

Department of Precision and Microsystems Engineering

A feasibility study on the acceleration and upscaling of

bone ingrowth simulation

Name: Yoeng Sin Khoe

Report no: EM 09.014

Coach:

Professor: Prof. Dr. Ir. Fred van Keulen

Specialisation: Tissue Biomechanics & Implants

Type of report: MSc Thesis

Date: June 30th, 2009

A feasibility study on the acceleration

and upscaling

simulation

AN INVESTIGATION INTO THE FEASIBILITY OF A

INGROWTH MODEL AS WELL OTHER OPTIONS OF

BY A . ANDREYKIV .

A feasibility study on the acceleration

and upscaling of bone ingrowth

THE FEASIBILITY OF APPLYING A HOMOGENIZATION SCHEME TO BONE

LL OTHER OPTIONS OF ACCELERATING THE BONE INGROWTH MODEL DEV

N

EMAIL: YS.KHOE@STUDENT

STUDENT NUM

COURSE

D

A feasibility study on the acceleration

bone ingrowth

TION SCHEME TO BONE

E INGROWTH MODEL DEVELOPED

NAME: YOENG SIN KHOE

STUDENT.TUDELFT.COM

TUDENT NUMBER: 1062425

OURSE CODE: BMA0340

DATE: JUNE 30
TH

, 2009

i Preface

Preface

This thesis marks the end of my MSc track at the faculty of Biomedical Engineering. Within

the faculty I have followed the track ‘Tissue Biomechanics and Implants’.

During the course of this my graduation work I have learned a lot. This investigation has

taught me a lot on some of the essentials behind soft-tissue biomechanics, finite element

codes and Fortran programming. But what I will probably will remember most is the value of

planning, or rather the pitfall of the lack of planning.

I would like to take this opportunity to thank prof. dr. ir. Fred van Keulen and dr. ir. Andriy

Andreykiv for their support and comments during my graduation period.

Finally I would like to thank my girlfriend, my family and my friends for their everlasting

friendship support and critical views that I highly value, but do not always follow.

Yoeng Sin Khoe

Rotterdam, June 30
th

, 2009

ii Abstract

Abstract

Fixation of uncemented implants is known to be more problematic than cemented implants

as the proces relies on the growth of bone into the porous implant surface. This bone growth

determines the fixation of the implant and has been the subject of many investigations [1-6].

A literature survey [7] revealed that these models are either a highly detailed simulation of a

small section of the interface between bone and implant or a more generalized simulation of

a complete implant. This thesis is aimed at bridging the gap between the two.

An investigation of the bone ingrowth model by Andreykiv [1] revealed possibilities of

accelerating this simulation. Furthermore a feasibility study was performed to apply

computational homogenization in order to upscale the results of the detailed microscopic

model to a higher level.

Investigation of the bone ingrowth model showed that it cannot be simplified. All elements

of the model are essential in predicting the tissue growth within the system. A 65% gain in

speed of the simulation was obtained by optimizing the code of the subroutines (written for

MSC Marc). Furthermore the feasibility study on computational homogenization shows that

the implementation in a commercial code leads to extremely long computing times.

In light of these results it is concluded that homogenization is not the method to bridge the

gap between the detailed microscopic simulations and the simulations of the complete

implants. Recommendations are given on the continued research to use the results of the

detailed simulation on a higher level.

Table of Contents i

Table of Contents

Preface .. i

Abstract .. ii

1 Introduction .. 1

2 Theory... 3

2.1 Notation ... 3

2.2 Tensor algebra ... 3

2.3 Stress & Strain in Continuum Mechanics .. 4

2.3.1 Strain Measures .. 4

2.3.2 Stress Measures ... 5

2.3.3 Work conjugated couples ... 6

2.4 Computational Homogenization ... 6

2.4.1 Relating the Microscopic and Macroscopic Deformation Tensor 7

2.4.2 Periodic Boundary Condition Selection / Localization ... 9

2.4.3 Upscaling the 1
st

 Piola-Kirchhoff stress tensor .. 9

2.4.4 Determining the Macroscopic Tangent .. 10

2.4.5 Limitations of 1
st

 Order Computational Homogenization 11

3 Original Bone In-Growth Model ... 12

3.1 Theoretical Setup ... 12

3.1.1 The Mechanical model ... 12

3.1.2 The Biophysical Stimulus .. 14

3.1.3 The Biological Model .. 15

3.1.4 Diffusion coefficients (Di) ... 16

3.1.5 Cell Proliferation coefficients (Pi), Cell Differentiation coefficients (Fi), Tissue

production coefficients (Qi) and Tissue Degradation coefficients (Di)............................. 16

3.1.6 Loading ... 18

3.2 Numerical implementation.. 18

3.2.1 Mechanical Model .. 18

3.2.2 Biological Model ... 19

3.3 Implementation into MSC Marc .. 20

3.3.1 Mechanical Model .. 22

3.3.2 Biological Model ... 23

Table of Contents ii

4 Model optimization opportunities ... 24

4.1 Model optimizations .. 24

4.1.1 Mechanical Model – Elimination of the fluid phase .. 24

4.1.2 Biological Model – Linear approximation .. 25

4.1.3 Biological Model – Diffusion approximation .. 25

4.2 Code Optimizations ... 26

4.2.1 Sleep ... 26

4.2.2 Writing sequence ... 27

4.3 Computational Homogenization ... 27

5 Results - Model optimizations ... 29

5.1 Mechanical Model – Elimination of the fluid phase .. 29

5.2 Biological Model – Linear approximation .. 30

5.3 Biological Model – Diffusion approximation ... 31

6 Results - Code Optimizations ... 32

6.1 Minisleep ... 32

6.1.1 Comparison of minisleep values .. 32

6.1.2 Results .. 34

6.2 Batchwrites .. 35

7 Implementation and Results - Computational Homogenization 36

7.1 Model Simplifications .. 36

7.1.1 Geometry .. 36

7.1.2 Loading of the model ... 37

7.2 Algorithm Implementation in MSC Marc .. 38

7.2.1 Microscopic element .. 38

7.2.2 Macroscopic element ... 40

7.2.3 Detailed Flow-Chart of implementation in Marc ... 41

7.3 Results .. 43

8 Summary & Conclusions .. 44

9 Recommendations .. 46

References ... I

Appendix A Macroscopic element subroutine .. II

Appendix B Microscopic element subroutine ... V

Table of Contents iii

Appendix C Python script to apply servo links in the RVE ... X

Appendix D Batchwrites – e.g. for stimuli.dat files... XIII

Introduction 1

1 Introduction

Diseases such as arthritis or osteoporosis damage the joints. Such diseases and their effects

are becoming more and more common due to the aging of the population
12

. This increases

the need for medical treatments and surgical procedures to aid and prevent people who

suffer from the effects of these diseases. One option for advanced stages of arthritis is a

total joint replacement, for example a shoulder replacement is depicted in Figure 1.

Figure 1 Example of a shoulder replacement
3

Such an implant must be attached to the existing bone-structure. This fixation can be

achieved through either a cemented or an ingrowth implant. The cemented implant

employs a cement to glue the implant to the bone. An ingrowth implants is press-fitted after

which natural bone growth will fixate the implant to the bone

While a cemented implant may provide better initial fixation, it is more prone to damage at

a later stage due to high stresses in the cement layer [8]. An ingrowth type implant will,

given adequate growth conditions, provide a better fixation. Bone will grow into the implant,

interlock with the implant and maintain the connection through the natural process of bone

remodeling.

In order to gain a deeper understanding of how bone ingrowth develops between implant

and bone, models [1, 2, 4-6] have been developed that models a section of this interface.

One of these models was developed by Andreykiv [1] in which a the bone growth in a

complex porous coating (see Figure 2) was studied.

1
Rijksinstituut voor Volksgezondheid en Milieu (RIVM) – (http://www.rivm.nl/vtv/object_document/o1794n18373.html)

2
Rijksinstituut voor Volksgezondheid en Milieu (RIVM) – (http://www.rivm.nl/vtv/object_document/o1716n18370.html)

3
 Source: Zimmer, http://www.zimmer.com

Introduction 2

Figure 2 FEM geometry for the bone ingrowth model developed by Andreykiv [1]

The knowledge that is gained from FEM models such as these can be applied to increase the

knowledge of implant fixation and could be used to design better prosthesis’ or develop

better surgical procedures that ensure better implant fixation. It has already been shown

that improved implant design leads to less complications [9].

Although adequate simulations on the development of bone around implants exist [7], the

implants models are highly simplified and rather much more detailed analyses are preferred,

such as those developed by Andreykiv [1] or Liu [2]. The level of detail in the model

presented above is very high and implementing such a model for a full scale implant analysis

will result in impractical simulation duration. The model of this section of the interface

requires about 3 days on 3 dual core processors. A full scale detailed implant analysis would

probably take months of computing time.

It would be preferable if the knowledge gained on this level could be used in simulations on

the larger scale. This thesis shall investigate ways to reduce the time needed for this

simulation. Furthermore, an investigation will be made into the possibility of applying a

homogenization scheme that allows the results of these detailed microstructural simulations

to be used on a higher level (i.e. macrostructural simulations). 3 methods of reducing the

computation time are investigated; 1) homogenization, 2) model reduction and 3) code

optimization.

Chapter 2 of this thesis will develop the necessary theory. It covers some basic mechanics as

well as the theory of the computational homogenization scheme. Chapter 3 describes the

bone ingrowth model developed by Andreykiv. With the knowledge of the bone ingrowth

model, Chapter 4 identifies possible routes for accelerating the simulations and defines the

feasibility study for the computational homogenization scheme. Chapter 5 gives the results

of model optimizations. Chapter 6 gives the results of code optimizations and Chapter 7

discusses the implementation and results of the computational homogenization algorithm.

Chapter 8 summarizes the results and formulates the conclusion. Finally Chapter 9 gives

recommendations for further research.

Theory 3

2 Theory

This chapter is a summary of the mathematics, mechanics required for understanding the

mechanics of bone ingrowth and the method of homogenization. It serves as a reference for

the methods that are used in this thesis.

2.1 Notation

The following notation for mathematical quantities is used in this chapter.

� or � Capital or lowercase letter Scalar

�� Lowercase letter with an arrow Vector

� Bold capital Matrix

�� Bold capital with a number in upper left side n
th

-order tensor

���	
 Scalar notation for tensors. Scalar

�� Basis vectors of a coordinate system Scalar

� Quantities on the microscopic level <subscript>

�� Quantities on the macroscopic level <subscript>

2.2 Tensor algebra

The purpose of tensor calculus is to separate calculations from their reference coordinate

system. Such a method allows the calculations to be performed in any arbitrary coordinate

system and eases the problems that arise when calculations span two (or more) non-

corresponding coordinate systems.

The separation of the coordinate system is achieved through the notion of covariant and

contravariant tensors. In this thesis, all calculations are done in a (rectilinear) Cartesian

space. Therefore the notion of covariant and contravariant tensors becomes unimportant as

the two become identical [10].

Further simplifications that are inherent to a Cartesian space allow the interpretation of

tensors as an extension to matrix/vector algebra. Where matrix/vector algebra is limited to 2

dimensional arrays, tensor algebra allows calculations with n-dimensional arrays.

Using the simplified view on tensor calculus, the following operations can be described.

Conjugation for 2 2
nd

 order tensors ���� � ���

Dyadic Product between 2 1-dimensional tensors

� � ��� � �����, ��� � ��������

Inner product for 1
st

 order tensors � � �� � ���

Theory 4

 � � ����
Double Inner product for 2

nd
 order tensor

� � �: � � � ������

Double Inner product for 4
th

& 2
nd

 order tensor

� � �� : � ��� � ���	
�
	����

Double Inner product for 4
th

 order tensor

� � �� : �� ���	
 � ������	
�����	�

Quadruple Inner product for 4th order tensor

� � �� :�� �� � � ���	
�
	��

2.3 Stress & Strain in Continuum Mechanics

In continuum mechanics the deformation of a body under a load is studied. In this concept, 2

states of a body can be defined, namely the undeformed and the deformed body.

In order to characterize this deformation an infinitesimal piece of material ��� is tracked as it

deforms into ���. This deformation, expressed in terms of the undeformed coordinate

system is expressed by

��� � �� �� ��� � !���.
This deformation and the deformation tensor ! are schematically shown in Figure 3.

Figure 3 Definition of states and deformation measure

The following sections develop the concepts of strain and stress that are applicable to this

thesis.

2.3.1 Strain Measures

Strain quantifies the deformation of a body. The deformation that a material point (with

corresponding position vector) undergoes can be quantified as the difference between the

magnitudes of the position vectors

��� � ��� # ��� � ��� � ��� � $!%! # &' � ��� � ��� � $& # $!()'%!()' � ���

It can be seen that deformations can quantified with reference to the deformed or the

undeformed state.

���
!

undeformed

deformed

Γ+, V+ Γ , V

���

Theory 5

When deformations are given with respect to the deformed configuration, the Green strain

tensor $-' is used, which is defined as

- �). $!%! # &' �). $� # &',

Where � is named the Right Cauchy Green Deformation tensor.

When deformations are given with respect to the undeformed configuration, the Almansi

strain tensor $/' is used, which is defined as

/ �). $& # $!()'%!()' �). $& # 0()',

Where 0 is named the Left Cauchy's deformation tensor or the Finger tensor.

This thesis will take the Lagrangian approach in order to define the problems.

2.3.2 Stress Measures

In small deformation mechanics, the Cauchy stress tensor is most widely used. The tensor is

completely defined in the deformed configuration.

When large deformations are present, the deformed area is generally not known and a new

stress measure is defined. The 1
st

 Piola-Kirchhoff stress tensor relates the forces in the

deformed configuration to the area in the undeformed configuration. This can be achieved

for example by mapping the Cauchy stresses to the undeformed configuration

1 � 23!(),

Where 3 � det$!'. The 1
st

 Piola-Kirchhoff stress tensor is not symmetric, because the

deformation tensor is generally not symmetric.

The introduction of the 2
nd

 Piola-Kirchoff stress tensor allows the stresses to be decoupled

from the reference coordinates, resulting in a generalized interpretation of the forces. This

second mapping is achieved by

7 � J!()2!(%.

Examining the equations for the stress tensors, we can easily relate the 1
st

 and 2
nd

 PK tensor

by a simple mapping using the deformation tensor

7 � !()1 9 1 � !7.

The decoupling of the stresses and the reference coordinate system provides a power tool in

which an arbitrary deformation with its corresponding stress state can easily be described. In

additions the 2
nd

 PK tensor is symmetric, which in numerical analyses results a more efficient

use of processor power and memory.

