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summary

Context and relevance

There is an urgent need to develop flexibility in the electricity grid due to the increasing implementation
of renewable energy, due to climate targets, which introduce greater variability and uncertainty in supply
and demand. Current developments provide potential for the hydrogen market and the Netherlands is
faced with the challenge of realising this on a large scale.

Despite national ambitions, choices about policies and investments in developing the technologies are
lagging due to remaining uncertainties and risks. Many projects face delays due to technical, financial
and regulatory barriers, risking stagnation in the broader energy transition. Invest-NL plays a catalytic
role by investing at-risk capital in early-stage technologies aligned with societal and policy goals. One
investment is made in Battolyser Systems, a dual-purpose technology that integrates electricity storage
with hydrogen production. The technology addresses key grid challenges by dynamically responding
to intermittent renewable availability.

However, further deployment is constrained by systemic barriers, highlighting the need for integrated,
multi-actor strategies to unlock the full potential of such innovations. Instead of seeking a single optimal
solution, policymakers facing uncertainty aim to develop policies that perform effectively across a range
of conditions in early-stage markets.

Gap and research question

Due to uncertainties and risks, there is a barrier in investment decisions, underlining the need for
structured analytical simulation model frameworks that support robust decision-making. The current
literature shows the potential for exploratory model-based policy analysis with respect to the Value
Driver Tree (VDT) model. This framework comes from value-based management theory to decompose
the value drivers of a performance indicator. The research studies the coping with uncertainty through
the use of simulation decision modelling to eventually implement these in VDTs that contain metrics of
investment decisions.

This creates the main research question of:

How can a value driver tree-based simulation model be designed and applied for investment
performance of Battolyser Systems under uncertainty in the Dutch green hydrogen market?

Research approach

The research approach and objective are to obtain a VDT as a visual and causal framework with a
techno-economic perspective toward the metric of the investment performance of the Economic Value
Added (EVA). This makes it possible to explicitly and transparently link technical parameters, policy and
economic value creation and eventually with environmental uncertainties. After the identification of the
value drivers, the second part of the analysis is focused on the determination of the uncertainty factors.
This is investigated through desk research and is linked to stakeholder analysis and the value drivers.
Then the focus turns to a practical application as a simulation decision tool. Here, the requirements are
created for the software implementations. Then the experiments are set up to test the model. This is
done in three parts. First, the baseline analysis is conducted and supported by a sensitivity analysis to
give insights into the influences of input parameters. Second, the uncertainty implementation is done
using Monte Carlo simulations to create distributions within the model. And last, policy interventions are
tested by implementing them into the adaptable VDT framework. Eventually, this facilitates data-driven
decision-making that aligns technical feasibility with financial performance and societal objectives, to
balance multiple objectives with overarching system goals.

11
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Findings Value Driver Tree simulation model

The VDT approach provides a structured techno-economic framework that connects investment perfor-
mance to system behaviour. It decomposes Economic Value Added into a hierarchical structure con-
sisting of revenue, cost, and capital sub-trees. This allows for a transparent mapping of how technical,
operational, and financial variables contribute to investment outcomes. These elements are integrated
into a coherent simulation model that supports the causal interpretation of value creation in emerging
technologies.

Based on a combination of policy review, literature insights and stakeholder analysis, five core uncer-
tainties have been selected for further modelling. These include the electricity price, hydrogen price,
unit capital costs, operating hours, and conversion efficiency of the Battolyser. Their relevance and
variability across policy and investment concerns have made them suitable candidates for simulation
under uncertainty.

The model formalises this structure computationally using a Monte Carlo simulation to quantify the im-
pact of uncertain input parameters. Each element in the VDT is assigned to a mathematical operation
or relationship, creating a replicable logic that generates distributions of Economic Value Added. The
baseline results reveal a negative value, suggesting low investment viability under current assump-
tions. Sensitivity analysis shows that hydrogen price and operating hours have the highest influence,
indicating areas where policy and market interventions can be most effective. The entropic analysis has
added an important layer to the simulation by revealing not only which parameters drive the expected
investment value but also which scenarios exhibit greater vulnerability or robustness under uncertainty.

Discussion

The model demonstrates that a VDT is a useful approach for evaluating investment feasibility in com-
plex, uncertain systems with probabilistic and entropic metrics. It enables decision-makers to trace
value creation through a clear causal hierarchy and explores the effects of uncertainty on project out-
comes. However, the analysis remains limited by the availability and accuracy of data input. Parame-
ters such as hydrogen price projections and utilisation rates are based on scenarios and benchmarks,
rather than historical data, which limits the precision and the predictive capacity of the model.

Although the model successfully captures economic dynamics, it has not yet addressed social or envi-
ronmental impacts. In addition, institutional dynamics such as evolving regulations, policy feedback or
stakeholder negotiation processes are not incorporated. It would benefit from integration with dynamic
and participatory modelling approaches.

Conclusion

This research shows that a simulation model based on a VDT offers a structured and transparent
method for assessing the investment performance of Battolyser Systems in the Dutch green hydro-
gen sector. It identifies key value drivers under uncertainty, with hydrogen price, electricity costs, and
operating hours emerging as decisive factors for investment viability.

To increase policy relevance and decision-making support, future development should integrate broader
sustainability metrics, improve the quality of the input data and include dynamic institutional factors.
These steps would improve the contribution of the model to support systemic innovation and adaptive
policy design in energy transition contexts.
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Introduction

This chapter introduces the societal and academic context in which the research is situated. It outlines
the central problem and highlights the relevance to establish the direction of the study. The purpose
of this chapter is to provide a coherent foundation that justifies the need for research and frames the
subsequent chapters.

1.1. Background to the research

The global energy market is undergoing a rapid transformation, driven by climate targets, international
commitments and policy mandates that aim to mitigate climate change. This transition requires pro-
found systemic changes. Renewable energy sources such as solar and wind have immense potential
to decarbonise the electricity sector in the Netherlands (Invest-NL, 2024). However, their inherent vari-
ability depends on weather conditions and creates significant fluctuations in the electricity grid, posing
challenges to stability and efficiency (Alam et al., 2020).

Hydrogen offers a promising solution to balance the volatility of renewable electricity generation. As
a flexible energy carrier, hydrogen enables the decoupling of electricity production and consumption
through storage or conversion. In particular, electrolysers create potential as they can convert excess
renewable electricity into hydrogen to support grid stability and sector coupling (Mulder et al., 2017).
According to the Draghi report on the future of European competitiveness, hydrogen is essential to
Europe’s industrial decarbonization strategy (Draghi, 2024). The report emphasises the importance of
large-scale investments in green hydrogen production, which is critical to reduce the dependence of
Europe on imported fossil fuels and improve long-term energy resilience (Draghi, 2024). In line with
this strategy, by 2030 the Netherlands has committed to developing a 3 to 4 GW electrolyser capacity
under the Dutch Climate Agreement (Invest-NL, 2024).

Despite these ambitions, implementation towards this goal lags. To date, only one major Final In-
vestment Decision (FID) has been reached in the Netherlands, while many other projects face de-
lays (Invest-NL, 2024). Without decisive action, the country risks missing its targets, which can reflect
broader stagnation in the energy transition and its supporting market mechanisms (Mulder et al., 2017).

Invest-NL, a national Dutch investment institution, plays an essential role in overcoming these barri-
ers by combining financial instruments with strategic alignment with social and policy goals (Invest-NL,
2024). As part of its mission to stimulate innovation-driven transitions, Invest-NL acts as a market-
shaping intermediary by deploying derisking capital in areas where private financial markets have yet
to mature. Such interventions are critical in bridging the gap for high-potential but unproven technolo-
gies. Consequently, they support system innovations that may offer significant long-term societal and
environmental benefits.

Concerning the trust and interest in the potential of the Dutch hydrogen market. Invest-NL has invested
in Battolyser Systems (Origins, 2024). Battolyser Systems is an emerging dual-purpose technology that
integrates electricity storage and hydrogen production. Battolyser Systems secured €30 million in Se-
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ries A funding from investors such as Global Cleantech Capital, Innovation Industries and Invest-NL
(Origins, 2024). This substantial financial backing underscores the confidence in Battolyser technol-
ogy as a viable solution for green hydrogen production. Furthermore, the company has a €40 million
financing agreement with the European Investment Bank (EIB), further solidifying its role in the Dutch
hydrogen transition (Origins, 2024).

Battolysers offer a solution to important grid problems, such as the limited storage capacity of low-
voltage networks, high reinforcement costs and the instability caused by distributed renewable genera-
tion. (Tomar et al., 2021). Battolyser technology is designed to dynamically switch on and off following
intermittent renewable energy availability. This flexibility allows for optimised hydrogen production while
mitigating the risk associated with fluctuating energy prices. So, the combination can reduce the pres-
sure on the electricity grid by enabling a more flexible and localised energy management (Mulder et al.,
2017). Moreover, in contrast to separate battery and electrolyser units, such systems can operate more
continuously over time, which is often used less consistently.

However, their deployment is hindered by technical, financial and regulatory barriers, underscoring the
need for a systemic and multi-actor approach (Mulder et al., 2017). One of the core barriers is the eco-
nomic viability. Electrolysers remain capital-intensive, with current capital expenditures ranging from
€800 to €1200 per kW for PEM and alkaline technologies (International Renewable Energy Agency,
2022). In addition, electricity costs often consist of 50-70% of the total costs of hydrogen production,
making profitability highly sensitive to market dynamics (Vartiainen et al., 2020). The Levelized Cost of
Hydrogen (LCOH) for green hydrogen is still higher than that for grey (fossil-based) hydrogen, which
limits competitiveness in the absence of strong carbon pricing or specific subsidy mechanisms. (Hy-
drogen Council, 2021).

Moreover, coordination of the hydrogen policy network is a key challenge in the hydrogen economy.
Ensuring the participation and commitment of key actors as the industry, investors and regulators is dif-
ficult. Many policy dialogues have the potential to foster iterative learning and strengthen credibility and
decision making, but lack continuity and institutional grounding (Lee, 2023). The development of this
flexibility in the grid and large-scale engineered systems involves complex coordination of objectives
across stakeholders. An effective intervention design must reduce investor risk in the short term while
fostering long-term cost reductions through learning effects and economies of scale (BloombergNEF,
2023). Conventional approaches, which decompose stakeholder requirements into isolated compo-
nents, often fail to capture systemic interdependencies and lead to misalignment between local and
global objectives.

As with any new market, the value chain for green hydrogen is not fully structured. Building a robust
hydrogen value chain in Europe is not only important for reducing greenhouse gas emissions here, but
also for ensuring European energy security and preserving European competence within clean energy
technologies (Jensen, 2024). Adopting a transdisciplinary approach is critical to aligning local initia-
tives with broader sustainability objectives. Such approaches reveal synergies and trade-offs between
localised and system-wide actions, enabling informed and coordinated efforts towards grid stability and
market development (Bandari et al., 2024).

The successful implementation of green hydrogen technologies requires navigating through multiple
barriers, which underscores the current uncertain operational environment. To address these limi-
tations, a value-driven design (VDD) approach is necessary, which integrates decomposable value
functions to represent stakeholder preferences and system-level trade-offs (Sherafat & Elahi, 2018).
This facilitates decision-making that aligns technical feasibility with financial performance and societal
objectives. The underlying influence and impact can be measured by indicating the value drivers of
a system performance (Matthies, 2024). The goal is to balance individual objectives with the overall
system goals (Sherafat & Elahi, 2018).

1.2. Research gap

The transition to a low-carbon economy in the Netherlands requires a large-scale deployment of green
hydrogen, a critical energy carrier produced by electrolysis. However, the widespread adoption of
electrolyser technologies faces significant barriers, including high capital costs, fluctuating external
factors such as electricity prices and uncertain policy incentives.
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Existing policy frameworks aim to support the transition, but their effectiveness is uncertain in the face
of volatile market conditions and evolving technological environments. The lack of robust policy de-
sign that accounts for uncertainty in future energy markets, demand for hydrogen and the stability of
subsidies raises the risk of suboptimal investments and inefficient use of public funds. This uncertainty
and risk continue to hinder investment decisions, underlining the need for structured analytical frame-
works that support robust decision-making in early-stage markets. The proposed research question is
therefore:

How can a value driver tree-based simulation model be designed and applied to the investment
performance of Battolyser Systems under uncertainty in the Dutch green hydrogen market?

1.3. Research objective

This research uses the Value Driver Tree (VDT) methodology to structure the analysis of how key
business and technical drivers influence system performance, financial viability and energy system
resilience. The VDT model provides a transparent and hierarchical framework to quantify relationships
between variables and assess trade-offs between complex socio-technical systems (Cheung et al.,
2010). By structuring these drivers, the VDT allows for a clearer understanding of the direct and indirect
relationships among cost culture, generation of revenue and external market conditions. This helps
identify which drivers require intervention to optimise the overall profitability (Matthies, 2024).

Through a VDT framework, this study investigates the systemic value proposition of such technologies
and explores the conditions under which they can contribute to an efficient, scalable and resilient energy
transition. Through this alignment of individual and systemic value creation, the study seeks to enhance
the integration of renewable energy technologies, improve grid resilience and accelerate the energy
transition in the Netherlands. This approach underscores the importance of balancing innovation with
risk management to achieve a sustainable and robust energy future.

1.4. Relevance

From a societal perspective, the rapid deployment of renewables is necessary to meet international cli-
mate agreements such as the Paris Agreement. However, the inherent intermittent and decentralised
nature of wind and solar power poses significant challenges to the stability, reliability and affordability
of future energy systems (Alam et al., 2020). These challenges are not only technical but also socio-
economic, affecting energy justice, industry competitiveness and public confidence in the transition
(International Renewable Energy Agency, 2020). Supporting technologies, such as electrolysers, Bat-
tolysers and smart grid integration, play an important role in mitigating these risks, but require targeted,
inclusive and timely investment strategies.

From a scientific perspective, this research contributes to a better understanding of how value is created,
transferred and transformed within socio-technical energy systems. Existing research often focuses
on techno-economic optimisation or policy alignment in isolation. This study fills a knowledge gap
by operationalising Value-Driven Design (VDD) within a Value Driver Tree (VDT) framework, which
enables the structured decomposition and quantification of value creation pathways. This extends
recent work on causal modelling and systemic value trade-offs in uncertain multi-actor environments,
such as Akkiraju and Zhou, 2012; Collopy and Hollingsworth, 2011; Matthies, 2024.

The research is specifically aimed at uncovering the dynamic interaction between the underlying techni-
cal, financial, infrastructural and regulatory value drivers in the deployment of green hydrogen technolo-
gies. By simulating and analysing these interactions, the research supports the development of more
robust and adaptive decision-making models for policymakers, investors and technology developers.

This approach aligns closely with the objective of the Engineering and Policy Analysis (EPA) programme
to address ‘wicked problems’: complex societal challenges characterised by dynamic feedbacks, stake-
holder conflicts and high uncertainty. The empirical focus on the Dutch hydrogen sector and Battolyser
Systems provides a current example of a socio-technical innovation caught between high system rele-
vance and institutional misalignment. Understanding how such technologies can be better supported
through integrated value modelling contributes directly to both policy learning and transition manage-
ment.
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Finally, this research improves the ability of the modelling system to generate insightful and stakeholder-
relevant results. By combining system dynamics with value-based analysis, the VDT model developed
in this research enables users to visualise, quantify and simulate how value flows and bottlenecks arise
across technological, economic and regulatory layers. As a result, it supports more transparent and
evidence-based designs of investment and policy strategies in emerging markets with high levels of
uncertainty.

1.5. Structure of the report

Now that the research statement has been established, the report is structured to provide compre-
hensive answers to the central question. It begins with the theoretical framework (chapter 2), which
introduces the value driver tree approach and reviews the relevant literature on investment decisions
and specifics of Battolyser Systems. This is followed by the methodology section (chapter 3), which
states the subquestions and outlines the research design, data and explicitly defines the research
boundaries.

Then, the report transitions to applied analysis, which begins with the identification of the value drivers
(chapter 4) and states the conceptualisation of the value driver tree and explores key concepts and
relationships. This is followed by the declaration of the uncertainty and boundary conditions (chapter 5),
development of the simulation model (chapter 6) and then by the results (chapter 7). The report ends
with the discussion of the findings (chapter 8) and conclusions (chapter 9), to ensure that each side of
the research is addressed. Finally, the overall research is reflected (chapter 10)



Theoretical framework

This chapter reviews the relevant academic literature to define key concepts, explore theoretical discus-
sions and identify knowledge gaps. Based on this critical review, it develops a conceptual or analytical
framework that informs the research design and guides the analysis. The theoretical foundation serves
as a lens through which the research problem is understood and interpreted.

2.1. Defining key concepts

For theoretical understanding, the specifications of the concepts in the system context need to be
clarified. A concept-based search strategy was used to ensure a comprehensive and focused review
of the literature. Four main concept clusters were defined based on the theoretical focus of the study:
value modelling, investment in uncertainty, simulation for decision support and green hydrogen systems.
For each cluster, relevant keywords were identified and combined using Boolean operators (AND, OR)

to balance breadth and specificity. The concepts with the corresponding keywords for the search words
are stated in Table 2.1.

Table 2.1: Search strings per concept cluster

Concept cluster Search string (Boolean logic)

Value driver modelling ("value driver tree” OR "value driver analysis” OR "causal value modelling”) AND
("investment” OR “performance analysis” OR "simulation model”)

Simulation for decision sup- ("simulation-based decision making” OR “decision support model” OR "system
port dynamics” OR “stakeholder-informed simulation”) AND (’policy analysis” OR
"technology investment” OR "hydrogen market”)

Investment under uncer- (“investment decision-making” OR ’strategic investment”) AND (uncertainty”

tainty OR ’risk assessment” OR "market volatility” OR "sensitivity analysis”)
Green hydrogen systems ("green hydrogen” OR "renewable hydrogen”) AND ("Battolyser” OR “electrol-
yser investment” OR "Dutch hydrogen market” OR "hydrogen technologies”)

This approach allowed interdisciplinary literature searches while maintaining relevance to the research
question, further specifications are given in Appendix A. The frequency of key indicators within the
titte and abstract demonstrates that this is an emerging but increasingly relevant topic in research. Its
relevance is determined based on three criteria: the year of publication, the utilisation of published
academic articles that are peer-reviewed and the volume of citations and references.

This literature review synthesises research contributions related to the Value Driver Tree (VDT) model,
its applications and role in optimising performance. The VDT has gained significant attention as a tool
for enhancing business data analysis, performance measurement and decision-making. In addition, it
explores the integration of robustness in decision-making with VDTs to address uncertainty in invest-
ment planning. The foundation is laid for the uncertain environment within the investment performance
in the hydrogen sector. Last, this is specified towards the technological development of Battolyser
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Systems.

2.2. Value Driver Tree model

VDTs in systems engineering have evolved from the concept of Value-Driven Design (VDD), which
emerged as a movement to enhance systems engineering processes, such as in the aerospace sector
(Collopy & Hollingsworth, 2011). VDD employs economic theory to enable rational decision-making
and optimise large system designs (Cheung et al., 2010).

VDTs serve as conceptual models for structuring causal relationships among business performance
indicators. Akkiraju and Zhou (2012) describes VDTs as abstract, indicator-based frameworks that
facilitate financial and operational assessments. By mapping key value drivers and their interdepen-
dencies, VDTs enable businesses to visualise and quantify performance metrics effectively (Matthies,
2024). Grimaldi et al. (2013) emphasises the importance of selecting relevant value drivers, defining
strategic importance and interrelationships when constructing VDTs and constructing indices to moni-
tor performance. VDTs provide a structure for modelling accounting and financial data in the form of
a logical system by enabling a strong data-driven statistical mapping of the systemic cause-and-effect
relationships of business models (Wobst et al., 2023).

2.2.1. Current developments VDT in performance management

Some selected studies are examined to develop a Value Driver Tree framework to measure financial
performance in complex systems. The studies cover multiple industries and methods, offering perspec-
tives on how value is created and measured in complex technological systems. The literature trend of
the framework is analysed with the papers chosen to be relevant for the scope of this research.

VDTs have been applied in outsourcing Information Technology services, to measure the quality of
service solutions using ten dimensions and associated metrics (Akkiraju & Zhou, 2012) and manu-
facturing performance evaluations (Waldron, 2010). Despite their widespread use, there is a lack of
systematic and unified approaches to VDT modelling (Matthies, 2024). Recent research has been fo-
cused on developing a unified approach to VDT modelling, proposing a classification system with 34
model constructs across three dimensions. Furthermore, researchers have explored the integration of
VDTs with optimisation techniques to enhance decision support in areas such as sales and operations
planning, emphasising the importance of working capital management as a key value driver (Hahn &
Kuhn, 2011b).

In addition, the concept has been adapted to evaluate the engagement of stakeholders in mining
projects through the development of a Value Analysis Tree framework, which quantitatively combines
factors affecting the perceptions of stakeholders (Manjengwa et al., 2023). Analysis of value drivers’
strength is crucial for understanding their influence on free cash flow generation, with research indi-
cating that operating costs and interest expenses have a more significant impact than sales revenue
(Akalu, 2002).

The value driver tree in performance management has its roots in the evolution of strategic manage-
ment frameworks. The Balanced Scorecard, introduced by Kaplan and Norton in 1992, addressed
the limitations of only financial measures by incorporating non-financial indicators to provide a more
comprehensive view of organisational performance (Kaplan & Norton, 2001). This approach has em-
phasised the importance of intangible assets and their role in value creation. Building on this concept,
the knowledge value chain framework has emerged, linking knowledge management initiatives to busi-
ness performance through strategic, managerial and operational dimensions (Carlucci et al., 2004).
The value creation map further refined this approach by visualising both direct and indirect dependen-
cies among organisational resources, particularly intangible assets, in the value creation process (Marr
etal., 2004). These innovations in performance measurement, including economic value measures and
non-financial indicators, have become increasingly prevalent in both the private and public sectors.

2.2.2. Theoretical hierarchy of value drivers

The VDT offers a systematic framework for organising and analysing factors that influence the key
performance indicators to be analysed. This crucial part of building the model guides the construction
of the VDT. Figure 2.1 shows the conceptual construction of a tree illustrating the causal relationships
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obtained from Matthies, 2024.

Conceptual Construction Content

@ @ @

Figure 2.1: Conceptual construction of the VDT framework (Matthies, 2024)

In the conceptual framework, a tree with sub-trees is illustrated, which contains the standardised nota-
tion of elements by Matthies, 2024, containing nodes connected with edges. The VDT is represented
as a weighted directed graph G = (N, E), where N is the set of value drivers (nodes)and E C N x N
is the set of directed edges linking these drivers (Matthies, 2024).

An edge e(n., n,), where n.,n, € N, is directed from n. (child) to n,, (parent), indicating that the metric
at n. influences n,. Each edge e(n., n,) is associated with a weight w(e), which represents the degree
of influence n. has on n,. This weight quantifies the performance improvement in n,, resulting from a
unit improvement in n.., assuming that other factors remain constant (ceteris paribus) (Matthies, 2024).

The hierarchy of the tree is stated with different levels. The top element is called the root node, inter-
mediate stated nodes are internal nodes and the bottom are called the leaf nodes. The objective of
the VDT is to map the impact of lower-level operational metrics (near leaf nodes) on key performance
indicators (near the root of the tree).

The VDT methodology has been widely used to examine the key factors that influence shareholder
value, which branch out into primary drivers such as revenues, costs and capital efficiencies (Akkiraju
& Zhou, 2012). Each of these drivers is further broken down into operational levers that influence them.
Although this is the most common application of a VDT, the root can be positioned at any level and can
extend as deep as needed to generate insights for a given strategic scenario (Akkiraju & Zhou, 2012).

2.2.3. VDT as decision making model

With the hierarchical theory, the literature has demonstrated the role of VDTs in the structuring of com-
plex relationships between financial and operational drivers. Horak et al. (2017) explored enhance-
ments in VDTs for business data analysis, focusing on their application in decision making. Matthies
(2024) developed a classification framework to standardise VDT modelling, improving its usability in
business environments. Klauck (2015) applied VDTs in enterprise simulations, showcasing their effec-
tiveness in predictive analytics and scenario planning.

Korovkina and Fay (2014) justified IT investments using business driver trees, highlighting their role
in aligning technology decisions with strategic goals. Similarly, Butzmann et al. (2015) discussed the
use of in-memory column stores to support generic business simulations based on VDTs, showcasing
improvements in computational efficiency. Hahn and Kuhn (2011a) optimised value-based performance
indicators within mid-term sales and operations planning, underscoring the importance of linking VDTs
to strategic objectives. Walters et al. (2020) elaborated on the concept of strategic value builders in
performance management, emphasising VDTs as a core analytical tool.

