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ii Abstract 

Abstract 

 

Fixation of uncemented implants is known to be more problematic than cemented implants 

as the proces relies on the growth of bone into the porous implant surface. This bone growth 

determines the fixation of the implant and has been the subject of many investigations [1-6]. 

A literature survey [7] revealed that these models are either a highly detailed simulation of a 

small section of the interface between bone and implant or a more generalized simulation of 

a complete implant. This thesis is aimed at bridging the gap between the two.  

An investigation of the bone ingrowth model by Andreykiv [1] revealed possibilities of 

accelerating this simulation. Furthermore a feasibility study was performed to apply 

computational homogenization in order to upscale the results of the detailed microscopic 

model to a higher level. 

Investigation of the bone ingrowth model showed that it cannot be simplified. All elements 

of the model are essential in predicting the tissue growth within the system. A 65% gain in 

speed of the simulation was obtained by optimizing the code of the subroutines (written for 

MSC Marc).  Furthermore the feasibility study on computational homogenization shows that 

the implementation in a commercial code leads to extremely long computing times.  

In light of these results it is concluded that homogenization is not the method to bridge the 

gap between the detailed microscopic simulations and the simulations of the complete 

implants. Recommendations are given on the continued research to use the results of the 

detailed simulation on a higher level. 
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Introduction 1 

1 Introduction 

Diseases such as arthritis or osteoporosis damage the joints. Such diseases and their effects 

are becoming more and more common due to the aging of the population
12

. This increases 

the need for medical treatments and surgical procedures to aid and prevent people who 

suffer from the effects of these diseases. One option for advanced stages of arthritis is a 

total joint replacement, for example a shoulder replacement is depicted in Figure 1. 

 

Figure 1 Example of a shoulder replacement
3
 

Such an implant must be attached to the existing bone-structure. This fixation can be 

achieved through either a cemented or an ingrowth implant.  The cemented implant 

employs a cement to glue the implant to the bone. An ingrowth implants is press-fitted after 

which natural bone growth will fixate the implant to the bone 

While a cemented implant may provide better initial fixation, it is more prone to damage at 

a later stage due to high stresses in the cement layer [8]. An ingrowth type implant will, 

given adequate growth conditions, provide a better fixation. Bone will grow into the implant, 

interlock with the implant and maintain the connection through the natural process of bone 

remodeling. 

In order to gain a deeper understanding of how bone ingrowth develops between implant 

and bone, models [1, 2, 4-6] have been developed that models a section of this interface. 

One of these models was developed by Andreykiv [1] in which a the bone growth in a 

complex porous coating (see Figure 2) was studied. 

                                                      
1
Rijksinstituut voor Volksgezondheid en Milieu (RIVM) – (http://www.rivm.nl/vtv/object_document/o1794n18373.html) 

2
Rijksinstituut voor Volksgezondheid en Milieu (RIVM) – (http://www.rivm.nl/vtv/object_document/o1716n18370.html) 

3
 Source: Zimmer, http://www.zimmer.com 



 

 

Introduction 2 

 

Figure 2 FEM geometry for the bone ingrowth model developed by Andreykiv [1] 

The knowledge that is gained from FEM models such as these can be applied to increase the 

knowledge of implant fixation and could be used to design better prosthesis’ or develop 

better surgical procedures that ensure better implant fixation. It has already been shown 

that improved implant design leads to less complications [9]. 

Although adequate simulations on the development of bone around implants exist [7], the 

implants models are highly simplified and rather much more detailed analyses are preferred, 

such as those developed by Andreykiv [1] or Liu [2]. The level of detail in the model 

presented above is very high and implementing such a model for a full scale implant analysis 

will result in impractical simulation duration. The model of this section of the interface 

requires about 3 days on 3 dual core processors. A full scale detailed implant analysis would 

probably take months of computing time. 

It would be preferable if the knowledge gained on this level could be used in simulations on 

the larger scale. This thesis shall investigate ways to reduce the time needed for this 

simulation. Furthermore, an investigation will be made into the possibility of applying a 

homogenization scheme that allows the results of these detailed microstructural simulations 

to be used on a higher level (i.e. macrostructural simulations). 3 methods of reducing the 

computation time are investigated; 1) homogenization, 2) model reduction and 3) code 

optimization.  

Chapter 2 of this thesis will develop the necessary theory. It covers some basic mechanics as 

well as the theory of the computational homogenization scheme. Chapter 3 describes the 

bone ingrowth model developed by Andreykiv. With the knowledge of the bone ingrowth 

model, Chapter 4 identifies possible routes for accelerating the simulations and defines the 

feasibility study for the computational homogenization scheme. Chapter 5 gives the results 

of model optimizations. Chapter 6 gives the results of code optimizations and Chapter 7 

discusses the implementation and results of the computational homogenization algorithm. 

Chapter 8 summarizes the results and formulates the conclusion. Finally Chapter 9 gives 

recommendations for further research. 
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2 Theory 

This chapter is a summary of the mathematics, mechanics required for understanding the 

mechanics of bone ingrowth and the method of homogenization. It serves as a reference for 

the methods that are used in this thesis. 

2.1 Notation 

The following notation for mathematical quantities is used in this chapter. 

� or � Capital or lowercase letter Scalar 

�� Lowercase letter with an arrow Vector 

� Bold capital Matrix 

��   Bold capital with a number in upper left side n
th

-order tensor 

���	
 Scalar notation for tensors. Scalar 

�� Basis vectors of a coordinate system Scalar 

�
 Quantities on the microscopic level <subscript> 

�� Quantities on the macroscopic level <subscript> 

 

2.2 Tensor algebra 

The purpose of tensor calculus is to separate calculations from their reference coordinate 

system. Such a method allows the calculations to be performed in any arbitrary coordinate 

system and eases the problems that arise when calculations span two (or more) non-

corresponding coordinate systems. 

The separation of the coordinate system is achieved through the notion of covariant and 

contravariant tensors. In this thesis, all calculations are done in a (rectilinear) Cartesian 

space. Therefore the notion of covariant and contravariant tensors becomes unimportant as 

the two become identical [10].  

Further simplifications that are inherent to a Cartesian space allow the interpretation of 

tensors as an extension to matrix/vector algebra. Where matrix/vector algebra is limited to 2 

dimensional arrays, tensor algebra allows calculations with n-dimensional arrays.  

Using the simplified view on tensor calculus, the following operations can be described. 

Conjugation for 2 2
nd

 order tensors ���� � ���  

Dyadic Product between 2 1-dimensional tensors 

 
� � ��� � �����, ��� � �������� 

Inner product for 1
st

 order  tensors � � �� � ��� 
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 � � ���� 
Double Inner product for 2

nd
 order tensor 

 

� � �: � � � ������  

Double Inner product for 4
th 

& 2
nd

 order tensor 

 
� � �� : � ��� � ���	
�
	���� 

Double Inner product for 4
th

 order tensor 

 
� � �� : ��  ���	
 � ���
���
	
�����	�
 

Quadruple Inner product for 4th order tensor 

 
� � �� :�� ��  � � ���	
�
	�� 

2.3 Stress & Strain in Continuum Mechanics 

In continuum mechanics the deformation of a body under a load is studied. In this concept, 2 

states of a body can be defined, namely the undeformed and the deformed body.  

In order to characterize this deformation an infinitesimal piece of material ���  is tracked as it 

deforms into ���. This deformation, expressed in terms of the undeformed coordinate 

system is expressed by 

��� �  �� �� ��� � !���. 
This deformation and the deformation tensor ! are schematically shown in Figure 3. 

 

Figure 3 Definition of states and deformation measure 

The following sections develop the concepts of strain and stress that are applicable to this 

thesis. 

2.3.1 Strain Measures 

Strain quantifies the deformation of a body. The deformation that a material point (with 

corresponding position vector) undergoes can be quantified as the difference between the 

magnitudes of the position vectors 

��� � ��� # ��� � ��� � ��� � $!%! # &' �  ��� � ��� � $& # $!()'%!()' � ��� 

It can be seen that deformations can quantified with reference to the deformed or the 

undeformed state.  

��� 
! 

undeformed 

deformed 

Γ+, V+ Γ , V 

��� 
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When deformations are given with respect to the deformed configuration, the Green strain 

tensor $-' is used, which is defined as 

- � ). $!%! # &' � ). $� # &', 

Where � is named the Right Cauchy Green Deformation tensor. 

When deformations are given with respect to the undeformed configuration, the Almansi 

strain tensor $/' is used, which is defined as   

/ � ). $& # $!()'%!()' � ). $& # 0()', 

Where 0 is named the Left Cauchy's deformation tensor or the Finger tensor. 

This thesis will take the Lagrangian approach in order to define the problems. 

2.3.2 Stress Measures 

In small deformation mechanics, the Cauchy stress tensor is most widely used. The tensor is 

completely defined in the deformed configuration. 

When large deformations are present, the deformed area is generally not known and a new 

stress measure is defined. The 1
st

 Piola-Kirchhoff stress tensor relates the forces in the 

deformed configuration to the area in the undeformed configuration. This can be achieved 

for example by mapping the Cauchy stresses to the undeformed configuration 

1 � 23!(), 

Where 3 � det$!'. The 1
st

 Piola-Kirchhoff stress tensor is not symmetric, because the 

deformation tensor is generally not symmetric. 

The introduction of the 2
nd

 Piola-Kirchoff stress tensor allows the stresses to be decoupled 

from the reference coordinates, resulting in a generalized interpretation of the forces. This 

second mapping is achieved by  

7 � J!()2!(%. 

Examining the equations for the stress tensors, we can easily relate the 1
st

 and 2
nd

 PK tensor 

by a simple mapping using the deformation tensor 

7 � !()1 9 1 � !7. 

The decoupling of the stresses and the reference coordinate system provides a power tool in 

which an arbitrary deformation with its corresponding stress state can easily be described. In 

additions the 2
nd

 PK tensor is symmetric, which in numerical analyses results a more efficient 

use of processor power and memory.  
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The physical interpretation of the 1
st

 PK tensor eases the implementation of such a stress 

measure.  

2.3.3 Work conjugated couples 

The product of the stress and strain should result in the work done. Therefore stress and 

strain measures are so called conjugate couples. 3 Common examples are: 

Cauchy stress tensor $2' Engineering strain or natural strain$:' 

1st Piola-Kirchoff stress tensor $1' Deformation Tensor $!' 

2nd Piola-Kirchoff stress tensor $;' Green Strain Tensor $-' 

 

The selection of stress and strain measures is arbitrary, but in order to be able to correctly 

determine the work a work conjugated couple must be selected. In light of computational 

homogenization (developed in Chapter 2.4) the 1
st

 Piola-Kirchhoff stress tensor and the 

deformation tensor are selected. It is argued [11] that the combination of 1
st

 Piola-Kirchoff 

and deformation tensor is most suitable for reasons of ease of implementation. The 1
st

 Piola-

Kirchoff stress van be determined using the forces in the deformed configuration in 

combination with known values of the undeformed setting.  

2.4 Computational Homogenization 

Homogenization is a method that takes inhomogeneities in a model and allows them to be 

presented as a homogeneous system. Materials handled in a mechanical analysis are usually 

considered homogeneous. Take for instance the simply supported beam, a classical textbook 

example with which student are handed the principles of forces and deflections. The simply 

supported beam is assumed to be constructed of a homogeneous material like steel. 

However the reality is quite different, steel is a material consisting of multiple constituents 

that interact at grain boundaries. Yet through experience and testing we have found that the 

characteristics of this heterogeneous material can be captured in coefficients that predict 

the response of the global structure in specific conditions. 

 

Figure 4 close up image of steel, showing the inhomogeneous nature of steel
4
 

Although this detailed microstructure actually determines the properties of the material, on 

a much larger scale, the material appears to be homogeneous with certain ‘effective 

                                                      
4
 Source: http://www.affiliatedinc.net/lab/case.html 
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properties’. These effective properties can be obtained be either testing the material 

extensively, or by computing the effective properties based on the knowledge of the 

structure on microscopic level. Homogenization is the term used to describe the later 

process of computing effective properties at a macroscopic scale using information that is 

available on the microscopic scale. 

In the literature survey [7] a comparison of various upscaling methods was made from which 

it was concluded that computational homogenization was the choice of homogenization 

method for the bone-ingrowth model of Andreykiv [1]. 

The following sections will go into the theoretical background of the computational 

homogenization scheme. In accordance with Figure 3, coordinates in the undeformed 

configuration are denoted by �� and coordinates in the deformed configuration are denoted 

by ��. The volume and the boundaries with subscript 0 denoted the respective quantities in 

the undeformed configuration. 

Furthermore a distinction is made between a macroscopic model and a microscopic model. 

This setting is shown in Figure 5. Quantities in the macroscopic model have subscript M, 

whilst quantities at the microscopic level carry subscript m. 

 

Figure 5 Definition of the macroscopic and microscopic level 

The first step in the computational homogenization scheme is the selection of the 

parameters that are to be upscaled. The requirement is that these parameters together form 

a work conjugated couple, so that the Hill-Mandel condition can be satisfied (see 2.4.3). 

Although all work conjugated couples are valid choices, the implementation is aided with the 

choice for the combination of the deformation tensor and the 1
st

 Piola-Kirchhoff stress 

tensor. It will be shown that this selection allows for an eased upscaling of the stress tensor 

(see 2.4.3).  

2.4.1 Relating the Microscopic and Macroscopic Deformation Tensor 

A non-linear deformation (Δ��) in the system imposed on a macroscopic level can be 

described by the linear deformation (as a function of the macroscopic deformation  tensor !� )and additional higher order deformations, which will be named micro fluctuations (=���). 