Theory 6

The physical interpretation of the 1
st

 PK tensor eases the implementation of such a stress

measure.

2.3.3 Work conjugated couples

The product of the stress and strain should result in the work done. Therefore stress and

strain measures are so called conjugate couples. 3 Common examples are:

Cauchy stress tensor $2' Engineering strain or natural strain$:'

1st Piola-Kirchoff stress tensor $1' Deformation Tensor $!'

2nd Piola-Kirchoff stress tensor $;' Green Strain Tensor $-'

The selection of stress and strain measures is arbitrary, but in order to be able to correctly

determine the work a work conjugated couple must be selected. In light of computational

homogenization (developed in Chapter 2.4) the 1
st

 Piola-Kirchhoff stress tensor and the

deformation tensor are selected. It is argued [11] that the combination of 1
st

 Piola-Kirchoff

and deformation tensor is most suitable for reasons of ease of implementation. The 1
st

 Piola-

Kirchoff stress van be determined using the forces in the deformed configuration in

combination with known values of the undeformed setting.

2.4 Computational Homogenization

Homogenization is a method that takes inhomogeneities in a model and allows them to be

presented as a homogeneous system. Materials handled in a mechanical analysis are usually

considered homogeneous. Take for instance the simply supported beam, a classical textbook

example with which student are handed the principles of forces and deflections. The simply

supported beam is assumed to be constructed of a homogeneous material like steel.

However the reality is quite different, steel is a material consisting of multiple constituents

that interact at grain boundaries. Yet through experience and testing we have found that the

characteristics of this heterogeneous material can be captured in coefficients that predict

the response of the global structure in specific conditions.

Figure 4 close up image of steel, showing the inhomogeneous nature of steel
4

Although this detailed microstructure actually determines the properties of the material, on

a much larger scale, the material appears to be homogeneous with certain ‘effective

4
 Source: http://www.affiliatedinc.net/lab/case.html

Theory 7

properties’. These effective properties can be obtained be either testing the material

extensively, or by computing the effective properties based on the knowledge of the

structure on microscopic level. Homogenization is the term used to describe the later

process of computing effective properties at a macroscopic scale using information that is

available on the microscopic scale.

In the literature survey [7] a comparison of various upscaling methods was made from which

it was concluded that computational homogenization was the choice of homogenization

method for the bone-ingrowth model of Andreykiv [1].

The following sections will go into the theoretical background of the computational

homogenization scheme. In accordance with Figure 3, coordinates in the undeformed

configuration are denoted by �� and coordinates in the deformed configuration are denoted

by ��. The volume and the boundaries with subscript 0 denoted the respective quantities in

the undeformed configuration.

Furthermore a distinction is made between a macroscopic model and a microscopic model.

This setting is shown in Figure 5. Quantities in the macroscopic model have subscript M,

whilst quantities at the microscopic level carry subscript m.

Figure 5 Definition of the macroscopic and microscopic level

The first step in the computational homogenization scheme is the selection of the

parameters that are to be upscaled. The requirement is that these parameters together form

a work conjugated couple, so that the Hill-Mandel condition can be satisfied (see 2.4.3).

Although all work conjugated couples are valid choices, the implementation is aided with the

choice for the combination of the deformation tensor and the 1
st

 Piola-Kirchhoff stress

tensor. It will be shown that this selection allows for an eased upscaling of the stress tensor

(see 2.4.3).

2.4.1 Relating the Microscopic and Macroscopic Deformation Tensor

A non-linear deformation (Δ��) in the system imposed on a macroscopic level can be

described by the linear deformation (as a function of the macroscopic deformation tensor !�)and additional higher order deformations, which will be named micro fluctuations (=���).

This relation is given by

Macrolevel

Microlevel

!�, 1�

!, 1

Theory 8

Δ�� � !� � Δ�� > =���.
Using the notation ??@�� � A+, the microscopic deformation tensor is expressed as

! � ?B�?@�� � A+ CD��) # !� � E��) # ��FGH # !� � ��F > !� � �� > $=��� # =���)'I � !� >A+$=��� # =���)',

where A+� ??@��. The microscopic deformation tensor is volume averaged over the original

volume (J+) resulting in a relation between the macroscopic deformation tensor (!�) and

microscopic deformation tensor (!) arises in the form of

 1J+ L !�J+MN
� 1J+ L !� > A+$=��� # =���)'�J+MN

� !� > 1J+ L A+$=��� # =���)'�J+MN
.

Using this relation, it can be stated that

 1J+ L !�J+MN
� !� , 2.1

if and only if the micro fluctuations integrated over the volume are zero. This constraint can

be reformulated into a boundary constraint using the Gauss’ Theorem (with O��� as the

outward normal to the boundary in the undeformed configuration). Furthermore, proper

selection of ��) , for example a prescribed boundary, will eliminate =���) . The resulting integral

over the boundary in the original configuration (Γ+) is

 1Γ+ L =��� � O����Γ+PN
� 0. 2.2

This constraint can be satisfied in several ways.

• Assume =��� to be zero in the entire volume (Taylor or Voigt assumption)

• Assume =��� to be zero along the boundary (kinematically constraint boundaries or

constant stress boundary conditions)

• Assume =��� � O��� to be zero along the complete boundary (e.g. periodic boundaries)

Each assumption leads to a different set of boundary conditions that must be applied to the

microscopic problem.

The various types of boundary conditions found above have been investigated [11] and it

was found that periodic boundary conditions lead to a better estimate of the overall

properties.

Theory 9

2.4.2 Periodic Boundary Condition Selection / Localization

Periodic boundary conditions imply that deformations on two opposing faces are

identical $��R � ��(' and that the microfluctuations on either side are identical $=���R � =���('.

For example in a 2D quadrilateral model this is depicted as Figure 6.

Figure 6 Periodic boundary conditions

The constraint imposed (Equation 2.2) by the volume averaging of the deformation tensor is

satisfied and the use of Equation 2.1 is valid.

Furthermore as a consequence of equilibrium, the stresses on the boundaries are equal in

magnitude and opposing in direction

S�R � #S�(. 2.4

This is also called anti-symmetric stress.

2.4.3 Upscaling the 1st Piola-Kirchhoff stress tensor

In order to create a consistent volume average for the stresses, the Hill-Mandel condition

must be satisfied which is given by

 TU� � TU,

substituting the microscopic and macroscopic quantities for the stress and strain gives

 1�: T!�� � 1V+ L 1: T!� �J+VN
.

The microscopic work can be calculated by using the tractions on the boundary and using

the periodic boundary conditions to develop the right hand side into

 TU � 1V+ L S�R��R�Γ+RPNW
: T!�� > 1V+ L S�(��(�Γ+(PNX

: T!�� � 1V+ L S����Γ+PN
: T!�� .

When this results is plugged into the Hill-Mandel condition, we find

��(� !����(> =���(

��R � !� � ��R > =���R Periodic Boundary Conditions =���R � =���(��R # ��(� !� � E��R # ��(G

2.3

Theory 10

 1�: T!�� � 1V+ L S����Γ+PN
: T!�� ,

from which the relation between the macroscopic stress tensor and the microscopic stress

can be derived. This relation is given by

1� � 1V+ L S����Γ+PN
. 2.5

The Hill-Mandel condition imposes work equivalence in the macroscopic and microscopic

level. The use of periodic boundary conditions in combination with the Hill-Mandel condition

has led to a relation that allows the microscopic stresses to be translated to a macroscopic

stress tensor.

Equation 2.5 shows that the volume average of the 1
st

 Piola-Kirchoff is completely

determined in terms of the underformed boundary in combination with forces in the

deformed configuration. This combination is very convenient as the undeformed boundary is

known beforehand and the resulting forces will be available during calculations. This

exemplifies the choice for the 1
st

 Piola-Kirchoff stress tensor and its work conjugated

counterpart, the deformation tensor.

2.4.4 Determining the Macroscopic Tangent

In the numerical scheme a tangent is still required to complete the computation. The

tangent relates the forces to the displacements. In a simple 1 dimensional case this tangent

is the slope along the force-displacement curve, this is visualized in Figure 7.

Figure 7 Visualization of the tangent that relates stress and strain

The tangent is used in the Newton-Raphson iterative method to solve for an equilibrium

determined by the applied boundary condition (in this example an applied force). The

nonlinear relation between force and displacement is approximated by a linearization a step

is taken towards the equilibrium as long as the difference between the linear approximation

and the actual stress is smaller than a set value. This steps that this method takes to

Forces

Applied Force

Displacements

tangent
Equilibrium solution

Theory 11

converge to a solution is indicated by the red lines in Figure 7 (see also [12]). This method

and its derivates are implemented in non-linear packages such as MSC Marc.

Two methods are proposed by [11] to determine this tangent within the Computational

Homogenization scheme. The first method is condensation of the global stiffness matrix (of

the microscopic problem). In any system, the global stiffness matrix can be condensed by

making the distinction between prescribed and free nodes. The resulting condensed stiffness

matrix is the macroscopic stiffness matrix of the microscopic problem. Unfortunately this

matrix is usually not available for calculations.

The alternative is numerical differentiation. Numerical differentiation predicts the response

of the prescribed nodes for a small perturbation. The result is again the macroscopic

response of the microscopic problem. Miehe [13] introduced a numerical differentiation

scheme that reduces the number of calculations that are needed to create the macroscopic

stiffness matrix.

If the global stiffness matrix is available, condensation of the global stiffness matrix is

preferred. Numerical condensation is a computationally less efficient method that will

introduces additional errors.

2.4.5 Limitations of 1st Order Computational Homogenization

Although 1
st

 order Computational Homogenization is capable of handling non-linear

simulations, there are restrictions. The linearization of the macroscopic deformation tensor

is responsible for a limitation on the algorithm. The macroscopic deformation gradient must

remain small with respect to the microscale. There is some question on the effectiveness of

the computational homogenization approach. For each element, a microstructural analysis

must be performed. Therefore most of the computational advantages will be gained in the

potential parallelization of the numerical simulations [11].

Original Bone In-Growth Model 12

3 Original Bone In-Growth Model

Before examining various model optimization schemes, the original model by Andreykiv will

be detailed. In order to identify possible methods of increased performance it is imperative

that its background and implementation is well understood.

3.1 Theoretical Setup

Based on a model for fracture healing [5], this model links a mechanical and a biological

system in order to determine the evolution of the tissues. The 2 systems are weakly coupled

by means of parameters. This system is, in its simplest form, described as Figure 8

Figure 8 Coupling between mechanical and biological model.

In the following sections the theory behind the bone ingrowth model will be further

elaborated. This theory is obtained from the dissertation of A. Andreykiv [1].

3.1.1 The Mechanical model

The mechanical response of the model is modeled using a biphasic model. Each constituent

occupies a certain volume $JY'. To describe the density of a constituent a distinction is

made between the true density $Z[Y' and the apparent density (ZY', where the first

describes the density with respect to its own volume and the second is taken with respect to

the total volume. This is reflected in the equations

ZY � \YJ Z[Y � \YJY] ZY � JYJ Z[Y � ^YZ[Y .
 The solid and fluid components of the biphasic material will be indicated by s or f indices.

Using the principle of virtual power, the balance of forces for each phase is given by

_��` Z` # A � 2` # Z`a�` # Π���` � 0, 3.1

_��c Zc # A � 2c # Zca�c # Π���c � 0, 3.2

in which 4 terms are identified. The first term (_��Y ZY) expresses inertia forces. The second

term (A � 2Y) describes the stress in the constituent. The 3
rd

 term (ZYa�Y) shows the applied

forces, such as gravity and the last term (Π���d) expresses the drag forces.

Mechanical

Model

Biological

Model

Biophysical Stimulus

Material properties

Original Bone In-Growth Model 13

These equations are supplemented with the traction boundary conditions, where tractions

are prescribed on the solids and a pressure is prescribed on the fluids as follows

2` � �̂� � $2è # ^`S&' � f` g^ Γhi,

�̂� � 2c � �̂� � #^cS& � fc j S � Sk$�' � # lfcl^c g^ Γhi .

By virtue of the fact that the two volume fractions always constitute the total materials $^c > ^` � 1' and using the fact that the drag forces should cancel out EΠ���c > Π���` � 0G,

equations 3.1 and 3.2 can be combined into a single equation. Furthermore we assume that

gravity and inertia forces are negligible. This leads to the simplified momentum Equation

A � 2 � 0. 3.3

This Equation ‘masks’ many the underlying equations, the most of important of which is the

biphasic nature. Unlike a more conventional single constituent material an additional degree

of freedom is introduced in the form of the fluid pressure. More specifically, the stresses

(and pressure) in Equation 3.3 are divided as

2 � ∑ 2Y �Y 2è # S&,
Where the Cauchy stress of the solid state 2è is defined as

2è � !` � nè � $!`'%. 3.4

In Equation 3.4 ! is the deformation tensor and nè is the second Piola-Kirchoff stress tensor,

which is given by the neo-Hookean model for hyperelastic solids. The neo-Hookean material

model describes a compressible hyperelastic material. In combination with a fluid phase it

exhibits many properties that are attributed to biological tissue [7]. The stress tensor for

neo-Hookean material is

nè � o`p^3�() > q`$& # �()',

Where the coefficients o` and q` are Lamé’s elasticity constants that represent the material

properties, furthermore the Right Cauchy-Green tensor is given by � � !% � ! and the

determinant of the deformation tensor given the Jacobian 3 � det$!'.
The resulting momentum Equation gives (in 3D) 3 equations, but has 4 unknowns, namely

displacements in all dimensions and the fluid pressure. The additional Equation to solve this

incomplete system comes from the mass balance over the whole poroelastic domain. The

Equation for the mass balance can be found by taking the material time derivative

?rs
?h > A � $_�YZY' � tY.

Original Bone In-Growth Model 14

Substituting ZY � ^YZ[Y, assuming that the there will be no production of solid material in

the system $tY � 0' and incompressibility of the solid phase C?r[i?h � 0I the following

equations for the whole system are derived
5

Z[̀ ^` u > ^`Z[̀ A � _�` � 0
3.5

Z[c ^c u > ^c Z[c u > ^cZ[cA � _�c � 0
3.6

A 1
st

 order approximation of the state Equation for the fluid phase given by Fernandez [14].

The result

?r[v?h �)wv Z[Nc ?F?h,

will be substituted in Equation 3.6. The constant xc specifies the Bulk modulus of the fluid.

Furthermore we can make the assumption that Z[Nc y Z[c [15] and using this in combination

with the previous assumption that ^` > ^c � 1, reduces the mass balance Equation to

�v
wv ?F?h > A � _�` # A � z{| $AS'} � 0.