Yiksel et al. (2016) applied performance driver analysis to determine competitive power, reinforcing the
use of VDTs in benchmarking and business intelligence. Visani et al. (2023) utilised machine learning
to identify key business value drivers, advancing data-driven performance measurement techniques.
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A value driver is a variable or determinant that influences the value of a performance metric that is to
be analysed (Akkiraju & Zhou, 2012). VDTs are typically modelled as a directed network to have a
systematic framework with a formal representation mechanism that allows for capturing the correlation
relationships among metrics. This enables simulation analysis, allowing decision makers to predict
outcomes as a function of the underlying measures in the network. The modelling dimensions following
the classification of the VDT modelling of Matthies, 2024 are:

« Structural dimension that defines the hierarchical arrangement of value drivers
» Behavioural dimension that captures the dynamic relationships and dependencies among drivers
+ Contextual dimension that incorporates the external factors influencing the value drivers.

2.3. Decision making under uncertainty

Decision-making within grand challenges is critically shaped by how uncertainty is conceptualised and
addressed. The capacity to quantify and manage uncertainty significantly improves the robustness of
analytical models and the effectiveness of derived strategies (Walker et al., 2003).

2.3.1. Framing uncertainty

Decision-making under uncertainty is a central theme in both techno-economic theory and systems
modelling. Uncertainty affects the robustness of analytical models, together with the operation and
effectiveness of the resulting decisions (Kwakkel et al., 2016). A fundamental distinction is made by
Knights et al. (2009), who differentiates between risk and uncertainty. Risk refers to situations where
probability distributions over outcomes are known and quantifiable, while uncertainty describes con-
texts where such distributions are unknown or unknowable. However, this strict dichotomy has been
increasingly criticised for its limited practical applicability, particularly in complex, real-world systems.

Therefore, Bayesian probability theory offers a more flexible framework for conceptualising uncertainty.
Rather than relying on observed frequencies, it interprets probability as a degree of belief, which can be
continuously updated with new information (Caticha et al., 2011). Within this perspective, uncertainty
is not excluded from formal modelling but reframed as a characteristic of limited knowledge that can
be expressed as information entropy. Following Shannon’s definition, entropy quantifies the spread
or diffuseness of a belief distribution (Lesne, 2014). This means that the greater the entropy, the less
confidence in any specific outcome. High-entropy results reveal structural uncertainty, helping investors
identify when further research or de-risking is required before committing capital. In this sense, entropy
becomes a measurable form of epistemic uncertainty.

This research applies the entropic lens within a VDT modelling framework. Each node in the VDT cap-
tures a probabilistic dependency, and the uncertainty propagates through the system using a Monte
Carlo simulation (Papadopoulos & Yeung, 2001). The entropy of the distribution of the resulting out-
comes reflects the degree of epistemic fragility: a narrow distribution suggests a strong confidence in
the expected outcomes, while a broad distribution indicates greater uncertainty (Caticha et al., 2011).
This interpretation aligns with theoretical work connecting the Shannon and Boltzmann entropy, where
the number of logically consistent microstates (or simulated futures) reflects the robustness of inference
(Chakrabarti & Chakrabarty, 2007). Thus, uncertainty is not only acknowledged but actively measured
and embedded in the modelling architecture.

2.3.2. Uncertainty simulation
So, building towards uncertainty simulation, there are more characterisations of uncertainty for sim-
ulation. Ascough et al. (2008) defined the context of uncertainty in environmental decision-making.
This is used to distinguish between knowledge uncertainty, variability and linguistic uncertainty. These
categories are visualised in Figure 2.2.
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Figure 2.2: Description of the uncertainty in environmental management and decision making by Ascough et al., 2008

Within this framework, knowledge and linguistic uncertainties are classified as epistemic and are of-
ten difficult to translate directly into simulation input. Variability, on the other hand, refers to aleatory
uncertainty, which can be expressed as probability distributions and is therefore well suited for formal
modelling techniques such as Monte Carlo simulation (MCS) (Metropolis & Ulam, 1949). MCS is a
widely adopted probabilistic method that uses repeated random sampling to approximate distributions
of outcomes (Papadopoulos & Yeung, 2001). It enables the exploration of a wide range of future sce-
narios, rather than relying on fixed-point forecasts, and offers insight into expected values, variances,
tail risks and confidence intervals.

Despite its established utility, the integration of MCS within causal system representations remains
limited. This research addresses this gap by embedding MCS in a causal VDT structure. By assigning
distributions to uncertain drivers and simulating numerous iterations, decision makers are provided not
only with a projection of expected outcomes but with a structured representation of uncertainty itself.

By implementing the entropic layer in the simulation as an indicator of decision confidence, this can
be a justification for further policy or data intervention. Combined with the transparency of the VDT
framework, this approach enhances both interpretability and decision support under uncertainty. The
entropic approach to uncertainty treats entropy as a measure of confidence concentration rather than
outcome distribution (Williams, 2025). In this context, scenarios with similar expected value but different
entropy levels reveal varying levels of epistemic robustness. This insight can be critical for sensitive
public and private investment decisions.

2.4. Investment decisions in green hydrogen market

Investment decisions in the energy sector face significant uncertainties and risks (International Energy
Agency, 2022). Traditional valuation methods, such as Net Present Value (NPV), real options and Dis-
counted Cash Flow (DCF), often struggle to accommodate such uncertainties (Knights et al., 2009).
On the other hand, Levelized Cost of Hydrogen (LCOH) is a measurement metric mainly used (Inter-
national Energy Agency, 2022), which lacks direct use of policy interventions or market uncertainties.
Techno-economic analysis uses deterministic input and needs clearly stated scenarios (Pfenninger,
Staffel, 2015).

Uncertainty is an inherent feature of complex systems and investment analysis, especially in emerging
energy technologies. The transition to green hydrogen as the cornerstone of future energy systems
has attracted growing interest in both academic and industrial spheres. However, the path to large-
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scale adoption remains uncertain, with multiple challenges identified in the literature. Battolyser has
been highlighted as a potentially transformative solution for flexible energy management and hydrogen
production has been stated in the broader green hydrogen uncertainties. Because the study focuses on
providing insight into what policy instruments and value drivers need to adapt to make the investment
performance interesting, the focus is on uncertain parameters that restrict investments. In Figure 2.3,
a visualisation is made of the results of uncertainties in the hydrogen market itself.

Five uncertainties holding back investment in clean hydrogen

What if there is insufficient production Which technologies will become the
infrastructure or the cost is inhibitive? industry standard, and what if
Can companies access the needed companies slow investment for

financing mechanism? fear of picking the wrong ones?

Hydrogen
What if there is insufficient production Market
or the cost is inhibitive?

What if infrastructure investment is

inadequate or slow?

What if provinces/states, countries,
and international bodies adopt
contradicting regulations?

What if participants slow their outreach or become skeptical of possible partners to protect
their own interests? What if only the biggest and fittest call the shots?

Figure 2.3: Uncertainties holding back investments in green hydrogen (Tuff, G. et al., 2023)

The figure highlights the five uncertainties categorised by demand, technology, regulatory, collabo-
ration and lastly, production and infrastructure (Tuff, G. et al., 2023). These categories reflect the
multidimensional nature of the investment environment, capturing both market-driven variability and
systemic dependencies that influence the performance and viability. In a future powered by renewable
energy, the storage of electricity in batteries and the production of hydrogen fuels will be essential
to ensure sufficient energy availability on both daily and seasonal timescales (Invest-NL, 2024). This
functionality is critical for a successful energy transition.

2.4.1. Specification of Battolyser Systems investment

As introduced in chapter 1, Battolyser Systems integrates an iron-nickel (Ni-Fe) battery with an alkaline
electrolyser in a single device (Mulder et al., 2017). A schematic overview is given in Figure 2.4. The
dual-use combination can reduce the pressure on the electricity grid by enabling a more flexible and
localised energy management.
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Figure 2.4: Schematic overview of functionality of a Battolyser System by Jenkins et al., 2022

Despite the relatively new technology, literature shows some attention towards the Battolyser function-
ality. Mulder et al., 2017 gives a detailed analysis of the charge products, which simultaneously serve
as catalysts for the evolution of oxygen and hydrogen. Continuous storage is possible up to battery ca-
pacity, and beyond that, direct electrolysis occurs. To bring the technology into a broader perspective,
the revenue model of Battolyser systems is stated in Figure 2.5. This hybrid capability is particularly
relevant in the context of an energy system dominated by variable renewable sources, where flexibility
across multiple timescales becomes critical.

Power
P Renewable energy
B sources
Electricity Power
market
Power \ 4
H2
»
Battolyser H2
storage
Network
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Power Power IH2 v
i
Power € Hydrogen market
storage

Figure 2.5: Revenue model of Battolyser Systems made by the author

As the energy transition accelerates, investments increasingly target innovations that operate at the
intersection of multiple value streams such as electricity markets, hydrogen supply chains and system
balancing services, as shown in Figure 2.5. The Battolyser is explicitly identified as a promising hybrid
solution in the European battery strategy, especially for stationary storage (European Commission, n.d.).
The technology fits the system’s needs in the energy transition. The combination of a battery (more
short-term) and hydrogen production (long-term) offers a unique value of a system for renewable energy
grids. The intermittent production from solar and wind demands flexible, scalable storage solutions that
can extract economic value from overproduction. A single system that replaces both the battery and
electrolyser reduces costs and footprint.
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2.4.2. Financial performance metric

Jenkins et al., 2022 shows with a techno-economic analysis that Battolyser Systems can be more
profitable than the standalone electrolysers when integrated with offshore wind farms. Assessing the
financial viability of integrated energy technologies such as the Battolyser requires more than conven-
tional techno-economic analysis. Regarding many financial analyses of the battery and electrolyser
performance, CE Delft used the calculation for the battery business case, given in Figure 2.6. This is
translated into the commonly used metric Economic Value Added (EVA) in performance management
(Patel & Patel, 2012). The calculation focuses on the parameters that eventually determine profitability.

Annual variable eeinente Capital recovery

costs - X factor (CE Delft, 2022)
[€/MWI/year] [SMW) [%lyear]

Profitability = Revenues
[€/MWI/year] [€/MWI/year]

Based on the WACC

The profitability is the The income earned The operating costs, (Weighted Average
yearly earnings per T VAT R including battery The total investment Cost of Capital), this
MW battery capacity. expressed as annual’ operational costs, grid in the battery system factor annualizes the
With a positive value revenue per MW fees, and any and the grid investment costs,
there is a positive battery capacity potential aggregator connection. resulting in the Net
business case. . costs. Current Worth (NCW)
of the investment.
EVA = NOPAT _ Invested capital X WACC
[€/MWI/year] [€/MWI/year] [€/Mw] [%lyear]

Figure 2.6: Business case of battery based on CE Delft, 2022

As mentioned, this kind of technology often faces elevated uncertainty due to evolving policy frame-
works, market immaturity and infrastructural dependencies (Tuff, G. etal., 2023). Consequently, recent
research has emphasised the need for investment evaluation methods that account for dynamic sys-
tem interactions and policy-sensitive drivers. Within this broader perspective, financial viability is not
only a function of cost and efficiency, but also adaptable to uncertain and emerging market structures
(Delft, 2023).

In addition, the technology remains in a Technology Readiness Level 6 (mid-TLR) stage, which requires
further validation of system and market levels (Mulder et al., 2017). Current policies do not include
Battolysers as a distinct technology class. To inform policy development related to strategies, the
focus is on economic modelling of incentives under uncertainties of the emerging market in the future.
So, the next section focuses on the current policy developments related to the market.

2.4.3. Dutch policy instruments for Battolyser Systems innovation

In the Netherlands, the policy framework for energy transition technologies towards particularly green
hydrogen and electricity storage is based on a complex combination of subsidy instruments, regula-
tory structures and long-term infrastructure initiatives. These instruments have been introduced to
facilitate cost-effective decarbonisation and scale up green hydrogen production. As noted in Agora
Energiewende (2021) and Hydrogen Europe (2022), many national and EU-level instruments are de-
signed around the logic of cost competitiveness and large-scale deployment, prioritising CAPEX reduc-
tion and Levelized Cost of Hydrogen (LCOH) benchmarks. Instruments such as the SDE++ scheme
(Stimulering Duurzame Energieproductie en Klimaattransitie (RVO), 2024 and OWE (Scaling up fully
renewable hydrogen production (RVO), 2022) reflect this logic, with strict eligibility criteria based on
cost-effectiveness (€/ton CO2 avoided) and continuous, standardised hydrogen production at scale.

However, this linear policy logic presents significant limitations when applied to emerging, integrated
system innovations such as Battolyser Systems. The Battolyser uniquely combines battery storage and
electrolysis in a single device, allowing it to flexibly alternate between storing electricity and producing
hydrogen based on market conditions (Barton et al., 2020; Mulder et al., 2017). This hybrid functionality
allows the Battolyser to deliver not only hydrogen output, but also system services such as load balance,
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congestion relief, and renewable energy integration (Jenkins et al., 2022). However, these contributions
remain largely invisible to instruments focused solely on LCOH or CO2 abatement costs.

This misalignment between technology characteristics and policy logic leads to structural policy frictions.
From a regulatory perspective, grid access fees and role definitions in the Dutch electricity market
are based on capped actor categories in consumer, producer or storage. The Battolyser performs all
three roles simultaneously, resulting in ambiguous classifications, double-grid charges or the inability to
access balancing market compensation (Swarts et al., 2025). Moreover, the delayed rollout of the Dutch
Hydrogen Backbone as infrastructural uncertainty combined with volatile WACC estimates ranging from
6.4% to 24%, further raises the investment risk profile of such hybrid technologies (Capgemini, 2024;
Detz et al., 2022; PBL Netherlands Environmental Assessment Agency, 2022).

These challenges exemplify what Woolthuis et al. (2005) conceptualise as a system failure. This is a
policy environment that cannot accommodate innovations that deviate from established, linear models
of development. Moreover, they indicate an instrument misfit in which the design of policy tools (e.g.,
subsidies or regulations) is not aligned with the operational characteristics or innovation logic of the
technologies they are meant to support (Borras & Edler, 2014). As the literature on system innovation
has argued, such instruments often fail to stimulate transformative change unless they are designed to
account for multifunctionality, uncertainty and cross-sectoral value creation (Mazzucato, 2018).

Some policy mechanisms are aimed at bridging innovation and market deployment. However, these
remain fragmented, often underscaled and poorly aligned with technologies that do not fit a single policy
domain. An example is the HER+ with competitive grants (voor Ondernemend Nederland, 2025). This
results in missed opportunities for technologies like Battolyser, whose systemic value could contribute
directly to energy transition goals but lacks an institutional standardisation in current policy design.

The following Table 2.2 provides an overview of how current Dutch policy instruments are structured
and how they relate to the needs of Battolyser Systems.
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Table 2.2:

Dutch policy instruments and their compatibility with Battolyser Systems

electricity use and grid
stability

Instrument Policy objective Mechanism Implications for Battol-
yser Systems
SDE++ Cost-effective CO, | Operating subsidy (€/ton | Ignores multifunctionality
reduction via mature | CO, avoided) ((RVO), | and system services.
technologies 2024) The selection is based
only on LCOH integrated
technologies
OWE Scale-up of renewable | CAPEX subsidy up to | Strong preference for
hydrogen production ca- | 80% + optional OPEX | large-scale, single-
pacity support ((RVO), 2022) purpose electrolysers.
HER+ Innovation support within | Competitive grant | Focused on cost-
SDE++ context (€300/ton CO, avoided) | reduction potential. This
(voor Ondernemend | has limited relevance
Nederland, 2025) for system integration or
hybrid business models
Grid tariffs Access and enable | Tariff discounts, curtail- | Triple role (producer,
demand-responsive ment compensation, non- | consumer, storage)

firm contracts

leads to regulatory am-
biguity and potentially
double charges

WACC regulation

Ensure fair returns for in-
frastructure investments

Weighted capital cost es-
timation (Swarts et al.,,
2025)

High risk perception of
novel tech increases cap-
ital cost and undermines
sustainability

Hydrogen backbone

Strategic national hydro-
gen transport and stor-
age network

Public infrastructure
investment, spatial plan-
ning (PBL Netherlands
Environmental Assess-
ment Agency, 2022)

Long-term timeline
(2030+) misaligned with
short-term  deployment
potential of Battolyser
Systems

This misalignment reveals a broader policy gap of mismatch between policy goals (accelerating the
energy transition) and policy instruments (cost-oriented subsidies). This study looks at how this policy
framework can be applied and what gives the desired effects. The deployment in the Dutch market
remains limited, and the potential for targeted research development also remains underused. There-
fore, investigate what instrument design features may enable a more inclusive and effective innovation
environment for system-oriented solutions.

2.5. Knowledge gap from literature

The literature underscores the variety of uses of VDT and its potential in value-based performance
management. VDTs are recognised as effective tools to break down business value into measurable
components (Hahn & Kuhn, 2011b). For this use, VDTs are commonly used in corporate finance to
break down high-level financial performance indicators such as EVA and ROIC. However, this frame-
work is rarely used in combination with simulation or uncertainty analysis in the energy investment
context. The method is strongly focused on understanding the value drivers. This can be applied by
linking investment decision factors to operational, technical and market drivers in uncertain developing
sectors, like hydrogen technology.

Existing studies on green hydrogen economics (Hydrogen Council, 2021; International Energy Agency,
2022) are often based on static scenario analysis or deterministic techno-economic models. These
approaches fall short in capturing systematic uncertainty and the interdependence of boundary condi-
tions that determine investment performance. It is very valuable to create the logic structure of value
creation and systematically prioritise which uncertainties are most important.

Moreover, metrics as LCOH and NPV are unable to support interactive, decision-oriented analyses
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(International Energy Agency, 2022; Knights et al., 2009). The current literature offers tools for uncer-
tainty analysis and financial modelling separately. An integrated approach that combines the intuitive
structure of VDT with formal simulation and prioritisation techniques is largely missing.

This knowledge gap is seen as a potential approach to VDT integration with decision support, especially
in the context of emerging technologies such as Battolyser Systems that operate in dynamic policy and
market environments. So, this research aims to explore their integration with an advanced decision-
making framework for a novel approach to creating insights on value drivers. This allows decision-
makers to link strategic objectives with concrete levers for improvement.



Research approach

This chapter represents the approach to conducting the research, together with the formulation of the
sub-questions. The formulated sub-questions will each contribute to eventually answering the main
research question. For answering the questions, the selected methods and tools are listed. The se-
lection is based on the knowledge of what data, simulation model and analysis are needed to perform
adequate research.

3.1. Research questions

As contextual explained in the previous chapter 1 and further revealed in chapter 2, the study prioritises
improving the model system to generate insights that support evidence-based decision making. There-
fore, it will not be a mysterious black-box system but will create transparent insights into relevant causal
relations that create value. This is highly relevant for policy making. The aim is to demonstrate that
a comprehensive understanding of the system’s uncertainties and value drivers, along with their ap-
propriate modelling, can significantly enhance decision-making processes by breaking down the value
creation process into its underlying operational and financial drivers. Thereby, the focus relies on inter-
disciplinary insights from different dimensions such as the technical, economic and operational sides.
Using VDT models, the study aims to visualise and quantify relationships in a complex system with
multiple variables and stakeholders.

The main research question is stated as:

How can a value driver tree-based simulation model be designed and applied to the investment
performance of Battolyser Systems under uncertainty in the Dutch green hydrogen market?

From the main question, the following sub-questions have been devised to answer every part of the
main question.

+ SQ 1. What are the key value drivers influencing investment decisions of Battolyser Systems and
how can they be structured in a value driver tree?

« SQ 2. What are the uncertainties that affect the behaviour of these value drivers?

» SQ 3. How can a simulation model be designed based on the value driver tree to capture invest-
ment performance under uncertainty?

* SQ 4. What insights does the simulation model provide about the most influential and uncertainty-
sensitive value drivers?

3.2. Research design

To obtain the research objective, a model-based design approach is created that consists of six sequen-
tial phases: problem formulation, value driver tree formulation, uncertainty identification, model design
and formalisation, model experimentation and analysis, and model evaluation and reflection.

16
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Phase 1: Problem formulation

To begin, the research is focused on problem formulation. This initial step ensures that the research is
grounded in the current academic field and that existing methodologies, frameworks and studies are
considered for the development of the new research. The results are shown in Chapter 2. Literature
review and desk research are used to gather existing knowledge, insights and theoretical foundations
relevant to the study.

Phase 2: Value driver tree formulation (SQ1)

To go from theory to modelling, it is necessary to first understand and structure the system. The second
phase of the research consists of identifying the variables that influence the key indicator of investment
decisions. It combines the identification and decomposition of value drivers into the value driver tree
structure. This sets the foundation for further research analysis.

This phase aims to answer the question: SQ 1. What are the key value drivers influencing investment
decisions of Battolyser Systems and how can they be structured in a value driver tree?

This is where the Value Driver Tree is constructed by using the principles of systems thinking, decom-
posing the investment environment into causal relationships. Followed by the method constructed by
Matthies, 2024. It starts with the conceptualisation of the performance metrics and output of the VDT
tree. The structured visualisation tool breaks down high-level financial outcomes into their underlying
drivers, helping to understand how specific variables influence value creation. By linking operational
metrics with financial performance, it enables strategic decision-making and prioritisation of key levers
(Kaplan & Norton, 2004). Next, the mechanisms of the relationships of the drivers are obtained. In this
step, the operation of the model is described with logic, equations and mechanisms. The main focus
is on the mathematical relationships.

The tools used for this question are Draw.io to visualise the relationships and then the spreadsheet
of Microsoft Excel to further specify the statistics, operators and quantification of the variables and
relationships between them. Sensitivity analysis is performed on the value driver tree model to find
critical parameters.

Phase 3: Uncertainty specification (SQ2)

In line with the literature on decision-making modelling in an uncertain environment, the external con-
ditions need to be identified. The key uncertainties related to the identified value drivers and that fall
within the scope are defined (Gassmann et al., 2014). The system scoping phase is focused on the
key uncertainties, boundary conditions, strategies, relationships and objectives. This is crucial to the
research as it ensures that relevant factors are identified.

With this, the phase aims to answer: SQ 2. What are the uncertainties that affect the behaviour of these
value drivers? This sub-question focuses on identifying external conditions and sources of uncertainty
and risks that influence the value drivers that will be used in the analysis. The conditions are structured
with suitable framing.

It starts with identifying these factors on the basis of relevance and plausibility, forming input for the
simulation. Through stakeholder analysis, the research aims to incorporate multiple perspectives and
objectives and come to an uncertainty classification. Uncertainties towards the model are classified
and gathered using desk research.

Phase 4: Model design and implementation (SQ3)

Building on the structure of the system stated in phase 2 and combining with the uncertainties defined
in phase 3, this phase translates the VDT into a computational model. The logic followed from value-
based management theory to build the financial backbone of the model.

This phase results in a functioning simulation tool that can be used to explore the impact of uncertainty
on investment performance to answer the question: SQ 3. How can a simulation model be designed
based on the value driver tree to capture investment performance under uncertainty?

The objective is to build a simulation model that integrates the value driver tree with uncertainty mod-
elling to assess investment outcomes. It explains the modelling, integration of the tree and how un-
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certainty is implemented. The model is created into an exploratory system tool based on the XLRM
framework by Jafino et al., 2021 given in Figure 3.1. This structure allows for the explicit identification
of exogenous uncertainties (X), policy levers (L), modelling relationships (R) and performance metrics
(M), creating a coherent interface between stakeholder input, policy instruments and model outputs. To
eventually be able to quantify it into the model mechanisms.

Policy levers (L)

External factors (X) Performance metrics (M)

Relationships in the system (R} >

Figure 3.1: XLRM framework based on Jafino et al., 2021

This is where the combination of the structure mechanisms based on phase 2 is combined into the
uncertainty environment stated in phase 3. Then, the uncertain factors of the policy framework are
stated for the policy analysis.

An important part of the model implementation step is all about the implementation of the software.
The model is implemented in Python, due to its flexibility, reproducibility and availability of scientific
computing libraries. The modularity of the code supports transparency and future reuse.

Phase 5: Model experimentation and analysis (SQ4)

This part of the analysis focuses on visualisation and analysing the results of the experiments done
with the model. The analysis is done in three sub-phases: baseline analysis, uncertainty integration
and policy lever integration. The final statement on data input and outputs with fixed or distributed data
is stated and also the ranges or probability distributions are defined.