This relation is given by 

Macrolevel 

Microlevel 

!�, 1� 

 

!
, 1
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Δ�� � !� � Δ�� > =���. 
Using the notation ??@�� � A+, the microscopic deformation tensor is expressed as 

!
 � ?B�?@�� � A+ CD��) # !� � E��) # ��FGH # !� � ��F > !� � �� > $=��� # =���)'I � !� >A+$=��� # =���)', 

where A+�  ??@��. The microscopic deformation tensor is volume averaged over the original 

volume (J+) resulting in a relation between the macroscopic deformation tensor (!�) and 

microscopic deformation tensor (!
) arises in the form of 

 1J+ L !
�J+MN
� 1J+ L !� > A+$=��� # =���)'�J+MN

� !� > 1J+ L A+$=��� # =���)'�J+MN
. 

Using this relation, it can be stated that 

 1J+ L !
�J+MN
� !� , 2.1 

 

if and only if the micro fluctuations integrated over the volume are zero. This constraint can 

be reformulated into a boundary constraint using the Gauss’ Theorem (with O��� as the 

outward normal to the boundary in the undeformed configuration). Furthermore, proper 

selection of ��) , for example a prescribed boundary, will eliminate =���) . The resulting integral 

over the boundary in the original configuration (Γ+) is 

 1Γ+ L =��� � O����Γ+PN
� 0. 2.2 

This constraint can be satisfied in several ways. 

• Assume =��� to be zero in the entire volume (Taylor or Voigt assumption) 

• Assume =��� to be zero along the boundary (kinematically constraint boundaries or 

constant stress boundary conditions) 

• Assume =��� � O��� to be zero along the complete boundary (e.g. periodic boundaries) 

Each assumption leads to a different set of boundary conditions that must be applied to the 

microscopic problem. 

The various types of boundary conditions found above have been investigated [11] and it 

was found that periodic boundary conditions lead to a better estimate of the overall 

properties.  
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2.4.2 Periodic Boundary Condition Selection / Localization 

Periodic boundary conditions imply that deformations on two opposing faces are 

identical $��R � ��(' and that the microfluctuations on either side are identical $=���R � =���('. 

For example in a 2D quadrilateral model this is depicted as Figure 6. 

 

Figure 6 Periodic boundary conditions 

 

The constraint imposed (Equation 2.2) by the volume averaging of the deformation tensor is 

satisfied and the use of Equation 2.1 is valid. 

Furthermore as a consequence of equilibrium, the stresses on the boundaries are equal in 

magnitude and opposing in direction 

S�R � #S�(. 2.4 

This is also called anti-symmetric stress. 

2.4.3 Upscaling the 1st Piola-Kirchhoff stress tensor 

In order to create a consistent volume average for the stresses, the Hill-Mandel condition 

must be satisfied which is given by 

 TU� � TU
, 

substituting the microscopic and macroscopic quantities for the stress and strain gives 

 1�: T!�� � 1V+ L 1
: T!
� �J+VN
. 

The microscopic work can be calculated by using the tractions on the boundary and using 

the periodic boundary conditions to develop the right hand side into 

 TU
 � 1V+ L  S�R��R�Γ+RPNW
: T!�� > 1V+ L  S�(��(�Γ+(PNX

: T!�� � 1V+ L S����Γ+PN
: T!�� . 

When this results is plugged into the Hill-Mandel condition, we find 

��( � !����( > =���( 

��R � !� � ��R > =���R Periodic Boundary Conditions =���R � =���( ��R # ��( � !� � E��R # ��(G 

2.3 
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 1�: T!�� � 1V+ L S����Γ+PN
: T!�� , 

from which the relation between the macroscopic stress tensor and the microscopic stress 

can be derived. This relation is given by 

1� � 1V+ L S����Γ+PN
. 2.5 

 

The Hill-Mandel condition imposes work equivalence in the macroscopic and microscopic 

level. The use of periodic boundary conditions in combination with the Hill-Mandel condition 

has led to a relation that allows the microscopic stresses to be translated to a macroscopic 

stress tensor. 

Equation 2.5 shows that the volume average of the 1
st

 Piola-Kirchoff is completely 

determined in terms of the underformed boundary in combination with forces in the 

deformed configuration. This combination is very convenient as the undeformed boundary is 

known beforehand and the resulting forces will be available during calculations. This 

exemplifies the choice for the 1
st

 Piola-Kirchoff stress tensor and its work conjugated  

counterpart, the deformation tensor. 

2.4.4 Determining the Macroscopic Tangent 

In the numerical scheme a tangent is still required to complete the computation. The 

tangent relates the forces to the displacements. In a simple 1 dimensional case this tangent 

is the slope along the force-displacement curve, this is visualized in Figure 7.  

 

Figure 7 Visualization of the tangent that relates stress and strain 

The tangent is used in the Newton-Raphson iterative method to solve for an equilibrium 

determined by the applied boundary condition (in this example an applied force). The 

nonlinear relation between force and displacement is approximated by a linearization a step 

is taken towards the equilibrium as long as the difference between the linear approximation 

and the actual stress is smaller than a set value. This steps that this method takes to 

Forces 

Applied Force 

Displacements 

tangent 
Equilibrium solution 
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converge to a solution is indicated by the red lines in Figure 7 (see also [12]). This method 

and its derivates are implemented in non-linear packages such as MSC Marc.  

Two methods are proposed by [11] to determine this tangent within the Computational 

Homogenization scheme. The first method is condensation of the global stiffness matrix (of 

the microscopic problem). In any system, the global stiffness matrix can be condensed by 

making the distinction between prescribed and free nodes. The resulting condensed stiffness 

matrix is the macroscopic stiffness matrix of the microscopic problem. Unfortunately this 

matrix is usually not available for calculations.  

The alternative is numerical differentiation. Numerical differentiation predicts the response 

of the prescribed nodes for a small perturbation. The result is again the macroscopic 

response of the microscopic problem. Miehe [13] introduced a numerical differentiation 

scheme that reduces the number of calculations that are needed to create the macroscopic 

stiffness matrix. 

If the global stiffness matrix is available, condensation of the global stiffness matrix is 

preferred. Numerical condensation is a computationally less efficient method that will 

introduces additional errors. 

2.4.5 Limitations of 1st Order Computational Homogenization 

Although 1
st

 order Computational Homogenization is capable of handling non-linear 

simulations, there are restrictions. The linearization of the macroscopic deformation tensor 

is responsible for a limitation on the algorithm. The macroscopic deformation gradient must 

remain small with respect to the microscale. There is some question on the effectiveness of 

the computational homogenization approach. For each element, a microstructural analysis 

must be performed. Therefore most of the computational advantages will be gained in the 

potential parallelization of the numerical simulations [11]. 
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3 Original Bone In-Growth Model  

Before examining various model optimization schemes, the original model by Andreykiv will 

be detailed. In order to identify possible methods of increased performance it is imperative 

that its background and implementation is well understood. 

3.1 Theoretical Setup 

Based on a model for fracture healing [5], this model links a mechanical and a biological 

system in order to determine the evolution of the tissues. The 2 systems are weakly coupled 

by means of parameters. This system is, in its simplest form, described as Figure 8 

 

Figure 8 Coupling between mechanical and biological model. 

In the following sections the theory behind the bone ingrowth model will be further 

elaborated. This theory is obtained from the dissertation of A. Andreykiv [1]. 

3.1.1 The Mechanical model 

The mechanical response of the model is modeled using a biphasic model. Each constituent 

occupies a certain volume $JY'. To describe the density of a constituent a distinction is 

made between the true density $Z[Y' and the apparent density (ZY', where the first 

describes the density with respect to its own volume and the second is taken with respect to 

the total volume. This is reflected in the equations 

ZY � \YJ       Z[Y � \YJY      ]  ZY � JYJ Z[Y �  ^YZ[Y . 
 The solid and fluid components of the biphasic material will be indicated by s or f indices. 

Using the principle of virtual power, the balance of forces for each phase is given by 

_��` Z` # A � 2` # Z`a�` # Π���` � 0, 3.1 

_��c Zc # A � 2c # Zca�c # Π���c � 0, 3.2 

in which 4 terms are identified. The first term (_��Y ZY) expresses inertia forces. The second 

term (A � 2Y) describes the stress in the constituent. The 3
rd

 term (ZYa�Y) shows the applied 

forces, such as gravity and the last term (Π���d) expresses the drag forces. 

Mechanical 

Model 

Biological  

Model 

Biophysical Stimulus 

Material properties 
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These equations are supplemented with the traction boundary conditions, where tractions 

are prescribed on the solids and a pressure is prescribed on the fluids as follows 

2` � �̂� � $2è # ^`S&' � f` g^ Γhi,  

�̂� � 2c � �̂� � #^cS& � fc j S � Sk$�' � # lfcl^c  g^ Γhi .  

By virtue of the fact that the two volume fractions always constitute the total materials $^c > ^` � 1' and using the fact that the drag forces should cancel out EΠ���c > Π���` � 0G, 

equations 3.1 and 3.2 can be combined into a single equation. Furthermore we assume that 

gravity and inertia forces are negligible. This leads to the simplified momentum Equation 

A � 2 � 0. 3.3 

This Equation ‘masks’ many the underlying equations, the most of important of which is the 

biphasic nature. Unlike a more conventional single constituent material an additional degree 

of freedom is introduced in the form of the fluid pressure. More specifically, the stresses 

(and pressure) in Equation 3.3 are divided as 

2 � ∑ 2Y �Y 2è # S&,  
Where the Cauchy stress of the solid state 2è is defined as 

2è � !` � nè � $!`'%. 3.4 

In Equation 3.4 ! is the deformation tensor and nè is the second Piola-Kirchoff stress tensor, 

which is given by the neo-Hookean model for hyperelastic solids. The neo-Hookean material 

model describes a compressible hyperelastic material. In combination with a fluid phase it 

exhibits many properties that are attributed to biological tissue [7]. The stress tensor for 

neo-Hookean material is 

nè � o`p^3�() > q`$& # �()',  

Where the coefficients o` and q` are Lamé’s elasticity constants that represent the material 

properties, furthermore the Right Cauchy-Green tensor is given by � � !% � ! and the 

determinant of the deformation tensor given the Jacobian 3 � det$!'. 
The resulting momentum Equation gives (in 3D) 3 equations, but has 4 unknowns, namely 

displacements in all dimensions and the fluid pressure. The additional Equation to solve this 

incomplete system comes from the mass balance over the whole poroelastic domain. The 

Equation for the mass balance can be found by taking the material time derivative 

?rs
?h > A � $_�YZY' � tY. 
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Substituting ZY �  ^YZ[Y, assuming that the there will be no production of solid material in 

the system  $tY � 0'  and incompressibility of the solid phase C?r[i?h � 0I the following 

equations for the whole system are derived
5
 

Z[̀  ^` u > ^`Z[̀ A � _�` � 0 
3.5 

Z[c  ^c u > ^c  Z[c u > ^cZ[cA � _�c � 0 
3.6 

A 1
st

 order approximation of the state Equation for the fluid phase given by Fernandez [14]. 

The result  

?r[v?h � )wv Z[Nc ?F?h, 
 

will be substituted in Equation 3.6. The constant xc specifies the Bulk modulus of the fluid. 

Furthermore we can make the assumption that Z[Nc y Z[c [15] and using this in combination 

with the previous assumption that ^` > ^c � 1, reduces the mass balance Equation to 

�v
wv ?F?h > A � _�` # A � z{| $AS'} � 0. 

3.7 

Here ~ is the permeability of the fluid and q is the viscosity. This equations expresses the 

physical relation that the flux of solid material (A � _�`' and the flux of fluid (due to pressure 

differences) �A � z{| $AS'}� should be in balance with the change in volume.  This relation is 

known as Darcy’s law. 

This completes the system of equations for the mechanical part of the model. Only the initial 

and boundary conditions must be prescribed. The initial conditions, defined for u � u+ are 

���` �|h�hN � ���+̀$��',  

S�|h�hN � S+$��'.  

The boundary conditions consist of an applied displacement on a part of the boundary and a 

boundary condition defining the fluid influx 

���` � ��`$��' g^ Γ�,  

#Z[c {| $AS'% � �̂� � �c$��' g^ Γc�.  

This completes the mechanical model. 

3.1.2 The Biophysical Stimulus 

From the mechanical model a mechano-stimulus is transferred to the biological model. This 

biophysical stimulus will determine the tissue evolution in the system. The stimulus 

combines the maximal shear strain (�) and the interstitial fluid velocity (�) [16] as follows 

                                                      
5
 It should be noted that n in this case represents the constituent mass fraction and is not the element outward normal  
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� � �� > ��, 

where a = 0.0375 ,b � 3 q\ ��  and the limits of S are �
�B � 3, �
�� � 1 [5]. 

The biophysical stimulus will determine what cells and material are being produced or 

destroyed. I shall discuss this aspect in more detail in the next section. 

The maximum shear strain can be obtained by using the strain tensor and finding its 

principal values
6
.  The relative fluid velocity can be calculated using Darcy’s Law 

_c � �_�c� � �~��AS�   for i�1..3, 

which is dependent on the fluid pressure. 

3.1.3 The Biological Model 

Using the biophysical stimulus as an input, the biological model determines the tissue 

differentiation. This differentiation is modeled by the cells dynamics that result in tissue 

formation. The cavities are initially filled with granulation tissue. The penetration of 

mesenchymal stem cells from the bone into the granulation tissue is modeled as a diffusion 

process. The mesenchymal cells may, under the influence of the stimulus and depending on 

various concentrations of cells or tissues, differentiate and proliferate into either fibroblasts, 

chondrocytes or osteoblasts which in turn produce respectively fibrous tissue, cartilage or 

bone (see Figure 9). 

  

Figure 9 Schematic representation of the tissue differentiation paths as defined by the Prendergast tissue 

differentiation model. 

