as described previously. For that purpose, an anpgeed point was manually
indicated somewhere on the polyp surface.

Inter-observer variability of the radiologists. Figure 3.4a,b contains the graphs dis-
playing the measurements of one radiologist against thbteeather. Clearly, radi-
ologist A tends to measure larger diameters compared tologist B. The average
difference of their measurements was 1.2mm for the lucifeat® and 3.1mm for the
plasticine objects. The standard deviation of the absaliffierence was 0.7mm for the
lucite objects and 2.7mm for the plasticine objects.

Intra-observer variability of the radiologists and the automatic method. The intra-
observer variability is assessed by the difference in sieasured in the axial scan
versus the measurement on the same object in the orthogi@malls must be conceded
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Figure 3.4: Inter-observer variability in polyp size forcite (a) and plasticine (b) ob-
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Figure 3.5: Single slice from each scan. From a-d: lucite/pmlaxially, plasticine
polyps axially, plasticine polyps orthogonally and lucgielyps orthogo-
nally.

that this involves two different scans of the same object. ad&ume, however, that it
allows for a good approximation of the intra-observer \aifity.

Figure 3.4c,d shows the measurements of the observers iscaneversus the mea-
surement in the other. Apparently, neither the radiolegmir the automatic method
shows a bias. The average absolute difference between theméasurements on the
lucite objects was 1.0mm and 0.8mm for the two radiologists @.5mm for the au-
tomatic technique. The standard deviation of the absoliffterence was 0.9, 1.0 and
0.5mm respectively. For the plasticine objects the aveedgg®lute differences were
2.6, 3.2 and 1.1mm and the standard deviations 2.2, 2.1 4ndrirespectively.

Accuracy and precision. The accuracy and precision of the observers is defined by
comparison to sliding calipers (see Figure 3.4e,f). Thesuesanents of both radiol-
ogists appear to be slightly biased. This can be explaineitidyrocedure of always
selecting the larger of two measurements as the size of tye.pdhe bias in the au-
tomatic method is less pronounced, but not completely dbsteocan be explained by
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Lucite Plasticine

mean diff. [mm] | std. dev. [mm]| mean diff. [mm] | std. dev. [mm]

Rad. A 1.6 0.9 7 5
Rad. B 0.8 1.0 4 5
Automatic -0.2 1.2 -1 1.2

Table 3.2: Mean difference and standard deviation of diffiee between observers and
sliding calipers measurements for the lucite objects aaglsticine objects.

notifying that all points (except due to noise) on a segnehtamispherical polyp sur-
face are projected inside a circle with the diameter of tHgpadAn ellipse fitted through
the contour points yields a small underestimation of the size. Clearly, one might
correct for all these biases in a calibration step. Spedificeticeable, is the higher
precision of the automatic method on the plasticine objentficated by the smaller
spread of values around the line of identity.

As shown in table 3.2, the automatic method shows a smalematic error than
the radiologists. There is no significant difference in tihecgsion (std. dev.) for the
(symmetric) lucite objects between the automatic systerttaradiologists. However,
for the irregular plasticine objects the precision of théoauatic system remains the
same, whereas the precision of the radiologists decreapeBcantly.

3.4 Conclusions & future work

The size of a colonographically detected polyp is imporfantliagnosis and decision
making. The size measurement by human observers is ggnawaBidered to be impre-
cise and inaccurate. In this paper we presented a methdafautomatic segmentation
of polyp-like structures. The polyp size was automaticdbyived from the segmenta-
tion result. It was shown that our algorithm yields a smdlies than the measurements
from radiologists: on average 1mm or less for the automagithod and between 1 and
7mm for the radiologists, depending on the irregularityhaf dbject. Even more impor-
tant, the algorithm is consistent irrespective of the palgppe. As opposed to that, the
radiologists show a four times larger variation for thegukarly shaped objects. It is
this irregularity which occurs in practice.

A good polyp segmentation algorithm is also useful for awtbenpolyp detection
algorithms. It allows for extraction of features such asuneé, surface area, average
grey-value etcetera. Such features may improve the spgcdicCAD algorithms.
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4 Detection of protrusions on
curved folded surfaces applied
to automated detection in CT

colonography

In this chapter a new method is proposed for the detectionobfppcandidate sites
on the colon surface. It is based on the notion that polyuéiggowth introduces a
local deformation of the colon surface. The method estisidie original 'undeformed’
surface position by solving a nonlinear partial differahéquation. Candidate sites are
obtained by comparing the two surfaces. The method is as$éysa supervised clas-
sification, based on features obtained from the deformdigtch and the grey level CT

image.

Published as:

C. van Wijk, V.F. van Ravesteijn, F.M. Vos, R. Truyen, A.H.\dees, J. Stoker, L.J. van Vliet,

Detection of protrusions in curved folded surfaces appt@dutomated polyp detection in CT
colonography, MICCAI 2006 [130]
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CHAPTER 4. DETECTION OF PROTRUSIONS ON CURVED FOLDED
SURFACES APPLIED TO AUTOMATED DETECTION IN CT COLONOGRAPHY

4.1 Introduction

CT colonography is a modern, noninvasive method to insppedarge bowel. It enables
to screen for colorectal polyps by way of images rendera fta endoluminal perspec-
tive. Polyps are well-known precursors to colon cancer. Jike of a detected polyp
is an important indication for diagnosis and decision mgkih is generally accepted
that polyps with a diameter smaller than 5mm require no ditether action, whereas
polyps larger than 10mm should be removed. The policy witkepts harboring polyps
with a size between 5mm and 10mm is to have a follow-up CT-sesaral years later.

Unfortunately, current colonographic visualization teicjues are still rather time
consuming. More important, large polyps are sometimesedissTherefore, meth-
ods have been proposed to support the inspection by way gbutemaided diagnosis
(CAD). A large number of such schemes are proposed in thatites [2, 36,47,60, 79,
103,107, 140]. Like most CAD systems, automated polyp tietecisually consist of
three basic steps: (1) segmentation of the colon wall; (BYlickate generation and (3)
supervised pattern recognition.

A good approximation to the true colon wall (defining the cegof interest) is ob-
tained rather easily due to the large contrast betweeretesd ailC O, inside the colon.
However, partial volume effects may affect the image intgrest thin colonic folds.
Still, most technigues use a thresholding at a fixed valueafrad -650 Hu.

Finding candidate objects on the colon surface is a much oi@kenging task. Sum-
mers et al. [103, 104, 107] propose to use methods from diifeal geometry. In [104]
a triangle mesh is extracted from 3D CT data after which [pedccurvatures were
computed by fitting a 4th order b-spline to local neighbod®wwith a 5 mm radius.
Candidates were generated by selecting regions with ayssihean curvature.

Yoshida et al. [140, 141] use the shape index and curvedodssdt candidate ob-
jects on the colon wall. The shape index and curvedness ao#iduas of the principal
curvaturex; andky:

1 1 K1+ Ko | K2+ K3
Sl= - — —arcta and CV={/ ——= 4.1
2 7 n(Kl—Kz) 2 (4.1)

and are computed using a Gaussian-shaped window (aperture)

Alternatively, Kiss et al. [58] generate candidates by cleiag for convex regions
on the colon wall. Their method fits a sphere to the surfacenabfield. The side
on which the center of the fitted sphere is found (in tissuenaair) determines the
classification of the surface as convex or concave. Rougb¥y 6f the colon wall is
classified as concave, that is as 'normal’. To the remainarg) @f the colon surface a
generalized Hough transformation is applied using a spalemodel. Candidate objects

Throughout this paper we assume that the surface normairigipinto the colon.

30



4.1. INTRODUCTION

are generated by finding local maxima in the parameter spaaged by the Hough
transformation.

Simply selecting regions on the colon that protrude inwatidil too many candi-
dates. Therefore, thresholds on mean curvature, princigaatures, sphericity ratio
and/or shape index are used as restrictive criteria. Wniately, their values are sen-
sitive to e.g. the CT image noise level and the size of thel loehborhood used to
compute them. Generally, the thresholds are set consesvatorder not to harm the
sensitivity.

All of the above CAD schemes are based on the modelling of proapnately spher-
ical polypoid shape, although, many polyps are often famfiymmetric, let alone
spherical. Therefore, the candidate generation step sétbehemes is characterized by
low specificity and much effort is needed to improve spetifigihile preserving a high
sensitivity.

The problems associated with modelling polyps as sphgsicalusions are presented
in figure 4.1. It shows théxi, k»2)-space. The horizontal axis shows the first principal
curvature,k1. The vertical axis shows the second principal curvatuge, Since the
first principal curvature is by definition larger than or eliwethe secondK; > k») all
convex points on the colon lie inside the region givenday> 0 andki > k2. Points
on perfectly spherical protrusions lie on the likge= k2 (SI = 1). On the other hand,
perfect cylindrical folds lie on the ling, = 0 (S1=0.75).

Objects with a larger radius yield smaller principal cuwwatvalues and therefore
show up closer to the origin. Additionally larger polypsddn be more asymmetric and
therefore more fold-like when described by the shape inBeih large and small polyps
are found close to the borders defined by the thresholdSi@amdCV as indicated in
figure 4.1. As a consequence the criteria used to limit thebanof candidate detections
are at least as stringent for the larger polyps as for thelemahes. Notice that this
behavior is in conflict with clinical decision making, whiclictates that large polyps
are more important than smaller ones, since the former hdaegar probability to
develop into colon cancer.

To comply with clinical practice, one needs a candidate gt step steered by
parameters that directly reflect polyp size, such that tiana in thresholds only affect
the CAD system’s sensitivity for small polyps.

In this paper, we introduce a method to estimate the phygicdd background shape
of the colon wall. Polyp candidates are detected as a locahtiien from the back-
ground. Our method locally flattens/deforms the colon walbrder to 'remove’ the
protrusions. The amount of displacement needed for theroheftion is used as a mea-
sure of 'protrudness’ of the underlying lesion. Regions rehtis measure has a high
value are considered as candidate polyps, after which thteugion measure together
with a few additional features is used in supervised paticognition.
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Figure 4.1: Left: the four thick lines enclose a region in (kg k2)-space. The curved
lines represent thresholds on the curvedness, while thiglstiines enclose
the region given by @ < SI < 1. The center image shows tlrg and k>
values as measured on candidate objects. (See resultsndethie light
grey objects are false positives. The circles are TP that hdargest shape
index of at least 0.9. The black squares represent TP as wehdve a
largest shape index smaller than 0.9. The right image shaws@al polyp
shape.

4.2 Methods

A typical polypoid shape is shown in Figure 4.1(right). Sog@ that the points on
convex parts of the polyp (the polyp head) are iterativelyetbinwards. In effect this
will ‘flatten’ the object. At a certain amount of deformatitime surface flattening is
such that the complete protrusion is removed. That is, thiaseilooks like as if the
object was never there. This is the key concept on which thbaedas based.

A more formal presentation follows from the description lné tsurface shape using
the principal curvatures. Protrusions are defined as thezgens on the surface where
the second principal curvature is larger than zero (Thidiespf course that the first
and largest principal curvature is larger than zero as well)

The method then deforms the surface until the second pahcipgvature is smaller
or equal to zero. Clearly, this will only affect structurbatare curved in two directions
like polyps and will not deform curved structures like falélds typically bend in one
direction only and have a first principal curvature largamntkero and a second principal
curvature around zero.

Figure 4.1 illustrates how polyps modelled as sphericalmdsuare found near the
line k1 = Ko with k2 > 0. From here on we drop the spherical model and note that polyp
'heads’ are characterized bya > 0. Consequently all regions on the colon wall where
Ko > 0 are considered as candidate objects.

The requiremenk, > 0 is less strict than used in most other state of the art system
which put restrictions on the curvature values. For exanbgléimiting the allowed
shape index values tdSl > 0.8. One might argue that this will lead to many more
candidates. This is unarguably true. We will show, howetet the proposed method

32



4.2. METHODS

does not require any thresholds other tlkan> 0. Moreover, the deformation method
described below leads to a quantitative measure of the gwlyppudness and therefore
permits ordering of the generated candidate objects in antaitive to the radiologist.
In effect this will reduce the number of candidates that agspd to the classification.

4.2.1 Surface evolution

The method employs surface evolution on triangle meshds [Pde triangle mesh is
generated by the marching cubes algorithm applied to the BBata using a threshold
of -750 Hu. A typical mesh size consist of around 1@rtices.

In [24] a method was presented to rapidly remove rough feat(oise) from irreg-
ularly triangulated data. It was based on the diffusion éqoa

P _ALX). with 0= (. 5 %)% (4.2)
Jelring

whereL(X;) is a discrete (1-ring) estimate of the Laplacian at verteX are the po-

sitions of the mesh point$y; is the number of vertices in the 1-ring neighborhood of

vertexX; and A is the diffusion coefficient. The solution at timevas found using a

backward Euler method which translated the problem into @ixa@ector equation

(I =AdtL) Xt =xt (4.3)

The matrixM = | — AdtL is sparse and its structure is given by the mesh one-ring
relations,X is a vector containing all mesh points ahds the identity matrix. This
system can be solved efficiently using the bi-conjugateigraanethod [91].

In [24] the diffusion was applied to all mesh points. A welldam effect of prolonged
diffusion on the complete mesh is global mesh shrinking anf4] a solution was
proposed by compensating for the reduction of the mesh v@lum

We, however, apply the diffusion only to a limited number @sh points, namely the
points wherec, > 0. The majority of points have negative or zero second pguadaur-
vature and remain at their original position. They provide boundary conditions for
the other points. Therefore, in contrast to the method sstgden [24] global shrinking
is not an issue and we can search for the steady state sabtfitibe diffusion equation:

oX _

ot
The discrete Laplacian estimates the new position of veftdy a linear combination
of its 1-ring neighborsXj. Rewriting equation 4.4 then yields a matrix-vector equrati

L(%)=0 (4.4)

1 _
(= Xi) =X = MX =0 (4.5)
Ny jegngi ]
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Fortunately,M is sparse and its structure is given by the 1-ring mesh osigti The
number of non-zero elements on each row equals the numbeiraf inember vertices.
Like the backward Euler formulation this equation can alssblved efficiently using
the bi-conjugate gradient method [91].

It is well known that the solution to the Laplace equation imizes the membrane
energy subject to the imposed boundary conditions. Howexerobjective is not to
minimize the mean curvature, but to minimize the secondcpal curvature. There-
fore, we extend the above equation by introducing a 'forestt The resulting equation
is a Poisson equation:

L(X) =F(k2) (4.6)
This equation reads as follows: the new positions of the npeshts are found by
initially moving each mesh vertex to a position as presdibgthe Laplacian operator.
Subsequently, the term on the right hand side 'pushes baekpoint such that the
resulting second principal curvature is zero.

The force ternF is designed to depend a and is updated after solving equation
4.6. In other words we solve (4.6) iteratively. The forcertas initialized withL(X)
such that we start with: _

F=0 = L(X) (4.7)
Thus, the 'force fieIdF_initiaIIy balances the displacement prescribed by the aeiph
and leaves the mesh unaltered. After each iterd&iaupdated with:

“t1 _ ft t Atring —
Firl—Fl k22 T (4.8)
whereAy;ing is the surface area of the 1-ring neighborhood armsithe vertex normal.
The last term can be interpreted as a correction term. Naieifttx, is positive | F||
should be relaxed. On the other hand, the magnitude of thestied term additionally
depends on the sampling density of the mesh. If the samidgnse ané;_ring small
the magnitude of the correction term should be small. Skcequals the reciprocal
of the radius of the surface tangent circRe=£ —) in Ko-direction, the termziT is half

of the area of the fitting sphere. Therefore, the displacérRereeded to remove the
curvature in second principal direction is normalized bg thtio of these two areas.
The estimated displacement is given by:

A1ring . A1ring
2m/k2 2 2m

The resulting displacement of the mesh points yields a defdrmesh which is an
estimate of how the colon wall looks like in the absence ofrpions. The amount of
displacement of each mesh point (e.g. in millimeters) is antjtative measure of the
'protrudness’. Candidate objects are generated by agplythreshold on the displace-
ment field.

Oest= (4.9)
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4.3 Results

The performance of the method was tested using clinical lata a large, previous

study [123]. Automatic polyp detection was executed inghsteps: (1) segmentation
of the colon wall via the marching cubes algorithm; (2) caati generation using
protrudness; (3) supervised pattern recognition invgharinear classifier and only a
few features.

4.3.1 Experimental data

A total of 249 consecutive patients at increased risk fooiatal cancer were in-
cluded in a previous study [123]. These patients underw@nt@onography before
colonoscopy, which served as the gold standard. All patigrdre scanned in both
prone and supine position. The size of a polyp identifiedrdpu€T colonography was
measured in reformatted images, in which the largest polgmeter was selected for
size measurement. Polyp size was also measured duringosciopy by comparison
with an open biopsy forceps of known size. The colonoscomirfgs were matched
with the CT data. 13 patients were selected that contain fitf3egpolyps larger than 5
mm from the complete study. This yielded 64 polyps largenthanm. 34 of 64 polyps
could be identified in both the prone and the supine CT scar8@mdere identified on
either scan but not on the other. Consequently, there weex&®8ple objects in total.

Figure 4.4 (left) shows a histogram of the CT size-measunésnel he majority of
objects have a size between 5 and 7 mm. 42 are smaller than Sthar@ considered
as clinically unimportant. 28 are in the range [5,6]mm, 68 iarthe range (6,10]mm
and 32 are larger than 10mm.

