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Let X be a given Banach space, and let M and N be two orthogonal X-valued local

martingales such that N is weakly differentially subordinate to M. The paper contains

the proof of the estimate E�(Nt) ≤ C�,�,XE�(Mt), t ≥ 0, where �, � : X → R+ are convex

continuous functions and the least admissible constant C�,�,X coincides with the �, �-

norm of the periodic Hilbert transform. As a corollary, it is shown that the �, �-norms of

the periodic Hilbert transform, the Hilbert transform on the real line, and the discrete

Hilbert transform are the same if � is symmetric. We also prove that under certain

natural assumptions on � and �, the condition C�,�,X < ∞ yields the UMD property

of the space X. As an application, we provide comparison of Lp-norms of the periodic

Hilbert transform to Wiener and Paley–Walsh decoupling constants. We also study the

norms of the periodic, nonperiodic, and discrete Hilbert transforms and present the

corresponding estimates in the context of differentially subordinate harmonic functions

and more general singular integral operators.

Received September 28, 2018; Revised June 23, 2019; Accepted July 2, 2019

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz187/5544644 by N

ottingham
 Trent U

niversity user on 09 August 2019



2 Osękowski and Yaroslavtsev

1 Introduction

The purpose of this paper is to study a certain class of estimates for singular integral

operators acting on Banach-space-valued functions. Let us start with a related classical

problem that has served as a motivation for many mathematicians for almost a century.

The question is “How does the size of a periodic function control the size of its

conjugate?” Formally, assume that f is a trigonometric polynomial of the form

f (θ) = a0

2
+

N∑
k=1

(
ak cos(kθ)+ bk sin(kθ)

)
, θ ∈ T � [−π , π),

with real coefficients a0, a1, a2, . . ., aN , b1, b2, . . ., bN , and define the conjugate to f as

g(θ) =
N∑

k=1

(
ak sin(kθ)− bk cos(kθ)

)
, θ ∈ [−π , π).

Alternatively, the conjugate function can be defined as g = HT

R
f , where HT

R
is the periodic

Hilbert transform given by

HT

R
f (θ) = 1

2π
p.v.

∫ π

−π

f (s) cot
θ − s

2
ds, θ ∈ [−π , π), (1.1)

and the symbol R in the lower index of HT indicates that the operator acts on real-

valued functions. We can state the problem as follows. For a given 1 ≤ p ≤ ∞, does there

exist a universal constant Cp (i.e., not depending on the coefficients or the number N)

such that (∫
[−π ,π)

|g(θ)|pdθ

)1/p

≤ Cp

(∫
[−π ,π)

| f (θ)|pdθ

)1/p

?

Furthermore, if the answer is yes, what is the optimal value of Cp (i.e., what is the Lp

norm of HT

R
)? The 1st question was answered by M. Riesz in [45]: the inequality does

hold if and only if 1 < p < ∞. The best value of Cp was determined by Pichorides

[42] and Cole (unpublished): the constant cot(π/(2p∗)) is the best possible, where p∗ =
max{p, p/(p−1)}. There is a natural further question concerning the version of the above

result for Banach-space-valued functions (it is not difficult to see that the formula (1)

makes perfect sense in the vector setting, at least for some special f , see Section 2

below). Few years after the results of Riesz, it was realized that not all spaces are well

behaved: Bochner and Taylor [5] showed that ||HT

�1
||Lp→Lp

= ∞ for all p. The problem

of characterizing the “good” Banach spaces was solved over 40 years later: Burkholder
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The Hilbert Transform and Orthogonal Martingales 3

[8] and Bourgain [6] showed that the so-called UMD spaces form a natural environment

to the study of the Lp boundedness (1 < p < ∞) of the periodic Hilbert transform, and

more generally, for the Lp boundedness of a wider class of singular integral operators.

The above problems, though expressed in an analytic language, have a very

strong connection with probability theory, especially with the theory of martingales

(see, e.g., [1, 3, 4, 6, 9, 20, 25, 28, 40, 41]). Let us provide some necessary definitions.

Suppose that (�,F ,P) is a complete probability space, equipped with a continuous-

time filtration (Ft)t≥0. Let M = (Mt)t≥0, N = (Nt)t≥0 be two adapted real-valued local

martingales, whose trajectories are right continuous and have limits from the left.

Let [M] and [N] stand for the associated quadratic variation (square brackets) of M

and N, see [17] and (4) below. Furthermore, M∗ = supt≥0 |Mt| and N∗ = supt≥0 |Nt|
denote the corresponding maximal functions. Following Bañuelos and Wang [3] and

Wang [52], N is differentially subordinate to M (which we denote by N 	 M) if, with

probability 1, the process t 
→ [M]t − [N]t is a nondecreasing and nonnegative function

of t ≥ 0. Furthermore, we say that M and N are orthogonal, if [M, N] := [M+N]−[M−N]
4 = 0

almost surely.

One of the remarkable examples of the aforementioned connection between the

theory of singular integral operators and martingale theory was provided by Bañuelos

and Wang in [3]. They have shown that the Lp norm of HT acting on real-valued functions

is equal to the sharp constant in the corresponding Lp inequality

(E|Nt|p)
1
p ≤ Cp(E|Mt|p)

1
p , t ≥ 0, (1.2)

where N is assumed to be differentially subordinate and orthogonal to M. The goal of the

current article is to show that this interplay between the norm of HT and the martingale

inequality (2) can be extended to (i) more general �, � norms (see the beginning of

Section 3 for the definition) and (ii) more general Banach spaces in which the functions

and processes take values.

Let us say a few words about the structure of the paper. The next section is

devoted to the introduction of the background that is needed for our further study.

In particular, we recall there the notion of UMD spaces, define appropriate analogues

of Banach-space-valued differential subordination, and, orthogonality, formulate the

vector extensions of stochastic calculus and provide some basic information about

plurisubharmonic functions, fundamental objects in the complex analysis of several

variables. Section 3 contains the main result of the paper, connecting the best constants

in certain �, � estimates for the periodic Hilbert transform and their counterparts
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4 Osękowski and Yaroslavtsev

in martingale theory. Though the rough idea of the proof can be tracked back to the

classical works [3, 12, 26, 42] (the validity of a given estimate for the Hilbert trans-

form/orthogonal differentially subordinate martingales is equivalent to the existence

of a certain special plurisubharmonic function), there are several serious technical

problems to be overcome, due to the fact that we work in the Banach-space-valued

setting. Section 4 is devoted to some applications. The 1st and the most notable one

connects together the �, � norms of the periodic Hilbert transform HT

X , the Hilbert

transform HR

X defined on a real line, and the discrete Hilbert transform Hdis
X (for the

definition of the latter object, consult Definition 4.1 and 4.2 below). It turns out that all

these norms coincide for quite general class of � and �. This in particular generalizes

the recent result of Bañuelos and Kwaśnicki [1] on the discrete Hilbert transform Hdis
R

,

which asserts that

‖Hdis
R
‖Lp(Z)→Lp(Z) = ‖HT

R
‖Lp(T)→Lp(T) = cot

( π

2p∗
)
, 1 < p <∞.

This used to be an open problem for 90 years (see [1, 35, 49]). Subsection 4.2 is

devoted to the comparison of Lp norms of the periodic Hilbert transform to Wiener

and Paley–Walsh decoupling constants. Application in Subsection 4.3 is concerned with

UMD Banach spaces and can be regarded as an extension of Bourgain’s result [6]:

we show that under some mild assumption on � and �, the validity of the corre-

sponding �, � estimate (with some finite constant) implies the UMD property of X. In

Subsection 4.4 we prove that the results obtained in this paper can be applied to obtain

sharper estimates for weakly differentially subordinate martingales (not necessarily

satisfying the orthogonality assumption). Subsection 4.5 contains the study of related

estimates in the context of harmonic functions on Euclidean domains. In Subsection 4.6

we present the possibility of extending the estimates to the more general class of

singular integral operators. Our final application, described in Subsection 4.7, dis-

cusses the vector-valued extension of the classical results of Hardy concerning Hilbert

operators.

2 Preliminaries

This section contains the definitions of some basic notions and facts used later. Here

and below, the scalar field is assumed to be R, unless stated otherwise. In particular,

all Banach spaces are real, unless stated otherwise.
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The Hilbert Transform and Orthogonal Martingales 5

2.1 Periodic Hilbert transform

In what follows, the symbol T will stand for the torus ({z ∈ C : |z| = 1}, ·) equipped with

the natural multiplication. Sometimes, passing to the argument of a complex number, we

will identify T with the interval [−π , π). Let X be a Banach space. A function f : T→ X

is called a step function, if it is of the form

f =
N∑

k=1

xk1Ak
(s), −π ≤ s < π ,

where N is finite, xk ∈ X and Ak are intervals in T. The periodic Hilbert transform HT

X of

a step function f : T→ X is given by the singular integral

HT

Xf (t) = 1

2π
p.v.

∫ π

−π

f (s) cot
t− s

2
ds, −π ≤ t < π . (2.1)

2.2 UMD Banach spaces

Suppose that (�,F ,P) is a nonatomic probability space. A Banach space X is called a

UMD space if for some (or equivalently, for all) p ∈ (1,∞) there exists a finite constant

β such that the following holds. If (dn)∞n=1 is any X-valued martingale difference

sequence (relative to some discrete-time filtration) contained in Lp(�; X) and (εn)∞n=1

is any deterministic sequence of signs, then

⎛⎝E

∥∥∥∥∥
N∑

n=1

εndn

∥∥∥∥∥
p⎞⎠

1
p

≤ β

⎛⎝E

∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
p⎞⎠

1
p

.

The least admissible constant β above is denoted by βp,X and is called the UMD constant

of X. It is well known that UMD spaces enjoy a large number of useful properties,

such as being reflexive. Examples of UMD spaces include all finite dimensional spaces,

Hilbert spaces (then βp,X = p∗ − 1 with p∗ = max{p, p/(p − 1)}), the reflexive range of

Lq-spaces, Sobolev spaces, Schatten class spaces, and Orlicz spaces. On the other hand,

all nonreflexive Banach spaces, for example, L1(0, 1) and C([0, 1]), are not UMD. We refer

the reader to [14], [28], and [43] for further details.

Remark 2.1. As we have already mentioned in the introductory section, UMD Banach

spaces form a natural environment for the Lp boundedness of the periodic Hilbert
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6 Osękowski and Yaroslavtsev

transform. It follows from [9] and [6] that for every 1 < p <∞ we have

√
βp,X ≤ ‖HT

X‖Lp(T,X)→Lp(T,X) ≤ β2
p,X . (2.2)

It is not known whether the quadratic dependence can be improved on either of the

sides (see, e.g., [14, 25, 28]). Notice that if X = R then the dependence becomes linear:

indeed,

2

π
βp,R =

2

π
(p∗ − 1) ≤ cot

( π

2p∗
)
= ‖HT

X‖L(Lp(T,X)) ≤ p∗ − 1 = βp,R,

where, as above, p∗ := max{p, p/(p− 1)}.

We will see later that the context of UMD is also natural from the viewpoint of

more general �, � estimates for the periodic Hilbert transform (see Subsection 4.3).

2.3 Stochastic integration and Itô’s formula

For given Banach spaces X and Y, the symbol L(X, Y) will denote the classes of all

linear operators from X to Y. We will also use the notation L(X) = L(X, X). Suppose

that H is a Hilbert space. For each h ∈ H and x ∈ X, we denote by h ⊗ x the associated

linear operator given by g 
→ 〈g, h〉x, g ∈ H. The process φ : R+ × � → L(H, X) is called

elementary progressive with respect to the filtration F = (Ft)t≥0 if it is of the form

φ(t, ω) =
K∑

k=1

M∑
m=1

1(tk−1,tk]×Bmk
(t, ω)

N∑
n=1

hn ⊗ xkmn, t ≥ 0, ω ∈ �.

Here 0 ≤ t0 < . . . < tK < ∞ is a finite increasing sequence of nonnegative numbers, the

sets B1k, . . . , BMk belong to Ftk−1
for each k = 1, 2, . . . , K, and the vectors h1, . . . , hN are

assumed to be orthogonal. Suppose further that M is an adapted local martingale taking

values in H. Then the stochastic integral φ ·M : R+ × � → X of φ with respect to M is

defined by the formula

(φ ·M)t =
K∑

k=1

M∑
m=1

1Bmk

N∑
n=1

〈(M(tk ∧ t)−M(tk−1 ∧ t)), hn〉xkmn, t ≥ 0.

In what follows, we will also need a version of Itô formula, which is a variation

of [32, Theorem 26.7] that does not use the Euclidean structure of a finite-dimensional

Banach space. The proof can be found in [55, Theorem 5.5].
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The Hilbert Transform and Orthogonal Martingales 7

Lemma 2.2 (Itô formula). Let d ≥ 1, X be a d-dimensional Banach space, f ∈ C2(X),

M : R+×�→ X be a martingale. Let (xn)d
n=1 be a basis of X, (x∗n)d

n=1 be the corresponding

dual basis. Then for each t ≥ 0

f (Mt) = f (M0)+
∫ t

0
〈∂xf (Ms−), dMs〉

+ 1

2

∫ t

0

d∑
n,m=1

∂2f (Ms−)
∂xn∂xm

d[〈M, x∗n〉, 〈M, x∗m〉]cs

+
∑
s≤t

(
f (Ms)− 〈∂xf (Ms−), 
Ms〉).

(2.3)

Here ∂xf (y) ∈ X∗ is the Fréchet derivative of f in point y ∈ X. Recall that

(x∗n)d
n=1 ⊂ X∗ is called the corresponding dual basis of (xn)d

n=1 if 〈xn, x∗m〉 = δnm for

each m, n = 1, . . . , d.

2.4 Quadratic variation

Let (�,F ,P) be a probability space with a filtration F = (Ft)t≥0 that satisfies the usual

conditions. Let M : R+ × � → R be a local martingale. We define a quadratic variation

of M in the following way:

[M]t := |M0|2 + P− lim
mesh→0

N∑
n=1

‖M(tn)−M(tn−1)‖2, (2.4)

where the limit in probability is taken over partitions 0 = t0 < . . . < tN = t. Note that

[M] exists and is nondecreasing a.s. The reader can find more on quadratic variations in

[32], [44], and [17]. For any martingales M, N : R+ × � → R we can define a covariation

[M, N] : R+×�→ R as [M, N] := 1
4 ([M+N]− [M−N]). Since M and N have càdlàg versions,

[M, N] has a càdlàg version as well (see, e.g., [30, Theorem I.4.47]).

2.5 Weak differential subordination and orthogonal martingales

We have defined the notions of differential subordination and orthogonality of real-

valued local martingales in the introductory section. We turn our attention to their

vector analogues.

Definition 2.3. Let M and N be local martingales taking values in a given Banach space

X. Then N is said to be weakly differentially subordinate to M (which will be denoted by

N
w	 M) if 〈N, x∗〉 	 〈M, x∗〉 for any functional x∗ ∈ X∗.
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8 Osękowski and Yaroslavtsev

It is known (see [56]) that if N is weakly differentially subordinate to M then

(E‖Nt‖p)
1
p ≤ β2

p,X(βp,X + 1)(E‖Mt‖p)
1
p , t ≥ 0. (2.5)

This estimate can be improved under some additional assumptions on M and N (see

[55, 56]). Here we will show such an improvement for M and N being orthogonal (see

Section 3). Moreover, using this improvement we will strengthen (5) (see Remark 4.27).

Definition 2.4. Let M and N be local martingales taking values in a given Banach

space X. Then M and N are said to be orthogonal, if [〈M, x∗〉, 〈N, x∗〉] = 0 almost surely

for all functionals x∗ ∈ X∗.