                                                      
6
 Note that ��� � ��� > ��� � 2���, thus for the implementation the maximum shear strain should be divided by 2. 

Mesenchymal 

Cells 

Osteoblast 

Cells 

Chondrocyte 

Cells 

Fibroblast 

Cells 

Bone 

Fibrous 

Tissue 

Cartilage 

Differentiation 

Proliferation 

Tissue production 



 

 

Original Bone In-Growth Model 16 

In Figure 9 each box is represents the governing differential Equation that drives the 

evolution of that specific type of cell or tissue. In total there are 7 governing equations, 4 

control the evolution of cell concentrations and 3 control the evolution of tissues. These 

differential Equation that control the cell concentrations are  

����h � �
A.t
 > �
$1 # th h't
 # ¡cE1 # tcGt
 # ¡�$1 # t�'t
 # ¡�$1 # t�'t
, 3.8 

��v�h � �cA.tc > �c$1 # th h'tc > ¡cE1 # tcGt
 # ¡�$1 # t�'tc # ¡�$1 # t�'tc, 
3.9 

��¢�h � ��$1 # th h't�>¡�$1 # t�'Et
 > tcG # ¡�$1 # t�'t�, 3.10 

��£�h � ��$1 # th h't�>¡�$1 # t�'Et
 > tc > t�G. 3.11 

The 3 equations that control tissue production are 

�
£�h � ¤�$1 # \�'t�, 3.12 

�
¢�h � ¤�$1 # \� # \�'t� # ��t�\�\h h, 3.13 

�
v�h � ¤cE1 # \� # \� # \cGtc # $��t� > ��t�'\c\h h. 
3.14 

These equations need to be programmed in a numerical method due to the diffusion terms $�YA.tY' that control the diffusion of mesenchymal cells and fibroblasts. The problem is 

further complicated by the non-linear terms that are present in these equations. Each tissue 

evolution process (indicated in Figure 9 by the arrows) is controlled by a coefficient. These 

coefficients are in turn dependent on the biophysical stimulus. The various coefficients are 

clarified in the following sections. 

3.1.4 Diffusion coefficients (Di) 

The two diffusion coefficients are dependent on the concentration of cartilage and bone, as 

expressed by 

�
 � �
+$1 # \� # \�', 
�c � �c+$1 # \� # \�'. 

This formulation implies that the diffusion takes place homogeneously along all parts of the 

boundary. This assumption is acceptable for small problems, but when may not be 

completely correct on a larger scale. 

In these equations, the constants Dm0 and Df0 are �
+ � 240  |
¥

��  = 0.3456  

¥

��¦  and �c+  �
 60  |
¥


��  = 0.1152 

¥
��¦ . 

 

3.1.5 Cell Proliferation coefficients (Pi), Cell Differentiation coefficients (Fi), 

Tissue production coefficients (Qi) and Tissue Degradation coefficients (Di) 

The proliferation can be modeled similarly as 
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�
 � �
+$1 # \� # \�', 

�c � �c+$1 # \� # \�', 

�� � ��+$1 # \� # \�', 

�� � ��+$1 # \� # \�'. 

The initial coefficients (with subscript 0) are piecewise-linear functions of the biophysical 

stimulus.  

 

Figure 10 Variation of proliferation coefficients with varying biophysical stimulus [1] 

The differentiation coefficients Fb, Fc, Ff are not dependent on any mass densities but only on 

the biophysical stimulus. 

 

Figure 11 Variation of differentiation coefficients with varying biophysical stimulus [1] 

The dependence of the tissue production coefficients is similar to the cell differentiation and 

tissue degradation is equal to its corresponding production coefficient. 

 

Figure 12 Variation of production coefficients with varying biophysical stimulus [1] 

The parameters in the graphs are obtained from previous literature as well as a calibration 

(see chapter 5 of the thesis of A. Andreykiv)  
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Acquired values Calibrated values 

Pbmin = 0.5⁄ ��¨ 

Pcmin = 0.75⁄ ��¨ 

Pcmax = 0.925⁄ ��¨ 

Pfmin = 0.6⁄ ��¨ 

Pfmax = 0.1⁄ ��¨ 

Pmmin = 0.5⁄ ��¨ 

Pmmax = 1.2⁄ ��¨  

Fbmax = 0.15⁄ ��¨ 

Fbmin = 0.005⁄ ��¨ 

Fcmax = 0.3⁄ ��¨ 

Ffmax = 0.01⁄ ��¨ 

Qbmax = 0.1⁄ ��¨ 

Qcmax = 0.2⁄ ��¨ 

Qfmax = 0.06⁄ ��¨ 

3.1.6 Loading 

The loading of the original model is chosen is accordance with animal experiments by 

Simmons and Pilliar [17]. The experiments were performed on a canine mandible to 

investigate the effect of implant surface geometry on the bone formation around dental 

implants. The growth of the bone around the implants was tracked for 28 days. The loading 

in the first week was a displacement and during the consequent 3 weeks, the average force 

recorded in the first week was applied. The results of this study were that displacements up 

to 50µm led to bone growth into the porous implant surface that was covered with sintered 

spheres. This loading of 50µm is used in the investigations in this thesis. 

3.2 Numerical implementation 

3.2.1 Mechanical Model 

After discretization, the momentum Equation (Equation 3.3), together with the mass balance 

(Equation 3.7) are implemented as the system of equations 

 ©ª # «p�� # f�­ � 0, 

® ¯°���¯± > «² ?����?h
³ > ´p�� # f�° � 0. 

In this system, the following matrices are identified 

©ª  - The internal force vector for the solid phase 

«  - The coupling matrix 

f�­  - The vector of traction forces 

®  - The compressibility matrix 

´ - The permeability matrix 

f�° - The applied fluid mass influx vector 

This system is solved in an iterative manner, according to  

µ ¶² #«#«² #$® > Δt´'·	,�R) µΔu��`Δp�� ·	R) � ¹ º»R)­#Δtº»R)° ¼ # ¹ ©ª»R)– «p��»R)#$®Δp�� > «²Δu��³ > Δt´p��»R)'¼, 
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where ¾% is the structural tangent matrix and is described by  

¾%¿À � L �%�ÁÂ��J
M

> & L ÃÄ%2èÃÅ�J
M

, 
which is the division of geometric and material contributions to the stiffness matrix. 

3.2.2 Biological Model 

Of the 7 equations that describe the tissue evolution, 5 can be determined on element level, 

because all quantities are known. Only equations 3.8 and 3.9 need to be calculated using the 

finite element method because of the spatial dependency in the diffusion term. 

This non-linear system is discretized and linearities to give 

¹¾
iÆÇvv 00 ¾ciÆÇvv¼ ¹Δt�
ÈWÉΔt�cÈWÉ ¼ � Ê#¡�Ä�#¡�Äv
Ë. 

Where the given matrices are defined as: 

¾
iÆÇvv �  Ì��
 t�
ÈWÉ 

¾ciÆÇvv �  Ì��c t�cÈWÉ 

¡�Ä� � Ì��
 

¡�Äv � Ì��c 

And Ì��
 and Ì��c are described by 

Í
 � L O���%O��� t�
ÈWÉ # t�
È ΔtM
�J > L AO���%Î�
AO���t�
ÈWÉ ÏM

�J > 

> C�
E1 # t�È # t�ÈG # ¡c # ¡�E1 # t�ÈG # ¡�E1 # t�ÈGI L O���%O���t�
ÈWÉ �J
M

> 

>E�
 # ¡cG L O���%O���t�cÈO���t�
ÈWÉ �J
M

> �
 L O���%EO���t�
ÈWÉ G.�J
M
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Íc � L O���%O��� t�cÈWÉ # t�cÈΔuM
�J > L AO���%Î�cAO���t�cÈWÉÏ

M
�J > 

> C�cE1 # t�È # t�ÈG # ¡�E1 # t�ÈG # ¡�E1 # t�ÈGI L O���%O���t�cÈWÉ�J
M

> 

>E�c > ¡cG L O���%O���t�cÈWÉO���t�
È�J
M

> �c L O���%EO���t�cÈWÉG.�J
M

 

The remaining PDE’s 

The remaining PDE’s need not be solved using a finite element approach. Take for example 

Equation 3.10. Applying a discretization and organizing the terms results in 

�t��u � ��$1 # th h't� > ¡�$1 # t�'Et
 > tcG # ¡�$1 # t�'t� � 0 

��Δut�ÈWÉ. > $1 # C��E1 # t
È # tcÈ # t�ÈG > ¡�Et
È > tcÈG > ¡�E1 # t�ÈGI Δut�ÈWÉ> E#¡�Et
È > tcÈGΔu # t�ÈG � 0 

And this simple quadratic function can easily be solved for t�ÈWÉ. This procedure will be 

repeated for the other PDE’s 

3.3 Implementation into MSC Marc 

The bone ingrowth model has been reformulated to a finite element implementation. The 

next phase is to implement it in a commercial code. The following sections will elaborate on 

the implementation within MSC Marc. The overall simulation setup is given in  

Again the model is split in a mechanical and a biological model. Each model is programmed 

in a separate model. The two models run sequentially and communicate by writing out 

information that is read by the next model. Both models have been implemented in a user 

subroutine that is called by MSC Marc. 
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Figure 13 Simulation setup and communication between biological and mechanical model 

The simulation is controlled by the biological model. The biological model calculates the 

tissue evolution over a period of 28 days. At the start of every day a mechanical simulation is 

started.  

The mechanical model is loaded with an applied displacement or force, depending on time in 

the simulation. The displacement or force is applied to a ‘roof node’ that links to all surface 

nodes that would normally be in contact with the implant. The ‘roof node’ ensures a uniform 

loading along the surface of the implant. When the mechanical model is finished the 

resulting biophysical stimulus is written out and a status file is updated such that the 

biological model knows that it can continue. 

The total tissue concentrations are recorded over the 28 days, as well as the displacement 

and force in the roof node. 

Mechanical Model 
Force/displacements are applied to a ‘roof node’. 

days 1-7: Displacement control, apply a 50 q\ displacement 

days 8-28: Force control, apply a force equal to the average force over the first 7 

weeks 

Biological Model 
Simulate tissue evolution over a time span of 28 days (280 iterations) 

ReactForce.graph 

Record force / displacement of 

moving roof node. 

TotalTissues.graph 

Record total tissue history 

of model 

 

Status.dat 

Status file 

Indicates status of 

mechanical 

simulation 

 

Tissues#.dat 

For each element 

specificy the tissue 

concentrations 

 

Stimuli#.dat 

For each element 

specificy the 

biophysical 

stimulus 

At start of each day 

Save tissue 

concentrations of all 

elements and start a 

mechanical simulation 

 

At end of simulation 

Save biophysical 

stimulus  of all 

elements and update 

status file 
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3.3.1 Mechanical Model 

The following flow diagram illustrates how the mechanical model is implemented in MSC 

Marc.  

The subroutine specifies actions to be taken at specific moments in the simulation. Some are 

initiated at the start of the simulation, some at the start of a time step and other are called 

on element level. Figure 14 shows the flow diagram for the mechanical simulation, the blue 

section is called on element level. 

 

Figure 14 Flow chart of the mechanical model in MSC Marc 

UBGINC  - Initialize program 

• Load bone, cartilage & fibrous tissue fractions 

UEDINC  

If simulation is finished update status files to indicate end of mechanical 

simulation 

 

Ð`,+, Ð, Ð` 

set material constants 

Construct support matrices 
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IMPD – Postproces (node) 

Save micromotions of the model (represented by the motions of 

the ‘moving roof node’) 

Write displacement in X-direction and reactionforce in X-

direction to ReactForce.graph 

ELEVAR – Postprocess (element) 
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Calculate 
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• Assemble RHS 
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3.3.2 Biological Model 

The implementation of the biological model is also done in the user subroutines. The scheme 

of the subroutine is shown in Figure 15. 

 

Figure 15 Flow chart of the biological model in MSC Marc 

Read 

Biophysical 
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ELEVAR  - Postprocess 

• Write tissue concentrations to tissues#.dat 
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4 Model optimization opportunities 

Based on the theory and the implementation of the bone ingrowth model, 3 possible 

opportunities are identified that may enable an increased speed of the simulation. They are 

model optimizations, code optimizations and the application of computational 

homogenization. 

4.1 Model optimizations 

4.1.1 Mechanical Model – Elimination of the fluid phase 

Looking the theoretical implementation of the model has shown some possibilities for 

improving performance. The mechanical model is a biphasic model. The biophysical stimulus 

is constructed using inputs from the solid phase (maximum shear strain) and the fluid phase 

(fluid flow), see Figure 16. 

Weighted Fluid Velocity Weighted Shear Strain 

  

  

  

Figure 16 Components of the biophysical stimulus for a selected number of days. The ratios in which the two 

components contribute to the total biophysical stimulus appears to be relatively consistent throughout the complete 

simulation. 

Investigation of the components of the biophysical stimulus shows that the contribution of 

the shear strain is generally almost 1 order of magnitude larger than the contribution of the 

fluid velocity. This might indicate that the fluid phase is of lesser importance, even though 
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The biological tissue is considered to consist of 80% fluid [1]. If the fluid phase may be 

ignored, the implementation of the mechanical model can be greatly simplified and a large 

gain in computational speed could be achieved. 

 

Figure 17 Left: Total tissue fractions of the complete model. Right: Micromotions measured in the roof node. 

It is imperative that the overall results are not severely altered through such a change. One 

measure for the quality of the simulation is the total tissue concentration and the 

micromotions of the system (see Figure 17). 

4.1.2 Biological Model – Linear approximation 

The non-linear nature of the biological model causes the largest decrease in computational 

speed. Examing and rewriting Equations 3.8 and 3.9, the effects of this non-linearity can be 

exposed. 

