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Abstract

Let I' < G be a discrete subgroup of a locally compact unimodular group G. Let
m € Cp(G) be a p-multiplier on G with 1 < p < ocoandlet T, : L,(G) - L (G)
be the corresponding Fourier multiplier. Similarly, let 7. : L (F) — L (F) be the
Fourier multiplier associated to the restriction m|r of m to I'. We show that

csupp(m )| Ty = Lp(T) = LD < 1Ty : Lp(G) = LG,

for a specific constant 0 < ¢(U) < 1 that is defined for every U C I'. The function ¢
quantifies the failure of G to admit small almost I"-invariant neighbourhoods and can
be determined explicitly in concrete cases. In particular, ¢(I') = 1 when G has small
almost ["-invariant neighbourhoods. Our result thus extends the de Leeuw restriction
theorem from Caspers et al. (Forum Math Sigma 3(e21):59, 2015) as well as de
Leeuw’s classical theorem (Ann Math 81(2):364-379, 1965). For real reductive Lie
groups G we provide an explicit lower bound for ¢ in terms of the maximal dimension
d of a nilpotent orbit in the adjoint representation. We show that c(ch) > pd/4

where Bg is the ball of g € G with || Adg || < p. We further prove several results for
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multilinear Fourier multipliers. Most significantly, we prove a multilinear de Leeuw
restriction theorem for pairs I' < G with ¢(I') = 1. We also obtain multilinear
versions of the lattice approximation theorem, the compactification theorem and the
periodization theorem. Consequently, we are able to provide the first examples of
bilinear multipliers on nonabelian groups.

Mathematics Subject Classification 22D25 - 22E30 - 46L51

1 Introduction

In his seminal paper Karel de Leeuw [17] proved several fundamental theorems about
Fourier multipliers on the Euclidean space R”. Recall that m € Loo(R") is called a
p-multiplier if the map T, on Ly (R") determined by F>(T;, ) = mF>(f) with F;
the unitary Fourier transform extends to a bounded map on L ,(R"). Using Pontrjagin
duality the definition of p-multipliers may be extended to any locally compact abelian
group G and we call m € Lo (G) a p-multiplier if the map 7, on Lz(a) determined
by Fo (T f) = mF2(f) extends to a bounded map on L , (6). Recall here that in case
of R" we have that L ,(R") is isomorphic to L ,(R") canonically by conjugating with
Fa.

One of de Leeuw’s most important contributions is the restriction theorem. Let
H < R" be any subgroup equipped with the discrete topology. If m € Cp(R") is a
p-multiplier then m|g € Cp(H) is a p-multiplier. Moreover,

| Tip 2 Lp(H) = Ly(H)|| < || T : Lpy(R") — L,(RY)|. (1.1)

n

A particular case occurs when H = Rj; .

—

Then R, is the Bohr compactification of R". This special case is usually referred
to as the compactification theorem and is essentially the strongest theorem proved
in [17]. Its proof consists of first showing (1.1) when H is discrete in the Euclidean
topology inherited from R” combined with a lattice approximation theorem. These
theorems became standard tools in harmonic analysis and are the first instances of
so-called transference results.

The emergence of noncommutative integration has created a realm in which Fourier
multipliers can be interpreted naturally for any locally compact group. Here function
algebras on the Pontrjagin dual group are replaced by group algebras and their C*-
and von Neumann closures. The theory of noncommutative L ,-spaces [46, 49] and
realization of Fourier transforms [7, 12, 40] leads to a natural notion of p-multipliers.
In this interpretation G plays the role of the frequency side and for m € Lo (G) the
Fourier multiplier 7, acts on a noncommutative space, namely the noncommutative
L ,-space of the group von Neumann algebra of G.

For p = oo the relevance of Fourier multipliers on group von Neumann algebras
was already recognized in the fundamental results of Haagerup on approximation
properties [29], as well as the works by De Canniere—Haagerup [14] and Cowling—
Haagerup [13] on approximation properties of real rank one simple Lie groups.

is R" equipped with the discrete topology.
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Noncommutative De Leeuw Theorems

There is a significant interest in understanding the class of p-multipliers beyond p =
oo. Already in commutative analysis this has triggered an enormous machinery of har-
monic analysis including the study of singular integrals, Calderén—Zygmund theory,
Hormander—Mikhlin multipliers, et cetera, see e.g. [25, 26, 58]. The study of multi-
pliers is further motivated by their applications to convergence properties of Fourier
series, the structure of Banach spaces and the analysis of pseudo-differential operators.

In the noncommutative situation several efforts have been made in the under-
standing of p-multipliers. In [36] multipliers associated with cocycles on locally
compact groups were constructed; such multipliers are compositions m = i o b with
b : G — H acocycle into a finite dimensional orthogonal representation (H, &) with
additional Hérmander—Mikhlin conditions on 772. Further results in this direction have
been obtained in [23, 37]. Note that if G has property (T) then a well-known theorem
by Delorme-Guichardet [18, 28] (see [3, Sects. 2.2, 2.12]) shows that every cocycle b
is bounded and therefore the multiplier m = m o b has a certain oscillatory behaviour.
Note that if G = SL(n, R) the lack of non-trivial orthogonal representations limits
this method. However, concrete multipliers on SL(7, R) have been constructed in [48]
where a version of the Hormander—Mikhlin multiplier theorem was obtained for the
Lie group SL(n, R), the real n x n-matrices with determinant 1. Here the Hérmander—
Mikhlin conditions are formulated in the natural differentiable structure of the Lie
group. In the discrete setting Cotlar’s identity has successfully been applied [44, 45]
to obtain Hilbert transforms and Hérmander—Mikhlin multipliers on free groups.

It is natural to ask which relations there are between p-multipliers on G and p-
multipliers on the discrete subgroups of G. A cornerstone theorem was obtained in
[6] where the de Leeuw restriction theorem was obtained for any pairI' < G withI" a
discrete subgroup of a (for simplicity unimodular) locally compact group G such that
G has small almost I"-invariant neighbourhoods (see Definition 3.1). If " is amenable
then G always has small almost I'-invariant neighbourhoods [6, Theorem 8.7]. In
particular the theorem is applicable to nilpotent locally compact groups.

There are several deep open problems that concern the relation of multipliers to
their restrictions on subgroups beyond the cases covered by [6]. For instance, the
existence of explicit p-multipliers on SL(n, Z), n > 3 remains an open problem. In
particular, there does not seem to be a genuine example of a p-multiplier, | < p < oo,
with compact support or with sufficient decay. With genuine we mean that: (1) the
multiplier is not obtained from an interpolation between p = oo and p = 2; (2) the
multiplier does not come from a subgroup, i.e. the support of the multiplier should
generate SL(n, Z), (3) the bound of the multiplier is sharper than the trivial estimate
1T : Lp(/l'\‘) — L[,(/l'\‘)|| < llmlr,) coming from the triangle inequality; (4) a
combination of these. This paper does not directly solve this problem but it provides a
potential entry as it would be sufficient to construct multipliers with sufficient bounds
on SL(n, R); this also closely relates to the Calderén-Torchinsky problem mentioned in
[48, Sect. 5.C]. Other questions are raised by the approximation and rigidity properties
of noncommutative L ,-spaces obtained in [15, 16, 34, 42] and [48, Theorem B].

Another direction that is initiated in this paper is the theory of multilinear Fourier
multipliers on noncommutative L ,-spaces. In commutative harmonic analysis this
became a large topic including milestone results by Lacey—Thiele on the bilinear
Hilbert transform [41] and the development of multilinear Calderén—Zygmund theory

@ Springer
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[27]. Also very recently, several results in the semi-commutative/vector-valued set-
ting have been obtained [1, 19, 20]. In the noncommutative setting multilinear Schur
multipliers and operator integrals have already provided very deep applications such
as the resolution of Koplienko’s conjecture [51]. The theory of Fourier multipliers—
which by transference is intimately related to Schur multipliers [8, 47]—seems to be
undeveloped beyond abelian groups in the multilinear setting. We shall prove the mul-
tilinear versions of de Leeuw’s restriction, lattice approximation and compactification
theorem. These were proved in the abelian (bilinear) setting in [4, 54].

We now summarize the main results of this paper. We shall introduce a quantified
version of having small almost invariant neighbourhoods. More precisely, we consider
the following definition.

Definition 1.1 Let G be a locally compact group with (left) Haar measure p. Let
F C G be arbitrary and let V € G be relatively compact of non-zero measure. We
introduce the quantity

Nser Adg(V
Sp(V) = m(Nser Ads(V))
nvV)
For a neighbourhood basis V of the identity of G we set §F (V) = liminfycyp §p (V).
Then set 5 to be the supremum of 6 (V) over all symmetric neighbourhood bases V
of the identity.

We prove the following local version of the noncommutative de Leeuw restriction
theorem [6, Theorem A]. We call this theorem ‘local’ since we obtain an estimate that
is controlled by a subset U of I and which holds for all symbols m € Cp(G) such
that the restriction m|r is supported on U.

From this point let I be a discrete subgroup of any locally compact unimodular
group G.

Theorem A Let m € Cp(G). Then for every 1 < p < oo we have that

c(supp(m|r)) - | Toupp 2 Lp(T) = Ly < [T : Lp(G) = Ly(G)ll, (1.2)

1
where ¢(U) = inf 8; | F C U, F finite ¢ is defined for every U C T..

Theorem A holds as well if the bounds of both multipliers are replaced by their
complete bounds (see proof of Proposition 3.16). The strength of Theorem A is that
the constant ¢ can be determined explicitly in many interesting situatons. We have
c(I") = 1 if and only if G has small almost I'-invariant neighbourhoods. Hence, our
theorem recovers [6, Theorem A]. In Sects.8, 9 and 10 we find very natural lower
estimates on & in the full generality of real reductive Lie groups. For p > 1 let
BpG ={g € G| || Adg || < p} where Ad is the adjoint representation.

Theorem B Let G be a real reductive Lie group. For p > 1 we have 83/(); > p~d/?

where d is the maximal dimension of a nilpotent adjoint orbit.
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In order to prove Theorem B we first reduce it to the connected adjoint group of G,
which is semisimple. We then construct a symmetric neighbourhood basis V;f R € >
0, R > 0 of 0 in the Lie algebra g such that

plexp(VEg, )
lim lim M — p—4/2
RNONO (exp(VEg)

This implies Theorem B. The neighbourhood basis is constructed in such a way that
Me=0 V;f r 1s the intersection of the nilpotent cone V' C g with the ball of radius R
around the origin. Note that the union of the nilpotent orbits Ox of maximal dimension
d is dense in . Using results of Harisch-Chandra and Barbasch-Vogan on limiting

orbit integrals, we show that the scaling behaviour of © (exp(V;f r)) is governed by the

scaling behaviour of the Liouville form of Oy . Since the KKS symplectic form wXKS

scales as p under dilation, the Liouville form 12)! A4/Z KKS geales as pd/2.

In Example 3.14 we consider the concrete case I' = SL(n,Z), G = SL(n, R).
We discuss how Theorems A and B give an ansatz to construct multipliers on I' =
SL(n, Z).

Next we start the analysis of multilinear multipliers. Most efforts are required for
the restriction theorem.

Theorem C Let G be a locally compact unimodular group. Let T' < G be a discrete
subgroup such that c(I') = 1. Letm € Cp(G™*™). Thenforeveryl < p, pi,..., pp <

oo with p~! = > pj_1 we have that

I Tl e = Ly (@) X -+ X L, (T) = Ly < 1T : Lp, (G) X -+ x Ly, (G) = Ly(G)l.

Ipxn

Theorem C hinges on the intertwining property of Lemma 4.6 whose proof is very
delicate and which requires several new ideas compared to its linear counterpart. The
global idea is to approximate m with multipliers my that can be expressed in terms
of nested compositions of linear co-multipliers. We then construct asymptotically
isometric maps that intertwine the Fourier multipliers associated with my |px» and my.
The condition ¢(I") = 1 is used at several places in the proof, whereas in the linear
case it is only needed to construct asymptotically isometric maps. This also explains
why we do not obtain a ‘local’ version of Theorem C as well.

We further obtain multilinear versions of the lattice approximation theorem (The-
orem 5.2) as well as the multilinear compactification theorem and the periodization
theorem (Sect. 6). We use these theorems to construct examples of multilinear Fourier
multipliers on the Heisenberg group. These are the first genuine examples of multi-
linear Fourier multipliers on a nonabelian group.

Structure of the paper. Sect. 2 contains preliminaries on noncommutative L ,-spaces of
group von Neumann algebras. Section 3 proves Theorem A. We also establish approx-
imate embeddings of the non-commutative L ,-spaces assocatied with an inclusion of
groups I' < G. Section4 defines multilinear Fourier multipliers and proves Theorem
C. The proofs of the remaing de Leeuw theorems are contained in Sects.5 and 6;
this concerns the lattice approximation, compactification and periodization. Section 7
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contains examples on the Heisenberg group. In Sects. 8, 9, 10 we prove Theorem B;
we have postponed the proof of Theorem B to the end of the paper so that all Lie
theoretic arguments are presented separately.

2 Non-commutative L,-spaces of group von Neumann algebras

N denotes the natural numbers starting from 1. We denote N>o = N U {0}.

2.1 Assumptions on groups

All groups G in this paper are assumed to be locally compact, second countable
and unimodular. Though our results can be stated without the second countability
assumption, it significantly simplifies the exposition of our proofs as we can work
with neighbourhood bases of the identity instead of shrinking nets of neighbourhoods.
When we say that I" is a discrete subgroup of G we mean that it is discrete in the
topology of G. Any discrete subgroup I' < G is then countable.

For s,t € G we write Ad(r) = sts—!. We denote u for the Haar measure on
G. We use the shorthand notation ds = du(s) for integrals with respect to . A set
V C G is called symmetric if V = V~!. A neighbourhood basis of the identity is
called symmetric if it consists of symmetric sets.

2.2 Von Neumann algebras

A von Neumann algebra M is a unital *-subalgebra of bounded operators on a Hilbert
space that is closed in the strong topology. M is called semi-finite if it admits a
faithful normal trace t : MT — [0, co]. M is finite in case there exists such T with
(1) = 1, i.e. T extends to a state on M .For general von Neumann algebra theory and
non-commutative integration we refer to [60, 61].