3.7

Here ~ is the permeability of the fluid and q is the viscosity. This equations expresses the

physical relation that the flux of solid material (A � _�`' and the flux of fluid (due to pressure

differences) �A � z{| $AS'}� should be in balance with the change in volume. This relation is

known as Darcy’s law.

This completes the system of equations for the mechanical part of the model. Only the initial

and boundary conditions must be prescribed. The initial conditions, defined for u � u+ are

���` �|h�hN � ���+̀$��',

S�|h�hN � S+$��'.

The boundary conditions consist of an applied displacement on a part of the boundary and a

boundary condition defining the fluid influx

���` � ��`$��' g^ Γ�,

#Z[c {| $AS'% � �̂� � �c$��' g^ Γc�.

This completes the mechanical model.

3.1.2 The Biophysical Stimulus

From the mechanical model a mechano-stimulus is transferred to the biological model. This

biophysical stimulus will determine the tissue evolution in the system. The stimulus

combines the maximal shear strain (�) and the interstitial fluid velocity (�) [16] as follows

5
 It should be noted that n in this case represents the constituent mass fraction and is not the element outward normal

Original Bone In-Growth Model 15

� � �� > ��,

where a = 0.0375 ,b � 3 q\ �� and the limits of S are ��B � 3, ��� � 1 [5].

The biophysical stimulus will determine what cells and material are being produced or

destroyed. I shall discuss this aspect in more detail in the next section.

The maximum shear strain can be obtained by using the strain tensor and finding its

principal values
6
. The relative fluid velocity can be calculated using Darcy’s Law

c � ��c� � �~��AS� for i�1..3,

which is dependent on the fluid pressure.

3.1.3 The Biological Model

Using the biophysical stimulus as an input, the biological model determines the tissue

differentiation. This differentiation is modeled by the cells dynamics that result in tissue

formation. The cavities are initially filled with granulation tissue. The penetration of

mesenchymal stem cells from the bone into the granulation tissue is modeled as a diffusion

process. The mesenchymal cells may, under the influence of the stimulus and depending on

various concentrations of cells or tissues, differentiate and proliferate into either fibroblasts,

chondrocytes or osteoblasts which in turn produce respectively fibrous tissue, cartilage or

bone (see Figure 9).

Figure 9 Schematic representation of the tissue differentiation paths as defined by the Prendergast tissue

differentiation model.

6
 Note that ��� � ��� > ��� � 2���, thus for the implementation the maximum shear strain should be divided by 2.

Mesenchymal

Cells

Osteoblast

Cells

Chondrocyte

Cells

Fibroblast

Cells

Bone

Fibrous

Tissue

Cartilage

Differentiation

Proliferation

Tissue production

Original Bone In-Growth Model 16

In Figure 9 each box is represents the governing differential Equation that drives the

evolution of that specific type of cell or tissue. In total there are 7 governing equations, 4

control the evolution of cell concentrations and 3 control the evolution of tissues. These

differential Equation that control the cell concentrations are

����h � �A.t > �$1 # th h't # ¡cE1 # tcGt # ¡�$1 # t�'t # ¡�$1 # t�'t, 3.8

��v�h � �cA.tc > �c$1 # th h'tc > ¡cE1 # tcGt # ¡�$1 # t�'tc # ¡�$1 # t�'tc,
3.9

��¢�h � ��$1 # th h't�>¡�$1 # t�'Et > tcG # ¡�$1 # t�'t�, 3.10

��£�h � ��$1 # th h't�>¡�$1 # t�'Et > tc > t�G. 3.11

The 3 equations that control tissue production are

�£�h � ¤�$1 # \�'t�, 3.12

�¢�h � ¤�$1 # \� # \�'t� # ��t�\�\h h, 3.13

�v�h � ¤cE1 # \� # \� # \cGtc # $��t� > ��t�'\c\h h.
3.14

These equations need to be programmed in a numerical method due to the diffusion terms $�YA.tY' that control the diffusion of mesenchymal cells and fibroblasts. The problem is

further complicated by the non-linear terms that are present in these equations. Each tissue

evolution process (indicated in Figure 9 by the arrows) is controlled by a coefficient. These

coefficients are in turn dependent on the biophysical stimulus. The various coefficients are

clarified in the following sections.

3.1.4 Diffusion coefficients (Di)

The two diffusion coefficients are dependent on the concentration of cartilage and bone, as

expressed by

� � �+$1 # \� # \�',
�c � �c+$1 # \� # \�'.

This formulation implies that the diffusion takes place homogeneously along all parts of the

boundary. This assumption is acceptable for small problems, but when may not be

completely correct on a larger scale.

In these equations, the constants Dm0 and Df0 are �+ � 240 |¥
�� = 0.3456 ¥

��¦ and �c+ �
 60 |¥

�� = 0.1152 ¥
��¦ .

3.1.5 Cell Proliferation coefficients (Pi), Cell Differentiation coefficients (Fi),

Tissue production coefficients (Qi) and Tissue Degradation coefficients (Di)

The proliferation can be modeled similarly as

Original Bone In-Growth Model 17

� � �+$1 # \� # \�',

�c � �c+$1 # \� # \�',

�� � ��+$1 # \� # \�',

�� � ��+$1 # \� # \�'.

The initial coefficients (with subscript 0) are piecewise-linear functions of the biophysical

stimulus.

Figure 10 Variation of proliferation coefficients with varying biophysical stimulus [1]

The differentiation coefficients Fb, Fc, Ff are not dependent on any mass densities but only on

the biophysical stimulus.

Figure 11 Variation of differentiation coefficients with varying biophysical stimulus [1]

The dependence of the tissue production coefficients is similar to the cell differentiation and

tissue degradation is equal to its corresponding production coefficient.

Figure 12 Variation of production coefficients with varying biophysical stimulus [1]

The parameters in the graphs are obtained from previous literature as well as a calibration

(see chapter 5 of the thesis of A. Andreykiv)

Original Bone In-Growth Model 18

Acquired values Calibrated values

Pbmin = 0.5⁄ ��¨

Pcmin = 0.75⁄ ��¨

Pcmax = 0.925⁄ ��¨

Pfmin = 0.6⁄ ��¨

Pfmax = 0.1⁄ ��¨

Pmmin = 0.5⁄ ��¨

Pmmax = 1.2⁄ ��¨

Fbmax = 0.15⁄ ��¨

Fbmin = 0.005⁄ ��¨

Fcmax = 0.3⁄ ��¨

Ffmax = 0.01⁄ ��¨

Qbmax = 0.1⁄ ��¨

Qcmax = 0.2⁄ ��¨

Qfmax = 0.06⁄ ��¨

3.1.6 Loading

The loading of the original model is chosen is accordance with animal experiments by

Simmons and Pilliar [17]. The experiments were performed on a canine mandible to

investigate the effect of implant surface geometry on the bone formation around dental

implants. The growth of the bone around the implants was tracked for 28 days. The loading

in the first week was a displacement and during the consequent 3 weeks, the average force

recorded in the first week was applied. The results of this study were that displacements up

to 50µm led to bone growth into the porous implant surface that was covered with sintered

spheres. This loading of 50µm is used in the investigations in this thesis.

3.2 Numerical implementation

3.2.1 Mechanical Model

After discretization, the momentum Equation (Equation 3.3), together with the mass balance

(Equation 3.7) are implemented as the system of equations

 ©ª # «p�� # f� � 0,

® ¯°���¯± > «² ?����?h
³ > ´p�� # f�° � 0.

In this system, the following matrices are identified

©ª - The internal force vector for the solid phase

« - The coupling matrix

f� - The vector of traction forces

® - The compressibility matrix

´ - The permeability matrix

f�° - The applied fluid mass influx vector

This system is solved in an iterative manner, according to

µ ¶² #«#«² #$® > Δt´'·	,�R) µΔu��`Δp�� ·	R) � ¹ º»R)#Δtº»R)° ¼ # ¹ ©ª»R)– «p��»R)#$®Δp�� > «²Δu��³ > Δt´p��»R)'¼,

Original Bone In-Growth Model 19

where ¾% is the structural tangent matrix and is described by

¾%¿À � L �%�ÁÂ��J
M

> & L ÃÄ%2èÃÅ�J
M

,
which is the division of geometric and material contributions to the stiffness matrix.

3.2.2 Biological Model

Of the 7 equations that describe the tissue evolution, 5 can be determined on element level,

because all quantities are known. Only equations 3.8 and 3.9 need to be calculated using the

finite element method because of the spatial dependency in the diffusion term.

This non-linear system is discretized and linearities to give

¹¾iÆÇvv 00 ¾ciÆÇvv¼ ¹Δt�ÈWÉΔt�cÈWÉ ¼ � Ê#¡�Ä�#¡�Äv
Ë.

Where the given matrices are defined as:

¾iÆÇvv � Ì�� t�ÈWÉ

¾ciÆÇvv � Ì��c t�cÈWÉ

¡�Ä� � Ì��

¡�Äv � Ì��c

And Ì�� and Ì��c are described by

Í � L O���%O��� t�ÈWÉ # t�È ΔtM
�J > L AO���%Î�AO���t�ÈWÉ ÏM

�J >

> C�E1 # t�È # t�ÈG # ¡c # ¡�E1 # t�ÈG # ¡�E1 # t�ÈGI L O���%O���t�ÈWÉ �J
M

>

>E� # ¡cG L O���%O���t�cÈO���t�ÈWÉ �J
M

> � L O���%EO���t�ÈWÉ G.�J
M

Original Bone In-Growth Model 20

Íc � L O���%O��� t�cÈWÉ # t�cÈΔuM
�J > L AO���%Î�cAO���t�cÈWÉÏ

M
�J >

> C�cE1 # t�È # t�ÈG # ¡�E1 # t�ÈG # ¡�E1 # t�ÈGI L O���%O���t�cÈWÉ�J
M

>

>E�c > ¡cG L O���%O���t�cÈWÉO���t�È�J
M

> �c L O���%EO���t�cÈWÉG.�J
M

The remaining PDE’s

The remaining PDE’s need not be solved using a finite element approach. Take for example

Equation 3.10. Applying a discretization and organizing the terms results in

�t��u � ��$1 # th h't� > ¡�$1 # t�'Et > tcG # ¡�$1 # t�'t� � 0

��Δut�ÈWÉ. > $1 # C��E1 # tÈ # tcÈ # t�ÈG > ¡�EtÈ > tcÈG > ¡�E1 # t�ÈGI Δut�ÈWÉ> E#¡�EtÈ > tcÈGΔu # t�ÈG � 0

And this simple quadratic function can easily be solved for t�ÈWÉ. This procedure will be

repeated for the other PDE’s

3.3 Implementation into MSC Marc

The bone ingrowth model has been reformulated to a finite element implementation. The

next phase is to implement it in a commercial code. The following sections will elaborate on

the implementation within MSC Marc. The overall simulation setup is given in

Again the model is split in a mechanical and a biological model. Each model is programmed

in a separate model. The two models run sequentially and communicate by writing out

information that is read by the next model. Both models have been implemented in a user

subroutine that is called by MSC Marc.

Original Bone In-Growth Model 21

Figure 13 Simulation setup and communication between biological and mechanical model

The simulation is controlled by the biological model. The biological model calculates the

tissue evolution over a period of 28 days. At the start of every day a mechanical simulation is

started.

The mechanical model is loaded with an applied displacement or force, depending on time in

the simulation. The displacement or force is applied to a ‘roof node’ that links to all surface

nodes that would normally be in contact with the implant. The ‘roof node’ ensures a uniform

loading along the surface of the implant. When the mechanical model is finished the

resulting biophysical stimulus is written out and a status file is updated such that the

biological model knows that it can continue.

The total tissue concentrations are recorded over the 28 days, as well as the displacement

and force in the roof node.

Mechanical Model
Force/displacements are applied to a ‘roof node’.

days 1-7: Displacement control, apply a 50 q\ displacement

days 8-28: Force control, apply a force equal to the average force over the first 7

weeks

Biological Model
Simulate tissue evolution over a time span of 28 days (280 iterations)

ReactForce.graph

Record force / displacement of

moving roof node.

TotalTissues.graph

Record total tissue history

of model

Status.dat

Status file

Indicates status of

mechanical

simulation

Tissues#.dat

For each element

specificy the tissue

concentrations

Stimuli#.dat

For each element

specificy the

biophysical

stimulus

At start of each day

Save tissue

concentrations of all

elements and start a

mechanical simulation

At end of simulation

Save biophysical

stimulus of all

elements and update

status file

Original Bone In-Growth Model 22

3.3.1 Mechanical Model

The following flow diagram illustrates how the mechanical model is implemented in MSC

Marc.

The subroutine specifies actions to be taken at specific moments in the simulation. Some are

initiated at the start of the simulation, some at the start of a time step and other are called

on element level. Figure 14 shows the flow diagram for the mechanical simulation, the blue

section is called on element level.

Figure 14 Flow chart of the mechanical model in MSC Marc

UBGINC - Initialize program

• Load bone, cartilage & fibrous tissue fractions

UEDINC

If simulation is finished update status files to indicate end of mechanical

simulation

Ð`,+, Ð, Ð`

set material constants

Construct support matrices

Construct Deformation tensor ! and !()

Calculate properties of solid phase (a.o. ¾%)

IMPD – Postproces (node)

Save micromotions of the model (represented by the motions of

the ‘moving roof node’)

Write displacement in X-direction and reactionforce in X-

direction to ReactForce.graph

ELEVAR – Postprocess (element)

Write stimulus for each element (after last increment)

Calculate

displacements

Calculate Support

matrices: E\���, O���, Ñ, Ò, 7G

• Assemble RHS

• Assemble LHS

Return mass

matrix

 [unused]

Return equivalent

nodal loads

• Set element type

157

Calculate residual

force vector

Calculate Support

matrices: E\���, O���, Ñ, Ò, 7G

• Assemble RHS

Output elements

results

• Export results as

element type

134

Read Tissue

fractions

Original Bone In-Growth Model 23

3.3.2 Biological Model

The implementation of the biological model is also done in the user subroutines. The scheme

of the subroutine is shown in Figure 15.