Remark 2.5. Assume that M and N are local martingales taking values in some Banach

space X. If M andN are orthogonal and N is weakly differentially subordinate to M, then

N0 = 0 almost surely (which follows immediately from the above definitions). Moreover,

under these assumptions, N must have continuous trajectories with probability 1.

Indeed, in such a case for any fixed x∗ ∈ X∗ the real-valued local martingales 〈M, x∗〉 and

〈N, x∗〉 are orthogonal and we have 〈N, x∗〉 	 〈M, x∗〉. Therefore, 〈N, x∗〉 has a continuous

version for each x∗ ∈ X∗ by [39, Lemma 3.1] (see also [4, Lemma 1]), which in turn implies

that N is continuous: any X-valued local martingale has a càdlàg version (see [55] and

[50, Proposition 2.2.2]).

Remark 2.6. The requirement 〈M0, x∗〉 · 〈N0, x∗〉 = 0 for all x∗ ∈ X∗ in Definition 2.4 is

usually omitted (see, e.g., [3, 4, 30]). Nevertheless, we need this requirement in order to

simplify all the statements in the sequel concerning orthogonal martingales.

Weakly differentially subordinate orthogonal martingales appear naturally

while working with the periodic Hilbert transform, which can be seen by exploiting the

classical argument of Doob (the composition of a harmonic function with a Brownian

motion is a martingale). Indeed, suppose that X is a given Banach space. Suppose that

f is a simple function and put g = HT

Xf . Let uf and ug denote the harmonic extensions

of f and g to the unit disc, obtained by the convolution with the Poisson kernel. In

particular, the equality g = HTf implies that ug(0, 0) = 0 and for any functional x∗ ∈ X∗,
the function 〈uf , x∗〉 + i〈ug, x∗〉 is holomorphic on the disc.

Next, suppose that W = (W1, W2) is a planar Brownian motion started from (0, 0)

and stopped upon leaving the unit disc. Then the processes M = (Mt)t≥0 = (uf (Wt))t≥0
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The Hilbert Transform and Orthogonal Martingales 9

and N = (Nt)t≥0 = (ug(Wt))t≥0 are X-valued martingales such that N0 = 0. For any

functional x∗ ∈ X∗, we apply the standard, one-dimensional Itô’s formula to obtain, for

any t ≥ 0,

〈Mt, x∗〉 = 〈M0, x∗〉 +
∫ t

0
∇〈uf (Ws), x∗〉dWs

and

〈Nt, x∗〉 = 〈N0, x∗〉 +
∫ t

0
∇〈ug(Ws), x∗〉dWs.

By the aforementioned connection to analytic functions, the gradients ∇〈uf , x∗〉 and

∇〈ug, x∗〉 are orthogonal and of equal length, so

[〈M, x∗〉, 〈N, x∗〉]t =
∫ t

0
∇〈uf (Ws), x∗〉 · ∇〈ug(Ws), x∗〉ds = 0,

and

[〈M, x∗〉]t − [〈N, x∗〉]t=|〈M0, x∗〉|2 +
∫ t

0
∇〈uf (Ws), x∗〉2 − ∇〈ug(Ws), x∗〉2 ds =|〈M0, x∗〉|2 ≥ 0.

Hence M and N are orthogonal and satisfy the weak differential subordination N
w	 M.

Since the distribution of W∞ is uniform on the unit circle T, essentially any estimate of

the form

EV(Mt, Nt) ≤ 0, t ≥ 0,

for weakly differentially subordinate orthogonal martingales leads to the analogous

bound ∫
T

V( f ,HT

Xf )dx ≤ 0

for the periodic Hilbert transform, at least when restricted to the class of simple

functions. (Later in Theorem 3.1 we will show that the reverse holds true).

For more information and examples concerning the differential subordination,

weak differential subordination, and orthogonal martingales, we refer the reader to [30,

28, 56, 44, 4, 52, 10], and [3].

2.6 Subharmonic and plurisubharmonic functions

An upper semicontinuous function f : Rd → R ∪ {−∞} is called subharmonic if for any

ball B ⊂ R
d and any harmonic function g : B → R such that f ≤ g on ∂B one has the

inequality f ≤ g on the whole B. The following lemma follows from [36, Proposition I.9].
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10 Osękowski and Yaroslavtsev

Lemma 2.7. Let d ≥ 1 and let f : Rd → R ∪ {−∞} be a subharmonic function. Then

either f ≡ −∞, or f is locally integrable.

Let X be a Banach space. An upper semicontinuous function F : X+iX → R∪{−∞}
is called plurisubharmonic if for any x, y ∈ X + iX the restriction z 
→ F(x + yz) is

subharmonic in z ∈ C.

Remark 2.8. Notice that X + iX is a Banach space equipped with the norm

‖x + iy‖X+iX := sup
x∗∈X∗,‖x∗‖≤1

(|〈x, x∗〉|2 + |〈y, x∗〉|2)
1
2 , x, y ∈ X

(see [28, Subsection B.4]).

Remark 2.9. Let X be finite dimensional. Then any plurisubharmonic function defined

on X + iX is subharmonic (see [36, Proposition I.9] and [23, Theorem 39]). Therefore,

by Lemma 2.7, a plurisubharmonic function either identically equals −∞, or is locally

integrable.

Let F : X + iX → R be k-times differentiable, u1, . . . , uk ∈ X + iX. Then we denote

∂kF(v)

∂u1 · · · ∂uk
:= ∂k

∂t1 · · · ∂tk
F(v + t1u1 + · · · + tkuk)

∣∣∣
t1,...,tk=0

, v ∈ X + iX.

In particular, for any u ∈ X + iX,

∂kF(v)

∂uk
:= ∂k

∂tk
F(v + tu)

∣∣∣
t=0

, v ∈ X + iX.

Remark 2.10. Note that if X is finite dimensional, F is plurisubharmonic and twice

differentiable, then for all z0 ∈ X + iX and x ∈ X we have

∂2F(z0)

∂x2 + ∂2F(z0)

∂ix2 =
(∂2F(z0 + zx)

∂�z2 + ∂2F(z0 + zx)

∂�z2

)∣∣∣
z=0

= 
zF(z0 + zx)|z=0 ≥ 0.

Later on we will need the following result.

Proposition 2.11. Let X be a Banach space and let F : X + iX → R ∪ {−∞} be

plurisubharmonic. Assume further that y 
→ F(x + iy) is concave in y ∈ X for any fixed

x ∈ X. Then x 
→ F(x + iy) is convex in x ∈ X for any y ∈ X, and F is continuous.
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The Hilbert Transform and Orthogonal Martingales 11

For the proof we will need the following lemma.

Lemma 2.12. Let X be a finite-dimensional Banach space and let V : X + iX → R

be a continuous twice differentiable plurisubharmonic function. Let y 
→ V(x + iy) be

concave in y ∈ X for all x ∈ X. Then t 
→ V(tx + z) is convex in t ∈ R for all x ∈ X and

z ∈ X + iX. In particular, since t 
→ V(tx + z) is differentiable, we have that

V(tx + z) ≥ V(sx + z)+ ∂xV(sx + z)(t− s), t, s ∈ R. (2.6)

Proof. The 1st part follows from the fact that V is plurisubharmonic and twice

differentiable. Indeed, we have

∂2V(tx + z)

∂t2 =
(∂2V(tx + z+ isx)

∂t2 + ∂2V(tx + z+ isx)

∂s2

)∣∣∣
s=0
− ∂2V(tx + z+ isx)

∂s2

∣∣∣
s=0

≥ 0

since (∂2V(tx + z+ isx)

∂t2 + ∂2V(tx + z+ isx)

∂s2

)∣∣∣
s=0

≥ 0

by plurisubharmonicity and ∂2V(tx+z+isx)

∂s2 ≤ 0 by concavity of y 
→ V(x + z + iy). The

inequality (2.6) follows immediately from the convexity of t 
→ V(tx + iy) and twice

differentiability of V. �

To complete the proof of Proposition 2.11 we will need the following observa-

tion, which will allow us to integrate over a Banach space.

Remark 2.13. Let X be a finite-dimensional Banach space. Then due to [19, Theorem

2.20 and Proposition 2.21] there exists a unique translation-invariant measure λX on X

such that λX(BX) = 1 for the unit ball BX of X. We will call λX the Lebesgue measure. In

the sequel we will omit the Lebesgue measure notation while integrating over X (i.e., we

will write
∫

X F(s) ds instead of
∫

X F(s)λX(ds)).

Proof of Proposition 2.11. Without loss of generality we can assume that X is finite

dimensional and that f �≡ −∞. As X is finite dimensional, X + iX � C
d for some d. Let

φ : X + iX → R+ be a C∞ function radial with respect to C
d (i.e., depending only on

|z1|2 + . . .+ |zd|2 with z1, . . . , zd being the basis of Cd) with bounded support such that∫
X+iX

φ(s) ds = 1.
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12 Osękowski and Yaroslavtsev

(This integral is well defined due to Remarks 2.8 and 2.13). For each ε > 0 we

define Fε : X + iX → R in the following way:

Fε(s) =
∫

X+iX
F(s− εt)φ(t) dt, s ∈ X + iX. (2.7)

Then Fε is plurisubharmonic due to [27, Theorem 4.1.4]. Moreover, again by [27, Theorem

4.1.4], we have Fε ↘ F as ε ↘ 0. On the other hand, Fε is well defined and of class C∞.

Furthermore, the function y 
→ Fε(x + iy) is concave in y ∈ X for any x ∈ X by (7):

here we use the fact that F is locally integrable (see Remark 2.9) and the concavity of

y 
→ F(x + iy) for any fixed x ∈ X. Therefore by Lemma 2.12, the function x 
→ Fε(x + iy)

is convex for any fixed y ∈ X; hence so is F, being the pointwise limit of (Fε)ε>0 as ε → 0.

Let us now show that F > −∞. Assume that there exists x0, y0 ∈ X such that

F(x0 + iy0) = −∞. Since the function y 
→ F(x0 + iy) is concave, the set A = {y ∈ X :

F(x0 + iy) > ∞} ⊂ X is convex and open; moreover, y0 /∈ A, so X \ A is of positive

measure. Now fix (x, y) ∈ X × (X \ A). Notice that F(x0 + iy) = −∞. On the other hand

x 
→ F(x + iy) is convex, so F(x + iy) = −∞ as well (if a convex function equals −∞ in

one point, it equals −∞ on the whole X). Therefore, F = −∞ in the set X × (X \ A) of

positive measure; hence F ≡ −∞ by Remark 2.9, which leads to a contradiction.

Finally, note that F < ∞: we have F ≤ F1 with F1 defined in (7). Therefore,

F is continuous as a finite concave–convex function (see [48, Proposition 3.3] and [31,

Corollary 4.5]). �

For further material on subharmonic and plurisubharmonic functions, we

recommend the works [23, 27, 36, 46, 47].

2.7 Meyer–Yoeurp decomposition

Let X be a Banach space and let M be a local martingale with values in X. Then is

called purely discontinuous if [M] is a.s. a pure jump process (see [30, 32] for details). M

is said to have the Meyer–Yoeurp decomposition if there exist an X-valued continuous

local martingale Mc and an X-valued purely discontinuous local martingale Md such

that Mc
0 = 0 and M = Mc +Md a.s. It was shown by Meyer in [38] and by Yoeurp in [57]

that any real-valued martingale has the Meyer–Yoeurp decomposition. Later in [54] it

was shown that any X-valued local martingale has the Meyer–Yoeurp decomposition if

and only if X has the UMD property. See [32], [30], and [56] for further details.

The following result shows the connection between the Meyer–Yoeurp decompo-

sition and the weak differential subordination.
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The Hilbert Transform and Orthogonal Martingales 13

Proposition 2.14. Let X be a Banach space and let M and N be local X-valued

martingales possessing the Meyer-Yoeurp decompositions M = Mc +Md, N = Nc + Nd.

Then N
w	 M if and only if Nc

w	 Mc and Nd
w	 Md. Moreover, if M and N are orthogonal,

then Mc and Nc, Md and Nd are pairwise orthogonal.

Proof. The 1st part can be found in [56] (see also [52, Lemma 1]). Due to Remark 2.5 we

know that Nd = 0, so it is sufficient to show that Mc and Nc are orthogonal. The latter

is equivalent to the fact that 〈Mc, x∗〉 and 〈Nc, x∗〉 are orthogonal for any x∗ ∈ X∗, which

holds true by [4, Lemma 1]. �

3 Main theorem

Having introduced all the necessary notions, we turn to the study of our new results.

For given two nonnegative and continuous functions �, � : X → R+, we define the

associated “�, �-norm” of HT

X by the formula

|HT

X |�,�

:= inf
{

c ∈ [0,∞] :
∫
T

�(HT

Xf (s)) ds ≤ c
∫
T

�(f (s)) ds for all step functions f : T→ X
}

.

Notice that if � ≡ 0, then |HT

X |�,� = 0, and if � ≡ 0, then |HT

X |�,� ∈ {0,+∞}.
Throughout the paper we exclude these trivial cases: we will assume that both � and �

are not identically zero. Furthermore, for any 1 < p < ∞, we will denote the Lp norm of

HT

X by h̄p,X (in the language of �, �-norms, we have h̄p
p,X = |HT

X |�,� with �(x) = �(x) =
||x||p).

The following theorem is the main result of this section.

Theorem 3.1. Let X be a separable Banach space and let �, � : X → R+ be continuous

convex functions such that �(0) = 0 and |HT

X |�,� < ∞. Let M and N be two orthogonal

X-valued local martingales such that N
w	 M. Then

E�(Nt) ≤ C�,�,XE�(Mt), t ≥ 0, (3.1)

and the least admissible C�,�,X equals |HT

X |�,� .

The idea behind the proof of (3.1) can be roughly described as follows. First,

we will show that the condition |HT

X |�,� < ∞ (i.e., the validity of a �, �-estimate for

the periodic Hilbert transform) implies the existence of a certain special function on

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz187/5544644 by N

ottingham
 Trent U

niversity user on 09 August 2019



14 Osękowski and Yaroslavtsev

X + iX, enjoying appropriate size conditions and concavity. Next, we will compose this

function with M+ iN and prove, using the concavity and Itô’s formula from the previous

section, that the resulting process has nonnegative expectation. This in turn will give

the desired bound, in the light of the size condition of the special function. Though

this reasoning is typical for this kind of martingale inequalities, there are two essential

differences. First, we will see that the special function will not have any explicit form:

in particular, this makes the exploitation of its properties much harder, as one can

get them only from some abstract (and restricted) reasoning. The 2nd difference is

related to the fact that we work with Banach-space-valued processes: this enforces

us to study some additional, structural properties of the local martingales involved.

Moreover, since we will work in infinite-dimensional Banach spaces, the approximation

to finite dimensions exploited in the proof should be especially delicate because we do

not want to ruin weak differential subordination and orthogonality of the corresponding

martingales.

Having described our plan, we turn to its realization. We will need several

intermediate facts. The following theorem links the quantity |HT

X |�,� with a certain

special plurisubharmonic function.

Theorem 3.2. Let X be a separable Banach space and let �, � : X → R+ be continuous

functions such that �(0) = 0 and |HT

X |�,� < ∞. Then there exists a plurisubharmonic

function U�,� : X + iX → R such that U�,�(x) ≥ 0 for all x ∈ X and

U�,�(x + iy) ≤ |HT

X |�,��(x)−�(y), x, y ∈ X.

Moreover, if � is convex, then y 
→ U�,�(x + iy) is concave in y ∈ X for all x ∈ X.

Proof. (sketch) We repeat the reasoning presented in [26, Theorem 2.3] (the separability

of X is a key part of the construction U�,� ). The last property follows from the

construction of U�,� , the fact that y 
→ |HT

X |�,��(x) − �(y) is a concave function in

y ∈ X, and the fact that a minimum of concave functions is a concave function as well.