2.3 Group von Neumann algebras

Let Cp(G) be the continuous bounded functions G — C andlet C.(G) be the subspace
of compactly supported functions. Let L,(G), 1 < p < oo be the Banach space of
functions G — C that are p-integrable, meaning || f|, := (fG | £()|Pds)VP < oo.

For f € L,(G), h € L1(G) we have a convolution product f*h € L,(G) determined
by

(f*h)(s):/ FOhE 's)dt, seG.
G

We further set

A =fesh, Yo =fs"hH,  seG.
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Let
S A(), O =&6"'D,  s.teG.E e LyG),

be the left regular representation. Set A(f) = f G S ($)A(s)d(s) where the integral is
convergent in the strong topology. We have

A(f xh) = A(fHr(h), f.h e Li(G). 2.1
We set the group von Neumann algebra
L(G) =span{i(s) | s € G} =span{i(f) | f € L1(G)},

where span denotes the strong closure of the linear span. There exists a unique normal
semi-finite faithful weight ¢ on £(G) that is defined as follows. For x € L(G) we
have

||f||%, if3f € La(G) s.t. V& € Co(G) 1 x§ = [ %€,

00, otherwise. 2.2)

@G (x*x) = {

@¢ is tracial, meaning that for all x € L(G), g (x*x) = @G (xx*), iff G is unimodular,
which we will always assume. ¢¢ is a state if and only if G is discrete.

2.4 Crossed products

Let M be a semi-finite von Neumann algebra with a trace 7j; and let I" be a discrete
group acting on M C B(H) via a trace preserving action 6 : I' — Aut(M). For
x € M, define the operator t(x) € B(H ® L,(I")) by

(t()EN) = (B(g Hx)(E(Q), &EeLx;H),gel

The crossed product M xyI' € B(H ® L>(I")) is the von Neumann algebra generated
by {l®A(g) | g € I'} and {t(x) | x € M}. This has a natural tracial weight T which
extends Ty on {t(x) | x e M}andtr on 1 ® A(g), g € T (c.f. [61]).

2.5 Non-commutative L,-spaces
The results in this section can be found in [7, 40, 46, 49, 62]. For an exponent p €
[1, oo] we will write p’ € [1, oo] for the conjugate exponent set by + + 1, = 1.

]
Let M be a von Neumann algebra equipped with a normal, semi-finite, fgithful trace
t.For 1 < p < o0, set

1
lxllp = t(xI")P,  xeM.

We define L , (M, 7) as the completion of {x € M | |lx]|, < oo} withrespectto || - || .
Alternatively, L ,(M, t) may be described as the space of all closed, densely defined
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operators x that are affiliated with M and for which ||x || 1’; := 7(|x|?) < oo. The latter
description is more concrete but requires the introduction of affiliated operators and
extension of the trace thereon; this shall not be used further in this paper. We define
Loo(M, ) to be M with the operator norm. Then L ,(M, 7), 1 < p < 0o is a Banach
space and we have a Holder inequality

1 I 1
lxyll: < lxliplylly,  —-=—+-, 1=p,g,r=o0.
r-p q

The Holder inequality is moreover sharp in the sense that

vl

; (2.3)
yeL,(M.o).y#0 1Yllg

lxllp =

indeed if x = u|x| is the polar decomposition of x then the supremum is attained at

ya
y = |x| <. The trace T may be extended from M N L (M, t) to L1(M, t) linearly and
continuously in || - |l;. Forx € L,(M, 1) and y € L,/(M, T) we have in particular
that yx € L1(M, t) and we have a pairing

<Yax>p’,p = t(yx). 24

We have ||x||, = [|x*||, forany x € L,(M, 7).

In case (M, 1) is (L(G), ¢g) with G a unimodular locally compact group—so
that ¢g is tracial—we simply write L p(G) for L,(L(G), ¢g). If G is abehan the
latter space is isomorphic to the usual L ,-space of the Pontrjagin dual group G. For
2 <p<ooand f € C.(G) we have A(f) € LP(G) with ||A(f)||p < I fllp (see
[7, 12, 40]) and such elements are dense. We denote C.(G)*2 = C.(G) * C, (G)
for the second convolution power of C.(G). The elements A(f), f € C.(G)*? ar
dense in L ,,(G) 1 < p < oo. The same densities hold for p = oo but then in the
o-weak topology of LOO(G) L(G). In each case the frequency support of A(f) is
by definition the support of f. For ¢, f € A(C.(G)*?) we have

@M = [ S0 @.5)
It follows directly from (2.2) that the Plancherel identity holds:

IAHI2 = [1fll2,  f € Li(G) N La(G).

In case G =T is discrete the elements with finite frequency support are given by the
group algebra

={A() | f €coo(D)},

which is dense in L p(f‘) for any 1 < p < o0. Here coo(I") denotes the finitely
supported functions I' — C.
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Remark 2.1 There are notions of non-commutative L, associated with an arbitrary
von Neumann algebra due to Haagerup [62] and Connes-Hilsum [33]. This allows for
the study of de Leeuw theorems for non-unimodular groups, see for instance [6, Sect.
8]. However, to keep the current paper broadly accessible we will work within the
realm of unimodular groups and tracial von Neumann algebras.

2.6 Fourier multipliers

We say that a function m € Cp(G) is a p — g-multiplier with 1 < p, g < oo if there
exists a bounded linear map 7, : L,(G) — L,(G) that is determined by

T, ((f)) = A(mf), [ € Ce(G)*.

In particular this encompasses that A(mf) € L, (G). We briefly say p-multiplier in
case p = q. By the Plancherel identity the space of 2-multipliers with continuous
symbol is Cp(G).

Remark2.2 Let2 < p < oo. Suppose that m € Cp(G) is a p-multiplier. Then under
the pairing (2.5) the dual of 7), : L,(G) — Lp(G) is the p/-multiplier given by
Ty i Ly (G) — Ly (G).

3 Theorem A: the local linear de Leeuw restriction theorem

The aim of this section is to prove Theorem A. We also introduce the quantified version
of local almost invariant neighbourhoods in Definition 1.1 which we shall determine
for real reductive Lie groups in Sect.8. We fix again a locally compact unimodular
group G which we assume to be second countable. Let I' < G be a discrete subgroup.
Recall that i is the Haar measure of G.

At this stage recall that §F as was defined in Definition 1.1.

Definition 3.1 (See [6]) For a closed subgroup H < G we say that G has small
almost invariant neighbourhoods with respect to H (notation G € [SAIN]y) if for
every F C H finite we have §p = 1. Equivalently, c(H) = 1 where c is defined in
Definition 3.10 or the introduction of this paper.

Remark 3.2 By [6, Theorem 8.7] if the discrete group I' is amenable then G €
[SAIN].

Remark 3.3 G has small invariant neighbourhoods (notation G € [SIN]) with respect
to I' if there exists a neighbourhood basis V of the identity of G such that Ad; (V) =
V,s € I'. Clearly then G € [SAIN]r. Indeed, we may replace V.€ Vby VN V~lto
obtain a symmetric neighbourhood basis with the desired properties.

Remark 3.4 Suppose that G € [SAIN]r. Since G is first countable pick any neighbour-
hood basis (U;);cn of the identity of G. Since G is second countable, I is countable.
Let F; € T',i € N be an increasing sequence of finite subsets whose union is I'. For
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every i € N we may inductively pick a relatively compact open neighbourhood V;
of the identity in G such that 1 — ll <Oér (Vi) <1,V; CVi_yand V; C U;. Then
V = (V})ien is a neighbourhood basis of the identity such that for any F C T finite
we have

lim 6 (V) = 1.
vey

This construction has the advantage that we may fix a single neighbourhood basis V
independent of the finite set F.

3.1 Asymptotic embeddings for2 < p < 00

The aim of this section is to construct contractive maps L ,,(f) — L ,,(6) that are
asymptotic embeddings. In case G € [SAIN] these maps are asymptotically isomet-
ric. Our results therefore generalize [6, Claim A].

Lemma3.5 Let V C G be a measurable set with 0 = u(V) < oo. Let F C G be
finite. The matrix A = (Ag t)s.ieF given by

_ rA((V) N Ad(V))

A
o (V)

’

is positive definite. Moreover A > §p (V) where I = (1), ;cF is the matrix with all
entries equal to 1.

Proof Let Vy := [ \,cp Ads(V) and define & : F — L(G) by

seF

£(s) := (V) 21 ad, vy — Lvp)-

Then (£(s), £(1)) = Ay — LY js a positive definite kernel on F x F. Since 85 (V) =

n(v)
£V0) the result follows. "
n(v)

As usual we view C[I'] € L(I') € L(G) as subalgebras of each other naturally.

Proposition 3.6 Let x € C[I'] with finite frequency support F C T'. Let V be a
relatively compact symmetric neighbourhood of the identity of G and assume that

sV.,s € F are disjoint. Set ky = ,u(V)*%)L(lv) € Lz(a) with polar decomposition
ky = uyhy. Then set

2
¢, v(x)=xhy, 2<p<=<oo,
where we use the notation @ v (x) = x. Then for every 2 < p < oo we have

190, @) < 130, @) 3.1)
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Proof Write x = ) _p x;A(s). By Remark 3.7 below and the Plancherel identity

_1
P2,y )y = Xy, = IxkvilL,G) = V) 721D xeLsvlly@)-
seF

Since sV, s € F are disjoint and using once more the Plancherel identity,

1

2
||CD2,V(X)||L2(@) = (Z |xx|2> = ||x||L2(f)~ (3.2)

seF

This gives the upper estimate (3.1) for p = 2. For p = oo the estimate (3.1) is
trivial. From the three lines lemma (similar to Stein’s interpolation theorem for analytic
families of maps [59]) we then have (3.1) for all 2 < p < oo. O

Remark 3.7 In Proposition 3.6 since V = V ~! it follows that ky is self-adjoint. Hence
hy commutes with uy and uy is a self-adjoint partial isometry with u%, being the
support projection of 4y . We shall repeatedly make use of these observations without
further reference.

Proposition 3.8 Letx € C[I'] with finite frequency support F C I'. ForV a symmetric
neighbourhood basis of the identity of G we have for every 2 < p < 00

1
liminf 8 2(V)||x = < liminf ||® X & 3.3
minf 67 (V) Il @) < lminf |9, ()l @) (3.3)

Proof For p = 2 the proof is (3.2) and for p = oo the statement is obvious as £(I") is
a von Neumann subalgebra of £(G). So we assume that2 < p < co.Let2 < g < o0
be the L,-conjugate of p determined by p~!4+¢~! =271 Lete > Oandlety € C[I']
pe such that [|yll, ) < land |lxyll,, 5 > ||)C.||Lp(f) — ¢, see (2.3). Let F), be the
inverse set of the frequency support of y and write

=) xAs),  y= ) Yk, x, )y €C

seF seFy

We may consider a tail of the symmetric basis V so that each V e V is relatively
compact and so that each of the following families are disjoint: (1) sV,s € F; (2)
sV, s € Fy. Moreover, we may assume that (3) s; V1 and s, V #; are disjoint whenever

51,82 € F, 11, 1p € Fy with 5111 # s210.
2 2

For V e V set W, v(y) = uyhyy. It follows that W, v (y) = uy(y*h{)* =
uy @y v (y*)*. The frequency support of y* is Fy. Since we assumed that sV, s € Fy
are disjoint it follows from (3.1)—but then applied to y—that,

1% v D, @ = 1967 69,3 < 15 I, = IV, 0 G4
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Using (2.3) and (3.4) we find for V € V,

sup 1P vzl = 1Pp.v Ve v, @G-
2(G) 2(G)

IPpv O, G =
»(G) _
2€Lg(G).lzllp, ) <!

(3.5)

We have

+

242
‘I; qMVy”LZ(G) = |lxky yli2

1Py v )Yy vDIL,@E = lIxh
2(G)

1
=uW)72 | Y xy(lv)
seF,tel)y L2(G)

By the Plancherel identity and disjointness assumption (3) in the first paragraph of

this proof,

1@y ()W v DI = = p(V)™! X5 Y1 X5y V0 Lsy vy (8) 1s,vi, (©)d g
Ly(G) G

s1,52€F .1, €Ly
(s stl N s Vs{l)

) > xeyXovn (V)

rel sy, spel 11, nel)
S|ty =r=st

(st stl al szngl)

Z Z xslysflrxSZyx;lr w(V)

rel sy saeFnrFy!

(3.6)
By Lemma 3.5 we find for each summand r € I" that
Z Z . 5 /L(s1Vs1_1 N szVsz_l)
e R (V)
sl,szeFﬁrFv
3.7

> Z Z xslyslflrxszyszflrSF(V)~

rel g, ,szeFﬂrF;l

Combining (3.6) and (3.7) we get

10y v ()P v DI, 6 =8, Y D Xy, Ty,

rel’ sl,szeFﬁrF),_l

2
=5,V Y Xy ()
rel’ sjeF ek
st =r LZ(F)
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= sr Wyl 7 = 8r (W Uxll, @ — )

Hence by (3.5) we get that
1
19,y ()L, @ = 8r(V)2(Ix]L, @) — &)

So certainly lim infy ¢y | P, v (x)]] L,©6) = liminfycy 8F(V)% (x|l Ly~ ). Since
this holds for every ¢ > 0 we get that

1
lim inf ||® X A > liminf 6 (V)2 ||x =
Vey || p,V( )”LP(G)_ Vey F( ) || ||Lp(F)

3.2 Asymptotic intertwiners

We will need to make use of the following proposition to prove our de Leeuw restriction
theorems: both in the local linear and in the multilinear setting.

Proposition 3.9 (Claim B on p. 24 of [6]) Let V be symmetric neighbourhood basis
of the identity of G. Let2 < g < p <ooorl < p <q <2 Letm € Cp(G) be a
p-multiplier. Then for x € C[I'] we have

2 2
im |50 (e ) = Ty ORI, ) = 0.