�t
�u � �
A.t
 > C�
$1 # t� # t�' # ¡c # ¡�$1 # t�' > ¡�$1 # t�'I t
> E¡c # �
Gtct
 # �
t
t
 

�tc�u � �cA.tc > C�c$1 # t� # t�' # ¡�$1 # t�' # ¡�$1 # t�'I tc > ¡ct
# E¡c > �cGt
tc # �ctctc 

In red are the terms causing the non-linear behavior. An investigation will be made what the 

effects are of removing the higher order terms. 

4.1.3 Biological Model – Diffusion approximation 

Another possibility for optimization lies in the diffusion term. Diffusion currently takes place 

in all directions. Given the geometry of the model, as well as the uniform seeding of 

mesenchymal cells, the diffusion could be approximated using a unidirectional diffusion.  

The consideration of such a 1-dimentional is further strengthened by the observation that 

mesenchymal and fibroblast cells are quickly uniformly distributed throughout the model 

(see Figure 18). 



 

 

Model optimization opportunities 26 

 

Figure 18 Fibroblast (left) and mesenchymal (right) concentration distribution in day 5 

The mesenchymal cells are completely uniformly distributed and although the fibroblast 

concentrations appear to have a gradient, examining the scale shows that this gradient is 

minimal. 

Unfortunately, the implementation reveals that only very little efficiency will be gained.  The 

diffusion is controlled through the integral 

¾ � Õ AÖ%× AÖ�JØ
MÙÚ , 

resulting in a matrix with dimensions 4x4 (for a 4-node element). 2 matrix multiplications 

will be performed to construct ¾, in which a 4x3 is multiplied with a 3x3 matrix and secondly, 

the resulting 4x3 matrix is multiplied with a 3x4 matrix to construct to final 4x4 matrix. A 

unidirectional approach will still require these same multiplications, except the input matrix 

containing the gradient of the shape functions (AÖ) is a 4x1 matrix, rather than a 4x3 matrix.  

4.2 Code Optimizations 

4.2.1 Sleep 

In order to share data between the biological and the mechanical simulation, data is written 

to files on disk. One of the issues is that simultaneous file operations are not permitted by 

the system and thus these situations must be avoided. A solution is to attempt a file 

operation and assess the response of the computer system. If a file is in use, the simulation 

must wait until the file is free for use. The aforementioned method is employed at several 

stages in the subroutine, as is it used when reading and when writing to files. The following 

example is a loop in the biological simulation (see Figure 19), where the subroutine has to 

read all the biophysical stimuli for each element. 
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Figure 19 Flowchart depicting the steps when the Stimuli#.dat files are being  read 

A 1 second waiting time is invoked if the file is busy and a disk operation cannot be 

performed. Note that this loop will run for all elements, thus greatly increasing the waiting 

time. Of course this wait is not called for at every instance but reducing the waiting period 

should save a lot of time. 

Similar comparable loops are present in the code and reducing the waiting times will greatly 

affect the simulation time. 

4.2.2 Writing sequence 

Further investigating Figure 19 it can be seen that for a single element the complete 

stimuli.dat is opened and completely read. During this process the subroutine will 

continuously open and close the file, resulting in many disk operations with possible waiting 

times that accompany this process. If a better process can be designed, the number of disk 

operations and consequent waiting times can be further reduced. 

4.3 Computational Homogenization 

An attempt is made to code computational homogenization in MSC Marc. The application of 

computational homogenization will be done in a restricted setting, namely only the 

mechanical model.  

One of the goals of this thesis was to assess the feasibility of the application of the 

computational homogenization scheme on the bone ingrowth model. As an initial step in 

this process, the computational homogenization scheme should then also be applicable to 
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one of its core features (i.e. the mechanical model). Since the computational 

homogenization scheme was developed with a purely mechanical setting in mind, the most 

logical initial step is to see how well the scheme can be applied to the mechanical aspects of 

the bone ingrowth model.  

As a result of this restricted setting, a number of other parameters had to be fixed as well. 

The following settings are taken: 

• Displacement control (an applied displacement of 50 q\) is used 

• The tissue fractions are fixed at realistic values obtained during runs of the original 

model. The tissue fractions are:      

o Bone = 0.01394211 

o Cartilage = 0.01865109 

o Fibrous Tissue = 0.0008101763 

The mechanical model supplies the biophysical stimulus to the biological model. This 

stimulus consists of the maximum shear strain and the fluid flow. Since the fluid phase is 

ignored in this setting, the current relevant parameter to be upscaled is the maximum shear 

strain. 

 

Figure 20 Left: Maximum principal strain along the Top & Bottom edges. Right: identification of the edges 

The maximum principle strain does appear to show some oscillations that may be averaged 

out using a homogenization approach. However, it should be noted that the biophysical 

stimulus relies on the maximum shear strain. An averaging procedure, such as 

homogenization, may influence the results if these maxima are affected. 

If the computational homogenization scheme can be implemented 2 main questions must be 

dealt with. How does the averaging procedure affect the maximum shear strain? 

Furthermore, as discussed in the literature survey [7], is the assumption of separation of 

scales applicable. 

back 

front 
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5 Results - Model optimizations 

5.1 Mechanical Model – Elimination of the fluid phase 

In order to assess the importance of the fluid phase a run was made that has the fluid phase 

removed (see Figure 21).  

 

Figure 21 Tissue evolution with the biphasic model and a single constituent model 

The importance of the fluid phase becomes apparent. Without the fluid phase a much lower 

amount of tissue is produced. In addition, the fractions in which they appear are also 

different. A much smaller fraction of the stiffer materials is being produced. A serious 

reduction in cartilage and a very large reduction in bone tissue are the result of the 

elimination of the fluid phase. The less stiff fibrous tissue is still calculated reasonably 

accurate without the fluid phase. 

Regarding the simulation time, the single constituent model does greatly reduce run times 

timing information:                       wall time       cpu time 
 
total time for input:                       27.68         26.22 
total time for stiffness assembly:        5711.05       5670.46 
total time for stress recovery:           3648.77       3624.95 
total time for matrix solution:          44341.22      43949.75 
total time for restart:                     74.37         14.00 
total time for output:                    1709.29       1627.41 
total time for miscellaneous:            16639.61       2067.30 
--------------------------------------------------- ------------ 
total time:                              72151.98      56980.09 

 

Clearly a single constituent model would greatly aid the computational speed, however it 

has been shown that the fluid phase is essential to the tissue evolution and cannot be 

ignored. 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

T
is

su
e

 f
ra

ct
io

n

Day nr.

Effect of removing the fluid phase

Bone - Original

Bone - NoFluid

Cartilage - Original

Cartilage - NoFluid

Fibrous Tissue -

Original



 

 

Results - Model optimizations 30 

5.2 Biological Model – Linear approximation 

Removing the higher order terms in the differential equations (Equations 3.8 and 3.9) results 

in  

����h � �
A.t
 > C�
$1 # t� # t�' # ¡c # ¡�$1 # t�' > ¡�$1 # t�'I t
, 

��v�h � �cA.tc > C�c$1 # t� # t�' # ¡�$1 # t�' # ¡�$1 # t�'I tc > ¡ct
. 

The effect on the tissue differentiation scheme is depicted in Figure 21. The production of 

fibroblast cells will cease and as a consequence no more fibrous tissue will be produced. The 

input from the fibroblasts and the fibrous tissue will affect the other cell concentrations and 

tissue concentrations. 

 

Figure 22 Alterations in the Tissue differentiation model due to the removal of non-linear terms. 

Figure 23 shows this effect. No fibrous tissue is produced, but more bone and cartilage are 

produced. 
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Figure 23 First 18 days  of a simulation using a linear biological model.  

This increased concentration of bone and cartilage results in an overestimate of the 

stiffness. Although cartilage is reasonably estimated by the linear model, the absence of 

fibrous tissue and the enormous overestimate of bone prohibits the removal of the non 

linear terms from Equations 3.8 and 3.9. 

5.3 Biological Model – Diffusion approximation 

Attempts to simplify the diffusion model to a 1 dimensional problem failed for unknown 

reasons. The 1D model was initially simply modeled by setting the diffusion coefficients in X 

and Y direction to zero, but computations in MSC Marc halted after 1 iteration with the error 

message that the stiffness matrix became non-positive definite. It could not be established 

what is the cause of this non-positive definiteness. 

However, it is not expected that such a simplification will gain a lot of computational speed. 

The diffusion matrix is compiled by performing the calculation of  

¾ � L AÖ%× AÖ�JØ
MÙÚ
, 

which in requires  2 matrix multiplactions in the subroutine. Using the 1 dimensional 

approximation,  this can be reduced to a single matrix multiplication and the multiplication 

with a constant. A comparison in Matlab was made between the average computation time 

required for both sets of computations. Given the nr of elements and the number of 

iterations in the biological model, the gain was on average only 200 seconds. This is marginal 

compared to the total run time of the complete simulation. 
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6 Results - Code Optimizations 

An analysis of the programming was made and several options for improvement have been 

identified in section 4.2. The results of these code optimizations are given below. It will be 

shown that a large increase in efficiency is gained simply by optimizing disk writes. These 

changes do not affect the results of the simulations.  

6.1 Minisleep 

FORTRAN’s intrinsic command ‘SLEEP’ only accepts integers and thus the smallest sleep is 1 

second. To overcome this issue I have created a small subroutine called MINISLEEP. It simply 

calls the intrinsic function ‘DATE_AND_TIME’ that records the current time (up to 

milliseconds) and forces a dummy loop of a specified number of milliseconds. 

C================================================== == 
C    MINISLEEP small subroutine to sleep for nms mi llisec. 
C================================================== == 
      subroutine minisleep(nms) 
      integer time1 (8), time2 (8), deltasleep 
      CHARACTER (LEN = 12) tmp1 (3) 
      CALL DATE_AND_TIME (tmp1 (1), tmp1 (2), tmp1 (3), time1) 
50    CALL DATE_AND_TIME (tmp1 (1), tmp1 (2), tmp1 (3), time2) 
 deltasleep = (time2(7)*1000.d0+time2(8))-(time1(7) *1000.d0+time1(8)) 
 if (deltasleep.LT.nms) then  
   goto 50 
 endif 
 return 
 end 

The question now becomes what value to select for MINISLEEP. It might be possible that if a 

too small value is chosen, the time needed for the additional disk operations outweighs a 

smaller sleep time. Thus various values for MINISLEEP will be tested. 

6.1.1 Comparison of minisleep values 

Unmodified Simulation 

The following is a copy of the end of the log file after a successful run. 

timing information:                       wall time       cpu time 
 
total time for input:                       26.89         25.15 
total time for stiffness assembly:       10131.55       5471.87 
total time for stress recovery:           4103.51       3559.33 
total time for matrix solution:          42604.60      34629.30 
total time for restart:                     53.64          5.63 
total time for output:                   30050.08       2142.14 
total time for miscellaneous:           112628.62       1208.83 
--------------------------------------------------- ------------ 
total time:                             199598.89      47042.25 

As can be seen, the total time is almost 250,000 seconds, which equals about 68 hours. 

On average, a poroelastic simulation will take about 4400 seconds and a biological 

simulation (consisting of 10 increments) will take about 2700 seconds.  

MINISLEEP – 1 ms 
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Incorporating a 1 millisecond sleep instead of the 1 second sleep should lead to a large 

reduction in wall time. CPU time should not be affected as the sleep function does not 

influence the calculations.  

timing information:                       wall time       cpu time 
 
total time for input:                       25.70         25.42 
total time for stiffness assembly:        9455.66       5444.41 
total time for stress recovery:           3619.36       3535.15 
total time for matrix solution:          32467.87      31268.41 
total time for restart:                     78.29          2.63 
total time for output:                   18681.64       1968.34 
total time for miscellaneous:            87025.32       1157.73 
--------------------------------------------------- ------------ 
total time:                             151353.84      43402.10 

As expected, there is a great reduction in wall time. Also the CPU time is reduced. Together 

the time saving adds up to about 21%, with a total computing time of 54 hours. Apparently  

the CPU time is also positively affected by the MINISLEEP function. 

The average time spent on the poroelastic simulation has decreased to about 3400 seconds 

and the average time spent on the biological simulation has decreased to approximately 

2000 seconds. Thus the poroelastic simulation saw a decrease of 22% and the biological 

simulation was reduced by 25%. It seems that both processes benefit equally from the 

reduced sleep time. 

MINISLEEP – 10 ms 

Increasing the sleep time from 1 millisecond to 10 milliseconds showed no effect. 

timing information:                       wall time       cpu time 
 
total time for input:                       25.78         25.37 
total time for stiffness assembly:        9084.10       5438.27 
total time for stress recovery:           3600.53       3496.23 
total time for matrix solution:          32024.05      31258.48 
total time for restart:                     47.42          2.82 
total time for output:                   18815.55       1989.05 
total time for miscellaneous:            86642.52       1169.95 
--------------------------------------------------- ------------ 
total time:                             150239.95      43380.17 

The numbers actually show a decrease in time, but this decrease accumulates to 0.5%. I 

believe that this falls within a range of  variations that may occur from simulation to 

simulation and thus I cannot conclude that this decrease in time may be attributed to the 

longer sleep time.   
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MINISLEEP  – 250 ms  

The slight increase in sleep did not seem to have notable effects. Increasing the sleep to 250 

milliseconds showed an increase in computing time again. 

timing information:                       wall time       cpu time 
 
total time for input:                       25.80         25.56 
total time for stiffness assembly:       10021.93       5512.17 
total time for stress recovery:           3634.99       3542.79 
total time for matrix solution:          32105.49      31276.15 
total time for restart:                     40.68          2.43 
total time for output:                   23050.94       2005.11 
total time for miscellaneous:           106662.51       1169.46 
--------------------------------------------------- ------------ 
total time:                             175542.34      43533.68 

6.1.2 Results 

It seems that increasing the sleep time slightly has no effect.  Increasing the sleep time to 

250 milliseconds had a detrimental effect. From this it can be concluded that an increased 

number of disk operations due to a decreased sleeping time is of minimal influence total 

computing time. Thus a shortest sleep time is preferred. 

