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a b s t r a c t

Statistical Associating Fluid Theory (SAFT) equations of state (EoS) for mixtures require cross-interaction
parameters. For real systems, combining rules, such as the Lorenz-Berthelot combining rules, have to be
corrected using at least one binary interaction parameter, kij. Values of kij are usually adjusted to
experimental data of phase equilibria. Here, we correlate kij to the pure component parameters of the
Perturbed Chain e Statistical Associating Fluid Theory (PC-SAFT) EoS, using a Quantitative Structure
Property Relationship (QSPR) model. The coefficients of the proposed QSPR model are regressed sepa-
rately for mixtures with non-associating components and for mixtures with associating components. The
QSPR model is validated using the statistical measures of the QSPR method. We compare the values of kij
that are estimated from the QSPR model to values of kij estimated from London's dispersive theory. Phase
equilibrium calculations carried out with these two approaches of estimating kij values are compared to
experimental data. The estimation of kij values as function of the pure component PC-SAFT parameters
can be applied to problems of process design and in Computer Aided Molecular Design (CAMD), to allow
for calculations that are reasonably accurate and independent from the availability of experimental
mixture data.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Statistical Associating Fluid Theory (SAFT) equations of state
(EoS) are expressions of the residual Helmholtz energy that
represent approximate algebraic solutions of equations from sta-
tistical mechanics [1e4]. For mixtures, a SAFT EoS requires the
intermolecular potential fij between the unlike molecules i and j.
Usually, a conformal solution theory is applied, requiring cross-
interaction parameters, such as a size-parameter sij and an en-
ergy parameter εij. Strictly speaking the i� j cross-interaction po-
tential, just as the potential between like i� i species, has to be
determined by quantum mechanical calculations. For van der
Waals (dispersive) interactions, however, combining rules are often
successful for estimating of cross-interaction parameters. Most
variants of the SAFT-type EoS use the Lorenz-Berthelot combining
).
rules: sij¼ 1/2(siþ sj) and εi j¼ εiεj. For an accurate correlation of
real systems, the combining rules have to be corrected using at least
one interaction parameter, kij for every binary pair. As a modifica-
tion of the Lorenz-Berthelot combining rules, the binary interaction
parameter kij is introduced as a correction to the dispersive energy
parameter for the binary pair: εij¼ (1� kij)εiεj. Binary interaction
parameters are often adjusted to experimental phase equilibrium
data of the binary mixtures.

SAFT-type EoS were successfully applied to a wide range of
complex systems, that include polar and associating components,
polymers, ionic liquids, pharmaceuticals and bio-molecules (see for
example ref. [1e3,5e8]). SAFT-type EoS are often more accurate
and more predictive than cubic EoS and extrapolate more reliably
than gE-models [1]. For mixtures of substances where the inter-
molecular potentials are dominated by van der Waals interactions,
SAFT-type EoS often give accurate results, even without binary
correction (kijx0). Many mixtures of industrial interest however
require adjusting a binary interaction parameter kij.

Experimental data of phase equilibria are not always available
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for the estimation of kij values. Consider the design of novel pro-
cesses or a molecular design problem. In Computer Aided Molec-
ular Design (CAMD) for example, thermodynamic models are
required to evaluate some objective function quantifying the per-
formance of the designed molecule [9,10]. CAMD problems are
formulated as reverse property prediction problems [11]. In CAMD
problems it is not possible to adjust binary interaction parameters
on experimental mixture data. Early stages of process design and
CAMD rely on predictions of mixture behavior, which in our context
means predictions of kij values.

O'Connell et al. [10] studied several thermodynamic property
models and suggested SAFT-type EoS to have a potential for accu-
rate property predictions in CAMD. In a recent study, Ng et al. [12]
gave a thorough review of the various approaches and advances in
CAMD methods. Among the most recent advances are CAMD
frameworks that use a SAFT-typemodel [13e19]. Adjiman et al. [20]
presented the rapid progressmade in the field of SAFT-based CAMD
and discussed the role of SAFT-type EoS in tackling previously
challenging problems in molecular and process design. In a SAFT-
based CAMD framework, variables that characterize the structure
of the optimized molecule are utilized as additional degrees of
freedom inside the process optimization. The molecular optimiza-
tion can thereby be integrated with the process optimization
problem, based on an objective function for the entire process. The
problem of integrated process and fluid design has in the past been
circumvented, by defining individual or collected property targets
for the optimized fluid [21e23].

Pereira et al. [13,15] introduced the framework of Computer
Aided Molecular and Process Design (CAMPD) that uses the SAFT-
VR EoS [24]. In their work, the authors applied CAMPD for the
solvent selection among alkane blends. The molecular search space
was defined over the homologous series of n-alkanes and the
number of carbon atoms of the n-alkane was treated as a contin-
uous molecular optimization variable. The necessary SAFT-VR pa-
rameters were expressed as functions of the molecular mass and
therefore as functions of the optimized number of carbon atoms.
The values of kij for the SAFT-VR EoS were adjusted to experimental
phase equilibrium data of binarymixtures relevant to the examined
system and they were held constant throughout CAMPD. Recently,
Burger et al. [25] proposed a CAMPD method that uses the SAFT-g
Mie GC EoS [26] and a hierarchical optimization approach. The
authors demonstrated the proposed method for the problem of
solvent selection adopted from Pereira et al. In their work, Burger
et al. [25] applied a group contribution (GC) approach for SAFT and
considered additional chemical families extending the search space
to linear alkyl ethers.

The framework of Continuous Molecular Targeting - Computer
Aided Molecular Design (CoMT-CAMD), established by Bardow
et al. [14], uses the PC-SAFT EoS [27e30]. CoMT-CAMD considers
the parameters of the thermodynamic model (e.g. representing a
solvent) as additional degrees of freedom in an integrated process
and fluid optimization problem. In CoMT-CAMD the discrete search
space of parameters representing a real substance is relaxed to a
continuous parameter domain. Specifically, the molecular optimi-
zation variables (PC-SAFT pure component parameters) are treated
as continuous variables. This relaxation allows formulating a non-
linear optimization problem with a single objective function,
whereby a detailed process model can be maintained without the
need for pre-selecting candidate molecules. CoMT-CAMD has been
implemented, so far, for the selection and design of working fluids
for organic rankine cycles (ORCs) [16,19] and for the selection and
design of physical solvents for CO2 capture [18,19]. In phase equi-
librium calculations no binary interaction correction was intro-
duced to the PC-SAFT EoS for binary systems involving the
optimized fluid (kij¼ 0).
The result of a CAMD approach is determined by the employed
thermodynamic model. The accuracy of the SAFT model therefore
plays a crucial role in the predictive capability of the CAMD
framework.