4.3.2 Candidate generation

Atypical resultis given in figure 4.2. It shows three rendgs of the colon wall surface.
In the left picture an isosurface volume rendering of a 7 mmgdgolyp is shown. The
polyp is situated on a folded colon structure. The middléypse shows the deformed
mesh (visualized by a mesh rendering). The protrusionmsdreed’, demonstrating how
the colon may have looked like in the absence of the polyp.rigig image shows the
original mesh with the segmentation obtained by threshglthe protrusion measure at
a value of 0.1mm

An other example is presented in figure 4.3. The left pictinens an isosurface
volume rendering. In the center of the picture a large (14mam}-spherical polyp is
situated between two folds. The middle picture shows thensegation as obtained
by hysteresis thresholding the shape index using valuesu®80.9 and curvedness
values in the range: 0.05<CV<0.25. The same thresholdswsextin [141] to generate
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Figure 4.2: Example of the deformation applied to a polyp dold. Left: the orig-
inal colon surface with a polyp on a fold (isosurface volureadering).
Middle: the deformed surface mesh with the polyp removedégh ren-
dering). Right: the obtained segmentation by thresholtheglisplacement
field (mesh rendering).

candidate objects. The shape index and curvedness wereitenhiyy fitting a 2nd order
polynomial to the mesh using a local neighborhood with S5Smdius

Due to the irregularity of the protrusion several segmefite polyp have been
found. The right picture shows the segmentation as a rektlitesholding the protru-
sion measure (value 0.1mm). A more coherent segmentatshbden obtained.

Our method applied to the 13 patients yielded 1578 candulgjexts (including the
true positives), which i$=60 per dataset. A total of 3 polyps (between 5mm and 6mm)
were missed in the candidate generation step. In contfasthreshold of 0.9 on the
shape index was used to segmented candidates a total of yespebuld have been
missed. (See figure 4.1 (middle)). From the segmented caredidhe vertex with
largest shape index value was found. For this vertexihendk, values are plotted in
figure 4.1 (middle). This plot does not include the 3 missegs

4.3.3 CAD performance

The candidate generation step was used as an input to ssgekpattern recognition.
In figure 4.4 we show ROC curves based on a linear classifidregpjo four features:
the maximum protrusion found on a candidate object; the &izbe object measured
as proposed in [26]; volume, obtained from the enclosedmelbetween the original
mesh and the deformed mesh and the percentage of Sl valudsefeertices on the
segmented surface patch, that is within the range@B & S| < 0.85. The latter value
is expected to attain high values on folded structures.

Three lines in figure 4.4 (right) show the performance of §stesm for different size
classes. The data was generated in a leave-one-patientouem

The large polyps (>10mm) are found with 100% sensitivity &Farate of 13 per
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Figure 4.3: Segmentation of irregular objects. Left: istate volume rendering; Mid-
dle: segmentation obtained by hysteresis thresholdindgnershape index;
Right: segmentation obtained by thresholding the pratrusaeasure.

dataset and 90% sensitivity at 2 FP per dataset. The ROC gpgtarger than 6 mm
(including those larger than 10mm) show that 80% sensgjtigibbtained at the cost of
4 FP per dataset. A 95% sensitivity is obtained at the cosDdfR. per dataset. The
results for polyps larger than 5mm are similar to the redaltpolyps larger than 6mm.
However, 100% sensitivity is not reached. This is due to #ut that in the candidate
generation step 3 polyps between 5mm and 6mm have been missed

The plots in figure 4.4 demonstrate that the specificity of QA system is even
higher if the sole purpose of the system is for diagnostippses only, namely to de-
cide whether a patient has or has not any polyps. The leftgblotvs how many false
positives have been assigned a higher posterior probathbin the first large polyp
(>=10mm). It follows that for 7 out of 13 patients the first et is a polyp. For one
patient three false positives have a higher posterior fimtityethan the first polyp. Note
that the total number of patients is 11 (and not 13). This is @uthe fact that 2 pa-
tients did not have polyps larger than 10mm. The right plowshthe number of false
positives with a higher posterior probability than any & tolyps larger than 6mm (in-
cluding those larger than 10mm). Note that including thelnpolyps improves the
results. Apparently some of the small polyps are assigneghehposterior probability
than the large ones.

4.4 Conclusions

We have presented a method to detect protruding objectsreactsurfaces. It was used
to generate candidate objects for automated polyp deteciioe method works by lo-
cally flattening the colon wall in order to 'remove’ protrass. Actually, the colon
surface is deformed until the second principal curvaturenmller than or equal to
zero. Therefore, only those structures are affected tletarved in two directions,
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Figure 4.4: Left two: Polyp size distribution (left) and RQGrve for the supervised
pattern recognition based on protrusion plus three additi@atures (right).
Right two: Histogram of the number of false positives peigrdtpresented
to an expert before a true positive polyp is found (orderipghe posterior
probabilities). The left picture shows the number of FP betopolyp larger
than 10mm is considered (if there is one in the dataset). Fatiénts the
first object presented is a large polyp. For one patient 3 ERersented
before a large TP is presented. The right plot shows the th&beuof FP
before a polyp larger than 5 mm is encountered.
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like polyps. Folds remain unaltered. The amount of disptea@ needed for flatten-
ing/deformation is used as a measure of 'protrudness’ oblject.

A threshold on the deformation field is the only parametededdor candidate gen-
eration. This is a clear advantage over methods that involaBy restriction criteria.
Another advantage is that the deformation field immedia#bws for the computation
of additional features such as the object’s volume.

We have shown that a simple linear classifier involving omyrffeatures already
yields 95% sensitivity at the cost of about 10 FP per dataset.

Clearly, the algorithm must be extensively tested. We dbzean investigation on
more data involving more complex classifiers is needed tobelasive on the overall
improvement of polyp detection. However, the current nssgive an indication that the
protrusion measure may enhance polyp detection schemes.
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5 Detection and segmentation of
colonic polyps on implicit
iIsosurfaces by second principal
curvature flow

Today’s computer aided detection (CAD) systems for CT co¢paphy (CTC) enable
automated detection and segmentation of colorectal polyespresent a paradigm shift
by proposing a method that measures the amount of protrededr a candidate object
in a scale adaptive fashion. One of the main results is tlegd¢informance of the candi-
date detection depends only on one parameter, the amoumtofigion. Additionally
the method yields correct polyp segmentation without theslrad an additional segmen-
tation step. The supervised pattern recognition involveear distinction between size
related features and features related to shape or intedsi¥ahalanobis transforma-
tion of the latter facilitates ranking of the objects usingg@istic classifier. We evaluate
two implementations of the method on 84 patients with a k&7 polyps larger than
or equal to 6 mm. We obtained a performance of 95% sensitwilyfalse positives per
scan for polyps larger than or equal to 6 mm.

Accepted for publication:
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Colonic Polyps on Implicit Isosurfaces by Second Principatvature Flow IEEE-TMI
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5.1 Introduction

Protrusions of a surface embedded in a 3D image are difficuletect. The challenge
increases even further if the surface itself is highly dtrted and interacts with the
protruding elements. Such a problem is the detection ofgsolg CT colonography
(CTC), a minimal invasive technique for examining the cotamface (cf. Fig. 5.1).
There is an increasing interest in computer aided dete¢@#D) systems for polyp
detection in CTC data to assist the radiologist [21,58,82,05,112,133]. Such a CAD
system typically consists of three consecutive steps:nceémmentation; detection of
polyp candidates; and supervised classification of catekdas polyps or non-polyps
[51,138].

Adenomatous polyps are important precursors to colon caao@ develop due to
genetic mutations in the mucosa cells [17]. This processhobgenesis leads to en-
hanced cell proliferation causing the polyp to grow and wheyfrom a small adenoma
into a large adenoma into a carcinoma. This induces a marglwal change to the
colon surfacé, that manifests itself as tissue protruding into the luniBne deforma-
tion is an important property which is used in the detectignddiologists as well as
gastroenterologists.

Practically all CAD systems for polyp detection analyze lbeal curvature of the
colon surface, which is subsequently used to compute shegeigtors such as shape
index or curvedness [103, 141]. Computation of the cureatatues is typically done
in 'one shot’ on a single predetermined scale, which is ddfeethe effective size of
the area over which the image features are calculated. Wenaihtain this definition
throughout the paper.

We propose a new paradigm for the detection and segmentattipalyps that ef-
fectively copes with the highly structured environmenteTiovelty of the approach is
in computing an intensity change field, which removes pditrg elements from the
underlying data, while leaving the highly structured faildsct. The deformation algo-
rithm is described by a partial differential equation (PR3t is steered by the second
principal curvature.

In order to demonstrate the efficiency of the method, we makeofia pattern recog-
nition system introduced by us in [125]. The paper involvetyp detection based on
the explicit representation of the colon surface. The netfproved to generalize well
and lead to satisfying results. It encouraged us to furtestigate the candidate de-
tection system. Presently, we propose a technique basadiompécit representation of
the colon surface, which enables a number of improvemermtstbe explicit model. A
concise description of the classifier is contained, sineahly indirectly related to the
paper’s main objective. This allows us to fully go into akkéds associated with second

INot all colonic lesions grow into protruding polyps. It istiesated that approximately 10% of the
lesions are so-called flat adenomas38].
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Figure 5.1: Isosurface renderings (at -650 HU) of the coloriage showing typical
polyps in their structured surroundings.

principal curvature flow.

5.1.1 Previous work

For the detection of candidate regions, Summers et al. [ififjosed to use the mean
and Gaussian curvature. They were computed by methods fiftenedtial geometry,
by fitting a 4th order b-spline to local 5 mm radius neighbart® of a triangulated
isosurface [104]. Candidates were generated by selectagge of mean and Gaussian
curvature values. Additionally, a large number of othempsheriteria were used ([137]:
Table 2), to limit the number of false positive detectionsnifarly, Yoshida et al. [141]
used the shape index and curvedness to find candidate objed¢tse colon surface.
The shape inde$l and curvednesSV are functions of the principal curvatures of the
surface:

1 1 K1+ K2
SI = ———arcta
2 T I(Kl—Kz)’
K2+ K2
cV = % (5.1)

with k1 andk, the maximum and minimum principal curvature respectivalzaussian-
shaped window (aperture) of fixed size was used to computaitivatures from the 3D
CT data.

Alternatively, Kiss et al. [58] proposed to use a spherenfittimethod to generate
candidates. The colon surface was classified as convex diegeon the side on which
the center of the fitted sphere was found, either in tissue airi This method classifies
roughly 90% of the colon surface as concave, that is as 'nlaritathe remaining part
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of the colon surface a generalized Hough transformationapa$ied using a spherical
model. Candidate objects were generated by finding localimein the parameter
space created by the Hough transformation.

Konukoglu et al. [62, 63] proposed a method that is in somseséime inverse of the
approach that is proposed in the current paper. Effectiaelyall evolution algorithm
is described based on a level-set formulation that reqadarand enhances polyps as a
preprocessing step to CTC CAD algorithms. The underlyiegig to evolve the polyps
towards spherical protrusions on the colon wall while kegmither structures, such as
haustral folds, relatively unchanged. Thereby, the paréorce of CTC CAD algorithms
is potentially improved, especially for smaller polyps.

Conventionally, the shape-based candidate detectionauet[87, 62, 78, 82, 103,
141] apply several conservative thresholds to the mearatune, principal curvatures,
sphericity ratio and/or shape index to generate candiégiems.

5.1.2 Problem definition

We identify a number of challenges that are associated Wéldéetection of polyp can-
didates. First, optimization of the parameters is alwaysmaated by the limited avail-
ability of training examples. This may lead to overtrainfoga specific patient popula-
tion, patient preparation, scanning hardware or scanniogpgol. Thus, it is preferred
to keep the number of restrictive criteria to a minimum.

Second, to achieve good discrimination power and accuratesurement [127] of
lesion size, precise 'delineation’ (or segmentation) eftcandidate is needed. Although
a number of methods are available for segmentation purgts26, 137], adding such
a separate step would introduce more parameters to the Cp&ine and should be
avoided. Fuzzy segmentation methods using sophistica#drp recognition tech-
niques might preclude this problem.

A third challenge is associated with the computation of th&t ind second order
derivatives, which are needed to compute the principalatures and to characterize
local shape. The derivative operators must act on a rangees and should not have
optimal performance for a specific size only. Ideally, thalscshould adapt to the
underlying image structure. To our knowledge no researstbban performed to either
analyze the effect of scale or to determine the optimal scalpolyp detection. It is
partly addressed in [111] by performing the curvature cotafoon on a high resolution
triangulated isosurface mesh thereby limiting the low fi¢tesing across the isosurface.
Furthermore, some research on scale selection for CTC iergenas been performed
in[27,66].

Last, detecting large polyps is (clinically) more impottdran detecting smaller ones.
One would like to have this built into the CAD system. In otkards, the detection
method must perform optimal for large polyps.
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A steadily growing number of papers ([18, 40, 84, 105, 108, 141]) report on the
performance of specific polyp detection algorithms. Unfodtely, a proper comparison
of algorithms is complex due to differences in prevalenedignt preparation, scanning
protocol, and determination of the ground truth.

We aim to convey some general requirements for polyp detesiistems:

1. It should not involve many parameters which need to bediméhe presence of
a limited number of polyps;

2. A separate segmentation step should be avoided whenstradie parameters;

3. It must be able to cope with the whole range of polyp sizesentered in prac-
tice,;

4. It should take into account the increased clinical radeesof larger polyps;

5. It should be robust to variations in the imaging process. (eadiation dose, but
also scan resolution, orientation and patient preparpation

5.1.3 Objective

We aim to introduce a new paradigm for the detection of pbtry regions on highly

structured surfaces embedded in a 3D image. Polyps are adgorhave introduced a
deformation to the originally healthy colon surface. Wel wéscribe a novel method to
reconstruct the data without these protrusions. Effelgtiviee technique aims to ‘undo’
the deformation by modifying the underlying intensitiesisat the protruding shape is
no longer there.

The proposed method does not require any assumptions oedioa lshape such as
axial-symmetry, sphericity or lesion size, other than thptotrudes. It works well for
highly irregular protruding objects. Lesion candidates@enerated using only a single
threshold. Small variations of the threshold affect thedibn sensitivity of the smaller
polyps first. Additionally, the resulting segmentationdirde the complete object (both
head and neck).

In earlier work [130] we proposed a scheme that operated @xplicit representa-
tion of the colon surface, which was obtained by a triangmtatf the isosurface at -
650 HU. Only information of this particular isophote wasdsestimate the structured
surface without the protrusions. Possible beneficial mitron from other isophotes,
with higher or lower intensities, was ignored. The schenopgpsed in this paper differs
fundamentally by acting on an implicit representation @& tolon surface. That is, it
uses information from other isophotes as well. Consequehttre is no need for op-
timizing the intensity level of the isosurface. Another adiage of this method is that
topological complexities and complex mesh processingstaskch as mesh generation
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and mesh smoothing, are avoided. We will compare both method demonstrate
that the two techniques are to some extent complementaryedwer, exploiting the
complementary aspects will be shown to lead to improvediseéts

5.2 Methodology

5.2.1 Materials

A total of 84 patients with an increased risk for colorectaicer were consecutively in-
cluded in a previous study [122]. All data were acquired gsitMx8000 multislice CT
scanner (Philips Healthcare, Best, The Netherlands) ubmgame scanning protocol
for all scans (120 kV, 100 mAs, 4x2.5 mm collimation, pitcB3,.standard reconstruc-
tion filter). Slice thickness was 3.2 mm. All patients adldete an extensive laxa-
tive regime without taking a tagging agent with their dietl patients underwent CT
colonography before colonoscopy. The patients were schinr@th prone and supine
position; thus, a total of 168 scans were used in our studg.fifldings of colonoscopy
served as the golden standard. Polyp size was also measuniad dolonoscopy by
comparison with an open biopsy forceps of known size. A mebetellow annotated
the location of polyps in all CT scans. For the 84 patient8, A6lyps were annotated.
The number of polyps with a size larger than or equal to 6 mmS¥aend the number of
polyps larger than or equal to 10 mm was 32. Fig. 5.2 showstadram of the optical
colonoscopy size-measurements. Conventionally, polypstware smaller than 6 mm
are considered clinically unimportant. Therefore, theyeneot used in the performance
analysis. The peak at 10 mm polyp size is caused by the facirttwdinical practice
only a few bins are used: smaller than 6 mm, between 6 and 10mdrtaeger than or
equal to 10 mm.

Experts labelled the polyps in CT data based on the optidaihogcopy findings
without using CAD. A candidate generated by the CAD systers labelled as a true
positive if an annotation was within 5 mm from any of the vexel the candidate and
was not closer to any other candidate. A margin of 5 mm was ts@dcommodate
inaccurate localization by the expert. Especially for thplieit method, such a margin
is needed to accommodate annotation inside the polyp. Tdleeta make a proper
comparison between the two methods, the same margin is asbdth techniques.

5.2.2 Method

A typical polypoid shape is shown in Fig. 5.3(a). Supposethapoints on the convex
region of the polyp (the polyp head) are iteratively movesards. In effect this process
will ‘flatten’ the object (Fig. 5.3(c)). Note that the conveagion expands during the
process and will ultimately include the polyp neck as welfteAa certain amount of
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Figure 5.2: Distribution of sizes obtained during coloragscof 57 polyps larger than
or equal to 6 mm in 84 patients from a previous study [122]. Qolgp of
45 mm is not visible in the histogram.

deformation, the surface flattening is such that the prairus completely removed.
That is, the surface looks like as if the object was nevereth&his is the key concept
on which the method is based.