Figure 15 Flow chart of the biological model in MSC Marc

Read

Biophysical

Stimulus (BS)

ELEVAR - Postprocess

• Write tissue concentrations to tissues#.dat

Calculate

displacements

• Calculate

support matrices C�, x�`h�cc , ¡ÄÇI

• create RHS

• Assemble LHS

Return mass

matrix

• Set element type

Return equivalent

nodal loads

• Set element type

Calculate residual

force vector

• Calculate

support matrices C�, x�`h�cc , ¡ÄÇI

• Assemble LHS

Output elements

results

• Set element type

Determine based on BS

Proliferation (�, �c , ��, ��),

Differentiation (¡�, ¡�),

Production (¤� , ¤�)

Resorption rates (�� , ��)

Ó�c 0 00 �c 00 0 �c
Ô , Ê� 0 00 � 00 0 �

Ë

Calculate Diffusion Coefficients

Calculate cell & tissue increments;

Chondrocytes, Osteoblasts, Bone matrix

Cartilage, Fibrous tissue

UBGINC - Initialise program

• set constants

• if this is the start of the day, run the mechanical simulation,

check if it is finished & read the stimulus files

UEDINC

• Sum all tissue concentrations and create TotalTissues.graph

Model optimization opportunities 24

4 Model optimization opportunities

Based on the theory and the implementation of the bone ingrowth model, 3 possible

opportunities are identified that may enable an increased speed of the simulation. They are

model optimizations, code optimizations and the application of computational

homogenization.

4.1 Model optimizations

4.1.1 Mechanical Model – Elimination of the fluid phase

Looking the theoretical implementation of the model has shown some possibilities for

improving performance. The mechanical model is a biphasic model. The biophysical stimulus

is constructed using inputs from the solid phase (maximum shear strain) and the fluid phase

(fluid flow), see Figure 16.

Weighted Fluid Velocity Weighted Shear Strain

Figure 16 Components of the biophysical stimulus for a selected number of days. The ratios in which the two

components contribute to the total biophysical stimulus appears to be relatively consistent throughout the complete

simulation.

Investigation of the components of the biophysical stimulus shows that the contribution of

the shear strain is generally almost 1 order of magnitude larger than the contribution of the

fluid velocity. This might indicate that the fluid phase is of lesser importance, even though

Model optimization opportunities 25

The biological tissue is considered to consist of 80% fluid [1]. If the fluid phase may be

ignored, the implementation of the mechanical model can be greatly simplified and a large

gain in computational speed could be achieved.

Figure 17 Left: Total tissue fractions of the complete model. Right: Micromotions measured in the roof node.

It is imperative that the overall results are not severely altered through such a change. One

measure for the quality of the simulation is the total tissue concentration and the

micromotions of the system (see Figure 17).

4.1.2 Biological Model – Linear approximation

The non-linear nature of the biological model causes the largest decrease in computational

speed. Examing and rewriting Equations 3.8 and 3.9, the effects of this non-linearity can be

exposed.

�t�u � �A.t > C�$1 # t� # t�' # ¡c # ¡�$1 # t�' > ¡�$1 # t�'I t> E¡c # �Gtct # �tt

�tc�u � �cA.tc > C�c$1 # t� # t�' # ¡�$1 # t�' # ¡�$1 # t�'I tc > ¡ct# E¡c > �cGttc # �ctctc

In red are the terms causing the non-linear behavior. An investigation will be made what the

effects are of removing the higher order terms.

4.1.3 Biological Model – Diffusion approximation

Another possibility for optimization lies in the diffusion term. Diffusion currently takes place

in all directions. Given the geometry of the model, as well as the uniform seeding of

mesenchymal cells, the diffusion could be approximated using a unidirectional diffusion.

The consideration of such a 1-dimentional is further strengthened by the observation that

mesenchymal and fibroblast cells are quickly uniformly distributed throughout the model

(see Figure 18).

Model optimization opportunities 26

Figure 18 Fibroblast (left) and mesenchymal (right) concentration distribution in day 5

The mesenchymal cells are completely uniformly distributed and although the fibroblast

concentrations appear to have a gradient, examining the scale shows that this gradient is

minimal.

Unfortunately, the implementation reveals that only very little efficiency will be gained. The

diffusion is controlled through the integral

¾ � Õ AÖ%× AÖ�JØ
MÙÚ ,

resulting in a matrix with dimensions 4x4 (for a 4-node element). 2 matrix multiplications

will be performed to construct ¾, in which a 4x3 is multiplied with a 3x3 matrix and secondly,

the resulting 4x3 matrix is multiplied with a 3x4 matrix to construct to final 4x4 matrix. A

unidirectional approach will still require these same multiplications, except the input matrix

containing the gradient of the shape functions (AÖ) is a 4x1 matrix, rather than a 4x3 matrix.

4.2 Code Optimizations

4.2.1 Sleep

In order to share data between the biological and the mechanical simulation, data is written

to files on disk. One of the issues is that simultaneous file operations are not permitted by

the system and thus these situations must be avoided. A solution is to attempt a file

operation and assess the response of the computer system. If a file is in use, the simulation

must wait until the file is free for use. The aforementioned method is employed at several

stages in the subroutine, as is it used when reading and when writing to files. The following

example is a loop in the biological simulation (see Figure 19), where the subroutine has to

read all the biophysical stimuli for each element.

Model optimization opportunities 27

Figure 19 Flowchart depicting the steps when the Stimuli#.dat files are being read

A 1 second waiting time is invoked if the file is busy and a disk operation cannot be

performed. Note that this loop will run for all elements, thus greatly increasing the waiting

time. Of course this wait is not called for at every instance but reducing the waiting period

should save a lot of time.

Similar comparable loops are present in the code and reducing the waiting times will greatly

affect the simulation time.

4.2.2 Writing sequence

Further investigating Figure 19 it can be seen that for a single element the complete

stimuli.dat is opened and completely read. During this process the subroutine will

continuously open and close the file, resulting in many disk operations with possible waiting

times that accompany this process. If a better process can be designed, the number of disk

operations and consequent waiting times can be further reduced.

4.3 Computational Homogenization

An attempt is made to code computational homogenization in MSC Marc. The application of

computational homogenization will be done in a restricted setting, namely only the

mechanical model.

One of the goals of this thesis was to assess the feasibility of the application of the

computational homogenization scheme on the bone ingrowth model. As an initial step in

this process, the computational homogenization scheme should then also be applicable to

Send command to open

stimulus.dat file.

Is file in free for use?

Read element number and

stimulus value.

Is file operation complete?

Yes

No

Wait 1 second

START

Wait 1 second

No

Yes

Is this the last record in

stimuli.dat

Yes

Close file and go to

next record

Close file and continue

subroutine

No

Model optimization opportunities 28

one of its core features (i.e. the mechanical model). Since the computational

homogenization scheme was developed with a purely mechanical setting in mind, the most

logical initial step is to see how well the scheme can be applied to the mechanical aspects of

the bone ingrowth model.

As a result of this restricted setting, a number of other parameters had to be fixed as well.

The following settings are taken:

• Displacement control (an applied displacement of 50 q\) is used

• The tissue fractions are fixed at realistic values obtained during runs of the original

model. The tissue fractions are:

o Bone = 0.01394211

o Cartilage = 0.01865109

o Fibrous Tissue = 0.0008101763

The mechanical model supplies the biophysical stimulus to the biological model. This

stimulus consists of the maximum shear strain and the fluid flow. Since the fluid phase is

ignored in this setting, the current relevant parameter to be upscaled is the maximum shear

strain.

Figure 20 Left: Maximum principal strain along the Top & Bottom edges. Right: identification of the edges

The maximum principle strain does appear to show some oscillations that may be averaged

out using a homogenization approach. However, it should be noted that the biophysical

stimulus relies on the maximum shear strain. An averaging procedure, such as

homogenization, may influence the results if these maxima are affected.

If the computational homogenization scheme can be implemented 2 main questions must be

dealt with. How does the averaging procedure affect the maximum shear strain?

Furthermore, as discussed in the literature survey [7], is the assumption of separation of

scales applicable.

back

front
left

right

top

bottom

Results - Model optimizations 29

5 Results - Model optimizations

5.1 Mechanical Model – Elimination of the fluid phase

In order to assess the importance of the fluid phase a run was made that has the fluid phase

removed (see Figure 21).

Figure 21 Tissue evolution with the biphasic model and a single constituent model

The importance of the fluid phase becomes apparent. Without the fluid phase a much lower

amount of tissue is produced. In addition, the fractions in which they appear are also

different. A much smaller fraction of the stiffer materials is being produced. A serious

reduction in cartilage and a very large reduction in bone tissue are the result of the

elimination of the fluid phase. The less stiff fibrous tissue is still calculated reasonably

accurate without the fluid phase.

Regarding the simulation time, the single constituent model does greatly reduce run times

timing information: wall time cpu time

total time for input: 27.68 26.22
total time for stiffness assembly: 5711.05 5670.46
total time for stress recovery: 3648.77 3624.95
total time for matrix solution: 44341.22 43949.75
total time for restart: 74.37 14.00
total time for output: 1709.29 1627.41
total time for miscellaneous: 16639.61 2067.30
--- ------------
total time: 72151.98 56980.09

Clearly a single constituent model would greatly aid the computational speed, however it

has been shown that the fluid phase is essential to the tissue evolution and cannot be

ignored.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

T
is

su
e

 f
ra

ct
io

n

Day nr.

Effect of removing the fluid phase

Bone - Original

Bone - NoFluid

Cartilage - Original

Cartilage - NoFluid

Fibrous Tissue -

Original

Results - Model optimizations 30

5.2 Biological Model – Linear approximation

Removing the higher order terms in the differential equations (Equations 3.8 and 3.9) results

in

����h � �A.t > C�$1 # t� # t�' # ¡c # ¡�$1 # t�' > ¡�$1 # t�'I t,

��v�h � �cA.tc > C�c$1 # t� # t�' # ¡�$1 # t�' # ¡�$1 # t�'I tc > ¡ct.

The effect on the tissue differentiation scheme is depicted in Figure 21. The production of

fibroblast cells will cease and as a consequence no more fibrous tissue will be produced. The

input from the fibroblasts and the fibrous tissue will affect the other cell concentrations and

tissue concentrations.

Figure 22 Alterations in the Tissue differentiation model due to the removal of non-linear terms.

Figure 23 shows this effect. No fibrous tissue is produced, but more bone and cartilage are

produced.

Mesenchymal

Cells

Osteoblast

Cells

Chondrocyte

Cells

Fibroblast

Cells

Bone

Fibrous

Tissue

Cartilage

Differentiation

Proliferation

Production

Results - Model optimizations 31

Figure 23 First 18 days of a simulation using a linear biological model.

This increased concentration of bone and cartilage results in an overestimate of the

stiffness. Although cartilage is reasonably estimated by the linear model, the absence of

fibrous tissue and the enormous overestimate of bone prohibits the removal of the non

linear terms from Equations 3.8 and 3.9.

5.3 Biological Model – Diffusion approximation

Attempts to simplify the diffusion model to a 1 dimensional problem failed for unknown

reasons. The 1D model was initially simply modeled by setting the diffusion coefficients in X

and Y direction to zero, but computations in MSC Marc halted after 1 iteration with the error

message that the stiffness matrix became non-positive definite. It could not be established

what is the cause of this non-positive definiteness.

However, it is not expected that such a simplification will gain a lot of computational speed.

The diffusion matrix is compiled by performing the calculation of

¾ � L AÖ%× AÖ�JØ
MÙÚ
,

which in requires 2 matrix multiplactions in the subroutine. Using the 1 dimensional

approximation, this can be reduced to a single matrix multiplication and the multiplication

with a constant. A comparison in Matlab was made between the average computation time

required for both sets of computations. Given the nr of elements and the number of

iterations in the biological model, the gain was on average only 200 seconds. This is marginal

compared to the total run time of the complete simulation.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

1 3 5 7 9 11 131517192123252729

T
is

su
e

 f
ra

ct
io

n

Day nr.

Effect of a linear Biological model

Bone - Original

Bone - LinearBIO

Cartilage - Original

Cartilage - LinearBIO

Fibrous Tissue -

Original

Results - Code Optimizations 32

6 Results - Code Optimizations

An analysis of the programming was made and several options for improvement have been

identified in section 4.2. The results of these code optimizations are given below. It will be

shown that a large increase in efficiency is gained simply by optimizing disk writes. These

changes do not affect the results of the simulations.

6.1 Minisleep

FORTRAN’s intrinsic command ‘SLEEP’ only accepts integers and thus the smallest sleep is 1

second. To overcome this issue I have created a small subroutine called MINISLEEP. It simply

calls the intrinsic function ‘DATE_AND_TIME’ that records the current time (up to

milliseconds) and forces a dummy loop of a specified number of milliseconds.

C== ==
C MINISLEEP small subroutine to sleep for nms mi llisec.
C== ==
 subroutine minisleep(nms)
 integer time1 (8), time2 (8), deltasleep
 CHARACTER (LEN = 12) tmp1 (3)
 CALL DATE_AND_TIME (tmp1 (1), tmp1 (2), tmp1 (3), time1)
50 CALL DATE_AND_TIME (tmp1 (1), tmp1 (2), tmp1 (3), time2)
 deltasleep = (time2(7)*1000.d0+time2(8))-(time1(7) *1000.d0+time1(8))
 if (deltasleep.LT.nms) then
 goto 50
 endif
 return
 end

The question now becomes what value to select for MINISLEEP. It might be possible that if a

too small value is chosen, the time needed for the additional disk operations outweighs a

smaller sleep time. Thus various values for MINISLEEP will be tested.

6.1.1 Comparison of minisleep values

Unmodified Simulation

The following is a copy of the end of the log file after a successful run.

timing information: wall time cpu time

total time for input: 26.89 25.15
total time for stiffness assembly: 10131.55 5471.87
total time for stress recovery: 4103.51 3559.33
total time for matrix solution: 42604.60 34629.30
total time for restart: 53.64 5.63
total time for output: 30050.08 2142.14
total time for miscellaneous: 112628.62 1208.83
--- ------------
total time: 199598.89 47042.25

As can be seen, the total time is almost 250,000 seconds, which equals about 68 hours.

On average, a poroelastic simulation will take about 4400 seconds and a biological

simulation (consisting of 10 increments) will take about 2700 seconds.

MINISLEEP – 1 ms

Results - Code Optimizations 33

Incorporating a 1 millisecond sleep instead of the 1 second sleep should lead to a large

reduction in wall time. CPU time should not be affected as the sleep function does not

influence the calculations.

timing information: wall time cpu time

total time for input: 25.70 25.42
total time for stiffness assembly: 9455.66 5444.41
total time for stress recovery: 3619.36 3535.15
total time for matrix solution: 32467.87 31268.41
total time for restart: 78.29 2.63
total time for output: 18681.64 1968.34
total time for miscellaneous: 87025.32 1157.73
--- ------------
total time: 151353.84 43402.10

As expected, there is a great reduction in wall time. Also the CPU time is reduced. Together

the time saving adds up to about 21%, with a total computing time of 54 hours. Apparently

the CPU time is also positively affected by the MINISLEEP function.