Proof For 2 < g < p < oo the proposition is exactly Claim B of [6]. The case
1 < p < q < 2 the same proof holds with trivial modifications with only one remark
taken into account. Namely, at the place where [6, Corollary 1.4] was used (which is
stated only for 2 < g < oo) we need to use [10, Lemma 3.1] instead (which extends
this corollary for 1 < g < 2). Note that [10, Lemma 3.1] was only stated for finite
von Neumann algebras, but its proof remains valid in the semi-finite setting exactly
as it is stated. O

3.3 Proof of Theorem A

We are now ready to prove a localized version of the de Leeuw restriction theorem
generalizing [6, Theorem A]. This theorem removes the [SAIN] condition from [6,
Theorem A] by taking into account the support of a multiplier.

Definition 3.10 For U C I' we define

c(U) :=inf{8}/* | F C U finite}.

In particular if U is finite we have c¢(U) = 8,1]/ 2.
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Theorem 3.11 (Theorem A) Let m € Cp(G). Then for every 1 < p < 0o we have
that

csupp(m|r) | T 2 Lp(T) = Ly < 1T - Lp(G) — Lp(G)].  (3.8)

Proof For p = 2 the statement is obvious. By complex interpolation the logarithm
of the norms on both sides of (3.8) is a convex function in p and hence certainly
continuous. So the case p = 1 follows from the case 1 < p < 2 by approximation.
The case 1 < p < 2 follows by duality from the case 2 < p < oo, see Remark 2.2.

Now assume 2 < p < oo. Let x € C[I']. The frequency support F of Ty, .. (x) is
finite and contained in supp(m|r). Let € > 0. Let V be a symmetric neighbourhood
basis shrinking to the identity of G such that

lim sup 87 (V)2 < 8% + €.
vey

By Proposition 3.8 we find

[T O, ) = qll}l}) T Ol 1, ()

. . _1
< lim limsup 67 (V)" 2Py, v (Tnjr DL, (&)
9P vey 4

_1
< lim limsup (6;* + €)(| T (g, v (D1, &)
/P vey ¢

F N T (Pg.v (X)) = @g.v (T D, ()

By Proposition 3.9 the last summand goes to 0. Hence using again Proposition 3.8,

_1 ~ ~
1T O, @) < lim Bp° + Ty : Ly(G) — Ly(G)| limsup [®q.,v(OllL, @)
q9/'p =%

-~

< im @, + T : Ly(G) — Ly@lllIxl,, 7
qa/'p 4

_1 —~ —~
= Gp” + T Lp(©) > Ly@lllxl,, -

Letting € N\ 0 concludes the proof as C[I'] is dense in L p(f‘). O

Remark 3.12 In Theorem 3.11 if moreover G € [SAIN] then §p = 1 forany F C T’
finite and we recover [6, Theorem A]. In particular our theorem also generalizes the
restriction theorem from [17].

Remark 3.13 Use the notation of Theorem 3.11. Now let N be any (semi-finite) von

Neumann algebra and consider the tensor product L ,(N) ® L, (@), which is equipped
with the L, norm induced by the tensor product of the weights on N and £(G). We
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write L ,,(6 s Lp(N )lfor L,(N)®L, @. Consider the vector-valued extension T,,Ilv
of T, given by L,(G; L,(N)) — Lp(G; Ly(N)),

TN (x @ A(f)) = / m(s) £ (s) x ® A(s)ds.
G

Let R be the hyperfinite II; -factor. We will say that 7, is completely bounded if Tn?
is bounded and write || Ty, ||ch = ||TmR||. We still have (3.8) in the cb-norm since we
may apply the theoremto I" X Soo < G X Soo and L(Ss) = R where S is the group
of finite permutations of N.

Example 3.14 Theorem A provides an ansatz for finding genuine examples of p-
multipliers on SL(n,Z) for | < p < oo. Consider G = SL(n, R) with discrete
subgroup I' = SL(n, Z). Suppose we can find a class of symbols m € C,(G) sup-
ported on the adjoint ball Bg :=1{g € G| |Adg || < p} with radius p — oo that
satisfy

o~ o~ 1
1T : Lp(G) — Lp(G)| < p~ 5 Vi(o)m|r |y (3.9)

for some k(p) > 0. As a particular case of Theorem 8.1 proved below (see Remark
8.2), we obtain that

1
8_3 < p%n(nfl)
Bf —

so Theorem A would yield

1Tyt Lpy(@T) = Ly < k(o) lmlrl:.
A minimal requirement for this to yield genuine multipliers on I' = SL(n, Z) is that
k(p) < 1 and itis natural to require then that k(p) — 0 as p — 00. As a sanity check,

we verify that the lower bound on k(p) obtained from estimates of the cardinality of
Bg N I" do not exclude the possibility that k(p) — 0.

Since [|mlloc < 1T : Lp(G) = Lp(G)| and |lm|rlli < #(BJ N T)lmlloo, a
necessary condition for (3.9) to hold is that

p%n(n—l)

m < k(p).

In [43, Corollary 1.1 and Example 4.2] it is shown that
w(BS) ~ #(BS NT) ~ plin) log(p)[371, (3.10)

so that k(p) = p_%” log(p)_(%’” (,o%”z_L%"ZJ). This shows that genuine multipliers
of this form are not a priori excluded by the counting estimates.
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In detail, let a be a maximally noncompact Cartan subalgebra of the Lie algebra g
of G and let Ay, ..., A, € a* be the natural weights described in [43, Examples 4.1,
4.2]. The weights occurring in the adjoint representation are A; — A;,1 <1i,j <n
and C is defined as the convex hull of these. For B the sum of all positive roots (see
[43]; so not the usual half-sum) we find,

n n |_n/2j
B= Y Gui—=ip)=) (+1-20k =Y (n+1=20)0 = dns1-).
i=l i=1

ij=li<j

Now set D := Z}i/lzj (n + 1 — 2i) which equals A—lln2 if n is even and %(n2 —Difn
is odd. Briefly, D = L%nzj. If n is even B/ D is on the face of C given by the convex
hull of the weights A; — A,41-;, 1 <i < % If n is odd then 8/D is on the face of C
given by the convex hull of the weights A; — Apy1-i, 1 <1 < % Further, we have
E :=dim(a) — (5 — 1) = 5 if nis even and E := dim(a) — (% -1 = "—'ZH if n
is odd. Briefly, E = (%n}. So we have determined D and E as in [43, Corollary 1.1]
yields (3.10). Note that D and E in this example are written as d and e in [43] which

differs from d as in Theorem B.

3.4 Asymptoticisometries for 1 < p < 2 under the [SAIN] condition

In order to prove the multilinear theorems we prove two lemmas that in particular
extend the results of Sect.3.1 under the [SAIN] condition. Recall that the group C*-
algebra C(T") is defined as the norm closure of C[T"] in B(£2(I")).

Lemma3.15 Let 1 < p < oo. Assume G € [SAIN]r and let V be as in Remark 3.4.
Then for every x € C}(I'),

2 2
lim ||[xh! —h?x = =0. 3.11
o, lxhy, v ”Lp(G> (3.11)

Proof By approximation and taking linear combinations it suffices to prove the lemma
in case x = A(r) with r € I". Then [6, Corollary 1.4] shows that for 2 < p < oo,

2 1

; R n
Iy A" = uvhill, @ < Claruyvhy i) —uvhvll” &

1
2 —2u(Ad, (V)N V)\ %
=C . (12

( wu(V) ) G12

Taking the limit over V € V this converges to 0 by the [SAIN] condition, c.f.
Remark 3.4. Now for any 1 < p < oo,

2 2 1 1 1 1
ARy A" = hyllL @) < 1M Ryuvuyhy ()™ = hyuy A (uyhy A(0)*l L, @)
1 1 1 1
+Hlhjuyd(ruyhir(r)* —héuvuvh\pzlle(a)
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1 1 1
= II?»(r)h";uv - h\l;“V)\(’")”sz(@)||“Vh\l;)¥(")*||L2p(6)
1 1 1
Hlhyuvly,, @ I*@uyhy i) —uvhyly, @)
By Proposition 3.6 and (3.12) this expression converges to 0. O

For completeness we note that the crucial inequality behind (3.12) is Ando’s
inequality [6, Lemma 2.2] from which it could also be proved directly using the
methods in [6, Sect. 2].

Proposition3.16 Let 1 < p < oo. Assume G € [SAIN]y and let V be as in

1 1

Remark 3.4. For every x € C}(I') we have limy ¢y h‘ﬁ,xhg

_ =Xl @
Ly(©)

Proof First, take y € C[I'] and assume x = y*y. Then we have, by Lemma 3.15,
Proposition 3.8 as G € [SAIN] that,

2p
= lim
Lp(é) VeV

lim
Vey

1
yhy

2p r
=1yl;. = = Ixll] = -
sz(é) LZp(r) Lp(r)

Now if x € CJ(I') is positive and € > 0 then we may find y € C[I'] with [lx —
Yyl @ <€ Then,

1 1
P P
hy xhy,

1 1

h\p/y*yh\p/ o ||y*Y||Lp(f)
Lp(G)
1 1

Py — ¥ P . ¥ ~
+ (lhy (x = y*Why ”L,,(G) +lx—y y”LP(r))

S ‘

- lxllz, @
L,©)

1 1

héy*yh‘i o ||y*y||L1,(F) +2[lx — y*ylle(f),
Lp(G)

S ’

which is smaller than 3¢ for V € V small.
Now assume that x € C;(I') is self-adjoint and write x = x4 — x_ with 0 <

* P P P
x4+ € C}(I') and orthogonal support. Then ||x||Lp(ﬁ) = ||x+”L1,(F) + ||x_||Lp(f) and
similarly, by Lemma 3.15,
benb|” AR b Al
‘1/1512 hyxhy, L6 ‘1/151} Xihyxi —xZhyx? L6 ‘1/151) xihyxi L6
12 1P
+ (x2hyxZ
Ly(G)
1 1P 1 1P
= lim ’h"}x+h"} + ’h"}x_h"}
vev Lp(G) Lp(G)

So we may conclude the proof from the self-adjoint case.
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Now for general x € C;(I') we may replace x and hy by respectively,

0 x hy 0
(eo) o (50)

in L,(M>(C) ® LOO(F)) and L,(M>(C) ® Loo(a)) respectively and conclude the
proof; it follows that the first part of the proof also holds in this 2 x 2-matrix ampli-
fication. One way to see this is using the fact that the group von Neumann algebra of
the infinite permutation group S is the hyperfinite II; factor, R. We now replace the
inclusion I' < G by S0 X I' < S x G. The corresponding von Neumann algebras
are then R ® L(I') and R ® L(G). Since the matrix algebras embed into R, we may
view the matrix amplification of x as an element of L, (R ® Loo(f)). m]

4 Theorem C: the multilinear de Leeuw restriction theorem

In this section we define multilinear Fourier multipliers and prove the multilinear de
Leeuw restriction theorem.

4.1 Multilinear maps

Let X1,..., X;; and Y be Banach spaces.Let T : X| x --- x X,, — Y be a multilinear
map, meaning that it is linear in each of its variables. The norm of 7 is then defined
as

1T (x1, ... xn)lly
xieXix20 1xillx, - xnllx,

ITI =

4.2 Multilinear Fourier multipliers

Let G be a locally compact unimodular group. Let m : G*" — C be a bounded
measurable function. Consider the tuple (py, ..., p,) with I < p; < oo and let also
1 < p<oo.Wesaythatmisa (pi,..., pp) — p multiplier if there exists a bounded
n-linear map

T : Ly (G) x - x L, (G) — L,(G),

that is determined by
Tn (A (1), - A(fn)) =/GX m(st, ..., Sn) f1(s1) ... fu(sn)A(s1...sn)ds1...dsy,

forall fi,..., f, € Cc(G)*2. By mild abuse of terminology we also refer to the map
Ty as the (p1,..., py) — p multiplier and m is then explicitly referred to as the

symbol of Tj,,. If p is the conjugate determined by p~! = Z?:l p;] then we simply
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speak about a (py, ..., p,)-multiplier in analogy with the linear case n = 1. n is also
called the order of the multiplier.

4.3 Reduction formulae

We prove a number of lemmas that reduce the analysis of n-linear Fourier multipliers
to Fourier multipliers of lower order.

Definition 4.1 For 1 < k < n we say that a tuple (g1, ...,qx), 1 < gj < o0isa
consummation of (p1,..., py),1 < p; < ocatindices 1 =i} < --- < iy <nif

-1 _ i+ —b o —1
q; _Zj:iz pj -

Lemma4.2 For 1 < k < nlet (q1,...,q1),1 < qj < 00 be a consummation of
(pt,-..,pn),1 < pj < o0 atindices 1 =iy < --- < iy < n. Suppose that
m : G** — C is bounded and measurable and set

M(ST, ooy Sn) =M(ST .. Sig—1, Sig « o+ Sig—1s ++ o5 Sig_q - Sig—1s Sig -+ - Sn)-

Then m is a (11, <.y qr)-multiplier iff m is a (p1, ..., pp)-multiplier and moreover,
for x; € Lp,(G) we have

Tri(xt, ooooXn) = (X1 oo o Xig— 15 Xig oo Xig—1s « oo s Xig_q «+ - Xig—1, Xip - - Xn).

Proof Let fi,... fy € Cc(G)*?. Then, using the invariance of the Haar integral for
the second equality and (2.1),

T (A (f1)s s A(fu)
= /;;X” m(sy, .o S) 1051 o fu(S)A(sy .. .sp)dsy .. .dsy

k

:/Gka(tl,tg,...,tk) H(ﬁj*"'*ﬁj+1—l)(f./) At .. t)dt .t
j=1

:Tm()\(fl*"'*fiz—l)’n-v)\(fik*"'*fn))

=TnA(f1) - - A(fiz=1)s - s A(Sfi) - - A(f0))-

So if T, is bounded it follows by this expression and the Holder inequality that also
T} is bounded. Conversely, assume 75; is bounded. The products A(fi;) - - A(fi;,,—1)

with A( f;) in the unit ball of ij (6) and f; € CC(G)*2 lie densely in the unit ball of
Lg,(G) by (2.3). Since

1T GoCfD) 2 finm)e o M) A, @)
= ITa (). AL, @) < 1Tl

and taking the supremum over all such f; we conclude the proof. O
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Lemma4.3 Let 1 < p;,p < oo. Suppose that m : G*"* — C is bounded and
measurable and set forr,t,r' € G,

RSty oS 7)) = mrsy, .o sit 1 iy o sar).