Before formalizing on the operator we first have a closer lattke second order dif-
ferential properties of the implicit surface embedded inra¢-dimensional voxel space.
The colon can be considered as a long elongated structusedFor a perfect cylinder
shape the principal curvatures are smaller than or equartoeverywhere. However,
the colon contains many folds, i.e. structures which araledronly in one direction:
the first principal curvature is larger than zero, wherdas second principal curvature
is close to zero. Protruding objects, such as polyps, hasgpmvalues for the first and
second principal curvature. Therefore, an operator igdesi to affect only on points
with a positive second principal curvature and in such a viay the second principal
curvature decreases. Repeated application of the operiiteventually yield an image
where the second principal curvature is smaller than orldquaero everywhere.

Consider once more the schematic representation of a poliFmi 5.3(a). The dis-
tinction between the headq{ > 0, Kk, > 0) and neck K1 > 0, ko < 0) regions of the
object is made by the sign of the second principal curvat@g.the line connecting
the inflection points A and B in the figure (separating theaegi'’head’ and 'neck’) the
Gaussian curvature is zero. The proposed method initidéypts the head region only.
It will now be demonstrated that such adaptation leads tocparesion of this region.

To that end, Fig. 5.3(b) shows a planar cross section thréygipanned by the lo-
cal gradient vector and the direction of the second prin@pavature. Let us merely
consider the curve emanating from this cross section. Téepsess of this curve cor-
responds to its first derivative; the curvature correspdadts second derivative and is
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Figure 5.3: Schematic illustration of the deformation e (a) Three regions (head,
neck and periphery) are distinguished. (b) The second ipahcurvature
Ko is zero at the border between the head and neck region. (ch&he
region expands during the deformation process.

given by:
_ by
=%
in which Ay represents the second derivative of the curve. By convemrtibas a sign
opposite to that of the second derivative. Observe thatctimgature is positive on the
'head’ side from A and negative on the 'neck’ side from A; thevature equals zero in
A. At the position of A the second derivative is:

f(x+dx)—f(x)  f(x)—f(x—dx)

2 _
Ay = d’f = lim dx dx =0. (5.3)
dX2  dx—0 dx

(5.2)

A reduction of the protrusion in the head region implies thatvalue off (x+dx) in
(5.3) is lowered. Consequently, the second derivative idh becomes negative, and
the curvature K) positive. Thus, the zero crossing of the second derivatiVeshift
outwards in Fig. 5.3(b) and the head region will expand ihtreck region.

The effect of repeatedly reducing the protrusion is illatgd in Fig. 5.3(c). The
points with zero second principal curvature shift fronh td A* and B to B*. Even-
tually, the protrusion is flattened over the complete shape both the head and neck
regions. Although the initial delineation of the head regad the structure (in which
the deformation is started) may be affected by noise, tha ef®peration eventually
spreads to the entire polyp area. It is this property thatanétke procedure robust. The
results section contains some examples to illustrate thbads efficacy.

5.2.3 Second principal curvature flow

A scheme to remove protruding elements from a curve in 2Dei&tclidean shortening
flow [80]. A similar approach can be taken in 3D, for which theflis governed by:

ol

=gk, I, (5.4)
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with k1 andky the first and second principal curvaturgs] | the gradient magnitude of
the input imagé, andg(-) a curvature dependent function characterizing the flow. The
principal curvatures can be derived from the trace of thestd@smatrixH:

Ixx Ixy Ixz

I 2x Izy 2z

with x, y andz the image coordinates angl the second derivativi; = 9°1/9idj. In
gauge coordinates the Hessian is a diagonal matrix withs¢t26]: lgg, luy andlyy.
The first term is the second derivative in gradient diregttbe second and third terms
are the second derivatives in the directions of the prin@pevatures of the isosurface
perpendicular to the gradient vector. The latter two reiatie principal curvatures of
the isosurface:

qu — —Kl||:|||,
lw = —ko|Ol|. (5.6)

With the definition of inward normals, the second principahature in the colon is ev-
erywhere smaller than or equal to zero, except on protrugigi@ns. Here, both the first
and second principal curvatures are positive and the quoreng second derivatives
are negative.

9(k1,K2) may be defined in various ways [81], e.g. by the mean curv§t®.et4] or
the Gaussian curvature. We require th@ats, K2) is continuous, especially at locations
where the sign ok, changes, to avoid a discontinuous deformation. Moreoverust
be small on folds with a small positive value g$ so that the deformation on such
locations is small. Reversely, the response to polyps withlarge principal curvatures
should be large. Accordingly, we solve the following noetan PDE:

o lw (k2 >0)
% = { 0 (kn<0) ° (5.7)

Thus, only at protruding regions the image intensity is oedluby an amount propor-
tional to the local second derivative in the directiorkef

5.2.4 Implementation

The proposed method is applied to voxels on and around tlo@ soirface. This region
of interest (ROI) is defined by a mask. First, a binary imagsisined by thresholding
the CT image at -650 HU. Subsequently the mask is generategglying the exclusive
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or (XOR) operation to an eroded and a dilated version of thargiimage. The number
of iterations for the dilation and erosion should be such tifwa full air-colon transition

is included in the resulting mask image. We used a conseevadilue of 10 mm for the
radius of the erosion and dilation kernels.

The partial differential equation (5.7) is solved for thexgts in the ROI defined pre-
viously. The intensities of voxels outside the ROI are ntdrald and serve as Dirichlet
boundary conditions. The left hand side of (5.7) is diseegtiby a forward difference
scheme:

ol |t+1 o |t

gt dt
The right hand side of (5.7) requires computation of first aedond order derivatives.
The first order derivative is determined by the local origotaof the normal field. An
accurate estimate is required to prevent diffusion of imi@tion across isophotes, lead-
ing to blurry effects. Unfortunately, simple central dif@ce derivative operators are
known to have rather poor rotation invariance [94]. Therefthe first and second order
derivatives are computed after a (second order) Taylorresipa in a 3x3x3 neighbor-
hood [120]. They are used to compue

The image values are modified in a semi-implicit manner coalga to a Gauss-
Seidel scheme, meaning that some of the underlying iniensities are at time+ 1,
while others are at time

At t+1/2
it {It+(AX)2|W (k2> 0) (5.9)

+0(dt). (5.8)

It (K2 < O)

in which I\t,jl/z indicates that it is computed with information from timepgeandt + 1.
For Laplace’s equation, numerical stability is guaraniégte termAt /(Ax)? is smaller
than% [124]. Therefore, the maximum time step for which stabilgyattained depends
on the direction in which the voxel size is smallest (tydicah-plane): (At)max = % :
(Ax)2. Note that this is a conservative value since we only use timeipal second
derivative, l,y, instead of the full Laplacianlgg+ lyu+ Iw. The aspects of stability,
convergence and correctness for similar problems have éledorately discussed in
[80]. For a more formal discussion, see [4] and also [124]prlctice, we have never
encountered a problem concerning the stability and coevesg of the solution.

Summarizing, the algorithm acts only on the head regionshithwk, > 0. A new
intensity is assigned by (5.9) to each voxel within such aoreg Subsequently, the
principal curvatures are recomputed. Some of the voxel€hwimitially had zero or
negative second principal curvature will now be in the heaglan and will be added
to the area of operation. In this way, during iteration, thesaaof operation will expand
from the head into the neck region.

An obvious stopping criterion would be to track the amouninggnsity change dur-
ing iterations and stop when the amount of intensity changeparticular iteration is
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lower than some predefined value. Unfortunately, this l¢ads underestimate of the
protrusion of large objects, with a low value for the secoedvative even when the
protrusion may be quite large. In our implementation, weehtaken a heuristic ap-
proach. After each iteration, the number of voxels that aided to the convex region
is counted. The algorithm stops when this number is zero.

A crucial property of the method is that the effective kersele increases with each
iteration. Such adaptation occurs since the curvatureilzion continuously uses the
result from the previous step. In effect, the scale 'adapttie underlying image struc-
ture, because a small protrusion will require less iteretito be flattened into the back-
ground than a large one. In other words, the effective saaiewlocally as the number
of iterations needed to reach a ‘steady state’ differs frooation to location. Simul-
taneously, the area of operation, which is delimited by zewond principal curvature,
also changes during iterations. By definition, the headoregf a structure is adapted
first, but subsequently the area of operation extends todblenmegion (see Fig. 5.3). Ex-
isting methods typically estimate curvature values in 'shet’ by selecting one scale
of derivative operators a priori. A limitation of the curtanethod may be associated
with protruding objects with smak,. Such structures deform slowly due to small cur-
vature. It will be demonstrated that the detection of larglyps is not hampered by this
limitation (see Section 5.3.2).

Fig. 5.4 demonstrates that the method works well also fonljigregular shapes.
The first row shows the isosurface (rendered at -650 HU) &réifiit stadia of the de-
formation process. During the first iterations only the twotpuding regions on the left
and right side of the polyp are affected. In later stagesth@e regions merge and also
the middle part is deformed. The steady state solution amdebulting segmentation
by thresholding is shown in the last two pictures of the fiost.rThe second row shows
the shape index§]) computed from Gaussian derivatives obtained using @iffescales
(o0 =2,4,8,12mm), red corresponds &l = 1, magenta t&l = 0.75 (e.g. on folds).
The third row shows the regions wisi larger than 8. The example demonstrates that
scale has a profound effect on the resultBigvalues. All polyps in our dataset that
are larger than 10 mm have multiple separated head regioas Wwhserved’ at a small
scale (see Fig. 5.11b for the performance of our algorithiaaye objects).

5.2.5 Candidate segmentation

The steady state yields new intensities for voxels, pdgrtuin protruding regions. We
will now demonstrate that the intensity change is a measurdé amount of displace-
ment of the isosurface.

Let X represent a position in which the intensity'(X) is halfway the intensities of
the colon lumen and the tissue. Furthermore, the algorithasserted to displace the
isosurface througi by a small amound (smaller than the width of the point spread
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Figure 5.4: Demonstration of polyp detection by the curkatilow (first row). The

second and third row show results as obtained by threshplti@ Shape
Index, computed at different scales. See text for details.

function (PSF)) after some iterationstat t. Then, the intensity'=t(X) can be com-
puted via a first order Taylor series expansion:

1=4(%) = 150(%) + &5 - OI=(X) + &. (5.10)

Notice thatd refers to a hypothetical step size corresponding to a snsglatement
of the isosurface. Reversely, a small change in intensifes linearly to the amount
of displacement. However, large displacements of the réaseicannot be described as
such. The intensity change levels off for displacementgelathan the PSF width:

_ _ C
|5t (%) = 1510(R) — 1 (5.11)
in whichC denotes the total contrast over the transition from lumerssue (typically
around 1000 HU).
The sketch in Fig. 5.5 illustrates the relation betweenrhenisity change (before and
after deformation) and the colon surface displacemenfyhglthe air-tissue transition.

Clearly, the intensity change is monotonically increasint increasing displacement
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Figure 5.5: Sketch of the relation between colon surfagelai®ment and the observed
intensity change for positions halfway the step edge. Tlatiog depends
on the apparent local scale of the PSF, i.e. the scale in thetitin of the
surface normal. Often, the scanner resolution is not ipatrahe in-plane
resolution is larger than the out-of-plane resolution. A®asequence, the
relation depends also on the direction of surface displacém

of the isosurface. This would permit a segmentation by a Ertipeshold on the in-
tensity change if the data were isotropic, but unfortulya®TI data often are not. The
in-plane resolution is frequently higher than the resoluin scanning directiorg]. In
other words, the apparent scale of the Rgfparendepends on the direction of the colon
surface normal. Consequently, the relation between iittedsange and colon surface
displacement (cf. Fig. 5.5) depends on the orientation efpitotruding structure. To
solve this problem, the derivative kernels are made amparsuch that the apparent
scale will be isotropic and equal to a certain target soglge: The kernel scale;, in

the directioni € {x,y,z}, is computed by = \/ Ofarget— Oapparent» IN WhiCh Gapparen

is the apparent (anisotropic) scale of the PSF. Polyp cateliggions are segmented by
thresholding the intensity change field, followed by a labgloperation. The threshold
value is 100 HU corresponding to the threshold @ff@m surface displacement as used
in [130] for data with an assumed Gaussian PSF [97] with 1.6 mn™?.

5.2.6 Features for classification

For each candidate object, five features are computed. Teatees relate to the two
properties that are primarily used by a radiologist: shdecandidate and intensity dis-
tribution inside a candidate. We explicitly make this distion since only size descrip-
tors permit a ranking of the candidate objects in a way tHates to clinical relevancy.
Accordingly, size related features will be treated diffehg than the other features in
the pattern recognition step. Conventionally, polyp s&defined as the single largest

2Halfway the air-tissue transitionij'=to = —£_ = 1900 ~ 250 HU/mm, thus 100HU2 0.4mm, i.e.
. gv2m  16v2m
equal to the threshold used in [130].
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Figure 5.6: Feature space of the maximum and minimum irtieagor each candidate
region. Annotated polyps are depicted by black dots and haemum
intensities around 0 HU (tissue) and minimum intensitieaiad -650 HU.
Only one in every 20 false positives is shown as a grey dot.

diameter, excluding the stalk. We compute it automaticadiyng the method described
in [26], which not only returns the largest diameter (Long#xbut also the shortest
diameter (ShortAxis). These are the first two size relatatufes that are used in the
classification. Notice that their ratio incorporates shiyj@mation. The third feature
is the maximum intensity change (MaxIntChange) within es@fpmented region (can-
didate). It directly relates to the isosurface displacenfenFig. 5.5). For larger polyps
the values of this feature will be large and vice versa. Thetfoand fifth features used
for classification are the 5 and 95 percentile intensitisgdm the candidate. We em-
ploy these percentile values and not the minimum and maximtgnsities to increase
the robustness against noise. For simplicity, we will rééethese two features as the
minimum (MinHU) and maximum (MaxHU) intensity values insithe objects. Notice
that all features depend on the intensity change field silc@ecomputed over the
segmented volume of a candidate. Only the MaxIntChangerread directly derived
from the intensity change field in the segmented volume, thers are computed from
the original CT data.

5.2.7 Classifier training

It was mentioned previously that the intensity features oiodirectly allow for an or-
dering of the candidates. As an example, consider the feapace of MinHU and
MaxHU shown in Fig. 5.6. The black dots denote true positeedidates and the grey
dots denote false positive candidates.

The distribution of polyps is somewhat Gaussian, and ttseadarge overlap with the
non-polyps. The latter do not show a simple distributionhis space. For these rea-
sons, these two features are not ugdeectly for classifier training. Instead, we compute
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Figure 5.7: Polyp (10 mm) at different stages of the intgndé@formation (after 0, 10,
40, 80 and 160 iterations of (5.9)) . First row: original dagacond row:
overlay showing the intensity changes larger than 100 HE ¢thlor scale
was truncated at 650 HU; third row: isosurface renderings6&0 HU).

the Mahalanobis distance to the polyp class center. Suchpaintaorders the candi-
dates by the distance to the center of the Gaussian, i.e.etitercof the polyp class
yield zero Mahalanobis distance. Notice that the centervadth of the Gaussian are
to be determined on independent training data. This styategnics the use of a Gaus-
sian one-class classifier [114]. Complementary, the reimgifieatures (MaxintChange,
LongAXxis, ShortAxis) relate to size and are directly usedraer the candidates. The
ranking of the candidates imposes that changes in the dadmundary affects the
classification in an ordered fashion.

It may be expected that far more small candidates are ddtdwea large ones due to
noise and the small ‘effective’ scale on small objects. @ersa connected number of
pixels affected by positively signed noise. Such coheregions may mimic small ob-
jects with positive principal curvature. The derivativesnputed from the 3x3x3 Taylor
expansion experience a small amount of regularization s€guently, the little blurring
may leave small noise protrusions on an otherwise smoofacgur This is confirmed
by the distribution of the false positive candidates withpect to the MaxIntChange
feature, which resembles an exponential distribution. ddaently, we have observed
that the polyps denoted by black dots in 5.6 are approximateiformly distributed.
Therefore, the ratio of the posterior probabilities mudiofe an exponential decay as
a function of MaxIntChange. This is a situation in which aisbig classifier [135] is
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Figure 5.8: Typical results for four polyps. Each columnwhdthe results for a different
polyp. The first two rows show grey value cross sections leeford after
intensity deformation. The third row shows the segmentatiasks which
are obtained by thresholding the intensity change at a VB0 HU. The
last two rows show isosurface renderings (at -650 HU) of tiigps before
and after intensity deformation.
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optimal.

The linear logistic classifier involves estimating the postr probabilitiesp (w |X)
instead of the class distributiomg x| ). These posterior distributions are assumed to
be the sigmoidal functions. This is a valid assumption whendasses are Gaussian
distributed, or, as in our case, one of the class distribstis exponentially decreasing,
while the other is more or less uniformly distributed. A nraxim likelihood estimation
is performed to find the linear direction in the data that fiesthese assumed sigmoidal
distribution functions. Using the posterior probabiktiastead of the class-dependent
distribution functions makes this classifier less sensitivthe large class imbalance.

As such, the problem is treated as a regression problenr ithidre a traditional two-
class pattern recognition task. In other words, one searfdrea linear direction in
which the sigmoidal pdfs best describe the data. The pedooa of the classifier will
be assessed by a 5-fold, 10 times repeated cross validagerbglow).

5.3 Experiments and results

The proposed method is applied to the detection of colonligpsdn CT colonography
data of 84 patients (see above). We will first show qualitatesults. The sensitivity
and specificity of the candidate detection step of the CADesgswill be given for
varying thresholds on the MaxIintChange feature. The resflthe complete CAD
system after classifier training will be given at the end o #ection. We will include
the results obtained by the method that involves an exgfie#tsh) representation of the
colon surface [130] for comparison. The FROC curves wereutatied from a leave-
one-patient out cross-validation. A polyp was counted aseapositive CAD detection
if it was found in at least one of the two scanned positionsr{pror supine).