�

Corollary 3.3. Let X be a Banach space, 1 < p < ∞. Then X is a UMD Banach space

if and only if there exists a plurisubharmonic function Up,X : X + iX → R such that

Up,X(x) ≥ 0 for all x ∈ X and

Up,X(x + iy) ≤ h̄p
p,X‖x‖p − ‖y‖p, x, y ∈ X.
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The Hilbert Transform and Orthogonal Martingales 15

Moreover, if this is the case, then y 
→ Up,X(x + iy) is concave in y ∈ X for all x ∈ X.

Proof. It is sufficient to take �(x) = �(x) = ‖x‖p, x ∈ X, and apply Theorem 3.2 and

the fact that h̄p,X <∞ if and only if X is a UMD Banach space (see [6, 8]). �

Lemma 3.4. Let X be a Banach space, let M be an X-valued local martingale, and let

(τn)n≥1 be a sequence of stopping times increasing to infinity almost surely. Let � :

X → R+ be a convex function such that E�(Mt) < ∞ for some t ≥ 0. Then E�(Mt∧τn
) ↗

E�(Mt) as n →∞.

Proof. Notice that (E�(Mt∧τn
))n≥1 is an increasing sequence that is less then E�(Mt)

by the conditional Jensen’s inequality, [32, Theorem 7.12], and [32, Lemma 7.1(iii)]. On

the other other hand �(Mt∧τn
)→ �(Mt) a.s. since τn →∞ as n →∞. It suffices to apply

Fatou’s lemma to get the assertion. �

The next statement contains the proof of a structural property of orthogonal

martingales. We need an additional notion. A linear operator T acting on a Hilbert space

H is called skew-symmetric (or antisymmetric) if 〈Th, h〉 = 0 for all h ∈ H.

Proposition 3.5. Let d ≥ 1, W be a d-dimensional standard Brownian motion,

let X be a finite-dimensional Banach space, and let φ, ψ : R+ × � → L(Rd, X) be

progressively measurable processes such that M := φ ·W and N := ψ ·W are well-defined

orthogonal martingales. Assume further that N
w	 M. Then there exists a operator-

valued progressively measurable process A : R+ × � → L(Rd) such that ‖A‖ ≤ 1,

ψ∗ = Aφ∗ a.s. on R+ × �, and PRan(φ∗)(s, ω)A(s, ω) is skew-symmetric for all s ≥ 0 and

ω ∈ �, where PRan(φ∗) ∈ L(Rd) is the orthoprojection on Ran(φ∗).

Proof. Let (x∗n)n≥1 be a dense sequence in X∗. Then by the orthogonality of M and N

and the condition N
w	 M, we have

‖ψ∗(t, ω)x∗n‖ ≤ ‖φ∗(t, ω)x∗n‖,
〈ψ∗(t, ω)x∗n, φ∗(t, ω)x∗n〉 = 0

for almost all ω ∈ �, all t ∈ R+ and all n ≥ 1. Hence by a density argument, for any

x∗ ∈ X∗, almost all ω ∈ � and all t ∈ R+,

‖ψ∗(t, ω)x∗‖ ≤ ‖φ∗(t, ω)x∗‖, (3.2)

〈ψ∗(t, ω)x∗, φ∗(t, ω)x∗〉 = 0. (3.3)
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16 Osękowski and Yaroslavtsev

Fix t ∈ R+ and ω ∈ � such that (3.2) and (3.3) hold for any x∗ ∈ X∗. Define A(t, ω) : H → H

in the following way (we omit (t, ω) for the convenience of the reader):

Ah :=
⎧⎨⎩ψ∗x∗, if ∃x∗ ∈ X∗ such that h = φ∗x∗;

0, if h ⊥ Ran(φ∗).
(3.4)

Then A is well defined since if h = φ∗(t, ω)x∗1 = φ∗(t, ω)x∗2 for some different x∗1, x∗2 ∈ X∗,
then by (3.2),

‖ψ∗(t, ω)x∗1 − ψ∗(t, ω)x∗2‖ = ‖ψ∗(t, ω)(x∗1 − x∗2)‖ ≤ ‖φ∗(t, ω)(x∗1 − x∗2)‖
= ‖φ∗(t, ω)x∗1 − φ∗(t, ω)x∗2‖ = ‖h− h‖ = 0.

Moreover, A is linear on both Ran(φ∗) and (Ran(φ∗))⊥, so it can be extended to a linear

operator A ∈ L(H). Notice that then we have ψ∗ = Aφ∗. Furthermore, the conditions (3.2)

and (3.4) imply that ‖A‖ ≤ 1, while (3.3) and (3.4) give that PRan(φ∗)A is skew-symmetric

(PRan(φ∗) being the orthoprojection on Ran(φ∗)). �

In our later considerations, we will also need the following technical result.

Proposition 3.6. Let X be a finite-dimensional Banach space and let �, � : X → R+
be continuous functions such that � is convex, �(0) = 0 and |HT

X |�,� < ∞. Let U�,� :

X + iX → R be the special function from Theorem 3.2. Assume additionally that U�,� is

twice differentiable. Then for any x, y ∈ X, z0 ∈ X + iX and any λ ∈ [−1, 1] we have

∂2U�,�(z0)

∂x2

+ ∂2U�,�(z0)

∂y2 +2λ
(∂2U�,�(z0)

∂x∂iy
− ∂2U�,�(z0)

∂y∂ix

)
+ λ2

(∂2U�,�(z0)

∂ix2 + ∂2U�,�(z0)

∂iy2

)
≥ 0.

(3.5)

Proof. Notice that the function

λ 
→ ∂2U�,�(z0)

∂x2

+ ∂2U�,�(z0)

∂y2 + 2λ
(∂2U�,�(z0)

∂x∂iy
− ∂2U�,�(z0)

∂y∂ix

)
+ λ2

(∂2U�,�(z0)

∂ix2 + ∂2U�,�(z0)

∂iy2

)
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The Hilbert Transform and Orthogonal Martingales 17

is concave due to the fact that ∂2U�,�(z0)

∂ix2 , ∂2U�,�(z0)

∂iy2 ≤ 0 by the last part of Theorem 3.2.

Therefore it is sufficient to show (3.5) for λ = 1 and λ = −1. We will consider the 1st

possibility only; the 2nd can be handled analogously. We have

∂2U�,�(z0)

∂x2 + ∂2U�,�(z0)

∂y2 + 2
(∂2U�,�(z0)

∂x∂iy
− ∂2U�,�(z0)

∂y∂ix

)
+
(∂2U�,�(z0)

∂ix2 + ∂2U�,�(z0)

∂iy2

)
= ∂2U�,�(z0 + t(x + iy))

∂t2 + ∂2U�,�(z0 + t(y − ix))

∂t2

= 
zU�,�(z0 + z(y − ix)) ≥ 0,

since U�,� is plurisubharmonic (here 
z is the Laplace operator acting with respect to

the z variable). �

Corollary 3.7. Under the assumptions of the previous proposition, for any x, y ∈ X,

z0 ∈ X + iX, λ ∈ [−1, 1] and any μ ∈ [−|λ|, |λ|] we have

∂2U�,�(z0)

∂x2 +
∂2U�,�(z0)

∂y2 +2μ
(∂2U�,�(z0)

∂x∂iy
− ∂2U�,�(z0)

∂y∂ix

)
+ λ2

(∂2U�,�(z0)

∂ix2 + ∂2U�,�(z0)

∂iy2

)
≥ 0.

(3.6)

Proof. The left-hand side of (3.6) is linear in μ, so it is sufficient to check the estimate

for μ = ±λ. �

The following lemma was proven in the supplement to [56, Lemma 3.7].

Lemma 3.8. Let d be a natural number and E be a d-dimensional linear space. Let

V : E × E → R and W : E∗ × E∗ → R be two bilinear functions. Then the expression

d∑
n,m=1

V(en, em)W(e∗n, e∗m)

does not depend on the choice of basis (en)d
n=1 of E (here (e∗n)d

n=1 is the corresponding

dual basis of (en)d
n=1).

Corollary 3.9. Let d be a natural number and E be a d-dimensional linear space. Let

V : E×E → R and W1, W2 : E∗×E∗ → R be bilinear functions. Assume additionally that V
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18 Osękowski and Yaroslavtsev

is symmetric nonnegative (i.e., V(x, x) ≥ 0 for all x ∈ E) and that W1(x∗, x∗) ≤ W2(x∗, x∗)
for all x∗ ∈ X∗. Then

d∑
n,m=1

V(en, em)W1(e∗n, e∗m) ≤
d∑

n,m=1

V(en, em)W2(e∗n, e∗m)

for any basis (en)d
n=1 of E (here (e∗n)d

n=1 is the corresponding dual basis of (en)d
n=1).

Proof. Since V is symmetric and nonnegative it defines an inner product on E × E. Let

(ẽn)d
n=1 be an orthogonal basis of E under the inner product V (i.e., V(ẽn, ẽm) = 0 for all

n �= m, and V(ẽn, ẽn) ≥ 0 for all n = 1, . . . , d). Then we have that

d∑
n,m=1

V(ẽn, ẽm)W1(ẽ∗n, ẽ∗m) =
d∑

n=1

V(ẽn, ẽn)W1(ẽ∗n, ẽ∗n)

≤
d∑

n=1

V(ẽn, ẽn)W2(ẽ∗n, ẽ∗n) =
d∑

n,m=1

V(ẽn, ẽm)W2(ẽ∗n, ẽ∗m),

(3.7)

where (ẽ∗n)d
n=1 is the corresponding dual basis of (ẽn)d

n=1. Consequently, the desired

follows from (3.7) and Lemma 3.8. �

The next few statements aim at establishing an appropriate “localization”

procedure: we will prove how to deduce the general, possibly infinite-dimensional

context from its finite-dimensional counterpart. We need some additional notation. Let

X be a Banach space with a dual X∗, Y ⊂ X∗ be a linear subspace. Let P : Y ↪→ X∗ be

the continuous embedding operator. Then P∗ is a well-defined bounded linear operator

from X∗∗ to XY := Y∗ such that Ran(P∗) = XY . Moreover, if Y is finite dimensional, then

Ran(P∗|X) = XY , where P∗|X : X → XY is a well-defined restriction of P∗ on X due to the

natural embedding X ↪→ X∗∗. For any function φ : X → R+, we can define φY : XY → R+
by the formula

φY(x̃) = inf{φ(x) : x ∈ X, P∗x = x̃}, x̃ ∈ XY . (3.8)

In other words, φY(x̃) denotes the infimum of φ(x) over all x ∈ X satisfying x|Y = x̃

where we consider x as an element of Y∗.

Lemma 3.10. Let X be a Banach space with a dual X∗ and let Y ⊂ X∗ be a closed linear

subspace. Let φ : X → R+ be a convex function. Then φY : XY → R+ defined by (3.8) is

convex and we have φY(P∗x) ≤ φ(x) for all x ∈ X.
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The Hilbert Transform and Orthogonal Martingales 19

Proof. Fix x̃1, x̃2 ∈ XY , λ ∈ [0, 1] and set x̃ = λx̃1 + (1− λ)x̃2. Then

φY(x̃) = inf
x∈X

P∗x=x̃

φ(x) = inf
x1∈X,P∗x1=x̃1
x2∈X,P∗x2=x̃2

φ(λx1 + (1− λ)x2) ≤ inf
x1∈X,P∗x1=x̃1
x2∈X,P∗x2=x̃2

λφ(x1)+ (1− λ)φ(x2)

= λ inf
x1∈X,P∗x1=x̃1

φ(x1)+ (1− λ) inf
x2∈X,P∗x2=x̃2

φ(x2) = λφY(x̃1)+ (1− λ)φY(x̃2),

so φY is convex. The last part of the lemma follows from the definition of φY . �

Lemma 3.11. Let X be a separable Banach space, φ : X → R+ be convex lower semi-

continuous. Then there exists an increasing sequence of finite-dimensional subspaces

(Yn)n≥1 of X∗ such that the following holds. If Pn : Yn ↪→ X∗ is the corresponding

embedding for each n ≥ 1 and φn : Y∗n → R+ satisfies

φn(x̃) = inf{φ(x) : x ∈ X, P∗nx = x̃}, x̃ ∈ Y∗n, (3.9)

then for each x ∈ X the sequence (φn(P∗nx))n≥1 increases to φ(x) as n →∞.

Proof. By [28, Lemma 1.2.10] there exist a sequence (x∗n)n≥1 in X∗ and a sequence

(an)n≥1 of real numbers such that

φ(x) = sup
n
〈x, x∗n〉 + an, x ∈ X. (3.10)

Let Yn := span(x∗1, . . . , x∗n) for each n ≥ 1. Fix x ∈ X. First notice that φn(P∗nx) ≤ φ(x)

by Lemma 3.10. Moreover, φn(P∗nx) ≤ φn+1(P∗n+1x) for each n ≥ 1 since Yn ⊂ Yn+1 (see

(3.9)). Fix n ≥ 1. Then for any y ∈ X such that P∗nx = P∗ny we have 〈x, x∗k〉 = 〈y, x∗k〉 for any

k = 1, . . . , n, so by (3.10),

φn(P∗nx) = inf{φ(y) : y ∈ X, P∗ny = P∗nx} ≥ inf{ sup
1≤k≤n

〈y, x∗k〉 + ak : y ∈ X, P∗ny = P∗nx}

= inf{ sup
1≤k≤n

〈x, x∗k〉 + ak : y ∈ X, P∗ny = P∗nx} = sup
1≤k≤n

〈x, x∗k〉 + ak.

Since the latter expression tends to φ(x) as n → ∞, we obtain the desired monotone

convergence φn(P∗nx)↗ φ(x). �

Proposition 3.12. Let X be a Banach space with a dual X∗ and let Y ⊂ X∗ be a finite-

dimensional linear subspace. Assume further that �, � : X → R+ are convex continuous
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20 Osękowski and Yaroslavtsev

functions and let �Y , �Y : XY → R+ be defined by (3.8). Then

|HT

XY
|�Y ,�Y

≤ |HT

X |�,� .

Proof. Recall that

|HT

XY
|�Y ,�Y

= sup
f∈Fstep

XY

∫
T

�Y(HT

XY
f ) dμ∫

T
�Y(f ) dμ

,

where μ is the Lebesgue measure on T. Fix f ∈ Fstep
XY

and ε > 0. Let (x̃n)N
n=1 ⊂ XY be the

range of f . For each n = 1, . . . , N we define xn ∈ X to be such that P∗xn = x̃n and �(xn) ≤
(1 + ε)�Y(x̃n) (existence of such xn follows from the fact that Ran(P∗) = XY ); we define

g : T→ X to be such that f (s) = x̃n if and only if g(s) = xn, s ∈ T. Then �Y(f ) = �Y(P∗g)

and �Y(HT

XY
f ) = �Y(HT

XY
P∗g) = �Y(P∗HT

Xg) for any s ∈ T by the definition of the Hilbert

transform on the torus. Therefore,

∫
T

�Y(HT

XY
f ) dμ∫

T
�Y(f ) dμ

=
∫
T

�Y(P∗HT

Xg) dμ∫
T

�Y(P∗g) dμ

(∗)≤ (1+ ε)

∫
T

�(HT

Xg) dμ∫
T

�(g) dμ

(∗∗)≤ (1+ ε)|HT

X |�,� ,

where (∗) follows from the fact that �(g(s)) ≤ (1+ ε)�Y(f (s)) for any s ∈ T and from the

fact that �Y(P∗·) ≤ �(·) on X, while (∗∗) follows from the definition of |HT

X |�,� . Since

f ∈ Fstep
XY

and ε > 0 were arbitrary, the claim follows. �

The final ingredient is the following well-known statement from the theory of

stochastic integration.