The average time spent on the poroelastic simulation has decreased to about 3400 seconds

and the average time spent on the biological simulation has decreased to approximately

2000 seconds. Thus the poroelastic simulation saw a decrease of 22% and the biological

simulation was reduced by 25%. It seems that both processes benefit equally from the

reduced sleep time.

MINISLEEP – 10 ms

Increasing the sleep time from 1 millisecond to 10 milliseconds showed no effect.

timing information: wall time cpu time

total time for input: 25.78 25.37
total time for stiffness assembly: 9084.10 5438.27
total time for stress recovery: 3600.53 3496.23
total time for matrix solution: 32024.05 31258.48
total time for restart: 47.42 2.82
total time for output: 18815.55 1989.05
total time for miscellaneous: 86642.52 1169.95
--- ------------
total time: 150239.95 43380.17

The numbers actually show a decrease in time, but this decrease accumulates to 0.5%. I

believe that this falls within a range of variations that may occur from simulation to

simulation and thus I cannot conclude that this decrease in time may be attributed to the

longer sleep time.

Results - Code Optimizations 34

MINISLEEP – 250 ms

The slight increase in sleep did not seem to have notable effects. Increasing the sleep to 250

milliseconds showed an increase in computing time again.

timing information: wall time cpu time

total time for input: 25.80 25.56
total time for stiffness assembly: 10021.93 5512.17
total time for stress recovery: 3634.99 3542.79
total time for matrix solution: 32105.49 31276.15
total time for restart: 40.68 2.43
total time for output: 23050.94 2005.11
total time for miscellaneous: 106662.51 1169.46
--- ------------
total time: 175542.34 43533.68

6.1.2 Results

It seems that increasing the sleep time slightly has no effect. Increasing the sleep time to

250 milliseconds had a detrimental effect. From this it can be concluded that an increased

number of disk operations due to a decreased sleeping time is of minimal influence total

computing time. Thus a shortest sleep time is preferred.

For comparison I have collected the logs and processed them to show the time at each

iteration.

Figure 24 Influence of reduced sleep times (1, 10, 250 ms) compared to the original code

Figure 24 shows the impact of the MINISLEEP routine and plot the iteration number versus

the wall time. The staggered graph clearly shows the initiation and end of the poroelastic

and the biological simulations. Using the log files I was able to extract average computing

times for the biological and mechanical simulation, they are summarized in Table 1.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

tim
e

(s
)

Comparison of timings

Iteration nr

Original

MINISLEEP(1)
MINISLEEP(10)

MINISLEEP(250)

Results - Code Optimizations 35

 Biological

simulation

Mechanical

simulation

Original model 2707 s 4355 s

MINISLEEP(1) 1976 s 3407 s

MINISLEEP (10) 1978 s 3365 s

MINISLEEP (250) 2114 s 4115 s

Table 1 Average run times (seconds) for the biological and mechanical simulations

Based on these finding a 1 millisecond sleep time is selected. This routine will reduce the

computation time by roughly 20%.

6.2 Batchwrites

Instead of writing almost continuously to the disk, the change was made to save all variables

in memory and then write them to the disk only at the end of each iteration. This saves disk

writes, but will also save disk read activity as the original loops had to read the complete

array before being able to append the array.

The implementation of this system is described in Appendix D.

It should be noted that the implementation of the batch writes is in conjunction with the

1ms minisleep function. The effect on simulation speed is represented in the log file.

timing information: wall time cpu time

total time for input: 27.68 26.22
total time for stiffness assembly: 5711.05 5670.46
total time for stress recovery: 3648.77 3624.95
total time for matrix solution: 44341.22 43949.75
total time for restart: 74.37 14.00
total time for output: 1709.29 1627.41
total time for miscellaneous: 16639.61 2067.30
--- ------------
total time: 72151.98 56980.09

Compared to the results of the 1 ms minisleep, the batch writes accomplish a reduction in

computation time of more than 50% (compared to the model with a 1ms sleep time

implemented), showing the effectiveness of minimizing disk activity. Compared to the

original model a reduction in computation time of nearly 65% is realized.

Implementation and Results

7 Implementation and Results

The theory of computational homogenization has been outlined i

will perform a feasibility study into the implementation of computational homogenization in

MSC Marc for the bone ingrowth model.

Section 4.3 showed that the original mod

homogenization may be applied to the reduced model. For the feasibility study a

geometrically simpler model is chosen. Simplifications to the model are discussed in section

7.1.

7.1 Model Simplifications

As outlined in section 4.3, several simplifications have been applied in order to better study

the feasibility of implementing computational homogenization in MSC Marc. The applied

simplifications are that only the solid part of the mechanical model is considered. It is loaded

with a 50um displacement and has fixed material properties.

7.1.1 Geometry

The geometry of the original model may not lend itself well for homogenization. In fact it is

already a volume that is chosen to be representative, thus already is an RVE. In order to test

the computational homogenization scheme a simpler geometry has been selected.

The model is chosen to be a stacked series of beads. Beads are a common geometry in the

coating of implants
7
, however it would be more likely that they appear in a closest

configuration. A simple stacked model would allow the straightforward RVE selection of a

cube with a spherical void. This eased RVE selection is the reason that this geometry was

selected.

The geometry of the reference model is shown in

Figure 25 Geometry of the reference model. 8 beads in a stacked configuration.

The extracted RVE and the resulting macroscopic model are sho

7
 See for example http://www.mcminncentre.co.uk/

Implementation and Results - Computational Homogenization

and Results - Computational Homogenization

The theory of computational homogenization has been outlined in section

will perform a feasibility study into the implementation of computational homogenization in

MSC Marc for the bone ingrowth model.

showed that the original model shows possibilities that computational

homogenization may be applied to the reduced model. For the feasibility study a

geometrically simpler model is chosen. Simplifications to the model are discussed in section

implifications

, several simplifications have been applied in order to better study

the feasibility of implementing computational homogenization in MSC Marc. The applied

he solid part of the mechanical model is considered. It is loaded

with a 50um displacement and has fixed material properties.

The geometry of the original model may not lend itself well for homogenization. In fact it is

osen to be representative, thus already is an RVE. In order to test

the computational homogenization scheme a simpler geometry has been selected.

The model is chosen to be a stacked series of beads. Beads are a common geometry in the

however it would be more likely that they appear in a closest

configuration. A simple stacked model would allow the straightforward RVE selection of a

cube with a spherical void. This eased RVE selection is the reason that this geometry was

The geometry of the reference model is shown in Figure 25.

Geometry of the reference model. 8 beads in a stacked configuration.

The extracted RVE and the resulting macroscopic model are shown in Figure

http://www.mcminncentre.co.uk/ or http://www.zimmer.co.uk

Computational Homogenization 36

Computational Homogenization

n section 2.4. This chapter

will perform a feasibility study into the implementation of computational homogenization in

el shows possibilities that computational

homogenization may be applied to the reduced model. For the feasibility study a

geometrically simpler model is chosen. Simplifications to the model are discussed in section

, several simplifications have been applied in order to better study

the feasibility of implementing computational homogenization in MSC Marc. The applied

he solid part of the mechanical model is considered. It is loaded

The geometry of the original model may not lend itself well for homogenization. In fact it is

osen to be representative, thus already is an RVE. In order to test

the computational homogenization scheme a simpler geometry has been selected.

The model is chosen to be a stacked series of beads. Beads are a common geometry in the

however it would be more likely that they appear in a closest-stacking

configuration. A simple stacked model would allow the straightforward RVE selection of a

cube with a spherical void. This eased RVE selection is the reason that this geometry was

Figure 26.

Implementation and Results

Figure 26 Left: RVE geometry. Right: Macroscopic model, consisting of 8 hexahedral elements.

Figure 26 shows the essence of homogenization. To the right in

model is shown that aims to convey the structural response of a model like

7.1.2 Loading of the model

One of the restrictions that became apparent is the loading of the model. O

between bone and implant, it was assumed that the application of the load is done

uniformly over the surface where the implant interfaces with the biological tissue. When a

homogenized approach is selected, this is no longer possible since

implant surface is assumed to be flat

model. This may be a severe restriction on the applicability of homogenization.

investigate this, a short simulation was performed

geometry) was loaded on the top surface, rather than the surface that is in assumed to be in

contact with the implant.

Figure 27 Effect of the same load applied to the top surface, rather than t

Clearly different results appear as a consequence of the altered loading application.

0

0,05

0,1

0,15

0,2

0,25

1 3

T
is

su
e

 f
ra

ct
io

n

Effect of different loading

Implementation and Results - Computational Homogenization

Left: RVE geometry. Right: Macroscopic model, consisting of 8 hexahedral elements.

shows the essence of homogenization. To the right in Figure

model is shown that aims to convey the structural response of a model like

Loading of the model

One of the restrictions that became apparent is the loading of the model. O

between bone and implant, it was assumed that the application of the load is done

over the surface where the implant interfaces with the biological tissue. When a

homogenized approach is selected, this is no longer possible since the geometry of the

implant surface is assumed to be flat and the loading must applied on the top surface of the

. This may be a severe restriction on the applicability of homogenization.

a short simulation was performed where the model (with the complete

was loaded on the top surface, rather than the surface that is in assumed to be in

Effect of the same load applied to the top surface, rather than the implant surface.

Clearly different results appear as a consequence of the altered loading application.

5 7

Day nr.

Effect of different loading

Bone -

Bone -

Cartilage

Cartilage

Fibrous Tissue

Fibrous Tissue

Computational Homogenization 37

Left: RVE geometry. Right: Macroscopic model, consisting of 8 hexahedral elements.

Figure 26, a macroscopic

model is shown that aims to convey the structural response of a model like Figure 25.

One of the restrictions that became apparent is the loading of the model. On the interface

between bone and implant, it was assumed that the application of the load is done

over the surface where the implant interfaces with the biological tissue. When a

the geometry of the

and the loading must applied on the top surface of the

. This may be a severe restriction on the applicability of homogenization. In order to

(with the complete

was loaded on the top surface, rather than the surface that is in assumed to be in

he implant surface.

Clearly different results appear as a consequence of the altered loading application.

- Original

- TopLoaded

Cartilage - Original

Cartilage - TopLoaded

Fibrous Tissue - Original

Fibrous Tissue - TopLoaded

Implementation and Results - Computational Homogenization 38

7.2 Algorithm Implementation in MSC Marc

A homogenization approach consists of 2 models. 1 model is the macroscopic model, which

aims to represent the global geometry. The second model is the RVE, which models a

periodic or representative structure that is distributed throughout the macroscopic model.

The geometry of the RVE and the macroscopic model were shown in Figure 26. These

sections will go into the implementation in MSC Marc and discuss the results.

The general structure of the computational homogenization scheme starts with the

macroscopic model. The general loading is applied to macroscopic model. From this loading,

the microscopic model will determine its structural response. This response (in the form of

the stress tensor and the related stiffness matrix) are determined and taken to the

macroscopic level.

7.2.1 Microscopic element

The RVE element forms the core of the computational scheme. The microscopic element

uses the macroscopic deformation tensor to formulate a loading condition. The boundary

conditions are periodic boundary conditions and are completed with 1 fixed node (�+++) and

3 nodes that are prescribed using the macroscopic deformation tensor (�++) , �)++ , �+)+).

Figure 28 Corner node identification in the microscopic model

Periodic Boundary Conditions

The periodic boundary conditions are applied to all non-prescribed boundary nodes. They

shall move in accordance with the corner nodes. The periodicity constraints are formulated

as Equation 2.3, resulting in

�%ÛÜ # �ÝÛ%%Û� � �++) # �+++,

�ÞÄßà% # �áeâ% � �)++ # �+++,

�Ýãäw # �âÞÛå% � �+)+ # �+++.

�)++

�+)+

�+++

�++)

Implementation and Results - Computational Homogenization 39

These periodic boundary conditions are prescribed in MSC Marc/Mentat using servo links.

They are applied using an automated python routine (see Appendix C). Care should be taken

that some nodes do not obtain a double periodic constraint.

Prescribed Nodes

The deformation on the prescribed nodes (subscript S) can be calculated as the difference

between the deformed and the undeformed configuration. The microscopic model is

assumed to deform in accordance with the macroscopic model i.e. the macroscopic

deformation tensor governs the deformation of the microscopic model. The displacement of

the prescribed nodes can be described as the change between the undeformed and the

deformed configuration.

���F � ��F # ��F � !���F # ��F � $!� # &' � ��F 7.1

This displacement can be applied to the prescribed nodes using the subroutine FORCDT in

MSC Marc. According to Equation 7.1, the subroutine will be coded as

��)�.�æ� � $!� # &' ��)�.�æ
� � ç¡�,)) # 1 ¡�,.) ¡�,æ)¡�,). ¡�,.. # 1 ¡�,æ.¡�,)æ ¡�,.æ ¡�,ææ # 1è ��)�.�æ

�.
These displacements will be applied at every iteration. The model is constructed to apply the

load in 5 steps, thus the displacements must be applied in 5 increments resulting in

��)�.�æ� �)é $!� # &' ��)�.�æ
�.

This finalizes the localization of the homogenization scheme. The macroscopic deformation

is translated into a loading condition for the RVE.

Extracting the macroscopic stress tensor

The macroscopic stress tensor is given by Equation 2.5 and requires only the reaction forces

and the position of the prescribed nodes.

1� � 1V+ L S����Γ+PN
� 1V+ ê a�F���ë

F�) � 1V+ ê Óa)�) a)�. a)�æa.�) a.�. a.�æaæ�) aæ�. aæ�æ
Ô

F

�ë

F�)

This summation will result in a 3x3 matrix that represents that macroscopic stress state of

the system. When employing periodic boundary conditions, this summation is only required

to be taken over the prescribed corner nodes [11].

The information that is available at specific nodes can be accessed in MSC Marc using the

subroutine IMPD.

Implementation and Results - Computational Homogenization 40

MSC Marc uses second PK to calculate stresses for large strain models. Having found the

macroscopic 1
st

 PK stresses, the 2
nd

 PK tensor is easily found by using the macroscopic

deformation tensor to transform the stresses

7ì � !ì()1ì,

resulting in the macroscopic 2
nd

 PK stress tensor.

7.2.2 Macroscopic element

The macroscopic element is the main element that will control the homogenization

procedure. The function of this element is to transfer the macroscopic deformation tensor to

the RVEs and build the stresses and the tangent on the macroscopic level. This will be done

using the subroutine HYPELA2.

The stresses are obtained by starting a RVE simulation that returns the macroscopic stresses.

The tangent will be computed using a numerical differentiation scheme.