In order to improve predictions of mixture properties (with
kij¼ 0), many studies have revisited the Lorentz-Berthelot
combining rules [31e38]. More recently, Haslam et al. [39]
derived a new combining rule using a generalization of the
Hudson-McCoubrey combining rules, including additional terms
for the dipoleedipole and the dipole-induced dipole interactions.
The authors presented results of their theory with the SAFT-VR EoS
[24] for mixtures with large non-polar and polar components and
for mixtures with a single associating component. Singh et al. [40]
and Leonhard et al. [41] proposed the prediction of pure compo-
nent parameters based on quantum mechanical calculations and a
new combining rule for the unlike-dispersion interaction, derived
from London's dispersive theory. Leonhard et al. applied the pro-
posed combining rule with the PC-SAFT EoS. Both of the above
approaches have a theoretical background and gave good results for
mixtures.

Group contribution approaches are promising for estimating
binary interaction corrections kij to the Lorenz-Berthelot combining
rules. Peters et al. [42] proposed a group contribution method for
determining binary interaction parameters of the PC-SAFT EoS for
polymer-solvent mixtures. Inspired by London's dispersive theory,
Huynh et al. [43,44] proposed the correlation of kij to pseudo-
ionization energies of the constituents of the mixture. The
method was developed for the GC-SAFT EoS [45] and was shown to
lead to very good results. London's dispersive theory applied to the
Mie potential function has been used by Coutinho et al. [46] to
derive a new combining rule for the cross-energy parameter in
cubic EoS and in the Cubic Plus Association EoS [47].

Due to the analogy between the combining rules of SAFT-type
EoS and the combining rules in cubic EoS, we mention the work
of Shacham et al. [48] and the work of Abudour et al. [49]. Both
studies proposed the prediction of kij values for cubic EoS using a
Quantitative Structure Property Relationship (QSPR) method with
automatically generated molecular descriptors.

The CoMT-CAMD approach requires the prediction of mixture
properties (i.e. estimating a suitable kij) based on pure component
parameters of PC-SAFT for the optimized fluid. On that grounds,
two of the approaches for estimating kij mentioned above partic-
ularly lend themselves for the CoMT-CAMD framework: the esti-
mation of kij based on predicted ionization potentials and the QSPR
estimation method.

In this work, we relate the binary interaction parameter kij to
pure component parameters of both substances, in order to allow
for predicting mixture properties in CAMD applications, especially
in the CoMT-CAMD framework. Two approaches are examined.
Values of kij are estimated based on London's dispersive theory
using experimental ionization potentials. Further, we propose a
multilinear regression model for estimating kij based only on the
PC-SAFT pure component parameters. For the development of the
proposed model, a QSPR method is applied.

2. Estimation of kij based on London's dispersive theory

For a mixture of conformal fluids, i.e. fluids with the same
functional form of van der Waals intermolecular pair potentials,
theoretical expressions of the kij value can be derived from Lon-
don's dispersive theory. Most common is the expression based on
the work of Hudson and McCoubrey [50]. Hudson and McCoubrey
wrote the equation of London's attractive potential fdisp

ij as function
of the ionization potentials Ii and Ij and the (scalar valued) static
polarizabilities ai and aj of the two constituents of the mixture
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f
disp
ij ¼ �3

2
IiIj�

Ii þ Ij
� aiaj

r6ij
(1)
Eq. (1) combined with the attractive part of the Lennard-Jones
potential

f
LJ
ij ¼ 4εij

 "
sij

rij

#12
�
"
sij

rij

#6!
(2)

and using the arithmetic mean for the segment diameter parameter
sij

sij ¼
1
2
�
si þ sj

�
(3)

led to an expression for the depth of the attractive potential well
due to dispersive interactions εij, i.e. the Hudson-McCoubrey rules

εij ¼
"
2$

�
IiIj
�1=2�

Ii þ Ij
�#$"26$ s3i s

3
j�

si þ sj
�6
#
$
ffiffiffiffiffiffiffi
εiεj

p
: (4)

For a SAFT-type EoS Eq. (4) leads to an approximation of kij as
function of the segment diameter parameters and the ionization
potentials of the two Lennard-Jones fluids in the mixture

kij ¼ 1�
"
2$

�
IiIj
�1=2�

Ii þ Ij
�#$"26$ s3i s

3
j�

si þ sj
�6
#
: (5)

For details on the derivation of Eq. (4) and Eq. (5) we refer to the
original work of Hudson and McCoubrey [50] and to the study of
Haslam et al. [39].

The expression in Eq. (5), derived from London's theory, ac-
counts only for the asymmetry in dispersive interactions. For
mixtures of polar or associating components, however, kij does not
only serve as correction to the dispersive intermolecular potential,
as already pointed out by Hiza and Duncan [32] and Kontogeorgis
[51]. Rather, kij corrects a SAFT-type model regarding any other
model deficiency, including those arising from attractive in-
teractions, not explicitly accounted for. However, London's disper-
sive theory is appealing for (CoMT-) CAMD applications, and more
generally for predicting mixture properties, because only pure
component properties of the mixtures' constituents are required. In
this work, we evaluate phase equilibria predicted using kij values
from Eq. (5) applied with the PC-SAFT model, using experimental
values for the required ionization potentials.

3. Multivariate regression model for kij prediction

3.1. Contribution of asymmetric intermolecular potentials to the
value of kij

QSPR studies focus mainly on the prediction of properties for
pure substances. In most QSPR studies, QSPR software like
CODESSA [52] or DRAGON [53] is employed to generate constitu-
tional, topological, geometrical, electrostatic, quantum chemical or
thermodynamic molecular descriptors (e.g. Refs. [49,54,55]). The
significant descriptors are then selected using various stochastic or
deterministic methods. Subsequently, the selected descriptors are
combined to generate QSPR models. The resulting QSPR models are
evaluated and compared based on multivariate statistics. In this
study, we aim to develop a QSPR model for the estimation of kij,
whereby kij is a mixture attribute. While a large number of de-
scriptors are available for pure substances, the number of de-
scriptors characterizing molecular pairs is very limited [56]. Here,
we define the QSPR descriptors in an ad hoc manner, based on two
principles. The descriptors for the estimation of kij should: First, be
a function of the PC-SAFT pure component parameters only, and
second, effectively relate dissimilarities in the molecular structure
of two components to the kij value of their binary mixture.