Lemma 3.13. Let d ≥ 1 and let M be a martingale with values in R
d satisfying the

condition EM∗∞ < ∞. Let V : R+ × � → R
d be a predictable and bounded process. Then

V ·M := ∫ 〈V, dM〉 is a well-defined martingale and E(V ·M)∗∞ <∞.

Equipped with the above statements, we are ready for the study of our main

result. We should point out that the main difficulty lies in proving the inequality (3.1)

for finite-dimensional Banach spaces. The novelty in comparison to other results from

the literature is that we work under slightly different condition of weak differential

subordination and orthogonality; therefore, though at some places the arguments might

look similar to, for instance, those appearing in [3], there is no apparent connection

between them.
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The Hilbert Transform and Orthogonal Martingales 21

Proof of (3.1) for finite-dimensional X. We split the reasoning into several intermediate

parts.

Step 1. Some reductions. First assume that the function U�,� (defined in

Theorem 3.2) is continuous and twice differentiable. Since N has continuous paths

almost surely, we may assume that N is a bounded martingale: this is due to a simple

stopping time argument combined with Lemma 3.4. Moreover, we may assume that

E�(Mt) < ∞, since otherwise there is nothing to prove. Let d be the dimension of X.

Then analogously to [56, Section 4] we can find a continuous time-change τ = (τs)s≥0

and redefine M := M ◦ τ and N := N ◦ τ , so that the following holds. For some 2d-

dimensional standard Brownian motion W on an extended probability space (�̃, F̃ , P̃)

equipped with an extended filtration F̃ = (F̃t)t≥0, there exist progressively measurable

processes φ, ψ : R+ × � → L(R2d, X) such that Mc = φ · W and N = ψ · W, where

M = Mc +Md is the Meyer–Yoeurp decomposition of M (see [32, 54, 56]). In addition, the

arguments in [56, Section 4] also yield the identities [M ◦ τ ] = [M] ◦ τ , [N ◦ τ ] = [N] ◦ τ and

[M ◦ τ , N ◦ τ ] = [M, N] ◦ τ , so the weak differential subordination and orthogonality are

not ruined under the time-change.

Now, for each n ≥ 1, introduce the stopping time

σn := inf{t ≥ 0 : Mt > n}. (3.11)

By Lemma 3.4 it is sufficient to show that

E�(Nt∧σn
) ≤ |HT

X |�,�E�(Mt∧σn
) (3.12)

for any n ≥ 1. Actually, passing to M/n and N/n (and by modifying � and � accordingly),

we see that it is enough to show the above estimate for n = 1. For the sake of notational

convenience, we redefine M := Mσ1 and N := Nσ1 and observe that it suffices to show

EU�,�(Mt + iNt) ≥ 0, since then (3.12) follows at once from the majorization property

of U�,� .

Step 2. Application of Itô’s formula. Let (en)d
n=1 be a basis of X, and (e∗n)d

n=1 be

the corresponding dual basis. Then by the Itô formula (2.3), we get

EU�,�(Mt + iNt) = EU�,�(M0 + iN0)+ E

∫ t

0
〈∂xU�,�(Ms− + iNs−), dMs〉

+ E

∫ t

0
〈∂ixU�,�(Ms−+ iNs−), dNs〉 + EI1 + EI2,

(3.13)
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22 Osękowski and Yaroslavtsev

where ∂xU�,�(·), ∂ixU�,�(·) ∈ X∗ are the corresponding Fréchet derivatives of U�,� in the

real and the imaginary subspaces of X + iX respectively,

I1 =
∑

0≤s≤t

(
U�,�(Ms + iNs)− 〈∂xU�,�(Ms− + iNs−), 
Ms〉),

and

I2 =
1

2

∫ t

0

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂ej
d[〈Mc, e∗i 〉, 〈Mc, e∗j 〉]s

+ 1

2

∫ t

0

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
d[〈N, e∗i 〉, 〈N, e∗j 〉]s

+
∫ t

0

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂iej
d[〈Mc, e∗i 〉, 〈N, e∗j 〉]s

= 1

2

∫ t

0

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂ej
〈φ∗(s)e∗i , φ∗(s)e∗j 〉ds

+ 1

2

∫ t

0

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈ψ∗(s)e∗i , ψ∗(s)e∗j 〉ds

+
∫ t

0

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂iej
〈φ∗(s)e∗i , ψ∗(s)e∗j 〉ds.

Step 3. Analysis of the terms on the right of (3.13). Let us first show that

E

∫ t

0
〈∂xU�,�(Ms− + iNs−), dMs〉 + E

∫ t

0
〈∂ixU�,�(Ms− + iNs−), dNs〉

exists and equals zero. First notice that since M = Mσ1 , the variable Ms− is bounded

by 1 for any 0 ≤ s ≤ σ1. Furthermore, as we have assumed above, the process N is also

bounded. Since U�,� is twice differentiable, both ∂xU�,�(·) and ∂ixU�,�(·) are continuous

functions, so s 
→ ∂xU�,�(Ms− + iNs−) and s 
→ ∂ixU�,�(Ms− + iNs−) define bounded

processes on 0 ≤ s ≤ σ1. Furthermore, it is easy to see that

EM∗
t = EM∗

t∧σ1
≤ E‖Mt∧σ1

‖ + 1 ≤ E‖Mt‖ + 1 <∞,
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The Hilbert Transform and Orthogonal Martingales 23

and hence by Lemma 3.13,

t 
→
∫ t

0
〈∂xU�,�(Ms− + iNs−)1s∈[0,σ1], dMs〉, t ≥ 0,

t 
→
∫ t

0
〈∂ixU�,�(Ms− + iNs−)1s∈[0,σ1], dNs〉, t ≥ 0,

(3.14)

define martingales. Moreover, with Probability 1,

∫ t

0
〈∂xU�,�(Ms− + iNs−)1s∈[0,σ1], dMs〉 =

∫ t

0
〈∂xU�,�(Ms− + iNs−), dMs〉,∫ t

0
〈∂ixU�,�(Ms− + iNs−)1s∈[0,σ1], dNs〉 =

∫ t

0
〈∂ixU�,�(Ms− + iNs−), dNs〉,

since M = Mσ1 and N = Nσ1 , and consequently the expectations of the above integrals

vanish. Let us now show that I1, I2 ≥ 0 almost surely. For the 1st term, the argument

is simple: by (2.6), each summand in I1 is nonnegative. The analysis of I2 is slightly

more complex. By Proposition 2.14, we get that N
w	 Mc and Mc, N are orthogonal,

so Proposition 3.5 implies the existence of a progressively measurable operator-valued

process A : R+ × � → L(Rd) such that ‖A‖ ≤ 1, ψ∗ = Aφ∗, and PRan(φ∗)A is skew-

symmetric on R+ ×� (here PRan(φ∗) is an orthoprojection on Ran(φ∗)). Thus it is enough

to show that

d∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂ej
〈φ∗(s)e∗i , φ∗(s)e∗j 〉ds

+
d∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈ψ∗(s)e∗i , ψ∗(s)e∗j 〉ds

+ 2
d∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂iej
〈φ∗(s)e∗i , PRan(φ∗)Aφ∗(s)e∗j 〉ds ≥ 0.

(3.15)

By the spectral theory of skew-symmetric matrices (see, e.g., [58, Corollary 2]) there

exist L ≥ 0, positive numbers (λn)L
n=1, and an orthonormal basis (hn)2d

n=1 of R
2d such

that PRan(φ∗)Ah2n−1 = λnh2n and PRan(φ∗)Ah2n = −λnh2n−1 for all n = 1, . . . , L, and

PRan(φ∗)Ahn = 0 for all 2L < n ≤ d. Moreover, the condition ‖A‖ ≤ 1 implies

that |λ1|, . . . , |λL| ≤ 1, and since (Ran(φ∗))⊥ is a zero eigenspace of PRan(φ∗)A (see the

construction of A in the proof of Proposition 3.5), we conclude that hn ∈ Ran(φ∗) for

n = 1, 2, . . . , 2L. By a usual orthogonalization procedure, we may assume that there
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24 Osękowski and Yaroslavtsev

exists K ≥ 2L such that hn ∈ Ran(φ∗) for 2L < n ≤ K and hn⊥Ran(φ∗) for K < n ≤ 2d

(then K is the dimension of Ran(φ∗)). Notice that X∗ is d dimensional, so Ran(φ∗) is at

most d dimensional and hence obviously K ≤ d. Due to Lemma 3.8, the expression (3.15)

does not depend on the basis (en)d
n=1 (and the corresponding dual basis (e∗n)d

n=1), so we

can choose a basis (en)d
n=1 such that φ∗e∗n = hn for all n = 1, . . . , K and φ∗e∗n = 0 for all

K < n ≤ d (such a basis exists since span{h1, . . . , hK} = Ran(φ∗)). Then (3.15) becomes

K∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂ej
〈hi, hj〉

+
K∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈ψ∗e∗i , ψ∗e∗j 〉

+ 2
K∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂iej
〈hi, PRan(φ∗)Ahj〉 ≥ 0

(3.16)

(The 2nd sum is up to K due to the fact that φ∗x∗ = 0 implies ψ∗x∗ = 0 for any x∗ ∈ X∗,
see (3.2)). Notice that the bilinear form V : X × X → R defined by

V(x, y) := −∂2U�,�(Ms− + iNs−)

∂ix∂iy
, x, y ∈ X,

is nonnegative by Theorem 3.2 and symmetric by the definition. Moreover, by (3.2),

〈ψ∗x∗, ψ∗x∗〉 = ‖ψ∗x∗‖2 ≤ ‖φ∗x∗‖2 = 〈φ∗x∗, φ∗x∗〉, forx∗ ∈ X∗.

Therefore, Corollary 3.9 yields

K∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈ψ∗e∗i , ψ∗e∗j 〉 ≥

K∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈φ∗e∗i , φ∗e∗j 〉

=
K∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈hi, hj〉,
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The Hilbert Transform and Orthogonal Martingales 25

so (3.16) is not less than

K∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂ej
〈hi, hj〉 +

K∑
i,j=1

∂2U�,�(Ms− + iNs−)

∂iei∂iej
〈hi, hj〉

+ 2
K∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂iej
〈hi, PRan(φ∗)Ahj〉

=
K∑

i=1

∂2U�,�(Ms− + iNs−)

∂ei∂ei
〈hi, hi〉 +

K∑
i=1

∂2U�,�(Ms− + iNs−)

∂iei∂iei
〈hi, hi〉

+ 2
K∑

i,j=1

∂2U�,�(Ms− + iNs−)

∂ei∂iej
〈hi, PRan(φ∗)Ahj〉.

The latter expression consists of two parts:

2L∑
i=1

∂2U�,�(Ms− + iNs−)

∂ei∂ei
+

2L∑
i=1

∂2U�,�(Ms− + iNs−)

∂iei∂iei

+ 2
L∑

n=1

λn

(∂2U�,�(Ms− + iNs−)

∂e2n−1∂ie2n
− ∂2U�,�(Ms− + iNs−)

∂e2n∂ie2n−1

)

=
L∑

n=1

{
∂2U�,�(Ms− + iNs−)

∂e2n−1∂e2n−1
+ ∂2U�,�(Ms− + iNs−)

∂e2n∂e2n

+ 2λn

(∂2U�,�(Ms− + iNs−)

∂e2n−1∂ie2n
− ∂2U�,�(Ms− + iNs−)

∂e2n∂ie2n−1

)
+
(∂2U�,�(Ms− + iNs−)

∂ie2n−1∂ie2n−1
+ ∂2U�,�(Ms− + iNs−)

∂ie2n∂ie2n

)}

(3.17)

and

K∑
i=2L+1

∂2U�,�(Ms− + iNs−)

∂ei∂ei
+

K∑
i=2L+1

∂2U�,�(Ms− + iNs−)

∂iei∂iei

=
K∑

i=2L+1

(∂2U�,�(Ms− + iNs−)

∂ei∂ei
+ ∂2U�,�(Ms− + iNs−)

∂iei∂iei

)
.

(3.18)

Now, the expression (3.17) is nonnegative by Corollary 3.7 and (3.18) is nonnegative by

Remark 2.10. This gives I2 ≥ 0. Putting all the above facts together, we obtain

EU�,�(Mt + iNt) ≥ EU�,�(M0 + iN0).
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26 Osękowski and Yaroslavtsev

However, by Remark 2.5, we have N0 = 0 almost surely, so Theorem 3.2 implies

EU�,�(M0 + iN0) = EU�,�(M0) ≥ 0,

which completes the proof.

Step 4. Now we assume that U�,� is general (i.e., not necessarily twice inte-

grable). We will use a standard mollification argument. Let φ : X + iX → R+ be a C∞

radial function with compact support such that
∫

X+iX φ(s) ds = 1. For each ε > 0, define

Uε
�,� : X + iX → R via the convolution

Uε
�,�(x + iy) :=

∫
X+iX

U�,�(x + iy − εs)φ(s) ds, x, y ∈ X.

Then Uε
�,� is of class C∞ and for any x ∈ X we have

Uε
�,�(x) =

∫
X+iX

U�,�(x − εs)φ(s) ds ≥ U�,�(x) ≥ 0, (3.19)

since U�,� is subharmonic (see Remark 2.9). Therefore, repeating the arguments from

the above steps, we get

E

∫
X+iX

[
|HT

X |�,��(Mt − εr)−�(Nt − εu)
]
φ(r + iu) dr + iu

≥ EUε
�,�(Mt + iNt) ≥ EUε

�,�(M0) ≥ 0,

(3.20)

where the latter bound follows from (3.19). Note that �(Nt + εu) is uniformly bounded

(when r + iu runs over the support of φ) and notice that for any x, ε 
→ �(x−ε)+�(x+ε)
2 is

an increasing function of ε > 0. Furthermore, we have φ(r + iu) = φ(−r + iu) ≥ 0 and

hence

ε 
→
∫

X+iX
�(Mt − εr)φ(r + iu) d(r + iu)=

∫
X+iX

�(Mt − εr)+�(Mt + εr)

2
φ(r +iu) d(r + iu),

(3.21)

decreases as ε ↓ 0. Combining these observations with standard limiting theorems, we

deduce the desired claim. �

Now we prove our main result in full generality. Of course, we will exploit an

appropriate limiting procedure, which enables us to deduce the claim from its finite-

dimensional version just established above.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz187/5544644 by N

ottingham
 Trent U

niversity user on 09 August 2019



The Hilbert Transform and Orthogonal Martingales 27

Proof of (3.1) for infinite-dimensional X. We may assume that E�(Mt) < ∞, since

otherwise the claim is obvious. Suppose that (Yn)n≥1 is a sequence of finite-dimensional

subspaces of X∗ such that Yn ⊂ Yn+1 for any n ≥ 1 and ∪n≥1Yn = X∗. For each n ≥ 1

define Xn := Y∗n, let Pn : Yn ↪→ X∗ be the corresponding embedding operator, and let

P∗n : X → Xn be its adjoint (recall that X is reflexive). Finally, define �n, �n : Xn → R+
by the formulas

�n(̃x) = inf{�(x) : x ∈ X, P∗nx = x̃}, �n(̃x) = inf{�(x) : x ∈ X, P∗nx = x̃},

for x̃ ∈ Xn. In the light of Lemma 3.10, both �n and �n are convex functions. Moreover,

by Proposition 3.12,

|HT

Xn
|�n,�n

≤ |HT

X |�,� . (3.22)

Let us show that the processes P∗nM and P∗nN are orthogonal for each n ≥ 1. By the

very definition, we must prove that for a fixed functional x∗ ∈ X∗n, the local martingales

〈P∗nM, x∗〉 and 〈P∗nN, x∗〉 are orthogonal. This follows at once from orthogonality of M, N

and the identities

〈P∗nM, x∗〉 = 〈M, Pnx∗〉, 〈P∗nN, x∗〉 = 〈N, Pnx∗〉. (3.23)

These identities also immediately give the weak differential subordination P∗nN
w	 P∗nM,

since M and N enjoy this condition. Finally, observe that by Lemma 3.10, we have

E�n(P∗nMt) ≤ E�(Mt) < ∞. Therefore, applying the finite-dimensional version of (3.1),

we see that for each n ≥ 1,

E�n(P∗nNt) ≤ |HT

Xn
|�n,�n

E�n(P∗nMt) ≤ |HT

X |�,�E�n(P∗nMt), (3.24)

where the 2nd passage is due to (3.22). Note that with probability 1 we have �n(P∗nMt) ↗
�(Mt) and �n(P∗nNt) ↗ �(Nt) monotonically as n →∞ by Lemma 3.11. This establishes

the desired estimate, by Lebesgue’s monotone convergence theorem. �

It remains to handle the sharpness of (3.1).