Calculating the macroscopic tangent

Now that the macroscopic deformation tensor and the macroscopic stress tensor are

available, the macroscopic tangent can be computed. The option that is presented in [11] is

to condense the stiffness matrix in accordance with a partitioning between prescribed and

free nodes.

Unfortunately, this method is not possible in Marc as the full stiffness matrix is not available

for manipulation and reassembling a custom full stiffness matrix in marc is highly inefficient.

Another option is proposed, namely a numerical differentiation proposed by Miehe [13].

The idea for this forward numerical differentiation is quite simple. Calculate the stress state,

apply a small perturbation, calculate the perturbed stress state and from these two we can

determine the tangent. Traditionally, this routine should be repeated for every component

of the tangent, but Miehe introduced a method to reduce the number of required steps.

The 2
nd

 Piola-Kirchhoff stress tensor can be calculated using either the deformation tensor $!' or the Right Cauchy-Green deformation tensor $�', which gives the relation for the

tangent

í � 2 ?7 ?� 9 7 � í:). �.

A small perturbation (in the form of a perturbation to the deformation tensor)

!$äî'ï � ! > Δ!$äî'ï ,

will be applied. Next the assumption is made that the resulting change in stresses that are

caused by the perturbation can be approximated linearly according to

Δ7 y 7E!$äî'ï G # 7$!' � 7EΔ!$äî'ï G � í:). Δ� � í:). $Δ!%! > !%Δ!'. 7.2

Implementation and Results - Computational Homogenization 41

Assuming a specific form for the perturbation

Δ!$äî'ï � ï. ÎE!(%ð��äG�ð��î > E!(%ð��îG�ð��äÏ, 7.3

causes terms to fallout nicely due to symmetry properties in the basis vectors. The basis

vector (ð��)++, ð��+)+, ð��++)) are the unit vectors in Cartesian space, further reducing Equation

7.2 to

7E!$äî'ï G # 7$!' y í: ï. Îð��ä�ð��î > ð��î�ð��äÏ � í�,

From which we find the relation

íãÝ$äî' �)ï ñ7ãÝE!$äî'ï G # 7ãÝ$!'ò.
The specific choice of Δ!$äî'ï (in the form of Equation 7.3) allows a quicker estimate for the

tangent. Furthermore, the article elaborates on the importance of � and determines that � � 1 � 10(ó gives good

One of the problems associated with numerical differentiation is efficiency. The complete

problem must be rerun with a small perturbation to the macroscopic tangent. This is

reflected in Figure 29.

7.2.3 Detailed Flow-Chart of implementation in Marc

The implementation that is described in sections 7.2.1 and 7.2.2 is summarized here in

Figure 29.

Implementation and Results - Computational Homogenization 42

Figure 29 Flow diagram for a computational homogenization setup.

UBGINC

• Read Macroscopic Deformation Tensor $!ì'

UEDINC

• Sum element volumes to get total RVE

volume

• Calculate averaged stress tensor 1� �)VN ∑ a�F���ëF�)

• Convert to 2
nd

 PK: 7ì � !ì()1ì

IMPD

• For corner nodes: Calculate contribution to

stress tensor (but not yet averaged over

total volume)

���F � $!� # &' � ��F

FORCDT

• For corner nodes: Calculate applied load

Lo
o

p
 o

v
e

r
a

ll
 R

V
E

 e
le

m
e

n
ts

Lo
o

p
 o

v
e

r
a

ll
 m

a
cr

o
sc

o
p

ic
 e

le
m

e
n

ts

• Assemble final stress tensor $7ì'

and tangent $�ì� '

HYPELA2

• Prepare data on disk. Delete old

data files.

• Save Macroscopic deformation

tensor to disk $!ì'

Calculate Macroscopic Stresses

• Start RVE calculation using $!ì'

• Read results from RVE

calculations: Macroscopic 2nd

PK stresses

Calculate Macroscopic Tangent

• Start RVE calculation using

perturbed deformation

tangent

• Read results from RVE

calculations and assemble into

macroscopic tangent

• Calculate perturbation (6

perturbations in 3D)

HYPELA2

• Calculate element volume

• Calculate material properties based on

tissue fractions. For now tissue fractions are

specified in the subroutine, but this can

easily be adapted

• Use material properties to calculate Lame’s

Constants.

×ô � 2õo$p^3' # qö z �() � } > o�()��()

7 � o$ln3'�() > q$ & # �()'

Build the tangent and the stress matrix.

 Macroscopic model Microscopic model

Implementation and Results - Computational Homogenization 43

7.3 Results

Although the model does show some potential for the application of a computational

homogenization scheme, the implementation caused manyproblems.

Unfortunately a fully correct implementation has not been realized. But run times already

indicate that even if the run would be successful, an increase in computation time will never

be achieved.

As seen in Figure 29 the microscopic simulation must be called 7 (!) times. This greatly

reduces the effectiveness of a homogenization approach in a commercial code.

The calculations and disk activity have been minimized to assess the homogenization

approach. However, the constant need to start another instance of MSC Marc is a major

source of computational overhead. This leads to tremendous run times.

The largest source of overhead lies in the numerical approximation of the macroscopic

tangent. It requires 6 microscopic simulations. Condensation of the microscopic stiffness

matrix would be a better a solution, but this is unfortunately not possible in MSC Marc.

Timing information for the homogenization model with only 16 elements shows that

computational homogenization does not benefit the computation time. The total time for 1

iteration increased to almost 290000 seconds.

The computational homogenization scheme could benefit from extreme parallelization. The

global set up and independent RVE calculations can all be sent to a different computer. This

requires massive parallelization, available hardware and available software. The question

then becomes whether such a solution is cost effective.

In addition to these implementation problems, the problem of loading further deteriorates a

homogenized solution. A simulation showed that the different loading that would be

required as a result of the homogenization scheme will lead to significantly different results.

Summary & Conclusions 44

8 Summary & Conclusions

In the course of this thesis an investigation was made into the feasibility of accelerating and

upscaling the bone ingrowth model developed by A. Andreykiv [1].

A feasibility study on the application of a computational homogenization scheme was

performed. The original model does show potential for a homogenization approach. Periodic

fluctuations can be observed in the relevant parameter (maximum shear strain). These

fluctuations are an indication that a averaged solution may be extracted.

The computational homogenization scheme has been unsuccessfully implemented in MSC

Marc. The resulting run times of a simulation are extremely long. These long run times are

due to the numerical differentiation scheme that requires many RVE simulations and that for

every simulation a complete instance of MSC Marc must be started, resulting in massive

computational overhead. In addition the loading cannot be applied in a similar manner and

this altered loading leads to different results.

An investigation on model base was also performed. It showed the necessity of the fluid

phase and thus the necessity of the biphasic approach to soft-tissue modeling. Although the

fluid has been shown to contribute less to the biophysical stimulus it nonetheless had a

tremendous impact on the results.

A second investigation into the linearization of the biological model showed that a linearized

biological model is not an acceptable approximate for the biological model. The tissue

production of fibrous tissue is completely halted and bone production increases.

Investigation of the diffusion of the fibroblasts and mesenchymal stem cells suggested that a

one-dimensional approximation of the diffusion was acceptable. Implementation in the

subroutine inexplicably led to non-positive-definiteness of the stiffness matrix. It could not

be established why this was the case. An estimate of the computation time revealed that a

decrease of only 200 seconds is expected, which is relatively little compared to the complete

simulation.

In spite of the previous results, a large gain (~65%) in computational speed was gained. This

increase in speed is completely attributed to coding optimization. The communication

between the biological model and the mechanical model was coded using files on the hard

drive and waiting times that were necessary to prevent simultaneous access to these files.

Investigation of the loops that control the disk activity revealed that the waiting times

(necessary for monitoring files) could be reduced. The reduction of the waiting time from 1

second to 1 millisecond led to a overall decrease in computation time of about 20%.

The second improvement reduced the total amount of disk writes. The original model wrote

the results of an element immediately to the disk. The consequent reading and writing as a

Summary & Conclusions 45

result of this setup up greatly reduced the speed of the simulation. The improved coding

stores all results in memory and writes the results of elements to the disk in 1 operation at

the end of an iteration. This approach reduced the overall computation time by 65%

(compared to the original model)

Recommendations 46

9 Recommendations

The model investigations showed that all implemented features are an essential part of the

simulation. The results in this thesis have shown that model simplification does not lead to

acceptable results.

The application of computational homogenization also did not result in the desired increase

in speed and thus not the upscalability of this system. Clearly homogenization is not the

route that should be taken in order to apply the findings of the bone ingrowth simulation on

a larger scale.

It is suggested that a new point of view, where the results of these detailed simulations may

be incorporated. Such a new approach should be formulated in terms of the requirements in

a macroscopic model. In a macroscopic setting, where for example a complete implant is

modeled, there is no need for the detailed geometry of the interface. Furthermore there is

no need for the stress state or the tissue concentrations of the interface section. What is

needed is the response of the interface to a loading and the consequent result for the

fixation of the implant.

The following suggestion is made. At the interface between implant and bone, a certain

amount of motion will be present after surgery. This amount of motion will differ as a

function of location on the surface of the implant. The current model for bone ingrowth can

be used to evaluate different applied displacements to assess time to fixation (i.e.

micromotion = 0) Correlate stiffness of the system to this. Such an investigation would lead

for example to a graph that might resemble the figure below.

Such a result can be implemented in a full scale implant simulation. Along the implant, the

local micromotions will give an indication of the time required for fixation. This should be a

good indication for the quality of the implant.

In a time dependent analysis, a locally evolving stiffness approach may be adopted, where

the evolution of the stiffness ensures that the ‘time to fixation’ is achieved.

It should be noted that the validation of such a model will require experimental data for

complete implants.

Relative motion

between implant

and bone

Time to fixation

References I

References

1. Andreykiv, A., Simulation of bone ingrowth. 2006, TU Delft: Delft.

2. Liu, X. and G.L. Niebur, Bone ingrowth into a porous coated implant predicted by a

mechano-regulatory tissue differentiation algorithm. 2008. 7(4): p. 335-344.

3. Folgado, J., et al., Influence of femoral stem geometry, material and extent of porous

coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an

iterative finite element model. Computer Methods in Biomechanics and Biomedical

Engineering, 2009. 12(2): p. 135 - 145.

4. Perren, S.M. and J. Cordey, The concept of interfragmentary strain., in Current

Concepts of Internal Fixation of Fractures. 1980, Springer: Berlin.

5. Huiskes, R., et al., A biomechanical regulatory model for periprosthetic fibrous-tissue

differentiation. Journal of materials science: Materials in medicine, 1997. 8: p. 785-

788.

6. Claes, L.E. and C.A. Heigele, Magnitudes of local stress and strain along bony surfaces

predict the course and type of fracture healing. Journal of Biomechanics, 1999. 32: p.

255-266.

7. Khoe, Y.S., Literature survey: Bone Ingrowth & Upscaling. 2009, TU Delft.

8. Lacroix, D., L.A. Murphy, and P. Prendergast, Threedimensional finite element

analysys of glenoid replacement prosthesis: a comparison of keeled and pegged

anchorage systems. Journal of Biomechanical Engineering 2000. 122(4): p. 430-436.

9. Wirth, M.A. and C.A.R. Jr., Advantages and disadvantages of current glenoid designs.

2008, University of Texas.

10. Fung, Y.C., Foundations of Solid Mechanics. 1965: Prentice Hall.

11. Geers, M.G.D., V.G. Kouznetsova, and W.A.M. Brekelmans, Multi-scale

modelling:Computational homogenization in solid mechanics. 2007, Eindhoven

University of Technology: Eindhoven.

12. Borst, R.d. and L.J. Sluys, Lecture Notes - Computational Methods in Non linear Solid

Mechanics (CT5142). 2002.

13. Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in large-

strain computational inelasticity. Computational Methods Applied Mechanical

Engineering, 1996. 134: p. 223-240.

14. Fernandez, R., Natural convection from cylinders buried in porous media. 1972,

University of California.

15. Lewis, R. and B. Screfler, The Finite Element Method in Static and Dynamic

Deformation and Consolidation of Porous Media. 1998: John Wiley & Sons Ltd.

16. Prendergast, P.J., R. Huiskes, and K. Søballe, Biophysical stimuli on cells during tissue

differentiation at implant interfaces. Journal of Biomechanics 1997. 30(6): p. 539-548.

17. Simmons, C. and R. Pilliar, eds. Bone Engineering Chapter A Biomechanical Study of

Early Tissue Formation around Bone-Iterface Implants: The Effects of Implant Surface

Geometry. ed. J.E. Davies. 2000. 369–379.

Appendix A - Macroscopic element subroutine II

Appendix A Macroscopic element subroutine

This subroutine is used to control the macroscopic element in the computational

homogenization scheme.