For comparison I have collected the logs and processed them to show the time at each 

iteration. 

  

Figure 24 Influence of reduced sleep times (1, 10, 250 ms) compared to the original code 

Figure 24 shows the impact of the MINISLEEP routine and plot the iteration number versus 

the wall time. The staggered graph clearly shows the initiation and end of the poroelastic 

and the biological simulations.  Using the log files I was able to extract average computing 

times for the biological and mechanical simulation, they are summarized in Table 1. 
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 Biological 

simulation 

Mechanical 

simulation 

Original model 2707 s 4355 s 

MINISLEEP(1) 1976 s 3407 s 

MINISLEEP (10) 1978 s 3365 s 

MINISLEEP (250) 2114 s 4115 s 

Table 1 Average run times (seconds) for the biological and mechanical simulations 

Based on these finding a 1 millisecond sleep time is selected. This routine will reduce the 

computation time by roughly 20%. 

6.2 Batchwrites 

Instead of writing almost continuously to the disk, the change was made to save all variables 

in memory and then write them to the disk only at the end of each iteration. This saves disk 

writes, but will also save disk read activity as the original loops had to read the complete 

array before being able to append the array. 

The implementation of this system is described in Appendix D. 

It should be noted that the implementation of the batch writes is in conjunction with the 

1ms minisleep function. The effect on simulation speed is represented in the log file. 

 
timing information:                       wall time       cpu time 
 
total time for input:                       27.68         26.22 
total time for stiffness assembly:        5711.05       5670.46 
total time for stress recovery:           3648.77       3624.95 
total time for matrix solution:          44341.22      43949.75 
total time for restart:                     74.37         14.00 
total time for output:                    1709.29       1627.41 
total time for miscellaneous:            16639.61       2067.30 
--------------------------------------------------- ------------ 
total time:                              72151.98      56980.09 

Compared to the results of the 1 ms minisleep, the batch writes accomplish a reduction in 

computation time of more than 50% (compared to the model with a 1ms sleep time 

implemented), showing the effectiveness of minimizing disk activity. Compared to the 

original model a reduction in computation time of nearly 65% is realized. 
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7 Implementation and Results 

The theory of computational homogenization has been outlined i

will perform a feasibility study into the implementation of computational homogenization in 

MSC Marc for the bone ingrowth model.

Section 4.3 showed that the original mod

homogenization may be applied to the reduced model. For the feasibility study a 

geometrically simpler model is chosen. Simplifications to the model are discussed in section 

7.1. 

7.1 Model Simplifications

As outlined in section 4.3, several simplifications have been applied in order to better study 

the feasibility of implementing computational homogenization in MSC Marc. The applied 

simplifications are that only the solid part of the mechanical model is considered. It is loaded 

with a 50um displacement and has fixed material properties.

7.1.1 Geometry 

The geometry of the original model may not lend itself well for homogenization. In fact it is 

already a volume that is chosen to be representative, thus already is an RVE. In order to test 

the computational homogenization scheme a simpler geometry has been selected.

The model is chosen to be a stacked series of beads. Beads are a common geometry in the 

coating of implants
7
, however it would be more likely that they appear in a closest

configuration. A simple stacked model would allow the straightforward RVE selection of a 

cube with a spherical void. This eased RVE selection is the reason that this geometry was 

selected. 

The geometry of the reference model is shown in 

 

Figure 25 Geometry of the reference model. 8 beads in a stacked configuration.

The extracted RVE and the resulting macroscopic model are sho

                                                      
7
 See for example http://www.mcminncentre.co.uk/
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with a 50um displacement and has fixed material properties. 
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the computational homogenization scheme a simpler geometry has been selected.

The model is chosen to be a stacked series of beads. Beads are a common geometry in the 

however it would be more likely that they appear in a closest

configuration. A simple stacked model would allow the straightforward RVE selection of a 

cube with a spherical void. This eased RVE selection is the reason that this geometry was 

The geometry of the reference model is shown in Figure 25. 

 

Geometry of the reference model. 8 beads in a stacked configuration. 

The extracted RVE and the resulting macroscopic model are shown in Figure 
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Computational Homogenization 

n section 2.4. This chapter 

will perform a feasibility study into the implementation of computational homogenization in 

el shows possibilities that computational 

homogenization may be applied to the reduced model. For the feasibility study a 

geometrically simpler model is chosen. Simplifications to the model are discussed in section 

, several simplifications have been applied in order to better study 

the feasibility of implementing computational homogenization in MSC Marc. The applied 

he solid part of the mechanical model is considered. It is loaded 

The geometry of the original model may not lend itself well for homogenization. In fact it is 

osen to be representative, thus already is an RVE. In order to test 

the computational homogenization scheme a simpler geometry has been selected. 

The model is chosen to be a stacked series of beads. Beads are a common geometry in the 

however it would be more likely that they appear in a closest-stacking 

configuration. A simple stacked model would allow the straightforward RVE selection of a 

cube with a spherical void. This eased RVE selection is the reason that this geometry was 

Figure 26. 
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Figure 26 Left: RVE geometry. Right: Macroscopic model, consisting of 8 hexahedral elements.

Figure 26 shows the essence of homogenization. To the right in 

model is shown that aims to convey the structural response of a model like 

7.1.2 Loading of the model

One of the restrictions that became apparent is the loading of the model. O

between bone and implant, it was assumed that the application of the load is done 

uniformly over the surface where the implant interfaces with the biological tissue. When a 

homogenized approach is selected, this is no longer possible since 

implant surface is assumed to be flat

model. This may be a severe restriction on the applicability of homogenization.

investigate this, a short simulation was performed 

geometry) was loaded on the top surface, rather than the surface that is in assumed to be in 

contact with the implant. 

Figure 27 Effect of the same load applied to the top surface, rather than t

Clearly different results appear as a consequence of the altered loading application.
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Left: RVE geometry. Right: Macroscopic model, consisting of 8 hexahedral elements.

shows the essence of homogenization. To the right in Figure 

model is shown that aims to convey the structural response of a model like 

Loading of the model 

One of the restrictions that became apparent is the loading of the model. O

between bone and implant, it was assumed that the application of the load is done 

over the surface where the implant interfaces with the biological tissue. When a 

homogenized approach is selected, this is no longer possible since the geometry of the 

implant surface is assumed to be flat and the loading must applied on the top surface of the 

. This may be a severe restriction on the applicability of homogenization.

a short simulation was performed where the model (with the complete 
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Effect of the same load applied to the top surface, rather than the implant surface.

Clearly different results appear as a consequence of the altered loading application.

5 7

Day nr.

Effect of different loading

Bone -

Bone -

Cartilage 

Cartilage 

Fibrous Tissue 

Fibrous Tissue 

Computational Homogenization 37 

Left: RVE geometry. Right: Macroscopic model, consisting of 8 hexahedral elements. 

Figure 26, a macroscopic 

model is shown that aims to convey the structural response of a model like Figure 25. 

One of the restrictions that became apparent is the loading of the model. On the interface 

between bone and implant, it was assumed that the application of the load is done 

over the surface where the implant interfaces with the biological tissue. When a 

the geometry of the 

and the loading must applied on the top surface of the 

. This may be a severe restriction on the applicability of homogenization. In order to 

(with the complete 

was loaded on the top surface, rather than the surface that is in assumed to be in 
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Clearly different results appear as a consequence of the altered loading application. 
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7.2 Algorithm Implementation in MSC Marc 

A homogenization approach consists of 2 models. 1 model is the macroscopic model, which 

aims to represent the global geometry. The second model is the RVE, which models a 

periodic or representative structure that is distributed throughout the macroscopic model.  

The geometry of the RVE and the macroscopic model were shown in Figure 26. These 

sections will go into the implementation in MSC Marc and discuss the results. 

The general structure of the computational homogenization scheme starts with the 

macroscopic model.  The general loading is applied to macroscopic model. From this loading, 

the microscopic model will determine its structural response. This response (in the form of 

the stress tensor and the related stiffness matrix) are determined and taken to the 

macroscopic level. 

7.2.1 Microscopic element  

The RVE element forms the core of the computational scheme. The microscopic element 

uses the macroscopic deformation tensor to formulate a loading condition. The boundary 

conditions are periodic boundary conditions and are completed with 1 fixed node (�+++) and 

3 nodes that are prescribed using the macroscopic deformation tensor (�++) , �)++ , �+)+). 

 

Figure 28 Corner node identification in the microscopic model 

Periodic Boundary Conditions 

The periodic boundary conditions are applied to all non-prescribed boundary nodes. They 

shall move in accordance with the corner nodes. The periodicity constraints are formulated 

as Equation 2.3, resulting in 

�%ÛÜ # �ÝÛ%%Û� � �++) # �+++, 

�ÞÄßà% # �áeâ% � �)++ # �+++, 

�Ýãäw # �âÞÛå% � �+)+ # �+++. 

�)++ 

�+)+ 

�+++ 

�++) 
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These periodic boundary conditions are prescribed in MSC Marc/Mentat using servo links. 

They are applied using an automated python routine (see Appendix C). Care should be taken 

that some nodes do not obtain a double periodic constraint. 

Prescribed Nodes 

The deformation on the prescribed nodes (subscript S) can be calculated as the difference 

between the deformed and the undeformed configuration. The microscopic model is 

assumed to deform in accordance with the macroscopic model i.e. the macroscopic 

deformation tensor governs the deformation of the microscopic model. The displacement of 

the prescribed nodes can be described as the change between the undeformed and the 

deformed configuration. 

���F � ��F # ��F � !���F # ��F � $!� # &' � ��F 7.1 

This displacement can be applied to the prescribed nodes using the subroutine FORCDT in 

MSC Marc. According to Equation 7.1, the subroutine will be coded as 

��)�.�æ� �  $!� # &' ��)�.�æ
� � ç¡�,)) # 1 ¡�,.) ¡�,æ)¡�,). ¡�,.. # 1 ¡�,æ.¡�,)æ ¡�,.æ ¡�,ææ # 1è ��)�.�æ

�. 
These displacements will be applied at every iteration. The model is constructed to apply the 

load in 5 steps, thus the displacements must be applied in 5 increments resulting in 

��)�.�æ� � )é $!� # &' ��)�.�æ
�. 

This finalizes the localization of the homogenization scheme. The macroscopic deformation 

is translated into a loading condition for the RVE.  

Extracting the macroscopic stress tensor 

The macroscopic stress tensor is given by Equation 2.5 and requires only the reaction forces 

and the position of the prescribed nodes. 

1� � 1V+ L S����Γ+PN
� 1V+ ê a�F���ë

F�) � 1V+ ê Óa)�) a)�. a)�æa.�) a.�. a.�æaæ�) aæ�. aæ�æ
Ô

F

�ë

F�)  

This summation will result in a 3x3 matrix that represents that macroscopic stress state of 

the system. When employing periodic boundary conditions, this summation is only required 

to be taken over the prescribed corner nodes [11].  

The information that is available at specific nodes can be accessed in MSC Marc using the 

subroutine IMPD.  
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MSC Marc uses second PK to calculate stresses for large strain models. Having found the 

macroscopic 1
st

 PK stresses, the 2
nd

 PK tensor is easily found by using the macroscopic 

deformation tensor to transform the stresses 

7ì � !ì()1ì, 

resulting in the macroscopic 2
nd

 PK stress tensor. 

7.2.2 Macroscopic element 

The macroscopic element is the main element that will control the homogenization 

procedure. The function of this element is to transfer the macroscopic deformation tensor to 

the RVEs and build the stresses and the tangent on the macroscopic level. This will be done 

using the subroutine HYPELA2. 

The stresses are obtained by starting a RVE simulation that returns the macroscopic stresses. 

The tangent will be computed using a numerical differentiation scheme. 

Calculating the macroscopic tangent 

Now that the macroscopic deformation tensor and the macroscopic stress tensor are 

available, the macroscopic tangent can be computed. The option that is presented in [11] is 

to condense the stiffness matrix in accordance with a partitioning between prescribed and 

free nodes. 

Unfortunately, this method is not possible in Marc as the full stiffness matrix is not available 

for manipulation and reassembling a custom full stiffness matrix in marc is highly inefficient. 

Another option is proposed, namely a numerical differentiation proposed by Miehe [13]. 

The idea for this forward numerical differentiation is quite simple. Calculate the stress state, 

apply a small perturbation, calculate the perturbed stress state and from these two we can 

determine the tangent. Traditionally, this routine should be repeated for every component 

of the tangent, but Miehe introduced a method to reduce the number of required steps. 

The 2
nd

 Piola-Kirchhoff stress tensor can be calculated using either the deformation tensor $!' or the Right Cauchy-Green deformation tensor $�', which gives the relation for the 

tangent  

í � 2 ?7 ?� 9  7 � í: ).  �. 

A small perturbation (in the form of a perturbation to the deformation tensor)  

!$äî'ï � ! > Δ!$äî'ï , 

will be applied. Next the assumption is made that the resulting change in stresses that are 

caused by the perturbation can be approximated linearly according to 

Δ7 y 7E!$äî'ï G # 7$!' �  7EΔ!$äî'ï G � í: ). Δ� � í: ). $Δ!%! > !%Δ!'. 7.2 
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Assuming a specific form for the perturbation 

Δ!$äî'ï � ï. ÎE!(%ð��äG�ð��î > E!(%ð��îG�ð��äÏ, 7.3 

causes terms to fallout nicely due to symmetry properties in the basis vectors. The basis 

vector (ð��)++, ð��+)+, ð��++)) are the unit vectors in Cartesian space, further reducing Equation 

7.2 to  

7E!$äî'ï G # 7$!' y  í: ï. Îð��ä�ð��î > ð��î�ð��äÏ � í�, 

From which we find the relation 

íãÝ$äî' � )ï ñ7ãÝE!$äî'ï G # 7ãÝ$!'ò. 
The specific choice of Δ!$äî'ï  (in the form of Equation 7.3) allows a quicker estimate for the 

tangent. Furthermore, the article elaborates on the importance of � and determines that � � 1 � 10(ó gives good  

One of the problems associated with numerical differentiation is efficiency. The complete 

problem must be rerun with a small perturbation to the macroscopic tangent. This is 

reflected in Figure 29. 