Baseline analysis

The baseline analysis is to ensure that the model is reliable and ready for scenario exploration and
decision support. Verification ensures that the model works as intended, both logically and technically.
Using sensitivity analysis, the model is tested to identify which input variables have the greatest influ-
ence on the outcomes. This helps confirm the validity of the value driver relationships and prioritises
areas where accurate data collection is most critical.

Structural validation is performed to check whether the value driver tree accurately reflects the causal
relationships and hierarchy of variables that drive investment performance. The logic follows guidelines
from systems modelling, ensuring that no key elements are left out and that relationships between
drivers are theoretically grounded.

Sensitivity analysis evaluates how the variation in input variables affects a particular outcome, helping
to identify which assumptions have the greatest influence on model results. It is especially useful in
early-stage or uncertain projects to prioritise data collection and risk mitigation efforts (Saltelli et al.,
2008). In the context of energy systems, sensitivity analysis can reveal the most influential parameters
and therefore the main drivers. For example, what the effect of electricity prices or electrolyser efficiency
is on the financial viability of hydrogen production (Pfenninger & Keirstead, 2015). The goal is not only
to test robustness but also to inform policymakers and investors where leverage points exist.

Uncertainty integration

Simulation runs are done to identify patterns or trends in the performance based on various inputs
and outputs of the model. Different ranges of uncertainties are simulated as input data. The resulting
spread in performance outcomes reveals under which conditions the investment is viable, resilient or
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fragile. The data distributions model dynamic and realistic scenarios for the strategies, enriching the
robustness of the simulations.

The distribution based on relevant studies is taken into account where possible. With the use of Monte
Carlo simulations, different runs across combinations of uncertain inputs are executed, and then the
distributions of the outcomes are analysed.

Monte Carlo simulation is a probabilistic method that uses random sampling to account for uncertainty
in input variables, producing a distribution of possible outcomes rather than a single point estimate.
By including uncertainty, the risks of the drivers can be examined. This approach is particularly valu-
able in complex systems with multiple interacting uncertainties (Metropolis & Ulam, 1949). In energy
investment projects, Monte Carlo simulations can quantify the probability of achieving desired financial
returns under variable market and policy conditions (Triick et al., 2011). Figure 3.2 shows the steps for
the Monte Carlo simulation.

Input data & 1 2 3
parameters | ‘ ‘ ‘
Assumed
distributions .
Take random X1 X2 X3
sample
Repeat a
large number
of times
]
Obtain model P=p(X1,X2.%5 ) J;
output J
fip) L !
Repeat process a < ="
large number of ) )
times to generate w—p [ = [ f(p)dx,dx,dx, -
output distribution

P

Figure 3.2: Monte Carlo Simulation method by Johnson, 2022.

First, the input data and parameters are defined, which is done by building on the previous phases
and are structured in the uncertainty environment of the system. For each uncertain input, an appro-
priate probability distribution was assigned. This can be normal, triangular or uniform distributions.
This depends on the availability of the data and the nature of the variable. For the simulation execu-
tion, random sampling techniques are used. The resulting output distributions can be analysed using
descriptive statistics (mean, median and ranges) and visualised through box plots and cumulative dis-
tribution functions.

Policy levers

At last, as designed in phase 3, policy interventions are implemented in the model. The robustness
of policies is compared across the stated uncertainty space to eventually answer the sub-question SQ
4. What insights does the simulation model provide regarding the most influential and uncertainty-
sensitive value drivers? This simulation supports the understanding of how to consider the outcomes
in the wide range of uncertainties included. The analysis is done using the Python 3.11 programming
tool in Visual Studio Code.

Phase 6: Model evaluation and reflection
This phase closes the research loop by evaluating what the model adds and what it leaves open, in
theory and practice.
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Model evaluation

The final phase critically evaluates whether the simulation model, built around the VDT and the indica-
tors expressed as value drivers, is valid, relevant and usable within the context of investment decision
making in the Dutch green hydrogen sector. The model is evaluated not only as an analytical artifact,
but also as a decision-support tool. The evaluation begins with a high-level assessment of whether
the model meets its intended purpose: to support investment decisions under uncertainty by providing
insight into the influence of key boundary conditions on value creation.

Limitation analysis and future recommendations

A critical reflection on the limitations of the model is essential to transparently communicate its scope
and boundaries. The insights are categorised by empirical, conceptual and technical limitations. Rec-
ommendations are made for future improvements, including integration of other methods, dynamics or
participatory decision applications.

The methodology can be seen in the overview given in Figure 3.3. Each phase is stated with the
corresponding step, method and research question.

Phase 1: ‘ System scoping }
Problem formulation Literature review
A Decomposition value drivers ]
V;S:sderis.er Model - [ Value Driver Tree modelling ] 8
formulation onceptualisation | Root node Identify Breakdown Quantify Assign Construct
- high-level - ; . metrics for hierarchical
selection . drivers relationships
drivers [measuremen structure
Phase‘3: System environment uncertainty determination Stakeholder relevance
Uncertainty
specification Desk research Stakeholder analysis
Phase 4: Simulation framework Model experimentation set up
Model design and \
implementation Software implementation J XLRM framework
Phase 5:
Model Baseline analysis Uncertainty integration Model intevention

Policy analysis

experimentation Sensitivity

Model evaluation

Phase 6: ‘
and relfection

Model evaluation J ‘ Limitations and future recommendations }

Figure 3.3: Research flow diagram

3.3. Criteria of the research approach

To ensure both analytical quality and practical relevance, this research applies a structured set of eval-
uation criteria that align with established practices in system modelling and policy analysis. These
criteria serve as guiding principles throughout the modelling process. This provides a foundation for
later evaluation from conceptual design to simulation and interpretation.

SQ1

SQ2

SQ3

SQ4
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First, the design should be scientifically built and make use of established frameworks in systems think-
ing, value-driven management and decision-making under uncertainty. Second, the research phases
should have a clear and logical structure. This ensures methodological transparency and coherence
between the modelling steps. Also, reproducibility is prioritised through the use of documented as-
sumptions, data structures and modular Python code.

The ability of the simulation to model uncertainty using sensitivity analyses and Monte Carlo techniques
is crucial to capture realistic variability in outcomes. Expected contributions of the research include iden-
tifying critical value drivers, quantifying their sensitivity to uncertainty and supporting strategic decision
making. Furthermore, the approach will be assessed on its ability to communicate results effectively,
both visually (value drivers and simulation output) and statistically. These criteria are followed through-
out the development of the model and contribute to reflecting the final evaluation phase.

A key requirement is that the model must explicitly integrate three core dimensions of the model: the
structural, behavioural and contextual dimensions (Matthies, 2024). These dimensions reflect specific
sources of uncertainty and influence on policy performance.

» The model must accurately reflect the causal architecture of the system, including the interdepen-
dencies between technical components and value drivers. This is implemented through the use
of a VDT, where all output variables are decomposed into their underlying causes.

» The model must include behavioural assumptions regarding stakeholder responses, technology
adoption or investment decisions. These are incorporated as probabilistic or policy elements.

» External conditions such as regulatory frameworks, market volatility or policy misalignment are
treated as contextual scenario uncertainties. These influence the feasibility and performance of
the system.

To operationalise these dimensions and ensure methodological robustness, the following evaluation
criteria are applied in Table 3.1.

Table 3.1: Evaluation criteria for the research approach

Criterion Description

Theoretical grounding The model builds on established frameworks from systems thinking,
value-based modelling and decision-making under uncertainty.

Dimensional completeness Structural, behavioural and contextual elements are explicitly repre-
sented to capture complexity.

Methodological structure The research follows a logically phased process from problem framing
to simulation and policy testing, with transparent transitions.

Reproducibility All assumptions, data structures and modelling steps are documented
and implemented in modular Python code.

Uncertainty modelling The model applies Monte Carlo simulation and sensitivity analysis to
propagate and explore input variability and epistemic fragility.

Interpretability Results are communicated through value driver visualisations, statistical

summaries (e.g., percentiles, entropy) and scenario descriptions.

These criteria not only ensure scientific and technical quality but also improve the relevance of the
model for strategic and policy decision-making. They are applied iteratively during the research process
and provide a foundation to reflect on the robustness, generalisability and communication value of the
model in the final evaluation phase.

3.4. Limitations of the research approach

When stating the research method, some limitations need to be taken into consideration. First, the
research relies on simulations and data distributions, which assume that the underlying data is accu-
rate, complete and representative. However, the availability of up-to-date and high-quality data can be
constrained. If data inputs are unreliable or incomplete, the results of simulations and trade-off analysis
may be biased or less reflective of real-world conditions.
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Also, while Monte Carlo simulations and sensitivity analyses are valuable for exploring future uncertain-
ties, they often rely on certain assumptions about the distributions and behaviour of key variables. This
can oversimplify or bias real-world processes. The assumptions made in the construction of the value
driver tree model could limit the model’s ability to capture all relevant variables, especially those that
could be less quantifiable or more context-specific. Similarly, defining relationships between variables
might miss emergent properties that only become apparent in more nuanced models.

Biases in stakeholder selection could limit the comprehensiveness of the scoping phase, potentially
leaving out key uncertainties or strategic considerations that might be important for a full understanding
of the problem. That is why the participatory scoping is mainly focused on research of literature and
current reports to include a broader perspective on the scoping phase.

Modelling with uncertainty and data distributions may still fully capture the dynamic nature of the sys-
tems, especially in fast-evolving areas like technology and policy. Thus, the research is limited by its
ability to account for unexpected developments or sudden changes that could significantly alter the
effectiveness of the proposed strategies.

Monte Carlo simulations and large-scale data analysis require substantial computational resources. If
the resources available for the research are limited, the scope of the simulations may be constrained,
or the models may be simplified in ways that reduce their precision or accuracy. Larger and more
complex simulations could potentially improve the robustness of the results, but this requires significant
computational power and time.

Finally, the assumptions underlying both the sensitivity and trade-off analyses may become outdated
as policies and technologies evolve. For example, new government regulations or technological ad-
vancements can shift the balance of trade-offs or change the effectiveness of certain strategies over
time. Thus, the research might be limited by the speed of change in policy or technological landscapes.

Recognising these limitations at the beginning has shaped the research design in meaningful ways.
Rather than seeking to eliminate uncertainty, this study embraces it as a fundamental characteristic of
complexity-based strategic decision making. By explicitly incorporating assumptions, data constraints
and evolving policy conditions into the modelling framework, the research aims to build a flexible and
transparent foundation for analysis.

The integration of Monte Carlo simulation, a causally structured Value Driver Tree and the framing of
structural, behavioural and contextual into the model enables it to remain adaptable and relevant. In
doing so, this research does not claim predictive precision, but rather seeks to enhance the quality of
reasoning and support robust decision making in uncertain and fast-evolving domains.



Model value driver identification

This chapter aims to answer the first sub-question 'What are the key value drivers influencing invest-
ment decisions of Battolyser Systems and how can they be structured in a value driver tree?’. To obtain
the answer, it identifies and structures the key variables that affect investment performance. First, a
theoretical decomposition of the value drivers influencing investment performance and the operational
context is given. Then, the hierarchical structure is further specified in decomposing the system into
value-creating mechanisms and financial relations. The technological and business characteristics of
the selected Battolyser Systems technology provide an empirical basis for the value factors and as-
sumptions used in later simulation phases.

4.1. Model conceptualization

One of the first and most essential steps of a simulation study is the creation of a conceptual model.
There is only limited literature on this aspect, as conceptual models are often seen more as a creative
task than a science. Yet in recent years, more attention has been drawn to the importance of concep-
tualisation (Robinson, 2014). As shown in the research design, the research consists of initiating the
conceptual VDT model that follows the initial problem understanding and is an essential preparatory
step to develop the model design and, eventually, the simulation model.

To establish a conceptual model, one must define the model objectives, followed by the model scope,
and the content of inputs and outputs. These aspects are supported by the system boundaries, as-
sumptions and simplifications to provide a complete picture (Robinson, 2015).

4.1.1. Model objective

This model aims to explore how key uncertainties affect the investment performance of Battolyser Sys-
tems on the Dutch green hydrogen market. The model aims to investigate how engineering innovations,
such as a Battolyser in the energy grid interact with public policy to influence the economic performance
of systems. Rather than predicting outcomes, the model is intended to support strategic thinking and
scenario exploration by structuring the key value drivers and their interactions within a socio-technical
system.

The tree offers a transparent breakdown of financial value drivers and aligns with the principles of value-
based management (Young & O’'Byrne, 2001). This promises a practical tool for strategic decision
making and performance monitoring. The structure seeks to obtain the foundation for both empirical
validation and dynamic simulation, so it provides pathways for further analysis in both academic and
applied settings.

VDT models are currently being developed to measure Economic Value Added (EVA) (Stern et al.,
1995). This is a widely recognised metric for assessing value creation within firms. The tree offers a
structured decomposition towards generating the value a company gives beyond the cost of capital. To
obtain a perspective on the actors in the system, the Return on Invested Capital (ROIC) gives investors
how efficiently profitability is earned per company capital (Koller et al., 2010).

23



4.2. Decomposition value drivers 24

4.1.2. Model scope and boundary conditions

The model focuses on a single deployment case of Battolyser Systems in the Netherlands, covering
the year 2030 as the time horizon. The core system includes the Battolyser unit (hybrid battery - elec-
trolyser as given in Figure 2.5), grid connection and sales facility. External drivers such as electricity
market dynamics, technology cost trends and national subsidy regimes that have a direct effect are
explicitly included. The model excludes environmental externalities, detailed balance sheet modelling
and international hydrogen trade.

Technological description

Battolyser Systems is a Dutch company developing an integrated dual-use electrolyser and battery
system (Origins, 2024). This technology enables the production of green hydrogen through electrol-
ysis while storing and delivering electricity from its integrated battery module at the same time. This
combination offers flexibility to respond to fluctuating electricity prices and grid needs to improve asset
utilisation and revenue diversification.

Business model

The VDT explicitly links technical performance metrics to financial indicators, allowing the model to sim-
ulate the cascading impact of uncertainty across the system (Collopy & Hollingsworth, 2011; Matthies,
2024). Battolyser’s business model is built on two main revenue streams: first, hydrogen production
and sales, targeted at industrial users and the mobility sectors (Origins, 2024) and second, energy
arbitrage, storing electricity when cheap and selling when prices peak (Barton et al., 2020). Investment
costs, stack efficiency, electricity sourcing and regulatory incentives define the financial viability of the
technology. These parameters are used as input ranges in the simulation model.

4.1.3. Model outcomes

For conceptual development, it is important to clarify how the model is designed to deliver useful, ac-
tionable insights for investment decisions for integrated battery-electrolyser systems. Measures are
defined that can be grouped into perspectives to provide concrete answers to the model objectives of
the outcome. The output indicators collectively serve to evaluate the techno-economic viability and
value creation potential of integrated battery-electrolyser systems. These outputs are organised into
four analytical layers: financial performance, operational effectiveness, strategic interpretation and de-
cision support (Koller et al., 2010). This structure enables both a quantitative assessment and an
interpretation aligned with investment logic and policy relevance.

At this stage, the key indicators to define are the EVA calculated from ROIC (Stern et al., 1995). Tech-
nical measures such as electricity demand and hydrogen output are also included. These indicators
are explicitly linked through the VDT structure, ensuring that the effects of changing input variables,
such as electrolyser size, power use or market prices, can be traced throughout the system. Together,
the model outputs enable a structured interpretation of system performance in multiple decision dimen-
sions.

The outcome metric EVA shows the shareholder value (Stern et al., 1995). When EVA is positive, the
company creates value, and if negative, it decreases the value. EVA is focused on long-term profitability
and creates decision-making to enhance long-term alignment rather than only short-term gains (Young
& O’Byrne, 2001). This metric can serve as a standard benchmark for comparison between design
configurations or investment options.

Importantly, this setup incorporates the logic of robust decision-making. This means that the model
is not built around one fixed scenario, but rather tests the outcomes on a range of future conditions
(Kwakkel et al., 2016; Saltelli et al., 2008). This ensures that the insights produced remain valid and
useful under real-world uncertainty and not only under ideal circumstances.

4.2. Decomposition value drivers

Now the conceptualisation helps to understand the goal and content of the model, the next step is
the formalisation. A systematic approach is adopted to identify the core variables that impact the in-
vestment attractiveness of Battolyser Systems. To translate the objectives of the model into a formal
simulation structure, a decomposition is performed based on value-based investment metrics. Starting



4.2. Decomposition value drivers 25

from a theoretical basis, the value drivers are organised into a hierarchical structure that captures the
relationships between operational mechanisms and financial outcomes (Matthies, 2024).

The research aims to understand the value creation under uncertainties related to the financial per-
formance in the system. A realistic and related VDT model is essential for visualising the underlying
revenue and costs. As stated in chapter 2, the theoretical framework of the VDT is used based on the
current literature. The methodology is grounded in performance mapping frameworks such as those
introduced by Kaplan and Norton, 2004 and Gassmann et al., 2014, which emphasise linking financial
goals with operational actions.

A top-down approach can be used to design a VDT (Valjanow et al., 2019a). The modelling is based
on the result item, so it is broken down in alignment with the drivers. The steps followed to decompose
the value drivers into a VDT are given in Figure 4.1. This is based on the classification by (Matthies,
2024).

Decomposition value drivers

Identify Breakdown Assign metrics Construct

Scopi Root nod lecti 0 N . N ti lationshi 0 0
copng oot node selection high-level drivers high-level drivers Quantify refationships for measurement hierarchical structure

Application

Figure 4.1: Methodology to systematically decompose the value drivers towards a VDT model made by the author

The steps given in Figure 4.1 are followed in the next sections to obtain the VDT related to the scoping
of the study.

4.2.1. Justification of root node selection

To initiate the top-down modelling approach, it is essential to identify the root node that covers the
primary performance objective. Continuing from the scope, Tortella and Brusco, 2003 states that the
measurement of value creation according to EVA has been used as a guide for investment decisions.
Therefore, this study uses ROIC and EVA as foundational performance indicators (Koller et al., 2010).
These metrics are particularly suitable for the evaluation of long-term capital-intensive projects charac-
terised by significant uncertainty, compared to simpler metrics such as Internal Rate of Return (IRR)
or Net Present Value (NPV) (Stern et al., 1995). ROIC and EVA provide information on both opera-
tional efficiency and capital productivity (Koller et al., 2010), while allowing integration with uncertainty
modelling through probabilistic inputs (Kwakkel et al., 2016), which fits the empirical study of Battolyser
Systems.

Return on Invested Capital (ROIC)

The focus on ROIC serves as a comprehensive measure of a system’s ability to generate returns
relative to the capital invested. By evaluating the efficiency with which capital is invested to produce
net operating profit, ROIC provides insight into the effectiveness of resource utilisation (Koller et al.,
2010).

Economic Value Added (EVA)
EVA shows how much value a company creates for shareholders after covering the cost of capital. The

EVA extends this analysis by quantifying the value created beyond the required return on capital (Stern
et al., 1995).

Understanding and applying ROIC and EVA are crucial for evaluating performance, enhancing prof-
itability, assessing risk, informing investment decisions and achieving competitive advantage. More-
over, adopting these metrics supports the principles of value-driven design, a system engineering strat-
egy that prioritises maximising system value over simply meeting performance requirements (Collopy
& Hollingsworth, 2011). By focusing on value creation, systems engineers can make more informed
trade-offs during the design process, leading to solutions that are both technically sound and econom-
ically beneficial.



4.2. Decomposition value drivers 26

4.2.2. Identify high-level drivers

The first step for value creation logic is to identify high-level drivers. Concerning the key target indicator,
the key drivers that directly impact the chosen objective need to be identified. The value creation logic
is derived from financial theory. Based on Patel and Patel, 2012, the following equations are stated.

The fundamental work of Stern et al., 1995 EVA is conceptualized as the residual income after account-
ing for the cost of capital, formally defined as the difference between Net Operating Profit After Taxes
(NOPAT) and the capital charge, which is the product of the Weighted Average Cost of Capital (WACC)
and Invested Capital. As stated in Figure 2.6, the calculation for EVA can be obtained by:

EVA = NOPAT — (Invested Capital - WACC) (4.1)

Where:

» EVA: Economic Value Added [€/year]

* NOPAT: Net Operating Profit After Taxes [€/year]

* Invested capital: Total capital employed [€]

+ WACC: Weighted Average Cost of Capital [%/year]

Invested capital, defined as the sum of fixed capital and net working capital, is consistent with the
definitions used in the corporate finance literature (Koller et al., 2010). This enables the calculation of
ROIC, a central indicator of capital productivity. A firm creates value when ROIC > WACC (Stern et al.,
1995). By stating ROIC as the driver towards EVA, the equation becomes:

EVA [%] = ROIC — WACC 4.2)

NOPAT

ROIC = 1 Vested capital

100% (4.3)

4.2.3. Breakdown high-level drivers

Then, each of the high-level drivers can be broken down into underlying sub-drivers. This hierarchical
decomposition is instrumental in identifying and is essential to understand what factors can be influ-
enced or optimised in practice (Akkiraju & Zhou, 2012). It allows for the systematic tracing of how
changes at the operational or tactical level affect the performance metric (Matthies, 2024).

Drawing on the given standard ROIC formulation, the metric can be disaggregated into two main com-
ponents: Net Operating Profit After Tax (NOPAT) and invested capital. On the operational side, Net
Operating Profit After Tax (NOPAT) is derived from Earnings Before Interest and Taxes (EBIT), ad-
justed for applicable tax rates (Young & O’'Byrne, 2001). EBIT itself can be further broken down into
gross profit, operating cost structures and depreciation. Gross profit, in turn, results from the difference
between revenue and variable costs.

This layered breakdown reveals how firm performance is shaped by distinct, measurable components,
which can be grouped into three main categories of value drivers:

* Revenue drivers: Revenue is fundamentally determined by price and sales volume, both of
which are subject to market dynamics, competitive strategy and customer demand (Gassmann
et al., 2014). Understanding the elasticity of both variables is key to assessing a company’s
growth potential and pricing power (Tuff, G. et al., 2023).

» Operating costs drivers: Operating costs are split into

— The operating expenses (OPEX) are the recurring costs required for the daily functioning
of a business that are not directly tied to the production of goods or services (Cheung et
al., 2010). This includes both fixed and variable expenses necessary for operations, but
excludes capital expenditures (Carlucci et al., 2004).
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— Depreciation is the systematic allocation of capital expenditures throughout the life of tan-
gible fixed assets. It is non-cash but affects EBIT and is vital to understand asset intensity
and capital recovery (Koller et al., 2010).

— Variable costs are expenses that fluctuate directly with the level of production or sales vol-
ume. Variable costs are directly proportional to the output (Walters et al., 2020).

» Capital drivers: These refer to efficient allocation and use of both working and fixed capital
(Koller et al., 2010). Capital efficiency impacts the ROIC denominator and thus determines the
productivity of each euro invested. Understanding how capital is invested and distributed is crucial
to assessing the long-term sustainability of value creation (Valjanow et al., 2019b).

4.2.4. Quantify relationships and assign metrics for measurement

After this, the following is to quantify the relationships, where the relationships between the drivers
can be determined by analysing data and conducting research on equations and assigning weight co-
efficients to reflect the strength and direction of these relationships. Connecting with this step is to
assign metrics for measurement. Each driver must consist of a specific measurable metric, allowing
for quantifiable assessment and tracking for analysis. The results are shown in Table 4.1. Further spec-
ifications on the mathematical formulation of the key relationships of these value drivers are provided
in Appendix B.

Table 4.1: Model variables overview

Variable Abbreviation | Unit Description

Economic Value Added EVA % ROIC - WACC

Return on Invested Capital ROIC % NOPAT / Invested capital

Weighted Average Cost of Capital | WACC % Average cost of capital weighted by debt and

equity proportions

Net Operating Profit After Taxes NOPAT € EBIT x (1 - Tax rate)

Invested capital Kinvested € Net working capital + fixed assets

Net working capital Knwe € Current assets - current liabilities

Fixed capital Kfixed € Long-term tangible assets used in operations
Earnings Before Interest and Tax EBIT € Revenue - COGS - Operating expenses
Tax rate - % Effective corporate tax rate

Revenue Riotal € Sales volume x price

Sales volume Q Units | Number of units sold

Price p €/unit | Selling price per unit

Cost of Goods Sold COGS € Direct cost of producing goods sold
Operating costs OpEXx € Indirect operational costs excluding COGS

4.2.5. Construct the hierarchical structure

The drivers are organised in a flow of cause-and-effect relationships with high-level drivers at the top
and sub-drivers at the bottom. Each node should represent a driver, with links showing their influence
path. This ensures a well-constructed VDT that serves as both a conceptual map (as clear communica-
tion of how value is created and identification of leverage points for interventions) and a computational
model (as the foundation for integration with simulation tools), recommended by Kaplan and Norton,
2004.