In PC-SAFT, each pure component is identified by a unique set of
molecular parameters: the segment number m, the segment size
parameter s, the dispersive energy parameter ε/k, the dipole
moment m, the quadrupole moment Q, the association energy
parameter ε

AB/k and the effective association volume kAB. The
equation of the QSPR model for the estimation of the value of kij
(kQSPRij ) as function of the molecular parameters of the mixture
components is therefore

kQSPRij ¼
XNd

L¼1

cL$DL

�
pi; pj

�
(6)

where Nd is the number of descriptors, DLðpi; pjÞ are the descriptors
as function of the PC-SAFT molecular parameters
pi ¼ fmi; si; εi=k;mi;Qi; ε

AB
i =kg and pj ¼ fmj; sj; εj=k;mj;Qj; ε

AB
j =kg of

the two components, i and j, of the mixture, and cL are the corre-
sponding regression coefficients.

Let pk,i be the kth element of the PC-SAFT pure component
parameter vector pi, e.g. p1,i¼mi. Relations such as ratios of the
pure component parameters, aij¼ pk,i/pk,j or absolute differences,
dij ¼

���pk;i � pk;j
��� can be used as measures of the asymmetry of

intermolecular potentials in the binarymixture. Parameter ratios aij
and absolute differences dij can also be defined over combinations
of the PC-SAFT parameters: aij ¼ hðpiÞ=hðpjÞ and
dij ¼

���hðpiÞ � hðpjÞ
���. The departure of aij from unity and of dij from

zero quantify the difference between the i� i and the j� j property
for the two components of the mixture, respectively. In order to
make the parameter ratio aij invariant for interchanging the
component indices i and j for the pair of substances, we further
define the ratio operator

*
aij

+
¼

8>>><>>>: a

ðaij�1Þ
jaij�1j
ij aiisajj

1 aii ¼ ajj

(7)

Measures of this type were combined to form the candidate
descriptors for the QSPR model.

Unlike intermolecular potentials are caused by asymmetric
dispersive, polar and associating forces. In order to quantify the
contribution of the aforementioned asymmetries to the kij value,
we defined eight descriptors. The initial form of the descriptors was
mainly motivated by parameter combinations as they appear in the
mathematical formulation of the PC-SAFT EoS. The exponents used
in the final mathematical formulation of the descriptors are defined
empirically.

3.1.1. Dispersive interactions
We define the descriptor DLJ to express the asymmetry in the

dispersive intermolecular potential, as

DLJ ¼ 1�
*
s3i ðεi=kÞ2

s3j

�
εj
�
k
�2
+

(8)

by taking into account the segment diameter si,sj and the Lennard-
Jones energy potentials εi/k,εj/k. Our starting point for this

descriptor has been the ratio hm2
i s

3
i ðεi=kÞ2

m2
j s

3
j ðεj=kÞ2

i as motivated from the first

order term of the perturbation theory for dispersive attraction. The
exponents were varied empirically, usually in the integer-range of
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±2. DLJ will approach zero for very similar components and if no
other types of interactions exist (e.g. polar or associating
interactions).

3.1.2. Polar interactions
For contributions to the value of kij due to polar interactions, we

define four descriptors. The contribution due to asymmetry in
dipoleedipole interactions is expressed through the descriptors
Ddd,a and Ddd,b. Descriptor Ddd,a measures the absolute difference in
the reduced dipole moments.

Ddd;a ¼

�������
miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mis
3
i ðεi=kÞ

q � mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjs

3
j

�
εj
�
k
�q
������� (9)

The difference in the reduced dipole moments contributes in a
different way to the asymmetry in mixtures with only one dipolar
component than in the case when both mixture components are
dipolar. In order to distinguish these two cases, we introduce the
descriptor Ddd,b.

Ddd;b ¼ ffiffiffiffiffiffiffiffiffi
mimj

p
$
�
mi � mj

�2 (10)

A further contribution due to asymmetry in quad-
rupoleequadrupole interactions is given by the descriptor Dqq.
Descriptor Dqq considers the difference of the scaled quadrupole
moments over the potential energy of the chain molecule. The
difference in the quadrupole moments is scaled by the ratio of
segment diameters according to

Dqq ¼
"

Qi

miðεi=kÞ
� Qj

mj
�
εj
�
k
�#2$*s5i

s5j

+
(11)

Finally, we account for the case that dipoleedipole and quad-
rupoleequadrupole interactions occur simultaneously with the
descriptor Ddq.

Ddq ¼

�������
miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mis
3
i ðεi=kÞ

q � mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjs

3
j

�
εj
�
k
�q
�������$
"

Qi

miðεi=kÞ
� Qj

mj
�
εj
�
k
�#2

(12)

3.1.3. Association
Naive combining rules are not suited to describe cross-

association of two substances, because cross-association can not
be detached from electrostatic concepts of partial charge distribu-
tions in individual molecules. In that light, it is surprising that
simple combining rules have shown promising results for a
collection of chemical species [28,51,57]. (A group contribution
approach on the other hand is in our view a rather promising
concept). In studies where combining rules for cross-association
are applied, a binary interaction correction is often applied to the
dispersive interactions, rather than to the cross-association.

Consequently, mixtures with (cross-)associating substances are
demanding for our approach, where the binary mixture shall be
described based on pure component parameters of both species.
With some reservation, we include associating mixtures in this
study. It is important to note that the kij parameters adjusted to
such mixtures usually show rather high (positive or negative)
values, because of the uncertainty in cross-associating interactions.
We account for the contribution of self- and cross-association ef-
fects with three descriptors. Descriptor Dassoc,s measures the
strength of self-association for component i against the strength of
self-association for component j.

Dassoc;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεi=kÞ

�
εj
�
k
�q
$
h
s3i

�
ε
AB
i

.
k
�
� s3j

�
ε
AB
j

.
k
�i2

(13)

Kontogeorgis and Folas [58] distinguish between five different
types of cross-association. We turn to the effect of cross-association
between two dipolar components, when at least one of them is self-
associating. Kleiner and Sadowski [57] proposed an approach to
account for the cross-association that is likely to occur for such
mixtures; they refer to these interactions as ‘induced association’.
We also observed that the combining rule for induced association
[28,59].