The mean computation time per patient on a PC with a Pentiuroeepsor (3.0 GHz)
and 2 GB memory was 4 minutes.

5.3.1 Qualitative analysis

Fig. 5.7 illustrates how the intensities are modified dutimgdeformation process and
how this affects the position of the isosurface. The first obgrey valued images show
cross sections through the polyp after 0, 10, 40, 80 and Hations of (5.9). The
second row shows images with an overlay of a color map of ttengity change for
voxels with a change of more than 100 HU. The color bar givemditation of the
amount of change in the polyp compared to its surroundirgd@0 HU; the scale of
the color bar was truncated at 650 HU). To appreciate the tthirmensional structure,
the last row shows isosurface renderings (at -650 HU.) tlearly show the gradual
deformation of the polyp, while its surroundings stay alinosltered.
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Figure 5.9: Each row shows a false positive. First row: eXangp stool. Air inside
object is clearly visible on first image. Second row: stooleofold. The
original data is shown in the first and third column. The déter aleforma-
tion by curvature flow is shown in columns two and four.

Fig. 5.8 shows the final outcome for a number of other polypse first two rows
show grey-valued cross sections, respectively before t@ckhe intensity deformation.
The third row shows an overlay of the segmentation as oldayethresholding the
intensity change between the images in the first two rows avel bf 100 HU. The
bottom two rows show isosurface renderings (at -650 HU) eftblyps before and after
the deformation. The images demonstrate that the intedsityymation method yields
probable estimates of the colon surface. This even apmiebjects situated in highly
structured surroundings, such as the polyp in the first columhe second column
shows the result for a 6 mm polyp. It is situated on an almostb#&kground. The
isosurface rendering containing the colon surface aftésrgetion shows hardly any
residual protrusion. The third column displays an elongigi@yp on a strongly folded
part of the colon. After deformation some residual protvascan still be observed,
albeit small compared to the original protrusion. The sawld$for the polyp in the
fourth column. This is a classical pedunculated polyp on momastem. The head
region is removed, while the stem remains.

Approximately 60% of the false positives are stool and 30%heffalse positives are
on folds. Among the remaining false positives are detestiam the illeocecal valve.
All these objects had a shape and structure that closelynideea polyp (two examples
are contained in Fig. 5.9).
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Figure 5.10: FROC curves showing the candidate detectiositsgty versus the num-
ber of false positives for (a) the mesh based and (b) themtlyneroposed
technique. The numbers in (a) denote the threshold on th@rdation
field in mm and in (b) the threshold on the intensity change fieHU.

5.3.2 Performance of the candidate detection

Fig. 5.10 serves to show that our choice of thresholds is fiettang the detection
sensitivity. Both figures (a and b) contain a free-respoaseiver operating character-
istic (FROC) curve for the candidate detection step. Fi$0&) was obtained using
the method that involves an explicit (mesh) representatiothhe colon surface [130]
and Fig. 5.10(b) was based on the method presented in thentyraper. The inde-
pendent variable along the curves is the threshold on th@adisment of the mesh,
respectively the intensity change. In either case a lowestiold returns more candi-
date objects. Reversely, as the threshold is increaseeéy fandidates are found, but
also some polyps may be missed. For the full CAD system (Ses/bee have chosen
a threshold for which at least 100% sensitivity is achievedno independent training
set. For the mesh based method this resulted in a thresh@d shm displacement.
For the intensity deformation method we use a threshold 6fHO on the intensity
change. The smaller number of false positives of the mesteseptation is due its
description by fewer points (about 500000) than the impligpresentation (about 10
million points). Notice that the large number of false piwsi$ at this stage is irrelevant:
the overall performance of the system is determined aféssdlying the candidates (see
below).

5.3.3 Results after classification

Fig. 5.11 shows the overall performance of both the prop@setithe mesh based
method [130]. The figure shows the performance for the detecitf polyps for two
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Figure 5.11: FROC curves depicting the performance of ifieason for the mesh
based (explicit) and the currently proposed (implicit)heicue. The
FROC curves were computed by a five times repeated ten-falsisecr
validation.

size ranges: larger than or equal to 6 mm (including thosgetathan 10 mm), and
larger than or equal to 10 mm. Apparently, the performandeefwo methods is com-
parable. Both techniques perform better on the larger polypsensitivity of 95% for

polyps> 6 mm is achieved at an average false positive rate of 4-6 pér. $©r polyps

> 10 mm, a sensitivity of 95% is obtained at about 4 false paestper scan.

For our data, approximately 50% of the false positives arel sind 40% are on folds.
Among the remaining false positives are detections on thedkcal valve. All these
objects have a shape and internal structure that closedyntae a polyp (two examples
are contained in Fig. 5.9.

5.3.4 A combined approach

In practice we found that particularly the false detectiohisoth methods were to some
extent uncorrelated. For instance, the mesh based methmally had false detections
emanating from the partial volume effect (PVE) as it opeyaip a single isophote,
whereas the current method was more robust because it teokiltitransition (air-
tissue) into account. Reversely, the current method isrenily sensitive to intensity
variations within tissue, especially in thin folds, whessaich problems are excluded in
the mesh based method in which feature measurement is conditiee isosurface.
The two methods were combined as follows. The location otdredidates of both
methods were compared. A consensus voting was used to aarepdates only if an
overlapping candidate was found by the other method, invbase they were linked.
Candidates with a vote from only one method were discardegl.5F12 confirms that
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Figure 5.12: Feature space of the maximum displacementi¢gxpethod) vs. the max-
imum intensity change (implicit method). The black dotsrespond to
polyps and the grey dots to false detections. Two regioneir@ead by
dash-dotted lines top-left and bottom-right) with falsé¢edéions (grey
dots) can be observed in which the depicted features arenateted and
complementary.

there is complementary information in the two methods. Htams a scatter plot of
the MaxIntChange feature versus the maximum displacenfeheanesh as obtained
by the mesh based method. It can be seen that these corrglt®mpolyps (black
dots). Two regions with false detections (grey dots) caa hésobserved in which the
depicted features are uncorrelated (top-left and bottgim-in both graphs). One region
has rather low MaxIntChange, but concurrently quite largeimum displacement of
the mesh; another region is characterized by a large Makbn@e, but a low maximum
mesh displacement.

Fig. 5.11 also contains an FROC curve of the combined approik@demonstrates
improved performance by exploiting the complementary eispeaf the two approaches
particularly on polyps> 6 mm.

5.4 Discussion and conclusion

A novel method was presented which detects polyps basedorptiotruding character
irrespective of the actual shape. The method modifies imagesities at locations of
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CHAPTER 5. DETECTION AND SEGMENTATION OF COLONIC POLYPS ON
IMPLICIT ISOSURFACES BY SECOND PRINCIPAL CURVATURE FLOW

protruding objects. This is achieved by finding a steadyessatution of a nonlinear
PDE with the recorded image as input. We showed that the sitfeahange relates
to the displacement of iso-contours. We also demonstratedthis relation is made
invariant to the anisotropic resolution and sampling of ghanner. This allows for a
simple segmentation of polyp candidates by applying a sitigleshold on the inten-
sity change field. We proposed a measure for the detectionlgp gandidates, which
directly relates to polyp size, and not to polyp shape. Theasare orders detected
structures according to size which, in effect, keeps irsiregy larger objects further
away from the decision boundary. In other words, this lirtfies risk of missing large
polyps. Also, our method does not make a specific choice ®istale for the com-
putation of the 1st and 2nd order derivative operators. Térative character of the
method changes the intrinsic scale of the image (local ambtpic): the aperture
of observation (window size of the operation times the nunatbé@erations) inherently
increases.

We have chosen to adapt the convergence criteria of the [RI3Edo the local data.
Effectively, the deformation of a region stops when it doesaxpand anymore. This
yields a stopping criterion which is data dependent and doeseed user interaction.
However, the criterion is rather strict as can be seen frogn %8 (third column), in
which case the protrusion was not completely removed. A hgjke level might pre-
vent the algorithm from segmenting the entire polyp areae {®@econd order) Taylor
expansion in a 3x3x3 neighborhood will effectively dealwtihe noise practically en-
countered in low-dose (20 mAs) scans.

The performance of the method on so-called flat polyps regdurther research.
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6 Automatic polyp size
measurement for CT
colonography based on a
protrusion estimation method

In this chapter a polyp segmentation algorithm is evaluaigte method is based on
the technique proposed in chapter 4. The performance of #thad is assessed by
comparison to expert size measurements on phantom datauanublyps.

Published as:

C. van Wik, J. Florie, C. Y. Nio, E. Dekker, A. H. de Vries, H..Wenema, L. J. van
Vliet, J. Stoker, F. M. VosProtrusion method for automated estimation of polyp size
on CT colonographyAJR 2008 [127]
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CHAPTER 6. AUTOMATIC POLYP SIZE MEASUREMENT FOR CT
COLONOGRAPHY BASED ON A PROTRUSION ESTIMATION METHOD

6.1 Introduction

Computed tomography (CT) colonography is a minimally imnvagprocedure that is
advocated for the detection of colorectal cancer and pgygis. The size of a detected
polyp is of primary importance for diagnosis and decisiorkimg since it relates to
the risk of malignancy [74]. Accordingly, it is proposed thlyps with a diameter
smaller than 6 mm require no further action, whereas polgpsleto and larger than
10 mm should be removed by colonoscopy [22, 146]. There istéetver the need
for polypectomy for 6-9mm polyps. Surveillance for growthtwCT colonography has
been suggested as a safe alternative [146]. A reliable measat technique is required
in this scenario.

The focus in this paper is on accuracy and measurement itdyiaBccuracy is de-
fined as the mean difference between a measurement methtteanefierence standard.
A systematic error is gignificantmean difference, which may be due over- or under-
estimation by the method under investigation. The measeménariability is defined
as the standard deviation of the mean difference. Notideamaethod may be highly
accurate, but at the same time have a large measuremerdiMgriar vice versa.

Lesion size is best defined as the single largest diametbegidlyp head, excluding
the stalk. Itis usually measured in 2D reformatted images endoluminal 3D display
[15,90,144]. In either case, significant measurement biity\awas reported contingent
on the experience of the observer and the viewing displag [idg.

Figure 6.1: Phantom colon with plasticine objects. Phaphrshows two halves of a
cylinder inserted into a tight-fit second cylinder beforarsaing.

Automated techniques were introduced in order to enhaneenisasurement reli-
ability [14, 26]. It was reported that automatic and manual fBeasurements were
more accurate than manual 2D measurement on polyps in a hookectomy speci-
men [118]. The measurements were done on the resected gpeitiat was insufflated
and submerged in a container with 0.9% saline solution. Kewdater it was found
that 3D measurement had the largest systematic error indg ghat included polyps
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6.2. MATERIALS & METHODS

from a CT colonography study in which colonoscopy was theregfce standard [16].
(Semi-)automatic measurement was found to have supet@r-imnd intra -observer
variability compared to manual 2D measurement with sphgrolyp-like phantom
objects [14]. In other work, though, it was observed thabm#ted and manual ap-
proaches have comparable inter-observer agreement [Th8]latter observation was
confirmed in [16]. Several factors might explain the confiigtresults: the types of
objects used (phantom objects versus patient data), nbe@aateristics and scanner
resolution, reader variations (inter and intra), and béliity of the reference standard in
patient studies (colonoscopy).

This paper studies the accuracy and measurement vagatiilan automatic mea-
surement technique [130] under varying scanning conditiging both phantom data
and patient data. The performance of the algorithm was coedga both 2D and 3D
manual measurement by human observers. For the phantorthtsateas done for two
different slice thicknesses and two orientations of thenpbra data in the scanner. All
data was acquired using a 64 slice CT scanner. We hypothibsizéhe measurement
variability of automatic measurement will be higher thaa thtra and inter-observer
variability of a human reader.

6.2 Materials & methods

Phantom Data

A phantom consisted of an air-containing, lucite cylindength 10 cm; internal diam-
eter 5 cm, see Fig. 6.1) into which artificial polyps were e First, scans of the
phantom containing seven hemispherical lucite objectmntdier 4-10mm) were made.
Subsequently, 15 asymmetric objects from plasticine ¢istrgiameter 4-19mm) were
inserted in the phantom. The orientation of the main axebefdtter objects was arbi-
trarily chosen to be either parallel or orthogonal to thenreais of the phantom. The
size of all objects (see Table 6.1) was measured by slidihgera defining the refer-
ence standard. All scans were made with the phantom placacytinder, 34 cm in
diameter that was filled with water.

Patient Data

Polyps were included from scans of 10 patients (6 male, 4 lEma@ean age 59 years,
range 30 - 74) selected from an ongoing CT colonography stuidyis study con-

cerned patients at increased risk for colorectal cancel.th&ke patients underwent
CT colonography succeeded by colonoscopy which was videsdtaThe selection of

The method presented in [14] is semi-automatic and requiv@siser to indicate a start point for
polyp segmentation & size measurement. Presumably, thériseaction causes some measurement
variability
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CHAPTER 6. AUTOMATIC POLYP SIZE MEASUREMENT FOR CT
COLONOGRAPHY BASED ON A PROTRUSION ESTIMATION METHOD

Acrylic Resin| Plasticine| Polyps

4 4 4.5
5 6 5
6 6 5.5
8 6 6.5
8 8 7
10 8 7.5
10 9 7.5
10 8
12 8
12 8.5
13 9.5
13 10
14 10.5
14 11.5
19 11.5
19 13.5

Table 6.1: Reference Sizes (mm) of Phantom Objects and ®olyp

patients for the present study was based on the polyp sizeurezhduring colonoscopy,
which was required to be larger than 5 mm in diameter, irretbge of shape or loca-
tion. All such polyps in patients that were examined in theqeefrom 31 March 2006
to 30 August 2006 were included. For the present study tleedfithe polyps was re-
measured on the colonoscopy video by two experienced gasénmlogists who were
aware of the aim of the present study. The gastroenterdtogisre blinded for the
CT colonography size measurements (see below) as well asitihécolonoscopy size
measurements. The retrospective measurements wererpeddary comparison to an
open biopsy forceps (size 8 mm) and to a caliper tool (size &0 mhavailable (4/16
cases). The mean retrospective size measurement serveel $erence standard for
polyp size. In the 10 patients 16 polyps were present, 9 gdbgtween 6 and 10 mm
in diameter in 8 patients and 7 polyps with a diameter of 10 mtarger in 5 patients
(Table 6.1).

The colonoscopy findings were matched with the colonograjatg by a research
fellow who was not involved in the present study. The CT colaphy study was
approved by the medical ethical committee of the hospitak patients were informed
a priori by letter as well as verbally of the study purpose gade written consent.

CT Imaging

CT scanning of the phantom as well as the patients was pegfbion a 64-slice CT
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6.2. MATERIALS & METHODS

scanner (Brilliance, Philips Medical Systems, Best, ThéhHdands). The scan param-
eters: 100 mAs. 120 kV, 64 x 0.625 mm collimation, pitch 0€&8ndard reconstruction
filter (‘C’).

The phantom (Fig. 6.1) was scanned in two positions: pamatié under an angle of
45 degrees with respect to the axis of the scanner. This waes tdoobtain an oblique
orientation of the main polyp axes with respect to the seandirection. The field-of-
view was fixed at 300 mm. The phantom in parallel orientati@as wcanned once with
a slice thickness of 3.0 mm; the slice thickness was 0.9 mralfather scans.

All patients drank 4 liter polyethylene glycol solution @édnPrep, Helsinn Birex
Pharmaceuticals Ltd, Dublin, Ireland), which is a hyperokmcathartic agent, com-
bined with 4*50 ml tagging material (meglumine joxitala®maB00 mg I/ml, Telebrix,
Guerbet, Roissy, France) for bowel preparation, startmghe day before the exami-
nation. The colon was distended by automatic insufflatio€0R to a maximum of
20 mm Hg or maximum patient tolerance. The patients werengzhin both prone
and supine position. The field of view varied between 286 a@ #m2. The slice
thickness was 0.9 mm.

Automatic polyp measurement

The automated size measurement method is part of a Compidieat Betection (CAD)
scheme for automatic polyp detection [130]. The schemeaisexthod which estimates
the deformation the colon wall in order to digitally removerasumed lesion. Schemat-
ically the method is explained in Fig. 6.2. Suppose that thiatp on the convex parts
of the polyp (i.e. the ‘protruding’ part) are iteratively nexd inwards. Effectively, this
will 'flatten’ the object. After a certain amount of deformat the surface flattening is
such that the protrusion is removed. Thus, the surface lbk&ss if the object was
never there. The amount of displacement is a measure oftaletness’. A polyp is
delimited by thresholding the deformation field. The sizeaswgement is obtained by
fitting’ an ellipse [118]. The size of a polyp is measured hg targest ellipse diame-
ter. The automatic polyp measurement was implemented oogaiptary, experimental
version of the ViewForum workstation (ViewForum 6.1; PbdiMedical Systems; Best;
The Netherlands).

Manual polyp measurement

An abdominal radiologist (observer 1) and a research feltygerver 2) independently
measured the size of all objects. Observer 1 had a previqerience of more than
500 colonoscopy verified CT colonography examinations exstart of the study. Ob-
server 2 had a previous experience of more than 350 of suchieatdons. Both had no
knowledge of the reference standard, were blinded to angunements by themselves
for the same object (in the other scans) as well as each stneasurements. The mea-
surements were performed on a commercially available inpageessing workstation
(ViewForum, Philips Medical Systems, Best, The Netheridnd
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Figure 6.2: Diagram shows cross section of an idealizedpoigh deformed surface
for estimation of protrusion.