Then m is a (p1, ..., px) — p-multiplier if and only if so is m;( - ;r,t,r"). In that
case for xj € Lp,(G),

Tii(o a1y ooy Xn) = A T (P)x1, ooy X h(0), MO X1, oo, XA DA
“4.1)

Further, as maps L p, (6) X oo X L,,n(é) — LP(G) we have | Tl = 1T, ¢ .r.0.) |l
and (r,t,1r') — T, .r.1.ry Us Strongly continuous.

Proof The proof of (4.1) is similar to Lemma 4.2, namely one verifies the equality
for x; = A(f}), fj € Ce (G)*? by an elementary computation and then concludes by
continuity. Since multiplication with A(s), s € G determines an isometry on L i (G)
that is strongly continuous in s by [35, Lemma 2.3] the final statements follow as well.

O

There are several formulae available for nested Fourier multipliers of which the
following lemma is a particular case.

Lemma44 Letl < Ply.e..,Pn < 00. Let gy, = ppandfor1 < j <n —1 set
= Zl = P - . Suppose that m; : G — C is a qj-multiplier for all 1 < j < n.
Set
m(st, ..., 80) =mi(s1...8—1)m2(52 ... Sp—1) ... Myu_1(Sp—1)My (sp).
Thenm is a (p1, ..., pp)-multiplier and for x; € L, (6) we have

Tr(xt, ..oy xn) = Ty (1 Ty (2« Ty (Xn—1) <+ ) Ty (X)) 4.2)

Proof Again the identity (4.2) can directly be verified for x; = A(f;), f; € C.(G)*2.
The boundedness of T then follows as all 7, jare bounded together with the Holder
inequality. O

4.4 Proof of Theorem C

The idea behind the following proof is that we approximate a multiplier by multipliers
that decompose as a nested iteration of linear multipliers. Then using the analysis of
linear multipliers we may prove the desired result. We first give the core of the proof
of Theorem 4.5 and prove the intertwining property that is needed for it afterwards in
Lemma 4.6.
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Theorem 4.5 (Theorem C) Let G be a locally compact unimodular group. LetT' < G
be a discrete subgroup such that G € [SAIN]r. Let m € Cp(G™*™). Then for every

1<p,ple....pn <o0owithp™ ' = Z;’-Zl p;I we have that

Ly (T) x - x Ly (T) = Ly(D)| < [T : Ly (G) X -+ x L, (G) = Ly(G).
4.3)

1 Tn

|1-><n

Proof In case n = 1 the theorem was proved in [6, Theorem A] or Remark 3.12. We
therefore assume that n > 2. Consequently 1 < py, ..., p, < oo. We note however
that our proof remains valid for n = 1 provided that 1 < p = p; < o0.

Let (¢x)x be a net of positive definite functions in the Fourier algebra A(G) =
L>(G) % L»(G) with ||¢r]l1 = 1 and compact support shrinking to the identity of G.
Recall that elements of A(G) are continuous and p-multipliers for all 1 < p < oo
(see [14]). For any function M € Cp(G*") we set for t;, s; € G,

. -1 -1 —1 —1 -1
My, .1, (515 .0y 8p) i= M(tl Sit2, 8y S213, .o b, 5Sn—2In—1, 1, _1Sn—1, Snly ),
“4.4)

and

n
Mk(sl,...,s,»::/ My, 1) | [Tontep | dn ..o
GXH

j=1
-1 -1 -1 -1 -
= M@ 0,5 e S T )
GXn
n—1
< [ TTextsi--snm1tp) | xltus)dty .. 1. 4.5)
j=1
Let xy,...,x, € C[I']. Since my — m pointwise and all x; have finite frequency
support we find that
Tt Gl ) = B 1 o () -

Let V be a symmetric neighbourhood basis of the identity of G as in Remark 3.4. By
Proposition 3.16,

||Tm\rxn(xl,~--7Xn)||1‘p(’f)
1 1
— Tim i » » .
= 11]?1 ‘l/lg} ||hVTm,(h_X" (x1,..., xn)hv ||Lp(G)
1 1 1 1

< 1 1 ”T (h Pl h Pl h pn h[’n )” —~
< limsuplimsup [| T (hy' x1hy' ..o by xalty" )G

k VeV

1 1 1 € 1 e

li li hiT, hb — T (B x1h ) hot x,ht" a

+lim sup limsup (71 Ty (X155 X))y = Ty (hyy x1hy oo By Xnhy" ) @)
k VeV
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Now by Lemma 4.6—which we prove below—the limit over k and V' in the second
summand exists and is 0. Therefore,

”Tm\rxn (X1, ..., xn)”Lp(f)
€1 €1 1 €
< limsuplim sup || Ty, (R x1h L ... By X,k )”LP(G)
k Vey

n 1 1
<tlimsup | T, : Lp,(G) X --- x L, (G) = L,(G)|l - limsup (]_[ Ihy xhy’ ||ij(f)) .
k Vv X
Jj=1

By Lemma 4.3 we find that || T, || < |7, |l. Hence, together with (3.1) of Proposi-
tion 3.6, we conclude that

W Tontgocn @1 Xl @ < 1T Ly (G) X -+ % L, (G)
n
= Lp@I - [T, @)
j=1
Since the elements x; € C[I'] are dense in L p(f‘) we conclude the proof. O
Lemma 4.6 In the proof of Theorem 4.5, in particular with n > 2, we have that

1 1 1 1 1 1
o : 7 PP B o
hl{n lll‘l/les‘l}lp ||hVT,,,k‘FX,, (1 oo Xy = Ty (hy! x1hy' oo by xphy” )”LP(G) —0.

If n = 1 the statement also holds in case 1 < p = p1 < oo.

Proof Recall that all x; have finite frequency support and therefore by the triangle
inequality it suffices to consider the case where x; = A(rj),r; € I Let ¢ : G —
R-o be a compactly supported continuous, positive definite function in the Fourier
algebra A(G) with {(e) = 1, so that T is a contraction for all 1 < p < oo. For
1<j<n,seGlet

gj(s) =¢0ry's). (4.6)
Set the product of functions
(m(g-l’ M) {ﬂ))(sla LRI sn) = m(slv L] Sn);l(sl) e é‘n(sn)v sj S G1
and then let (m (¢, ..., ¢y))r be defined by the formula (4.5). Similarly consider
m—-—m(y, ..., )k =mg—(m(y, ..., &), whose value at the point (rq, ..., ;)
converges to 0 in k.

We estimate

1 1 L € 1 €
P P
”h{; kalrxn (X15enns xn)h‘l; — T, (hvl xlhvl s h{/m xnh\?” )”L,,(G)
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1 11 1
S My Tyl K15 - Xy = By Ton(@yesciilpon &10 -5 Xy @)
1 1 1 1L
+|lh T, (x Xo)hb — T, (hi! x1h} hy xah ) @
VA &a)klpxn X1y oo es Xn) ity (s G \y Ay e g Aty DL (G

1 1 1 1 1 1 1 1

N Toncer, ot g K10 R b ) = T By xih ' Y xuh ) @)
=: Agv + Brv + Crv. 4.7

where in the last line we defined the three summands. We show that each of these
summands converges to 0 separately. By Proposition 3.6 we have for any V that
Ak v = Wl (K155 Xn) = Tan@yeotailpen X155 X) |, 7
= 1T o=@ et pen A1) s A, ()
= [(mg — (M1, - SR (1, oo )l

As observed in the first paragraph the latter expression converges to 0 in k, so we find
that limg limy ¢y Ag v = 0.
Next we treat the summand Cy y. Define, using the notation (4.4),

1 1 1 1

andforj=1,...,n—2,
RIS 1 1
yj = )»(tj)*hcj th‘]/ Mtjis1)s a1 = Mta—)*hy" " Xyt

€ €1
Y 1= h{ xuhy A(5) "

By Lemma 4.3,
Ck,V(tls R tn) = ”Tm—m(fl,...,{n)(yls sy )’n)||Lp(6)

n
< Z (T x---xid xgj—id x g1 xx60) (V15 - Yl G-
=1

Since by similar arguments to the ones used in Lemmas 4.2 and 4.4,
Tn(id x--xid X(Lj—id) X Cjy1 XX L) = Tno(d,...,id, T;j —id, T§j+1 s I,
we find

Civ(tie o itn) < Tt Lp(G) x -+ x L, (G) > Lp(G)|
n n
) 4.8)
x| 1T —idopl, @ [T Wi, e

J=l1 i=1,i#]
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We have

1 1 1

. ~ = Pi . pPi ~ Pi 2 R . .
llyi ”Lp,,(G) = |lhy xihy, ”Lpi(G) < lhy ”LZ,,A.(G)”xl”Loo(F) =1

see also Proposition 3.6. Recall (4.6) and the fact that {(e) = 1 and x; = A(r;). By
Lemma 3.15 and using Proposition 3.9 we see that forevery 1 < j <n — 2,

€ €
. . T . N N7 ) R
‘1/151) (T — 1d)()’j)||ij @ = ‘1/151} I(Ty; —id)(A(t)) hy) A(rj)hy)/ )»(l/+1))||ij ©
2
. . Pij
= ‘1/151/ ||(T§j — 1d)(A(tj)*hV1 )L(rjtj+1))||ij(§)
2

e P
N \lflg/ ”(T“’fl’fl g Dy )“ij(G)

=166y ey ) = 11,
and similarly,

. . L -1 ,—1
im (T, = i) un)l, @ = 160,24 ) = 1,

. . o —1
‘l}éﬂl; (T, —id)yllp, @) = 16, ) — 1.

Hence from (4.8),

limsup Ck v (t1, ..., tn)
VeV

< || Tw : Ly (G) x -+ X L, (G) — L,y(G)ll

n—2
Y1 e ) = U126 ) — 1+ 16D = 1
j=1

4.9)

Now going back to the original quantity we have to estimate, we find by Lemma 4.3,

1 1 1 1

n
< [cvnn [ [Toue | an..
Gxn .
Jj=1
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Taking limits in (4.9) yields,

1ims$pck,v <|ITp : Lp(G) x -+~ x L, (G) = Ly(G)
Ve

n—2
x / D olee e ) = U+ 1o ) = 1+ 16 = 1
j=1
n
< | [Tecp | dnr--ta.
j=1

This expression goes to 0 when taking the limit in k. This concludes the estimate for
Cr.v.

We now prove that for every k we have limy By v = 0. For what follows, we will
assume, by scaling ¢y if necessary, that T, is a contraction on L ,,(8); we may do this
since at this point we need to prove convergence in V for fixed k and our arguments
do not rely on the earlier assumption [|¢x |1 = 1 anymore. Set the function

n—1
Yi(St, oy Sty e ty) = 1_[ on(sj .- -sn—ltj) @k (tnSn)-
Jj=1

When we see v, for fixed 71, ..., #, as a function of the variables s1, ..., s, we shall
write Y (- #1, ..., ;). By the last expression of (4.5) we see that

—1 —1 —1
Bk,vs/ 1o e ettt )]
GX”

1 1
X ”h\,;ka('?tl ~~~~~ tn)lr‘xn (Xl, ...,Xn)l’l‘[;
1 1 €1 1
P P —~
— ka(‘ﬁl ’’’’’ ln)(hV xlhv e h‘l;" xnh"}” )”L],(G)dtl R

(4.10)

We justify that the integrand is dominated by an integrable function that does not
depend on V. Indeed, note that Ty, (..s,...1,) and Ty, (.,...1,)|xs are contractive
(this follows from the expansions (4.11) and (4.12) below) and in combination with
Proposition 3.6 it follows that the integrand on the second line of (4.10) is at most 2 for
any t1,...,t, € G.Sincem(¢y, ..., {,) is integrable, the integral (4.10) is majorized
by

/ 20m &ty e st St 7 DI Lty
GXVI

=2{m(&1, ..., &)l Gy < 00.
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So if we can show that the limitin V' of the integrand of (4.10) converges to 0 pointwise
then by the Lebesgue dominated convergence theorem we conclude that for all &k we
have limy By = 0.

Introduce the short hand notation for the multipliers 7 = T, (.4 and S; =
Tyt for1 < j <n—1.Wealsoset T, = Ty, (s, ) and S, = T, (1, .| For any
yj € Lp, (G) we have by Lemma 4.4,

Tyt O oo ) =T (32 - Tt (Yn=1) - N T (). (4.11)

We also see that

Tyt sti)lpsen (K15 - ooy Xn) = S1(x1(S2(x2 - .. Sp—1 (tp—1) .. D)) Sp(xn). (4.12)

€ €
Now fix y; :==y; v 1= h\p,'i x./h‘p/ ; for a while V shall be fixed and at the very end of
the proof we will take a limitin V. Set 1 < g; < oo by qj_l = Z?:_jl pi_l. Note that

611_1+P,Zl = p~!. Thensetfor0<j<n—1,

1
Rjv :=Ti1(Ta(y2... Tj—1(yj—1 T (yjhy ™

Sj+l(xj+1Sj+2(xj+2~-'Snfl(xnfl)--'))h?))-u)))'

By definition

Ry iv=Tin(TQ2... Th—1(Yn=1) .. ),

1

1 1
Ro,v =hy S1(x1(S2(x2... Su—1(xu—1) .. DAY,

and these expressions should be compared to (4.11) and (4.12). Also let R denote the
term Sy (x1(S2(x2...8—1(x,—1)...))). S; and T; are contractions and therefore we
1 1

record at this point that || 7;, (y) ||L,, ©) ||h"? Sn (xn)h‘pj" ||L,, @) = 1. Then—in view
of (4.10)—we estimate using the triangle inequality

1 1
M Tyec- ity V1 e yn) _h\I;Tl//k(‘;flen)|rX" CITRRES x”)h‘i”L/?(a)

n—1

1 1
< 1Ry T () = by RSy Nl @) + D IR = Ri—t) TG, @)
Jj=1
1
q1 r1.1/pn 1/pn, 1 1 1/pnpg 1 1/pn
< Iy ™", RISy o)/ P 1/ T,y + Iy R TR S, o)1y ™1, )
1 1 n—1
+ R0,y T () = Rovhy SuCedhy Nl @) + D MRjv = Rt T, G-
j=1

(4.13)
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Now, using Holder’s inequality, the first two summands are dominated by ||[h‘§ ,
1

R]||L2p © and ||[h{’7, Sn (xn)]||qu1 &) respectively, which go to 0 by Lemma 3.15.
L L

For the third summand we recall that y, = h{" x,h{" and that T, = Ty, (., is a

multiplier both on L and L . Therefore by the Holder inequality and Proposition 3.9,

1 1 1
1Ro.v T o) — Ro.v b SuCeonh i I & < T xuh ') = ki’ Sy I, @ — O-

It remains to show that the final summand in (4.13) goestoOin V. Forl < j <n—1,
set

§j+1 =Sjr (xS . Spo1(xp—1)...) € C[T].