ε
AiBj ¼ 1

2

�
ε
AB
i þ ε

AB
j

�
(14)

kAiBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAiBikAjBj

p
$

 
sisj

1=2
�
si þ sj

�!3

(15)

noticeably improves the accuracy of phase equilibrium calculations
for this type of mixtures. The descriptor for the contribution due to
induced association is defined as

Dassoc;c ¼ ffiffiffiffiffiffiffiffiffi
mimj

p
$

h�
ε
AB
i

�
k
�þ �εABj .k�i2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mis

3
i $mjs

3
j

�r (16)

The indices s and c in Eqs. (13) and (16) are for “self” and “cross”
association contributions, respectively. The contribution to the
value of kij due to induced association accounts for the mutual
strength of the dipole moments [60]. The contribution of the as-
sociation energy parameters and the dipole moments in the
descriptor Dassoc,c is scaled by the molecular volume of the two
components. This provides a better description for mixtures with
small but strong associating molecules (e.g. mixtures of acetic acid)
[61]. In mixtures with one associating and one non-polar, non-
associating component, the effect of induced-association should
not be accounted for. In this case, the descriptor Dassoc,c is therefore
equal to zero and no discrete decisions are necessary to distinguish
between cases. The contribution of induced association in the
asymmetry of a mixture is different when both components are
self-associating species than when the mixture contains only one
self-associating component and one dipolar, non-associating
component. We introduced the third descriptor Dassoc,sc, in order
to decouple the two cases when describing these types of mixtures
with the same model simultaneously. The descriptor Dassoc,sc is
active only for mixtures with two self-associating components

Dassoc;sc ¼ �mimj�$ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ε
AB
i

.
k
��

ε
AB
j

.
k
�r
$
���hs3i �εABi .k�i2

�
h
s3j

�
ε
AB
j

.
k
�i2���: (17)

3.2. Pure component parameters

The necessary PC-SAFT pure component parameters were either
adopted from Refs. [27e30,62] or, if not available, they were
identified in the present work. In those cases, the pure component
parameters ðm; s; ε=k; εAB=kÞ were adjusted to experimental data of
vapor pressure and liquid density. We have implemented the 2B
association scheme [63] for all associating components. The asso-
ciation energy parameter εAB/k and the effective association volume
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kAB are known to be strongly correlated, which is why a constant
effective association volume kAB¼ 0.03 was used, as previously
suggested by Ruether and Sadowski [64]. Dipole moments were
taken from the DIPPR database [65] and they originate either from
ab initio calculations or from measurements. The quadrupole mo-
ments were taken from Ref. [29].
3.3. Database of kij values adjusted to experimental data of phase
equilibria

For isolating the effect of the different descriptors, we define
four classes of substances: non-associating, non-polar (nAnP), non-
associating, dipolar (nAdP), non-associating, quadrupolar (nAqP)
and associating, dipolar (AdP). From the four classes of pure com-
ponents, we define 10 groups of binary mixtures. The 10 groups of
binary systems considered in our study and the number of mixtures
per group are listed in Table 1.

For every binary mixture in our database, we adjusted the bi-
nary interaction parameter kij using experimental vaporeliquid
equilibrium (VLE) data. The selected experimental data comprised
sets of isothermal (P,x) and (P,x,y) data obtained from the Dort-
mund Database (DDB) [66], which passed the standard thermo-
dynamic consistency tests, namely the point-to-point test and the
area-test [67]. For mixtures with several experimental isotherms,
we adjusted a single temperature-independent value of kij.

The objective function for adjusting the kij values is formulated
on the combined residuals of the mole fraction of the liquid phase
and the residuals of the pressure for every experimental point [68]:

F ¼

264Xnexp

l¼1

ðDxlÞ2$
�
DPrell

�2
ðDxlÞ2 þ

�
DPrell

�2
375
1=2

(18)

with nexp as the number of experimental data points, Dxl ¼
���xcalcl �

xexpl

��� the absolute residuals in the mole fraction of the liquid phase

resulting from isobaric-isothermal flash calculations and

DPrell ¼
�����Pcalc

l

Pexp
l

� 1

����� the relative residuals in pressure resulting from

bubble point calculations.
3.4. Quantitative Structure Property Relationship (QSPR) for
predicting kij

3.4.1. Multivariate regression
The QSPRmodel for predicting kij was built in steps: Initially, the

QSPR model was developed for the simplest case; for predicting kij
in mixtures of two non-associating, non-polar components (group
1), using only the descriptor for the asymmetry in the dispersive
intermolecular potential DLJ. Additional groups of binary mixtures
were considered progressively and the model was supplemented
Table 1
The database of binary mixtures is divided in 10 groups (here denoted as G1 to G10). The
(a) non-associating, non-polar (nAnP), (b) non-associating, dipolar (nAdP), (c) non-associa
for each subgroup in the database is listed.

Comp.

nAnP

Comp. i nAnP (G1)48
nAdP (G2)47
nAqP (G3)44
AdP (G7)67
with the necessary descriptors. In this way, the model was
extended to all groups of mixtures with non-associating compo-
nents (groups 1 to 6). Subsequently, the mixtures of associating
components (groups 7 to 10) were considered. The QSPR model for
all groups of binary mixtures reads

kQSPRij ¼
XNd

L¼1

cL$DL (19)

with model coefficients

cL2
n
cLJ; cdd;a; cdd;b; cqq; cdq; cassoc;s; cassoc;c; cassoc;sc

o
and with corresponding descriptors DL

DL2
n
DLJ;Ddd;a;Ddd;b;Dqq;Ddq;Dassoc;s;Dassoc;c;Dassoc;sc

o
as introduced in Eqs. (8)e(17). A non-weighted non-linear least
squares problem is solved for the regression of the model co-
efficients cL. The objective function for the model regression is
defined as the total sum of the squared residuals between the
values of kij individually adjusted to experimental data kfitij and the
values of kij calculated from the QSPR model kQSPRij in Eq. (19) as

min
c

Q ¼
XNtr

m¼1

�
kfitij;m � kQSPRij;m

�2
(20)

with Ntr the number of mixtures used for the regression. The least
squares minimization was conducted using the solver nlinfit pro-
vided in Matlab [69]. For the 95% confidence interval of the model
coefficients DcL,95 we use the t-distribution with Ntr�Nd� 1 de-
grees of freedom [70].

DcL;95 ¼ t0:95;Ntr�Nd�1$
ffiffiffiffiffi
S2

p
$
ffiffiffiffiffiffiffi
VLL

p
(21)

with S2 as the estimated model variance

S2 ¼
PNtr

m¼1

�
kfitij;m � kQSPRij;m

�2
Ntr � Nd � 1

(22)

and with VLL as the corresponding diagonal element of the coeffi-
cient covariance matrix.

3.4.2. Training and test set
The quality and the morphology of the data sets used to derive

and validate the QSPR model coefficients (QSPR database) is deci-
sive. The set used to derive the QSPR model coefficients (training
set) should span the whole region of the descriptor space, it should
be diverse and it should include data points close to the data points
used for the external validation of the model (test set) [71,72]. In
order to ensure these conditions, we define the training and test set
binary mixtures are categorized according to the type of components they consist of:
ting, quadrupolar (nAqP) and (d) associating, dipolar (AdP). The number of mixtures

j

nAdP nAqP AdP

(G6)32
(G4)32 (G5)5
(G8)90 (G9)43 (G10)53
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respectively in a three-step procedure: In step 1, we a priori detect
and remove from the QSPR database the binary mixtures with
unreliable kij values [70,73]. In step 2, we divide the QSPR database
in training and test set, using a uniform design method for subset
selection [74]. In step 3, we iteratively remove the outliers from the
training set. The steps are discussed in more detail in the following.