The 3D display was obtained by isosurface volume rendentman enhanced 3D
viewing method (unfolded cube images) [132]. The transtercfion comprised a
threshold at -650 HU (making the voxels below this thresloichpletely transparent).
The 3D measurements were obtained using electronic csalifgre viewing software
used for this study allowed manual navigation for optimgzihe endoluminal vantage
point and the placement of caliper points in the 3D space.observers were instructed
to maneuver orthogonally over the object and measure themuax diameter.

The 2D measurement also required navigating orthogonaly an object. Subse-
quently, a reformatted cross section through the objectsivawn, that could be rotated
to identify the longest linear dimension. A window/levettseg of 1300/0 for the phan-
tom and 1250/-50 for the patient data was applied. The éiffez accounts for the
slight increased attenuation of the plasticine, which wassared to be 100 HU. The
observers could freely zoom in/out. The size of the objed determined using elec-
tronic calipers. The interval between 2D and 3D measureoretiie same object was a
few hours during which approximately 100 other measuresi@uk place. This setup
was chosen to avoid observer bias. The cases were presaemtdom order. Thus,
the order in which 2D measurements were done differed fraotder in which the
3D measurements were done. The objects in the phantom andutheolyps were
measured twice by both observers using both methods. Taeaitetween two mea-
surements (2D and 3D) on the same object in the same scan \emsatour weeks.
Recall bias was further reduced as both observers evaluaded than 50 other CT
colonography examinations during the interval periods.

Outcome parameters and statistical analysis

The measurements were used for these assessments: Thacgcamud measurement
variability of the observers and the algorithm was deteadiby comparing the first
measurements on the phantom objects in parallel orientatith the reference stan-
dard. Additionally, the accuracy of the measurements oa plyps was determined
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by comparison to the retrospective colonoscopic size nmeasents. Moreover, we
counted how often the critical category of a polyp was chdrige the measurement
(for instance a polyp measured to be 6-9 mm by an observer @mani or larger by
the reference standard). The intra-observer variabildg wetermined by comparing
the initial measurements on the scan with the phantom idlpbogaientation with those
made on the same scan four weeks later. In the same way theoiogerver variability
of the measurements on the true polyps was determined-dhgarver variability was
explored by comparing the first measurements of the two gbsepn the phantom in
parallel orientation. Likewise, the inter-observer vhiiidy of the first measurements on
the true polyps was determined. The variability due to d#fees in the orientation of
the phantom in the scanner was assessed by comparing thedaistirements from the
observers and the algorithm on the scans with the phantorarallel and oblique ori-
entation. The influence of slice thickness was studied bypasing the measurements
from the observers and the algorithm on the phantom scaisslide thickness of 0.9
mm and 3.0 mm. Student’s t-test was applied to assess argnsytst mean difference
between paired measurements. The standard deviation oféhe difference was cal-
culated to express the measurement variability. A Bartésit [101] was first applied
to test the assumption that standard deviations acrossunesasnt series were equal
(e.g. the standard deviations as in Fig. 6.3a). If the O-thyg®is of equal variance was
rejected, then the (squared) standard deviations were a@u by means of the F-test.

Bland-Altman ploté were used to visualize potential trends in the differen¢aeen
measurements and/or trends in the standard deviationnd inghe Bland-Altman plot
was detected by a linear regression analysis. Such a treadevesidered significant
if the regression coefficient differed significantly fronrady a t-test. The outcomes
were stratified by observer and by the type of measuremertad€2D or 3D). In any
case, a p-value less than 0.05 was considered to indicagaifiGant difference.

6.3 Results

For clarity only the most prominent outcomes are reportag;@mparison that is not

explicitly reported, did not yield a significant differenc®esults on phantom data is
consistently reported first, followed by results on patiéatta. Notice, that the Bland-

Altman plots (figures 6.3 to 6.5) explicitly include meanferences and corresponding
standard deviations in the plot legends.

6.3.1 Accuracy and measurement variability

Phantom data

2The Bland-Altman plot depicts horizontally the averageved torresponding measurements and ver-
tically the difference.
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Figure 6.3: Observer performance on CT with respect to eafsx standard. a and b,
Bland-Altman plot shows data for phantom (a) and for trug/psi(b).

Fig. 6.3(a) shows the Bland-Altman plot in which the measests on the phantom
data are compared to the reference standard. A systemiaionas found for the au-
tomatic measurement and for observer 2, 3D (p < 0.01, for)bofthe measurement
variability of the automatic method was significantly sraalihan all those of the ob-
servers, except for observer 1, 3D (automatic: 0.86mm; Oa6rim (2D), 0.96 (3D);

02: 1.34mm (2D), 1.45 mm (3D)).

Patient data

The Bland-Altman plot on the patient data is shown in Fig. (6.3 On patient data,
observer 2 made systematic errors with both 2D and 3D measute There were no
statistically significant differences between the auteenaethod and both 2D and 3D
manual measurement regarding measurement variabilityedriregression revealed a
significant trend in the automatic measurements, i.e. afgigntly larger measurement
error with a larger polyp size. All the approaches changedttitical category of 4/16
polyps, except for observer 2 3D, by whom 1/16 polyps chamgéegory.

6.3.2 Intra-observer variability

Phantom data
Fig. 6.4(a) shows Bland-Altman plots of intra-observeiiaitity on the phantom data.

The phantom objects resulted in intra-observer varigtitiat was not significantly dif-
ferent between the observers for both 2D and 3D. Patient datawise, Fig. 6.4(b)
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shows the outcome for the polyps. Again, the intra-obsevaeability was not sig-
nificantly different between the observers for 2D, but theaklity was significantly
different (p-value: 0.035) for 3D measurement.

6.3.3 Inter-observer variability

Phantom data

Fig. 6.4(c) shows the Bland-Altman plot illustrating theerobserver variability for
2D and 3D measurement for the phantom data. A statisticajlyifcant mean size
difference of 1.43 mm on the phantom objects was found betwee3D measurements
of the two observers (p < 0.01). The inter-observer vaiigtof 2D measurement was
significantly larger than the variability of 3D measurem@ntalue<<0.01).

Patient data

Fig. 6.4(d) shows the Bland-Altman plot of the inter-obsgmnvariability for 2D and 3D

measurement on true polyps. Observer Il underestimatepddlyp size compared to
observer | (by 1.48 mm for 2D and 1.54 mm for 3D).The interevler variability of

2D and 3D measurement were not significantly different ferttine polyps.

6.3.4 Orientation of the phantom in the scanner

Phantom data3.

There were no significant mean size differences between#asunements on the phan-
tom objects in different orientation, neither for the ausdim method nor for the ob-
servers. Fig. 6.5a shows the Bland-Altman plot illustrgtime variability due to vary-
ing object orientation. The measurement variability oféléomatic measurements was
significantly smaller than the variability of the observiEns2D measurement (for both:
p <0.001). The variability of the automatic measurementalss smaller than the vari-
ability of the 3D measurements by the observers, but thergifice was not significant.

6.3.5 Slice thickness

Phantom data®.

Fig. 6.5b shows the Bland-Altman plot illustrating the aduility due to different slice
thicknesses. Statistically significant mean size diffeesrwere only found between the
3D measurements both observers (p < 0.01). The variabflityepautomatic measure-
ment was not significantly different from that of the obsesve
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Figure 6.4: Intra observer and interobserver variabilitld and 3D measurements. a
and b, Bland-Altman plots show intra observer variabilify\wo repeated
measurements of same phantom object (a) and of same true {ly c
and c, Bland-Altman plots show interobserver variabilitycorresponding
measurements of phantom object (c) and of true polyp (d).
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Figure 6.5: a and b, Bland-Altman plot shows measuremerdhiéity due to change in
orientation of phantom in scanner for automated method aguad mea-
surement by both observers (a). Bland-Altman plot showssorement
variability in phantom data due to differences in scannéaropy for au-
tomated method and manual measurements by both obseryers (b

6.4 Discussion

Our study shows that for phantom data the measurement uayialf the automatic
method was smaller than the measurement variability of bsevers when either the
orientatior? of a phantom or the slice thicknéswas varied. This may show that the
reader variation of the automatic method is less senstigeith data variations. More-
over, the automatic approach had a smaller variation thamhiservers in comparison
to the reference standdrd This difference could be explained by the intra observer
variation, which is nonexistent for the automatic methodiefinition. We found that
one observer made a systematic error (i.e. consistent siaohgy, for both 2D and 3D
measurement) on the patient data. We attribute this to erdiit perception of the polyp
boundaries by this observer. The automatic method had thedameasurement vari-
ability, although it did not differ significantly from any maal approach. The large vari-
ability may be explained due to a systematic error whichaases with polyp size (Fig.
6.3b). The measurement variability (Fig. 6.3b) on polypsoissiderably larger than the
corresponding variability found on the phantom objectg(l6i.3a). The increase could
be explained by imprecision and inaccuracy in the referstexedard (colonoscopy).

SSignificant for 2D, not significant for 3D measurement
6Significant for 3D, not significant for 2D measurement.
’Significant for one observer, not for the other.
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Conventionally, polyp size is measured by the single larget/p diameter either
in 2D or 3D, although other ways to quantify size (e.g. by nseahthe volume)
were explored as well (see e.g. [14, 139]). Conflicting resswere reported previously
[16,90, 118] regarding whether 2D or 3D measurement is pedfeand how such man-
ual measurement relates to automatic methods. Pickhaddtfetind that manual 3D
measurement is significantly more accurate than manual Zi3unement [90]. The ob-
served underestimation of 2D measurement was attributdeeteuboptimal alignment
of the standard orthogonal MPR’s to the polyp axis. The study based on phantom
data as well as patient data (colonoscopy served as themegefor the polyps). We
reduced the pitfall of selecting the proper cross-sectioBD measurement by letting
the observers navigate orthogonally over a polyp in the 3pldy. A reformatted cross
section through the object was shown, that could be martguita find the longest di-
mension of the object. Simultaneously, the orientatiorhefreformatted cross-section
was visualized in the 3D display, but the measurement had tiohe in the reformatted
image.

Burling et al found that the greatest measurement error veterby the manual 3D
approach [16]. Burling indicated that 3D measurement is\@rim subjective cursor
placement, e.g. due to varying angle and direction from Whidesion is viewed [15].
Both studies by Burling included true polyps and colonogcserved as the golden
standard. In our experiments, the observers were aware @fiffiiculty of positioning
electronic calipers in 3D views. Accordingly, they checkbdir placement carefully.
Then again, Taylor et al found that automated and manual 3fppoeasurements were
more accurate than manual 2D measurement in a human colesp@aimen (irrespec-
tive of observer experience) [118].

We opted to include both phantom data and patient data shexreable differences
regarding 2D versus 3D measurement might relate to the tfpEgects that were used
(phantom vs true polyps) and the accuracy of the refereraselatd (sliding calipers
vs. colonoscopic size measurement). Our 2D measuremetti® @mantom data show
a larger variability than our 3D measurements as orientaifdhe objects in the scan-
ner is varied. Moreover, we found larger variability for 2Beasurement than for 3D
measurement on the phantom data by comparison to the reéestendard. The latter
finding confirms previous reported results of Pickardt et8l.] We hypothesize that
more complex manipulations are needed for 2D (manual) meamsnt. Still, results
for the true polyps did not reveal differences, which coulddue to the inaccuracy
of colonoscopic measurement (see below). The encountediifierence concerning
patient data agrees with Taylor et al [118].

One of the observers made a systematic error (under estmyédir the polyps. Such
a difference in observer measurement confirms the findingsiding et al [15].

The automatic measurements on the phantom show a smaliebilisy than both
manual methods, in the comparison with the reference stdnt@awever, the automatic
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method has a systematic error on the phantom data. The eddmes of the automatic
measurement may be partially explained by the low thresfi@lsl0 HU) applied to
segment the phantom (compared to a value of -650 HU for manaakurement as in
[132].) Certainly, the objects will appear larger as thegold is lowered, but its value
of -750HU yields optimal sensitivity and specificity for antated polyp detection in a
CAD system [130].

Any systematic error might be corrected for by a proper catibn. This holds for the
measurements by observers as well as an automatic appideebystematic difference
between the observers regarding 2D as well as 3D measuraigeiftes that separate
correction values may be needed. In other words, it mightatd that observers need
to be calibrated individually to avoid systematic errorsaliration would require a
procedure in which an established collection of objects @lze of which is known
exactly) is measured to determine the accuracy attainecd lmpserver. Subsequently,
an eventual systematic error should be subtracted fronulbbexjuent measurements.

Previously, Burling et al [14] described a “fully automdtiechnique that is initiated
by two software seeds and proceeds in a region growing schAmaher (technical)
paper introduced an automatic technique that starts bynglacseed point on the polyp,
from which a patch is grown over the polyp surface [25]. Theent method merely
requires user interaction to indicate a specific protrusydefinition, repeated mea-
surement using our approach, either initiated by the sanamother observer, yields
exactly the same result irrespective of seed placementeSither programs use differ-
ent methods to measure size, the current results for avtomatasurement are limited
to the software used by us.

A limitation of our work is in the restricted number of polyidabjects that we used.
Clearly, an unlimited number of shapes may be encounteretinital practice. For
practical reasons we selected a limited number of phant@peshthat we considered
relevant for the hypothesis tested. Notice that no critexgarding lesion shape were
applied to select the true polyps. Also, a limitation is ie 8lightly denser material of
phantom objects compared to true polyps (by approximat@d/HU). We used w/l =
1300/0 in the phantom and 1250/-50 on patient data to havaitasiappearance upon
2D measurement and minimize the effect. We hypothesizethigainfluence on the
automated method may be neglected since the algorithm duassa the underlying
CT values.

Another limitation is the precision of the reference staddar the colonoscopy mea-
surements, which increases the total variation for alleea(automatic and manual) on
patient data. It is well known that the colonoscopy measergsmcome with errors
[30, 95]. Consequently, the reported standard deviatibmaeasured true polyp size
compared to the reference standard may be too pessimistic.

We conclude that our work indicates that there is reducethldity in measured
polyp size by the automatic method in phantom data. The aatiormeasurement has
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a variability that is in the same range as manual methods baenpalata. A clear ad-
vantage of the automated method is that it does not suffer intra-observer variation.
Moreover, the automatic method may be calibrated once, ealseeach observer may
require individual calibration. Therefore, automaticesimeasurement may well con-
tribute to a practical evaluation strategy.
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7 Computer aided detection of
polyps in CT colonography
using logistic regression

We present a computer aided detection (CAD) system for coedgamography colonog-
raphy that orders the polyps according to clinical releeaniche CAD system consists
of two steps: candidate detection and supervised clag®icalhe characteristics of
the detection step lead to specific choices for the classditaystem. The candidates
are ordered by a linear logistic classifier (logistic regre@s) based on only three fea-
tures: the protrusion of the colon wall, the mean interntdnsity and a feature to dis-
card detections on the rectal enema tube. This classifiecaa@ with a small number
of polyps available for training, a large imbalance betwpelyps and non-polyp can-
didates, a truncated feature space, unbalanced and unknsetassification costs, and
an exponential distribution with respect to candidate sizieature space. Our CAD
system was evaluated with data sets from four different oadienters. For polyps
larger than or equal to 6 mm we achieved sensitivities ofaetbpely 95%, 85%, 85%,
and 100% with 5, 4, 5, and 6 false positives per scan over 86,418 and 32 patients.
A cross-center evaluation in which the system is trainedtastbd with data from dif-
ferent sources showed that the trained CAD system genesdiizdata from different
medical centers and with different patient preparatiortsis s essential to application
in large-scale screening for colorectal polyps.

Based on:
V. F. van Ravesteijn, C. van Wijk, F. M. Vos, R. Truyen, J.RdPg L. J. van Vliet,

Computer-Aided Detection of Polyps in CT Colonography ddiogistic Regressign
IEEE-TMI, 29(1), 2010
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CHAPTER 7. COMPUTER AIDED DETECTION OF POLYPS IN CT
COLONOGRAPHY USING LOGISTIC REGRESSION

7.1 Introduction

Cancer is the second leading cause of mortality due to camtlee western world [3].
Paradoxically, perhaps, is that it is preventable for adgsgrt or at least curable if
detected early. Adenomatous colorectal polyps are coreidenportant precursors to
colon cancer [11, 73, 85]. It has been shown that screeninguch polyps can sig-
nificantly reduce the incidence of colon cancer [31, 136]m@ated tomography (CT)
colonography (CTC) is a rapidly evolving technique for gmi@g, but the interpretation
of the data sets is still time-consuming. Computer aideda®n (CAD) of polyps may
enhance the efficiency and also increase the sensitivitis i$lspecifically important
for large-scale screening. Recent studies show that thetisgy of CAD systems is
already comparable to the sensitivity of optical colon@gdd@8, 105, 109] and radiolo-
gists using CTC [142].

The best indicator of the risk that a polyp is malignant onsumalignant over time
is size [90]. The consensus [146] is that patients with agpofyat least 10 mm must be
referred to optical colonoscopy for polypectomy and it igie€ld that diminutive polyps
(< 5 mm) should not even be reported [88,117]. There is stilatkelover the need for
polypectomy for 6—9 mm polyps. Surveillance for growth w@f colonography has
also been suggested.

7.1.1 Related work

CAD algorithms for polyp detection in CT colonography usyabnsist of candidate
detection followed by supervised classification. Candidgtection aims at 100% sen-
sitivity for polyps larger than 6 mm which goes at the expeoSbaundreds of false
positives (FPs) per scan. The task of supervised classifices to reduce the number
of detections to about a handful without sacrificing the gmity too much.