The basis structure of the VDT from current knowledge in the literature is therefore given in Figure 4.2.
This can be seen as a high-level, standardised conceptual model which is not specific to a case de-
scription and can be used in different contexts.
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Figure 4.2: Value Driver Tree Jafino et al., 2021

With the high-level conceptual VDT and key value drivers, the next step is to map those drivers specific
to the context. This part of the research supports the applicability and guarantees that the assumptions
reflect the conditions in the Dutch green hydrogen market. So, to evaluate the economic performance
of the integrated battery-electrolyser of Battolyser Systems, the EVA high-level conceptual VDT can
be used as a central value-based performance metric. This model captures both revenue-generating
capabilities and capital efficiency, reflecting value creation beyond the cost of capital.

4.3. Sub-tree specification

The model structure specifications follow the layers displayed in Figure 4.2: revenue drivers, cost
drivers and invested capital. These drivers are now specified in sub-trees of the VDT and are further
decomposed in the next sections. For this decomposition, the same methodology is followed as given
in Figure 4.1.

4.3.1. Revenue drivers

Revenue drivers define the potential income streams from the implementation of Battolyser Systems,
primarily through hydrogen production and electricity system services such as energy arbitrage and
grid balancing (Jenkins et al., 2022; Origins, 2024; Tuff, G. et al., 2023). These revenue streams are
influenced by market demand, regulatory incentives, and the flexibility offered by the dual-use system
that integrates electrolyser and battery components (Capgemini, 2024; HyChain, 2024).

The numerator in the ROIC formula, Net Operating Profit After Tax (NOPAT), is selected as a key
financial performance indicator. It can be calculated as follows:

NOPAT = EBIT - (1 — Tax rate) = (Riotal — Coperational) - (1 — ) (4.4)

with 7 representing the corporate tax rate. EBIT, the Earnings Before Interest and Taxes, consists of
the total revenue minus the operational costs. In this section, the focus is placed on what drives the
total revenue from the income statement: price per unit and quantity sold, both of which are influenced
by external market dynamics, system performance and strategic pricing decisions (Gassmann et al.,
2014; Tuff, G. et al., 2023).

As defined in Figure 2.5, the revenue is generated through multiple output streams: hydrogen produc-
tion and battery operation. This is followed in the model by the calculation of the total revenue by:

Rtotal = RH2 + Rbattery (4-5)
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Due to the high technological complexity of this technology, simplification is needed to get the revenue
into the drivers of the separate revenue streams. The breakdown of this is given in Table 4.2.

Hydrogen production is a primary value proposition for electrolysis systems (International Energy Agency,
2022). It can be calculated based on technological parameters such as system capacity, stack ef-
ficiency and conversion rates (Detz et al., 2022). On the operational side, the number of full-load
operating hours per year is a major determinant of output and cost per kilogram of hydrogen produced
(Agora Energiewende, 2021; HyChain, 2024).

The values of these parameters are largely dependent on the scale and stability of green hydrogen
demand in both industrial and mobility sectors (Hydrogen Europe, 2022). In particular, offtake agree-
ments and sector-specific decarbonization targets influence long-term deployment feasibility (Azadnia
etal., 2023). On the revenue side, the hydrogen price emerges as a central value driver. Due to market
immaturity, pricing remains volatile and subject to uncertainty in both short-term spot markets and long-
term contracts (Delft, 2023). These fluctuations represent critical boundary conditions for investment
viability and impact return profiles.

Given the dual function of an electrolyser and battery, the other part of the revenue is derived from
arbitrage revenue. This is considered crucial in flexible energy models (Pfenninger & Keirstead, 2015).
Battery-related income, denoted Ryatery, depends on the operational strategy and uncertainty about
the price spread in the electricity market (TNO, 2022).

Table 4.2: Revenue drivers overview by system function

Variable Abbreviation ‘ Unit ‘ Description

Electrolyser

Hydrogen sales revenue Rh, € Revenue from selling produced green hydrogen
to industry or mobility markets

Hydrogen price DHy €/kg Average market price per kilogram of hydrogen

Hydrogen output GHo kglyear Total annual hydrogen production volume

Electrolyser electricity use Hannual kWh/year Total annual electricity input to the electrolyser

Specific energy demand SHq kWh/kg Electricity required to produce 1 kg of hydrogen

Full load hours (electrolyser) | FLHgiec hours/year | Annual full load hours assumed for electrolyser
operation

Electrolyser capacity Pejec kW Installed electrolyser capacity

Battery

Battery arbitrage revenue Rbattery € Income from electricity market arbitrage using
battery storage

Battery discharge volume QE kWh/year Net electricity delivered after round-trip effi-
ciency and losses

Battery efficiency Tbatt % Round-trip efficiency of the battery

Battery capacity Phatt kW Installed battery power rating

Full load hours (battery) FLHpat hours/year | Operating hours at full load for the battery

Parasitic losses Closs kWh/year Losses due to standby, conversion, and thermal
management

Further specifications on the mathematical formulation of the key relationships of these value drivers
are provided in Appendix B. Given the identified drivers, the sub-tree of the revenue drivers is given in
Figure 4.3.
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Figure 4.3: Sub-tree of the revenue drivers for Battolyser Systems

The sub-tree on revenue value drivers in Figure 4.3 shows a clear two-fold division into the electrolyser
and battery function. This ensures a conceptual view of the operation of the Battolyser and the value
drivers essential for each part. The tree shows where input data is needed and also includes parameters
that are stated as important uncertainties in the market.

4.3.2. Operating cost drivers

The second focus of the model concerns the operating cost drivers, which are critical in evaluating the
financial feasibility of Battolyser Systems. In financial management, there are various ways to group or
display cost parameters depending on the level of granularity and purpose of analysis (Carlucci et al.,
2004; Koller et al., 2010). For this techno-economic model, the cost structure is linked to EBIT, where
the operational cost components are decomposed into two categories: Cost of Goods Sold (COGS)
and Operating Expenses (OpEx). These categories reflect the distinction between volume-dependent
costs and fixed recurring expenditures and provide a clear basis for structured financial evaluation
(Kaplan & Norton, 2004).

The operating cost function is defined as:

C’operating = CCOGS + COpEx (4-6)

An overview of the cost-related model variables is provided in Table 4.3. COGS includes expenditures
that scale directly with system usage, such as electricity costs for electrolyser and battery operation, grid
tariffs and hydrogen production inputs (Detz et al., 2022; TNO, 2022). Since electricity prices are highly
volatile and represent the largest share of marginal costs, this cost component introduces significant
uncertainty into the model (Delft, 2023; Institute for Energy Economics and Financial Analysis (IEEFA),
2023).

Operating Expenses (OpEXx) consist of system-level maintenance, stack replacements, auxiliary sys-
tems and overheads. For modelling purposes, OpEx is assumed to scale linearly with installed capacity,
based on benchmarks from similar electrolyser technologies (Hydrogen Europe, 2022; International En-
ergy Agency, 2022). This assumption is consistent with findings from techno-economic assessments
of integrated hydrogen systems (Jenkins et al., 2022). OpEx is considered a long-term value driver,
affecting both EBIT and EVA through its influence on recurring cost loads (Walters et al., 2020).
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Table 4.3: Cost drivers overview by system function

Variable Abbreviation | Unit Description

COGS

Electricity price Pelec €/MWh Price of electricity used by operation

Battery energy consumption Hypat MWh/year | Annual energy consumption by battery
system

Battery electricity cost Celec, batt € Energy consumed for battery charging

Electrolyser energy consumption Hg MWh/year | Annual energy consumption by electrol-
yser

Electrolyser electricity cost Celec, el € Energy consumed for hydrogen produc-
tion

Grid tariff Tgrid €/MWh Cost paid per MWh to grid operator

Total electricity consumption Fiotal MWh/year | Total electricity consumed by the system

Grid cost Tgrid - Etotal € Grid usage cost

OpEx

Stack replacement cost Cstack € Annualized cost of stack degradation

Stack lifetime Lstack Years Average operational life of an electrolyser
stack

Stack cost fraction Ystack - Fraction of CapEx related to the stack

Electrolyser CapEx per MW P €/MW Investment cost per MW of electrolyser ca-
pacity

Electrolyser capacity Pejectrolyser MW Installed power capacity of electrolyser

O&M cost coefficient (electrolyser) | S. €/MW Annual O&M cost per MW electrolyser ca-
pacity

O&M cost (electrolyser) Cosm, el € Annual maintenance cost for electrolyser

Battery capacity Ebattery MWh Installed battery energy storage capacity

O&M cost coefficient (battery) Bb €/MWh Annual O&M cost per MWh battery capac-
ity

O&M cost (battery) Cosm, batt € Maintenance cost for battery system

Further specifications on the mathematical formulation of the key relationships of these value drivers
are provided in Appendix B.. The related sub-tree of the cost drivers is shown in Figure 4.4.

Operating costs

T

COGS

Operating
Expenses (OpEx)

1
| |

Energy costs

Grid tariffs

Maintenance

Operation &

Stack replacement

T

Electricity Battery

Electrolyzer
operation

Figure 4.4: Sub-tree of the cost drivers for Battolyser Systems
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Figure 4.4 illustrates the conceptual sub-tree on the drivers creating the value of the operating costs
for Battolyser Systems in total. On one hand, the focus is more on the direct costs associated with pro-
ducing goods sold and second on all other (indirect) expenses. This separation creates an illustration
of relevance and details for the technological and broader system inputs of these costs.

4.3.3. Invested Capital

Next to the operational cost drivers, another key dimension in investment performance is the capital
base, which directly influences the calculation of ROIC and EVA (Stern et al., 1995). This stream of the
model focuses on invested capital, consisting of both net fixed capital and net working capital (NWC).
These components are essential to accurately assess the financial requirements for generating returns
and are highly relevant in the context of capital-intensive technologies such as hydrogen production
systems (Koller et al., 2010).

The total invested capital is formally expressed as:

Kinvested = Kfixed + anc (47)

Net fixed capital reflects long-term capital expenditures (CapEx) associated with the deployment of
Battolyser Systems. It includes upfront investments in system hardware, adjusted for depreciation
throughout the lifetime of a project (Detz et al., 2022; Jenkins et al., 2022). CapEx refers to one-time
expenditures incurred during the design, acquisition and commissioning phases, which are capitalised
and depreciated over time (Koller et al., 2010). As green hydrogen infrastructure typically requires high
upfront investments and long asset lifetimes, fixed capital becomes a dominant factor in determining
the required return on capital (International Energy Agency, 2022).

Fixed capital is also sensitive to external influences, such as CapEx subsidies, innovation incentives
or technology learning effects. These policy mechanisms can significantly reduce capital requirements
and are therefore treated as important boundary conditions in the model (Capgemini, 2024; Hydrogen
Europe, 2022).

In contrast, Net Working Capital (NWC) captures short-term capital requirements within the operating
cycle. This includes outstanding receivables from hydrogen customers, unpaid bills for electricity inputs
or services and inventories of hydrogen or system components (Hydrogen Council, 2021). In rapidly
growing energy ventures, NWC often scale with revenue and depends heavily on contract structures
and billing cycles (BloombergNEF, 2023). For modelling purposes, NWC is expressed as a percentage
of total revenue, reflecting its proportional behaviour with growth (Carlucci et al., 2004).

Efficient management of working capital is critical (Vartiainen et al., 2020). When not properly optimised,
NWC can absorb large amounts of operational liquidity and lead to reduced ROIC (Walters et al., 2020).
Therefore, this parameter is highly relevant when identifying boundary conditions of financial materials
under uncertainty.

An overview of the key variables that influence invested capital is presented in Table 4.4. This table
includes both fixed asset expenditures and the short-term liquidity required to support operations and
market engagement.
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Table 4.4: Invested capital drivers overview

Variable

Abbreviation ‘ Unit

Description

Fixed capital

Net fixed capital Kiixed € Long-term capital expenditures for deployment and
commissioning

Electrolyser capital cost Celectrolyser €/kW Specific CapEx of electrolyser system

Installed electrolyser capacity | Peiectrolyser kW Total installed power capacity of the electrolyser

Battery capital cost Chattery €/kWh | Specific CapEx of battery system

Installed battery capacity Ebattery kWh Total installed energy capacity of the battery

Net working capital

Net working capital Knwe € Short-term capital tied up in receivables, payables
and buffers

Working capital coefficient @ - Proportionality factor for net working capital estima-
tion

Further specifications on the mathematical formulation of the key relationships of these value drivers are
provided in Appendix B. How these drivers are stated in the tree is visualised in Figure 4.5. Important
to acknowledge the revenue driver for net working capital. This is linked to the sub-tree stated in
Figure 4.3. So, this makes it important to be consistent in determining this driver.
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Figure 4.5: Sub-tree of the invested capital drivers for Battolyser Systems

The sub-trees enable dynamic modelling of the value drivers essential for the systems calculating fi-
nancial indicators. Combining these trees into one, the resulting conceptual model for simulation is
obtained. The details of how this looks are given in Appendix C. The figure provides a foundation
for analysis by linking all the technical, operational and financial choices. The tree aligns with techno-
economic modelling and sets the structure by connecting every value towards a system.



Uncertainty specification

This chapter identifies, classifies and quantifies the uncertainties and boundary conditions that influence
the behaviour of value drivers within the investment simulation model. It provides the foundation for
stochastic experimentation in later chapters and answers sub-question 2 ‘What are the key boundary
conditions and uncertainties that affect the behaviour of these value drivers?’. First, the system uncer-
tainties as stated in the literature have been analysed and defined, then with a stakeholder analysis,
the most relevant uncertainties have been selected on their relevance across stakeholder concerns,
specified to the system boundary for further implementation into the model.

5.1. System environment uncertainty

Uncertainty plays a central role in investment decisions for emerging technologies like green hydrogen.
This section identifies and classifies the key uncertainties relevant to the system used in this research,
based on chapter 2. To systematically determine which uncertainties are relevant for inclusion in the
simulation model, this study is based upon the uncertainty typology presented in Ascough et al. (2008),
as introduced in chapter 2. This typology categorises variability uncertainty into four overarching types:
natural, human, institutional and technological. These uncertainties are characterised by their dynamic
and often probabilistic nature and inclusion in the simulation model (Kwakkel et al., 2016).

Focusing specifically on the Battolyser concept, uncertainties are scoped based on electrolyser and
battery domain-specific literature addressing the key challenges within the Dutch hydrogen and energy
storage markets. Based on Tuff, G. et al. (2023) and Azadnia et al. (2023), seven primary uncertainty
domains are identified: (1) market dynamics, (2) environmental changes, (3) social perception, (4)
policy and regulatory risk, (5) economic volatility, (6) infrastructure constraints and grid integration and
(7) technological and cost uncertainties. These categories are visualised in Figure 5.1, linked to the
variability types of the uncertainty framework.

Variability uncertainty

Natural Human Institutional Technological
Market Environmental Social Regulatory Economic Infrastructure Technology
| Demand rate | | Lifecycle emissions | | Public acceptance | | Policy instruments ‘ ‘ High investment costs ‘ ‘ Grid congestion ‘ l Efficiency perfomance |

| Price volatilty | Availability renewable | |

enerqy Collaboration | | Standardization ‘ ‘ Fluctuation unit costs ‘ ‘ Grid tariffs ‘ l Stack lifetime |

l High OPEX ‘ ‘Transpon infrastructure‘

Inflation rate

Figure 5.1: Variability uncertainty in categories made by the author
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Following this categorisation, each domain of uncertainty is further specified in the subsequent sections
to operationalise its relevance. In line with the framework of Ascough et al. (2008), the uncertainties are
not treated as abstract concepts but are made actionable by linking them to concrete system elements,
and where possible, making modelling assumptions. The aim is to clarify how the different types of
natural, technical, behavioural and institutional uncertainty display within the context of the Battolyser
investment case and how they are addressed. Following this categorisation, each uncertainty domain
is specified further in the following sections.

5.1.1. Natural uncertainty

The first domain considered is natural uncertainty, which is related to environmental variability and
external market conditions beyond the control of the system (Ascough et al., 2008). The domain is
linked towards the market and environmental uncertainty.

Market dynamics

One of the biggest questions is whether there will be enough demand for green hydrogen in the future
to justify large-scale investments. Forecasts for hydrogen use in the Netherlands vary widely between
different sectors (mainly industry, transport and electricity). The Hydrogen Outlook by TNO (2022)
shows where hydrogen demand is likely to grow, especially near industrial clusters, but these projec-
tions heavily rely on policy choices that are still uncertain. Similar EU-level forecasts from Hydrogen
Europe (2022) and European Commission Joint Research Centre (2021) can help to benchmark the
Dutch outlook and show different perceptions.

Another critical factor is the volatility of the electricity price. Since hydrogen is produced using electricity,
fluctuations in electricity costs have a huge impact on the Levelized Cost of Hydrogen (LCOH). Reports
by Institute for Energy Economics and Financial Analysis (IEEFA) (2023) and TNO (2022) show that
regional grid congestion, sourcing strategies and locational tariffs can cause significant differences in
hydrogen production costs. Most financial models assume stable average electricity prices, but Agora
Energiewende (2021) points out that it is essential to also consider price volatility. Especially with the
congested and renewable heavy electricity grid in the Netherlands.

Environmental changes

Environmental factors, such as the variability of renewable resources, can cause fluctuations in the
amount of hydrogen that a Battolyser system can produce. Because these systems rely on wind or
solar energy, variations in wind speed or solar radiation over seasons or years can significantly affect
performance. For example, Dutch offshore wind patterns can vary by up to 15-20% annually, which
would change the capacity factor of the electrolyser. Climate change could also introduce more extreme
weather events, such as storms or heat waves, which could affect both the energy supply and the
reliability of the equipment. These factors introduce operational uncertainty, especially on long-term
investment horizons.

5.1.2. Human uncertainty

Human uncertainty refers to the variability and unpredictability arising from social behaviour, prefer-
ences and stakeholder interactions. These uncertainties are epistemic. Unlike natural uncertainty,
which is often externally assessed, human uncertainty originates from the decisions, perceptions and
adaptive behaviour of actors within the system (Ascough et al., 2008).

Social perception

The human aspect of decision-making is based on social acceptance. Although hydrogen is generally
seen as a clean energy solution, the public may resist projects that involve large-scale infrastructure
near residential areas. Concerns can include safety, noise, visual impact or even a general mistrust
of new technologies. Studies such as Wolsink (2000) and data from PBL Netherlands Environmental
Assessment Agency, 2022 show that gaining social agreement on operationalisation is not a given. It
depends on transparent planning, fair compensation and meaningful community involvement. If local
opposition arises, it could cause serious delays or even the cancellation of projects.
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5.1.3. Institutional uncertainty

Institutional uncertainty emerges from the structures, rules and dynamics of governance, regulation
and policy design. These uncertainties are particularly relevant in rapidly evolving technological and
policy environments, where institutional responses often lag behind innovation. Institutional uncertainty
is typically epistemic, as it is related to limited knowledge about how policies will evolve, how regulatory
decisions will be implemented or how governance actors will interpret and apply rules (Ascough et al.,
2008).

Policy and regulatory risk

The development of Battolyser systems in the Netherlands is strongly influenced by current regulatory
uncertainties and policy developments in the flexibility of the electricity grid and the hydrogen market.
These systems, which combine batteries and electrolysers, are at the intersection of several policy
domains, leading to complex challenges and opportunities. Despite the hope and view of policies and
regulations as the most powerful drivers of hydrogen project success, they are also very unpredictable.

Adding up the Dutch policy architecture given in chapter 2, the following section zooms into important
instruments that are designed to reduce investment risks or improve market opportunities. Delays or
changes in support schemes directly affect project timelines and returns.

Subsidies

The SDE++ (Stimulering Duurzame Energieproductie en Klimaattransitie) is the main Dutch subsidy
instrument for emission reduction and is an operating subsidy payable during the operational period of
a project ((RVO), 2024). In 2024, the budget was set at €11.5 billion. Subsidies are awarded based
on cost-effectiveness per ton of CO2 avoided (voor Ondernemend Nederland, 2025). For electrolysis
projects, the subsidy intensity is significant, with amounts up to €1,500 per ton of CO2 avoided. This
amounts to about €9 per kilogram of green hydrogen produced (Eggink & Elzenga, 2024). As ECN part
of TNO (2020) shows, the level of subsidies and carbon dioxide pricing has a major impact on financial
viability. Moreover, large infrastructure plans like the Dutch Hydrogen Backbone are still in planning
stages and could take years to implement, adding more uncertainty to infrastructure availability.

The second is the OWE (Scaling Up Fully Renewable Hydrogen Production), a scheme that specifically
focuses on scaling up electrolysis projects ((RVO), 2022). By 2024, projects could be subsidised up
to 80% of investment costs, supplemented by an operating subsidy for the unprofitable top for 5 to 10
years. The maximum amount of subsidy per project was €499 million (RVO), 2022).

The Dutch government has committed €2.1 billion to green hydrogen production, introducing subsidies
to boost domestic hydrogen production (voor Ondernemend Nederland (RVO), 2021). The scheme
is intended for projects that improve the cost-effectiveness of technologies within SDE++. The HER+
grant supports innovative projects that lead to cost-effective CO2 reductions. In 2024, the budget was
€30 million, with a subsidy intensity of up to €300 per ton of CO2 avoided.

Although these subsidies provide significant financial support, there is uncertainty about the continuity
and exact terms of these schemes. The complexity of application procedures and competition between
projects can limit accessibility for innovative systems such as the Battolyser.

Grid charges and access

Battery energy storage systems (BESS) face high grid charges in the Netherlands. Recently, changes
have been made to mitigate these charges, such as the introduction of non-firm grid connections with
lower fixed tariffs. Flexible off-takers, such as electrolyser projects, can reduce their grid fees on con-
tracted capacity (Swarts et al., 2025). These agreements allow for consumer curtailment in exchange
for grid tariff discounts or per-MW compensation, enhancing the profitability of flexible hydrogen pro-
duction.

While these changes are positive steps, there is uncertainty about their implementation and effective-
ness. For Battolyser systems, which both store electricity and produce hydrogen, it is essential to have
clarity on applicable grid tariffs and grid connection conditions.
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Financing conditions and WACC

The WACC is a critical component in the evaluation of investment projects, representing the minimum
expected return required by investors. In the Netherlands, the WACC for new capital investments in
electricity and gas distribution has been established for the period 2022-2026, with an average increase
of 20.92% in the regulated asset base (Harris & Figurelli, 2021). In the context of green hydrogen
projects, WACC values between 6.4% and 24% are used as proxy values for perceived risk and invest-
ment climate, influencing the levelized cost of hydrogen production (Capgemini, 2024). Rising WACC
values may affect the fundability of capital-intensive projects such as Battolyser systems. It is important
to explore ways to optimise these financing costs, for example by using helpful financing instruments
or mitigating risks through long-term contracts.

These insights into the policy uncertainties of the two markets briefly outline the policy options being
considered. However, current regulatory frameworks for batteries and electrolysers are often separate,
leading to uncertainty about applicable regulations and subsidies for integrated systems. Battolyser
systems are combining battery storage with hydrogen production, offering unique opportunities for grid
flexibility and green hydrogen production ((RVO), 2022).

There is a clear need for the policy integration of energy storage and hydrogen production schemes.
The lack of a holistic approach may hinder the development and implementation of innovative systems
such as the Battolyser. However, this also presents multiple opportunities to implement in Battolyser.
Looking at how these policy instruments fit into the model, it is possible to see what the particular impact
is. Itis included as a full operational uncertainty, but rather as interventions to see what results from
this.

Economic conditions

Recent years have shown that macroeconomic conditions, such as inflation, interest rates and global
material prices, can change quickly and are unpredictable. Electrolysers are based on materials like
nickel and platinum, which are subject to international supply chain risks and geopolitical tensions. At
the same time, inflation and rising interest rates increase the overall cost of financing projects.

According to Institute for Energy Economics and Financial Analysis (IEEFA) (2023), capital costs for
clean energy projects increased significantly in 2022—2023, and these trends could continue. For mod-
elling purposes, it is important to include ranges of uncertainties in economic variables. The discount
rates used in financial calculations should also reflect this increased uncertainty.

5.1.4. Technological uncertainty
And last, technological uncertainties include development, adoption, performance and cost evolution
of emerging technologies (Jenkins et al., 2022). Here, the focus relies on the infrastructure and tech-
nological uncertainty towards Battolyser.

Infrastructure and grid integration

In the Netherlands, there are still major gaps between where hydrogen can be produced and where it
is needed. Studies by TNO (2022) and PBL Netherlands Environmental Assessment Agency (2022)
highlight the risk of stranded assets if electrolysers are not properly connected to the grid or hydrogen
transport networks. Grid congestion, in particular, is already a serious issue in many parts of the
Netherlands. It could get worse as more renewable capacity is added.