In step 1 we use as measure for the quality of the adjusted kij
values the value of the objective function F in Eq. (18), divided by
the total number of the experimental data points, according to

f ¼ F
�
nexp: (23)

The value of kij for a mixture m is considered as unreliable if
fm >0:95,maxðf Þ and the absolute average residuals AAD-x and
AAD-Prel are higher than 15%. Those cases either correspond to bi-
nary mixtures with experimental data of poor quality or to mix-
tures, where PC-SAFT leads to inaccurate results with the chosen
pure component parameters.

After unreliable data were removed, the curated database (Nm

binary mixtures) is divided into the training and the test set in step
2. In our case, we define the split fraction between the training and
the test set Ntr/Nts equal to 9 (with NtrþNts¼Nm). For the selection
of the training set, we have used an in-house implementation of the
Kennard and Stone algorithm. The Kennard and Stone (KS) algo-
rithm [75] is a well-established method for uniform design in the
field of chemometrics [74]. The selection principle of the algorithm
[75] ensures that the points which are excluded (test set) are close
to the points of the design set (training set). Here, we implemented
the KS algorithm individually for each one of the 10 binary mixture
groups (‘clusters’) defined in Section 3.3. For all groups we used the
same. fraction of training to test set, as for the complete database
(Ntr,group/Nts,group¼ 9). Implementing the KS algorithm individually
for each group is a way to ensure that all groups are represented in
the training set, even if the number of available data per group is
limited [76] (e.g. binary mixtures with two non-associating,
quadrupolar components). Since the KS algorithm uses the
Euclidean norm of the descriptor vector, the results are sensitive to
descriptor scaling [77]. For better scaling of the highly irregular
multidimensional descriptor space, we used the standardized
values of the descriptors [78].

bDL;m ¼ DL;m � DL

SDL
(24)

with bDL;m the standardized value of descriptor DL for mixture m, DL
denotes the average value of descriptor DL for all mixtures, and SDL
is the standard deviation of descriptor DL for all mixtures of the
database. In our implementation, the KS algorithm is initialized on
the boundaries of the multidimensional descriptor space. Thus, the
designed training set is expected to be sensitive to outliers [76].

We exclude outliers from the training set iteratively in step 3.
We fit themodel coefficients Nm times, excluding onemixture b at a
time (“Leave-One-Out” procedure), and we calculate the corre-
sponding sum of the residuals rNm�1;b

rNm�1;b ¼
XNm�1

m¼1
msb

�
kfitij;m � kQSPRij;m

�2
(25)

with b2{1,2,…,Nm}. We determine the mean value

rNm�1 ¼ 1
Nm

$
XNm

b

rNm�1;b (26)
and the standardized value of the residual for each mixture b

around the mean value rNm�1 as

brNm�1;b ¼ rNm�1;b � rNm�1

Sr
(27)

where Sr is the standard deviation of the residuals. Mixtures that
led to brNm�1;b values greater than three standard deviation units
(3Sr) were considered as outliers and were excluded [70,71,79].
3.4.3. Model validation
Model validation is an integral part of any QSPR method. On the

one hand, the goodness-of-fit, the robustness of the model and its
internal predictive power are measured by internal validation
techniques. On the other hand, the actual predictive power of the
model is evaluated by external validation. External validation is
defined through data that was not used for the model regression
[72].

The goodness-of-fit is measured by the coefficient of multiple
determination R2. The coefficient of multiple determination esti-
mates the portion of the variation in the independent variable (here
kfitij ) that is explained by the regression [72,73,79]. R2 is calculated
over all mixtures of the training set (Ntr) and is defined as

R2 ¼ 1�
PNtr

m¼1

�
kfitij;m � kQSPRij;m

�2
PNtr

m¼1

	
kfitij;m � k

fit
ij


2 (28)

where k
fit
ij is the average value of kfitij for all mixtures of the training

set. A QSPR model with R2 higher than 0.6 can be considered pre-
dictive [73]. However, Tropsha [73] also points out, that the pre-
dictive power of a QSPR model needs to be further evaluated for
compounds that were not included in the training set.

The Leave-One-Out (LOO) cross-validated correlation coefficient
Q2
LOO and the Leave-Many-Out (LMO) cross-validated correlation

coefficient Q2
LMO measure the robustness of the model and its in-

ternal predictive power. The cross-validated correlation coefficients
should be calculated over a large number of trials. In both the LOO
and LMO procedures, a certain subset of the training set is omitted
at each trial.

For the calculation of the LOO cross-validated correlation coef-
ficient Q2

LOO the number of trials is equal to the total number of
mixtures in the QSPR database Nm. At each trial a mixture is indi-
vidually omitted. The QSPR model coefficients are regressed using
the remaining Nm� 1 mixtures as training set. Using this regres-
sion, one can now predict the kij value (kQSPR=�m

ij ) for mixture m
(which was temporarily excluded from the training set). The defi-
nition of Q2

LOO according to the guidelines of the Organization of
Economic Co-operation and Development (OECD) [72] is

Q2
LOO ¼ 1�

PNm
m¼1

�
kfitij;m � kQSPR=�m

ij;m

�2
PNm

m¼1

	
kfitij;m � k

fit
ij


2 : (29)

At each trial of the LMO procedure, more mixtures than one are
simultaneously excluded. Here, we have calculated the value of
Q2
LMO over 2Nm number of trials. At each trial, 50% of the complete

database was excluded [71] (NLMO¼ 0.5Nm). The value of the LMO
cross-validated correlation coefficient for each trial Q2

LMO=50;trial is
calculated as



Fig. 1. Comparison of kij(s,I) values estimated from the London's dispersive theory (Eq.
(5)) to kfitij values individually adjusted to experimental data for mixtures of two non-
polar, non-associating components (group 1). The dashed lines illustrate the absolute
deviations of ±0.005 for the value of kfitij .