For the detection of polyp candidates, Summers et al. [108], froposed to use
methods from differential geometry in which the principahatures were computed
by fitting a fourth order B-spline to local neighborhoodstwé 5 mm radius. Can-
didates were generated by selecting regions of elliptivature with a positive mean
curvature [104]. Yoshida et al. [141, 143] used the shapexrahd curvedness to find
candidate objects on the colon wall. The shape index aneéduess are functions of the
principal curvatures of the surface, which were computed@aussian-shaped window
(aperture). Alternatively, Kiss et al. [59] generated ddatks by searching for convex
regions on the colon wall. Their method fitted a sphere to tinfase normal field. The
type of material in which the center of the fitted sphere waméb(in tissue or in air)
determined the classification of the surface as either coaveoncave. As a result,
roughly 90% of the colon wall was labeled as concave, thatasmal’. Subsequently,
a generalized Hough transformation using a spherical medslapplied to the convex
surface regions. Candidate objects were generated byhgagfor local maxima in the
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parameter space of the Hough transformation. Kiss et atactexized the shape of the
candidate by comparing the spherical harmonics with théeegolypoid models in a
database [57].

Apart from the different candidate detection algorithnigere is a wide variety in
the design of the pattern recognition system, ranging fromdomplex systems like
linear discriminant classifiers to classification systesiag multiple neural networks.
Yoshida and N&ppi used linear and quadratic discriminaagsifiers [77,141, 143] as
well as Jerebko et al. [49]. Wang et al. [134] uses a two-le\aasifier with a further un-
specified linear discriminant classifier in the second leVRek first level of this classifier
consisted of a normalization procedure, which was spgaisigned and had four pa-
rameters. Sundaram et al. [111] classified the candidategilen a single heuristically
designed score using curvature information of the candipatches. Goktirk et al. [35]
employed a support vector machine for classification, ircwiitiwas assumed that after
a transformation by the kernel function, the data were liyeseparable. This implicitly
required minimal mixing between polyps and false detestiarerebko et al. [50] and
Zheng et al. [148] used a committee of support vector mashiNeural networks were
also used by Jerebko et al. [50] and Néappi et al. [65, 78] fassification, and by Suzuki
et al. [113] for the reduction of false detections on theakehema tube.

To conclude, many different proposals for a classificatigstesm for computer aided
detection of polyps have been presented. However, the atmtivfor a specific de-
sign of the classification system is often unclear. Moregw&per comparison between
classification systems is difficult due to the different adatke detection systems and
feature extraction methods. One may reason that the ogtiiloizof complex classifi-
cation systems (with large number of parameters or fegturag be complicated by the
limited availability of training examples. This could le&a overtraining to a specific
patient population or patient preparation.

A steadily growing number of papers (e.g. [10, 23, 35, 4958762, 77, 105, 130,
134, 141]) reported on the performance of polyp detectigorihms (see Yoshida and
Nappi [142] for a review on CAD systems for CTC). However, thsults can not eas-
ily be compared due to large differences in the data sets fesexValuation (see also
Section 7.2.1).

7.1.2 Objective

Candidate detection typically renders a lot of candidaiesistain maximum sensitivity.
Hence, the number of objects from the target class (polyga®latively low. This large
imbalance of the prevailing classes typically hamperssdi@s design and training. A
further complication is that the misclassification costsdbjects from the two classes
are unknown and certainly very different. This paper disessthe consequences of
these characteristics for the design of the classificatstes.

We aim to design a novel, low-complex, classification systieat orders the polyps
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according to clinical relevance. It implicitly takes intocaunt that the misclassifica-
tion costs of polyps increase with lesion size. In other woptdrger polyps are more
important than smaller ones and the problem is not congides@ mere two-class clas-
sification task, but rather as a regression problem. With ithimind, we distinguish
two types of features in the design of the classificationesyist First, there are fea-
tures that facilitate an ordering of the candidates. Thesdhe features that directly
relate to the lesion size. Second, there are features whitlbevshown to render a
Gaussian distribution. In order to keep the classifier sengvid to prevent the use of
complex combination strategies, these features are mapjoef@atures of the first type
by a Mahalanobis distance (MD) mapping. This strategy islusediscard outliers
and mimics the use of a Gaussian one-class classifier [1L4jll be shown that this
two-level classification system is effective over data freamous sources.

The technical novelty of our paper is to approach the clasdgifin task as a regression
problem. Such a strategy requires that features are or@ecmiding to relevance. A
mechanism is introduced to map features that are not or@eredch into features that
do have the ordering property. It will be demonstrated thatMahalanobis distance
to the target class mean is appropriate for the current enoblmposing the ordering
may be achieved for any other problem provided that the miistdo the most typical
representation of the target class can be defined.

7.2 Data description and feature design

A CAD system for CTC starts with the acquisition of CT colormghy data. In these
data, candidate objects are detected and segmented. Therged candidates are typ-
ically characterized by features describing, for instatice candidate’s shape and its
internal intensity distribution. Such data serve as inputlie classification system. All
preprocessing steps will be addressed in this section.

7.2.1 CT colonography data

Data sets from four different medical centers were used &tuate the performance
of our system. Data sets from different sources differ irypgirevalence, the patient
preparation, the scanning protocol, the protocol for aeteing the ground truth, and
the type of rectal tube used for colon distension during Cangratiort. An arbitrary
number of patients were randomly selected from each sourespective of the number
of polyps and their shape. The most important charactesisfithe data sets are shown
in Table 7.1. More details may be retrieved from the refeesncluded in the table. All
patients adhered to an extensive laxative regime. Theamderstandard (ground truth)

Linformation about the patient preparation can be retridu@u the reference in cluded in Table 7.1.
However, the specific data set we used is not described.
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(e) Before deformation (f) Before deformation (g) After deformation (h) After deformation

Figure 7.1: The candidate detection method applies a maadi’flattening’ operation
to the colon wall. The protrusion field is defined as the défere in posi-
tion of the colon wall before (a—b,e—f) and after (c—d, g-gplecation of the
operation. The coloring (b,d,f,h) indicates the protrasid the mesh ver-
tices of detected candidates (blue denotes a large protrasid red denotes
a protrusion of 0.2 mm, i.e. the low hysteresis threshold)tid¢ that the
folds are hardly affected by the operation.
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for data sets 'A, 'B’ and 'C’ was optical colonoscopy. An exp radiologist served

as the reference for data set 'D’. Radiologists retrospelgtindicated the location of
polyps by annotating a point in the 3D data set based on tieeersfe standard. The
candidate segmentations (see below) were labeled by casupdo these annotations.
Data sets 'A, 'B’ and 'C’ consisted of scans in both prone auwpbine positions. A

polyp was counted as a true positive CAD detection if it wasmfbin at least one of
the two scanned positions. Only dataset 'A' has been usadgidevelopment of the

system.

7.2.2 Candidate detection

Polyps are often described as objects that protrude frorodlo® wall. For that reason,
the candidate detection method is designed to detect attsbfhat protrude from the
colon wall, irrespective of their shape. Suppose that thetp@n the convex parts of
a protruding object are iteratively moved inwards. Effesly, this will remove’ the
object. After a certain amount of deformation, the protasis completely removed
and the colon wall appears 'normal’. The amount of deforamafs a result of the
operation is a measure of 'protrudedness’. Fig. 7.1 ilaiss this process by showing
images before and after application of the non-linear #laitig’ operation.

Practically, the colon wall was represented by a trianglehmahich was obtained
by thresholding the CT colonography data at -750 Hounsfieits (HU). A non-linear
PDE [130] was solved to remove all protruding structureaiftbe mesh that displayed
a positive second principal curvature. A similar approdwdt aicts directly on the grey
valued image is presented in [129]. In this procedure, tlodalshape of the colon
including the folds was retained, since these structurgslay a second principal cur-
vature that is smaller than or equal to zero. The protruseld fvas computed by the
position difference of the mesh vertices before and aftecgssing. Subsequently, hys-
teresis thresholding was applied to this field to detect aginent the candidates. The
high threshold on the protrusion was 0.4 mm and determireesehsitivity. The value
of 0.4 mm was selected since it yields 100% sensitivity pdygpannotation in our
training set. All retained regions of the colon surface wargmented by adding the ad-
jacent mesh points with a protrusion of at least 0.2 mm (thetfweshold). The regions
thus obtained form the segmented candidates.

7.2.3 Features

Radiologists that evaluate CTC data primarily use two pribge of a candidate for
classification: the shape and the voxel intensities indigecaindidate. There is still
debate about the optimal way to analyze CTC data. Radidsgssng the 3D rendering
of the colon (virtual colonoscopy) detect polyps based apsh but they will often
fall back to the 2D representation (grey values) before d éleaision is made. Using
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the 2D representation, both the internal intensities aadttape are assessed, although
shape is often hard to extract from the grey-value images f€htures used in the
presented CAD system are based on the same two propertiese¢haimarily used by
radiologists.

Shape was previously described by the shape index and cwesg{L43], mean cur-
vature, average principal curvatures and sphericity a3, 104] and spherical har-
monics [57]. An alternative method to measure shape, wikitlased on the protrusion
field, will be introduced (see Section 7.2.3, below).

The internal intensity of the candidates has been foundré¢fobe a discriminative
feature to discard a large number of false detections [10,4934]. It may be expected
that due to the partial volume effect false detections @nigehave low internal intensity.
False detections that are stool often have air inside, whish lowers the intensity.
Such information about the candidates will be includedulgtostatistics on the voxel
intensities inside the object (see Section 7.2.3, below).

At last, it was experimentally found that many false posisivurned out to be detec-
tions on the rectal enema tube (RET) (previously also regart [46,113]). Therefore,
a third feature will be proposed to discard such false dietestsee Section 7.2.3, be-
low).

Shape feature from protrusion field

Polyps are conventionally characterized by the singleestrgiameter, excluding the
stalk [90,127]. However, Fig. 7.2(a) shows that this measiaes not distinguish polyps
from false detections well. It appears that especially agrtbe less protruding candi-
dates € 2 mm), the candidates with the larger diameters are predortiinfalse detec-
tions. Alternatively, it might be natural to select the nmaxim protrusion of a candidate
as a feature, but it appears that a lot of polyps have only stquetrusion. As an il-
lustration, Figs. 7.2(c) and (d) show two candidates thae lzgpproximately the same
maximum protrusion but a completely different appearante first candidate (candi-
date 'c’) has a large diameter, but does not resemble a polgih avhereas the second
candidate (candidate 'd’) with a small diameter does so.dflude, a large diameter
relative to the maximum protrusion indicates a non-polgpbshape (candidate 'c’) and
a small diameter or a relative low protrusion points to a $ciadically irrelevant can-
didate. A feature that is derived from the thresholded psatn field should therefore
include the size of a candidate as well as the ratio betwelatgest diameter and the
maximum protrusion. Moreover, the feature should chareeteéhe whole segmented
area instead of the extrema (like the largest diameter antdoeémum protrusion).

We designed a feature that takes into account both the grotras well as the lateral
size of the object. Effectively, it measures the percentdgbe area of the candidate
that has a protrusion larger than a certain thresiold his feature is further denoted
as®t. A large circumference as well as shallow edges lead toivelgtlarge areas
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Figure 7.2: (a)—(b) Scatter plots of features calculatedl&ba set 'A. Grey dots denote
false detections and black dots indicate polyp$ mm. Note that each
polyp may appear as two separate dots in the scatter plog serch patient
is scanned twice. (a) The maximum protrusion versus thelesilaggest
diameter of a candidate. The threshold of the candidatecti@tecan be
seen at a maximum protrusion of 0.4 mm. @) (T=0.6mm) versus the
largest diameter. (c—d) Two candidates with the same maxiprotrusion
that are ordered differently accordingdy.
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with protrusion belowl and result in a low response. Thus, this feature favors compa
objects with steep edges. Fig. 7.2(b) shows that accordir@rt T=0.6 mm) candi-
date 'd’ is indeed favored over candidate 'c’. Ordering thedidates based abr is
thus expected to improve the performance of the CAD systeen simply using the
maximum diameter alone.

Intensity features

Consider all mesh vertices that are part of the segmentatask of a candidate object
(see Section 7.2.2). For each vertex, a weighted averagelai gvall intensities was
calculated along the line segment from the vertex underideregion to the center of
mass of the candidate’s vertices. The weight of the intgmdieach voxel depends on
the Gaussian scaled squared-distance between the igtandithe maximum intensity
along the line segment. The tonal scajlaised for weighting was set to 140 HU. This
value is substantially larger than two times the image ngpseviously measured to be
43.4 HU for data acquired with 50 mAs [97]). Consequerdjyacilitated that the edges
of the candidate contributed less to the weighted averagettie internal voxels of the
candidate. In other words, the candidate’s true interrtahisity was emphasized. The
center of mass falling inside the polyp is supported by theaimapex of polyps.

Subsequently, the meatf| thear), median § median, Maximum @ max), Minimum
(fi,min), and standard deviatiorf|(stq) were determined from the weighted averages of
all vertices. The latter four were only used in the classeiglection stage (see Sec-
tion 7.5.1).

Feature for suppressing candidates on the rectal enema tube

The rectal enema tube is a prominent source of false posit@assifications [46, 113].
This is because the tube’s attenuation in CT is similar to ¢tfhéissue. Moreover, the
size and shape (25 mm in diameter) resembles a large polggs@ectional examples
of a rectal enema tube are shown in Fig. 7.3(a). To suppredsige detections on the
rectal tubes, a feature has been developed to distinguesk tlalse detections from the
other candidates. For each candidate it was measured hotv’freld-of-view’ (FOV)
the candidate 'blocks’ as seen from the rectal enema tulge TR (b)):

1 (Gi - i)

frov = — Al ting—=a 7.1

oV 4npoint$élndidate g Hq'Hs ( )
in which @ is the vector from a mesh poinof the candidate to an arbitrary point on
the rectal tubefj is the vertex normal, and_ing is the surface area of the one-ring
neighborhood defined as the average area of the cells atfacére point of interest.
A positive value means that the candidate is bended awaytfiertube and a negative
value indicates that the candidate is bended towards tlee tub
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Figure 7.3: (a) Example of a rectal enema tube in data setsAegen in different slices
of a CT image. (b) A schematic explanation of the responsds®f. (c) A
scatter plot of the mean radius versiggy,. The grey dots are false detec-
tions and the black dots are polyps. In the text we identigftur clusters.
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Fig. 7.3(c) shows a scatter plot of false detections (greg)teue polyps (black) with
frov on the horizontal axis and with the mean radius of the canelédan the vertical
axis. The mean radius is calculated as a weighted sum of ghendes of all mesh
pointsi to the center of gravity of the candidat#;||, weighted by the area of the one-
ring neighborhood\;_ingi. Apparently, four clusters are identifiable in this feature
space: candidates at the end of the tube have negative Yatugsgy and a rather small
mean radius (dotted line); candidates on the balloon akdd yiegativefr oy, but come
with a large mean radius (dashed line); candidates insaltutie have positive response
for frov (dash-dotted); and candidates that are not related to beehtave negligible
blocking and form an elongated cluster centeredat,=0 (solid line). To conclude,
non-zero values of this feature tend to indicate detectonthe rectal enema tube.

7.3 Characteristics of the feature space

A first prerequisite for clinical application is that the 8 has high sensitivity for the
detection of polyps. To limit the risk of missing a polyp irethandidate detection step,
this step unavoidably yields a large number of detectionsns€quently, the number
of objects from the two classes is severely unbalanced. istamce, only 0.3% of the
candidates detected in data set 'A’ were polyp8 mm. Any classifier relies heavily
on the few polyp examples. Complex classifiers may not bea&ddo generalize well
to other data sets, because they are typically sensitivaédl shanges in training data.
Furthermore, the misclassification costs for objects frioenttvo classes are unbalanced
and unknown: a missed polyp is far more troublesome thansa fabsitive classifica-
tion. Finally, it has to be realized that the size of a polygicates the risk of it becoming
malignant.

A part of the feature space is presented in Figs. 7.4(a—bybystatter plots. It can
be seen that the distribution of the polyps is rather unifaith respect tobt, though
it appears truncated at a certain lev@ir(~ 55%). This occurs because polyg$ mm
are not clinically relevant and were therefore excludedearp(i.e. not annotated in the
data). The false detections display a different behavisroér focus is on irregularities
on the colon surface (protruding objects), it may be expukthat far more candidates
with small protrusion are detected than candidates witielarotrusion, e.g. due to nat-
ural fluctuations of the colon wall and noise. This can alsed®n in the distribution of
the candidates with respect to the maximum protrusion in Fig(a) and with respect
to @t in Fig. 7.5(b) (dotted curves). An exponential decayingction fitted to the dis-
tribution is also shown (solid curves). Thus, one must nd¢ ceckon with many false
detections, the false detections are also unevenly diséabin the feature space. Fi-
nally, it can be observed that the classes largely overldptzat the way the candidates
were generated imposes abrupt cluster boundaries, whighharaper density based
classifiers. The abrupt cluster boundaries can be seén at 0% and®t = 100%
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Figure 7.4: Scatter plots demonstrating the distributithe candidates for data set ’A.
The grey dots are false detections and the black dots arpso(®) Mean
intensity vs.®7. (b) Mean intensity vs. maximum intensity. (c) The same
feature space as (a) with the output of the negated Mahakgiance
mapping on the vertical axis. This mapping is introducedect®n 7.4.1.
(d) The influence of the mapping oinmean Note that candidates with a
high and low mean intensity have a lower mapped feature tr@apalyps.
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in Fig. 7.4(a).