 

7.2.3 Detailed Flow-Chart of implementation in Marc 

The implementation that is described in sections 7.2.1 and 7.2.2 is summarized here in 

Figure 29. 
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Figure 29 Flow diagram for a computational homogenization setup. 

 

UBGINC 

• Read Macroscopic Deformation Tensor $!ì' 

UEDINC  

• Sum element volumes to get total RVE 

volume 

• Calculate averaged stress tensor 1� � )VN ∑ a�F���ëF�)  

• Convert to 2
nd

 PK: 7ì � !ì()1ì 

IMPD 

• For corner nodes: Calculate contribution to 

stress tensor (but not yet averaged over 

total volume) 

 

���F � $!� # &' � ��F 

FORCDT 

• For corner nodes: Calculate applied load 

 

Lo
o

p
 o

v
e

r 
a

ll
 R

V
E

 e
le

m
e

n
ts

 

Lo
o

p
 o

v
e

r 
a

ll
 m

a
cr

o
sc

o
p

ic
 e

le
m

e
n

ts
 

• Assemble final stress tensor $7ì' 

and tangent $�ì� ' 

HYPELA2 

• Prepare data on disk. Delete old 

data files.  

• Save Macroscopic deformation 

tensor to disk $!ì' 

 

Calculate Macroscopic Stresses 

• Start RVE calculation using $!ì' 

• Read results from RVE 

calculations: Macroscopic 2nd 

PK stresses  

Calculate Macroscopic Tangent 

• Start RVE calculation using 

perturbed deformation 

tangent 

 

• Read results from RVE 

calculations and assemble  into 

macroscopic tangent 

• Calculate perturbation (6 

perturbations in 3D) 

HYPELA2 

• Calculate element volume 

• Calculate material properties based on 

tissue fractions. For now tissue fractions are 

specified in the subroutine, but this can 

easily be adapted 

• Use material properties to calculate Lame’s 

Constants. 

×ô � 2õo$p^3' # qö z �() � } > o�()��() 

7 � o$ln3'�() > q$ & # �()' 

Build the tangent and the stress matrix. 

 

        Macroscopic model                      Microscopic model 
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7.3 Results 

Although the model does show some potential for the application of a computational 

homogenization scheme, the implementation caused manyproblems. 

Unfortunately a fully correct implementation has not been realized. But run times already 

indicate that even if the run would be successful, an increase in computation time will never 

be achieved. 

As seen in Figure 29 the microscopic simulation must be called 7 (!) times. This greatly 

reduces the effectiveness of a homogenization approach in a commercial code. 

The calculations and disk activity have been minimized to assess the homogenization 

approach. However, the constant need to start another instance of MSC Marc is a major 

source of computational overhead. This leads to tremendous run times. 

The largest source of overhead lies in the numerical approximation of the macroscopic 

tangent. It requires 6 microscopic simulations. Condensation of the microscopic stiffness 

matrix would be a better a solution, but this is unfortunately not possible in MSC Marc.  

Timing information for the homogenization model with only 16 elements shows that 

computational homogenization does not benefit the computation time. The total time for 1 

iteration increased to almost 290000 seconds. 

The computational homogenization scheme could benefit from extreme parallelization. The 

global set up and independent RVE calculations can all be sent to a different computer. This 

requires massive parallelization, available hardware and available software. The question 

then becomes whether such a solution is cost effective. 

In addition to these implementation problems, the problem of loading further deteriorates a 

homogenized solution. A simulation showed that the different loading that would be 

required as a result of the homogenization scheme will lead to significantly different results.  
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8 Summary & Conclusions 

In the course of this thesis an investigation was made into the feasibility of accelerating and 

upscaling the bone ingrowth model developed by A. Andreykiv [1]. 

A feasibility study on the application of a computational homogenization scheme was 

performed. The original model does show potential for a homogenization approach. Periodic 

fluctuations can be observed in the relevant parameter (maximum shear strain). These 

fluctuations are an indication that a averaged solution may be extracted. 

The computational homogenization scheme has been unsuccessfully implemented in MSC 

Marc. The resulting run times of a simulation are extremely long. These long run times are 

due to the numerical differentiation scheme that requires many RVE simulations and that for 

every simulation a complete instance of MSC Marc must be started, resulting in massive 

computational overhead. In addition the loading cannot be applied in a similar manner and 

this altered loading leads to different results. 

An investigation on model base was also performed. It showed the necessity of the fluid 

phase and thus the necessity of the biphasic approach to soft-tissue modeling. Although the 

fluid has been shown to contribute less to the biophysical stimulus it nonetheless had a 

tremendous impact on the results. 

A second investigation into the linearization of the biological model showed that a linearized 

biological model is not an acceptable approximate for the biological model. The tissue 

production of fibrous tissue is completely halted and bone production increases. 

Investigation of the diffusion of the fibroblasts and mesenchymal stem cells suggested that a 

one-dimensional approximation of the diffusion was acceptable. Implementation in the 

subroutine inexplicably led to non-positive-definiteness of the stiffness matrix. It could not 

be established why this was the case. An estimate of the computation time revealed that a 

decrease of only 200 seconds is expected, which is relatively little compared to the complete 

simulation. 

In spite of the previous results, a large gain (~65%) in computational speed was gained. This 

increase in speed is completely attributed to coding optimization. The communication 

between the biological model and the mechanical model was coded using files on the hard 

drive and waiting times that were necessary to prevent simultaneous access to these files.  

Investigation of the loops that control the disk activity revealed that the waiting times 

(necessary for monitoring files) could be reduced. The reduction of the waiting time from 1 

second to 1 millisecond led to a overall decrease in computation time of about 20%. 

The second improvement reduced the total amount of disk writes. The original model wrote 

the results of an element immediately to the disk. The consequent reading and writing as a 
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result of this setup up greatly reduced the speed of the simulation. The improved coding 

stores all results in memory and writes the results of elements to the disk in 1 operation at 

the end of an iteration. This approach reduced the overall computation time by 65% 

(compared to the original model) 
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9 Recommendations 

The model investigations showed that all implemented features are an essential part of the 

simulation. The results in this thesis have shown that model simplification does not lead to 

acceptable results. 

The application of computational homogenization also did not result in the desired increase 

in speed and thus not the upscalability of this system. Clearly homogenization is not the 

route that should be taken in order to apply the findings of the bone ingrowth simulation on 

a larger scale. 

It is suggested that a new point of view, where the results of these detailed simulations may 

be incorporated. Such a new approach should be formulated in terms of the requirements in 

a macroscopic model. In a macroscopic setting, where for example a complete implant is 

modeled, there is no need for the detailed geometry of the interface. Furthermore there is 

no need for the stress state or the tissue concentrations of the interface section. What is 

needed is the response of the interface to a loading and the consequent result for the 

fixation of the implant. 

The following suggestion is made. At the interface between implant and bone, a certain 

amount of motion will be present after surgery. This amount of motion will differ as a 

function of location on the surface of the implant. The current model for bone ingrowth can 

be used to evaluate different applied displacements to assess time to fixation (i.e. 

micromotion = 0) Correlate stiffness of the system to this. Such an investigation would lead 

for example to a graph that might resemble the figure below. 

 

Such a result can be implemented in a full scale implant simulation. Along the implant, the 

local micromotions will give an indication of the time required for fixation. This should be a 

good indication for the quality of the implant. 

In a time dependent analysis, a locally evolving stiffness approach may be adopted, where 

the evolution of the stiffness ensures that the ‘time to fixation’ is achieved. 

It should be noted that the validation of such a model will require experimental data for 

complete implants. 

Relative motion 

between implant 

and bone  

Time to fixation 
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Appendix A Macroscopic element subroutine  

This subroutine is used to control the macroscopic element in the computational 

homogenization scheme. 

C<<<<<<<<< Computational Homogenization Macroscopic  element >>>>>>>> 
C<<<<<<<<< writen by: Y.S. Khoe                             >>>>>>>> 
C<<<<<<<<< email: y.s.khoe@student.tudelft.nl               >>>>>>>> 
C<<<<<<<<<                                                  >>>>>>>> 
C================================================== == 
C     HYPELA2 
C================================================== == 
      SUBROUTINE HYPELA2(D,G,E,DE,S,T,DT,NGENS,N,NN ,KC,MATUS,NDI, 
     * NSHEAR,DISP,DISPT,COORD,FFN,FROTN,STRECHN,EI GVN,FFN1, 
     * FROTN1,STRECHN1,EIGVN1,NCRD,ITEL,NDEG,NDM,NN ODE, 
     * JTYPE,LCLASS,IFR,IFU) 
      IMPLICIT REAL *8 (A-H, O-Z) 
      integer statusRVE 
      DIMENSION E(1),DE(1),T(1),DT(1),G(1),D(NGENS, NGENS),S(1) 
      DIMENSION N(2),COORD(NCRD,NNODE),DISP(NDEG,NN ODE), 
     * DISPT(NDEG,NNODE),FFN(ITEL,ITEL),FROTN(ITEL, ITEL), 
     * STRECHN(ITEL),EIGVN(ITEL,ITEL),FFN1(ITEL,ITE L), 
     * FROTN1(ITEL,ITEL),STRECHN1(ITEL),EIGVN1(ITEL ,ITEL) 
      DIMENSION MATUS(2) 
      DIMENSION FMt(3,3),iFMt(3,3),Ei(3,3),Ci(3),Di (3), 
     * deltaFcd(3,3),Fcd(3,3),FtEc(3),FtEd(3),CMe(3 ,3) 
      DIMENSION PM(3,3),CM(3,3,3,3) 
      CHARACTER tmp1(12) 
      include  '../common/concom' 
 
C      Do not read from tissues.dat, but instead se t a fixed tissue composition 
C      Ususally interface here to communicate tissu e fractions to MICRO for 
C      example by writing tissue fractions to disk.  
C      In this case these settings actually do noth ing 
      bone=0.1394211E-01 
      cartilage=0.1865109E-01 
      fibrous=0.8101763E-03 
 
C     [1] Delete old data files 
      isystem=system('rm -f MacroFM.dat') 
 
C     [2] Save Deformation Tensor To Disk 
C     ---- Write Macroscopic Deformation Tensor fro m disk - MacroFM.dat ---- 
C      if (inc.le.0) then C set FM to eye(3) at inc =0 
C         do i=1,3 
C            do j=1,3 
C               FFN(i,j)=0.d0 
C               if (i.eq.j) FFN(i,j)=1.d0 
C            end do 
C         end do 
C      end if 
 
      write(0,*) "" 
      write(0,*) "======= INC NR: ",inc, "========= ====================" 
      write(0,*) "======= ELM NR: ",N(1),"========= ====================" 
      write(0,*) "======= WRITE Macroscopic Deforma tion Tensor ========" 
      write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FFN(L,1),L =1,3) 
      write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FFN(L,2),L =1,3) 
      write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FFN(L,3),L =1,3) 
      open(20,file='MacroFM.dat',FORM='FORMATTED') 
      write(20,*) FFN 
      close(20) 
 
 
C     [3] Start RVE calculation with macropscopic d eformation tensor 
      isystem=system('./startRVEcalc') 
      statusRVE=0 
 100  open(30,file='status.dat',iostat=istat,FORM=' FORMATTED') 
      if (istat.ne.0) then 
         call sleep(1) 
         goto 100 
      end if 
      read(30,*,iostat=istat) statusRVE 
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      if (istat.ne.0)  then 
         close(30) 
         call sleep(1) 
         goto 100 
      end if 
      if (statusRVE.ne.3004) then 
         close(30) 
         call sleep(1) 
         goto 100 
      end if 
 
C     [4] Read 2nd PK macroscopic stress results fr om RVE calculations 
!      write(0,*) "================== Read:MacroPM. dat =================" 
C      if (inc.eq.0) then 
C         call scla(PM,0,3,3,0) 
C      else 
         open(20,file='MacroPM.dat',FORM='FORMATTED ') 
         read(20,*) PM 
         close(20) 
         isystem=system('rm -f MacroPM.dat') 
C      end if 
 
      write(0,*) "========= Stress Tensor - 2ND PK           ==========" 
      write(0,*) (PM(L,1),L=1,3) 
      write(0,*) (PM(L,2),L=1,3) 
      write(0,*) (PM(L,3),L=1,3) 
      write(0,*) "================================= ====================" 
 
C     [5] Calculate perturbed macroscopic deformati on tensor 
C         tangent is calculate by numerical differe ntiation (miehe,96) 
 
!      write(0,*) "======= Macroscopic Tangent              ========" 
      eps=1e-8 
      call gmtra (FFN,FMt,3,3) 
      !call inv3x3(FMt,iFMt,tmp,0) 
      call invert(FMt,3,iFMt,0,detF,3) 
C     create 3x3 unity matrix 
      do i=1,3 
         do j=1,3 
            Ei(i,j)=0 
         end do 
         Ei(i,i)=1 
      end do 
 