Fig. 2. Deviations of PC-SAFT EoS from experimental binary phase equilibrium data of
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Q2
LMO=50;trial ¼ 1�

PNLMO
m¼1

�
kfitij;m � kQSPR=�m

ij;m

�2
PNm

m¼1

	
kfitij;m � k

fit
ij


2 (30)

with kQSPR=�m
ij;m representing the predicted kij value for each mixture

m that is part of the excluded set. The standard deviation and the
average value of Q2

LMO=50;trial over all trials are used as indicators of
the robustness in the model prediction. A robust model should
remain invariant to changes of the training set and it is thus ex-
pected to exhibit small difference between the average value of
Q2
LMO and R2 [80]. We should note that the LMO procedure demands

to generate as many different training sets as the number of trials.
The Kennard and Stone algorithm described in Section 3.4.2 is
initialized on a fixed point of the descriptor space and therefore
provides a single design for the training set. Thus, for the calcula-
tion of Q2

LMO, we used a straightforward random selection of the
training set.

An important indicator of the actual predictive capability of the
model is the external explained variance Q2

ext . The external
explained variance is a measure for the quality of prediction for
data that were not included in the set used for the model devel-
opment. There are several approaches in the literature for the
calculation of Q2

ext [71,72,81,82]. In our implementation, the
training set is much larger than the test set. In this case, the defi-
nition of Consonni et al. [81] is appropriate, with

Q2
ext ¼ 1�

"PNts
m¼1

�
kfitij;m � kQSPRij;m

�2#,
Nts"PNtr

m¼1

	
kfitij;m � k

fit
ij


2
#,

Ntr

: (31)

The numerator in Eq. (31) sums over data of the test set, whereas
the denominator sums over the training set.
two non-associating, non-polar components (group 1). The deviations are defined as
f¼ F/nexp according to Eq. (23). The red line serves as a reference and is obtained for
individually optimized kfitij values. The symbols (connected by black line) are obtained
using estimated values kij(s,I). For hexadecane no ionization potential s was available,
which is why kij(s,I) was set to zero for mixtures #12 and #43. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version
of this article.)
4. Results

4.1. Estimation of kij based on London's dispersive theory for
mixtures

Calculating kij values from London's dispersive theory, according
to Eq. (5), requires segment diameters si and sj and the ionization
potentials Ii and Ij. Experimental values of the ionization potentials
were taken from the literature [83]. We limit consideration to
mixtures of two non-polar, non-associating components (group 1).
Fig. 1 compares the values of kij calculated with Eq. (5) to the values
of kij individually adjusted on experimental data. A detailed list of
the examined binary mixtures with the corresponding values of
kij(s,I) and kfitij is given in Table S1 of the Supporting Information.

kij calculated with Eq. (5) cannot take on negative values. For
mixtures of non-polar, non-associating components this limitation
is not strongly restricting the results, because the negative kfitij
values are all fairly close to zero. Fig. 2 shows that for the mixtures
of group 1 with negative values of kfitij (mixtures
#1,9,15,19,26,30,34,44,45) the results of phase equilibrium calcu-
lations remain good for calculations with the slightly positive kij
values from Eq. (5). Mixtures with polar and associating compo-
nents, though, often demand more negative kij values. In this case,
the predictions of kij with Eq. (5) are expected to lead to more
significant errors.

Higher deviations in the prediction of kij are observed for binary
mixtures including carbon monoxide (mixtures 2, 3 and 4 in Figs. 1
and 2) and for binary mixtures including methane (mixtures 8, 13
and 27). Thesemixtures demand higher values of kij for an adequate
description. We conjecture that in those cases, kij does not only
correct the dispersive intermolecular potential of the mixture but
compensates other model deficiencies. Below we show that a QSPR
model based on semi-empirical descriptors takes the necessary
contributions into account to model the value of kij for these
mixtures.

4.2. QSPR estimation of kij - model regression and assessment of the
results

The descriptors of the QSPR model for the estimation of kij
values were constructed using the PC-SAFT molecular parameters.
The initial structure of the descriptors was defined in an ad hoc
manner and their exact structure was adjusted empirically, by
varying exponents, as described in Section 3.1. In the course of this
process, different sets of descriptors were generated. For each set of
descriptors, the coefficients of the QSPR model were regressed as
described in Section 3.4.1. The performance of each QSPR model
was evaluated using the internal and external validation techniques
described in Section 3.4.3. The training and the test set remained
unchanged. The QSPR model that achieved the best overall



Table 3
Results of the regressed model coefficients for mixtures with at least one associating
component (groups 7 to 10). The values of the coefficients cL and their 95% confi-
dence interval DcL,95 for the QSPR model defined in Eqs. (19) and (21).

Mixtures with associating components

cL,104 DcL;95,104

cLJ �149.236 ±0.591
cdd,a 20.178 ±0.841
cdd,b �23.180 ±0.210
cqq �0.428 ±0.006
cdq 0.089 ±0.006
cassoc,s �12.432 ±0.062
cassoc,c �4.797 ±0.018
cassoc,sc 0.592 ±0.006
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description for all groups of mixtures based on the value of R2 has
been obtained with the descriptors defined in Eqs. (8)e(17). Here,
we limit our discussion to the results of this model.

Mixtures with associating components are the most difficult to
describe. For the regression of the model coefficients, we therefore
distinguish two cases: In the first case, we estimate the model co-
efficients only for mixtures of non-associating components (“1st

regression case”: groups 1 to 6). In the second case, we adjust the
model only to mixtures containing associating components (“2nd

regression case”: groups 7 to 10).
In the first case, the database of mixtures with only non-

associating components includes 199 binary mixtures. Unreliable
data and outliers have been removed according to the rationale
described in Section 3.4.2. Then, the training set consists of 151 and
the test set of 22 binary mixtures. The adjusted model coefficients
cL along with the values of their 95% confidence intervals DcL,95 are
given in Table 2. For all regressed model coefficients we observed��DcL;95��≪jcLj , which qualifies a stable regression model [84]. For
mixtures of groups 1 to 6 the values of kij predicted with the QSPR
model are given in the Supporting Information (Tables S3eS8).

In the second case, for associating mixtures the database in-
cludes 253 mixtures with at least one associating component. After
unreliable data and outliers have been removed, the training set
consists of 167 and the test set of 23 binary mixtures. The adjusted
model coefficients cL for mixtures with at least one associating
component and their 95% confidence intervals DcL,95 are given in
Table 3. For this “2nd regression case”we also find

��DcL;95��≪jcLj. The
regressionmodel formixtures of the groups 7 to 10 can therefore be
characterized stable as well. For mixtures of groups 7 to 10 the
predicted values of kij are given in the Supporting Information
(Tables S9eS12).

The multiple correlation coefficient R2 for the QSPR model
adjusted to mixtures of non-associating components is 88.4%. For
the QSPR model adjusted to mixtures of associating components R2

is 70.1%. In both cases, the model can, in the jargon of QSPR
methods, be considered to be predictive. Fig. 3 shows the values of
the multiple correlation coefficient (R2group) calculated individually
for each group of binary mixtures. Values of R2group have been
calculated using Eq. (20), with the summation running over all
mixtures of the training set for each particular group. The results of
the internal and external validation of the QSPR model for both
regression cases are summarized in Table 4.