We estimate,

1 1 1 e
”(R/ Vv — 1 1,v) T (yn)”Lp(G) =< ”T (y, \/Jr S/quhqj+l ) _h S/(x/S1+l)hV ”Lq (6)
€1 IR 1 1 1
< Ty iy hy™ Sy ™) = Tjhy x;SihiDle, @)
1 1 1

1
HITj(hy 3 Sjahy) = by S;G5S0hy e, @) (4.14)

Since T is a contraction the first summand goes to 0 in V by Lemma 3.15. For

the second summand we note that 7 = T, (.,;) is a multiplier both on L1(G) and

oo(G). Since 1 < g; < oo we get that also the second summand in (4.14) goes to 0
by Proposition 3.9. O
Remark 4.7 1f in Lemma 4.6 we have x| = ... = x,, = 1 then the proof holds for any

symmetric neighbourhood basis  not necessarily witnessing the [SAIN] condition.

Remark 4.8 AsinRemark 3.13, we note that Theorem C also has a completely bounded

version. Use the notation of Theorem 4.5 and let N be any (semi- ﬁnlte) von Neu-

mann algebra The Vector-Valued extension T of Tm is given by L, (G Ly (N)) x
pz(G,,Lpz(N))x xL,,n(G L, (N)— L, (G Ly(N)),

Tm(xl ® )\‘(fl)a <o Xn ® )”(fn))

= / m(sy, .oy S f1051) s fu(Sn) X120 . X @ A(s1 ... 8,)dsy .. .dsy.
GXYI

Let R be the hyperfinite II;-factor. As in the linear case, we will say that T, is
completely bounded if Tn? is bounded and write || 75, |lcb = || TmR |I. Then we still have
(4.3) in the cb-norm.
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5 Multilinear lattice approximation
The aim of this section is to prove a multilinear version of [6, Theorem C].

Definition 5.1 A locally compact group G is approximable by discrete subgroups
(notation G € ADS) if there exists a sequence of discrete lattices (I';) jen of G with
associated fundamental domains X ; which form a neigbourhood basis of the identity.

By passing to a subsequence we may assume that all X; in Definition 5.1 are
relatively compact. In other words I'; is cocompact. The following theorem shows
that for ADS groups the norm of Fourier multipliers can be approximated by looking
at the restriction of the symbol to appropriate lattices.

Theorem 5.2 Let G € ADS with approximating cocompact lattices (I'}) jen. Let
m e Cp(G*) andlet1 < p, p1,..., pn < o0 be such that p~' = Y pl._l. Then,

T : Ly (G) x -~ x L, (G) = LG

< SUP | Ton| s : Ly (Tj) X -+ x L, (T;) — LTl (5.1)

Xn
j>1 T

Before proving the theorem we introduce the auxiliary maps from [6, Theorem C]. Let
X ; be shrinking relatively compact fundamental domains for the inclusions of I'; in
G.Fors € G we shall write y; (s) for the unique elementin I'j such thats € y;(s) X ;.
Leth; = k(lxj). For x € C[T';] we set the elements in Lm(a) by

_oy 1
®;(x) = hixhj, ¢;p)(x)=|xj| ro;(x).

The proof of [6, Theorem C, p. 19-20] shows that d>§.p ) extends to a contraction
Lp(f) — L,,(@). For x € A(C:(G)) we set

Vi) = Y tWay HhAy) = D (hix, )k j)rp),

yerl; ver;

Since x has compact frequency support these summations are finite. The proof of [6,

Theorem C, p. 19-20] shows that \P;p ) extends to a contraction L p (6) — L p(F).
Now set

Sj =@ 0 Ty 0 (WP - W) = X172 0 Ty 0 (W) X oo X W),
J J

Recall that we defined ¢V (s) = ¢ (s ') for ¢ a function on G. The proof of Theo-
rem 5.2 hinges on the following lemma.
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Lemma5.3 Let floeos far @ € Co(G)*2 s0 that x; == M f;) € L,,l.(é) and y =
1(@") € Ly(G). We have

li]tn(y, Sj(xl, cee ’xn))p/,p =(y, Tu(xy, ... ,xn))p/,p- (5.3)

Proof of Lemma 5.3 Set for x = A(g) with g € C.(G),

Vi) = D (L AR = Y (8 Lyx A1)

yerl; yerl;
Then set

St = 1Xj172®) 0 Ty| 0 (W) 5 -+ x W),

J

an
We then have for g1, ..., gu € Cc(G)*?,

ST gD, - M@ = 1X;17 Y m, )
Vs ¥Vn €l

x(]‘[(g,-,l, >>A<h>x<m YA(h ).

i=1
Therefore we see by (2.5) that
(L"), Sj((g1), -+ s A(gn))) .

=1x,]7? Z //m()/l,---,)/n)fﬁ(toyl - Ynl1)

V€l

X (H(gi, 1}/,'Xj>> i (to)h j (11)dtod 1

i=1
= |le77’ / / i), i (n))@ oy (s1)
alx; Jx
< Yi(sn)t)gi(sy) ... gn(sn)dtodtidsy . .. sy

On the other hand we have

(M), Tn(A(81), ... (&) p'.p
= / m(St, ..., S)O(S1...5,)81(51) ... gn(sp)dsy...sn

For ¢ > 0 we may choose j large such that for all 7y € Xj_l, t1 € X and s; in the
support of g;,

Im(yj(s1), ..., Vi) oy (s1) ... vj(sp)t1) —m(sy, ..., s0)P(s1...50)| < €.
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It follows then that

(@), S;((81), - AMgn)) = Tu(A(81), -+ (@) pr p| < €llgillLy Gy - - - NgnllzyG)-
(5.4)

As in the claim let f; € C.(G)**, x; = A(fi). Set gij = |X;|7'fi = 1x,. Since
C.(G) * IXJ. C C¢(G) we have still have g; ; € C.(G)*2. By construction,

Sj(xlv -~-,xn) = S;()“(gl,j)9 1)"(gn,j))

As each f; is continuous we have
li}n lgi.j — fillyoy = NIX;17" fi % 1x; = fill i) = 0. (5.5)
We crudely estimate for 1 <i <n,

{A@), T O (f1)s -+ M fi)s M(fi = 81,705 M&ij)s -+ s 280, )

< | ImGst,...,80)P(s1...80) f1(s1) ... fim1(si-1)

GXVl
X (fi — &, j))(Si)&i+1,j(Sit1) . 8gn,j(Sp)lds1 ... 5,
< lmololl fillL,G) - - NfiztllLy )1 fi — 8i il @) Igi+1. LGy - - - 118n.j L (G)-
(5.6)

Therefore by the triangle inequality and (5.5), for every € > 0 there exists large j such
that,

|<)L(¢\/)’ T (f1)s s A(f0)) — T (M(81,5), - - - )‘(gn,j))>p’,p|
< Im@loc Y I filly ) - I fitllLya) I i
i=1

—&i jilLi ) lgi+1,jllL ) - gn,jllL ) < €. (5.7

Therefore, combining (5.4) and (5.7), we have for j large that

(A@Y), Sj(x1, ..oy Xn) = T (X1, ..o X)) pr
<A @"), S;((g1.)s s M(8nj)) = T (R(81.7)5 -+ s M&nj))) pr
+ 1A @), T (A (g1.j)s - - M&nj)) = T (f1)s - () pr ]
<elgjllt---llgnjllh +e.

Hence we see that this term goes to 0 proving (5.3).
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Proof of Theorem 5.2 Let x1, ..., x, be as in Lemma 5.3 and assume || x; ||L,,. ¢ =1L
Lemma 5.3 shows (for p = 1 this requires Kaplansky’s density theorem),

||Tm(X1,-~,xn)”Lp(6)= sup Iy, Tm(xly...,xn»p/,p'
ye)L(CC(G)*z)sH)’HLP/(F)S]

— sup lim sup [(y, Sj (X1, ..., %2)) pr pl-
yEA(C(G)*2), HyHL =1 J

Then, as @;p ) and \p](_P ) in the definition of S ; are contractions,

I, 6l @) < Hm sup 1,140l @

< sup Tyt Lpy (T)) X o X Ly, (T)) = Lp(T).
j>1 J

This concludes the proof.

We note that we may use the lattice approximation theorem to obtain a stronger
version of the restriction theorem. The following follows directly by combining The-
orems 4.5 and 5.2.

Theorem 5.4 Let H be a subgroup of a locally compact group G. Let H € ADS
and G € [SAIN]y. Let m : G*" — C be a bounded continuous symbol giving
rise to a multilinear (p1, p2, ..., pn)-multiplier on G with 1 < p, p; < oo and

_ -1
p ' =" p; " Then

I Tong,yn * Ly (H) -+ x Ly, (H) — Ly(H)|
< T : Lp,(G) x -+~ x L, (G) = Ly(G).

6 Other multilinear de Leeuw theorems: periodization and
compactification

In this section we prove multilinear versions of the periodization and compactification
theorem. The proofs in this section are very similar to the linear case in [6] or to other
proofs in this paper. Therefore, we only give a sketch of the proofs.

Given a locally compact group G, let Ggisc denote the same group equipped with
the discrete topology. The compactification theorem relates the (p1, p2, ..., pn)-
boundedness of a Fourier multiplier on G with the (p1, p2, ..., py)-boundedness
of a Fourier multiplier on Ggjsc. We recall that if G is abelian 6.; is known as the
Bohr compactification of G. We refer to the discussion in [6, Sect. 6] for why the
hypotheses in the following theorem are the most natural ones.

Theorem 6.1 Let G be a locally compact group and let m € Cp(G™"). Let 1 <
p plv‘-'apn < %, Wlthp IZZZ lpl
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(i) If G € ADS, then

T : Ly (G) X -~ x L, (G) = LGl

< Ty : Lp|(GdiSC) X X Lpn(Gdisc) - Lp(GdiSC)”~
(ii) If Ggisc is amenable, then

1T = Lp,(Gdisc) X -+ X Lp, (Gdisc) = Lp(Gdise)l
ST 2 Lp (G) x -+ X Ly, (G) = Lp(G).

Proof (i) Let (I'}) jen be a sequence of approximating cocompact lattices as in the
hypothesis of Theorem 5.2. Then,

T : Ly (G) X -~ x L, (G) = Ly(G)|
< sup || Ty tLp (Tj) x - x Ly, (I'j) = LT

xXn
j>1 T

Now I'; < Gyjsc is an inclusion of two discrete groups so that the natural inclusion

C[T"] € C[Ggisc] extends to an isometric inclusion L p(f D CEL p(G/d;). Therefore,
Tm|rxn is just a restriction of 7}, and hence
j

T} on = Lpy () X -+ x L, (T7) = Ly(TH)|

rxn
13

ST 2 Ly (Gaise) X - X Lp, (Gaise) = Lp(Gaise) |l

(i1) This is essentially a restriction result for the subgroup G gisc. As such, the proofis
similar to Theorem 4.5 and we sketch its main difference here. From [6, Theorem 8.7]
we know that the amenability of Ggisc implies that G € [SAIN];. Now for F C G
finite let I'r be the smallest (not necessarily closed) subgroup of G containing F'.
Then I'r is countable and we may still perform the construction in Remark 3.4 with
I' replaced by I' 7. Hence we obtain a local neighbourhood basis V of the identity of
G such that for every F’ C I'p finite we have limy ¢y 8p/(V) = 1. Then Proposition
3.6 still holds for any x € C[[/‘;] with V € V sufficiently small.

By [6, Lemma 6.1] the amenability of Ggjsc implies that for any x € C[G gjsc]
we have |lx[lc#(Ga) = IIXllcx(G)- So naturally we have an isometric embedding
CH(Ggisc) S Lm(é). Consequently, the proof of Proposition 3.6 still holds, where
for the p = oo case the latter fact is used. Since I'r is a discrete subgroup of G gisc we
have C}(I'r) € C}(Ggisc) which thus is included in Loo(a). Then Lemma 3.15 and
Proposition 3.16 hold for any x € C(I'F).

This suffices then to run the proofs of Theorem 4.5 and Lemma 4.6 by putting F' as

in the previous paragraph equal to the union of the frequency supports of xp, ..., x,
occurring in the proof; note that products of the x;’s then have frequency support
contained in I'g. 0O
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The proof of the periodization theorem is a direct modification of the linear case
(Theorem D (iii) and (iv) in [6]).