Technological performance and cost

Finally, the technology itself still involves a lot of uncertainty. Electrolyser and battery technologies are
improving rapidly, but the costs and performance levels vary widely depending on the manufacturer,
project location and regulatory context. EU-level reports by Hydrogen Europe (2022) and Institute for
Energy Economics and Financial Analysis (IEEFA) (2023) suggest that costs will reduce over time.
However, Dutch-specific challenges like permitting delays and higher system integration costs (espe-
cially with offshore wind) might limit these gains.

The seven uncertainty areas identified above are relevant for the Battolyser simulation but vary in how
much they affect investment decisions and system performance outcomes.
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5.2. Stakeholder analysis

Having identified the key uncertainties that shape the development and deployment of Battolyser sys-
tems in the Dutch hydrogen sector, it is crucial to examine how these uncertainties affect the various
stakeholders involved (Bandari et al., 2024). This step ensures that the simulation model reflects not
only technological or economic dynamics, but also the perspectives, incentives and constraints of the
actors who either drive or are impacted by system changes (Woolthuis et al., 2005).

There are eight stakeholders identified that have relevance to the system:

» Technology developers and manufacturers, who design and produce Battolyser components
* Investors and project developers, who fund and develop projects

 Battolyser plant owner and operator, who deploy and manage Battolyser systems

» Policymakers, who create enabling frameworks towards long-term targets

» Regulators, who translate the goals into rules and mechanisms

+ Grid operators, who ensure infrastructure connectivity and balance

* Industrial end-users, who create demand and adoption of the technology

* Local communities and NGOs, who influence acceptance

5.2.1. Stakeholder objectives

Stakeholder relevance is essential for identifying which uncertainties matter most in practice (Borras
& Edler, 2014). While some actors, such as technology developers, directly influence cost and perfor-
mance parameters, others, such as policymakers or regulators, play a critical role in shaping institu-
tional and infrastructure types of uncertainties. Therefore, the next phase of the stakeholder analysis
is focused on how the objectives and connections of the actors are related to each uncertainty domain.

Technology developers and manufacturers play an essential role in navigating technological and
infrastructure uncertainties. Their ability to reduce capital costs depends on stack efficiency, scale
effects and integration with grid dynamics (Jenkins et al., 2022). Cost reductions depend on learning-
by-doing and economies of scale, but are also exposed to material shortages, supply chain disruptions
and uncertain demand signals (Detz et al., 2022).

These actors are exposed to innovation risks, certification challenges and potential regulatory lag on
safety or technical regulations (Hydrogen Europe, 2022). Material scarcity and supply chain instability
further contribute to the uncertainty of the infrastructure (International Energy Agency, 2022). These
actors are critical drivers of the technology cost curve, but are themselves constrained by market feed-
back and policy alignment.

Investors and project developers are among the most exposed actors, as they are directly influenced
by multi-dimensional uncertainty: fluctuations in demand, policy consistency, infrastructure availability
and technology performance. Demand fluctuations influence projected demand agreements and long-
term profitability, while evolving technologies impact capital and operation expenditure risks (Hydrogen
Council, 2021). Regulatory instability introduces vagueness around subsidy access, carbon pricing and
eligibility for public-private partnerships (Swarts et al., 2025). Fluctuating electricity prices and subsidy
access complicate ROIC estimates ((RVO), 2022). In addition, market volatility can significantly alter
the Levelized Cost of Hydrogen (LCOH) (Institute for Energy Economics and Financial Analysis (IEEFA),
2023). From an investor’s perspective, uncertainty directly affects investment decisions.

Battolyser plant owners and operators are at the centre of deployment. They must align project
development timelines with evolving infrastructure plans, integrate uncertain technologies like Battol-
yser units into their systems and adapt to dynamic policy frameworks. These actors also face social
and local acceptance issues, particularly if the system is deployed at bigger scale or in industrial clus-
ters near residential zones (Eggink & Elzenga, 2024). Operational planning must account for both
production-side uncertainty (e.g., variability in renewable input) and demand-side variability, requiring
flexible, robust infrastructure and business models (TNO, 2022).

Policymakers play a strategic and agenda-setting role in the deployment of Battolyser systems. They
influence uncertainty by defining long-term climate targets, allocating subsidies such as HER+ or SDE++,
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and directing public investments in hydrogen infrastructure (Mazzucato, 2018). Governments also pro-
mote innovation through R&D funding and pilot programs, shaping both technological progress and
market readiness. Their decisions determine the institutional environment in which private actors op-
erate, including the availability of financial support, spatial planning conditions and the credibility of
long-term demand. Although they are not passive recipients of uncertainty, they must respond to so-
cial pressure and environmental imperatives (Draghi, 2024). As such, government actions can either
reduce or reinforce uncertainty across economic, infrastructure and market domains for all stakehold-
ers.

Regulators, by contrast, have the task to operationalise government policy through market rules,
safety standards and oversight mechanisms (Borras & Edler, 2014). They influence uncertainty pri-
marily through the timing and clarity of implementation. For example, regulators define tariff structures,
grid access conditions, and safety criteria for financial instruments. Inconsistent or delayed regula-
tory updates create uncertainty, especially in emerging sectors where sometimes innovation outdrives
legislation (Hydrogen Europe, 2022). Their influence is therefore critical in reducing institutional and
operational uncertainty during system deployment.

Grid operators actually experience infrastructure risks (Alam et al., 2020). However, they require coor-
dination with regulators and project developers to enable timely connections and balancing of the grid.
Electricity grid operators are indirectly involved in Battolyser deployment through infrastructure plan-
ning, connection approval and balancing operations (TenneT, 2024). They face significant regulatory
uncertainty due to changing policies around congestion management, locational tariffs and curtailment
rules. Market uncertainty is also relevant, as high renewables penetration increases price volatility
(Swarts et al., 2025). These actors require clear long-term planning signals to align grid investments
with decentralised hydrogen production.

Industrial end-users are highly dependent on market and cost dynamics, which influence adoption of
feasibility and competitiveness in energy sectors (Hydrogen Europe, 2022). Hydrogen users can be
indicated as industrial producers, owners of transport fleets or users of energy utilities (Azadnia et al.,
2023). They face demand and supply uncertainty from a consumption perspective. Their long-term
purchase contracts are shaped by cost competitiveness and energy transition alignment (International
Energy Agency, 2022). These actors must assess whether hydrogen will be available at competitive
prices, with reliable delivery and quality.

Technological uncertainty determines how easily hydrogen can be integrated into existing operations.
Although consumers have less direct influence on market shaping than system designers, purchasing
decisions create the demand signals that influence upstream investment (BloombergNEF, 2023).

Local communities and NGOs, while not involved in technical implementation, can delay or reshape
project trajectories through resistance, safety or environmental concerns. Communities can have sig-
nificant indirect influence on deployment outcomes, design and operation through public acceptance
or resistance (Eggink & Elzenga, 2024). Infrastructure development with visible structures, land use
or safety concerns gets push-back (Wolsink, 2000). Therefore, social perception uncertainty becomes
a potential source of delay. Early stakeholder engagement and participatory design processes can
mitigate this risk (Bandari et al., 2024).

5.2.2. Stakeholder map

How these stakeholders are positioned with corresponding interactions is shown in Figure 5.2. The
stakeholder map reveals a highly interconnected ecosystem. The connections show information flows,
regulatory dynamics, investment signals and social influences. The Battolyser owner and operator
are connected to all other actors and serve as integrators at the deployment level. Policymakers and
regulators influence nearly all actors.
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Figure 5.2: Stakeholder overview related to uncertainty domains made by the author

5.2.3. Stakeholder relevance towards uncertainties

To conclude, Table 5.1 presents a mapping of stakeholder relevance across key uncertainty domains
in the Battolyser system. By linking each uncertainty category to its most affected stakeholders, we
can better understand the decision-making environment around Battolyser deployment and construct
simulation modelling that reflects the complexity and influences for specific stakeholders.

Table 5.1: Stakeholder influence across key uncertainty domains in the Battolyser system

Environmental
Regulatory
Economic
Infrastructure
Technological

Social

Stakeholder Group

o
o

Technology developers
Investors

Plant owners
Policymakers
Regulators

Grid operators
Industrial end-users

Local communities
Legend: e = High influence or exposure; o = Moderate or indirect influence

]o o oIo Market

To understand the relevance of each uncertainty per stakeholder, a more actor-sensitive model design
not only supports but also ensures that the simulation captures the socio-technical dynamics of Battol-
yser deployment. The matrix highlights that uncertainty is not experienced uniformly by stakeholders.
Some actors (e.g., investors, plant operators) are highly exposed and reactive, while others (e.g., pol-
icymakers, regulators) actively shape the conditions under which uncertainty unfolds. This confirms
that uncertainty should not be treated as an exogenous input but as the result of multi-actor interaction
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and adaptive decision-making.

5.3. Model variables for simulation

The next step is the translation of relevant uncertainty domains into specific model variables. to be
consistent in the criteria for the modelling analysis based on Table 3.1, these variables:

+ Affects system behaviour or investment feasibility directly.
» Are viewed as critical by relevant stakeholders.

* Are feasible by quantification and/or traceability in empirical or literature-based sources and can
be supported with data, expert studies, or modelling assumptions.

The variables for simulation are divided into uncertainty by external factors and by related policy inter-
ventions in the system.

5.3.1. Uncertain parameters in system

Based on this, the boundaries are kept to the project and technology-focused related to the Battolyser
Systems on purpose. However, the scope is crucial for the economic performance of integrated sys-
tems. The social and environmental uncertainties can be seen as uncertainties, but are out of scope
for quantifying in the model. In this way, a manageable modelling scoping is maintained while cap-
turing critical techno-economic relationships. Also, this is done to ensure that financial metrics can
be calculated based on project-specific data without the need to simulate entire market ecosystems.
Due to subjectivity or lack of data and uncertainty domains, such as public perception, policy delay or
macroeconomic instability, these data are excluded from the core simulation model.

The five uncertain variables presented in Table 5.2 were selected based on their dual relevance to both
stakeholder concerns and the economic performance of Battolyser System. Each variable directly
influences a core value driver in the model: cost, revenue, efficiency or utilisation. Also, they can be
quantified through empirical data or by expert-derived distributions.

Variation of the electricity and hydrogen prices reflect market volatility and revenue risk, particularly for
investors and end-users. CAPEX captures investment uncertainty and technological maturity, while
operating hours and conversion efficiency determine the operational feasibility and yield of the system.
Together, these parameters form a coherent and tractable set of inputs for Monte Carlo simulation within
the value driver tree framework, enabling scenario analysis with real-world uncertainties.
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Table 5.2: Integration of stakeholder-relevant uncertainties into the simulation model and VDT framework

Model variable Uncertainty factor | Category Stakeholders con- | Justification
cerned
Pelec Electricity price | Market Investors, end- | Primary cost com-
volatility users, policymak- | ponent of hydrogen
ers production. This

parameter varies
hourly and data

available
DHq Hydrogen selling | Market Investors, end- | Key determinant of
price users revenue, which is

sector-dependent
on demand and
price structures

CeapPEX CAPEX variability | Infrastructure and | Developers, in- | Affects total in-
due to learning | Technological vestors and regula- | vestment. Input
curves, supply tors informed by Hydro-
chain, scale-up genEurope, ECN

and experts

FLHeec Operating  hours | Infrastructure Grid operators, | Reflects renewable
(Full Load Hours) plant operators availability, curtail-

ment, grid capacity
and affects utilisa-

tion
Tconv Conversion effi- | Technological Developers Influences
ciency of Battolyser electricity-to-H2
ratio. Input is

based on techno-
logical specification
with moderate vari-
ability

With the analyses and definitions of the system uncertainties and together with the stakeholder anal-
yses, the most relevant uncertainties have been selected on their relevance across stakeholder con-
cerns, electricity price, hydrogen selling price, CAPEX, operating hours and conversion efficiency of
the Battolyser, which will be specified to the system boundaries for further implementation in the model.

5.3.2. Policy uncertainty as intervention

As mentioned in chapter 2, a major source of structural uncertainty within this study is the misalignment
between the functional characteristics of the Battolyser technology and the existing Dutch policy frame-
work. The Battolyser combines battery storage and electrolysis in one integrated system, offering both
operational flexibility and the possibility of decentralised hydrogen production (Origins, 2024). This hy-
brid usage makes the technology potentially very valuable for balancing the grid load and stabilising
the variable renewable energy. However, current policy and market design are insufficiently aligned to
this kind of new multifunctional technology, making economic valuation uncertain.

Current subsidy mechanisms, such as the SDE++, focuses on continuous hydrogen production under
fixed full-load hours and do not take into account technologies that operate cyclically or market-driven.
At the same time, existing regulations around grid connection count on structures of flexibility and
system services. The pricing of electricity imports and exports are based on a separation of roles
between generation, storage and consumption. The Battolyser exceeds this separation, leading to
policy ambiguity, like the double allocation of network fees or network charges.

This policy context introduces a form of epistemic uncertainty into the model. The technology itself is
not unreliable, but it is because it remains unclear to what extent the policy incentives facilitate or hinder
its operation. Within the Value Driver Tree model, this institutional uncertainty is explicitly included in
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the modelling of the value creation. Based on this identification, three policy interventions have been
selected that are theoretically and modelling relevant for lowering the barriers.

» Operational Working Expenditure (OWE) subsidy: a subsidy on operational costs specifically
targeted at market-based hydrogen production with variable load profiles.

* Reduction of network tariffs: as a measure to compensate for the cost of double connection or
feed-in.

» Weighted Average Cost of Capital (WACC) adjustment: as a representation of risk reduction
through targeted policy certainty or investment instruments.

These interventions are simulated within the probabilistic VDT model by analysing the impact on both
the EVA and the entropy of outcome distributions. In this way, not only the potential policy impact
is evaluated, but also the extent to which different interventions contribute to epistemic robustness
and investment security. Thereby, this approach forms a bridge between uncertainty identification and
policy design grounded in structured system simulation.



Simulation model development

This chapter focuses on how to build the model from a theoretical foundation to an empirical tool. The
aim is to instantiate theoretical constructs into a robust simulation environment, capable of analysing
various uncertainties and giving answers on the third sub-question of the research: ‘How can a sim-
ulation model be designed based on the value driver tree to capture investment performance under
uncertainty?’ The objective is to formalise the input-output relationships that enable scenario-based
performance assessment and support strategic decision-making.

6.1. Conceptual framework for simulation design

To systematically integrate the complexity of the energy system into the techno-economic modelling
of Battolyser systems, this study adopts the XLRM framework Jafino et al., 2021. The framework of-
fers a structured and theory-based approach to distinguish and organise key elements necessary for
robust simulation-based policy analysis: Exogenous uncertainties (X), Policy levers (L), Model relation-
ships (R), and Performance metrics (M). Its adoption ensures conceptual consistency and enables a
transparent translation from theory to simulation.

6.1.1. External factors

As follow-up from the uncertainty analysis in chapter 5, the full uncertainty space is defined as a multi-
dimensional configuration of key variables. The focus is on quantification and operationalisation as
input for simulation. These factors include electricity and hydrogen prices, CAPEX, operating hours
and conversion efficiency. The variable values are driven by external influences on the system, but will
fundamentally shape the investment performance. They are treated as stochastic variables, with ap-
propriate probabilistic distributions and are defined to reflect aleatory uncertainty as inherent variability.
This distinction enables a more nuanced simulation setup, where both randomness and data limitations
are taken into account. Table 6.1 provides an overview. These ranges enable to test the robustness
and sensitivity analysis. The experimental defined setup directly feeds the simulation phase.

44



6.1. Conceptual framework for simulation design 45

Table 6.1: Key uncertainties [X] as external factors in the system with corresponding distributions

Uncertainty Unit Range Description Source
Electricity price | € MWh Determined by KEV | Hourly electricity | KEV Climate and
(Detec) 2024 data input price for 2030 Energy  Outlook
2024 Intelligence,
2025
Hydrogen price | €/kg Hz 3-14 Aleatory uncer- | Detz et al. (2022)
(PH,) tainty for Monte
Carlo distribution
CAPEX (Unit | €MW 370,000 - | Aleatory uncer- | Rouwenhorst et al.
capital cost elec- 1,666,000 tainty for Monte | (2019), Hydrogen
trolyser) Carlo distribution Europe (2022)
Operating  hours | h/year 2500 - 8000 Aleatory uncer-
(FLH) tainty for Monte
Carlo distribution
Conversion effi- | kWh/kg H, 50 - 65 Aleatory uncer- | Hydrogen Europe
ciency (sh,) tainty for Monte | (2022)
Carlo distribution

6.1.2. Policy levers

Policy levers represent the available instruments to regulators and public authorities how they will in-
fluence the system performance. Their inclusion ensures that the simulation not only reflects external
constraints but also captures the effect of targeted interventions. The selected levers reflect real-world
instruments as have been found in Dutch and European hydrogen policy contexts and are grouped
into three categories: financial support instruments (OWE subsidy), infrastructure and cost regulations
(grid tariff reductions) and market-based financial incentives (adjustments to WACC). Table 6.2 details
the selected policy levers, their ranges, and sources.

Table 6.2: Policy levers [L] used in the simulation

Policy Unit Range | Description Source

Operational subsidy | € MWh | 0 —-60 Compensation for the unprof- | (RVO) (2024)
itable component of renewable
hydrogen production under the

OWE scheme

Grid tariff reduction | % —20 -0 | Tariff reductions for flexible hy- | Swarts et al. (2025)
drogen producers

WACC % 6-24 Proxy for perceived risk and in- | Capgemini (2024)

vestment climate

6.1.3. Model relationships

The internal relationships (R) are structured via a value driver tree by linking technical inputs and policy
variables to financial outputs. As given in chapter 4, the relationships define the internal logic of the
model and have been made operational through a value driver tree. This tree captures the causal
and financial relationships between technical characteristics, investment decisions and value creation.
Each node in the tree is translated into equations and conditional logic in the simulation code. The core
modelling relationships in this study have been made operational through the value-based financial
framework that calculates the EVA.

6.1.4. Performance metric

Finally, to complete the framework, the criteria, which are evaluated against the system performance,
are defined. As stated in the value driver identification in chapter 4, EVA serves as the primary metric,
offering a comprehensive measure of value creation beyond the cost of capital.

The model evaluates system viability using a structured set of performance metrics that combines finan-
cial, operational and institutional criteria. These metrics are used to compare system configurations,
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assess sensitivity to external conditions and eventually evaluate the effectiveness of policy levers. The
concluding XLRM framework is given in Figure 6.1.

Policy levers [L]
Regulatory

OWE

| WACC | | Grid tariff |

/ External Factors [X] \ / Relationships in the system [R] \ / Performance metrics [M] "\

Economic CAPEX

Electricity price

Market
arxe > Value Driver Tree — Economic Value Added

Hydrogen price

Infrastructure Operating hours

\ Technology (Conversion) efficiency j K J

Figure 6.1: XLRM framework based on Jafino et al., 2021

6.2. Software implementation

The simulation framework has been developed in Python using a modular and extensible architecture
that reflects the causal structure of the VDT. This implementation reflects the modelling criteria estab-
lished in Table 3.1, particularly to transparency, reproducibility and uncertainty implementation. The
workflow is structured to enable both deterministic and stochastic simulation processes, depending on
the input configuration. An overview of the core simulation architecture is presented in Figure 6.2.

The simulation process begins with an initialisation phase, during which relevant libraries are imported,
configuration settings are established and the structural definition of the VDT is imported via a structured
Excel spreadsheet interface. This ensures that the system designs or stakeholder priorities can be
easily adjusted.

Each node in the VDT corresponds to a specific value driver, as detailed in Appendix C. These nodes
are defined according to a consistent scheme, enabling flexible integration of both fixed values and
probabilistic uncertainties. The key attributes of each node include:

* Level: Indicates the depth of the node within the VDT hierarchy and determines the computation
sequence. For instance, high-level performance indicators such as EVA are assigned to a top-
level index, while base inputs (e.g., cost parameters) are located at the lowest level.

» Unit: Specifies the measurement unit of the node output, ensuring consistency in aggregation
and interpretation across the tree.

» Operator: Defines the mathematical relationship between the node and its direct inputs. Sup-
ported operations include summation (+), subtraction (-), multiplication (*) and division (/), facili-
tating algebraic expression of value logic.

* Fixed value: Nodes at the lowest hierarchical level that are purely input-driven and can be as-
signed to deterministic fixed values, suitable for scenario testing or baseline calibration.

Distribution characteristics: For nodes subjected to uncertainty, probability distributions are
defined via parameters such as mean, minimum, and maximum values. This enables stochastic
simulation using random sampling techniques.

Once the nodes are defined and structured, the simulation engine constructs a directed acyclic graph
(DAG), in which each node is represented as a function of its immediate upstream inputs. This facili-
tates recursive computation through the hierarchy and ensures logical coherence in value propagation.
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During execution, inputs are processed in a level-wise manner, starting from base values and proceed-
ing upwards through the tree. This structure enables dynamic updating. When changes in input values
or distributions are made, they automatically propagate through the model, ensuring consistency in
output calculation.

The simulation results are stored in structured data formats, allowing for direct visualisation, statistical
summarisation and sensitivity analysis. This modular architecture supports a clear analytical pathway
from raw input to actionable insights.

Requirements Input VDT structure
in Excel Tasks Requirements
Nodes
Load data Read Excel Data suitable for
Levels calculations
Configuration Filter data

Operators
Convert colums to numeric

UoM

Import Libraries
Fixed Value
(Min, Max, Mean) Tasks Requirements
Build hierarchy Initialise hierarchical Each node in hierarchy

structure contains its statistics
Iterate rows and colums
Create nested dictionary

Gather nodes by level Tasks

Initialise level dictionary

Recursively running through
hierarchy

Store nodes by level

Tasks

alculate direct values -
Initialise DataFrame

lterates levels and nodes by
calculating based on
operator and statistics

Store results in DataFrame

Tasks

Save to Excel file

Figure 6.2: VDT modelling structure with fixed values

To extend the applicability of the model to uncertainty analysis, the simulation structure is enhanced with
a Monte Carlo simulation step, as illustrated in Figure 6.3. In this extended structure, uncertain input
nodes are characterised by probability distributions. The simulation engine samples from these distri-
butions across a specified number of iterations, generating ensembles of outcome scenarios. These
iterations are used to derive probabilistic indicators such as mean values, standard deviations, per-
centiles and entropy levels.
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The Monte Carlo calculations also support different scenarios and policy testing by modifying input con-
figurations across the runs. Another important part is the implementation of real-time data distribution
when available. By checking whether the data points are consistent with the Monte Carlo simulations,
the data can be implemented in the node.

This enables the comparison of output distributions under alternative policy interventions and enhances
the capability of the model to assess robustness and sensitivity. The results are stored in structured
arrays, which facilitate efficient post-processing, aggregation, and graphical presentation.

Requirements

in Excel Tasks Requirements

Nodes

Levels calculations

Operators
Convert colums to numeric

UoM

Fixed Value

Min, Max, Mean Tasks Requirements

Build hierarchy Initialise hierarchical j Each node in hierarchy

structure contains its statistics

Iterate rows and colums

Create nested dictionary

Tasks Tasks

Gather nodes by level

Data processing Initialise level dictionary

Recursively running through

Set number data points X
hierarchy

Generate simulated value Store nodes by level

Store simulated values v

Real-time data Tasks
distributions

Y

Initialise DataFrame
€alculate and update

values

Iterates levels and nodes

Monte Carlo Check node type
simulation
A Fixed value calculation

Monte Carlo Simulation
Tasks

Operator-Based calculation
Extract Mean, Min, Max
Store results in DataFrame

Set number simulations

Generate simulated value

Tasks
Store simulated values

Save to Excel file

Figure 6.3: VDT modelling structure with Monte Carlo Simulations and real-time data distributions

Through this implementation, the model meets key methodological objectives. The model remains
transparent, reproducible and modular, while performing structured uncertainty analysis. To fully im-
plement the given frameworks, the Python code of the core modelling is given in Appendix F. These
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features support the role of the model as a decision-support tool in complex, policy-sensitive investment
environments.