The QSPR model adjusted to mixtures of non-associating com-
ponents describes all types of non-associating mixtures reasonably
well. The results are satisfactory, especially considering the di-
versity of mixtures in our database. The value of the LOO cross-
validated coefficient Q2

LOO and the average value of the LMO
cross-validated coefficient bQ 2

LMO=50 (Table 4) are close to the value
of R2. The proposed model for mixtures with non-associating, polar
or non-polar components can be thus characterized as sufficiently
robust [80]. Further, the low standard-deviation of Q2

LMO=50 (5.4%)
Table 2
Results of the regressed model coefficients for mixtures of non-associating com-
ponents (groups 1 to 6). The values of the coefficients cL and their 95% confidence
interval DcL;95 for the QSPR model defined in Eqs. (19) and (21), with cassoc,s¼ 0,
cassoc,c¼ 0 and cassoc,sc¼ 0.

Mixtures with non-associating components

cL,104 DcL;95,104

cLJ �103.285 ±0.065
cdd,a 57.533 ±0.235
cdd,b �25.064 ±0.095
cqq 0.114 ±0.001
cdq �0.645 ±0.002
over 346 trials indicates that the model is robust against strong
variations of the training set.

For the model adjusted to mixtures of associating components
(“2nd regression case”) the coefficients of multiple determination
R2group (explained variance) for the individual groups are also high,
particularly for the groups 7, 9 and 10. Group 8 contains mixtures of
species with widely differing pure component parameters which
we call asymmetry. To properly and transferably account for this
asymmetry in the resulting kij values was only partially successful
in our QSPR approach. We note that mixtures of group 8 represent
34% of the training set used for the adjustment of the QSPR model
coefficients in the “2nd regression case”. When mixtures of group 8
are omitted during the Leave-One-Out (LOO) or Leave-Many-Out
(LMO) validation tests, the QSPR model demonstrates a much
better overall performance in terms of the Q2

LOO and bQ 2
LMO=50 QSPR

validation measures. The model adjusted to mixtures of associating
components is more uncertain than the QSPRmodel for mixtures of
non-associating components. The choice of the training set acts on
the result. This is reflected directly in a) the high standard deviation
Fig. 3. Coefficient of multiple determination R2 for: (a) mixtures of two non-
associating components (groups 1 to 6) and (b) mixtures including at least one asso-
ciating component (groups 7 to 10).



Table 4
Results of internal and external validation of the QSPR model (Eq. (19)) developed
for mixtures of non-associating and mixtures of associating components.

Mixtures with non-associating components

R2(%) Q2
LOOð%Þ bQ 2

LMO=50ð%Þ Q2
extð%Þ

88.4 86.5 84.5 92.4

Mixtures with associating components

R2(%) Q2
LOOð%Þ bQ 2

LMO=50ð%Þ Q2
extð%Þ

70.1 64.3 57.9 82.3
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of the Q2
LMO=50 coefficient over 380 trials (22.6%) and b) the higher

difference between the value of R2 and the values of the cross
validated coefficients bQ 2

LMO=50 and Q2
LOO (Table 4).

The external explained variance Q2
ext by the QSPR model

adjusted to mixtures of non-associating components is 92%. For the
QSPR model adjusted to mixtures of associating components Q2

ext is
82%. The high values of Q2

ext indicate the high predictive power of
the QSPR model in both cases. Nevertheless, the results of Q2

ext
should be interpreted cautiously. One should bear in mind that the
size of the test set is much smaller and less diverse than the size of
the training set (Ntr/Nts¼ 9).

Generally, the proposed QSPR model is stable and robust and
has (in the sense of a QSPR method) a good predictive capacity. The
statistical measures (Table 4) indicate that the QSPR model predicts
kij values in binary mixtures of non-associating components with
sufficient accuracy. For mixtures of associating components, the
model is also reliable (in the jargon of QSPR). However, the esti-
mations of kij for mixtures containing one dipolar, non-associating
component and one associating component aremore uncertain and
should be used with reservation.
Fig. 4. Comparison of the estimated kQSPRij values with kfitij values individually adjusted
to experimental data for mixtures of one non-associating, dipolar and one non-
associating, quadrupolar component (group 4). Open symbols indicate mixtures of
the training set, whereas solid symbols correspond to the mixtures of the test set. The
dashed lines illustrate the absolute deviations of ±0.005 for the value of ðkfitij Þ.
4.3. Evaluating phase equilibria with predicted kij values

The kij values used for the regression of the QSPRmodel (kfitij ) are
not experimental data, but parameters fitted to experimental data.
We therefore find it important to evaluate the QSPR model beyond
just the statistical measures of the QSPR method. We have exam-
ined the results of phase equilibrium calculations with the pre-
dicted kij values for each group of mixtures. The parity plots and the
diagrams that show the results in phase equilibrium calculations
for all groups of mixtures are given in the Supporting Information
(Figs. S1eS4).

Here, we discuss in more detail the results for mixtures of group
4 (mixtures of one non-associating, quadrupolar and one non-
associating, dipolar component). We find the performance for
mixtures of group 4 representative of the overall performance of
the QSPR predictions of kij for non-associating mixtures
(R2group 4 ¼ 88:1%xR2). Moreover, the prediction for mixtures of
group 4 is of practical interest, for example by the application of
CAMD for polar solvents, for the CO2 capture with physical ab-
sorption [18].

Fig. 4 compares the estimated values, kQSPRij , to the reference
values, kfitij , for group 4. Further, Fig. 5 illustrates the accuracy in
phase equilibrium calculations with PC-SAFT for the mixtures of
group 4 with kij values estimated with the QSPR model adjusted to
non-associating mixtures (Table 2). The results in phase equilib-
rium calculations are compared to experimental VLE data. We
consider the same experimental data that were used for the indi-
vidual fitting of kij values. We assess the results using the average
value f of the combined residuals in the liquidmole fraction and the
pressure, over the number of experimental data points for each
mixture as defined in Eq. (23). In Fig. 5, we also present the results
in phase equilibrium calculations, when no correction is used for
the PC-SAFT EoS (kij¼ 0), as well as the results achieved when kij is
individually adjusted to the experimental data, namely f ðkfitij Þ. We
observe that for the majority of the mixtures in group 4 (in both the
training and the test set) phase equilibrium calculations with the
QSPR estimations of kij give lower residuals than if no correction is
used (kij¼ 0).