C<<<<<<<<< Computational Homogenization Macroscopic element >>>>>>>>
C<<<<<<<<< writen by: Y.S. Khoe >>>>>>>>
C<<<<<<<<< email: y.s.khoe@student.tudelft.nl >>>>>>>>
C<<<<<<<<< >>>>>>>>
C== ==
C HYPELA2
C== ==
 SUBROUTINE HYPELA2(D,G,E,DE,S,T,DT,NGENS,N,NN ,KC,MATUS,NDI,
 * NSHEAR,DISP,DISPT,COORD,FFN,FROTN,STRECHN,EI GVN,FFN1,
 * FROTN1,STRECHN1,EIGVN1,NCRD,ITEL,NDEG,NDM,NN ODE,
 * JTYPE,LCLASS,IFR,IFU)
 IMPLICIT REAL *8 (A-H, O-Z)
 integer statusRVE
 DIMENSION E(1),DE(1),T(1),DT(1),G(1),D(NGENS, NGENS),S(1)
 DIMENSION N(2),COORD(NCRD,NNODE),DISP(NDEG,NN ODE),
 * DISPT(NDEG,NNODE),FFN(ITEL,ITEL),FROTN(ITEL, ITEL),
 * STRECHN(ITEL),EIGVN(ITEL,ITEL),FFN1(ITEL,ITE L),
 * FROTN1(ITEL,ITEL),STRECHN1(ITEL),EIGVN1(ITEL ,ITEL)
 DIMENSION MATUS(2)
 DIMENSION FMt(3,3),iFMt(3,3),Ei(3,3),Ci(3),Di (3),
 * deltaFcd(3,3),Fcd(3,3),FtEc(3),FtEd(3),CMe(3 ,3)
 DIMENSION PM(3,3),CM(3,3,3,3)
 CHARACTER tmp1(12)
 include '../common/concom'

C Do not read from tissues.dat, but instead se t a fixed tissue composition
C Ususally interface here to communicate tissu e fractions to MICRO for
C example by writing tissue fractions to disk.
C In this case these settings actually do noth ing
 bone=0.1394211E-01
 cartilage=0.1865109E-01
 fibrous=0.8101763E-03

C [1] Delete old data files
 isystem=system('rm -f MacroFM.dat')

C [2] Save Deformation Tensor To Disk
C ---- Write Macroscopic Deformation Tensor fro m disk - MacroFM.dat ----
C if (inc.le.0) then C set FM to eye(3) at inc =0
C do i=1,3
C do j=1,3
C FFN(i,j)=0.d0
C if (i.eq.j) FFN(i,j)=1.d0
C end do
C end do
C end if

 write(0,*) ""
 write(0,*) "======= INC NR: ",inc, "========= ===================="
 write(0,*) "======= ELM NR: ",N(1),"========= ===================="
 write(0,*) "======= WRITE Macroscopic Deforma tion Tensor ========"
 write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FFN(L,1),L =1,3)
 write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FFN(L,2),L =1,3)
 write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FFN(L,3),L =1,3)
 open(20,file='MacroFM.dat',FORM='FORMATTED')
 write(20,*) FFN
 close(20)

C [3] Start RVE calculation with macropscopic d eformation tensor
 isystem=system('./startRVEcalc')
 statusRVE=0
 100 open(30,file='status.dat',iostat=istat,FORM=' FORMATTED')
 if (istat.ne.0) then
 call sleep(1)
 goto 100
 end if
 read(30,*,iostat=istat) statusRVE

Appendix A - Macroscopic element subroutine III

 if (istat.ne.0) then
 close(30)
 call sleep(1)
 goto 100
 end if
 if (statusRVE.ne.3004) then
 close(30)
 call sleep(1)
 goto 100
 end if

C [4] Read 2nd PK macroscopic stress results fr om RVE calculations
! write(0,*) "================== Read:MacroPM. dat ================="
C if (inc.eq.0) then
C call scla(PM,0,3,3,0)
C else
 open(20,file='MacroPM.dat',FORM='FORMATTED ')
 read(20,*) PM
 close(20)
 isystem=system('rm -f MacroPM.dat')
C end if

 write(0,*) "========= Stress Tensor - 2ND PK =========="
 write(0,*) (PM(L,1),L=1,3)
 write(0,*) (PM(L,2),L=1,3)
 write(0,*) (PM(L,3),L=1,3)
 write(0,*) "================================= ===================="

C [5] Calculate perturbed macroscopic deformati on tensor
C tangent is calculate by numerical differe ntiation (miehe,96)

! write(0,*) "======= Macroscopic Tangent ========"
 eps=1e-8
 call gmtra (FFN,FMt,3,3)
 !call inv3x3(FMt,iFMt,tmp,0)
 call invert(FMt,3,iFMt,0,detF,3)
C create 3x3 unity matrix
 do i=1,3
 do j=1,3
 Ei(i,j)=0
 end do
 Ei(i,i)=1
 end do

C [6] Calculate new stresses based on perturbat ions
C (6 perturbations required for 3D)
 do K=1,3
 do L=K,3
 ! Create pertubation Fcd
 do i=1,3
 Ci(i)=Ei(i,K) !Ec
 Di(i)=Ei(i,L) !Ed
 end do
 do i=1,3
 FtEc(i)=iFMt(1,i)*Ci(1)+iFMt(2,i)*Ci (2)+iFMt(3,i)*Ci(3)
 FtEd(i)=iFMt(1,i)*Di(1)+iFMt(2,i)*Di (2)+iFMt(3,i)*Di(3)
 do j=1,3
 deltaFcd(i,j)=(eps/2)*((FtEc(i)*Di (j))+(FtEd(i)*Ci(j)))
 Fcd(i,j)=FFN(i,j)+deltaFcd(i,j)
 end do
 end do

C [7] Calculate perturbed stresses and co ntribution to macroscopic tangent
C [7.1] Delete old data files
 isystem=system('rm -f MacroFM.dat')
 isystem=system('rm -f PoroRVE_CalcRVE.p id')
C [7.2] Save Deformation Tensor To Disk
 open(20,file='MacroFM.dat',FORM='FORMAT TED')
 write(20,*) Fcd
 close(20)
C [7.3] Start RVE calculation with macrop scopic deformation tensor
 isystem=system('./startRVEcalc')
 statusRVE=0
 101 open(30,file='status.dat',iostat=istat, FORM='FORMATTED')
 if (istat.ne.0) then
 call sleep(1)
 goto 101

Appendix A - Macroscopic element subroutine IV

 end if
 read(30,*,iostat=istat) statusRVE
 if (istat.ne.0) then
 close(30)
 call sleep(1)
 goto 101
 end if
 if (statusRVE.ne.3004) then
 close(30)
 call sleep(1)
 goto 101
 end if
C [7.4] Read 2nd PK macroscopic stress re sults from RVE calculations
 open(20,file='MacroPM.dat',FORM='FORMAT TED')
 read(20,*) Shat
 close(20)
 isystem=system('rm -f MacroPM.dat')
C [7.5] Calculate addition to Macroscopic Tangent Matrix
 call gmsub(Shat,PM,CMe,3,3)
 do i=1,3
 do j=1,3
 CM(i,j,K,L)=CMe(i,j)
 end do
 end do

 end do
 end do

C [8] Assemble macroscopic stress and tangent i nto apprpriate vectors for MSC MARC
 S(1)=PM(1,1)
 S(2)=PM(2,2)
 S(3)=PM(3,3)
 S(4)=PM(1,2) !=PM(2,1)
 S(5)=PM(2,3) !=PM(3,2)
 S(6)=PM(1,3) !=PM(3,1)

 D(1,1)=CM(1,1,1,1)
 D(1,2)=CM(1,1,2,2)
 D(1,3)=CM(1,1,3,3)
 D(1,4)=CM(1,1,1,2)
 D(1,5)=CM(1,1,2,3)
 D(1,6)=CM(1,1,3,1)

 D(2,2)=CM(2,2,2,2)
 D(2,3)=CM(2,2,3,3)
 D(2,4)=CM(2,2,1,2)
 D(2,5)=CM(2,2,2,3)
 D(2,6)=CM(2,2,3,1)

 D(3,3)=CM(3,3,3,3)
 D(3,4)=CM(3,3,1,2)
 D(3,5)=CM(3,3,2,3)
 D(3,6)=CM(3,3,3,1)

 D(4,4)=CM(1,2,1,2)
 D(4,5)=CM(1,2,2,3)
 D(4,6)=CM(1,2,3,1)

 D(5,5)=CM(2,3,2,3)
 D(5,6)=CM(2,3,3,1)

 D(6,6)=CM(3,1,3,1)
 do i=1,5
 do j=i+1,6
 D(j,i)=D(i,j)
 end do
 end do

 RETURN
 END

Appendix B - Microscopic element subroutine V

Appendix B Microscopic element subroutine

This subroutine is used to control the microscopic element in the computational

homogenization scheme.

C === =====================
C UBGINC
C Read all required files (only needs to be don e once)
C === =====================
 subroutine ubginc(inc,incsub)
 implicit real*8 (a-h,o-z)

 dimension FM(3,3),PBNodeID(4)
 common/macro/FM,PBNodeID,PBRForces

 if (inc.eq.0) then
 write(0,*) "======= Read Input =========== ===================="
 write(0,*) "======= Macroscopic Deformatio n Tensor ==========="
C ---- Read Macroscopic Deformation Tensor f rom disk - MacroFM.dat ----
 open(20,file='MacroFM.dat',FORM='FORMATTED ')
 read(20,*) FM
 close(20)
 write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FM(N,1) ,N=1,3)
 write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FM(N,2) ,N=1,3)
 write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FM(N,3) ,N=1,3)
C ---- Read Prescibed Node ID - PrescribedNo deID.dat ----
 open(20,file='PrescribedNodeID.dat',FORM=' FORMATTED')
 read(20,'(e12.6)') PBNodeID
 close(20)
 end if

 RETURN
 END
C === =====================
C FORCDT (OLDSTYLE tables - array of applied d isplacements are incremental)
C take macroscopic deformation tensor and use i t to define
C boundary condition on corner nodes.
C === =====================
 SUBROUTINE FORCDT (U,V,A,DP,DU,TIME,DTIME,NDE G,NODE,
 * UG,XORD,NCRD,IACFLG,INC, IPASS)
 IMPLICIT REAL *8 (A-H, O-Z)
 DIMENSION U(NDEG),V(NDEG),A(NDEG),DP(NDEG),DU (NDEG),UG(NDEG),
 * XORD(NDEG)

 dimension FM(3,3),PBNodeID(4)
 common/macro/FM,PBNodeID,PBRForces

 if (inc.eq.0) then
C du=(FM-I)*X !watch notation A(column,row)
 DU(1)=((FM(1,1)-1)*XORD(1)+FM(2,1)*XORD(2)+F M(3,1)*XORD(3))/5
 DU(2)=(FM(1,2)*XORD(1)+(FM(2,2)-1)*XORD(2)+F M(3,2)*XORD(3))/5
 DU(3)=(FM(1,3)*XORD(1)+FM(2,3)*XORD(2)+(FM(3 ,3)-1)*XORD(3))/5
C write(0,*)
C write(0,*) "======= Applied Node Disp Node: ",NODE," ============"
C write(0,'(e9.3,1x,e9.3,1x,e9.3)') (DU(N),N= 1,3)
C Applied Displacement DU is saved in memory, thus will be applied every iteration
C Also it is automatically saved for which nod e DU is applied.
 end if

 RETURN
 END

C === =======
C HYPELA2
C === =======
 SUBROUTINE HYPELA2(D,G,E,DE,S,T,DT,NGENS,N,NN ,KC,MATUS,NDI,
 * NSHEAR,DISP,DISPT,COORD,FFN,FROTN,STRECHN,EI GVN,FFN1,
 * FROTN1,STRECHN1,EIGVN1,NCRD,ITEL,NDEG,NDM,NN ODE,
 * JTYPE,LCLASS,IFR,IFU)
 IMPLICIT REAL *8 (A-H, O-Z)
 DIMENSION E(1),DE(1),T(1),DT(1),G(1),D(NGENS, NGENS),S(1)

Appendix B - Microscopic element subroutine VI

 DIMENSION N(2),COORD(NCRD,NNODE),DISP(NDEG,NN ODE),
 * DISPT(NDEG,NNODE),FFN(ITEL,ITEL),FROTN(ITEL, ITEL),
 * STRECHN(ITEL),EIGVN(ITEL,ITEL),FFN1(ITEL,ITE L),
 * FROTN1(ITEL,ITEL),STRECHN1(ITEL),EIGVN1(ITEL ,ITEL)
 DIMENSION MATUS(2),RC(3,3),RCinv(3,3),Cse(3,3 ,3,3),
 * secondPK(3,3),FFNt(3,3),Green(3,3),elmvol(10 000)
 DIMENSION A(3,3),At(3,3),Ainv(3,3)
 common/tissues/bone,cartilage,fibrous
 common/elvol/elmvol
 include '../common/concom'
 include '../common/cdominfo' !contains: iprc nm, inc

C Calculate element Volume, used in UEDINC to d etermine total volume
 call elmvar(78,N(1),NN,KC,elmvol(N(1)))

C Do not read from tissues.dat, but instead set a fixed tissue composition
C Later convert this to read settings from macr o properties
 bone=0.1394211E-01
 cartilage=0.1865109E-01
 fibrous=0.8101763E-03

C calculate the material properties (Young's Mo dulus, Poisson's Ratio)
 call matextract(et,xmu,bone,cartilage,fibrous)

C Temperature effects are not relevant here
 do i=1,6
 G(i)=0.d0
 end do

C Calculate Elasticity matrix and stresses
C FFN1 is def tensor at current time step
 call gmtra(FFN1,FFNt,3,3)
 call gmprd(FFNt,FFN1,RC,3,3,3)
 call inv3x3(RC,RCinv,det_RC,0)
 detJ=sqrt(det_RC)

C Lame constants
 dlambda=xmu*et/((1.d0+xmu)*(1.d0-2.d0*xmu))
 dmu=et/(2.d0*(1.d0+xmu))
C Elasticity matrix (neo-Hookean material)
 do i=1,3
 do j=1,3
 do k=1,3
 do l=1,3
 Cse(i,j,k,l)=dlambda*(RCinv(i,j)* RCinv(k,l))+
 * (dmu-dlambda*log(detJ))*
 * (RCinv(i,k)*RCinv(j,l)+RCinv(i,l)*RCinv(k,j))
 end do
 end do
 end do
 end do
 D(1,1)=Cse(1,1,1,1)
 D(1,2)=Cse(1,1,2,2)
 D(1,3)=Cse(1,1,3,3)
 D(1,4)=Cse(1,1,1,2)
 D(1,5)=Cse(1,1,2,3)
 D(1,6)=Cse(1,1,3,1)

 D(2,2)=Cse(2,2,2,2)
 D(2,3)=Cse(2,2,3,3)
 D(2,4)=Cse(2,2,1,2)
 D(2,5)=Cse(2,2,2,3)
 D(2,6)=Cse(2,2,3,1)

 D(3,3)=Cse(3,3,3,3)
 D(3,4)=Cse(3,3,1,2)
 D(3,5)=Cse(3,3,2,3)
 D(3,6)=Cse(3,3,3,1)

 D(4,4)=Cse(1,2,1,2)
 D(4,5)=Cse(1,2,2,3)
 D(4,6)=Cse(1,2,3,1)

 D(5,5)=Cse(2,3,2,3)
 D(5,6)=Cse(2,3,3,1)

 D(6,6)=Cse(3,1,3,1)

Appendix B - Microscopic element subroutine VII

 do i=1,5
 do j=i+1,6
 D(j,i)=D(i,j)
 end do
 end do

C Second Piola-Kirchhoff stress
 do i=1,3
 do j=1,3
 if (i.eq.j) then
 secondPK(i,j)=dlambda*log(detJ)*RCin v(i,j)+
 * dmu*(1.d0-RCinv(i,j))
 else
 secondPK(i,j)=dlambda*log(detJ)*RCin v(i,j)-
 * dmu*RCinv(i,j)
 end if
 end do
 end do
 S(1)=secondPK(1,1)
 S(2)=secondPK(2,2)
 S(3)=secondPK(3,3)
 S(4)=secondPK(1,2)
 S(5)=secondPK(2,3)
 S(6)=secondPK(1,3)
 RETURN
 END