6.3. Simulation experiment set up

The experiments are designed to incrementally introduce complexity. Starting with fixed input values,
the model proceeds to single-variable sensitivity tests and ultimately Monte Carlo simulations across
multiple uncertainties. The simulation is structured in three experimental phases:

» Phase I: Baseline run with fixed parameter values
* Phase Il: Uncertainty integration
» Phase lll: Integration of policy levers into the model

Phase I: Fixed data inputs

The techno-economic model relies on a set of independent input variables that define the physical,
operational and financial characteristics of the hydrogen production system. These variables are ex-
ogenous to the model and serve as foundational assumptions that remain constant throughout the
analysis, unless otherwise specified in sensitivity or scenario assessment. All input variables are given
in Appendix D. The model first runs under fixed assumptions to validate internal consistency and to
establish a reference case. These inputs represent a deterministic scenario that can be compared with
an uncertainty-based experiment.

Before the full uncertainty propagation, single-variable sensitivity experiments are conducted. These
reveal the marginal impact of each input on investment outcomes and help to prioritise further analysis.

Phase II: Uncertainty integration

Each exogenous uncertainty is assigned a probability distribution as retrieved from literature or input
from experts. Aleatory (inherent variability) and epistemic (lack of knowledge) uncertainties are explic-
itly categorised. Table 6.1 summarises these inputs.

The uncertainty space is explored using Latin Hypercube Sampling to ensure stratified coverage. A
total of 8760 samples are drawn for each simulation batch to assess robustness. Additionally, the
simulation is based on a Monte Carlo approach using 8760 iterations, based on 8760 hours in one
year. In each run, the samples from the distributions, as defined in Table 6.1, cover both aleatory and
epistemic uncertainties.

All uncertainties are varied simultaneously in a full Monte Carlo experiment. This captures system-wide
interactions and variations in outcomes under plausible future conditions.

Phase III: Policy lever integration

Relevant policy levers include subsidies (OWE), WACC adjustment and grid tariff reforms. These
levers are grounded in real-world policy mechanisms and cover both market-based and regulatory
interventions. Policy levers are introduced as scenario parameters, as given in Table 6.2. Each lever
modifies one or more model inputs and is included in the design matrix to test policy impacts under
uncertainty.

Performance metrics are calculated for each scenario based on the simulation outputs. EVA is com-
puted as:
EVA [%] = ROIC — WACC (6.1)

All metrics are stored for post-simulation evaluation and comparative analysis.

This chapter has outlined the modelling logic, software implementation, and experimental setup needed
to simulate the Battolyser value driver tree under uncertainty. It formalises the computational backbone
of the research and prepares the ground for quantitative analysis in the subsequent chapter.



Model application and findings

This chapter presents the outcomes of the simulation experiments, which were designed based on the
identified uncertainty and boundary conditions. The objective is to present the results of the developed
simulation model as explained in the previous chapter, to answer sub-question 4: "What insights do
the simulation model provide to identify and prioritise boundary conditions that have the highest impact
on value creation?”. The results are organized according to the three main phases of the experimental
setup: (1) fixed baseline input with sensitivity analysis of key value drivers, (2) full uncertainty propa-
gation through Monte Carlo simulation with resulting performance distribution and (3) final evaluation
of the roles and effectiveness of policy levers in shifting system performance. For each phase, the key
financial performance metric EVA is analysed. The aim is to provide a structured interpretation of value
drivers subject to uncertainty and guide to strategic prioritisation of conditions for Battolyser investment
viability.

Phase I. Fixed parameter values

This section determines the baseline performance of the Battolyser system, using fixed central input
values based on current market estimates. It provides a reference point for interpreting the results of
subsequent uncertainty and policy-based simulations.

7.1. Baseline case

The selected input values represent a plausible central baseline scenario, without incorporating stochas-
tic variation or policy interventions. All detailed input assumptions are given in Appendix D. This sce-
nario serves as a reference to evaluate whether the Battolyser Systems can create economic value
under assumed market and technical conditions. It also highlights initial economic bottlenecks and
clarifies which components contribute most to cost or revenue. Key output metrics include EVA, ROIC
and several operational performance indicators.

The baseline analysis results in an EVA of -8.5%, indicating insufficient value generation under current
market conditions. The project does not meet the required return threshold defined by the assumed
WACC of 11%. Although the system achieves a positive ROIC of 2.5%, it remains substantially below
the capital cost benchmark, resulting in a negative net value contribution. These results confirm that,
without support measures or improved market conditions, the system remains economically unprof-
itable.

As given in Table 7.1, NOPAT is limited to €222,112 per year, driven by relatively low EBIT (€296,150)
and high operational expenditures. The system generates an annual revenue of €4.17 million, of which
€3.64 million is derived from hydrogen sales and €534,375 from electricity arbitrage. However, this
revenue is largely absorbed by operational costs, particularly by the electricity input cost (€2.44 million)
and grid tariffs (€1.21 million), which together account for 88% of total COGS.
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Table 7.1: Output parameters baseline analysis

Metric Unit Value Description

EVA € -8.52 Economic Value Added

ROIC % 2.48 Return on Invested Capital

NOPAT €lyear | 222,112 Net Operating Profit After Taxes

EBIT €/year | 296,150 Earnings Before Interest and Taxes
Revenue €/year | 4,170,739 | Total revenues from electricity and hydrogen sales
Electricity sales €/year | 534,375 Revenues from electricity sales

Hydrogen sales €/year | 3,636,364 | Revenues from hydrogen sales

COGS €/year | 3,651,259 | Cost of Goods Sold

Electricity costs €lyear | 2,437,500 | Costs for purchased electricity

Grid tariffs €/year | 1,213,759 | Grid access fees

OPEX €/year | 223,330 Operational expenditures

Operation and maintenance costs | €/year | 215,000 O&M of electrolyser system

Stack replacement costs €l/year | 8,330 Annualised electrolyser stack replacements
Invested capital € 8,954,574 | Total capital invested

Net working capital € 417,074 Liquid assets tied up in operations

Fixed capital € 8,537,500 | Long-term capital investments

WACC % 11 Weighted Average Cost of Capital

A deeper breakdown reveals two main bottlenecks. First, the high energy-related costs (electricity
and grid access) compress the gross margin, despite the healthy revenue. And second, the capital
intensity, with €8.95 million in invested capital, mostly in fixed assets, is pushing down the ROIC, even
in the presence of positive NOPAT.

The basis structure as given in Figure 4.1 can be indicated with the results of the baseline as shown in
Figure 7.1. The nodes that contribute negatively are shown with edges in red, and those with positive
contributions in green. What can be observed is that there is a slightly positive but low ROIC. The
visualisation confirms that while the revenue base is relatively strong, the negative impact of high COGS
and capital costs dominates the financial result. This highlights a mismatch between the technical
potential of the Battolyser and its financial viability without further interventions.
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Figure 7.1: Result of the baseline analysis in the VDT structure

This step suggests that the Battolyser, in its current configuration, is sensitive to electricity price volatility,
grid cost structures and investment scale. Without adjustments in parameters or policy incentives, the
system is unlikely to meet return expectations. Thereby, the baseline serves as a critical benchmark for
evaluating the effectiveness of design improvements or policy interventions in subsequent analyses.

7.2. Impact of value drivers

Before running stochastic simulations, a series of deterministic tests have been conducted to examine
the individual effect of each value driver on EVA. This analysis isolates each input parameter while
keeping others constant, providing clear insight into their marginal impact on value creation.

As part of factor prioritisation, sensitivity analysis is performed for the interpretation of the effect in the
model. Figure 7.2 presents a tornado chart of EVA outcomes across fixed parameter changes (20%) of
the lowest nodes as input variables. Further details are provided in Appendix E, showing an overview
of the specific values.
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Tornado Plot: Impact of Parameter Changes on EVA
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Figure 7.2: Sensitivity analysis of the VDT

From the sensitivity analysis, EVA is most sensitive to changes in hydrogen price, full load hours of
the electrolyser and battery efficiency. More specifically, a + 20% change in the hydrogen price has
the highest identified impact on EVA. A positive change leads to an increase of more than 70% and
a negative change results in an equally large decrease. This suggests that the economic viability
of the project is highly exposed to hydrogen market dynamics. Also, increasing the full-load hours
of the electrolyser or improving battery efficiency significantly improves the EVA. This highlights the
importance of operational optimisation and technological performance.

On the other hand, parameters such as conversion efficiency, electricity price, WACC and unit capital
cost of the electrolyser also have a significant impact. They show a negative impact when they decline
by 20%. In particular, conversion efficiency shows an asymmetric effect. If there is a negative change
(-20%), this causes a significant drop in EVA (more than 60%), while a positive change improves EVA
only slightly. This indicates a critical vulnerability where a performance drop implies a high cost.

Parameters such as operation and maintenance (O&M) costs, battery capacity and TSO tariffs have
moderate effects, while others, such as capital cost per battery unit, annual degradation and revenue
rate, have relatively small effects, suggesting that they have a lower priority in strategic or design
decisions. It underscores that managing input cost volatility and ensuring high system efficiency are
key to maximising economic value subject to uncertainty.

This sensitivity analysis reveals that boundary conditions with small changes in inputs lead to large
shifts in the outcome. These tipping points highlight where the system becomes economically fragile
and creates the potential for policy or strategic interventions. These results are used to select variables
to focus on in later uncertainty analysis.

Phase II: Uncertainty integration

In this phase, uncertainty is explicitly integrated into the simulation model using Monte Carlo techniques
as stated in chapter 3. The factorial sampling method allows for assessing how variations in key input
parameters propagate through the system and affect investment outcomes. This is primarily measured
via the performance metric EVA. This provides insight not only into the expected performance but also
into the distributional risk profile of the Battolyser Systems under variability. As discussed in chapter 6,
experiments have been set up for this simulation.
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7.3. Impact of uncertainty space

The following subsections give the detailed results of the uncertainty simulations for five critical pa-
rameters as stated in Table 6.1: electricity price, hydrogen price, unit capital cost, operating hours
and electrolysis efficiency. Each scenario includes 8,760 iterations (1 per hour, 8,760 hours per year)
to represent a full operational year. Distributions are presented using boxplots and histograms. The
baseline EVA of -8.5% is used as a benchmark to interpret deviations caused by uncertainties. The
probability distribution with descriptive statistics provides insight into system performance subject to
realistic variation.

7.3.1. Electricity price

The first framed uncertainty factor is the electricity price. The input of this variable has been retrieved
from the Climate Energy Outlook KEV 2024 scenario, with the data of electricity prices [€/MWh] in 2030.
Figure 7.3 shows two plots, on the left the boxplot of the EVA values and on the right the histogram
visualising the distribution of EVA as a result of variations in electricity price.
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Figure 7.3: Impact of electricity price on EVA [%]

Figure 7.3 shows that variations in electricity price, derived from the KEV 2024 2030 projection, lead
to a negatively skewed EVA distribution, with most outcomes below the baseline. The mean EVA is
-9.2%, and the median is -9.0%, indicating a systematic underperformance with a price uncertainty. The
standard deviation of 2.4 indicates moderate variability. Although the 10th percentile drops to -12.7%,
the narrow spread suggests consistent underperformance, with limited upside.

With this narrow range, electricity price is a highly sensitive driver of economic performance. The
conclusion is that with these variations of data, there is a high probability of decreased EVA compared
to the base case and can be named as downside-oriented risk.

7.3.2. Hydrogen price

The second uncertainty factor is the hydrogen price. As given in the sensitivity analysis in Figure 7.2,
this variable shows a big influence on the outperformance of EVA. The EVA results of a Monte Carlo
simulation of 8,760 iterations with the hydrogen price range of 3 - 14 €/kg and a mean of 8 €/kg are
shown in Figure 7.4.
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Boxplot of EVA Values Distribution and Cumulative Probability of EVA Values
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Figure 7.4: Impact of hydrogen price on EVA[%]

Figure 7.4 shows that the EVA distribution is largely symmetric and normal, with a median value just
above the baseline. The result shows that the median EVA is negative with -7.4%. Most EVA values
cluster around the negative range, stating that negative outcomes are most probable. The results show
that with a slightly higher median, this uncertainty is somewhat increasing for most values. Shown with
the box plot, about 80% of the values are in the range of -18.5 and 4.7 €/kg with the 10 and 90th
percentiles. This wide range shows a high impact of the hydrogen price on the EVA.

So, hydrogen price introduces a significant uncertainty but with a balanced risk profile, offering both
downside and upside potential. This emphasises the importance of market development, long-term
offtake agreements and floor price mechanisms for investor confidence.

7.3.3. Unit capital cost

The third uncertainty parameter is the unit capital cost of the electrolyser. The results of a Monte Carlo
simulation of 8,760 iterations with the range of 370 - 1,666 €/kW and a mean of 1,000 €/kW are shown
in Figure 7.5.
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Figure 7.5: Impact of unit capital costs on EVA

The EVA distribution in Figure 7.5 significantly shows a difference from the baseline of -8.5%. Approxi-
mately 95% of the EVA values lie above this threshold, implying that the modelled values create higher
yields and a consistent improvement over the baseline. A significant right skew suggests potential for
even higher performance.
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This logic is based on the fact that the new uncertainty price gives the baseline value as the maximum
value of the distribution. However, the range of the EVA still shows a negative outcome, indicating that it
does not give enough improvements for creating value. Capital cost reductions present a transformative
opportunity for improving investment viability. This reinforces the importance of learning curves, scaling
effects and CAPEX subsidies in early-stage deployment.

7.3.4. Operating hours

The fourth uncertainty parameter implemented is the operating hours. The results of a Monte Carlo
simulation of 8,760 iterations with the range of 2500 - 8000 hours and a mean of 5000 hours are shown
in Figure 7.6.
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Figure 7.6: Impact of operating hours on EVA [%]

Figure 7.6 shows the impact of the operating hours on EVA. The median of -8.2 shows a very slight
change from the baseline at -8.5. The range is very wide, suggesting the substantial variability within
the central 50% of the input values. Also, several outliers on both sides are visible. The 10th and 90th
percentiles are from -18.5 to 2.3% suggesting possible EVA outcomes, but tend to give no value with a
negative EVA. Utilisation rate is a key uncertainty dimension with substantial influence on investment
outcome.

7.3.5. Conversion efficiency electrolysis

The last uncertainty parameter is the conversion efficiency of the electrolysis. The results of a Monte
Carlo simulation of 8,760 iterations with the range of 50 - 65 kWh/kg and a mean of 1,000 kWh/kg are
shown in Figure 7.7.
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Figure 7.7: Impact of conversion efficiency of electrolyser on EVA [%]

On the left of Figure 7.7, the boxplot illustrates the spread of the EVA values with the range, median
and outliers. The median is -9.3%, just below the baseline analysis. The distribution shows a central
estimate where the 10th and 90th percentiles are from -11.6 to -7.2 % shows that EVA remains negative.
The narrow range shows moderate variability and influence on EVA outcomes.

Although efficiency affects operational costs, its relative influence is moderate compared to price and
capital cost variables. Technological efficiency improvements are desirable but not critical for this met-
ric.

7.4. Synthesis of uncertainty space

As continued, every uncertainty is plotted separately to obtain the individual influence. The next phase
is to create the total uncertainty space. Figure 7.8 shows the distribution of EVA across all uncertainty
ranges taken into the simulations in the same format as the previous plots.
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Figure 7.8: The EVA distribution under the whole uncertainty space

The results indicate a centre-skewed distribution with a median of -8.5% just as the baseline case.
However, the wide range of outcomes shows a big uncertainty space with the 10th and 90th percentiles
of -31.7 and 21.6 %.

With this uncertainty space given by the Monte Carlo simulation, an indication of the possible influences
are established. The results can somewhat change due to the iterative approach behind the simulation.
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The ranges indicate how much impact these input variabilities have on the estimation of the EVA. Not
only the values, but also the switch of the EVA from negative to positive is presented.

The full uncertainty simulation underscores that Battolyser deployment under current market condi-
tions is structurally risky, but targeted improvements in hydrogen pricing, CAPEX and electricity cost
management can shift the probability space towards positive value creation.

Phase III: Policy lever integration

This phase explores how targeted policy interventions can influence the investment viability of Battol-
yser Systems, subject to uncertainty. Three levers were selected based on their practical relevance,
model sensitivity and stakeholder influence: (1) operational subsidy (OWE), (2) grid tariff reduction and
(3) weighted average cost of capital (WACC) adjustment. These levers are independently integrated
into the simulation framework, allowing for controlled impact assessment. The overarching goal is to
identify which instruments most effectively improve value creation under techno-economic constraints.

7.5. Impact of policy levers

Table 6.2 summarises the policy interventions and their assumed ranges. The results of each interven-
tion are discussed below, with a focus on EVA performance as a proxy for investment attractiveness.

7.5.1. Operational subsidy

The first policy intervention targets operational expenditure, especially by subsidising the electricity
cost input. This is stated as a dominant cost driver in the baseline analysis. As shown in Figure 7.9,
increasing the subsidy from 0 to 80 €/ MWh significantly improves EVA outcomes. A turning point is
observed around 60 €/ MWh, where EVA shifts from negative to strongly positive values (>80% of the
simulations). This illustrates the high leverage of the electricity cost relief on investment performance.
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Figure 7.9: Subsidy influence on EVA [%)]

These findings confirm that affordable electricity is the most influential value driver in the current system.
Subsidies of this nature can help to mitigate price volatility, reduce exposure to grid costs and improve
financial resilience, particularly in early project stages. From a policy perspective, this aligns with
existing operational support schemes (e.g. SDE++), yet indicates that more targeted compensation
may be needed for (dual-use) electrolysis technologies.
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7.5.2. Grid tariff reduction

The second lever addresses fixed grid access costs. This is another contributor to operational expen-
diture and is seen as a possible policy intervention into the improvement of investment decisions. Grid
tariff reductions between 20% and 80% were modelled, as shown in Figure 7.10. Unlike the electricity
subsidy, the impact on EVA is relatively marginal, even under substantial tariff cuts.
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Figure 7.10: TSO tariff reduction influence on EVA [%]

This result suggests that although grid tariffs are non-negligible, they do not constitute to the core bottle-
neck in system viability. Their effect is diluted due to their smaller proportion in total COGS compared to
electricity procurement. While tariff reduction could still serve as a supporting measure, its standalone
effect is unlikely to shift investment outcomes substantially. This aligns with regulatory discussions
around locational pricing and capacity scarcity, but suggests limited standalone policy payoff.

7.5.3. WACC

At last, the WACC is treated as a structural financial lever reflecting investor risk perception and fi-
nancing conditions. As shown in Figure 7.11, lowering the WACC from 11% to values around 3 — 7%
substantially increases EVA. This illustrates the tight coupling between financing conditions and value
creation in capital-intensive systems.
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Figure 7.11: WACC change of influence on EVA [%]

This also confirms that de-risking mechanisms can have a decisive effect on the system metric. Some
of those mechanisms could be credit guarantees, blended finance or public-private partnerships. Given
the capital intensity of Battolyser deployment, WACC should be seen as a pivotal boundary condition
rather than a passive parameter. Policy can influence this through clear regulatory signals, investment
support instruments and long-term guarantees of hydrogen offtake.

7.6. Synthesis of policy effects

These last findings demonstrate how policy interventions affect the ability of the system to create eco-
nomic value subject to uncertainty. Despite a slightly positive ROIC, the baseline EVA of -8.5% reflects
a structurally unprofitable project without support. Among the tested levers, the following findings were
obtained. First, electricity cost subsidies have the strongest positive effect, validating the importance
of reducing OPEX volatility. Second, lowering WACC is also highly effective, confirming the sensitivity
of EVA to financing conditions. Last, grid tariff reductions, while beneficial, have a limited standalone
effect.

Additionally, the analysis reinforces that EVA is not a static measure but responds nonlinearly to changes
in upstream policy and system conditions. As visualised in Figure 7.1, the policy levers affect different
branches of the VDT. The operational subsidy boosts revenue margin, WACC reduces capital cost
pressure and grid tariffs affect a smaller operational cost node.

This analysis underscores that targeted interventions on the most elastic and uncertain drivers, such
as electricity and financing parameters, should be prioritised. Prioritising these levers can help to align
policy with the most influential factors shaping project success. Doing so will not only improve financial
viability but also strengthen the alignment between technology deployment and eventually systemic
decarbonization success goals.



Discussion

This chapter reflects on the main findings, implications and limitations of this research. Previous chap-
ters (4, 5, 6 and 7) addressed the specific sub-questions through the eventual model’s value drivers and
uncertainty specifications. This chapter situates those findings within a broader academic and social
reflection. It discusses the relevance of value-driven investment modelling for emerging energy tech-
nologies, highlights key insights gained from applying the method to Battolyser Systems and reflects
on the methodological strengths and limitations encountered. In addition, it examines the implications
for interdisciplinary integration and policy design under uncertainty. This sets the foundation for the
concluding chapter 9.

8.1. Insights from applying the VDT model to Battolyser Systems

In this research, a VDT-based simulation model has been designed and applied to investigate the
investment performance of Battolyser Systems in the emerging Dutch green hydrogen market. By
combining a structured decomposition of value drivers with Monte Carlo simulations, the model enables
uncertainty-driven identification of boundary conditions which are critical in investment performance.
This has offered a quantitative framework to assess how technical, financial and institutional drivers
interact under volatile policy conditions.

8.1.1. Technology selection

The selection of Battolyser Systems, which combines battery storage and hydrogen production, has
been proven to be methodologically valuable. Unlike single-purpose technologies, the hybrid nature is
exposed to policy mismatches, such as double grid charges and inadequate existing subsidies. The
visible limitations of subsidy instruments, such as SDE++ and OWE, remain tailored to linear, single-
function technologies (Agora Energiewende, 2021; Invest-NL, 2024). However, despite the potential
improvements in the model implementation of the technology related to the flexibility in the storage and
production calculations, the technology enables to capture of structural uncertainty in the model.

The critical blind spots revealed in the current policy design for conventional cases would probably
have been hidden (Woolthuis et al., 2005). Beyond this, the technology enables the modelling of
both internal technological uncertainty and broader system uncertainties, such as infrastructure rollout,
market design and regulatory direction. These uncertainties, often overlooked in standard techno-
economic assessments, are crucial to understand the investment conditions for at-risk innovations.

The Battolyser case thus served as an entry point to reflect on how emerging system-integrated tech-
nologies interact with fragmented institutional structures. It helped operationalise to have a view of the
system that moves beyond static metrics, connecting micro-level design objectives with macro-level
sustainability goals across stakeholder domains. In doing so, it allowed the model to simulate the ef-
fects of policy interventions not only on financial viability but also on systemic fit, addressing a critical
blind spot in how policy currently assesses multifunctional technologies.

61



8.2. Policy relevance and practical usefulness 62

8.1.2. Implications in approach

By applying the VDT approach to such a systemic innovation, it highlighted both its strengths and its
boundaries. The method effectively unpacks operational and financial drivers beyond the Levelized
Cost of Hydrogen, including flexibility and system services that are often underrated in policy metrics
(Hydrogen Europe, 2022; Jenkins et al., 2022). Yet, it also revealed the challenge of modelling insti-
tutional uncertainty and non-linear policy impacts within a deterministic framework. Although Monte
Carlo methods simulate outcome variability, they could not fully reflect how regulatory shifts or delayed
infrastructure would influence strategic feasibility over time (Kwakkel et al., 2016).

8.1.3. Systemic value and model performance

So, this research functioned as a stress test. It confirmed the utility of VDT for visualising value interac-
tions, while demonstrating the need to complement it with adaptive tools and broader system thinking.
The multifunctionality of the Battolyser allowed the model to surface insights into the mismatch between
technological potential and existing governance structures. More broadly, it underscores that robust
support for the integration of technologies in the system requires policy instruments that recognise mul-
tifunctional value (Borras & Edler, 2014; Mazzucato, 2018). This insight has direct implications for both
model development and policy design, particularly for technologies navigating institutional complexity
and market emergence.

8.2. Policy relevance and practical usefulness

This section interprets the results of the modelling concerning the Dutch policy landscape and reflects
on how the findings inform investment support mechanisms, risk governance and innovation policy
design for emerging energy technologies.

8.2.1. Translation to policy context

The modelling approach developed in this study aligns with key elements of Dutch and European hydro-
gen strategies, which increasingly rely on targeted subsidy schemes, infrastructure coordination, and
regulatory reform to catalyse the deployment of green hydrogen (Agora Energiewende, 2021; Hydrogen
Europe, 2022). By including variables such as subsidies, electricity costs, grid fees and WACC adjust-
ments, the model reflects concrete, real-world policy levers. Battolyser Systems technology, serving
as a reference case, enabled a grounded calibration of technical and financial input assumptions while
also exposing information gaps arising from the hybrid and novel nature of the technology (Mulder et al.,
2017).