We approach the classification problem not just as a twasatéassification task,
but rather as a regression problem. In other words, theifitag®on system should be
designed to facilitate a clinically relevant ordering of tandidates. Ideally, this means
that the polyps should be ranked above the false detectiwhthat the larger polyps are
ranked above the smaller polyps. The classifier that is uséldel regression analysis
should be robust to the large class imbalance, the unevénibdigon of candidates
in the feature space, and the abrupt boundaries in the éeapace. Moreover, the
classification system as a whole must be low-complex in dalke robust to variations
in the data sets from different sources.

7.4 The classification system

This section describes a classification system that futfiésdemands derived in the
previous section. It is schematically depicted in Fig. m.Be input feature vector con-
sists of two types of features, namely those suitable foermd the candidatesfd)
and those allowing for density estimation and outlier régec(fp). The features of
the first type are directly used in the regression analysigreas the other features
are mapped first by a Mahalanobis distance mapping. Subsiyuegression anal-
ysis leads to an ordering. The ordering can then be used tpuent-ROC curves to
estimate the performance. Three discriminant classifidt$® applied in the regres-
sion problem (see Section 7.5): the normal-based linearidighant classifier (LDC)
[135], the normal-based quadratic discriminant class{f@C) [135] and the logistic
discriminant classifier [135].

We did not opt for support vector machine (SVM) classifiers tluthe large class
overlap. Due to this large overlap, itis not expected thatigue classification boundary
can be found confidently. Moreover, we did not opt for neurtivorks too because,
obviously, multi-layer neural networks based solutiony marease complexity. On the
other hand, one can think of low-complex neural networks #ingle layer networks
with sigmoidal transfer functions (as used in [50, 65, 7Bpwever, these are known to
be closely related to the logistic classifier.

7.4.1 Mahalanobis distance mapping

Let us assume that, for a certain subset of features, a Gaussiperly describes the
distribution of the objects from the target class, i.e. thg/ps. One might say that the
mean of this distribution corresponds to a typical repredem of a polyp (“the most
polyp-like polyp™). Moreover, the Mahalanobis distancétie mean of the polyp class
may act as an efficient feature to reject outliers, i.e. dbjaot belonging to the target
class. This procedure compares to the operation of a Gausséaclass classifier [114].
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Figure 7.5: Distribution of (a) the maximum protrusion abjl @1 of the false detec-
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fitted to the distributions (solid curves).
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Figure 7.6: Schematic representation of the classificagisiem. The classification
starts with a feature vector consisting of features sugté&tnl ordering o)
and features suitable for density estimatidp)( The feature set$p ; and
fp2> are processed through two mappings. An ordering of the dates
is determined by regression that incorporates both theifesfo and the
outputs of the mappingsy andm,. The ordering may be thresholded for
classification in order to construct FROC curves.

Instead of comparing this distance to a preset threshaotd(rtbgated) Mahalanobis
distance is used as a feature. The mean of the polyp classexigedifrom the train
data set. Consequently, this acts as a mapping transforom@gr more features into
a single feature. The output feature is suitable for ordgtive candidates, since zero
Mahalanobis distance (the mean of the Gaussian) is coesidaost polyp-like. The
feature can thus be used in the regression analysis. Irnggaitte mapping was applied
to frov and fi mean Effectively, candidates on the rectal tubes as well as idates
with an abnormal intensity are rejected. Fig. 7.4 illugsahe influence of the mapping
on fi mean

In comparison to Wang et al. [134], our mapping replaces tinmalization procedure
of their two-level classifier. This allows us to use a staddachnique from statistical
pattern recognition to determine the parameters of the mgpp

7.4.2 Normal-based discriminant classifiers

Let us consider the linear normal-based discriminant dlasgLDC) to represent a
common, low-complexity type of classifier. Such an LDC imt#a a weighted sum of
the covariance matrices of both classes, in which the we@ta the prior probabilities.
In the case of a large class imbalance, however, as in the pleiection problem, the
prior of the minority class is extremely small. As a consete the weighted sum is
almost identical to the covariance matrix of the majorigss and the covariance matrix
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of the minority class is neglected. In other words, conttargommon preference, the
detection of objects from the minority (target) class igéy based on information of
the objects from the majority (outlier) class. One mightaaine this as the opposite of
a one-class classifier, which typically uses informatioouwdthe target class only.

One might consider a quadratic normal-based discriminassidier (QDC) instead,
since it does not weight the covariance matrices by the gmiobabilities. One un-
derlying problem here is that the classes have non-Gaudssarbutions. In order to
capture a polyp inside the tip of the quadratic decision ldany) simultaneously an ex-
ponentially increasing number of false positives are idelli(see Fig. 7.5). The more
conservative linear decision boundary will make a difféesmnor to detect such a polyp,
but this error is less pronounced. What is more, the quadtkssifier depends strongly
on the covariance matrix of the polyp class. This covariana&ix might be somewhat
unstable, however, due to the limited number of polyps.

7.4.3 Logistic discriminant classifier

It was previously demonstrated that the false detectiomdiatributed in an exponential
fashion with respect to size addr (see Fig. 7.5). Fig. 7.4 illustrated that the polyps are
somewhat uniformly distributed. This implies that theoatf the posterior probabilities
must also follow an exponential function, which is repréednn the next relation:

p(X|wp)\
°9 < p<x|wf>) =) (7.2

in which d(x) is the linear discriminant function of the feature vectod ag, and cy
denote the polyp class and the false detection class, tasggcOne can recognize in
Eq. 7.2 the assumption made by a logistic classifier, whighesponds to sigmoidal
posterior probability density functions:

p(wt,X)

1
= T exp{d) P(wp,X) = 1— p(ws,X). (7.3)

The linear logistic classifier estimates the posterior philities p (cw |X) instead of the
class-dependent distributiopgx|cy ) [135]. These posterior distributions are assumed
to be the sigmoidal functions. This is a valid assumptionmég. the classes are dis-
tributed Gaussian, or, as in this case, one of the distabatis exponentially decreasing
while the other is more or less uniform. Then, a maximum iik@d (ML) estimation

iIs made to find the linear direction in the data that best figs¢hassumed sigmoidal
posterior functions. This ML estimator will give the weighif the discriminant func-
tion d(x). Using the posterior probabilities instead of the clagsedelent distribution
functions makes this classifier less sensitive to the lalagsembalance.
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7.5 Results

Classifier selection aims at choosing the best method foreiipession analysis in our
classification system (see Fig. 7.6). Three classifiers velanalyzed: the LDC, the
QDC and the logistic classifier (see Section 7.4). The spedifice will be based on
two types of analysis: FROC analysis using a variety of sifsadures in order to select
the best classifier for the problem (instead of the bestifiastor a specific feature set),
and stability analysis by bootstrapping the training set.

The feature vectoF in Fig. 7.6 consists of three featureBt, fj meanand froy. Pt
is related to the size of the candidates and is thereforettirased in the regression
analysis, thudso = {®7}. The Mahalanobis distance mapping is applied to the other
two features prior to the regression analysis. It is appi@edp 1 = { f| mean} t0 Sort
all candidates based on the mean intensity in order of isorgalistance to the normal
tissue values of polyps; and 1@ > = { frov} to aid discarding the candidates on the
rectal tube. The added value of these features and the io#usrthe mappings will be
analyzed in Section 7.5.2.

In practice, the usefulness of a CAD system depends on whiethidl generalize to
data sets from different sources. The robustness of the letengystem will be tested
in Section 7.5.3 by means of an evaluation using data sets fioar different medical
centers (see Section 7.2.1).

7.5.1 Classifier selection: performance and stability

The performance of the classifiers was analyzed by means OGCF&nalysis. The
FROC curves were calculated for a large pool of differentuieasets to secure that
the classifier selection step is not dependent on a certaioebf features. The FROC
curves were calculated from a repeated ten-fold crosstaitin. Only data set 'A’ was
used in this learning phase to remain completely indepdraféhe other data sets.

The aggregate of the different sets of features employetdarekperiment will be
called the feature pool. This pool was not created in ordeelect the best features, but
merely to study the performance of the classifiers withowibsing a specific feature
set first. If some feature set were chosen first (before tresifler selection step), one
might select the best classifier for the specific set of fest@and not necessarily the
classifier which is best for the problem at hand. The featom ponsisted of 29 sets of
features chosen from a total of nine different featuresedlprotrusion-based features
@7 with various threshold$: 0.5, 0.6 and 0.7 mm; the features related to the intensity
(i.e. the mean, maximum, minimum and median intensity ardstandard deviation of
the intensity) androv to discard candidates on the rectal tubes. Each set codtaine
most five features of which one was chosen from the set ofysiain-based features.

An FROC curve was computed for each classifier and for eadf gsdtures from the
pool. The average FROC curve for a classifier is shown in Fiy. The standard devia-
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Figure 7.7: FROC curves averaged over all feature sets éokEiC, QDC and logistic
classifiers.

Table 7.2: Instability of various classifiers

Classifier| Instability | Percentage (%)
Logistic 33.7 0.11
QDC 220.0 0.76
LDC 15.6 0.05

tion that was derived from the variation between the FRO@ezufor different feature
sets was less than 0.03 FPs per scan for sensitivities béd®w 9he FROC curves
reveal that the logistic classifier and the QDC do not diffethieir performance as their
FROC curves almost completely overlap. The performancelsf was significantly
worse by approximately 15 times the standard deviation.

The second criterion used for classifier selection was #gilgy of the classifiers.
This stability was assessed by means of bootstrapping &g set. This results
in a perturbed orientation of the classifiers, which consetjy leads to a number of
differently classified candidates. The average numberffdrdnt decisions is then used
as a measure of instability [100]. Table 7.2 lists the inditghmeasures. The table
clearly shows that the logistic classifier and the LDC arentlost stable classifiers. The
instability has been measured for a sensitivity of 85%, baetresults generalize well to
other sensitivity levels, i.e. different locations of thectsion boundary.

More specifically, it is noticeable that the LDC is much motabse than the QDC.
This is explained by the covariance matrix estimated by D€ being nearly identical
to the covariance matrix of the majority class, which baegnges due to bootstrap-
ping. On the other hand, the QDC also estimates a covariaatéxifor the polyp class.
Because of the low number of polyps, bootstrapping leadglitiexent covariance ma-
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trix for the polyp class. This is reflected by the poor indigbof the QDC. The logistic
classifier is expected to be more stable since it poses amasism onto the relative
posterior probabilities of the two classes rather thameging both (class-dependent)
probability distribution functions.

To conclude, it is shown that the logistic classifier combiaggood performance in
terms of FROC analysis with a good stability value. Therefahe logistic classifier
will be used as the regressor in the classification system.

7.5.2 QOutlier rejection by Mahalanobis distance mapping

Let us now look into the performance of outlier rejection bg Mahalanobis distance
mapping. The starting point of our analysis is the FROC cgemerated by the logistic
classifier usingbt with a thresholdr' of 0.6 mm, andf| mean(prior to mapping). FROC
curves are computed for data sets 'A’ and 'C’. Among othefedé@nces, these data sets
differ in the type of rectal tubes used and the administradica fecal tagging agent (see
also Table 7.1).

Fig. 7.8(a) shows the FROC curves for data set 'A'. In thisads#t, no fecal tagging
agent was administered to the patients. As a consequerigéalse detections with low
mean intensities were present. This means that this festateeady suitable for order-
ing the candidates. Mappinfj meandid not result in a significantly different FROC
curve; for this reason and for the purpose of clarity the esrwith the 'unmapped’
fi meanare not shown. The solid curve is the FROC curve of a systeim ovity the
MD (fi mean) and®. The dotted line is obtained when the featigey is added di-
rectly, without prior Mahalanobis distance mapping; thelddotted FROC curve is the
outcome when a mapped version of this feature is used insia& improvement by
adding this feature may be a reduction up to 25-50% of the eumbfalse positives
depending on the required sensitivity (see arrows). The &ars denote two times the
standard deviation of the number of false positives ovesalhs.

The results for data set 'C’ are shown in Fig. 7.8(b). In casiito data set ‘A,
patients from this data set were administered a fecal tggggent. As a consequence, it
may be expected that the Mahalanobis distance mappifigihnhas a larger influence
due to the presence of both candidates with a low mean ityessicandidates with a
high mean intensity. Here again, the solid curve corresptmdlassification usingr
and f| mean Similar to the analysis of data set 'A, the featufigoy is added and the
MD-mapping is applied to this feature and fomean In contrast to the rectal tubes
in data set A, the tubes in this data set did not have a ballaached, but included
a marker of high attenuation material. Because of this, ¢esslidates on the rectal
tubes were found and those which were found could often by eliscarded by means
of their intensity. As a consequence, adding the feafpgg may be expected not to
improve the performance. This is confirmed by the dotted Imgicating no significant
improvement. Again, for the purpose of clarity, the FROCvesrwith the 'unmapped’
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Figure 7.8: FROC curves that indicate the added value ofghtufefro, and the use
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Table 7.3: Results of the candidate detection system
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C 340 | 297 87 176 | 174 99 53698
'D’ 8 8 100 8 8 100 8026
Total|| 491 | 436 89 271 | 269 99 102 736

frov are not shown in this figure, as they do not differ significar@lbserve that adding
frov does not lead to worse results.

The second step was to compute the same FROC curves with fhy@ethanean in-
tensity feature. A striking improvement can be seen. Thsslltecan be explained by
the fact that in this case there are both false detectiorts later mean intensity as
there are false detections with higher mean intensity. Ading to these results, only
the mapped features will be used in further FROC analyzes.

7.5.3 Multi center evaluation

An important aspect of a CAD system for CT colonography isfigity to generalize
to data sets differing in a variety of aspects. The genextaia power of the presented
system will be investigated by FROC analysis and a crostecemaluation.

The patients from data sets 'A, 'B’ and 'C’ were scanned irttbprone and supine
positions. At the basis of this conventional approach isah@olyp is not always visible
in both CT scans, e.g. due to suboptimal distension or rengiffuid rests. Con-
sequently, a polyp may not be annotated in both scans. Letitiglly focus on the
annotated polyp 'findings’ to assess the performance ofdheidate detection step.

The candidate detection returned 88.8% (436/491) of thetated findings> 6 mm
in total (see Table 3). The preparation of the patients ib@atiasis of the differences
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in the number of missed findings. The patients of data set & bndergone an ex-
tensive preparation. This might explain the fact that theteasy detected almost all
annotations in this data set (93/94). On the other hand, s#td’ appeared to con-
tain a large amount of residual fluid (confirmed by [99]). Gamsgently, many polyps
were obscured by fecal remains, reducing the detectionaaté.6% (38/49). Data set
'C’ had less contrast-enhanced fluid in the colon, whichltedun a higher detection
rate of 87.4% (297/340). The percentage of polyps deteatedther scan was 99.0%
(269/271) (sensitivity is conventionally measured in thiay [8]).

Fig. 7.9 shows the results of the cross-center evaluatiois. generally known that
a large amount of features decreases the generalizatioarpé\a classifier, especially
when the data sets differ as much as the four data sets of wdy. sTherefore, we
consciously limited the number of features in this evalwato the three features de-
scribed before®r with a threshold 0.6 mm, M| mear), and MY frov). Each graph
in Fig. 7.9 corresponds to one test set; the line styles ifigloees indicate the specific
data set on which the classifier was trained. In the case tfigeand training on the
data from the same medical center, a ten-fold, repeated-sai&lation was performed.
The standard deviation indicated in the graphs is estimagdlde standard deviation of a
binomial distribution [19] and depends on the number of pslgnd the sensitivity. This
standard deviation characterizes the variation in the FR@{es when a new subset is
drawn from the same distribution.

It can be seen that in all graphs, the FROC curves for classtfi@ined on the dif-
ferent data sets are generally within one standard dewidtaom each other. In other
words, the same performance is attained no matter on whiehs#a the classifier is
trained. Concurrently, there are small differences in thgsmance of the CAD sys-
tem for the four data sets. Despite this, all yield a sengptiarger than 85% at the
cost of five false positive detections per scan. Four polgmata set ‘B’ remained un-
detected at 86% (25/29) sensitivity. The missed polyps \a#neviewed by a fellow
researcher with a background in CAD of polyps in CTC. All neid$olyps were cov-
ered by contrast-enhanced material in at least one of thest¢ans and were annotated
in only one position. Consequently (no electronic cleagsvas used), the CAD system
did not get a second chance of finding these polyps. In dat€séburteen polyps re-
mained undetected by the CAD system at 90% sensitivity. &lse hegatives consisted
of tumors with lobulated shapes, polyps covered by fecalares) ‘non-protruding’
polyps annotated as a flat polyp by the radiologists and gollgpt were located be-
tween haustral folds. Even though data set 'D’ containeg onk scan per patient, the
FROC curves for this data set compete with the FROC curvethéoother data sets.

In conclusion, the FROC curves for the different data setsvdhat the CAD system
is independent on the specific data set used for training. diffexences between the
curves are a result of the administration of a fecal tagggens the preparation of the
patients and natural fluctuations in the appearance of tlyppm the data sets.
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7.6. DISCUSSION AND CONCLUSION

7.6 Discussion and conclusion

We developed a classification system based on logistic sege for computer aided
detection of polyps in CT colonography data. Typically,réhare unbalanced and un-
known misclassification costs and a huge class imbalance. |dter occurs because
there are only a few examples of the abnormality class in argm&dless sea of normal
'healthy’ samples. Our classification system can cope wighaforementioned charac-
teristics by carrying out a regression analysis insteadasisifying the candidates into
one of the two classes. The ordering correlates with thécalimelevance of the can-
didates. The exponential distribution of the candidatestha small number of polyps
available for training led to the use of the logistic clagsifor regression. The logistic
classifier is low-complex and proved to be stable.