Theorem 6.2 Let G be alocally compact group and let H be a closed normal subgroup

of G. Let my € Cp((G/H)*") and let m; € Cp(G") denote its H-periodization

My (g1, ...,80) = m(g1H,g2H, ..., g,H). Then, the following inequalities hold
1

forl < p,pi<oo, p~t =31 p".
(i) If G is abelian,

T, = Lp (G) X -+ x L, (G) — Ly(G)
<N\ T, : Ly (G/H) x -+ x L (G/H) — L,(G/H)]|

(ii) If H is compact,

1T, : Lp,(G/H) x -+ x Lp, (G/H) — L,(G/H)|
< 1Ty : Lpy(G) x - x L, (G) > Lp(@)|
Proof (i) was proved in the linear case by Saeki [56] and in the multilinear case by

[54]. The proof of (ii) remains essentially unchanged from the linear case proved in
[6, Sect. 7]. As in [6, Sect. 7] we note that the operator defined by

In= /A(h)duH(h) e L(H) C L(G)

is a central projection of £L(G) suchthat A(s)IT = IT = ITA(s) foralls € H.Moreover,
this lets us define a normal *-homomorphism

7 L(G/H) — L(G)TT: MgH) — A(g)TI.

7 preserves the Plancherel weight on £(G/H), so it induces an isometry 7, :
L,(G/H) — Lp(a)l"[ for 1 < p < oo. Since IT is a central projection in £(G), a
similar computation as in [6] now shows us that

nponq(xl,...,xn)
=/ my(g1H,gH, ..., g H)x1(g1H).. X8 H)AgG1 ... 8n)
(G/H)"
x Ndpug/a(g1H)...dug /u(gnH)
=/ my(g1H,gH, ..., g.H)x1(g1H) ... X,(gH)
(G/H)"
X/ rgr .. gnh)ydpg (h)d Gy
H
=/G Mr (81 g H) . T (@ D1 - )i (1) - i (gn)TT
= Tmﬂ(npl(-xl)v L ’”pn(xn))
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for x; = A(X}) € AM(Co(G/H)*?). This concludes (ii) since 7p is an isometry for all
1 <p=<oo. i

7 Example: Multilinear multipliers on the Heisenberg group

We provide an example of multilinear multipliers on a non-abelian group. Let

1xz
H = Oly)lx,y,zeR
001

be the (2 + 1)-dimensional Heisenberg group. We shall see H as R? with the group
law

(x,y,20. Y, ) =@+x" y+y. 2+ +xy).

H is unimodular and its Haar measure is just the usual Lebesgue measure of R3.
There is an action R ~ R? by x - (v,z) = (y,z + xy). Then H = R? x R. Recall
our definition of the completely bounded norm from Remark 4.8.

Proposition 7.1 Let A and T" be countable amenable groups. Let A ~ T" be an action
by group automorphisms. Letm € Loo(A X A) and set M(y, s, i, t) = m(s,t),s,t €
A, y, €. We have for 1 < p, p1, p» < oo with p~! = pfl +p;1,

1Ta - Ly, (DX A) x Lp, (') A) = LT x A
S T = Lpy (A) X Lpy (A) = Lp(A) e (1.1)

Proof The proof follows closely [24] with the difference that we need a bilinear ver-
sion of transference which requires amenability in the intertwining properties of [24,
Theorem 2.2]. For F C A finite let Pr be the orthogonal projection onto the linear
span of the delta functions &5, s € F. Set Py = P(). Let S, = L ,(B(£2(A))) where
the L ,-space is taken with respect to the trace on B(£2(A)).

Consider the bilinear Hertz—Schur multiplier:

S Ly D) ®Sy X Lpy(T)®8,, = L,1)®S,,

determined on finite rank operators (y1 s./)s.rea and (¥2,5.1)s.ren by

—1 —1
X1 ® (yl,s,t)s,teA X X2 ® (yZ,s,l)s,teA = XX ® (Z m(sr— ,rt )yl,s,ryZ,r,t)s,t-
reA
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Set the unitary U = )", Ps ® A(s) € B({2(A)) ® LOO(K). Then set the trace
preserving x-homomorphism,

7+ Loo(T) ® B(£2(A)) = Loo(T) ® B(€2(A)) ® Loo(A),
x> (1U)(x® 1A ®U).

Then 7 determines an isometry
7, LyT)®S, = L, ®S,®Ly(A) =~ LyA; L,(T)®S)).

As described in Remark 3.13, L, BER » here refers to the tensor product equipped
with the L, norm given by the tensor products of the weights on I" and N. Since I" is
amenable we have a trace preserving embedding £(I"') € R by Connes’ theorem [11]
where R is the hyperfinite II; factor. Also R ® My (C) embeds into R ® R >~ R in
a trace preserving way. Therefore—approximating S, with L , (M (C))—since T, is
completely bounded we may extend 73, to a vector valued map

TV Ly (A; Ly (D) ®8p,) X Lpy(A; Lpy(T) ®Spy) = Lp(A; L,(T) ®S,);
and we have
Ty o (mp, X 7p,) =1p 0 Sy

Therefore Sy, is bounded by the norm of the right hand side of (7.1).

We now use the map Sy to prove the statement. The von Neumann algebra
Loo(m) is isomorphic to Lw(f) X A where Arxa (s, t),s € I', t € Aisidentified
with )", Aarr o) ® e, -1, € B(€2(T") ® €2(A)). Under this identification

Arxa(s, 1)(1® Pr)Arxa(s,0)* = (1 ® Pir) € B(l2(T') ® €2(A)).

Let (Fy)qen be the Fglner sequence for A. By [24, Lemma2.1], withx, = |Fy |_% Pr,,
there exist contractions

- ~ _1
Jpa i Lp(Loo(T) X A) = L, Q®S, :x = |Fy|l ?(1Q Pr)x(1® Pg,).
We claim further that for x, y, z € C[I" x A] and any non-principal ultrafilter w on

N,

o,0 o0

<l_[ Sy o (jp],ot X jpz,ot)(x’ ), njp/,a(z)> = (Tm(x,y), Z>p,p/- (7.2)
p.r
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Indeed, by linearity we may assume that x = Arxa(s1,%1), Y = Arxa(s2,02),2 =
Arxa(s3, 13),s; € T, t; € A. We have

SM(.jpl,D((x)s jpz,a(y))
1
= |Fyl »Su((1 ® Pr)Arsa(st, 1)1 ® Pg,), (1 ® P )Arxa(s2, 2)(1 ® Pg,))
1
= 1Fal 7 Su((L® Pr,nn F)Ar A (81,10, Arxa (52, 2) (1 ® Pp o1 ))

_1
= |Ful 77 (1® Pryiy r) Tot (6, (L@ Pp ).

So that

o0

<H Sw 0 Gipra X Jpp.a) (X, ¥), jp/.a<z>>
p.p

= lim [ Fy| ' (¢ @ T0) (1 @ Pr,y ) T (6, (L @ Py o1 )7 (1@ P,) )

= lim|Fa| ™!z @ Tr) <(1 ® Pr,on r) T (x, )2 (1 ® PFmt{lFm(tzt_s)"Fa))

. Fouty FyNt5  FuN(t213) " Fy| . _
:{hmaM«sl,u),(sz,zz))' Wl FuDB) ol if (51, 01) (52, 1) (53.13) ™ = (e ),

0 otherwise.

By the Fglner condition the limit of the fraction is 1 and so this expression equals
(Tp(x,y), 2)p,p- Since jp o are contractions (see [24]), this shows (for p = 1 with
Kaplansky’s density theorem) that the norm of Tj; is bounded above by the norm of
Su, which in turn is bounded by || 7,7 ||cp. O
Theorem 7.2 Letm € Cp(R x R). Let M € Cyp(H x H) be defined by

M((x,y,2), (', ¥, 2) = m(x, ).

We have for 1 < p, p1, p» < oo with p~! = P1_1 + Pz_ly

I Tor : Ly, (H) X Lpy(H) = L,(H)|| < ITp : Lp,(R) x L py(R) = Lp(R)|cp.
(7.3)

Proof Let
Hi=j'Zxj'Zxj?2, jeN,

viewed as a cocompact discrete subgroup of H with UjcnH; dense in H. Set I'; =
J7'Z x j72Z and A; = j~'Z. The action R ~ R? described above restricts to an
action A; ~TI'jand Hj =TI"j x Aj. We now have by Theorem 5.2, Proposition 7.1
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and Theorem 4.5 (see Remark 4.8),

I Tas = Ly (H) x Ly, (H) = L,(H)|
<sup||Tm : Lp,(Hj) x Lp,(Hj) = L,(H))|
jeN
< SUp | Touja s, Ly (A)) X Lpy(A)) = Lp(A))llen
J

=T : Lp,(R) x Lpy([R) = Lp(R)]lcb-
O

Remark 7.3 We note that the hypotheses of Theorem 7.2 are satisfied with finite norms
in (7.3) if m obeys a suitable Hormander—Mikhlin type condition, see [19, 20].

Remark 7.4 The methods in this section in fact work for more general semi-direct
products of the form H = G x R" for an action by automorphisms of R" on a locally
compact amenable group G provided that G is ADS and the approximating groups
I'; of G are invariant under the action of %Z" C R".

8 Theorem B: lower bounds on & for reductive Lie groups

In the following Sects. 8, 9 and 10, we proceed with the proof of Theorem B. Let G be
a real reductive Lie group with Lie algebra g, Cartan involution 6, maximal compact
subgroup K, and invariant bilinear form B, cf. [39, Sect. VIL.2]. The inner product

Bo(x,y) := —B(x,0y)
on g endows End(g) with the operator norm A — || A||. For p > 1, we denote by
BS :={g € G; [|Ad, || < p} @.1)

the preimage under the adjoint representation Ad: G — End(g) of the closed ball
of radius p around the origin. The aim of this section is to prove the following lower
bound on § BY in terms of the radius.

Theorem 8.1 (Theorem B) If d is the maximal dimension of a nilpotent orbit of G in
g, then

Spg = p 42, (8.2)

Remark 8.2 As the adjoint orbit Ox of a nilpotent element X € g is a symplectic
manifold, the coefficient d /2 in (8.2) is an integer. Since Ty Ox = g/gx is the quotient
of g by the centralizer gy of X, the maximal dimension d can be expressed as

d = dim(g) — min dim(gy), (8.3)
XeN
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where A/ C g is the nilpotent cone of g. In particular, d = 0 if g is compact or
abelian, d = dim(g) — rk(g) if g is split (or quasisplit [55, Theorem 5.1]), and d =
2(dimc(g) — tke(g)) if g is complex. In particular, d = n(n — 1) for SL(n, R) and
GL(n,R), and d = 2n(n — 1) for SL(n, C) and GL(n, C).

Let g = £®p be the Cartan decomposition of g, let a be a maximal abelian subspace
of p, and let A be the corresponding analytic subgroup. If g = kjak; is the KAK-
decomposition of g € G ([39, Sect. VIL3]), then || Ad, || = || Ad, || since both B
and 0 are invariant under Ad(K). Let g = go @ €D, .. 9. be the restricted root space
decomposition, where the sum runs over the set ¥ C a* of restricted roots. Since A
is simply connected, the set Bg can be equivalently described as

BY = Kp"K := K exp (log(p)P)K, (8.4)

where P C aisthe polygon P = {h € a; a(h) <1 Va € X}. From this description,
the following result easily follows.

Proposition 8.3 The sets BpG are invariant under inversion, and under left and right
multiplication by K. Furthermore, | J ., BE =Gand(),- Bg =K.

Proof Invariance under left and right multiplication by K is clear from (8.4), and

invariance under inversion follows from the fact that ¥ = —X. The formula for the
union is obvious, and the formula for the intersection follows from () p=1 Bg = BIG,
and the fact that || Adexp(xn) | = lexp(ad+y)|| = 1forh € aifand only if 2 = 0. O

8.1 A neighbourhood basis
The reductive Lie algebra g decomposes as the direct sum g = go @ 3 of the max-
imal semisimple ideal go = [g, g] and the centre 3. The former admits the Cartan
decomposition gg = €y @ po, with £y = £ N g and pp = p N go.

Let B} C 3and BY° C g be the open balls of radius r with respect to the inner
product By in 3 and go, respectively. Both are K-invariant, and the global Cartan

decomposition G = K exp(p) implies that B} C 3 is invariant under all of G.
We are interested in the neighbourhood basis

Vi, = (AdG(BI) N BY’) x B}, (8.5)
obtained by intersecting the G-invariant neighbourhoods
Us := Adg(BE®) x 3

with the bounded sets By’ x B}. It will be convenient to write V., = V% x B,
where VEQOR is the bounded open subset of gy defined by

V2% = Adg(B%) N BY. (8.6)
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Remark 8.4 (K -invariance) Since B£® is K -invariant, the global Cartan decomposition
G = K exp(p) yields Adg(Bf°) = Adexp(p)(B2°). Further, since 3 acts trivially on
g0, we have Adg (BF°) = Adexp(py) (BE°) for po = p N go. It follows that Vi’Ryr =
VEl R X B} is the product of the K-invariant set V;’(I’e C go that depends only on
the restriction of By to go, and the G-invariant set Bf C 3 that depends only on the
restriction of By to 3. In particular the sets Vf . S gare K-invariant, and they depend
only on the triple (g, 6, B), not on the Lie group G.

The lower bound (8.2) will be established by calculating

5 ; ,u,( ﬂgeB/(); Adg exp(VfR’r)>
pc = limsup

, (8.7
7 (€ Rr—0 puexp(VEe )

where 1 is a Haar measure on G. Since Vg = V€ R

stitute a symmetric neighbourhood basis of the identity. It follows that § BG = 89 BG’
p~d/2

the sets exp(V R r) con-
in order to establish (8.2), it suffices to prove that 8(1)?,? >

8.2 Relation between Haar measure and Lebesgue measure.

The first step is to reformulate this in terms of the Lebesgue measure on the Lie algebra
g.

Let Volg be a left invariant volume form on G, so that integrating against Volg
corresponds to a left Haar measure ¢ on G. Let VoIg be a constant volume form on g,
corresponding to a Lebesgue measure A on g. We normalize these volume forms
in such a way that Voly agrees with exp* Volg at the origin in g. Then exp* Volg =
vVolg, where the density v of exp* Vol with respect to the Lebesgue measure satisfies
v(0) = 1. We show that v can be chosen arbitrarily close to 1 on U, C g for small ¢.

Proposition 8.5 The density is given by v(x) = det(d, ), where ®: g — End(g) is the
left logarithmic derivative of the exponential map. The function v: g — R is smooth,
G-invariant, and equal to 1 on 3 C g. Moreover, there exists a constant c¢g, > 0
(depending only on go) such that for € sufficiently small, ||v — 1|l < cg, € uniformly
on Us,.