Crucially, the integration of the VDT approach with Monte Carlo simulations offers a quantitative struc-
ture for assessing the financial consequences of policy scenarios under uncertainty. This structure
enables policymakers to simulate the impact of interventions such as HER+ grants or grid tariff ex-
emptions on investor expectations. The model design has prioritised transparency, modularity and
scenario adaptability. This supports its application in capital-intensive dynamic decision environments.
However, its static formulation and scarcity of feedback loops or learning effects limit its relevance for
long-term strategic or adaptive policymaking. This limitation is commonly discussed in the literature on
energy modelling, which can still be improved by research (Kwakkel et al., 2016).

8.2.2. Visualising uncertainty and sensitivity

The simulation results highlight the complex risk profile of investments in Battolyser Systems. The sen-
sitivity analysis revealed the hydrogen price as the most influential and uncertain parameter, underscor-
ing the high exposure of electrolysis technologies to the volatile market and policy factors (Capgemini,
2024). This price is market-driven and policy-mediated, making it a representative of deeper uncer-
tainties about future energy governance and demand formation (Institute for Energy Economics and
Financial Analysis (IEEFA), 2023). An interesting finding is that despite the relevance, electricity prices
exhibit narrower variance in their effect on EVA, suggesting that policy interventions focused on elec-
tricity cost relief (e.g., through grid support or exemption mechanisms) offer less impact than expected.

Operational efficiency parameters, such as conversion rates and unit capital costs, have shown mod-
erate sensitivity to innovation and scaling potential. Notably, full-load hours have emerged as a policy-
sensitive variable linking infrastructure, market signals and grid access. This finding is reflected in



8.3. Methodological reflection 63

recent literature on electrolyser utilisation risk (Azadnia et al., 2023). In the baseline scenario, EVA has
remained negative. Under most uncertainty conditions, the model tends towards increasingly negative
values. This underscores the systemic misalignment between investment incentives and multifunc-
tional technologies. Subsidies lowering electricity costs and de-risking instruments (e.g., WACC reduc-
tion through guarantees) have shown to improve outcomes most significantly. However, it is important
to consider the bounds conditioned by the broader dynamics of the system.

8.2.3. Limitations of current policy structures

This research underscores a critical gap in the current policy design of hydrogen and energy storage.
There is a structural lack of recognition of system innovations that deliver cross-functional value. Battol-
yser Systems combines multiple value contributions of flexibility, storage and production (Mulder et al.,
2017). However, the regulatory and subsidy regimes are still rooted in technological categorisation
(Swarts et al., 2025; Woolthuis et al., 2005). This results in systemic blind spots.

The findings of the model make a case for shifting towards more adaptive, mission-oriented innovation
policies as stated by Mazzucato, 2018. By identifying not only key value drivers but also their uncertainty
profiles, the model supports a form of policy design that focuses on intervention leverage where impact
meets risk. For instance, expanding load hour certainty through co-location strategies or integrated
system design offers more robust returns than only focusing on CAPEX reductions.

In sum, the model offers policy applicability not by predicting outcomes but by illustrating the range
and sources of investment risks. This allows policymakers to focus their dialogues on those variables
where uncertainty is highest and policy leverage is most impactful. As such, the tool contributes to
policy making by being more reactive and aware of risks. This is particularly required in early-stage
markets characterised by high capital exposure and low regulatory maturity.

8.3. Methodological reflection

This research applies a structured value-based modelling framework to explore how external uncer-
tainties affect the creation of investment value in the deployment of Battolyser Systems. Rather than
providing deterministic forecasts, the methodology aims to support exploratory decision-making by in-
tegrating uncertainty in a transparent and quantifiable way.

8.3.1. Strengths of the VDT approach

The VDT offers a systematic way to understand complex socio-technical systems. It deconstructs value
creation across technical, economic and policy domains. By integrating causal logic and system de-
composition, it enables a clear link between policy levers and financial outcomes. While the model
assumes rational investor behaviour and simplifies behavioural or institutional complexity, its transpar-
ent structure allows critical system dynamics to be visualised and simulated. This includes energy
prices, grid access and capital costs.

A significant academic contribution lies in translating a conceptual VDT into a computational model.
Each value driver has been defined mathematically, substantiated by literature and has been validated
through unit consistency and logical coherence. This formalisation allows for simulation, sensitivity
analysis and policy scenario evaluation. The VDT becomes a powerful analytical tool by being qualita-
tive and adaptable to decision-making under deep uncertainty.

Monte Carlo simulation allows for probabilistic outcome distributions, enabling the identification of
boundary conditions and exposure to extreme risks, building from other literature (Johnson, 2022).
EVA has been selected as the core metric for investment performance, combining operational results
(ROIC) and financing conditions (WACC). Although EVA frames the value in financial terms (Patel &
Patel, 2012), the broader driver structure invites future integration of non-financial or societal indica-
tors. Importantly, the model supports robustness orientation but stops at prescriptive or adaptive policy
evaluation.

8.3.2. Evaluation of the entropic approach to uncertainty
Integrating of an entropic lens has improved the capacity of the model to assess not only the expected
value results, but also their epistemic robustness. Entropy metrics revealed which scenarios has pro-
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duced different forms of distributions, adding a second dimension of decision quality. This aligns with
principles from value-of-information theory, enabling users to prioritise both policy interventions and
data collection efforts. In stakeholder settings, entropy also serves as an intuitive indicator of decision
confidence, improving the communicability of uncertainty in policy design.

8.3.3. Constraints and assumptions

The model makes several deliberate abstractions. First, the causal structure overlooks endogenous
feedbacks, behavioural adaptation or temporal policy co-evolution. Second, parameter values do of-
ten rely on expert assumptions or sectoral reports due to data scarcity, particularly for emerging tech-
nologies. Third, static logic around investment (e.g., fixed WACC, linear scaling) limits the realism of
dynamic capital flows or learning effects. In addition, policy and stakeholder interactions are treated ex-
ogenously. These limitations do not reject the utility of the model, but instead frame it as an exploratory
tool best suited to early-stage assessments or scenario stress testing. Its academic strength lies in its
transparency, traceability and transferability across innovation contexts with the follow-up of the stated
criteria in Table 3.1 for the approach.

8.3.4. Passing to other applications

Beyond its application to Battolyser Systems, the VDT framework offers a replicable methodology for
other capital-intensive systemic innovations. The three-step structure for decision support is stated
as (1) decomposition of the value target via Fermi estimation, (2) causal structuring through a VDT
and (3) simulation of uncertainty via stochastic sampling. This is grounded in theory and adaptable to
practical cases. It addresses a growing academic demand for explainable, causal and uncertainty policy
models. Together, these elements demonstrate that the methodological contribution of this research
lies not only in producing results but in enabling a structured, transparent and uncertainty-aware way
of thinking about early-stage investments in socio-technical transitions.

8.4. Interdisciplinary integration

This research responds to the societal and academic need for integrative tools that can navigate the
complexity of the wicked problems of energy transitions. However, the impact of such modelling de-
pends on how effectively it bridges disciplinary perspectives and aligns with societal objectives.

8.4.1. Interdisciplinary dimensions

The research incorporates engineering, economics and policy into a unified framework that captures
key challenges in the hydrogen sector. Although embedded in financial metrics, the model allows ex-
ploration of systemic conditions and policy interventions. However, it abstracts from social, ethical and
political dynamics that shape technology adoption in practice. The limited attention to grid governance
and institutional coordination limits its value in infrastructure planning. Future work should broaden this
scope by embedding the model into deliberative or co-creation contexts, where qualitative dimensions
of the transition can be better represented.

8.4.2. Stakeholder integration

Although stakeholders are conceptually acknowledged within the experimentation design, their strate-
gic behaviour and interactions are not explicitly modelled. Participatory modelling or agent-based ap-
proaches could enrich the framework and improve its capacity to inform governance under competing
interests and institutional constraints.

8.4.3. Translation of complexity into actionable insights

The model simplifies investment complexity into structured outputs such as sensitivity rankings and
EVA distributions, which clarify key uncertainties and leverage points. Yet, the financial framing may
constrain its accessibility for non-experts, and the abstraction level may obscure real-world conditions.
There is also a risk of overconfidence in probabilistic outputs derived from assumptions with limited
empirical grounding. Increasing communication tools will enhance the usability of the model for policy
and decision-making under uncertainty.



Conclusion

In conclusion of this research, the study employs a value driver tree-based simulation approach to
explore the influence of key uncertainties on the attractiveness of Battolyser Systems investments in the
Dutch green hydrogen market. First, relevant value drivers have been identified through the literature
and expert consultation. Next, a model has been set up to structure these drivers in a hierarchical tree,
mapping how upstream uncertainties propagate to investment-level outcomes. Then, an uncertainty
analysis has been conducted with distributions by Monte Carlo simulation. This is applied to reproduce
uncertainty through the model, allowing for the assessment of probabilistic outcomes and sensitivity.
The final step involves a robustness and relevance analysis, identifying which uncertainties are most
critical and affect performance.

9.1. Answers to research questions
This research has aimed to answer the main question:

How can a value driver tree-based simulation model be designed and applied to the investment
performance of Battolyser Systems under uncertainty in the Dutch green hydrogen market?

In conclusion, the value driver tree simulation model has been used in this study as a structured mod-
elling approach to decompose investment outcomes into their associated causal drivers. The VDT pro-
vides both a conceptual and a computational framework to trace how uncertainties at different nodes
are transmitted through the system and affect outcomes. The hierarchical, dependency-based struc-
ture aligns well with the entropy-based uncertainty framework introduced in this research. Each node
represents a potential location of informational, epistemic or strategic entropy. The VDT enables simu-
lation of complex interactions under uncertainty, while maintaining an understandable outcome, which
is essential for strategic prioritisation in emerging markets such as green hydrogen.

Compared to black-box approaches such as neural networks or purely statistical models, the VDT
provides a semi-transparent structure where uncertainty is not only detected post-hoc but also has been
built into the model architecture itself. This transparency is particularly valuable in highly supported, but
data-lacking domains such as emerging green technologies.

Value Driver Tree models enhance strategic planning by organising complex, uncertain or a lack of
information into manageable components and aligns technical decisions with investment performance.
Specific contributions to the method are given.

* First, visualising value creation relationships. The VDT allows for the visualisation of how various
factors influence the desired outcome. In this way, it builds on the understanding of a chosen key
performance indicator. By mapping out the interrelationships, clarity helps to pinpoint the most
critical factors.
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» Second, the potential of hierarchical structuring in system modelling. The VDT enables a hi-
erarchical organisation of all the variables that are defined as factors that affect the top node.
The problem involves multiple uncertain variables at different levels and the structure enables
implementation. It breaks down complex systems into manageable parts, ensuring that each
uncertainty is systematically addressed and its potential impact is understood in relation to the
overall goal. The flexibility and adaptability of the model is a highly positive result.

* Third, a very important contribution is the quantification of uncertainties. The combination of the
VDT with the probabilistic method of Monte Carlo simulation can quantify the impact of uncertainty
on investment performance. By assigning probability distributions to key variables, the VDT helps
to simulate different scenarios and understand their potential impact on performance.

» Fourth, one of the most valuable aspects of using the VDT method is its ability to prioritise the
drivers of investment performance based on their relative importance and influence. This is crucial
in decision-making, especially when resources are limited and investment strategies need to be
tailored to address the most significant risks and opportunities in the market.

Finally, this method can serve as a structured decision support tool. For stakeholders, the VDT
provides a structured and transparent way to communicate complex relationships and uncertain-
ties in investment performance. This method not only identifies the most critical factors but also
allows decision-makers to visualise potential outcomes and their associated risks.

To further specify the answer, the sub-questions are answered from the insights gained in the research.

SQ 1. What are the key value drivers influencing investment decisions of Battolyser Systems
and how can they be structured in a value driver tree?

Based on value-based management theory, the performance metric for an investment decision is the
Economic Value Added, based on Return on Invested Capital and the Weighted Average Cost of Cap-
ital. Based on the Value Driver Tree framework, the structure of the drivers, every value is connected
towards the system based on a techno-economic perspective. The systematic causal relations have
been built into the structure and are divided into three sub-trees: revenue, costs and capital drivers.
The sub-trees enable dynamic modelling of the value drivers, which are essential for the systems cal-
culating financial indicators. By combining these trees into one, the resulting conceptual model for
simulation is obtained.

All drivers can be structured in a value driver tree rooted from EVA, with branches reflecting the com-
ponents of revenue, cost and capital efficiency. This structure links all the technical, operational and
financial choices. By making the variables measurable, it can be clarified how uncertainties and inter-
ventions propagate through the system, and supports more targeted and effective policy and investment
decisions.

SQ 2. What are the uncertainties that affect the behaviour of these value drivers?

By focusing on the VDT, the value creation of the system is embedded in a dynamic context of tech-
nological, market and policy uncertainties. The stakeholder analysis confirms that these uncertainties
are widely recognised, but also differ in perception and priority. Key value drivers such as revenue,
efficiency, costs and capital expenditures are sensitive to multiple factors simultaneously. The uncer-
tainties are therefore stated as variable uncertainties, which are input variables for the modelling. Eval-
uating the robustness, sensitivity and adaptivity of the system is essential for reliable decision-making.

SQ 3. How can a simulation model be designed based on the value driver tree to capture invest-
ment performance under uncertainty?

A simulation model which is based on the value driver tree can effectively analyse investment perfor-
mance under uncertainties by systematically modelling the underlying economic structure. This is done
through a hierarchical structure in which value drivers are organised in multiple levels: from basic input
parameters (such as price, volume and efficiency) to aggregated output (such as NOPAT, ROIC and
EVA). The model works from bottom to top, whereby variables at lower levels are read and combined
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to higher levels via a structured dictionary approach. Operators are defined for each node in the tree
(such as sum, product, quotient) that make the quantitative relationships explicit.

Crucial in this design is the distinction between input parameters with fixed values (such as investment
costs or efficiency with technical assumptions) and parameters that are modelled as distributions (such
as energy and hydrogen prices). This allows the model to represent uncertainty using Monte Carlo
simulations, whereby the spread of results such as EVA and ROIC becomes visible. This combination
of structure, calculation system and probabilistic inputs makes the model suitable for robust investment
analysis under realistic uncertainty conditions.

SQ 4. What insights does the simulation model provide regarding the most influential and
uncertainty-sensitive value drivers?

The simulation model provides valuable insights into which value drivers are most significant and most
sensitive to uncertainty within the investment profile. The simulation shows that variables such as
hydrogen price, electricity costs and electrolyser efficiency have the greatest influence on top-level
parameters such as EVA. The hydrogen price in particular proves to be a crucial lever, where small
variations lead to large shifts in value creation. The endogenous technical parameter of the conversion
efficiency also shows a high impact on the EVA. WACC and network tariffs also show high sensitivity,
underlining the importance of stable policies and reliable financing.

By placing EVA at the heart of the model, the focus shifts from short-term profit to long-term value
creation, contributing to more sustainable investment choices. This is relevant for emerging markets
and different stakeholders. The value driver tree makes the value chain visual and transparent. The
logic connects key performance indicators and makes it clear how value flows through the system. With
the use of combined policy interventions and uncertainty analyses, the effects of policies or market
interventions can be directly evaluated, making the model a powerful tool for strategic planning.

9.2. Contribution to informed policy and strategic decision-making
The analysis reveals specific conditions under which alignment between individual incentives and col-
lective interaction is achievable, for example, through targeted policy interventions or design. These
findings underscore the relevance of individual-level modelling in understanding macro-level policy ef-
fectiveness and contribute to the broader discourse on the governance of complex adaptive systems.

This research makes a contribution to policymaking and strategic decision-making by developing a
simulation-oriented decision-making framework that is suitable for use in contexts with considerable
uncertainty. Instead of a conventional valuation model, a VDT is constructed that structures causal re-
lationships between policy measures, technological developments and economic outcomes in a trans-
parent manner. By applying a Monte Carlo simulation uncertainties in the input variables are systemat-
ically calculated, leading to a broad spectrum of possible outcomes. As such, the model does not just
provide a single prediction, but a simulated overview of plausible scenarios.

A distinctive added value of this framework is the possibility to evaluate policy and strategic decisions
both ex-ante and ex-post. Ex-ante provides support in anticipating possible effects of policy measures,
while ex-post enables an evaluation based on the information that was available at the time of decision-
making. This prevents decisions from being judged solely on outcomes and allows honest reflection on
the quality of the decision-making process. This approach is particularly relevant for policy areas where
the future is fundamentally uncertain, such as energy transitions, climate policy or innovation-oriented
investment policy.

9.3. Contribution to academic methodology

In addition to its policy relevance, this research makes a methodological contribution to the academic
field of decision-making under uncertainty. The approach used is built on the foundation of first princi-
ples and consists of three integrated steps. First, the target variable, for example, creation of economic
value, is deconstructed via a Fermi approach, in which it is divided into estimable components. Second,
a causal structure is constructed via a Value Driver Tree, in which the relationships between variables
are explicitly and traceably recorded. Third, the effects of uncertainty on this structure are calculated
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using a Monte Carlo simulation, resulting in probability distributions of outcomes instead of just fixed,
single point estimates.

This methodological approach results in a model that is replicable and explainable due to the trans-
parency it offers. Thus, it offers an alternative to black-box models that are often based on correlations
without structural substantiation. The methodology is in line with a growing academic approach in which
simulation and causality are central to the analysis of complex policy issues. Moreover, it provides a
solid starting point for further research, for example, on the effectiveness of policy instruments within
the EU Green Deal, the resilience of innovative companies in volatile markets, or predicting system
behaviour within the energy transition.

The integration of an entropic uncertainty lens within the VDT modelling framework has proven to be
both analytically valuable and decision-relevant in this research. Most importantly, it enables a more
nuanced comparison of policy scenarios by considering not only their expected performance but also
the structure and dispersion of their outcome distributions. This distinction has become particularly
meaningful in cases where scenarios yielded similar expected economic value with EVA but diverged
in the breadth of their outcome ranges. High-entropy scenarios, as revealed through Monte Carlo
simulation, have indicated greater epistemic fragility and reduced decision confidence. In contrast, low-
entropy scenarios have reflected a concentration of belief, suggesting that the underlying assumptions
and data input have offered more robust inferential ground. This has allowed decision quality to be
evaluated not only in terms of average performance but also in terms of how resilient the decision
remained across a range of plausible futures.

Furthermore, using entropy as a measurable indicator of uncertainty allows the model to assess where
improving input data would be most valuable. By examining how output entropy changes when the un-
certainty of specific inputs is reduced, the model highlights which variables contribute most to epistemic
uncertainty. This helps identify where additional data collection or research would have the greatest
impact in increasing decision confidence. This approach aligns with value-of-information principles in
Bayesian decision theory, reinforcing the model’s usefulness not only for guiding actions but also for
prioritising future knowledge acquisition.

Beyond analytical precision, the entropic framing has also improved the interpretability of uncertainty
for stakeholders. Rather than presenting risks in abstract statistical terms, the concept of entropy has
offered an intuitive metric for understanding the confidence level behind each policy outcome. This
added communicative value is particularly important in high-stakes or emerging policy domains, such
as climate mitigation, energy transitions, or infrastructure investment, where decisions must be made
under deep uncertainty and with limited historical precedent.

So, the entropic approach has facilitated a more comprehensive understanding of uncertainty by em-
bedding it into both the modelling logic and the evaluation process. It has moved beyond the com-
parison of deterministic scenarios by explicitly quantifying the confidence associated with each result.
This has improved both the transparency and robustness of the policy assessment and represents a
methodological advance in simulation-based decision support under uncertainty.

9.4. Future research

Future research should increase the methodological depth and practical relevance of VDT models by
integrating other emerging analytical tools and broadening the scope of value conceptualisation. First,
this can be done by extending the model from purely economic indicators to broader social and ecologi-
cal dimensions of value, such as social equity, ecological impact and institutional legitimacy. This would
bring the model closer to comprehensive frameworks such as Total Value Added (TVA) and integrate
reporting towards sustainability goals. However, this requires the inclusion of alternative performance
measures and the quantification of socio-ecological externalities. Second, predictive analytics or ar-
tificial intelligence could be integrated to enhance the dynamic capabilities of VDTs. This can show
results for real-time sensitivity assessments and adaptive forecasting under volatile conditions.

What may be seen as a limitation of the study can also be seen as an opportunity to further improve
the model. Therefore, future studies should focus on improving the robustness and granularity of the
input data used, for example, by using longitudinal datasets, high-frequency operational data and par-
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ticipatory data collection. By determining the most influential drivers, the most important data to obtain
can be determined. This transparency of data could show high improvements in decision-making by
stakeholders in the market.

Also, the role of institutional dynamics, including regulatory stability, policy feedback loops and gov-
ernance structures, deserves further investigation. This can be a mediating layer that influences the
behaviour of critical value drivers. Finally, future research should investigate the development of sce-
narios based on diverse uncertainty typologies, validated by structured stakeholder interactions, such
as Delphi studies or co-creation workshops. This would increase both the explanatory power and
stakeholder legitimacy of VDT-based investment models in complex socio-technical systems.



10

Reflection

Now after framing the scientific discussion and conclusion, a broader reflection of the research is given.
Throughout this project, | shifted my perspective on what it means to model investment decisions in
complex socio-technical systems. | initially viewed the task as primarily a technical challenge. So,
trying to collect the right equations, calibrate the parameters and simulate data inputs. However, the
deeper | was into the research, the more | realised that the true challenge was in structuring uncertainty
in a way that exposed systemic influence and strategic blind spots. This was also the opportunity in
the methodology where current research is still lacking some knowledge.

This concludes that designing a value driver tree was not just a modelling technique. It also became a
method to clarify thinking, both for myself and for potential use by stakeholders. It helped me separate
what drives value, what introduces noise and where assumptions are introduced or are secretly hidden
during the process. More importantly, it made me recognise that even the best-structured model is only
as useful as the scenarios, input and questions it is built to explore.

| also learned that models are never neutral. Each boundary | drew, each uncertainty | included or
excluded, reflects a perspective on what matters in the energy transition. This highlighted for me, the
impact on policy and institutional dimensions of investment decision-making is far deeper than | had
expected at the start. This was an extra layer, adding to the uncertainty in data, than | expected at the
forefront. This created continuous shifts in scoping and the intended approach for modelling.

Finally, this process taught me to embrace imperfection and iteration. Instead of striving for predictive
accuracy, | began focusing on usefulness. Can the model inform a conversation, shape a decision
or highlight a risk? In that sense, this project has given me not just technical skills but a mindset for
navigating complexity. That is important to carry in future work when working on this problem statement
or the framework used. The eventual result focuses on exploratory insights in the environment of
engineering, policy and systems change. A lot of abstraction steps are needed to give results in such
new and uncertain environments.

One of the most difficult things | encountered in this research design was scoping. In systems engineer-
ing quite an important concept because once quantified analysis is performed, it requires both data and
a defined system and problem statement. Normally, from the study, you choose a research topic that
has a lot of data available on it, so even though the research method provides transparency, one of the
limitations is mainly data availability. The method helped counterproductively in the beginning to demar-
cate, because by completely breaking parameters down into value drivers, it causes more complexity
and the realisation of even more relevant uncertainties. At the same time, this specifying approach
makes it a relevant and well-founded method. But looking through this lens of problem scoping made
it difficult to get a grip on the complexity of uncertainty.
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As | reflect on the use of Artificial Intelligence (Al) tools for research, the following can be concluded. To

support the research process in a structured, transparent and efficient manner, Al tools were employed
in different stages.

In the literature review phase, Al was used to assist in identifying and structuring relevant academic
papers and concepts. For academic writing, Al supports drafting and rephrasing of text passages. This
was always followed by manual editing and critical review to ensure originality and clarity.
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Literature review methodology

The methodology behind the literature study consists of five steps given in Figure A.1.

Step 1. Step 2. Step 3. Step 4. Step 5.
Analyse and -
Define scope Identify keywords Research literature synthesize = e
3 agenda
literature
Data bases + Cross table with Total and relevant Concept matrix Derive research
taxonomy search words papers with findings questions

e

Figure A.1: Literature analysis methodology framework (Brocke et al., 2009)

To clearly define the scope of the research the taxonomy with six characteristics is applied (Brocke et
al., 2009). To start, the research focuses on research methods for evaluating business characteristics
and the relation towards the global system. The goal is integration to ensure structured approach
to align technological advancements with policy and market mechanisms. The study is conceptually
organized using Value Driver Tree (VDT) model to asses financial and performance impacts. It adopts
a neutral representation perspective on decision-making frameworks. The primary audience includes
general scholars, practitioners and politicians, providing insights that support both academic research
and policymaking. The coverage is exhaustive and selective to explore the key value creation metrics.