Proof of the estimate |HT

X |�,� ≤ C�,�,X . This follows immediately from the reasoning

presented in Section 2.5: indeed, (1) implies the corresponding bound∫
T

�
(
HT

Xf
)
dx ≤ C�,�,X

∫
T

�(f )dx

for any step function f : T→ X. �
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28 Osękowski and Yaroslavtsev

Remark 3.14. It is easy to see that if X is finite dimensional, then there is no need for

� to be convex. The limiting argument presented in the above proof does not need this

requirement. (The only place where the convexity of � is used is (3.21); we leave to the

reader the question how to avoid this issue).

4 Applications

4.1 Hilbert transforms on T, R, and Z

Let X be a Banach space and let �, � : X → R+ be continuous functions. Let (S, �, μ)

be a measure space, with S equal to T, R, or Z. A function f : S → X is called a step

function, if it is of the form

f (t) =
N∑

k=1

xk1Ak
(t), t ∈ S,

where N is finite, xk ∈ X, and Ak are intervals in S of a finite measure.

Definition 4.1. The Hilbert transform HR

X is a linear operator that maps a step

function f : R→ X to the function

(HR

Xf )(t) := 1

π
p.v.

∫
R

f (s)

t− s
ds, t ∈ R. (4.1)

The associated �, �-norms |HR

X |�,� are given by a formula similar to that used

previously:

|HR

X |�,�

:= inf
{

c ∈ [0,∞] :
∫
R

�(HR

Xf (s)) ds ≤ c
∫
R

�(f (s)) ds for all step functions f : R→ X
}

.

Definition 4.2. The discrete Hilbert transform Hdis
X is a linear operator that maps a

step function f : Z→ X to the function

(Hdis
X f )(t) := 1

π

∑
s∈Z\{t}

f (s)

t− s
, t ∈ Z.
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The Hilbert Transform and Orthogonal Martingales 29

The associated �, �-norms |Hdis
X |�,� are given by

|Hdis
X |�,�

:= inf
{

c ∈ [0,∞] :
∑
s∈Z

�(Hdis
X f (s)) ≤ c

∑
s∈Z

�( f (s)) for all step functions f : Z→ X
}

.

We will also need a certain variant of �, �-norm in the periodic setting. Namely,

define |HT,0
X |�,� by

|HT,0
X |�,� := inf

{
c ∈ [0,∞] :

∫
T

�(HT

Xf (s))ds ≤ c
∫
T

�(f (s))ds

for all step functions f : T→ X with
∫
T

f (s)ds = 0
}

.

The following theorem demonstrates that the norm of the Hilbert transform does

not depend whether it is defined on T, R, or Z.

Theorem 4.3. Let X be a Banach space and let �, � : X → R be continuous convex

functions such that �(0) = 0. Then

|HT,0
X |�,� = |HR

X |�,� ≤ |Hdis
X |�,� ≤ |HT

X |�,� .

Moreover, if � is symmetric, then

|HT,0
X |�,� = |HR

X |�,� = |Hdis
X |�,� = |HT

X |�,� .

The proof will consist of several steps.

Proposition 4.4. Let X be a Banach space and let �, � : X → R+ be convex functions.

Then we have

|HR

X |�,� ≤ |Hdis
X |�,� ≤ |HT

X |�,� .

Proof. Introduce yet another Hilbert-type operator acting on step functions

f : R→ R by

(HR,dis
X f )(t) := 1

π

∑
s∈Z\{0}

f (t− s)

s
, t ∈ R,
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30 Osękowski and Yaroslavtsev

and define its �, �-norm analogously. We will first prove that |HR

X |�,� ≤ |HR,dis
X |�,� .

To this end, fix a step function f on R and define its ε-dilation by fε(·) := f (ε·). Then

similarly to [35, Theorem 4.3], we have

∫
R

�((HR,dis
X fε)(s)) ds∫

R
�(fε(s)) ds

=
∫
R

�(π−1∑
k∈Z\{0} fε(s− k)/k) ds∫

R
�(fε(s)) ds

=
∫
R

�(π−1∑
k∈Z\{0} εf (εs− εk)/(εk)) d(εs)∫
R

�(f (εs)) d(εs)

=
∫
R

�(π−1∑
k∈Z\{0} εf (s− εk)/(εk)) ds∫
R

�(f (s)) ds
.

Since 1
π

∑
k∈Z\{0}

f (s−εk)
εk ε → HR

Xf (s) for a.e. s ∈ R, Fatou’s lemma yields

|HR

X |�,� = sup
f∈Fstep

X

∫
R

�(HR

Xf (s)) ds∫
R

�(f (s)) ds

≤ sup
f∈Fstep

X

lim inf
ε→0

∫
R

�((HR,dis
X fε)(s)) ds∫

R
�(fε(s)) ds

≤ |HR,dis
X |�,� = |Hdis

X |�,� ,

where the latter equality follows from the direct repetition of the arguments from [35,

Theorem 4.2]. This gives us the 1st inequality of the assertion. The proof of the fact that

|Hdis
X |�,� ≤ |HT

X |�,� follows word-by-word from the infinite-dimensional analogue of the

recent approach of Bañuelos and Kwaśnicki [1] combined with the estimate (3.1). �

Theorem 4.5. Let X be a Banach space and let �, � : X → R+ be continuous functions.

Then |HR

X |�,� ≤ |HT,0
X |�,� .

Proof. Fix a step function f : R→ X. It takes only a finite number of values, so we may

assume that X is finite dimensional (which will guarantee the validity of the reasoning

below). For any n ≥ 1, introduce the function gn : R→ X by

gn(x) = 1

2πn

∫ πn

−πn
f (t) cot

x − t

2n
dt, x ∈ R.

It follows from the observation of Zygmund [59, p. 256] that gn → HR

Xf a.e. as n → ∞.

On the other hand, the function x 
→ gn(nx), |x| ≤ π , is precisely the periodic Hilbert

transform of the function x 
→ f (nx), |x| ≤ π (see (2.1)). Therefore, it is also the periodic
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The Hilbert Transform and Orthogonal Martingales 31

Hilbert transform of the centered function

x 
→ f (nx)− 1

2π

∫ π

−π

f (ns)ds, |x| ≤ π .

Clearly, the latter is a step function. Consequently, by Fatou’s lemma and the definition

of |HT,0
X |�,� ,

∫
R

�(HR

Xf )dx ≤ lim inf
n→∞

∫ πn

−πn
�(gn)dx = lim inf

n→∞

∫ π

−π

�(gn(nx))ndx

≤ |HT,0
X |�,� lim inf

n→∞

∫ π

−π

�

(
f (nx)− 1

2π

∫ π

−π

f (ns)ds
)

ndx

= |HT,0
X |�,� lim inf

n→∞

∫ πn

−πn
�

(
f (x)− 1

2πn

∫ πn

−πn
f (s)ds

)
dx.

However, 1
2πn

∫ πn
−πn f (s)ds → 0 by the fact that f is a step function. Therefore, again using

this property of f and the continuity of �, the last expression of the above chain equals

|HT,0
X |�,�

∫
R

�(f )dx. Since f was arbitrary, the result follows. �

Now we turn our attention to the estimate in the reverse direction. We start from

the observation that it does not hold true if �(0) > 0 and � �= 0. Indeed, if �(0) > 0,

then
∫
R

�(f )dx = ∞ for any step function and hence |HR|�,� = 0. On the other hand,

the condition � �= 0 implies that |HT,0
X |�,� > 0: it is easy to construct a step function

f : T→ X of mean zero for which
∫
R

�(HTf )dx > 0.

In other words, the inequality |HT,0
X |�,� ≤ |HR

X |�,� fails, because of obvious

reasons, if �(0) > 0 and � �= 0. If � is identically 0, then the estimate holds true: the

reason is even more trivial – both sides are zero. It remains to study the key possibility

when �(0) = 0 and � �= 0.

Theorem 4.6. Let X be a Banach space and let �, � : X → R+ be arbitrary continuous

functions such that �(0) = 0 and � �= 0. Then |HT,0
X |�,� ≤ |HR

X |�,� .

Proof. As was mentioned above, the assumption � �= 0 implies |HT,0
X |�,� > 0. For the

sake of clarity, we split the reasoning into a few separate parts.

Step 1. Auxiliary analytic maps. Let D denote the open unit disc of C and let

H = R × (0,∞) be the upper halfplane. Define K : D ∩ H → H by the formula K(z) =
−(1− z)2/(4z). It is not difficult to verify that K is conformal and hence so is its inverse

L. Let us extend L to the continuous function on H. It is easy to see that L(z) → 0 as
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32 Osękowski and Yaroslavtsev

z →∞. Furthermore, L maps the interval [0, 1] onto {eiθ : 0 ≤ θ ≤ π}. More precisely, we

have the following formula: if x ∈ [0, 1], then

L(x) = eiθ , where θ ∈ [0, π ] is uniquely determined by x = sin2(θ/2). (4.2)

In addition, L maps the set R \ [0, 1] onto the open interval (−1, 1); precisely, we have the

identity

L(x) =
{

1− 2x − 2
√

x2 − x if x < 0,

1− 2x + 2
√

x2 − x if x > 1.
(4.3)

In particular, we easily check that for any δ > 0, the function L is bounded away from 1

outside any interval of the form [−δ, 1+ δ] and |L(x)| = O(|x|−1) as x →±∞.

Step 2. A function on T and its extension to a disc. Fix a positive number ε and

pick a step function f : T→ X of integral 0 such that

∫
T

�(HT

Xf )dx > (|HT,0
X |�,� − ε) ·

∫
T

�( f )dx.

We may assume that X is finite dimensional, restricting to the range of f if necessary.

Given a big number R > 0, consider a continuous function κR : X → [0, 1] equal to 1 on

B(0, R) and equal to 0 outside B(0, 2R). Set �R(x) = �(x) ·κR(x) for x ∈ X. Note that �R is

uniformly continuous, since it is continuous and supported on the compact ball B(0, 2R)

(recall that X is finite dimensional). By Lebesgue’s monotone convergence theorem, if R

is sufficiently big, we also have

∫
T

�R(HT

Xf )dx > (|HT,0
X |�,� − ε) ·

∫
T

�(f )dx. (4.4)

There is an analytic function F : D → X + iX with the property that the radial limit

limr→1− F(reiθ ) is equal to f (eiθ )+ iHT

Xf (eiθ ) for almost all |θ | ≤ π . Note that we have

F(0) = 1

2π

∫
T

f dx + i · 0 = 0 (4.5)

and that the “real part” of F is bounded (by the supremum norm of f ). Consider the

analytic function Mn : H → X + iX given by the composition

Mn(z) = F(L2n(z))
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The Hilbert Transform and Orthogonal Martingales 33

and decompose it as Mn(z) = �Mn(z) + i�Mn(z), with �Mn and �Mn taking values in X.

Observe that for each n the function �Mn is bounded by the supremum norm of f (which

is directly inherited from the “real part” of the function F). In addition, h = 1[0,1]�Mn,

considered as a function on R, is a step function (with the number of steps depending on

n and going to infinity). Since limz→∞ L(z) = 0, we have limz→∞Mn(z) = 0 and therefore

HT

X�Mn(x) = �Mn(x) for x ∈ R.

Step 3. Calculations. We compute that

∫
R

�(h(x)) dx =
∫ 1

0
�
(�Mn(x))

)
dx =

∫ 1

0
�
(

f (L2n(x))
)

dx = 1

2

∫ π

0
�
(

f (e2inθ )
)

sin θdθ

= 1

2

∫ 2nπ

0
�
(
f (eiθ )

)
sin

(
θ

2n

)
dθ

2n
= 1

2

∫ 2π

0
�
(
f (eiθ )

) n−1∑
k=0

sin
(

kπ

n
+ θ

2n

)
dθ

2n

= 1

2

∫ 2π

0
�
(
f (eiθ )

) cos
(

θ−π
2n

)
2n sin

(
π
2n

) dθ
n→∞−−−→ 1

2π

∫ 2π

0
�
(
f (eiθ )

)
dθ .

(4.6)

Now, let us similarly handle the integral
∫
R

�K(HRh)dx. We have

∫
R

�R
(
HR

Xh(x)
)

dx ≥
∫ 1

0
�R

(
HR

Xh(x)
)

dx =
∫ 1

0
�R(HR

X�Mn −HR

X(1
R\[0,1]�Mn))dx

=
∫ 1

0
�R(HR

X�Mn)dx +
∫ 1

0

[
�R(HR

X�Mn −HR

X(1
R\[0,1]�Mn))−�R(HR

X�Mn)

]
dx.

(4.7)

Now, we have HR

X�Mn(x) = �Mn(x) = HT

Xf (L2n(x)), so a calculation similar to that in

(4.6) gives ∫ 1

0
�R(HR

X�Mn)dx
n→∞−−−→ 1

2π

∫ 2π

0
�R

(
HT

Xf (eiθ )
)

dθ .

To deal with the last integral in (4.7) we will first show that HR

X(1
R\[0,1]�Mn) converges

to 0 in L2, as n → ∞. To this end, recall that X is finite dimensional, and hence it has

the UMD property. Consequently, by [28, Corollary 5.2.11]

∫
R

|HR

X(1
R\[0,1]�Mn)|2dx ≤ CX

∫
R\[0,1]

|�Mn|2dx (4.8)

for some constant CX depending only on X. Fix an arbitrary η > 0. As we have already

noted above, �Mn is bounded by the supremum norm of f . Setting δ = η/(CX supX ||f ||2),
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34 Osękowski and Yaroslavtsev

we see that ∫
(−δ,0)

|�Mn(x)|2dx +
∫

(1,1+δ)

|�Mn(x)|2dx ≤ 2ηC−1
X . (4.9)

Furthermore, recall that L maps R \ [0, 1] onto (−1, 1), it is bounded away from 1 outside

[−δ, 1 + δ] and |L(x)| = O(|x|−1) as x → ±∞. Since F is analytic and vanishes at 0, we

conclude that Mn(x) = F(L2n(x)) = O(|x|−2n) and hence

lim
n→∞

∫
R\[−δ,1+δ]

|�Mn(x)|2dx = 0. (4.10)

Putting (4.8), (4.9), and (4.10) together, we see that if n is sufficiently large, then∫
R
|HR

X(1
R\[0,1]�Mn)|2dx ≤ 3η and the aforementioned convergence in L2 holds. In

particular, passing to a subsequence if necessary, we see that HR

X(1
R\[0,1]�Mn) → 0

almost everywhere. However, as we have already mentioned above, the function �R is

uniformly continuous, so the expression in the square brackets in the last term in (4.7)

converges to zero almost everywhere. In addition, this expression is bounded in absolute

value by sup �R. Consequently, by Lebesgue’s dominated convergence theorem, the last

integral in (4.7) converges to 0 as n → ∞. Putting all the above facts together, we see

that if n is sufficiently large, then

∫
R

�R
(
HR

Xh(x)
)

dx ≥ (1− ε) · 1

2π

∫ 2π

0
�R

(
HT

Xf (eiθ )
)

dθ .