Proof Let ®: g — End(g) be the left logarithmic derivative of the exponential map,
defined by @, (y) := (Dexp(x) Lexp(x)-1) © (Dx exp)(y), where Lg: G — G denotes
left multiplication by g. Then for all x, y;,...,y, € g,

(exp* Volg)x (¥1, .. ., yn) = (VOlg)exp(x) (Dx exp(y1), - . ., Dy exp(yn))
= (VOlG)exp(x) (D1 Lexpx) Px (¥1), - - - » D1Lexp(x) Px (Yn))
= (Volg)1(®x(y1), .-, Dx(¥n))
= det(®y)(Volg)o(y1, - - s Yn)s

where the last two steps use that Vol is left invariant, and that exp* Volg agrees with
Volg at the origin. It follows that v(x) = det(®,). Since exp: g — G is equivariant
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with respect to the adjoint action on g and the conjugate action on G, its logarithmic
derivative satisfies d>Adg(x) = Adgo®; o Adg—l. In particular, v(x) = det(d,) is
invariant under the adjoint action.

In fact, the left logarithmic derivative @, : g — g of the exponential map is explic-
itly given (cf. [21, Theorem 2.1.4]) by the convergent power series

Id - —ad
o, = dzeptzady) Loy +5 (adx)z (8.8)
ad, 2!

Note that the determinant of the real linear map ®, : g — gis equal to the determinant
over C of the complexification CID;(C:: gc — gc. In terms of the Jordan—Chevalley
decomposition ad, = ad,, 4 ady, into a semisimple and a nilpotent element of gc,

we thus find
Id — exp(—ady,) dimg
det e v Sl 54 —
¢ © ( adxs )’ 1_[

i=1

1l —e M

i

v(x) =

where u; are the eigenvalues of ad, as a complex linear transformation of g¢.

In particular, v(x) depends only on the second factorin g = 3@ go, and we can write
v(x) = vp(ady) for a smooth function vy : go — R with vy(0) = 1. It follows that for
any cg, > [[Vvo(0)||, there exists an &9 > 0 such that |[vg — 1]| < ¢g,€ uniformly on
B for all ¢ < g¢. The uniform estimate for v on U, now follows from G-invariance.

O

For r and R smaller than the injectivity radius of the exponential exp: g — G,
we can therefore relate the Haar measure of exp(VSg r ) to the Lebesgue measure of

Vag,lR,r’
(1 =gy AV IR ) < pu(exp(VEIg ) < (1 +cgoe) AV ). (8.9)

Since exp is equivariant under the adjoint action on g and G, this allows us to express
S%E in terms of the Lebesgue measure on g,

0 . A(mgeBpG Adg‘1 (ng,R,r)>
(SBG = lim sup . (8.10)

P (e Rr)—0 AVER )

Proposition 8.6 The number 8 ¢ depends on G only through the maximal semisimple
ideal go = [g, gl, and the restrzctlon of By to go.

Proof By Remark 8.4 the sets Vg , are K-invariant. If g = kexp(p) is the global
Cartan decomposition of g € G = K exp(p), we thus have

Ad,-1 (VgR ) = Adexp(— p)(Va R, )
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Further, since 3 acts trivially on g, the decomposition p = po + p; of p € p with
respectto p = po @ (3 N p) yields

Ad —I(VgR r) = Adexp(—po) (V, R) x B}

Since Bg is K-invariant (Proposition 8.3), we have kexp(p) € B/? if and only if
exp(p) € BY, which is the case if and only if exp(po) € BY . But since Adexp(po)
exp(po) || < p for the

adjoint action on g if and only || Adexp(po) I < p for the adjoint action on gg. If G
denotes the connected adjoint group of the semisimple Lie algebra g, we thus have

acts by the identity on second factor of g = go @ 3, we have || Ad

g
Ag(mgegg Adg_](vag,R,r)> ~ AG(mgOGB —1(V '%) X B; )
AS(V2e ) A8V, x BY)
g g0
A Omgoeg,? 41 (V) R))
Ago("f‘}g) ’
where A9 and A% denote the Lebesgue measure on g and g, respectively. O

8.3 Proof of Theorem 8.1

By Proposition 8.6, it suffices to prove Theorem 8.1 for the case where G is the adjoint
group of the semisimple Lie algebra go. The proof hinges on the following lemma.

Lemma 8.7 (Key Lemma) Let G be a connected, real reductive Lie group with
semisimple Lie algebra g. Then for all R > 0 and all p > 1, we have

g
lim AVe pR) a2
e~0 A(V? '2)
The proof of this lemma requires a rather detailed discussion of limits of orbital inte-
grals, and will be deferred to Sect. 10. Assuming Lemma 8.7, the proof of Theorem 8.1
is quite straightforward.

Proof of Theorem 8.1, assuming Lemma 8.7 In view of (8.3), the maximal dimension d
of the nilpotent orbits is the same in g and gg. By Proposition 8.6, we may therefore
assume without loss of generality that G is a connected, real reductive Lie group with
semisimple Lie algebra g.

Since || Ad, || < p, wehave Ad -1 (BR) 2 Bj .SinceAdG(Bf)is Adg-invariant,

we find for V, g = Adg(BS) N Bg that

Adg-1(Ve,g) = AdG(BE) N Ady-1 B 2 Ve g/p.
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From (8.10) (without r because 3 = {0}) we thus find

o AM(Neese A (VD) AVE, )
dpc = limsup 5 > lim sup — 8
P &,R—0 A(VS,R) &,R—0 A(VS’R)

g
> lim lim AVerip) _ ap.
R—0e—0 A(ng,R)

The strategy to prove Lemma 8.7 is as follows. Since the closure of an adjoint
orbit Oy through x € g contains 0 if and only if x is nilpotent, the set (), Ve, is
the intersection of the nilpotent cone N with the unit ball BI% (0). The union of the
nilpotent orbits Oy of maximal dimension is a dense open subset of the nilpotent cone.
Using results of Harish—Chandra and Barbasch—Vogan on limiting orbit integrals, we
will show that as ¢ approaches 0, the volume of V, r with respect to the Lebesgue
measure on g scales with R in the same way as the Liouville volume of the symplectic
manifold Ox N BI% (0). Since the Kostant—Kirillov—Souriau symplectic form wléI;S
on the cone Oy scales as R under dilation, the corresponding Liouville volume form
Vollg)fS scales as R%/?, yielding the factor p?/? in Lemma 8.7.

9 Limits of orbital measures

In the remainder of this section, we focus on the proof of Lemma 8.7. From now on, we
assume that the Lie algebra g is semisimple, and that the invariant bilinear form B is the
Killing form «. We will generally denote generic elements of g by x, y, z, elements of
a Cartan subalgebra ) C g by £, and elements of the nilpotent cone ' C gby X, Y, Z.
For a subset A C g, we denote the centralizer and the normalizer in g by Z;(A) and
Ng(A) respectively. On the group level, we similarly define

Zg(A) ={geG:Adgy=y Vye A}, Ng(A):={geG:Adg A C A}

9.1 Regular elements of Lie algebras

We recall the notion of regularity in g. For x € g consider the characteristic polynomial

det(ad x — 1) =: Zak(x)tk, t eR.
k>0

Let k(x) be the minimal index so that ay(y)(x) # 0. If k(x) = minyeq k(y), we say x
is regular. If A C g is any subset of g, we define Areg to be the set of regular elements
in A. If b is a Cartan subalgebra (CSA) and C is a connected component of beg, we
call C an open Weyl chamber of 1.

Remark 9.1 Our notion of regularity is different from a common definition where x is
regular if its centralizer has minimal dimension among the centralizers of all x” € g.
Our current definition is used, for example, in [5].
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We will use the following standard properties of regular elements:
Lemma 9.2 Let g be a real Lie algebra.

(i) Regular elements in g lie in a unique CSA given by their centralizer.
(ii) If a single element in an adjoint orbit O, C g is regular, then all elements are.
(i) The set of regular elements is dense and open in g, and its complement in g is a
Lebesgue null set.

Proof (i) The semisimplicity statement is [5, Chapter VIIL.4, Corollary 2], and the
statement about the CSA is [5, Theorem VII.3.1].

(ii) This follows since the characteristic polynomial is invariant under the adjoint
action.

(iii)) From [5, Chapter VIIL.2] we know that the set of regular elements is Zariski-
open, which implies that it is dense and open in the standard topology. The non-
regular elements, as a complement of a Zariski-open set, are intersections of closed
submanifolds of lower dimension, hence they constitute a Lebesgue null set by
Sard’s Theorem. O

9.2 Measures and distributions on orbits

Letx € g, andlet O, be the adjoint orbit through x € g. Since O, can be identified with

a coadjoint orbit via the invariant bilinear form, it comes equipped with a canonical

symplectic form. The Kostant-Kirillov-Souriau (KKS) form wléfs € Q%(0,) is given

by
KKS _ I /
(wox ) J(ady y,ady z) =« [y,z]), Vx € Oy, y,z€g. 9.1)
X
This induces a volume form called the Liouville form
_ 1 & kks
Volg, = E(A o, ), 9.2)

where k = dim O, /2. By [53, Theorem 2] the assignment of Borel sets A C g to

1o, (A) == / Volo,
0,NA

defines a Radon measure o, on g. In particular, it is finite on compact subsets of g.
On nilpotent orbits, these measures are homogeneous:

Lemma9.3 Let A C g be a Borel set, let X € g a nilpotent element, and let k =
dim Oy /2. Then for all p > 0, we have

1oy (p - A) = p* oy (A).
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Proof By the Jacobson—Morozov theorem, the nilpotent orbit Oy is a cone, i.e. p -
Ox = Ox forall p > 0. Thus we have

(p-A)NOx =p-(ANOx).

Denote by m, : Ox — Ox the multiplication by p. By definition of the KKS form
we have forall X’ € Oy and y, z € g:

(mhwpsS)y (ady y, adx 2) = (@ps) px (adpxr v, ad,yx 2)
=k(pX' [y.z]) = p - k(X' [y, 2],

hence

*  KKS __ KKS
mpCl)OX =p- CUOX .

From (9.2) we then find
m;VO|0X = ,Ok . VO|0X,

so that

1oy (p - A) = / Volg, = / miVoloy = p*1ioy(A)
1,(ANOx) ANOx

m

as required. O

The measure 11, on the adjoint orbit O, through x € g yields the distribution Do,
on g defined by

1
Do. : C° R, Do. = — Volo._,
0.1 C¥@ =R Do.()i= gt [ flo,volo,

again with £ := dim(O,)/2. The 2w -normalization factor ensures that the orbital
distributions Do, coincide with the ones in [32], where this normalization occurs in the
volume form Vol . Leth) C g be any 6-invariant Cartan subalgebra, and H := Z¢ ()
the associated Cartan subgroup. Since G and H are unimodular, we can fix a G-
invariant volume form Volg, 5 on the quotient G/ H . Note that Volg, g is unique up to
anonzero scalar. Let 1 € gbe any element with centralizer H. Then the orbit map g
Adg (h) descends to a diffeomorphism ¢: G/H = 0y, and the pullback (*Volg, of
the KKS volume form on Oy, defines yet another invariant volume form on G/H. The
two invariant volume forms agree up to a scalar which depends only on £,

*Volg, = w(h)Volg, i, 9.3)
yielding a function 7 : ) — R.
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Proposition 9.4 In the above setting, there is some ¢ > 0 depending only on the choice
of Vol u, so that for all h € b,

mm=c- [] lel.

OlEA+

Here, AT C A(gc, o) is a choice of positive roots for the complexified Lie algebra g
with respect to the CSA .

Proof 1t suffices to consider the volume forms (*Volp, and Volg,y at a single point
of G/H, hence we restrict to Tj,)(G/H) = g/bh. We identify g/h = ht, where ht
denotes the orthogonal complement of i C g with respect to the inner product «g.
There is some scalar ¢ # 0so that ¢ (Volg,g)[e) = VOIhJ_, where VOIhJ_ is the volume
form on h* associated to the inner product kg and some choice of orientation on h=.
Consider the mapfoady : g — gforh € b. Since it preserves b and is skew-symmetric
with respect to the inner product «y, it restricts to a skew-symmetric endomorphism
of h*. The pullback of the KKS form at [¢] € G/H is given, for x, y € hT, by

CoBES (x, y) = k(h, [x, ¥]) = kg (x, 0 0 ady(y).

Recall that if (V, B) is an oriented inner product space of even dimension 2k, then the
Pfaffian of a skew-symmetric linear map A: V — V is defined by

% </\ka)A) — Pf(A)Vol,

where Vol € A% V* is the volume form associated to the inner product B on the
oriented vector space V, and wa (v, w) = B(v, Aw) is the 2-form associated to A
with respect to the inner product B. With V = h and A = 6 o ady, this yields

1
L*VO|0h = o Ak (t*a)gfs)[e] =Pf ((0 o adp) ’hl> VOIhJ_.

Recall that the Pfaffian is related to the determinant by
2
Pf ((e oady) |hL) = det ((9 o ady) |bL) = +det (adh |hL) .
Since the determinant is the product of the eigenvalues over C, we can determine |77 (k)|
from the eigenvalues of ad;, on the complexification (h1)¢c = gc/hc. In view of the

root space decomposition gc/hc = P, Ay BaDI—as the eigenvalues of the complex
linear map adj, are +«/(%). This proves the statement with ¢ = |c|. m|

9.3 Slodowy slices and pointwise orbital limits

Let N' C g be the nilpotent cone. For any nonzero X € N/, there exists an sl,-triple
{X, Y, H}containing X as the nilpositive element by the Jacobson-Morosov Theorem.
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We denote by
Sx =X+ Z4(Y)

the corresponding Slodowy slice through X, cf. [57, Sect. 7.4]. It is transversal to the
orbit Oy due to the decomposition

g=adx g® Zy4(Y), (9.4)

cf. [5, Chapter VIIL.2]. It is indeed transversal to all orbits O, with x € Sy, and in
particular, the set G - Sy is an open neighbourhood of the orbit Oy, cf. [57, Sect. 7.4].
We recall from [32, Chapter 2] the construction of a canonical measure m, x on the
intersection Sx N Oy: we can consider the composition

ad, g — g — ady g,

where the first map is the natural embedding and the second map the projection of the
direct sum (9.4) onto the first direct summand. Since the Slodowy slice intersects O,
transversally, the composition of these two maps is surjective. Using Ty O, = ad, g
and Ty Ox = Ady g, this surjective map induces the following exact sequence:

0— Ty (0O, NSx) > Ty Oy —> TxOx — 0.
We obtain a canonical volume form on O, N Sx as the quotient of the KKS volume

forms on O, and Oy, which in turn gives rise to the measure my y. In [32, Chapter
2], the following limit of orbits is defined for all x € g:

Ne =N 0. 9.5)

e>0

One may think of this set as the limit of the orbits O, as € approches zero, hence
as the orbits approach the nilpotent cone. Let us first show that every nilpotent orbit
arises, in this sense, as a limit of regular orbits:

Lemma 9.5 Every nilpotent orbit Oy lies in the set N for some regular x € g.