Research findings and applications of value drivers and metrics are searched from [Number] databases
(Google Scholar, Web of Science, Semantic Scholar, Mendeley, ScienceDirect, Elicit, Scopus), to con-
ceptualize the findings. Only articles in English were included. Other criteria selecting literature are
based on publishing date between 2014 - 2025, relevance to European or Dutch context and peer-
reviewed or produced by a credible institutional source.
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Economic Value Added calculation in
Value Driver Tree structure

Economic Value Added (EVA) is calculated by:

EVA = ROIC — WACC (B.1)

* ROIC: Return on Invested Capital [%]
+ WACC: Weighted Average Cost of Capital [%]

B.1. Return on Invested Capital (ROIC)

Return on Invested Capital (ROIC) measures the efficiency of a company in generating returns from its
capital employed:

NOPAT

ROIC = 1 Vested Capital

-100% (B.2)

Where:

* NOPAT: Net Operating Profit After Taxes [€/year]
* Invested Capital: Total capital employed [€]

B.1.1. Net Operating Profit After Taxes (NOPAT)
NOPAT = EBIT - (1 — ) (B.3)
Where:

« EBIT: Earnings Before Interest and Taxes [€/year]
* ¢: Corporate income tax rate [-]

EBIT
EBIT = Riotal — Ccoss — CopEx (B.4)

Where:

* Riota: Total annual revenue [€/year]
* Ccoags: Cost of goods sold [€/year]
* Copex: Operating expenses [€/year]
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Total Revenue
Riotal = RE + RHz (B-5)
Where:
* Rpg: Electricity storage revenue [€/year]
* Ry,: Hydrogen electrolysis revenue [€/year]
Electricity storage revenue
Rg =pEe-qE (B.6)
qE = Phatt * TFLH,b " Toatt (B.7)
Where:
 pg: Electricity price [€/MWh]
* gg: Electricity sold [MWh/year]
» Pyatt: Storage capacity [MWh]
* trLHp: Full load hours per year [hiyear]
* Mpatt: Battery round-trip efficiency [-]
Hydrogen electrolysis revenue
Ru, = pH, - a1, (B.8)
P -t
g, = el " lFLHe (B.9)
€conv
Where:
* pH,: Hydrogen price [€/kg]
* gn,: Hydrogen production [kg/year]
* Py Electrolyser capacity [MW]
* trLHe: Full load hours per year [hiyear]
* econv: Conversion efficiency [MWh/kg]
B.1.2. Cost of Goods Sold (COGS)
Ccocs = Celec + Cyrid (B.10)
Where:
* Celec: Electricity costs [€/year]
* Cyiig: Grid tariffs [€/year]
Electricity cost
Celec = (Phatt - trLH,b + Pel - tFLH,e) - Pelec (B.11)

Where:
* Delec: Electricity price [€/MWh]
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Grid tariffs The total cost related to grid tariffs consists of two components: (1) electricity export to

the grid via battery storage, and (2) hydrogen distribution via the hydrogen network.

Cyrid = Cel + Chy,

Where:

» Cg: Electricity grid network cost [€/year]
* Cy,: Hydrogen network tariff cost [€/year]

Cel = 7150 * Ebat

Epat = Phoat - toat - Mbat

Where:
* 11so: Electricity grid tariff [€/MWHh]
* FEyat: Electricity sold to the grid via battery [MWh/year]
» Pyat: Battery capacity [MW]
* tpat: Full load hours battery [h/year]
* Mpat: Battery round-trip efficiency [-]

CH, = THNS * H,

_ Py - tel
my, = ——
Tel

Where:

* Tyns: Hydrogen network tariff [€/kg]

* mp,: Hydrogen production volume [kg/year]

» P, Electrolyser capacity [MW]

* to: Full load hours electrolyser [h/year]

* ne: Energy consumption per kg H, [MWh/kg]

C(grid =7 Eiotal
B.1.3. Operating expenses (OPEX)
Corex = Coam + Caepr

Where:

* Cogm: Operation and maintenance costs [€/year]
* Cyepr: Depreciation costs [€/year]

O&M cost .
Cosm = Pel - ciay
Where:

« PAW: Electrolyser capacity [MW]
. cggtM: O&M cost per MW per year [€/kW/year]

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
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Depreciation costs
C’depr = Pei - CAPEX, - Tdeg * frep

Pe: Electrolyser capacity [MW]
CAPEX,: Unit capital cost electrolyser [E/MW]
* Tdeg: Annual degradation rate [—]

* frep: Stack replacement cost fraction of unit CAPEX [-]

B.1.4. Invested capital
Invested capital = Fixed capital + Working capital

Where:
» Fixed capital: Capital expenditure on infrastructure [€]

» Working capital: Liquid capital tied to operations [€]

Fixed capital
Fixed capital = Pe| - ccapex,, + Fhatt - CCAPEXyu

Where:

* P Electrolyser capacity [MW]
* ccapex. Specific capital cost [€/MW)]

Working capital
Working capital = a - Ryotal

Where:
» «: Working capital coefficient [-]
* Riota: Total annual revenue [€/year]

B.2. Weighted Average Cost of Capital (WACC)
WACC = TWACC

Where:

* rwacc: Weighted average cost of capital [%/year]

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)
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Figure C.1: Total VDT structure
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Data input variables

Table D.1: Financial parameters
Input name Normal name Description Symbol Unit
eva Economic Value created | EVA €
Value Added above cost of
capital
roic Return on In- | Efficiency of | ROIC %
vested Capital capital use
nopat Net Operating | Operating profit | NOPAT €
Profit After Tax | net of tax
operating_profit_ebit EBIT Earnings  be- | EBIT €
fore interest
and tax
gross_profit Gross Profit Revenue -| GP €
COGS
revenue Revenue Total income | R €
from operations
tax Tax Corporate tax | T €
on profits
invested_capital Invested Capi- | Capital em-| IC €
tal ployed in
operations
net_working_capital_pct | NWC as % of | Short-term capi- | NWC % of revenue
revenue tal usage
wacc Weighted Avg. | Discount rate | WACC %
Cost of Capital | for EVA/DCF
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Table D.2: Electricity parameters

Input name Normal Description | Symbol Unit
name
electricity_sales_mwh Electricity Amount sold | E, MWh
Sales
electricity_sales_price_eur_per_mwh | Electricity Sales price | P, €/MWh
Sales Price | per MWh
electricity_costs_total_eur Electricity Total cost | C, €
Costs of electricity
purchased
electricity_consumption_total_mwh Electricity Total energy | E. MWh
Consump- consumed
tion
electricity_grid_tariff_eur_per_mwh Grid Tariff Electricity Tq €/MWh
grid access
cost
grid_service_revenue Grid Service | Revenue R, €
Revenue from grid
services
contracted_capacity_mw Contracted Grid con- | C, MW
Capacity tracted
power
availability _rate Availability Availability A %
Rate of the sys-
tem
Table D.3: Battery parameters
Input name Normal name Description Symbol Unit
battery_output_mwh Battery Output Annual dis- | E, MWh
charged energy
battery capacity mwh | Battery Capac- | Installed stor- | MWh
ity age capacity
fln_battery hours Battery FLH Full load hours | FLH, hours

of battery
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Table D.4: Electrolyser parameters

Input name Normal Descriptio| Symbol Unit
name
hydrogen_sales kg Hydrogen | Total hy-| H; kg
Sales drogen
sold
hydrogen_sales_price_eur_per_kg Hydrogen | Price per | P, €/kg
Sales kg sold
Price
hydrogen_production_volume_kg Hydrogen | Annual H, kg
Produc- pro-
tion duction
volume
electrolyser_output_kg_per_hour Electrolyser Hydrogen | O, kg/hr
Output output
per hour
electrolyser_capacity_mw Electrolyser Electrolyser C. MW
Capacity | installed
power
flh_electrolyser_hours Electrolyser Annual FLH, hours
FLH full  load
hours
conversion_efficiency_pct Conversion Electrical | 7, %
Efficiency | to H2
efficiency
electrolyser_energy_consumption_kwh_per_kg | Specific Electricity | SEC kWh/kg
Energy use per
Use kg H2
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Table D.5: costs parameters

Input name Normal Description | Symbol Unit
name
opex_total eur OPEX Operating ex- | OPEX €
penditures
om_costs_per_kw_year O&M Cost Annual O&M | C,,, €/kWlyear
per kW
stack_replacement_cost_pct_ucc | Stack Re- | Cost as % of | SRC %
placement uccC
Cost
annual_degradation_pct Annual Performance | D, %
Degradation | loss per year
degradation_rate_pct_per_1000h | Degradation | Per 1,000 | Diggo %/1,000 h
Rate FLH degra-
dation
annual_stack replacement_cost | Stack Cost Yearly stack | Cyiack €
replacement
cost
unit_capital_cost_eur_per_kw CAPEX/unit Capital cost | UCC €/kW
per kW
fixed_capital_eur Fixed Capital | Long-term FC €
capital as-
sets
total_capex_eur Total CAPEX | Total capital | CAPEX €
investment
annual_depreciation_eur Annual De- | Annual write- | Dep, €
preciation off
accumulated_depreciation_eur Accumulated | Total write-off | Depgcc €
Depreciation | over time
Table D.6: Other parameters
Input name Normal name Description Symbol Unit
asset_lifetime_years | Asset Lifetime Economic asset | L years
lifetime
years_in_service Years in Service | Years used | Y years

since start




D.1. Input data baseline analysis

87

D.1. Input data baseline analysis
All independent variables are selected based on empirical data, literature references and industry
benchmarks to ensure consistency and correctness in the modeling framework. The values and de-
scriptions of these variables are summarized in Table D.7.

Table D.7: Independent input parameters for baseline, including assumed values and sources

of capital

Variable Unit Value Description Source

System configuration

Poatt MW 2,5 [battery_capacity] Installed ca- | Case input based on HyChain,
pacity of the battery system 2024

Py MW 5 [electrolyser_capacity] Installed | Case input based on HyChain,
capacity of the electrolyser sys- | 2024
tem

F L Hpattery h/year 3,000 [full_load_hours_battery] Bat- | Case input based on historical
tery full load hours balancing use

Tbattery - 0.95 [battery_efficiency] Round-trip | Case input based on IRENA,
battery efficiency 2023

Eiotal MWh 500 [energy_consumption] Electric- | Case input (model balance)
ity consumption

FLHejectrolyser | hlyear 5,000 [full_load_hours_electrolyser] Case input based on utilization
Electrolyser full load hours targets

TNeonv MWh/kg 0.055 [conversion_efficiency] Electric- | Case input based on TNO,
ity consumption per kg H» 2023

Costs and prices

Delec €/MWh 75 [electricity_price] Electricity | Case input based on TenneT,
market price (excl. fees) 2024

DHy €/kg 8 [hydrogen_price] Hydrogen sell- | Case input based on Delft, 2023
ing price

Tariffrso €/MWh 16,38 [tso_tariff] Transmission system | Eblé and Weeda, 2024
operator tariff

Tariffyns €/kg 2,4 [hn_tarifff Hydrogen network | Eblé and Weeda, 2024
service fee

CAPEX and OPEX

Cunitel €/MW 1,666,000 | [unit_capital_cost] Unit capital | Case input based on Delft, 2023
cost of battolyser system

Clnit batt €/MW 83,000 [unit_capital_cost] Unit capital | Case input based on Delft, 2023
cost of battolyser system

O& Mbattoiyser | €/MW/year | 43,000 [o_m_costs_per_year] Fixed | Caseinputbased on Delft, 2023
O&M cost per MW battolyser

Ystack % of UCC | 5 [stack_replacement_cost] Case input based on manufac-
Stack replacement cost (as | turer guidance
share of CAPEX)

é Ylyear 2 [annual_degradation] Annual | Case input based on technical
performance degradation literature

Financial assumptions

T % 25 [tax] Corporate income tax | Rijksoverheid, 2024
(Netherlands)

Prev % 10 [percentage_of revenue] Assumption (case input, system
Revenue-based fee or system | O&M proxy)
cost

WACC % 11 [wacc] Weighted average cost | Eblé and Weeda, 2024
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D.1.1. Distributed data input
KEV electricity price simulation 2030 (Intelligence, 2025).

Electricity Prices Qver Time

2501 —— Electricity Price

200 A | ‘ |

=
7
o

Price (€/MWh)

=
o
o

50 4

T T T T T T T
2030-01 2030-03 2030-05 2030-07 2030-09 2030-11 2031-01
Datetime

Figure D.1: Electricity price over time [€/MWh]



89



90

o —

Sensitivity analysis

Table E.1: Sensitivity analysis on fixed values in the VDT model on EVA

Parameter | Code name Original EVA EVA (- | Impact (*
EVA (+20%) 20%) 20%)

Weighted wacc -8.52 -10.72 -6.32 +25.82

Average

Cost of

Capital

Percentage | percentage -8.52 -8.02 -9.02 +5.82

Tax rate tax -8.52 -8.02 -9.02 +5.82

Revenue percentage_of_revenue -8.52 -8.54 -8.50 +0.27

percent-

age

Battery ca- | battery_capacity -8.52 -8.79 -8.25 +3.14

pacity

Battery unit_capital_cost_battery -8.52 -8.53 -8.51 +0.13

capital

cost

Electrolyser | electrolyser_capacity -8.52 -8.30 -8.85 +3.26

capacity

Electrolyser | unit_capital_cost_electrolyser -8.52 -8.92 -7.94 +5.78

capital

cost

Electricity electricity_price -8.52 -11.71 -5.32 +37.45

price

Hydrogen hydrogen_price -8.52 -2.50 -14.64 +71.27

price

Conversion | conversion_efficiency -8.52 -12.08 -3.27 +51.72

efficiency

Battery effi- | battery_efficiency -8.52 -7.63 -9.41 +10.47

ciency

Battery full | full_load_hours_battery -8.52 -8.57 -8.47 +0.59

load hours

Electrolyser | full_load_hours_electrolyser -8.52 -7.43 -9.63 +12.95

full  load

hours

Annual annual_degradation -8.52 -8.53 -8.51 +0.16

degrada-

tion

Replacement fraction_replacement_cost pct _of ucc | -8.52 -8.53 -8.51 +0.16

cost frac-

tion

Electrolyser | o_m_costs_electrolyser_per_year -8.52 -8.88 -8.16 +4.23

O&M costs

TSO tariff tso_tariff -8.52 -8.73 -8.31 +2.42

HNS tariff hns_tariff -8.52 -10.35 -6.69 +21.45




Python code modelling framework

F.1. Load Data

The code starts with the data loading part, which is split into three parts: import libraries, configuration
and function for data loading.

The imported libraries are for data manipulation (pandas, numpy), visualisation (matplotlib, networkx)
and Excel file handling (openpyxl). These libraries are essential for loading data, building the hierarchi-
cal structure, performing calculations and visualising results later in the code.

Configuration specifies the Excel file and sheet name to load data from. The data for the hierarchical
structure is stored in an Excel file. These variables are passed to the load_data function to load the
data.

# Importing required libraries
import pandas as pd

import numpy as np

from datetime import datetime
import matplotlib.pyplot as plt
import networkx as nx

import openpyxl

# Configuration
excel_file = 'VDT_input_model_2.xlsx'
sheet_name = 'VDT_EVA_FV_copy'

# Load data
def load_data(excel_file, sheet_name):

[

Load data from an Excel file and preprocess it by converting relevant columns to numeric.

Parameters:
- excel_file: Path to the Excel file.
- sheet_name: Name of the sheet to load.

Returns:

- data: Preprocessed DataFrame.

data = pd.read_excel(excel_file, sheet_name=sheet_name)
data = datal[datal['Ignore?'] != 'yes']

datal['Min'] = pd.to_numeric(datal'Min'])

data['Max'] = pd.to_numeric(datal['Max'])

data['Mean'] = pd.to_numeric(datal'Mean'])

data['Fixed Value'] = pd.to_numeric(datal['Fixed Value'])
data['Delay'] = pd.to_numeric(datal['Delay'])

print ('dataloaded"')

return data
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F.2. Hierarchical structure

This part of the code converts the flat data into a hierarchical structure as a nested dictionary. The
hierarchical structure is required for calculations and sensitivity analysis. It iterates through the rows

and columns of the data, creating nested dictionaries for each level.

# Hierarchical structure
def build_hierarchy(data):

[

Build a hierarchical structure from the input data.

Parameters:
- data: Preprocessed DataFrame.

Returns:

- hierarchy: Nested dictionary representing the hierarchical structure.

[

hierarchy = {}
current_level = hierarchy
path_tracker = []
name_count = {}
previous_index = -1

for _, row in data.iterrows():
for col_index, item in enumerate(row):
if pd.notna(item):
item_str = str(item).strip()

if item_str in {'+', 'x', '-', '/'}:
continue

name_count [item_str] = name_count.get(item_str, 0) + 1

if name_count[item_str] != 1:

unique_item_str = f"{item_str}_{name_count[item_str]}"

else:
unique_item_str = f"{item_str}"

stats = {'Level': col_index}
if pd.notna(rowl['Operator']):
stats['Operator'] = row['Operator']
if pd.notna(row['Fixed, Value']):
stats['Fixed_ Value'] = row['Fixed Value']
if pd.notna(row['Mean']):
stats['Mean'] = row['Mean']
if pd.notna(row['Min']):
stats['Min'] = row['Min']
if pd.notna(row['Max']):
stats['Max'] = row['Max']
if pd.notna(row(['Delay']):
stats['Delay'] = row['Delay'l]

if col_index > previous_index:

current_level [unique_item_str] = {'stats':
path_tracker = path_tracker[:col_index] + [unique_item_str]
current_level = current_level[unique_item_str]
else:
current_level = hierarchy

path_tracker = path_tracker[:col_index]
for node in path_tracker:

current_level = current_level [node]
current_level [unique_item_str] = {'stats':
path_tracker.append(unique_item_str)

current_level = current_level [unique_item_str]

previous_index = col_index
break

print ('hierarchy built')

return hierarchy
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F.3. Group nodes

Next, the code groups nodes by their hierarchical level into a dictionary level_dict. This allows pro-
cessing nodes level by level, starting from the deepest level. Recursively traverses the hierarchy and
appends nodes to level_dict.

# Group nodes
def gather_nodes_by_level(node, level_dict, path='"'):

[

Gather nodes by their hierarchical level.

Parameters:

- node: Current node in the hierarchy.

- level_dict: Dictionary to store nodes by level.

- path: Current path in the hierarchy.

if 'stats' in node and 'Level' in node['stats']:
level = node['stats']['Level'l]
level_dict.setdefault(level, []).append((path, node))

for key, child in node.items():
if key != 'stats':
gather_nodes_by_level(child, level_dict, f'{path}/{keyl}' if path else key)

print ('nodes_gathered')

F.4. Values calculation

Then the values are calculated for each node based on its Fixed Value, Mean, or Operator. It propa-
gates values through the hierarchy to compute results for higher-level nodes. For process nodes, level
by level, child node values are used for calculations.

def calculate_direct_values(hierarchy, level_dict):
win
Computes hierarchical values using only direct calculations without Monte Carlo
simulations.

Parameters:
- hierarchy: Hierarchical structure.
- level_dict: Dictionary of nodes by level.

Returns:

- df _results: DataFrame containing calculated values.
nnn

df _results = pd.DataFrame()
sorted_levels = sorted(level_dict.keys(), reverse=True)

for level in sorted_levels:
for path, node in level_dict[level]:
stats = node['stats']

# Case 1: Fixed Value
if 'Fixed_ Value' in stats:
stats['calculated_values'] = stats['Fixed_ Value']

# Case 2: Mean-based calculation (No randomness)
elif all(k in stats for k in ('Mean', 'Min', 'Max')):
stats['calculated_values'] = stats['Mean']

# Case 3: Compute based on Operator and Children Nodes
elif 'Operator' in stats:
operator = stats['Operator']
children_values = [child['stats']['calculated_values']
for child in node.values ()
if isinstance(child, dict) and 'stats' in child and '
calculated_values' in child['stats']]

if children_values:
if operator == '+':
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stats['calculated_values'] =
elif operator == '-':
stats['calculated_values'] =
[1:1)
elif operator == '/':
stats['calculated_values'] =
if children_values[1] !=
elif operator == 'x':
stats['calculated_values'] =
elif operator ==
stats['calculated_values'] =

# Default case:
else:
stats['calculated_values'] = 0

# Store result in DataFrame

df _results[path.split("/")[-1]] =

# df _results([path.split("/") [-1] +
available

return df_results

F.5. Monte Carlo simulation

# Monte Carlo simulation

def monte_carlo_simulation(mean, min_val, max_val,
L]

sum(children_values)

children_values[0] - sum(children_values

children_values[0] / children_values[1]
0 else O

np.prod(children_values)

children_values [0]

Assign zero if no valid computation

[stats['calculated_values']]
' _UoM'

] = [stats.get('UoM', '')] # Add UOM if

num_simulations=8760) :

Perform Monte Carlo simulation using a triangular distribution.

Parameters:

Mean value
- min_val: Minimum
- max_val: Maximum
- num_simulations:

for the distribution.

value for the distribution.
value for the distribution.
Number of simulations to run.

— mean:

Returns:

- simulations:
L]

Array of simulated values.

sims =
print ('montecarlocalculations')
return sims

F.6. Statistics

# Calculate statistics
def calculate_statistics(values):
Vi
Calculate statistical metrics (mean,
values.

Parameters:
- values: Array of values.

Returns:
- calculated_mean:
- calculated_min:

- calculated_max:
L]

Mean of the values.
10th percentile of the values.
90th percentile of the values.

calculated_mean = np.mean(values)
calculated_min = np.percentile(values,
calculated_max =

1

np.percentile(values, 99)

print ('statisticscalculated')
return calculated_mean, calculated_min,

F.7. Calculate values with simulation

np.random.triangular(min_val, mean, max_val, num_simulations)

1th percentile, 99th percentile) for an array of

calculated_max
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def calculate_and_update_values_with_real_data(hierarchy, level_dict, real_prices):

nnn

Calculate and update values in the hierarchy using real electricity prices or Monte Carlo

simulations.

Parameters:

- hierarchy:
- level_dict:
- real_prices:

Hierarchical structure.
Dictionary of nodes by level.

Returns:
- df _results:

nonn

DataFrame containing calculated values.

df _results = pd.DataFrame ()
sorted_levels =
for level in sorted_levels:
for path, node in level_dict[level]:
if 'Fixed_ Value' in node['stats']:
fixed_value = node['stats']['Fixed_ Value'l]
node['stats']['calculated_values'] =
elif all(k in node['stats'] for k in ('Mean',

Array of real electricity prices from the data_input file.

sorted(level_dict.keys(), reverse=True)

np.full(len(real_prices), fixed_value)

'Min', 'Max')):

# Replace Monte Carlo simulation with real electricity prices

if path.split("/")[-1] ==
node['stats']['calculated_values'] =
df _results['Electricity price'] =
else:
mean, min_val, max_val =
node['stats']['Max']
# Perform Monte Carlo simulation
node['stats']['calculated_values'] =
, max_val, len(real_prices))
'Operator' in node['stats']:
operator = nodel['stats']['Operator']
children_values =
values () if

node['stats']

elif

'stats' in child and
if children_values:
children_values =
if operator == '+':
node['stats']['calculated_values']
elif operator == '-':
node['stats']['calculated_values']
children_values[1]
elif operator == '/':
node['stats']['calculated_values']
children_values[1]
elif operator == 'x':
node['stats']['calculated_values']
elif operator == '='
node['stats']['calculated_values']
if path.split("/")[-1] == 'EVA':
df _results[path.split("/")[-1]1] =
flatten()
else:
node['stats']['calculated_values'] =

calculated_mean, calculated_min,
stats']['calculated_values'])
node['stats']['calculated_mean'] =
node['stats']['calculated_min'] =
node['stats']['calculated_max'] =

df _results = df_results[df_results.columns[::-1]]
return df_results

F.8. Impact on EVA

def get_values_for_eva(hierarchy):

calculated_max =

'Electricityyprice':
real_prices
real_prices

['Mean'], node['stats']['Min'],

monte_carlo_simulation(mean, min_val

[child['stats']['calculated_values'] for child in node.
'calculated_values'

in child['stats']]

np.array(children_values)

= np.sum(children_values, axis=0)

= children_values[0] -

= children_values [0] /

= np.prod(children_values, axis=0)

= children_values [0]

node['stats']['calculated_values'].

np.zeros(len(real_prices))

calculate_statistics(nodel['

calculated_mean
calculated_min
calculated_max
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[

Extract the EVA values from the hierarchy.

Parameters:
- hierarchy: Hierarchical structure.

Returns:

- eva_values: Array of EVA values from the simulations.

[

for

key, node in hierarchy.items():
if key == 'EVA':
return nodel['stats']['calculated_values']
else:
result = get_values_for_eva(node)
if result is not None:
return result

return Nomne
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