Combining this with (4.4) and (4.6), we obtain that for n large enough we have

∫
R

�(HR

Xh(x))dx ≥
∫
R

�R
(
HR

Xh(x)
)

dx ≥ (1− ε)(|HT,0
X |�,� − ε)

∫
R

�(h)dx.

Since h is a step function and ε was arbitrary, the claim follows. �

Remark 4.7. Note that if �(0) �= 0 then Theorems 4.5 and 4.6 do not make any sense.

Indeed, if this is the case, then there exists ε > 0 and R such that �(x) ≥ ε for any x ∈ X

with ‖x‖ ≤ R. Since for any step function f : R→ X the function HR

Xf is in L2(R; X), the

set {‖HR

Xf ‖ ≤ R} ⊂ R is of infinite measure, so

∫
R

�(HR

Xf (s)) ds ≥
∫
R

1‖HR

Xf ‖≤R(s)ε ds = ∞,

so |HT

X |�,� ≥ |HT,0
X |�,� = |HR

X |�,� = ∞.
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The Hilbert Transform and Orthogonal Martingales 35

Remark 4.8. The finiteness of |HT,0
X |�,� implies the existence of a plurisubharmonic

function U�,� : X+iX → R such that U�,�(0) ≥ 0. Hence, modifying the proof of Theorem

3.1, we see that the inequality (3.1) holds, with |HT

X |�,� replaced with |HT,0
X |�,� , if the

dominating martingale M is additionally assumed to start from 0.

Theorem 4.9. Let �, � : X → R+ be continuous such that � is symmetric (i.e., �(x) =
�(−x) for all x ∈ X) and � is convex. Then |HT,0

X |�,� = |HT

X |�,� .

Proof. It suffices to show the estimate |HT,0
X |�,� ≥ |HT

X |�,� . Fix ε > 0. By the definition

of |HT

X |�,� , there is a step function f : T→ X such that

∫
T

�(HT

Xf )dx > (|HT

X |�,� − ε)

∫
T

�(f )dx. (4.11)

Let F = F1 + iF2 be the analytic extension of f + iHT

Xf : T → X + iX to the unit

disc and suppose that B = (B1, B2) is the planar Brownian motion started at 0 and

stopped upon hitting T. Let τ = inf{t ≥ 0 : |Bt| = 1} be the lifetime of B. The processes

Mt = F1(Bt), Nt = F2(Bt) are orthogonal martingales such that N is weakly differentially

subordinate to M. By Fatou’s lemma and Lebesgue’s monotone convergence theorem

(observe that f , being a step function, is bounded) we see that if t is sufficiently large,

then

E�(Nt) > (|HT

X |�,� − ε)E�(Mt).

If the expectation of M is zero, then by Remark 4.8 we know that

E�(Nt) ≤ |HT,0
X |�,�E�(Mt)

and hence we obtain that

|HT,0
X |�,� ≥ |HT

X |�,� − ε. (4.12)

We will show that this is also true if the expectation x = EMt does not vanish. To this

end, consider another Brownian motion W = (W1, W2) in R
2 started at 0 and stopped

upon reaching the boundary of the strip S = {(x, y) : |x| ≤ 1}. Let σ = inf{t : |W1
t | = 1}
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36 Osękowski and Yaroslavtsev

denote its lifetime. We may assume that W is constructed on the same probability space

as B and that both processes are independent. We splice these processes as follows: set

M̃s =
⎧⎨⎩xW1

s if s ≤ σ ,

sgn(W1
σ )Ms−σ if s > σ

and

Ñs =
⎧⎨⎩xW2

s if s ≤ σ ,

xW2
σ + Ns−σ if s > σ .

In other words, the pair (M̃, Ñ) behaves like a Brownian motion evolving in the strip

Sx until its 1st coordinate reaches x or −x, and then it starts behaving like the pair

(M, Ñσ + N) or (−M, Ñσ + N), depending on which the side of the boundary of Sx the

process M̃ reaches. Note that M̃ and Ñ are orthogonal martingales such that Ñ is weakly

differentially subordinate to M̃ and M̃0 = 0. Consequently, by Remark 4.8 for any t,

E�(Ñt) ≤ |HT,0
X |�,�E�(M̃t). (4.13)

Now,

E�(Ñt) ≥ E�(Ñt)1{t≥σ } = E�(xW2
σ + Nt−σ )1{t≥σ }.

However, W and B are independent, and the random variable xW2
σ is symmetric.

Therefore, using the fact that � is convex, we see that

E�(Ñt) ≥ E�(Nt−σ )1{t≥σ }.

Furthermore, using the symmetry of �, we have

E�(M̃t)1{t≥σ } = E�(sgn(W1
σ )Mt−σ )1{t≥σ } = E�(Mt−σ )1{t≥σ }.

As previously, combining (4.11) with Fatou’s lemma and Lebesgue’s dominated conver-

gence theorem, if t is sufficiently large, then

E�(Nt−σ )1{t≥σ } > (|HT

X |�,� − ε)E�(Mt−σ )1{t≥σ }

and hence also

E�(Ñt) > (|HT

X |�,� − ε)E�(M̃t)1{t≥σ }.
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The Hilbert Transform and Orthogonal Martingales 37

But limt→∞ E�(M̃t)1{t<σ } = 0, by Lebesgue’s dominated convergence theorem (we have

1{t<σ } → 0 and the norm of M̃t is bounded by ‖x‖ for t ∈ [0, σ ]). Therefore, the preceding

estimate gives

E�(Ñt) > (|HT

X |�,� − ε)E�(M̃t)

if t is sufficiently big. By (4.13), this gives (4.12) and completes the proof of the theorem,

since ε was arbitrary. �

Remark 4.10. Assume that |HT

X |�,� = |HT,0
X |�,� (this holds true under some additional

assumptions on � and �, see Theorem 4.9). Then the plurisubharmonic function U�,�

considered in Remark 4.8 coincides with the one considered in Theorem 3.2, and hence

we automatically have that U�,�(x) ≥ 0 for all x ∈ X.

Proof of Theorem 4.3. The theorem follows from Proposition 4.4, Theorems 4.5,

and 4.6, 4.9, and the fact that |HT,0
X |�,� ≤ |HT

X |�,� . �

Remark 4.11. Notice that Theorem 4.3 can not be applied to more general norms. For

example, if X is a UMD Banach space, 1 < q < p <∞, then

‖HT

X‖L(Lp(T;X),Lq(T;X)) <∞ and ‖HR

X‖L(Lp(R;X),Lq(R;X)) = ∞.

4.2 Decoupling constants

We turn our attention to the next important application. We need some additional

notation. Consider the probability space ([0, 1],B(0, 1), | · |), equipped with the dyadic

filtration (Fn)n≥0 (i.e., generated by the Haar system (hn)∞n=0, see, e.g., [28]). A martingale

f adapted to this filtration is called a Paley–Walsh martingale.

Definition 4.12. Let X be a Banach space and let 1 < p < ∞ be a fixed parameter.

Then we define β

,+
p,X and β


,−
p,X to be the smallest β+ and β− such that

1

(β−)pE

∥∥∥ ∞∑
n=0

dfn

∥∥∥p ≤ E

∥∥∥ ∞∑
n=0

rndfn

∥∥∥p ≤ (β+)p
E

∥∥∥ ∞∑
n=0

dfn

∥∥∥p

for any finite Paley–Walsh martingale (fn)n≥0 and any independent Rademacher

sequence (rn)n≥0. Furthermore, we define β
γ ,+
p,X and β

γ ,−
p,X to be the least possible values
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38 Osękowski and Yaroslavtsev

of β+ and β− for which

1

(β−)pE

∥∥∥∫ ∞

0
φ dW

∥∥∥p ≤ E

∥∥∥∫ ∞

0
φ dW̃

∥∥∥p ≤ (β+)p
E

∥∥∥∫ ∞

0
φ dW

∥∥∥p
,

where W is a standard Brownian motion, φ : R+ × � → X is an elementary progressive

process, and W̃ is another Brownian motion independent of φ and W.

Decoupling constants appear naturally while working with UMD Banach spaces

(see, e.g., [15, 16, 20, 24, 28, 37, 51]). The following result, a natural corollary of

Theorem 3.1 for �(x) = �(x) = ‖x‖p, exhibits the direct connection between decoupling

constants and h̄p,X := ‖HT

X‖L(Lp(T;X)) (see Corollary 3.3).

Corollary 4.13. Let X be a Banach space and let 1 < p <∞ be a fixed parameter. Then

we have

h̄p,X ≥ max{βγ ,+
p,X , βγ ,−

p,X } (4.14)

and hence

h̄p,X ≥ C max{β
,+
p,X , β
,−

p,X }. (4.15)

Here C = E|γ |E√τ , where γ is a standard normal random variable and τ = inf{t ≥ 0 :

|Wt| = 1} for a standard Brownian motion W.

Note that Eτ ≤ (E
√

τ)
2
3 (Eτ2)

1
3 by Hölder’s inequality, so C in (15) is bounded from

below by (Eτ)
3
2

(Eτ2)
1
2
E|γ | =

√
6√

5π
≈ 0.618 (since Eτ = 1 and Eτ2 = 5

3 ).

Proof. The inequality (4.14) follows directly from the definition of β
γ ,+
p,X and β

γ ,−
p,X .

Indeed, for any Brownian motion W, elementary progressive process φ, and a Brownian

motion W̃ independent of φ and W we have, for any x∗ ∈ X∗,[〈∫ ·

0
φ dW, x∗

〉]
t
=
[∫ ·

0
〈φ, x∗〉dW

]
t
=
∫ t

0
|〈φ(s), x∗〉|2 ds,[〈∫ ·

0
φ dW̃, x∗

〉]
t
=
[∫ ·

0
〈φ, x∗〉dW̃

]
t
=
∫ t

0
|〈φ(s), x∗〉|2 ds,

so
∫

φ dW
w	 ∫

φ dW̃
w	 ∫

φ dW. Moreover, by [32, Lemma 17.10],

[〈∫ ·

0
φ dW, x∗

〉
,
〈∫ ·

0
φ dW̃, x∗

〉]
t

=
[∫ ·

0
〈φ, x∗〉dW,

∫ ·

0
〈φ, x∗〉dW̃

]
t
=
∫ t

0
|〈φ(s), x∗〉|2 d[W, W̃]s = 0,
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The Hilbert Transform and Orthogonal Martingales 39

where the latter holds since W and W̃ are independent. Therefore
∫

φ dW and
∫

φ dW̃

are orthogonal local martingales satisfying the differential subordination (“in both

directions”), so by Theorem 3.1,

1

(h̄p,X)pE

∥∥∥∫
R+

φ dW
∥∥∥p ≤ E

∥∥∥∫
R+

φ dW̃
∥∥∥p ≤ (h̄p,X)p

E

∥∥∥∫
R+

φ dW
∥∥∥p

.

Let us now turn to the 2nd part. First notice that β
γ ,+
p,X ≥ Cβ


,+
p,X (see [51, (2.5)] and the

discussion thereafter), so h̄p,X ≥ β
γ ,+
p,X ≥ Cβ


,+
p,X . On the other hand, X can be assumed

UMD (and hence reflexive), so by the discussion above we have h̄p′,X∗ ≥ Cβ

,+
p′,X∗ . But

h̄p′,X∗ = h̄p,X (since (HT

X)∗ = HT

X∗ ), and β

,+
p′,X∗ ≥ β


,−
p,X analogously to [21, Theorem 1], so

h̄p,X ≥ Cβ

,−
p,X . �

Remark 4.14. Notice that (4.14) together with [20, Theorem 3] yields the related

estimate max{βγ ,+
p,X , βγ ,−

p,X } ≤ h̄p,X ≤ β
γ ,+
p,X β

γ ,−
p,X .

Remark 4.15. Let X be a UMD Banach function space. Then inequality (4.15) together

with [33] provide the lower bound for h̄p,X in terms of βp,X of the same order as (2.2).

Indeed, by [33] thanks to Banach function space techniques one can show that

βp,X �p q(cq,Xβ

,+
p,X )2,

where q is the cotype of X and cq,X is the corresponding cotype constant. Therefore by

applying (4.15) we get the following square root dependence:

√
βp,X �p

√
qcq,Xh̄p,X .

4.3 Necessity of the UMD property

Our next result answers a very natural question about the link of the number |HT,0
X |�,�

to the UMD property.

Theorem 4.16. Let �, � : X → R+ be continuous convex functions such that �(0) = 0.

Assume in addition that there is a positive number C such that the sets {x ∈ X : �(x) < C}
and �(B(0, C)) are bounded. If |HT,0

X |�,� <∞, then X is UMD.

Remark 4.17. It is easy to see that the assumption �(0) = 0 combined with the

boundedness of {� < C} enforces the function � to explode “uniformly” in the whole
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40 Osękowski and Yaroslavtsev

space. That is, if B(0, R) is the ball containing {� < C}, then the convexity of � implies

�(x) ≥ C‖x‖/R for all x /∈ B(0, R). Some condition of this type is necessary, as the

following simple example indicates. Take X = �∞ and set �(x) = |x1|2 = �(x). Then

|HT,0
X |�,� = 1 < ∞, while X is not UMD. The reason is that the function � controls only

the subspace generated by the 1st coordinate.

Remark 4.18. Note that X being UMD does not imply |HT,0
X |�,� < ∞. Indeed, if � and

� are of different homogeneity (i.e., �(ax) = aα�(x), �(ax) = aβ�(x) for any x ∈ X,

a ≥ 0, and for some fixed positive α �= β), then for any nonzero step function f : T→ X

such that
∫
T

f (s) ds = 0 and for any a ≥ 0 we have that∫
T

�(HT

Xf (s)) ds

= 1

aβ

∫
T

�(HT

X(af )(s)) ds ≤ 1

aβ
|HT,0

X |�,�

∫
T

�(af (s)) ds = aα−β |HT,0
X |�,�

∫
T

�(f (s)) ds,

so aα−β |HT,0
X |�,� ≤ |HT,0

X |�,� for any a > 0, and since α �= β, |HT,0
X |�,� = ∞. The classical

examples of such � and � are �(x) = ‖x‖p, �(x) = ‖x‖q, x ∈ X for different p and q.

The proof of Theorem 4.16 will exploit the following four lemmas. In what

follows, N∗ = supt≥0 ‖Nt‖ is the maximal function of N.

Lemma 4.19. Under the assumptions of Theorem 4.16, there exists a constant c1

depending on �, �, and X, such that if M and N are orthogonal martingales such that N

is weakly differentially subordinate to M, M0 = 0 and ‖M‖∞ ≤ c1, then P(N∗ ≥ 1) < 1.

Proof. Let R be as in Remark 4.17 and suppose that �(B(0, C)) ⊆ [−R′, R′]. Then for any

λ ≥ 1 we have, in the light of Remark 4.8,

P(‖Nt‖ ≥ 1) = P(Rλ‖Nt‖ ≥ Rλ) ≤ E�(RλNt)

Cλ
≤ |H

T,0
X |�,�E�(RλMt)

Cλ
.

It suffices to take λ = 2R′|HT,0
X |�,�
C and c1 = C/(Rλ). �

Lemma 4.20. Suppose that the assumptions of Theorem 4.16 are satisfied. Let M

and N be continuous-path orthogonal martingales such that N is weakly differentially

subordinate to M, M0 = 0 and P(N∗ > 1) = 1. Then there exist continuous-path

martingales M̃ and Ñ such that Ñ is weakly differentially subordinate to M̃, M̃0 = 0,

P(Ñ∗ > 1) ≥ 1/2 and ‖M̃‖∞ ≤ 2‖M‖1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz187/5544644 by N

ottingham
 Trent U

niversity user on 09 August 2019



The Hilbert Transform and Orthogonal Martingales 41

Proof. Define τ = inf{t ≥ 0 : ‖Mt‖ ≥ 2‖M‖1} (as usual, inf∅ = +∞) and put M̃ = Mτ ,

Ñ = Nτ . Since M has continuous paths and starts from 0, we have ‖M̃‖∞ ≤ 2‖M‖1.