C === =====================
C IMPD
C Here the following is calculated: sum(f*X) fo r the prescribed nodes
C in order to get the macroscopic stress tensor , it must still be divided
C by the original volume which is done in UEDIN C.
C === =====================
 subroutine impd(lnode,dd,td,xord,f,v,a,ndeg,n crd)
 implicit real *8 (a-h, o-z)
 dimension dd(ndeg), td(ndeg), xord(ncrd), f(n deg), v(ndeg),
 * a(ndeg), lnode(2)
 dimension FM(3,3),PBNodeID(4),PBRForces(3,3), PBRForcesTMP(3,3)
 common/macro/FM,PBNodeID,PBRForces

 if ((lnode(1).eq.PBNodeID(1)).or.(lnode(1).eq .PBNodeID(2)).or.
 * (lnode(1).eq.PBNodeID(3)).or.(lnode(1).e q.PBNodeID(4))) then
 do i=1,3
 do j=1,3
 PBRForces(i,j)=PBRForces(i,j) + f(i) *xord(j)
 end do
 end do
 end if

 return
 end

C === =====================
C UEDINC
C At the end of the simulation calculate the ma croscopic stress
C tensor and the tangent and store them.
C === =====================
 subroutine uedinc(inc,incsub)
 implicit real*8 (a-h,o-z)

 dimension elmvol(10000),PBRForces(3,3),MacroP K(3,3)
 common/elvol/elmvol
 common/macro/FM,PBNodeID,PBRForces

C Calculate total volume
 do i=1,10000
 V0=TotalVolume+elmvol(i)
 end do

 if (inc.eq.5) then
 do i=1,3
 do j=1,3
 MacroPK(i,j)=(1/V0)*PBRForces(i,j)
 end do
 end do

Appendix B - Microscopic element subroutine VIII

C only do volume averaging at last incement
C write(0,*) "======= Calculate Macroscopic Properties ========"
C -------------- Calculate Macroscopic Stres s -------------------
C write(0,*) "======= F*XORD @ Prescribed n odes========"
C write(0,*) (MacroPK(N,1),N=1,3)
C write(0,*) (MacroPK(N,2),N=1,3)
C write(0,*) (MacroPK(N,3),N=1,3)
C write(0,*) "----------------------------- ---------"

C ------------ Write Macroscopic Results to disk ----------------
C write(0,*) "======= Save to:MacroPM.dat ========"
 open(20,file='MacroPM.dat',FORM='FORMATTED ')
 write(20,*) MacroPK
 close(20)
C write(0,*) "============================= ===================="

C -- ---------------------
C ---------------- Write status file to disk --------------------
 101 open(20,file='status.dat',iostat=istat,FOR M='FORMATTED')
! maak een bestand op de disk aan waar '3004 ' instaat
! voor een kopieer opdracht uit ipv schrijve n naar disk
 isystem=system('rm -f status.dat; cp statu sReady status.dat')
! if (istat.ne.0) then
! call sleep(1)
! goto 101
! end if
! status3004=3004
! write(20,*) status3004
! close(20)
C -- ---------------------
 end if

 RETURN
 END

C === =====================
C MATEXTRACT
C determine material properties
C input : tissue fractions of this element;
C bone,cartilage,fibrous
C output: Young Modulus [et]
C Poisson Ratio [xmu]
C
C === =====================
 subroutine matextract(et,xmu,bone,cartilage,f ibrous)
 implicit real *8 (a-h,o-z)
 include '../common/elmcom'
C young modulus
 YoungGr=0.2e+6
 YoungF=2e+6
 YoungC=10e+6
 YoungB=6000e+6
 YoungMarrow=2e+6

C. Poisson ratio
 xMuGr=0.1667d0
 xMuF=0.1667d0
 xMuC=0.1667d0
 xMuB=0.3d0
 xMuMarrow=0.1667d0

 if (mats.ne.1.and.mats.ne.2) then
 write(0,*) 'ERROR: material identifier is not known in HYPELA'
 call quit(1234)
 return
 end if

 if (mats.eq.1) then
 xmu=bone*xMuB+cartilage*xMuC+
 * fibrous*xMuF+(1.d0-(bone+fibrous+cartilag e))*xMuGr
 et=bone*YoungB+cartilage*YoungC+
 * fibrous*YoungF+(1.d0-(bone+fibrous+cartil age))*YoungGr
 else
 et=YoungMarrow
 xmu=xMuMarrow
 end if

Appendix B - Microscopic element subroutine IX

 return
 end

Appendix C - Python script to apply servo links in the RVE X

Appendix C Python script to apply servo links in the RVE

This python script can be called from MENTAT to create the servo links that determine the

periodic boundary conditions. It requires 6 sets of nodes named: Top, Bottom, Left, Right,

Front and Back. Note that the script does not automatically remove duplicate links.

Duplicate periodic boundary conditions must be prevented by careful selection of the nodal

sets.

#!/usr/bin/env python

from py_mentat import *
def main():
 print "=== Start Python Script ==="
 # 6 sets: Top Bottom Left Right Front Back
 for L in range(3):
 CornersSetName="Corners"
 if L==0:
 TiedSetName="Top"
 TiedToSetName="Bottom"
 LinkDirectionName="Z"
 elif L==1:
 TiedSetName="Left"
 TiedToSetName="Right"
 LinkDirectionName="X"
 elif L==2:
 TiedSetName="Front"
 TiedToSetName="Back"
 LinkDirectionName="Y"

 n = py_get_int("nsets()")
 for i in range(1,n+1):
 id = py_get_int("set_id(%d)" % i)
 sn = py_get_string("set_name(%d)" % id)
 if sn == TiedSetName:
 TiedSetID=id
 elif sn == TiedToSetName:
 RetainedSetID=id
 elif sn == "Corners":
 CornersSetID=id

 if L==0:
 print "* Identify Corners"
 Corners=[[],[],[],[]]
 Corners=[[-1]*8,[-1]*8,[-1]*8,[-1]*8]
 CornersFound=0
 for i in range(8):
 Corners[0][i]=py_get_int("set_entry(%d,% d)" % (CornersSetID, i+1))
 Corners[1][i]=round(py_get_float("node_x (%d)" % Corners[0][i]),8)
 Corners[2][i]=round(py_get_float("node_y (%d)" % Corners[0][i]),8)
 Corners[3][i]=round(py_get_float("node_z (%d)" % Corners[0][i]),8)
 # Find CornerNodes
 Check=[Corners[1][i],Corners[2][i],Corne rs[3][i]]
print "Node: ",Corners[0][i],"| coords: ",Check
 CornersName=round(py_get_float("Rtmp")*2 ,8)
 if Check==[0,0,0]:
 u000=Corners[0][i]
 CornersFound=CornersFound+1
print "u000 found, node: %d" %Corn ers[0][i]
 elif Check==[CornersName,0,0]:
 u100=Corners[0][i]
 CornersFound=CornersFound+1
print "u100 found, node: %d" %Corn ers[0][i]
 elif Check==[0,CornersName,0]:
 u010=Corners[0][i]
 CornersFound=CornersFound+1
print "u010 found, node: %d" %Corn ers[0][i]
 elif Check==[CornersName,CornersName,0]:
 u110=Corners[0][i]
 CornersFound=CornersFound+1
print "u110 found, node: %d" %Corn ers[0][i]

Appendix C - Python script to apply servo links in the RVE XI

 elif Check==[0,0,CornersName]:
 u001=Corners[0][i]
 CornersFound=CornersFound+1
print "u001 found, node: %d" %Corn ers[0][i]
 elif Check==[CornersName,0,CornersName]:
 u101=Corners[0][i]
 CornersFound=CornersFound+1
print "u101 found, node: %d" %Corn ers[0][i]
 elif Check==[0,CornersName,CornersName]:
 u011=Corners[0][i]
 CornersFound=CornersFound+1
print "u011 found, node: %d" %Corn ers[0][i]
 elif Check==[CornersName,CornersName,Cor nersName]:
 u111=Corners[0][i]
 CornersFound=CornersFound+1
print "u111 found, node: %d" %Corn ers[0][i]
 if CornersFound!=8:
 print "!!! ERROR not all corners found, only found %d corners" %
CornersFound
 print "* Prescribed Corner Node ID's saved to [PrescribedNodeID.dat]"
 filename=open("PrescribedNodeID.dat","w")
 filename.write("%e\n%e\n%e\n%e" % (u100,u0 10,u001,u000))
 filename.close()
 print "Prescribed Node ID's: ",u000," ",u1 00," ",u010," ",u001

 print "=== Create Periodic BC's (Servo Links) ==="
 print "Nodes from ",TiedSetName, " to ", Tie dToSetName, " in
",LinkDirectionName," direction"
 # Create Servo Links
 nSym1 = py_get_int("nset_entries(%d)" % Tied SetID)
 nSym2 = py_get_int("nset_entries(%d)" % Reta inedSetID)

 if nSym1!=nSym2:
 print "!!! Sets do not contain same mount of nodes thus cannot be linked"
 print "!!! Set 1: ",TiedSetName," %d Nodes " % nSym1
 print "!!! Set 2: ",TiedToSetName,"%d Node s" % nSym2
 return 1

 nSym=nSym1
 Wall1=[[],[],[],[]]
 Wall1=[[-1]*nSym,[-1]*nSym,[-1]*nSym,[-1]*nS ym]
 Wall2=[[],[],[],[]]
 Wall2=[[-1]*nSym,[-1]*nSym,[-1]*nSym,[-1]*nS ym]
 MapWall=[[],[]]
 MapWall=[[-1]*nSym,[-1]*nSym]
 # Obtain Coordinates for all nodes in both s ets
 for i in range(0,nSym):
 # Wall1=TiedSet, Wall2=RetainedSet
 Wall1[0][i]=py_get_int("set_entry(%d,%d) " % (TiedSetID, i+1))
 Wall1[1][i]=py_get_float("node_x(%d)" % Wall1[0][i])
 Wall1[2][i]=py_get_float("node_y(%d)" % Wall1[0][i])
 Wall1[3][i]=py_get_float("node_z(%d)" % Wall1[0][i])
 Wall2[0][i]=py_get_int("set_entry(%d,%d) " % (RetainedSetID, i+1))
 Wall2[1][i]=py_get_float("node_x(%d)" % Wall2[0][i])
 Wall2[2][i]=py_get_float("node_y(%d)" % Wall2[0][i])
 Wall2[3][i]=py_get_float("node_z(%d)" % Wall2[0][i])

 k=0
 for i in range(0,nSym):
 if LinkDirectionName=='X':
 # Create Servo Links in X-direction
 for j in range(0,nSym):
 if (Wall1[2][i]==Wall2[2][j]) and (W all1[3][i]==Wall2[3][j]):
 MapWall[0][k]=Wall1[0][i]
 MapWall[1][k]=Wall2[0][j]
 if LinkDirectionName=='Y':
 # Create Servo Links in Y-direction
 for j in range(0,nSym):
 if (Wall1[1][i]==Wall2[1][j]) and (W all1[3][i]==Wall2[3][j]):
 MapWall[0][k]=Wall1[0][i]
 MapWall[1][k]=Wall2[0][j]
 if LinkDirectionName=='Z':
 # Create Servo Links in Z-direction
 for j in range(0,nSym):
 if (Wall1[1][i]==Wall2[1][j]) and (W all1[2][i]==Wall2[2][j]):
 MapWall[0][k]=Wall1[0][i]
 MapWall[1][k]=Wall2[0][j]

Appendix C - Python script to apply servo links in the RVE XII

 k=k+1
 print "created 3x%d=%d servo links" % (k,3*k)

 for i in range(0,k):
 if MapWall[0][i]==-1:
 print "!!! ERROR in Retained Node"
 py_send("*new_link *link_class servo *tie d_node %d *servo_nterms 3 *tied_dof
1 " % MapWall[0][i])
 py_send("*servo_ret_dof 1 1 1 1")
 py_send("*servo_ret_coef 1 1 -1 1")
 if LinkDirectionName=='Z':
 # uTIE=u111-u110+uRET
 py_send("*link_class servo *servo_ret_ node 1 %d %d %d" %
(u001,u000,MapWall[1][i]))
 if LinkDirectionName=='Y':
 # uTIE=u100-u110+uRET
 py_send("*link_class servo *servo_ret_ node 1 %d %d %d" %
(u010,u000,MapWall[1][i]))
 if LinkDirectionName=='X':
 # uTIE=u010-u110+uRET
 py_send("*link_class servo *servo_ret_ node 1 %d %d %d" %
(u100,u000,MapWall[1][i]))
 py_send("*copy_link")
 py_send("*link_class servo *tied_dof 2")
 py_send("*servo_ret_dof 1 2 2 2")
 py_send("*copy_link")
 py_send("*link_class servo *tied_dof 3")
 py_send("*servo_ret_dof 1 3 3 3")
 if (i % 10)==0:
 print "--created links: %d --" % ((i+1)*3)
print "Create servo link for fixed node"
py_send("*new_link *link_class servo *tied_no de %d *servo_nterms 3 *tied_dof 1 "
% u001)
py_send("*link_class servo *servo_ret_node 1 %d %d %d" % (u110,u111,u000))
py_send("*servo_ret_dof 1 1 1 1")
py_send("*servo_ret_coef 1 1 -1 1")
py_send("*copy_link")
py_send("*link_class servo *tied_dof 2")
py_send("*servo_ret_dof 1 2 2 2")
py_send("*copy_link")
py_send("*link_class servo *tied_dof 3")
py_send("*servo_ret_dof 1 3 3 3")

 print "=== Finished Creating Servo Links ==="
 print "=== End Python Script ==="

 return

if __name__ == '__main__':
 py_connect('',40007)
 main()
 py_disconnect()

Appendix D - Batchwrites – e.g. for stimuli.dat files XIII

Appendix D Batchwrites – e.g. for stimuli.dat files

One of the issues is that files on the disk cannot be written simultaneously by the computer

system. The solution is to use 1 file for each domain. This appendix explains the concept of

the batchwrite system.

This example is worked out for the stimuli.dat files, but its general concept is also applied to

the tissues.dat files that store the tissue fractions of each element.

The biophysical stimuli are calculated in the mechanical simulation. This simulation is

parallelized over 6 domains. In the computer, each domain creates an array that can contain

all elements (the values in the array are initially set to zero). This implies that the 6 separate

domains each have an array with the length of the number of elements. If calculations on an

element are complete, the element number and its properties are saved in the array. At the

end of the iteration the 6 domains each have an array in many zeros, but the entries that

contain information are marked with the element number. These 6 arrays are saved to the

disk at the end of the iteration.

The reading of the stimulus files is done by the biological model. The model reads the

complete 6 arrays into the memory and scans them once to identify the entries which have

been marked by the element number. Together a complete array can be compiled that

contains all data for all elements.