Proof The idea of this proof is essentially due to [2, p. 48]. If X is nilpotent, choose
an sly-triple {X, Y, H} with X as the nilpositive and H as the semisimple element.
Consider the associated Slodowy slice Sx = X + Z4(Y). Since G - Sx is an open
neighbourhood of Oy, and since the set of regular elements is dense in g, there exists
aregular element x € G - Sx. In other words, there exist g € G and V € Zy(Y) with

Adgx =X+ V.
The centralizer Zy(Y) is stable under ady, hence we can decompose it into the

eigenspaces of ad i on this space. Due to the structure theory of finite-dimensional sl;-
modules (cf. [5, Sect. VIIL.2]), the eigenvalues A on these eigenspaces are all
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nonpositive:

Zy(¥) =Pz, V=) Vi

2<0 1<0
Consider then the element g; := exp (—% log(t)H ) € G. Then we have

Adggtx =t Adg, X +1Adg, V

= texp(—log()X + Y _texp (—% 10g(t)> Vi
A<0

— x4 Yy, 2
A<0

But this means that X € N’ N J,.(Adg(tx) = N,. O

Remark 9.6 A closer inspection of such orbital limits is given in [22]. Their definition
of N coincides with the one given here by [22, Remark 3.6].

We will need the following asymptotic expression for the orbital integrals. It is proven
in [32, Cor 2.3], relying on [2, Theorem 3.2].

Definition 9.7 For x € g, we define

m(x) ;= min_ % (dim Ox — dim Oy), 9.6)
OxCN,

x CNx
where the minimum is taken over all adjoint orbits Oy contained in N\,.

Theorem 9.8 Let g be a real, reductive Lie algebra, and let x € g. Then for all f €
C2°(g) we have

eli_r)%é_m(x)Doéx (f) = ; Vol(Sx N Op)Doy (f), 9.7

where the sum is taken over the set of nilpotent orbits Ox C N, which are of maximal
dimension among all orbits contained in N, and the volume of Sx N Oy is calculated
with respect to the measure my x.

Remark 9.9 1f C is an open Weyl chamber of some CSA b, one actually has A}, = Ny
for all h, " € C by [32, Cor 2.4] (originally attributed to [2]). In particular, the
number m in Theorem 9.8 is equal for all /2 in one such open Weyl chamber. In this
case we also write m(C) for the m associated to any 4 € C.
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9.4 Uniform orbital limits

Using results of Harish—Chandra and Varadarajan, we will show that the convergence
in Theorem 9.8 is uniform on certain subsets of . For an open subset C C V of
a vector space V, we denote by C¥(C, R) the space of functions u: C — R that
are k times continuously differentiable on C, and whose derivatives of order at most k
extend continuously to the closure. The following result follows from [30, Theorem
3] (see also [63, Theorem 1.3.23]).

Theorem 9.10 Let b C g be a Cartan subalgebra, C C by an open Weyl chamber, and
let f € C°(g, R). Then the function uy : C — R defined by

ug(h) :=Do,(f)
is in C*°(C, R).

Remark 9.11 In fact, u ; extends to a Schwartz function on the connected component
of the non-zero sets of the singular imaginary roots.

Remark 9.12 The definition of the invariant integral in [30] is, up to a positive scalar,
equivalent to ours by Proposition 9.4.

Proposition 9.13 Let C be anopenconeinV, andletu € C"HI(C, R) with D™~ 'u(0)
= 0. Then for any compact K C C,

1
lim ¢™™u(ev) = —9,'u(0)
e—0t m!

uniformly forv € K.

Proof Let p(t) := u(tv). Then since p € cmtl(o, 11, R), Taylor’s Theorem yields

p(e) = Le™mdmu(0) + R, where R = (mjrl)!s’”“al’)”“u(év) for some 6 € [0, ].

Since (v, w) +— 8,’J”+1u(w) is uniformly bounded on K x K, the result follows. O

Fix again an open Weyl chamber C of some Cartan subalgebra i C g. From Theo-
rems 9.8, 9.10, and the fact that integrals over compact domains commute with uniform
limits, it immediately follows that

lim € "Do,, (Hwh)dAy(h) = Z/ Vol(Sx N Op)Doy (fHw(h)d Ay (h),
e—~0Jknc ox KNC

for all compact K C b, all f € CZ°(g) and all continuous functions w: h — R.
In particular, the integral on the right-hand side is well-defined. A similar statement
holds with Do, (f) replaced by 1oy (Br(0)).

@ Springer



Noncommutative De Leeuw Theorems

Corollary 9.14 Leth C gbea Cartan subalgebra, K C b acompact subset,and C C b
an open Weyl chamber. Let w: ) — R be a continuous function, and let R > 0. Then

lim e "uo,, (Br(0)w(h)d Ay (h)
=0 Jrknc

=Y [ Vol(sx 1 Onpeo (B (g,
Ox KNC

with the sum over the Ox as in Theorem 9.8, and the right hand side is integrable.

Proof The following proof is essentially taken from [38, Lemma 4.1]. Choose
sequences of functions {f, € C°(g)}n=>1, {gn € C°(g)}»>1 with monotone, point-
wise convergence

Jn /" 1B 81 N 5.0y

Let k = dim Oy /2 for any of the orbits Oy in the sum. Since w can be written as the
difference of two nonnegative functions, we may assume without loss of generality
that w is nonnegative. Then, for all n € N, we have

@m* / Vol(Sx N Op) Doy (f)w(h)d Ay (h)
Ox KNnC

e—0

< liminf/ € "o, (Br(0)w(h)d Ay (h)
KncC

< lim SUP/K Cf_m/ioeh (Br(0)w(h)d Ay (h)
n

e—0

< @m)* Z/ Vol(Sx N Op)Doy (gn)w(h)d Ay (h). (9.8)
Ox KNnC

Note that 1o, (Br(0)) = oy (Br(0)) for all nilpotent elements X. Indeed, since Ox
is a cone, the boundary d Bg (0) intersects Oy transversally, and the intersection Ox N
dBRr(0) C Oy iseither empty (when X = 0) or a submanifold of codimension at least
one (when X # 0). Its Liouville measure is thus zero by Sard’s Theorem. Finally, the
statement follows by taking the monotone limits n — o0 in (9.8). O

10 Proof of the key Lemma 8.7 concluding Theorem B

In all that follows, we will fix a maximal set of mutually nonconjugate, 0-stable
CSAs by, ..., b, of g, with associated Cartan subgroups Hi, ..., H, C G defined
by H; := Zg(h;). We denote by W; := Ng(h;)/H; the Weyl group associated to b ;.
We will need the following Lie algebraic version of the well-known Harish—Chandra
integral formula [31, Lemma 41], see e.g. [63, Part I, Sect. 3, Lemma 2].
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Lemma 10.1 Let g be a reductive Lie algebra with connected adjoint group G, and
let f € L'(g, Ag) be an integrable function on g. Then, for j = 1,...,n, there
are G-invariant volume forms Volg,u; on G/Hj, so that

n

_y_L it
/g fdAge) =) Wil ( fG » f(AdghWo/G/H,([g])) |7 ()1Pd Ay, (h).

j=1

Here, |7 | is a product of positive roots of (gc, (hj)c) as in Proposition 9.4.
Lemma 10.2 Let ) C g be a CSA, and define

VY = Adg B.(0) N b.

Then for all €, R > 0 we have

(Ve = |_|{Adgh € (Ve )ieg. Adg(h) € BR(0)).  (10.1)
j=1

Proof To see that the right hand side is indeed a disjoint union, suppose that Adg i =
Adg h' for regular elements i € h;, h’ € h; and g, g’ € G. Since h and h’ are
regular, h; = Zg(h) and h; = Zy(h'). Since h is conjugate to ', b; is conjugate to b ;.
As the various CSA’s are mutually nonconjugate, we conclude that h; = b;.

C: Let Adg x € (Ve R)reg With ¢ € G and x € Bc(0). Since x is regular, it lies in a
unique CSA, and is conjugate to an element / € hj; for some j, i.e.

3¢’ € G:Adyx =h eb;.

By Lemma 9.2, the orbit of a regular element consists only of regular elements.

Hence h € (Vehj)reg and Ad h = Adgx € Bgr(0). Hence Adg x lies in the
right hand side.

D: Let Ad, h lie in the right hand side. Because & € Adg B¢ (0), we can write h =
Adg x for some ¢’ € G and x € Bc(0). But then Adg i = Ad,e x € Adg Be(0), and
since h was regular, so is every element in its orbit, and we have Adg, & € (Ve R)reg. O

2(g)7!

Lemma 10.3 Let ) be a 0-invariant CSA. For all € > 0, the sets VEh = Adg B-(0)NH
are bounded.

Proof With respect to the inner product kg : g x g — R, we have

KB(adx y, Z) = —K([X, )’], OZ) = K(y9 [)C, GZ])
=k (y,0([0x, z])) = —«o(y, adgx 2).

It follows that adz = — adyy,. Since [k, Oh] = 0, the operator ad;, : g — ¢ is normal,
and its operator norm || ady, || with respect to the inner product «y satisfies

lady || = max [A].
reSpec(ady)
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Let g € G such that Adg (k) € B.(0). Since adAdg 5 1s conjugate to ady, it is a normal

operator with the same eigenvalues, so in particular || ady || = [l adad, s ||l So since
the operator norm is bounded on B (0), it is bounded on Adg (B¢ (0)) N§ as well, and
the latter is a bounded subset of §. m|

Recall that V, g differs from (V¢ g)reg Only in a Lebesgue null set. Also, we can
write every (5)reg as the union of its open Weyl chambers C; ,. Hence, we can use
Lemma 10.1 and the decomposition (10.1) to find

n

1
A(Ver) = —/ ) f Volg/u. ) 17 (h)12d Ay . (h)
‘ Z:lel (V!’f»eg {[g1€G/H;:ll Adg hII<R} ) hi

—Z > / Vol s, | 17 ()% d Ay, ().
IW | Jv2inc;, \JiigleG/m,:1 Adg hi<R)

j=1 CjrChj
(10.2)

To simplify, we will fix a single CSA b; and a single open Weyl chamber C; ,, and
suppress the indices:

i, m=mj, b:=1h;, Volg/u :=VO|G/[-1j, C:=Cj,. (10.3)

For now, let us look at the single summand of (10.2) corresponding to h and C.

Lemma 10.4 Fix the notation as in (10.3), let m := m(h) as in Definition 9.7 for an
arbitrary h € C, and R > 0 arbitrary. Then there is some ¢ # 0 which does not
depend on R so that

lim e*m*dim"*‘“'/ / Volgu | |7t (h)|>d Ay (h)
€0t vonc \JigleG/H:I| Adg h||<R)

= CZ / e Vol(Sx N Op) oy (Br(0)m (h)d Ay (h),

where the sum is taken over all nilpotent orbits Ox contained in Ny, for an arbitrary
h € C, c¢f. Remark 9.9.

Proof Recall the notation o, for the measure defined in Sect.9, and that (/)
was defined in Eq. (9.3) as the volume density function of the orbit-stabilizer-
diffeomorphism G/H — Oj, with respect to a fixed invariant volume form on G/H
and the KKS volume form on Oy,. Using this property of 7 (h), we find that there exists
some ¢ # 0 depending only on the choice of invariant measure Volg,z on G/H with:

/b </ Vol(;/H>|n(h)|2dAh(h)
vone \ JiigleG/H:| Adg h| <R}

:c./ (/ V0I0h>7r(h)dAr,(h)
vinc \JBr)no,
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=C'/b o, (Br(0)m(h)d Ay (h)
vinc

=edim‘)+‘“‘c./ 10, (BR(0)7w (h)d Ay (h).
vinc

N

In the last step, we used that VgIj = eVlb, that dAy(ch) = edimhdAh(h), and

that 7 (eh) = &!*+!7 (h). By Corollary 9.14 and compactness of Vlb NC (Lemma 10.3),
we have:

lim € " 10, (Br(O)7 (h)d Ay (h)
e—0 Vlh nC

= Z/b Vol(Sx N Op) oy (Br(0)m (h)d Ay (h).
og JVinc

This shows the statement. O
Finally, we use this to prove the key lemma:

Proof of key Lemma 8.7 Let Ox C gbe anilpotent orbit of dimensiond. By Lemma9.5
and Remark 9.9, there is some CSA b C g and some open Weyl chamber C C byeg s0
that Ox C N}, forall h € C. Since Oy is of maximal dimension, the number m :=
m(x) from Definition 9.7 is minimal among m (x") for all x € geg. Then, by (10.2)
and Lemma 10.4, there are numbers c; , # 0, independent of R, such that

: —m—dim h—|AT|
e]ir(r)l+6 A(VE,R)

- 1
=Y X i [, VolSx N 00y (BrtO)T(hdg, (),
Wl vinc

Jj=1Cj,Ch; Ox

where the sum over the Oy is carried out over all nilpotent orbits Oy C N} of
dimension d. Note that this sum is independent of the choice of & € C; , for fixed j
and r, cf. Remark 9.9.

All summands in the above sum are positive as they arise from volumes of subsets of
g, and thus the total sum is nonzero. Lastly, the sum is homogeneous of degree d/2
in R by Lemma 9.3. Hence we may consider their quotient and conclude the proof:

A(Ve pR) lim_, o+ E_m_dimh_lAﬂA(Ve,pR) dn
1m = " = .
e—0t A(Ver)  lime_ g+ e m=dimb=IATIA(V, )
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