Candidates were detected based on their protrudednesdheooolon wall. A fea-
ture derived from the protrusion field was sensitive for ¢datks that had steep edges
and large protrusion. Other features used were the intertalsity distribution, and a
feature to discard detections on the rectal tubes.

The features were divided into two types of features, naregliures that allowed di-
rectly an ordering of the candidates and features that weledescribed by a Gaussian
density distribution. The features of the second type wesppead by a Mahalanobis
distance mapping to impose an ordering. This mapping wasethbecause it emulates
a Gaussian one-class classifier. In this way, outlier rngjeatas incorporated into the
classification system.

After discarding the candidates on the rectal tubes, payyasnon-polyps could be
distinguished using only information about the protrusamal the internal intensity of
the candidates. The observed sensitivity was comparaliteeteensitivity of radiolo-
gists using CTC [87,105,123] and competed with other CAesys [49,78,105,109].
It was also shown that the CAD system generalizes well to dats from different
medical centers.

To conclude, we introduced a low-complex CAD system thak timbo account all
the characteristics of the classification problem. Theseadteristics will frequently
occur in medical image processing problems. The Mahalandistance mapping in
conjunction with logistic regression is generally appileeto obtain a clinically relevant
ordering of the candidates. For automatic polyp detectiba,generalization to data
sets from different medical centers and with differentgratpreparations is essential to
application in large-scale screening.
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8 Conclusions

Adenomatous polyps are small protruding mounds that magldpvthroughout the
entire intestinal system. The ones that are located in tige Iaowel, or colon, are
referred to as colorectal polyps. Such polyps may develapdolon cancer, one of
the most commonly diagnosed types of cancer. Fortunatedyetis a time window for
early detection and removal of colorectal polyps, and threggntion of cancer.

The main goal of this thesis was to develop methods for auiordatection of col-
orectal polyps from CT data. These methods cover three apoaspects in the detec-
tion pipeline:detectionof suspicious sites on the colon wakgmentationof the site,
permitting size assessment and feature extraction, aad|ahsificationof these sites
into polyps and non polyps, or the ranking based on a measyrelypness. Various
techniques have been developed:

e Space variant filtering improves the measurement of imageatizes in highly
structured environments. This aids in the detection ofahfiolyp candidates in
strongly folded segments of the colon.

e Polyps can be accurately segmented by means of constrameagation over the
colon surface. The developed method starts from an ingi@tighat is obtained
either by user interaction or by an automated method.

e The amount of colon wall deformation due to polyp tissue dlowan be accu-
rately measured. Two novel methods have been developediteat and segment
polyps with high sensitivity using a single threshold.

e Correct segmentation of polypoid objects is importantinichl decision making.
The methods for protrusion estimation yield accurate segatiens that compare
to manual size measures.

e A low-complex classification system was developed. It isedasn logistic re-
gression that effectively orders the polyps according itucal relevance.
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8.1 Improvement compared to detection based on
shape index

The measurement of curvature in CT data for the detectiomlyipg is a difficult task
for two reasons. The protrusions are not only embedded ighdyhiolded colon surface,
but the protruding objects also have an irregular shapehwgies rise to an enormous
spread in curvature values depending on the amount of thiameation. Whereas the
irregular shape and size would require a rather large fittar thatches the size of the
unknown underlying object, the highly folded nature of tlndoa restricts the size in
order to avoid mixing with surrounding structures. Therefaoise suppression with
large isotropic filters is not possible. We have shown thal &i specific formulation
of normalized convolution using a local Taylor expansigrace-variant kernels can be
constructed. In addition we have shown that these locakesthould be constructed by
discarding voxels belonging to neighboring image georeetrirhereby the derivative
filtering optimizes the trade-off between noise suppressiod preservation of local
image structure. The assessment of the method by simuleaiages shows that the
space-variant filtering outperforms isotropic filtering.

In chapter 3 we presented an algorithm for the automatic eatation of polyp-like
structures on triangulated isosurfaces. It was shown tlvaalgorithm yields a smaller
bias than the measurements from radiologists: on averagedntess for the automatic
method and between 1 and 7mm for the radiologists, deperirtge irregularity of
the object.

8.2 Protrusion detection

In chapter 4 and 5 two novel methods have been developeddotgebtruding objects.
They aim to estimate the deformation of the colon surfaceighmtroduced by polyp
growth. This is achieved by finding a steady state solutioa wbnlinear PDE with the
recorded image as input.

It was shown that the displacement of iso-contours relatesdhange in image in-
tensities in protruding regions in the image. This relatrees made invariant to the
anisotropic resolution and sampling. A segmentation ofpochndidates was obtained
by applying a single threshold to the deformation field.

From the segmentations several features were extracteditbatly relate to polyp
size, and not to polyp shape. As a consequence ordering @gfiect to size is possible
which, in effect, keeps increasingly larger objects furtheay from decision bound-
aries. In other words, this limits the risk of missing larggyps. Also, the method does
not make a specific choice for the scale of the computatiomeflist and 2nd order
derivative operators. The iterative character of the netnatomatically changes the
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intrinsic scale of the image (local and anisotropic): therayre of observation (window
size of the operation times the number of iterations) insgeauntil convergence.

Another advantage of the new approach is the fact that asmdnuct good seg-
mentation and size measures of the polypoid objects aréneltaln chapter 6 the seg-
mentation method was evaluated and compared to a manualragent. The study
shows that for phantom data the measurement variabilitg@automatic method was
smaller than the measurement variability of the observéerwveither the orientation of
a phantom or the slice thickness was varied. This indicatshe automatic method is
less sensitive to such data variations. Moreover, the aatiorapproach had a smaller
variation than the observers in comparison to the referstaredard.

8.3 Classification

A novel classification system based on logistic regressias proposed. It orders the
candidates by a linear logistic classifier (logistic regias) based on only three fea-
tures. This classifier can cope with a small number of polyaslable for training, a
large imbalance between polyps and non-polyp candidateanaated feature space,
unbalanced and unknown misclassification costs, and amexpial distribution with
respect to candidate size in feature space.

A clear distinction was made between those features thaswatable for ordering
the candidates according to size, and those allowing fositieastimation and outlier
rejection. The features of the second type are transformiedai single feature by a
Mahalanobis distance mapping. Together with featureseofitkt type they are used in
a regression analysis. The outcome leads to an orderecdosetwhich FROC curves
were extracted to estimate the classification performance.

8.4 Evaluation

We tested the robustness of the CAD system based on metlomd€lfrapters 4 to 7 by
a cross-center evaluation in which the system is trainedestdd with data from four
different medical centers (307 patients). For polyps latgan or equal to 6 mm we
achieve sensitivities of respectively 95%, 85%, 85%, ar@d With 5, 4, 5, and 6 false
positives per scan over 86, 48, 141, and 32 patients.

Note that the data differs not only in patient preparatian dbso in scanning protocol.
Permutation of the training set among the different cergleosved that the CAD system
generalizes well under these varying conditions. The ofesksensitivity was compara-
ble (>85%) to the sensitivity of radiologists using CTC amdnpeted with other CAD
systems with only a limited number of false positives.
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8.5 Challenges for future research

A number of challenges lie ahead in computerized screewingalorectal polyps.

Towards screening. CAD systems have not yet established themselves in theclini

Several recent studies indicate a complementary role in@dnography, when
CAD is used as second reader [6,10]. However, more reseangeded to evalu-
ate the use of CAD systems under varying conditions suchtenpareparation
and scanner types.

Colon Cleansing Advances in CT Colonography includes the use of contrasttage

to tag fecal remains inside to colon. This allows for acautatalization of the
colon wall with limited patient preparation. The evaluatmf such data requires
computerized techniques for both enhanced 3D visualizatia automated de-
tection. Digital cleansing aims to segment the colon serfacthe presence of
tagged intraluminal remains. Currently, the effect of #ibcleansing on the per-
formance of automated detection is unclear. Further resesineeded to achieve
good performance as digital cleansing is combined with CAD.

Flat Polyps Currenttechniques to detect colorectal cancer, such asabpblonoscopy

106

and CT Colonography, are based on the assumption that tipdasets are poly-
poid. However, recent studies have demonstrated thatemifdrcancer can also
arise from nonpolypoid colorectal neoplasms [102]. Thietaypes are more dif-
ficult to detect because there are only subtle changes tootineah mucosa. The
same holds for automated detection of those so called flgppolThe detection
of flat polyps will require new techniques including new faat for classifica-
tion. There is no clear indication that CT imaging is sufintig discriminating as
these lesions do not lead to large deformations nor imageasinSeveral papers
indicate that there is a high risk of flat polyps to be cancemthe time of diag-
nosis [64,92]. This may inspire new developments in MRI nolgraphy, which,
despite its reduced imaging resolution, may provide adtiva or additional con-
trast.



Summary

Automated Detection of Polyps for CT Colonography

In this thesis algorithms are proposed for the automateecten of colorectal polyps
in 3D CT images. Polyps develop due to excessive tissue gn@sulting in the colon
surface to bulge out into the lumen. As a result the colon slifyanges. This change
may be detected by automated techniques. It usually ingdlvee steps: colon seg-
mentation, candidate detection and candidate classditalihis thesis focuses on the
second and third step: finding candidate sites followed b\irey and classification.
The most common approach in computer aided detection oppas/to focus on the
characteristic protruding shape of polyps. Although wetdbuated to this approach as
well, the main contribution of this thesis is the inventionaonovel approach which
measures the amount of colon surface displacement dueytp gaiwth.

Image derivatives play a crucial role in measuring localpghaTheir measurement
at or near the colon surface is particularly difficult duet®highly folded structure.
This prevents the use of large filter kernels. We extend tbenigue of normalized
convolution with a specially devised weighting term in artte optimize the trade off
between noise suppression and structure induced bias.

To assess the clinical importance of detected objectsiablelmeasure of polyp size is
needed. We present a new algorithm for the segmentationigppm 3D CT images.
It operates on a triangulated isosurface and takes intodenasion the local orienta-
tion and position of the mesh. The algorithm starts with axgheds an initial seed,
located somewhere on the protruding surface. Based onshéing segmentation the
algorithm estimates the size of the object. We assess tf@apance by comparison to
expert size measurements on phantom data and true polyps.

Through the invention of a method called “second principeatature flow” applied to
an explicit triangulation of the colon surface, we proposewa method for the detection
of candidate sites. It is based on the notion that polyps heveduced a local defor-
mation of the colon surface. The method estimates the @ligimdeformed’ surface
position by solving a nonlinear partial differential eqoat Candidate sites are obtained
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by selecting the regions where the mesh displacement isrldrgn an optimized thresh-
old. The method is assessed by a supervised classificatsadlon features obtained
from the deformation field and the grey level image.

The same principle can also be applied directly to the 3-w@tric data, in which
case the method operates directly on the grey level voxalser than a triangulated
isosurface. It is shown, that the use of the second princypaiature is sufficient to es-
timate the amount of deformation due to the growth of a polyplassification scheme
based on linear logistic regression is proposed that eiplieeps large polyps away
from the decision boundary. Again, the method’s perforneas@ssessed by means of
supervised classification.

The aforementioned detection method has another advantesyehe traditional ap-

proach based on polyp shape: as a byproduct a good polyp s&gioe is obtained.

The accuracy of the segmentation is assessed by a comptrisgpert size measure-
ments of phantom data and true polyps. The conclusion olbik is that for phantom

data, the automated method shows a reduced variability iegpect to manual size
measures. For patient data the automatic method showsabNdyithat is in the same

range as manual measurement.

We conclude, by proposing a method that orders the candidstea linear logistic
classifier (logistic regression). It uses only three fezgurthe protrusion of the colon
wall, the mean internal intensity and a feature to discatddm®ns on the rectal enema
tube. This classifier can cope with a small number of poly@slable for training, a
large imbalance between polyps and non-polyp candidatesnaated feature space,
unbalanced and unknown misclassification costs, and amexpial distribution with
respect to candidate size in feature space. Our complete §ARm (detection +
classification) was evaluated with data sets from four cBfié medical centers (307
patients). For polyps larger than or equal to 6 mm we achiewmsivities >85%, with
6 false positives per scan. A cross-center evaluation ichvtiie system is trained and
tested with data from different sources showed that thee¢thCAD system generalizes
to data from different medical centers and with differertigra preparations.
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Samenvatting

Automatische Detectie van Poliepen in CT Colonografie

In dit proefschrift worden algoritmen voorgesteld ten b&len van de automatische
detectie van colorectale poliepen in 3D CT beelden. Patiepgwikkelen zich door
excessieve weefsel groei, met als resultaat een uitsgulgin de darmwand. Als resul-
taat hiervan verandert de vorm van de darm. Deze verandaimgorden gedetecteerd
met behulp van automatische technieken. Meestal gebeumtatie stappen: darm seg-
mentatie, kandidaat detectie en classificatie. Dit prdeffspitst zich toe op de tweede
en derde stap: het vinden van kandidaat locaties in de dawo]gd door een ranking
en classificatie. De meest gebruikelijke methoden in gectengeerde detectie richten
zich op de karakteristieke vorm van poliepen. Alhoewel ditgischrift ook bijdraagt
aan deze methoden, is de grootste bijdrage de uitvindingeamieuwe aanpak waarbij
de verplaatsing van de darmwand, als gevolg van poliep gyeeieten wordt.

Beeld afgeleiden spelen een cruciale rol in het meten vamvadtet meten ervan op
of bij de darmwand is moeilijk in het bijzonder, door zijn kteevouwen structuur.

Dit belet het gebruik van grote filters. In dit proefschrifomt de techniek van genor-
maliseerde convolutie gebruikt, met een speciaal toe¢epagingsterm, om de afweg-
ing tussen ruis onderdrukking en door structuur geinduleeafwijkingen te optimalis-

eren.

Om de Klinische belangrijkheid van gedetecteerde objetdreoordelen is een be-
trouwbare maat voor poliep grootte nodig. Dit proefsclpriésenteert een nieuw algo-
ritme voor het segmenteren van poliepen in 3D CT beeldenwddtt op een getrian-

guleerd iso intensiteitsopperviak en houdt rekening mdobkiale oriéntatie en positie

van het mesh. Het algoritme groeit een gebied, startendgtvean initieel punt, gepo-

sitioneerd ergens op het uitstulpende poliep achtige tbféet algoritme gebruikt de

resulterende segmentatie om de grootte van het object ta¢tesh De prestatie van
het algoritme wordt beoordeeld door expert metingen teelgkgn met automatisch

gemeten grootte voor zowel fantoom objecten als ook patiepe

Door middel van de uitvinding van de methode genaamd “sepoimtipal curvature
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flow”, toegepast op een getrianguleerd iso intensiteitsopak, stelt dit proefschrift een
nieuwe methode voor voor de detectie van poliep kandidaatiles. Het is gebaseerd op
de observatie dat poliepen de darmwand lokaal deformeremd&hode schat de locatie
van de originele “onvervormde” darmwand door het oplosseneen niet lineaire par-
tiele differentiaalvergelijking. Kandidaat locaties wlen verkregen door het selecteren
van die gebieden waar de mesh verplaatsing groter is danesgtignaliseerde drem-
pelwaarde. De methode is beoordeeld door middel van gessperde classificatie op
basis van eigenschappen verkregen uit het deformatie weli® grijswaarden van het
beeld.

Hetzelfde principe kan worden toegepast op de 3D grijsweadeda, in welk geval de

methode direct gebruikt maakt van de voxel data in plaatseeangetrianguleerd iso
intensiteitsoppervlak. In dit proefschrift wordt aang®id dat het gebruik van tweede
hoofdkromming voldoende is om de hoeveelheid vervormiray goliep groei te schat-

ten. Een classificatie gebaseerd op lineaire logistisajressie is voorgesteld, waarbij
grote poliepen expliciet ver weg van beslissingsgrenzerdingehouden. Ook deze
methode is beoordeeld aan de hand van gesuperviseerdécatiss

De bovengenoemde detectie methode heeft nog een andeeebbalen traditionele
methoden gebaseerd op poliep vorm: als bijproduct wordgeede poliep segmentatie
verkregen. De nauwkeurigheid van deze segmentatie is eelor door een vergelijk
met expert grootte metingen van fantomen en poliepen. Delgsie van dit werk is
dat voor fantoom data de automatische methode een kleiaeietie vertoont. \Voor
patiént data laat de automatische methode een variabdigzi die vergelijkbaar is als
handmatig meten.

Het proefschrift concludeert met een voorstel van een naletiveaarbij de kandidaten
worden gerangschikt door een lineaire logistische clasdédr (logistische regressie).
Er worden drie eigenschappen gebruikt: een maat voor deilinigp van de darmwand;
de gemiddelde intensiteit in het object en eigenschappedatecties op de rectale buis
kan onderscheiden. Deze classificator kan overweg metekkamtallen poliepvoor-
beelden bij training, grote klasse onbalans tussen pohapet poliep kandidaten, een
afgekapte eigenschappenruimte, ongebalanseerde enemaleeglassificatie kosten en
een exponentiele verdeling met betrekking tot de kandigietttte. Het complete CAD
systeem (detectie + classificatie) is geévalueerd met dataen verschillende cen-
tra (307 patiénten). Voor poliepen grote dan 6mm wordt eengeheid bereikt van
>85% met 6 fout positieven per scan. Een centra-oversemiied evaluatie waarbij het
systeem is getraind en getest met data van verschillengmeriaat zien dat het ge-
trainde CAD systeem goed gerealiseerd voor data van védesade centra en patiént
voorbereiding.
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