C     [6] Calculate new stresses based on perturbat ions 
C         (6 perturbations required for 3D) 
      do K=1,3 
         do L=K,3 
          ! Create pertubation Fcd 
            do i=1,3 
               Ci(i)=Ei(i,K) !Ec 
               Di(i)=Ei(i,L) !Ed 
            end do 
            do i=1,3 
               FtEc(i)=iFMt(1,i)*Ci(1)+iFMt(2,i)*Ci (2)+iFMt(3,i)*Ci(3) 
               FtEd(i)=iFMt(1,i)*Di(1)+iFMt(2,i)*Di (2)+iFMt(3,i)*Di(3)                
               do j=1,3 
                 deltaFcd(i,j)=(eps/2)*((FtEc(i)*Di (j))+(FtEd(i)*Ci(j))) 
                  Fcd(i,j)=FFN(i,j)+deltaFcd(i,j) 
               end do 
            end do             
 
C           [7] Calculate perturbed stresses and co ntribution to macroscopic tangent 
C           [7.1] Delete old data files 
            isystem=system('rm -f MacroFM.dat') 
            isystem=system('rm -f PoroRVE_CalcRVE.p id') 
C           [7.2] Save Deformation Tensor To Disk 
            open(20,file='MacroFM.dat',FORM='FORMAT TED') 
            write(20,*) Fcd 
            close(20) 
C           [7.3] Start RVE calculation with macrop scopic deformation tensor 
            isystem=system('./startRVEcalc') 
            statusRVE=0             
 101        open(30,file='status.dat',iostat=istat, FORM='FORMATTED') 
            if (istat.ne.0) then 
               call sleep(1) 
               goto 101 
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            end if 
            read(30,*,iostat=istat) statusRVE 
            if (istat.ne.0)  then 
               close(30) 
               call sleep(1) 
               goto 101 
            end if 
            if (statusRVE.ne.3004) then 
               close(30) 
               call sleep(1) 
               goto 101 
            end if 
C           [7.4] Read 2nd PK macroscopic stress re sults from RVE calculations 
            open(20,file='MacroPM.dat',FORM='FORMAT TED') 
            read(20,*) Shat 
            close(20) 
            isystem=system('rm -f MacroPM.dat') 
C           [7.5] Calculate addition to Macroscopic  Tangent Matrix 
            call gmsub(Shat,PM,CMe,3,3) 
            do i=1,3 
               do j=1,3 
                  CM(i,j,K,L)=CMe(i,j) 
               end do 
            end do 
 
         end do 
      end do 
 
C     [8] Assemble macroscopic stress and tangent i nto apprpriate vectors for MSC MARC 
      S(1)=PM(1,1) 
      S(2)=PM(2,2) 
      S(3)=PM(3,3) 
      S(4)=PM(1,2) !=PM(2,1) 
      S(5)=PM(2,3) !=PM(3,2) 
      S(6)=PM(1,3) !=PM(3,1) 
 
      D(1,1)=CM(1,1,1,1) 
      D(1,2)=CM(1,1,2,2) 
      D(1,3)=CM(1,1,3,3) 
      D(1,4)=CM(1,1,1,2) 
      D(1,5)=CM(1,1,2,3) 
      D(1,6)=CM(1,1,3,1) 
 
      D(2,2)=CM(2,2,2,2) 
      D(2,3)=CM(2,2,3,3) 
      D(2,4)=CM(2,2,1,2) 
      D(2,5)=CM(2,2,2,3) 
      D(2,6)=CM(2,2,3,1) 
 
      D(3,3)=CM(3,3,3,3) 
      D(3,4)=CM(3,3,1,2) 
      D(3,5)=CM(3,3,2,3) 
      D(3,6)=CM(3,3,3,1) 
 
      D(4,4)=CM(1,2,1,2) 
      D(4,5)=CM(1,2,2,3) 
      D(4,6)=CM(1,2,3,1) 
 
      D(5,5)=CM(2,3,2,3) 
      D(5,6)=CM(2,3,3,1) 
 
      D(6,6)=CM(3,1,3,1) 
      do i=1,5 
         do j=i+1,6 
            D(j,i)=D(i,j) 
         end do 
      end do 
 
      RETURN 
      END 
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Appendix B Microscopic element subroutine  

This subroutine is used to control the microscopic element in the computational 

homogenization scheme. 

C     ============================================= ===================== 
C      UBGINC 
C     Read all required files (only needs to be don e once) 
C     ============================================= ===================== 
      subroutine ubginc(inc,incsub) 
      implicit real*8 (a-h,o-z) 
 
      dimension FM(3,3),PBNodeID(4) 
      common/macro/FM,PBNodeID,PBRForces 
 
      if (inc.eq.0) then 
         write(0,*) "======= Read Input =========== ====================" 
         write(0,*) "======= Macroscopic Deformatio n Tensor ===========" 
C        ---- Read Macroscopic Deformation Tensor f rom disk - MacroFM.dat ---- 
         open(20,file='MacroFM.dat',FORM='FORMATTED ') 
         read(20,*) FM 
         close(20) 
         write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FM(N,1) ,N=1,3) 
         write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FM(N,2) ,N=1,3) 
         write(0,'(e9.3,1X,e9.3,1X,e9.3)') (FM(N,3) ,N=1,3) 
C        ---- Read Prescibed Node ID - PrescribedNo deID.dat ---- 
         open(20,file='PrescribedNodeID.dat',FORM=' FORMATTED') 
         read(20,'(e12.6)') PBNodeID 
         close(20) 
      end if 
 
      RETURN 
      END 
C     ============================================= ===================== 
C      FORCDT (OLDSTYLE tables - array of applied d isplacements are incremental) 
C     take macroscopic deformation tensor and use i t to define 
C     boundary condition on corner nodes. 
C     ============================================= ===================== 
      SUBROUTINE FORCDT (U,V,A,DP,DU,TIME,DTIME,NDE G,NODE, 
     * UG,XORD,NCRD,IACFLG,INC, IPASS) 
      IMPLICIT REAL *8 (A-H, O-Z) 
      DIMENSION U(NDEG),V(NDEG),A(NDEG),DP(NDEG),DU (NDEG),UG(NDEG), 
     * XORD(NDEG) 
 
      dimension FM(3,3),PBNodeID(4) 
      common/macro/FM,PBNodeID,PBRForces 
 
      if (inc.eq.0) then 
C      du=(FM-I)*X !watch notation A(column,row) 
       DU(1)=((FM(1,1)-1)*XORD(1)+FM(2,1)*XORD(2)+F M(3,1)*XORD(3))/5 
       DU(2)=(FM(1,2)*XORD(1)+(FM(2,2)-1)*XORD(2)+F M(3,2)*XORD(3))/5 
       DU(3)=(FM(1,3)*XORD(1)+FM(2,3)*XORD(2)+(FM(3 ,3)-1)*XORD(3))/5 
C       write(0,*) 
C       write(0,*) "======= Applied Node Disp Node: ",NODE," ============" 
C       write(0,'(e9.3,1x,e9.3,1x,e9.3)') (DU(N),N= 1,3) 
C      Applied Displacement DU is saved in memory, thus will be applied every iteration 
C      Also it is automatically saved for which nod e DU is applied. 
      end if 
 
      RETURN 
      END 
 
 
C     ============================================= ======= 
C      HYPELA2 
C     ============================================= ======= 
      SUBROUTINE HYPELA2(D,G,E,DE,S,T,DT,NGENS,N,NN ,KC,MATUS,NDI, 
     * NSHEAR,DISP,DISPT,COORD,FFN,FROTN,STRECHN,EI GVN,FFN1, 
     * FROTN1,STRECHN1,EIGVN1,NCRD,ITEL,NDEG,NDM,NN ODE, 
     * JTYPE,LCLASS,IFR,IFU) 
      IMPLICIT REAL *8 (A-H, O-Z) 
      DIMENSION E(1),DE(1),T(1),DT(1),G(1),D(NGENS, NGENS),S(1) 
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      DIMENSION N(2),COORD(NCRD,NNODE),DISP(NDEG,NN ODE), 
     * DISPT(NDEG,NNODE),FFN(ITEL,ITEL),FROTN(ITEL, ITEL), 
     * STRECHN(ITEL),EIGVN(ITEL,ITEL),FFN1(ITEL,ITE L), 
     * FROTN1(ITEL,ITEL),STRECHN1(ITEL),EIGVN1(ITEL ,ITEL) 
      DIMENSION MATUS(2),RC(3,3),RCinv(3,3),Cse(3,3 ,3,3), 
     * secondPK(3,3),FFNt(3,3),Green(3,3),elmvol(10 000) 
      DIMENSION A(3,3),At(3,3),Ainv(3,3) 
      common/tissues/bone,cartilage,fibrous 
      common/elvol/elmvol 
      include  '../common/concom' 
      include  '../common/cdominfo' !contains: iprc nm, inc 
 
C     Calculate element Volume, used in UEDINC to d etermine total volume 
      call elmvar(78,N(1),NN,KC,elmvol(N(1))) 
 
C     Do not read from tissues.dat, but instead set  a fixed tissue composition 
C     Later convert this to read settings from macr o properties 
      bone=0.1394211E-01 
      cartilage=0.1865109E-01 
      fibrous=0.8101763E-03 
 
C     calculate the material properties (Young's Mo dulus, Poisson's Ratio) 
      call matextract(et,xmu,bone,cartilage,fibrous ) 
 
C     Temperature effects are not relevant here 
      do i=1,6 
         G(i)=0.d0 
      end do 
 
C     Calculate Elasticity matrix and stresses 
C     FFN1 is def tensor at current time step 
      call gmtra(FFN1,FFNt,3,3) 
      call gmprd(FFNt,FFN1,RC,3,3,3) 
      call inv3x3(RC,RCinv,det_RC,0)      
      detJ=sqrt(det_RC) 
       
C     Lame constants 
      dlambda=xmu*et/((1.d0+xmu)*(1.d0-2.d0*xmu)) 
      dmu=et/(2.d0*(1.d0+xmu)) 
C     Elasticity matrix (neo-Hookean material ) 
      do i=1,3 
         do j=1,3 
            do k=1,3 
               do l=1,3 
                  Cse(i,j,k,l)=dlambda*(RCinv(i,j)* RCinv(k,l))+ 
     *             (dmu-dlambda*log(detJ))* 
     *             (RCinv(i,k)*RCinv(j,l)+RCinv(i,l )*RCinv(k,j)) 
               end do 
            end do 
         end do 
      end do 
      D(1,1)=Cse(1,1,1,1) 
      D(1,2)=Cse(1,1,2,2) 
      D(1,3)=Cse(1,1,3,3) 
      D(1,4)=Cse(1,1,1,2) 
      D(1,5)=Cse(1,1,2,3) 
      D(1,6)=Cse(1,1,3,1) 
 
      D(2,2)=Cse(2,2,2,2) 
      D(2,3)=Cse(2,2,3,3) 
      D(2,4)=Cse(2,2,1,2) 
      D(2,5)=Cse(2,2,2,3) 
      D(2,6)=Cse(2,2,3,1) 
 
      D(3,3)=Cse(3,3,3,3) 
      D(3,4)=Cse(3,3,1,2) 
      D(3,5)=Cse(3,3,2,3) 
      D(3,6)=Cse(3,3,3,1) 
 
      D(4,4)=Cse(1,2,1,2) 
      D(4,5)=Cse(1,2,2,3) 
      D(4,6)=Cse(1,2,3,1) 
 
      D(5,5)=Cse(2,3,2,3) 
      D(5,6)=Cse(2,3,3,1) 
 
      D(6,6)=Cse(3,1,3,1) 
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      do i=1,5 
         do j=i+1,6 
            D(j,i)=D(i,j) 
         end do 
      end do 
 
C     Second Piola-Kirchhoff stress 
      do i=1,3 
         do j=1,3 
            if (i.eq.j) then 
               secondPK(i,j)=dlambda*log(detJ)*RCin v(i,j)+ 
     *          dmu*(1.d0-RCinv(i,j)) 
            else 
               secondPK(i,j)=dlambda*log(detJ)*RCin v(i,j)- 
     *          dmu*RCinv(i,j) 
            end if 
         end do 
      end do 
      S(1)=secondPK(1,1) 
      S(2)=secondPK(2,2) 
      S(3)=secondPK(3,3) 
      S(4)=secondPK(1,2) 
      S(5)=secondPK(2,3) 
      S(6)=secondPK(1,3) 
      RETURN 
      END 
 
C     ============================================= ===================== 
C      IMPD 
C     Here the following is calculated: sum(f*X) fo r the prescribed nodes 
C     in order to get the macroscopic stress tensor , it must still be divided 
C     by the original volume which is done in UEDIN C. 
C     ============================================= ===================== 
      subroutine impd(lnode,dd,td,xord,f,v,a,ndeg,n crd) 
      implicit real *8 (a-h, o-z) 
      dimension dd(ndeg), td(ndeg), xord(ncrd), f(n deg), v(ndeg), 
     * a(ndeg), lnode(2) 
      dimension FM(3,3),PBNodeID(4),PBRForces(3,3), PBRForcesTMP(3,3) 
      common/macro/FM,PBNodeID,PBRForces 
 
      if ((lnode(1).eq.PBNodeID(1)).or.(lnode(1).eq .PBNodeID(2)).or. 
     *     (lnode(1).eq.PBNodeID(3)).or.(lnode(1).e q.PBNodeID(4))) then 
         do i=1,3 
            do j=1,3 
               PBRForces(i,j)=PBRForces(i,j) + f(i) *xord(j) 
            end do 
         end do 
      end if 
 
 
      return 
      end 
 
C     ============================================= ===================== 
C      UEDINC 
C     At the end of the simulation calculate the ma croscopic stress 
C     tensor and the tangent and store them. 
C     ============================================= ===================== 
      subroutine uedinc(inc,incsub) 
      implicit real*8 (a-h,o-z) 
 
      dimension elmvol(10000),PBRForces(3,3),MacroP K(3,3) 
      common/elvol/elmvol 
      common/macro/FM,PBNodeID,PBRForces 
 