Furthermore, P(Ñ∗ > 1) ≥ P(Ñ = N) ≥ 1/2, since

P(Ñ �= N) = P(τ <∞) = P(M∗ ≥ 2‖M‖1) ≤ 1/2

by [34, Theorem 1.3.8(i)]. �

Lemma 4.21. Suppose that the assumptions of Theorem 4.16 are satisfied. Then there

exists a constant c > 0 such that if M and N are continuous-path orthogonal martingales

such that N is weakly differentially subordinated to M, M0 = 0 and N∗ > 1 almost surely,

then ‖M‖1 ≥ c.

Proof. Let c1 be the number guaranteed by Lemma 4.19. Suppose that such a c does not

exist. Then for any positive integer j there exist a pair (Mj, Nj) of orthogonal martingales

such that Nj is weakly differentially subordinate to Mj, Mj
0 = 0, P((Nj)∗ > 2) = 1

and ‖Mj‖1 ≤ 2−j−1c1. By Lemma 4.20, for each j there is a pair (M̃j, Ñj) of orthogonal,

weakly differentially subordinate martingales satisfying M̃j
0 = 0, P((Ñj)∗ > 2) ≥ 1/2 and

‖M̃j‖∞ ≤ 2−jc1. We may assume that the underlying probability space is the same for

all pairs and that all the pairs are independent. For each j there is a positive number tj

such that the event

Aj = {‖Ñj
t‖ > 2 for some t ≤ tj}

has probability greater than 1/3. Set t0 = 0 and consider the martingale pair (M, N)

defined as follows: if t ∈ [t0 + t1 + . . .+ tn, t0 + t1 + . . .+ tn+1) for some n, then

Mt = M̃1
t1
+ M̃2

t2
+ . . .+ M̃n

tn
+ M̃n+1

t−t1−t2−...−tn
, (4.16)

and analogously for N. Then M and N are orthogonal, N is weakly differentially

subordinate to M, M0 = 0 and

‖M‖∞ ≤
∞∑

j=1

‖M̃j‖∞ ≤
∞∑

j=1

2−jc1 = c1.

Furthermore, by Borel–Cantelli lemma,

P(N∗ ≥ 1) ≥ P

(
lim sup

j→∞
Aj

)
= 1,
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42 Osękowski and Yaroslavtsev

since the events Aj are independent and
∑∞

j=1 P(Aj) = ∞. Therefore we have that ‖M‖∞ ≤
c1, P(N∗ ≥ 1) = 1, N

w	 M, and M and N are orthogonal, which contradicts the assertion

of Lemma 4.19. �

Lemma 4.22. Suppose that the assumptions of Theorem 4.16 are satisfied. Then

there exists a positive constant C such that if M, N are continuous-path orthogonal

martingales such that N is weakly differentially subordinate to M and M0 = 0, then

P(N∗ > 1) ≤ C‖M‖1. (4.17)

Proof. Let c be the constant guaranteed by the previous lemma. Suppose that the

assertion is not true. Then for any positive integer j there is a martingale pair (Mj, Nj)

satisfying the usual structural properties such that

P((Nj)∗ > 2) > 2j+1c−1‖Mj‖1. (4.18)

We splice these martingale pairs into one pair (M, N) as previously; however, this time

we allow pairs to appear several times. More precisely, denote aj = P((N∗)j > 2).

Consider #1/a1$ copies of (M1, N1), #1/a2$ copies of (M2, N2), and so on (all the pairs

are assumed to be independent). Let tj be positive numbers such that the events Aj =
{‖Nj

t‖ > 2 for somet ≤ tj} have probability greater than aj/2. Splice the aforementioned

independent martingale pairs (with multiplicities) into one pair (M, N) using a formula

analogous to (16). Then, by (18),

‖M‖1 ≤
∑

‖Mj‖1 ≤
∞∑

j=1

⌈
1

aj

⌉
‖Mj‖1 ≤

∞∑
j=1

2

aj
· ajc2−j−1 = c

and, again by Borel–Cantelli lemma, P(N∗ > 1) = 1. Here we use the independence of the

events Aj and

∑
P(Aj) ≥

∞∑
j=1

1

aj
· aj

2
= ∞.

This contradicts Lemma 4.21. �

Proof of Theorem 4.16. We will prove that theorem using the well-known extrapolation

technique (good-λ inequalities) of Burkholder [7].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz187/5544644 by N

ottingham
 Trent U

niversity user on 09 August 2019



The Hilbert Transform and Orthogonal Martingales 43

Step 1. First we show that for any fixed 0 < δ < 1 and β > 1 there exists ε > 0

depending only on δ, β, and X such that for any orthogonal continuous-path martingales

M, N : R+ ×�→ X with M0 = N0 = 0 and N
w	 M,

P(N∗ > βλ, M∗ ≤ δλ) ≤ εP(N∗ > λ) (4.19)

for any λ > 0. Without loss of generality assume that both martingales take their values

in a finite-dimensional subspace of X. Define three stopping times

μ := inf{t ≥ 0 : ‖Nt‖ > λ},
ν := inf{t ≥ 0 : ‖Mt‖ > δλ},
σ := inf{t ≥ 0 : ‖Nt‖ > βλ}.

(4.20)

All the stopping times are predictable since M and N are continuous. Therefore, the

equation U(t) = 1[μ,ν∧σ ](t) defines a predictable process (where U = 0 on R+ if ν∧σ < μ),

which in turn gives rise to the martingales

M̃ :=
∫

U dM = Mν∧δ −Mμ∧ν∧δ,

Ñ :=
∫

U dN = Nν∧δ − Nμ∧ν∧δ.

(4.21)

Notice that by (4.20) and (4.21), M̃∗ ≤ 2δλ on {μ <∞} and M̃∗ = 0 on {μ = ∞}, so

‖M̃‖1 ≤ 2δλP(N∗ > λ). (4.22)

Since Ñ
w	 M̃, M̃0 = Ñ0 = 0 and M̃ and Ñ are orthogonal,

P(N∗ > βλ, M∗ ≤ δλ) ≤ P(Ñ∗ > (β − 1)λ)
(i)≤ C

(β − 1)λ
‖M̃‖1

(ii)≤ 2δC

(β − 1)
P(N∗ > λ),

where (i) follows from (4.17) with the same constant C depending only on X, and (ii)

follows from (4.22). Therefore (4.19) holds with ε = 2δC/(β − 1).

Step 2. Now a straightforward integration argument (cf. [7, Lemma 7.1]), together

with Doob’s maximal inequality, yield the Lp estimate

sup
t≥0

‖Nt‖p ≤ ‖N∗‖p ≤ Cp,X‖M∗‖p ≤
pCp,X

p− 1
sup
t≥0

‖Mt‖p, 1 < p <∞,
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44 Osękowski and Yaroslavtsev

for any pair of continuous, orthogonal, differentially subordinated martingales such

that M0 = 0. Here

Cp
p,X =

δ−pβp

1− βp · 2δC/(β − 1)
, (4.23)

which, if we let β = 1 + p−1 and δ = (10Cp)−1, depends only on p and the constant

in (4.17). This in turn yields the corresponding Lp inequality for the periodic Hilbert

transform for functions of integral 0. By Theorem 4.3 the assumption on the zero-

average can be omitted, and hence X is UMD by [28, Corollary 5.2.11]. �

Now we will take a closer look at the classical “LlogL” estimates of Zygmund

[59]. For a Banach space X and a step function f : T→ X, we define

‖f ‖L log L(T;X) :=
∫
T

(‖f (s)‖ + 1) log(‖f (s)‖ + 1) ds

and denote

h̄L log L,X = |HT

X |L log L(T;X)→L1(T;X) := sup
f :T→X step

‖HT

Xf ‖L1(T;X)

‖f ‖L log L(T;X)

.

Remark 4.23. In the light of Theorem 4.3, we have

h̄L log L,X = |HT,0
X |L log L(T;X)→L1(T;X) = |HR

X |L log L(R;X)→L1(R;X) = |Hdis
X |L log L(Z;X)→L1(Z;X)

for any Banach space X.

We will establish the following statement.

Theorem 4.24. Let X be a Banach space. Then X has the UMD property if and only if

h̄L log L,X <∞.

For the proof we will need the following lemma.

Lemma 4.25. Let X be a UMD Banach space. Then there exists a constant CX depending

only on X such that h̄p,X ≤ CX
p

p−1 for all 1 < p < 2.
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The Hilbert Transform and Orthogonal Martingales 45

Proof. Let M, N : R+ ×�→ X be continuous orthogonal martingales such that N
w	 M

and N0 = 0. As we have already seen above,

sup
t≥0

(E‖Nt‖p)
1
p ≤ p

p− 1
Cp,X sup

t≥0
(E‖Mt‖p)

1
p ,

where Cp,X ≤ 10Cpe(1 − e/5)−1/p (see (4.23) and the discussion following it). Therefore,

if 1 < p < 2, we may assume that this constant depends only on C (which essentially

depends only on X). The claim follows from the sharpness part of Theorem 3.1. �

Proof of Theorem 4.24. The inequality h̄L log L,X < ∞ implies UMD by Theorem 4.16

applied to �(x) = (‖x‖ + 1) log(‖x‖ + 1) and �(x) = ‖x‖, x ∈ X. The converse holds true

by Lemma 4.25 and Yano’s extrapolation argument (see, e.g., [18, 53]). �

4.4 Weak differential subordination of martingales: sharper Lp inequalities

As it was noticed in (2.5), for a UMD Banach space X, any 1 < p < ∞ and any X-valued

local martingales M and N such that N
w	 M, we have

E‖Nt‖p ≤ cp
p,XE‖Mt‖p, t ≥ 0,

with cp,X ≤ β2
p,X(βp,X + 1). The purpose of this subsection is to show that the upper

bound can be substantially improved.

Theorem 4.26. Let X be a Banach space, let 1 < p < ∞, and assume that M and N are

local martingales satisfying N
w	 M. Then

E‖Nt‖p ≤ (βp,X + h̄p,X)p
E‖Mt‖p for anyt ≥ 0. (4.24)

Remark 4.27. Note that h̄p,X ≤ β2
p,X (see (2.2)), so (4.24) gives

(E‖Nt‖p)
1
p ≤ βp,X(βp,X + 1)(E‖Mt‖p)

1
p t ≥ 0,

which is better than (2.5).

For the proof of Theorem 4.26 we will need the notion of the Burkholder function.
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46 Osękowski and Yaroslavtsev

Definition 4.28. Let E be a linear space. A function f : E → R is called concave if for

any x, y ∈ E and any λ ∈ [0, 1] we have f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y). A function

f : E × E → R is called zigzag–concave if for each x, y ∈ E and ε ∈ [−1, 1] the function

z 
→ f (x + z, y + εz) is concave.

The following theorem can be found in [11, 28, 55].

Theorem 4.29 (Burkholder). For a Banach space X the following conditions are

equivalent:

1. X is a UMD Banach space;

2. for each p ∈ (1,∞) there exists a constant β and a zigzag–concave function

U : X × X → R, convex in the 2nd variable, such that

U(x, y) ≥ ‖y‖p − βp‖x‖p, x, y ∈ X. (4.25)

The smallest admissible β, for which such U exists, is equal to βp,X .

Any function U as in the above theorem will be called a Burkholder function.

Remark 4.30. Suppose that the Banach space X is finite dimensional and let U : X ×
X → R be a zigzag–concave function. Let ρ : X × X → R+ be a compactly supported

nonnegative function of class C∞. Then the convolution Uρ := U ∗ ρ : X × X → R is

zigzag–concave and of class C∞ (see, e.g., [2]).

While working with the Burkholder function U : X × X → R we will use the

following notation: for given vectors x, y ∈ X instead of writing

∂2U

∂(x, 0)2 ,
∂2U

∂(0, y)2 ,
∂2U

∂(x, 0)∂(0, y)

we will write

∂2U

∂x2 ,
∂2U

∂y2 ,
∂2U

∂x∂y
.

Therefore for the convenience of the reader throughout this subsection we always

assume that the 1st coordinate of any vector in X × X is x (perhaps with a subscript),

while the 2nd coordinate is y (perhaps with a subscript). The same holds for partial

derivatives.

We also will need the following lemma.
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The Hilbert Transform and Orthogonal Martingales 47

Lemma 4.31. Let X be a finite-dimensional Banach space, let F : X×X → R be a zigzag–

concave function and let (x0, y0) ∈ X × X be such that F is twice Fréchet differentiable

at (x0, y0). Let (x, y) ∈ X × X be such that y = x. Then for each λ ∈ [−1, 1],

∂2F(x0, y0)

∂x2 + 2λ
∂2F(x0, y0)

∂x∂y
+ ∂2F(x0, y0)

∂y2 ≤ 0.

Proof. Since the function

λ 
→ ∂2F(x0, y0)

∂x2 + 2λ
∂2F(x0, y0)

∂x∂y
+ ∂2F(x0, y0)

∂y2

is linear in λ ∈ [−1, 1], it is sufficient to check the cases λ = ±1. To this end notice that

∂2F(x0, y0)

∂x2 ± 2
∂2F(x0, y0)

∂x∂y
+ ∂2F(x0, y0)

∂y2 = ∂2

∂t2 F(x0 + tx, y0 ± tx)

∣∣∣
t=0

≤ 0,

where the latter follows from Definition 4.28. �

Proof. of Theorem 4.26 We begin with similar reductions as in the proof of Theorem

3.1. First, we may assume that X is a finite-dimensional Banach space. Let d ≥ 1 be the

dimension of X. Let M = Mc+Md and N = Nc+Nd be the Meyer–Yoeurp decompositions

(see Subsection 2.7). Then by Proposition 2.14 Nc
w	 Mc and Nd

w	 Md. Let τ = (τs)s≥0 be

the time-change constructed in Step 1 of the proof of Theorem 3.1 (see [56, Section 4]). So,

there exists a 2d-dimensional standard Brownian motion W on an extended probability

space (�̃, F̃ , P̃) equipped with an extended filtration F̃ = (F̃t)t≥0, and there exist two

progressively measurable processes φ, ψ : R+ × � → L(R2d, X) such that Mc ◦ τ = φ ·W
and Nc ◦ τ = ψ · W. Let us redefine M := M ◦ τ and N := N ◦ τ (hence Mc := Mc ◦ τ ,

Md := Md ◦ τ , Nc := Nc ◦ τ , and Nd := Nd ◦ τ , see [56, Subsection 2.6]). Without loss of

generality we may further assume that M and N terminate after some deterministic time:

Mt = Mt∧T and Nt = Nt∧T for some fixed parameter T ≥ 0. Analogously to Proposition

3.5 there exists a progressively measurable A : R+ × � → L(R2d) that satisfies ‖A‖ ≤ 1

on R+ ×� and ψ = φA. Let us define Asym := A+AT

2 , Aasym := A−AT

2 . If we set

Nsym := Nd + (φAsym) ·W, Nasym := (φAasym) ·W,

then Nsym
w	 M and Nasym

w	 M. Indeed, if Nsym = Nsym,c+Nsym,d and Nasym = Nasym,c+
Nasym,d are the corresponding Meyer–Yoeurp decompositions, then Nsym,d = Nd

w	 Md,
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Nasym,d = 0
w	 Md, and for any x∗ ∈ X∗ and t ≥ 0, we have

[〈Nsym,c, x∗〉]t =
∫ t

0

∥∥A(s)+AT (s)
2 φ∗(s)x∗

∥∥2 ds

≤
∫ t

0

∥∥A(s)+AT (s)
2

∥∥2‖φ∗(s)x∗‖2 ds ≤
∫ t

0
‖φ∗(s)x∗‖2 ds = [〈Mc, x∗〉]t.