It is however difficult to quantify the relationship between the

error in Ref. kij prediction Dkij ¼
���kfitij � kQSPRij

��� and the subsequent

error in phase equilibrium calculations Df ¼
���f ðkfitij Þ � f ðkQSPRij Þ

���. For
different mixtures, the sensitivity of the objective function F (and
thereby f) to the value of kij is different, depending on different
factors, like azeotropy or supercritical regions. Let us, for example,
examine the performance of the kij prediction and phase equilib-
rium calculations for mixture #4 (carbon dioxide - 1-
bromobenzene) compared to mixture #20 (1-hexene - ethylene).
For mixture #4, the error in the estimation of kij is much higher
than the error in the estimation of kij for mixture #20 (Fig. 4,
Table S5). Still, the error in phase equilibrium calculations is almost
identical for both mixtures (Fig. 5).

Finally, the kij values estimated from London's dispersive theory
kij(s,I) (Eq. (5)) were used in phase equilibrium calculations for the
mixtures of group 4. A list of the estimated values kij(s,I) is given in
Table S2 in the Supporting Information. In Fig. 6, phase equilibrium
calculations carried out with the estimated values kQSPRij are
compared to phase equilibrium calculations with the estimated
values from London's dispersive theory kij(s,I). The results obtained
with the estimated value kQSPRij are in most cases better than the
results obtained with kij(s,I). For example, mixture #7 (dimethyl
ether-carbon dioxide) requires a negative kij value. Negative kij
values cannot be calculated using Eq. (5). As discussed in Section
4.1, this limitation has a higher impact onmixtures containing polar
components. For mixture #7, the estimated kQSPRij is negative. With
kQSPRij , the PC-SAFT EoS is corrected and phase equilibrium calcu-
lations are considerably better. Moreover, for mixtures that require
high positive kij values, the predicted value kQSPRij leads to signifi-
cantly lower residuals in the phase equilibrium calculations.
Representative examples are mixture #2 (nitrogen-propylbenzene)
and mixture #17 (nitrogen-toluene).

The kij values predicted by the proposed QSPR model (with the
descriptors defined in Eqs. (8)e(17) and the regressed coefficients



Fig. 5. Deviations of PC-SAFT from experimental binary phase equilibrium data of one
non-associating, dipolar and one non-associating, quadrupolar component (group 4).
The deviations are defined as f¼ F/nexp according to Eq. (23). The red line serves as a
reference and is obtained for individually optimized kfitij values. The symbols (con-
nected by black line) are obtained using estimated values kQSPRij . The blue dashed line
represent phase equilibrium calculations, when the PC-SAFT EoS is not corrected
(kij¼ 0). (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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given in Tables 2 and 3) are used in phase equilibrium calculations
for all mixtures considered in our QSPR database. In Fig. 7, a general
overview is given of the improvement potential in phase equilib-
rium calculations, using the kij values estimated with the proposed
QSPR model. For each group of mixtures, Fig. 7 displays the per-
centage of cases in which phase equilibrium calculations are more
accurate with the estimated value kQSPRij . The percentage of cases
when phase equilibrium calculations with kij¼ 0 are more accurate
and the percentage of cases when phase equilibrium calculations
are equally good for kQSPRij and kij¼ 0 are given aswell. For all groups
of mixtures (associating and non-associating) the proposed QSPR
model provides kij estimates that generally improve the accuracy of
PC-SAFT in phase equilibrium calculations. According to Fig. 7, the
most significant improvement is achieved for mixtures of group 5.
However, the small size of group 5 (Table 1) and its' limited di-
versity (Table S7) do not allow us to draw a generalised conclusion
about the performance of the method for mixtures of two non-
associating, quadrupolar components. Further, in the group with
the least improvement, for mixtures of two dipolar, non-associating
components (group 6), the individually adjusted kij values are close
to zero (see Supporting Information). Calculation results for kij¼ 0
are thus close to optimal, so that the use of estimated kQSPRij cannot
lead to significant improvements for group 6.
Fig. 6. Deviations of PC-SAFT from experimental binary phase equilibrium data of one
non-associating, dipolar and one non-associating, quadrupolar component (group 4).
The deviations are defined as f¼ F/nexp according to Eq. (23). The red line serves as a
reference and is obtained for individually optimized kfitij values. The black line repre-
sents phase equilibrium calculations, when the PC-SAFT EoS is corrected with kQSPRij .
The blue solid line is for results using kij(s,I) from London's dispersive theory.
(\pretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)
5. Conclusions

We developed and analyzed a multivariate regression model for
the estimation of the binary interaction parameter kij of the PC-
SAFT EoS using a QSPR method. The descriptors of the regression
model are based on the pure component parameters of the PC-SAFT
model. The regression models were developed separately for
mixtures with non-associating components and for mixtures with
at least one associating component.

For mixtures with non-associating components, values of kij
were also estimated from London's dispersive theory, using the
expression of Hudson and McCoubrey [50]. Values of kij predicted
with the QSPR model ðkQSPRij Þ and values of kij estimated from
London's dispersive theory (kij(s,I)) were compared to values of kij
individually fitted on experimental data. For mixtures containing
non-associating, polar components the QSPR regression model al-
lows for negative values of kij and leads to more accurate pre-
dictions than the expression of Hudson and McCoubrey. The QSPR
regression model considers additional contributions to the value of
kij than just the asymmetry in the dispersive intermolecular forces.

The coefficient of multiple determination R2 of the QSPR
regression model for mixtures with non-associating components is
88.4%. For mixtures with at least one associating component R2 is
70.1%. Thus, for both regression cases the QSPR model can, in the
jargon of QSPR methods, be characterized as stable and robust and
with good predictive capacity.

The kij values estimated as function of the pure component PC-
SAFT parameters, with the proposed QSPR regressionmodel, can be
used to enhance the accuracy of phase equilibrium calculations
with PC-SAFT. With the proposed QSPR model for the estimation of
kij, no prior knowledge of the real behavior of the examined binary
mixture is demanded. The QSPR approach can be implemented in a
CAMD framework that uses the pure component parameters of the
Fig. 7. Assessing phase equilibrium calculations: Black surface represents the per-
centage of cases for which calculations with estimated kQSPRij values are more accurate
than with kij¼ 0. The gray shaded area represents the percentage of cases when both
cases are equivalent.
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optimized fluid directly as optimization variables. In that case, we
expect that phase equilibrium calculations and thus the accuracy of
CAMD results can be enhanced.
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CAMPD Computer Aided Molecular and Process

Design
GC Group contribution
ORC Organic Rankine cycle
QSPR Quantitative Structure Property Relationship
nAnP Non-associating, non-polar
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