C     Calculate total volume 
      do i=1,10000 
         V0=TotalVolume+elmvol(i) 
      end do 
 
      if (inc.eq.5) then 
         do i=1,3 
            do j=1,3 
               MacroPK(i,j)=(1/V0)*PBRForces(i,j) 
            end do 
         end do 
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C        only do volume averaging at last incement 
C         write(0,*) "======= Calculate Macroscopic  Properties ========" 
C        -------------- Calculate Macroscopic Stres s ------------------- 
C         write(0,*) "======= F*XORD @ Prescribed n odes========" 
C         write(0,*) (MacroPK(N,1),N=1,3) 
C         write(0,*) (MacroPK(N,2),N=1,3) 
C         write(0,*) (MacroPK(N,3),N=1,3) 
C         write(0,*) "----------------------------- ---------" 
 
C        ------------ Write Macroscopic Results to disk ---------------- 
C         write(0,*) "======= Save to:MacroPM.dat              ========" 
         open(20,file='MacroPM.dat',FORM='FORMATTED ') 
         write(20,*) MacroPK 
         close(20) 
C         write(0,*) "============================= ====================" 
 
C        ------------------------------------------ --------------------- 
C        ---------------- Write status file to disk  -------------------- 
 101     open(20,file='status.dat',iostat=istat,FOR M='FORMATTED') 
!        maak een bestand op de disk aan waar '3004 ' instaat 
!        voor een kopieer opdracht uit ipv schrijve n naar disk 
         isystem=system('rm -f status.dat; cp statu sReady status.dat') 
!         if (istat.ne.0) then 
!            call sleep(1) 
!            goto 101 
!         end if         
!         status3004=3004 
!         write(20,*) status3004 
!         close(20) 
C        ------------------------------------------ --------------------- 
      end if 
 
      RETURN 
      END 
 
 
C     ============================================= ===================== 
C      MATEXTRACT 
C     determine material properties 
C     input :  tissue fractions of this element; 
C              bone,cartilage,fibrous 
C     output:  Young Modulus  [et] 
C              Poisson Ratio  [xmu] 
C 
C     ============================================= ===================== 
      subroutine matextract(et,xmu,bone,cartilage,f ibrous) 
      implicit real *8 (a-h,o-z) 
      include  '../common/elmcom' 
C     young modulus 
      YoungGr=0.2e+6 
      YoungF=2e+6 
      YoungC=10e+6 
      YoungB=6000e+6 
      YoungMarrow=2e+6 
 
C.    Poisson ratio 
      xMuGr=0.1667d0 
      xMuF=0.1667d0 
      xMuC=0.1667d0 
      xMuB=0.3d0 
      xMuMarrow=0.1667d0 
 
      if (mats.ne.1.and.mats.ne.2) then 
         write(0,*) 'ERROR: material identifier is not known in HYPELA' 
         call quit(1234) 
         return 
      end if 
 
      if (mats.eq.1) then 
         xmu=bone*xMuB+cartilage*xMuC+ 
     *    fibrous*xMuF+(1.d0-(bone+fibrous+cartilag e))*xMuGr 
         et=bone*YoungB+cartilage*YoungC+ 
     *    fibrous*YoungF+(1.d0-(bone+fibrous+cartil age))*YoungGr 
      else 
         et=YoungMarrow 
         xmu=xMuMarrow 
      end if 
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      return 
      end 
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Appendix C Python script to apply servo links in the RVE 

This python script can be called from MENTAT to create the servo links that determine the 

periodic boundary conditions. It requires 6 sets of nodes named: Top, Bottom, Left, Right, 

Front and Back. Note that the script does not automatically remove duplicate links.  

Duplicate periodic boundary conditions must be prevented by careful selection of the nodal 

sets. 

#!/usr/bin/env python 
# 
from py_mentat import * 
def main(): 
    print "=== Start Python Script ===" 
    # 6 sets: Top Bottom Left Right Front Back 
    for L in range(3): 
       CornersSetName="Corners" 
       if L==0: 
          TiedSetName="Top" 
          TiedToSetName="Bottom" 
          LinkDirectionName="Z" 
       elif L==1: 
          TiedSetName="Left" 
          TiedToSetName="Right" 
          LinkDirectionName="X" 
       elif L==2: 
          TiedSetName="Front" 
          TiedToSetName="Back" 
          LinkDirectionName="Y" 
 
       n = py_get_int("nsets()") 
       for i in range(1,n+1): 
         id = py_get_int("set_id(%d)" % i) 
         sn = py_get_string("set_name(%d)" % id) 
         if sn == TiedSetName: 
              TiedSetID=id 
         elif sn == TiedToSetName: 
              RetainedSetID=id 
         elif sn == "Corners": 
              CornersSetID=id 
 
       if L==0: 
         print "* Identify Corners" 
         Corners=[[],[],[],[]] 
         Corners=[[-1]*8,[-1]*8,[-1]*8,[-1]*8] 
         CornersFound=0 
         for i in range(8): 
           Corners[0][i]=py_get_int("set_entry(%d,% d)" % (CornersSetID, i+1)) 
           Corners[1][i]=round(py_get_float("node_x (%d)" % Corners[0][i]),8) 
           Corners[2][i]=round(py_get_float("node_y (%d)" % Corners[0][i]),8) 
           Corners[3][i]=round(py_get_float("node_z (%d)" % Corners[0][i]),8) 
           # Find CornerNodes 
           Check=[Corners[1][i],Corners[2][i],Corne rs[3][i]] 
#           print "Node: ",Corners[0][i],"| coords:  ",Check 
           CornersName=round(py_get_float("Rtmp")*2 ,8) 
           if Check==[0,0,0]: 
               u000=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u000 found, node: %d" %Corn ers[0][i] 
           elif Check==[CornersName,0,0]: 
               u100=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u100 found, node: %d" %Corn ers[0][i] 
           elif Check==[0,CornersName,0]: 
               u010=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u010 found, node: %d" %Corn ers[0][i] 
           elif Check==[CornersName,CornersName,0]:  
               u110=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u110 found, node: %d" %Corn ers[0][i] 
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           elif Check==[0,0,CornersName]: 
               u001=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u001 found, node: %d" %Corn ers[0][i] 
           elif Check==[CornersName,0,CornersName]:  
               u101=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u101 found, node: %d" %Corn ers[0][i] 
           elif Check==[0,CornersName,CornersName]:  
               u011=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u011 found, node: %d" %Corn ers[0][i] 
           elif Check==[CornersName,CornersName,Cor nersName]: 
               u111=Corners[0][i] 
               CornersFound=CornersFound+1 
#                print "u111 found, node: %d" %Corn ers[0][i] 
         if CornersFound!=8: 
           print "!!! ERROR not all corners found, only found %d corners" % 
CornersFound 
         print "* Prescribed Corner Node ID's saved  to [PrescribedNodeID.dat]" 
         filename=open("PrescribedNodeID.dat","w") 
         filename.write("%e\n%e\n%e\n%e" % (u100,u0 10,u001,u000)) 
         filename.close() 
         print "Prescribed Node ID's: ",u000," ",u1 00," ",u010," ",u001 
 
       print "=== Create Periodic BC's (Servo Links ) ===" 
       print "Nodes from ",TiedSetName, " to ", Tie dToSetName, " in 
",LinkDirectionName," direction" 
       # Create Servo Links 
       nSym1 = py_get_int("nset_entries(%d)" % Tied SetID) 
       nSym2 = py_get_int("nset_entries(%d)" % Reta inedSetID) 
 
       if nSym1!=nSym2: 
         print "!!! Sets do not contain same mount of nodes thus cannot be linked" 
         print "!!! Set 1: ",TiedSetName," %d Nodes " % nSym1 
         print "!!! Set 2: ",TiedToSetName,"%d Node s" % nSym2 
         return 1 
 
       nSym=nSym1 
       Wall1=[[],[],[],[]] 
       Wall1=[[-1]*nSym,[-1]*nSym,[-1]*nSym,[-1]*nS ym] 
       Wall2=[[],[],[],[]] 
       Wall2=[[-1]*nSym,[-1]*nSym,[-1]*nSym,[-1]*nS ym] 
       MapWall=[[],[]] 
       MapWall=[[-1]*nSym,[-1]*nSym] 
       # Obtain Coordinates for all nodes in both s ets 
       for i in range(0,nSym): 
           # Wall1=TiedSet, Wall2=RetainedSet 
           Wall1[0][i]=py_get_int("set_entry(%d,%d) " % (TiedSetID, i+1)) 
           Wall1[1][i]=py_get_float("node_x(%d)" % Wall1[0][i]) 
           Wall1[2][i]=py_get_float("node_y(%d)" % Wall1[0][i]) 
           Wall1[3][i]=py_get_float("node_z(%d)" % Wall1[0][i]) 
           Wall2[0][i]=py_get_int("set_entry(%d,%d) " % (RetainedSetID, i+1)) 
           Wall2[1][i]=py_get_float("node_x(%d)" % Wall2[0][i]) 
           Wall2[2][i]=py_get_float("node_y(%d)" % Wall2[0][i]) 
           Wall2[3][i]=py_get_float("node_z(%d)" % Wall2[0][i]) 
 
       k=0 
       for i in range(0,nSym): 
         if LinkDirectionName=='X': 
           # Create Servo Links in X-direction 
           for j in range(0,nSym): 
               if (Wall1[2][i]==Wall2[2][j]) and (W all1[3][i]==Wall2[3][j]): 
                  MapWall[0][k]=Wall1[0][i] 
                  MapWall[1][k]=Wall2[0][j] 
         if LinkDirectionName=='Y': 
           # Create Servo Links in Y-direction 
           for j in range(0,nSym): 
               if (Wall1[1][i]==Wall2[1][j]) and (W all1[3][i]==Wall2[3][j]): 
                  MapWall[0][k]=Wall1[0][i] 
                  MapWall[1][k]=Wall2[0][j] 
         if LinkDirectionName=='Z': 
           # Create Servo Links in Z-direction 
           for j in range(0,nSym): 
               if (Wall1[1][i]==Wall2[1][j]) and (W all1[2][i]==Wall2[2][j]): 
                  MapWall[0][k]=Wall1[0][i] 
                  MapWall[1][k]=Wall2[0][j] 
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         k=k+1 
       print "created 3x%d=%d servo links" % (k,3*k ) 
 
       for i in range(0,k): 
          if MapWall[0][i]==-1: 
            print "!!! ERROR in Retained Node" 
          py_send("*new_link *link_class servo *tie d_node %d *servo_nterms 3 *tied_dof 
1 " % MapWall[0][i]) 
          py_send("*servo_ret_dof 1 1 1 1") 
          py_send("*servo_ret_coef 1 1 -1 1") 
          if LinkDirectionName=='Z': 
             # uTIE=u111-u110+uRET 
             py_send("*link_class servo *servo_ret_ node 1 %d %d %d" % 
(u001,u000,MapWall[1][i])) 
          if LinkDirectionName=='Y': 
             # uTIE=u100-u110+uRET 
             py_send("*link_class servo *servo_ret_ node 1 %d %d %d" % 
(u010,u000,MapWall[1][i])) 
          if LinkDirectionName=='X': 
             # uTIE=u010-u110+uRET 
             py_send("*link_class servo *servo_ret_ node 1 %d %d %d" % 
(u100,u000,MapWall[1][i])) 
          py_send("*copy_link") 
          py_send("*link_class servo *tied_dof 2") 
          py_send("*servo_ret_dof 1 2 2 2") 
          py_send("*copy_link") 
          py_send("*link_class servo *tied_dof 3") 
          py_send("*servo_ret_dof 1 3 3 3") 
          if (i % 10)==0: 
             print "--created links: %d --" % ((i+1 )*3) 
#     print "Create servo link for fixed node" 
#     py_send("*new_link *link_class servo *tied_no de %d *servo_nterms 3 *tied_dof 1 " 
% u001) 
#     py_send("*link_class servo *servo_ret_node 1 %d %d %d" % (u110,u111,u000)) 
#     py_send("*servo_ret_dof 1 1 1 1") 
#     py_send("*servo_ret_coef 1 1 -1 1") 
#     py_send("*copy_link") 
#     py_send("*link_class servo *tied_dof 2") 
#     py_send("*servo_ret_dof 1 2 2 2") 
#     py_send("*copy_link") 
#     py_send("*link_class servo *tied_dof 3") 
#     py_send("*servo_ret_dof 1 3 3 3") 
 
    print "=== Finished Creating Servo Links ===" 
    print "=== End Python Script             ===" 
 
 
 
 
    return 
 
if __name__ == '__main__': 
    py_connect('',40007) 
    main() 
    py_disconnect() 
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Appendix D Batchwrites – e.g. for stimuli.dat files 

One of the issues is that files on the disk cannot be written simultaneously by the computer 

system. The solution is to use 1 file for each domain. This appendix explains the concept of 

the batchwrite system. 

This example is worked out for the stimuli.dat files, but its general concept is also applied to 

the tissues.dat files that store the tissue fractions of each element. 

The biophysical stimuli are calculated in the mechanical simulation. This simulation is 

parallelized over 6 domains. In the computer, each domain creates an array that can contain 

all elements (the values in the array are initially set to zero). This implies that the 6 separate 

domains each have an array with the length of the number of elements. If calculations on an 

element are complete, the element number and its properties are saved in the array. At the 

end of the iteration the 6 domains each have an array in many zeros, but the entries that 

contain information are marked with the element number. These 6 arrays are saved to the 

disk at the end of the iteration. 

The reading of the stimulus files is done by the biological model. The model reads the 

complete 6 arrays into the memory and scans them once to identify the entries which have 

been marked by the element number. Together a complete array can be compiled that 

contains all data for all elements. 

 

 