Here
∥∥A(s)+AT (s)

2

∥∥ ≤ 1 by the triangle inequality. Therefore Nsym,c
w	 Mc and, analogously,

Nasym,c
w	 Mc, so the weak differential subordination holds by virtue of Proposition 2.14.

Let us now show that

E‖Nasym
t ‖p ≤ h̄p

p,XE‖Mt‖p for t ≥ 0. (4.26)

We have Nasym
0 = 0 and Nasym

w	 M; we will prove in addition that M and Nasym are

orthogonal. For fixed x∗ ∈ X∗ and t ≥ 0 we may write

[〈M, x∗〉, 〈Nasym, x∗〉]t = [〈Mc, x∗〉, 〈Nasym, x∗〉]t + [〈Md, x∗〉, 〈Nasym, x∗〉]t
= [〈Mc, x∗〉, 〈Nasym, x∗〉]t = [〈φ ·W, x∗〉, 〈(φAasym) ·W, x∗〉]t

= [〈φ, x∗〉·W, 〈(φAasym), x∗〉·W]t =
∫ t

0
〈φ∗(s)x∗, Aasym∗(s)φ∗(s)x∗〉ds=0,

where the 2nd equality is a consequence of pure discontinuity of Md and continuity of

Nasym, while the last equality follows from the fact that Aasym is antisymmetric. This

gives the orthogonality of the processes and (4.26) follows from (3.1).

The next step is to show that

E‖Nsym
t ‖p ≤ β

p
p,XE‖Mt‖p fort ≥ 0. (4.27)

Let U : X × X → R be the Burkholder function guaranteed by Theorem 4.29. Using the

same argument as in [2], we may assume that U is of class C∞ (see also Remark 4.30).

Applying Itô’s formula (2.3) for a fixed basis (xi)
d
i=1 of X with the dual basis (x∗i )d

i=1 of

X∗, we get

EU(Mt, Nsym
t ) = EU(M0, Nsym

0 )+ 1

2
EI1 + EI2,
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where

I1 :=
∫ t

0

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂xi∂xj
d[〈M, x∗i 〉, 〈M, x∗j 〉]cs

+
∫ t

0

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂yi∂yj
d[〈Nsym, x∗i 〉, 〈Nsym, x∗j 〉]cs

+ 2
∫ t

0

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂xi∂yj
d[〈M, x∗i 〉, 〈Nsym, x∗j 〉]cs

(4.28)

and

I2 :=
∑

0≤s≤t

(
U(Ms, Nsym
s )− 〈∂xU(Ms−, Nsym

s− ), 
Ms〉 − 〈∂yU(Ms−, Nsym
s− ), 
Nsym

s 〉).

Here ∂xU(·), ∂yU(·) ∈ X∗ are the corresponding Fréchet derivatives of U in the 1st and

the 2nd X-subspace of the product space X × X. Let us first show that EI1 ≤ 0. Indeed,

note that

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂xi∂xj
〈φ∗x∗i , φ∗x∗j 〉

+
d∑

i,j=1

∂2U(Ms−, Nsym
s− )

∂yi∂yj
〈Asym∗φ∗x∗i , Asym∗φ∗x∗j 〉

+ 2
d∑

i,j=1

∂2U(Ms−, Nsym
s− )

∂xi∂yj
〈φ∗x∗i , Asym∗φ∗x∗j 〉 ≤ 0.

(4.29)

Note also that by Corollary 3.9 and convexity of U in the 2nd variable,

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂yi∂yj
〈Asym∗φ∗x∗i , Asym∗φ∗x∗j 〉 ≤

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂yi∂yj
〈φ∗x∗i , φ∗x∗j 〉. (4.30)

The operator PRan(φ∗)A
sym∗PRan(φ∗) is symmetric and

‖PRan(φ∗)A
sym∗PRan(φ∗)‖ ≤ 1.

Therefore by the spectral theorem there exist a [−1, 1]-valued sequence (λi)
2d
i=1 and an

orthonormal basis (h̃i)
2d
i=1 of (R2d)∗ such that PRan(φ∗)A

sym∗PRan(φ∗)h̃i = λih̃i. Moreover,
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50 Osękowski and Yaroslavtsev

since Ran(PRan(φ∗)A
sym∗PRan(φ∗)) ⊂ Ran(φ∗), h̃i ∈ Ran(φ∗) if λi �= 0, so we may assume

that there exists a basis (x̃i)
d
i=1 of X with the dual basis (x̃∗i )d

i=1 such that φ∗x̃∗i = h̃i for

1 ≤ i ≤ m and φ∗x̃∗i = 0 for m < i ≤ d, where m ∈ {0, . . . , d} is the dimension of φ∗. By

Lemma 3.8 the expression on the left-hand side of (4.29) does not depend on the choice of

the basis of X and the corresponding dual basis. Therefore, using (4.30), it is not bigger

than

m∑
i=1

∂2U(Ms−, Nsym
s− )

∂xi∂xi
+

m∑
i=1

∂2U(Ms−, Nsym
s− )

∂yi∂yi
+ 2

m∑
i=1

λi
∂2U(Ms−, Nsym

s− )

∂xi∂yi
,

which is bounded from above by 0 (see Lemma 4.31). Thus, (4.29) follows. Therefore by

(4.28) and (4.29), we see that

I1 =
∫ t

0

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂xi∂xj
〈φ∗x∗i , φ∗x∗j 〉ds

+
∫ t

0

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂yi∂yj
〈Asym∗φ∗x∗i , Asym∗φ∗x∗j 〉ds

+ 2
∫ t

0

d∑
i,j=1

∂2U(Ms−, Nsym
s− )

∂xi∂yj
〈φ∗x∗i , Asym∗φ∗x∗j 〉ds ≤ 0,

and hence the expectation of I1 is nonpositive. The inequality I2 ≤ 0 can be proved

by repeating the arguments from [55, Proof of Theorem 3.18], while for the estimate

U(M0, Nsym
0 ) ≤ 0, consult [55, Remark 3.10]. Therefore, we have

E‖Nsym
t ‖p − β

p
p,XE‖Mt‖p ≤ EU(Mt, Nsym

t ) ≤ EU(M0, Nsym
0 ) ≤ 0,

so (4.27) holds. The general inequality (4.24) follows from (4.26), (4.27), and the triangle

inequality. �

Remark 4.32. It is an open problem whether there exists a Burkholder function U

such that −U is plurisubharmonic (note that X×X � X+ iX, so the plurisubharmonicity

condition is well defined). If it exists, then h̄p,X ≤ βp,X by Theorem 3.2, and so the open

problem outlined in Remark 2.1 is solved. Unfortunately, plurisubharmonicity of −U is

discovered only in the Hilbert space case (see [52] and [55, Remark 5.6]).
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The Hilbert Transform and Orthogonal Martingales 51

4.5 Weak differential subordination of harmonic functions

Let X be a Banach space, let d ≥ 1 be a fixed dimension, and let O be an open subset of

R
d. A function f : O→ X is called harmonic if it takes its values in a finite-dimensional

subspace of X, is twice-differentiable, and


f (s) :=
d∑

i=1

∂2
i f (s) = 0, s ∈ O.

For each s ∈ O, we define ∇f (s) ∈ L(Rd, X) by

∇f (s)(a1e1 + · · ·aded) =
d∑

i=1

ai∂if (s), a1, . . . , ad ∈ R,

where (ei)
d
i=1 is the basis of Rd.

Definition 4.33. Let X, d, O be as above and assume that f , g : O → X are harmonic

functions. Then

1. g is said to be weakly differentially subordinate to f (which will be denoted

by g
w	 f ) if

|〈∇g(s), x∗〉| ≤ |〈∇f (s), x∗〉|, s ∈ O, x∗ ∈ X∗; (4.31)

2. f and g are said to be orthogonal if

〈
〈∇f (s), x∗〉, 〈∇g(s), x∗〉

〉
= 0, s ∈ O, x∗ ∈ X∗. (4.32)

Here | · | in (4.31) is assumed to be the usual Euclidean norm in (Rd)∗ � R
d, and

〈·, ·〉 in (4.32) is the usual scalar product in (Rd)∗ � R
d.

The notion of weak differential subordination of vector-valued harmonic

functions extends the concept originally formulated in the one-dimensional case by

Burkholder [13]. As shown in that paper, the differential subordination of harmonic

functions lead to the corresponding Lp inequalities for 1 < p < ∞. The aim of this

subsection is to show the extension of that result to general weakly differentially

subordinated harmonic functions and to show more general �, �-type estimates under

the orthogonality assumption. We start with recalling the definition of a harmonic

measure.
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52 Osękowski and Yaroslavtsev

Definition 4.34. Let O ⊂ R
d be an open set containing the origin and let ∂O be the

boundary of O. The probability measure μ on ∂O is called a harmonic measure with

respect to the origin, if for any Borel subset A ⊂ ∂O we have

μ(A) := P{Wτ ∈ A}.

Here W : R+ ×� → R
d is a standard Brownian motion starting from 0 and τ is the exit

time of W from O.

Theorem 4.35. Let X be a Banach space, let d ≥ 1 be a fixed dimension, and let O be

an open, bounded subset of Rd containing the origin. Assume further that �, � : X → R+
are continuous functions such that � is convex and �(0) = 0. Then for any continuous

functions f , g : O → X harmonic and orthogonal on O satisfying g
w	 f and g(0) = 0 we

have ∫
∂O

�(g(s)) dμ(s) ≤ C�,�,X

∫
∂O

�(f (s)) dμ(s).

Here μ is the harmonic measure on ∂O with respect to the origin and the least

admissible C�,�,X equals |HT

X |�,� .

Remark 4.36. We do not assume that � is convex because both f and g take their

values in a finite-dimensional subspace of X, see Remark 3.14.

Proof. of Theorem 4.35 Let W : R+ × � → R
d be a standard Brownian motion and let

τ := inf{t ≥ 0 : Wt /∈ O}. Then both M := f (Wτ ) and N := g(Wτ ) are martingales since

both f and g are harmonic on O (see, e.g., [32, Theorem 18.5]). By Itô’s formula and the

fact that both f and g are harmonic we have

Mt = f (Wτ
t ) = f (0)+

∫ t

0
∇f (Wτ

s ) dWτ
s , t ≥ 0,

Nt = g(Wτ
t ) =

∫ t

0
∇g(Wτ

s ) dWτ
s , t ≥ 0,

where in the 2nd line we have used the equality g(0) = 0. Therefore for any x∗ ∈ X∗ and

any 0 ≤ u ≤ t we have

[〈N, x∗〉]t − [〈N, x∗〉]u =
∫ t

u
‖〈∇g(Wτ

s ), x∗〉‖2 ds

≤
∫ t

u
‖〈∇f (Wτ

s ), x∗〉‖2 ds = [〈M, x∗〉]t − [〈M, x∗〉]u,
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and

[〈M, x∗〉, 〈N, x∗〉]t =
∫ t

0

〈
〈∇g(Wτ

s ), x∗〉, 〈∇f (Wτ
s ), x∗〉

〉
ds = 0.

Consequently, M and N are orthogonal and N
w	 M, so

∫
∂O

�(g(s)) dμ(s) = lim
t→∞E�(g(Wτ

t )) ≤ lim
t→∞ |H

T

X |�,�E�(f (Wτ
t )) = |HT

X |�,�

∫
∂O

�(f (s)) dμ(s).

Here the 1st and the last equality follow from the dominated convergence theorem and

the definition of μ, while the middle one is due to Theorem 3.1.

The sharpness of the constant C�,�,X = |HT

X |�,� follows from the case d = 2,

O ⊂ R
2 being the unit disc, f and g being such that g|∂O = HT

X(f |∂O) (in this case μ

becomes the probability Lebesgue measure on the unit circle ∂O). �

Remark 4.37. Sharpness of the estimate

∫
∂O

�(g(s)) dμ(s) ≤ |HT

X |�,�

∫
∂O

�(f (s)) dμ(s)

for a fixed domain O remains open. Nevertheless, in the case d = 2 and O being bounded

with a Jordan boundary (e.g., polygon-shaped) the sharpness follows immediately from

the Carathéodory’s theorem (see, e.g., [22, Subsection I.3 and Appendix F]).

Let us turn to the corresponding result for Lp estimates for differentially

subordinate harmonic functions (i.e., not necessarily orthogonal).

Theorem 4.38. Let X, d, and O be as in the previous statement. Assume further that

f , g : O→ X are continuous functions harmonic on O satisfying g
w	 f and g(0) = a0f (0)

for some a0 ∈ [−1, 1]. Then for any 1 < p <∞ we have

(∫
∂O
‖g(s)‖p dμ(s)

) 1
p ≤ Cp,X

(∫
∂O
‖f (s)‖p dμ(s)

) 1
p
, (4.33)

where μ is the harmonic measure of ∂O, and the least admissible constant Cp,X is within

the segment [h̄p,X , βp,X + h̄p,X ].
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54 Osękowski and Yaroslavtsev

Remark 4.39. In the scalar-valued setting it is known that the optimal Cp,R is within

the range [cot( π
2p∗ ), p∗ − 1]. The precise identification of Cp,R is an open problem

formulated by Burkholder in [13].

Proof. of Theorem 4.38 This is quite similar to the proof of the latter statement, so

we will be brief and only indicate the necessary changes that need to be implemented.

For the lower bound Cp,X ≥ h̄p,X , modify appropriately the last sentence of the proof of

Theorem 4.35. To show the upper bound for Cp,X , consider the martingales M := f (Wτ )

and N := g(Wτ ), where W and τ are as previously. Arguing as in the proof of Theorem

4.35, we show that N
w	 M and hence by Theorem 4.26,

(∫
∂O
‖g(s)‖p dμ(s)

) 1
p = lim

t→∞(E‖Nt‖p)
1
p ≤ lim sup

t→∞
(βp,X + h̄p,X)(E‖Mt‖p)

1
p

≤ lim
t→∞(βp,X + h̄p,X)(E‖Mt‖p)

1
p = (βp,X + h̄p,X)

(∫
∂O
‖f (s)‖p dμ(s)

) 1
p
.

This completes the proof. �

Remark 4.40. Note that any significant improvement for the upper bound of Cp,X in

(33) could automatically solve an open problem. Let us outline two remarkable examples.

If one could show that Cp,X ≤ Cβp,X for some universal constant C > 0, then the open

problem outlined in Remark 2.1 will be solved. On the other hand, if one could show

that Cp,X = h̄p,X , then the question of Burkholder concerning the optimal constant Cp,R

in the real-valued case would be answered (see Remark 4.39).

4.6 Inequalities for singular integral operators

Our final application concerns the extension of �, �-estimates from the setting of

nonperiodic Hilbert transform to the case of odd-kernel singular integral operators on

R
d. We start with the notion of a directional Hilbert transform: given a unit vector

θ ∈ R
d, we define the operator Hθ by

Hθ f (x) = 1

π
p.v.

∫
R

f (x − tθ)
dt

t
, x ∈ R

d,

where f is a sufficiently regular real-valued function on R
d, and call it the Hilbert

transform of f in the direction θ . For example, if e1 stands for the unit vector

(1, 0, 0, . . . , 0) ∈ R
d, then He1

is obtained by applying the Hilbert transform in the 1st
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The Hilbert Transform and Orthogonal Martingales 55

variable followed by the identity operator in the remaining variables. Consequently, by

Fubini’s theorem, we see that for any functions �, � : X → [0,∞) and any step function

f : Rd → X (finite linear combination of characteristic functions of rectangles) we have∫
Rd

�(He1
f )dx ≤ |HR

X |�,�

∫
Rd

�(f )dx.

Now, if A is an arbitrary orthogonal matrix, we have

HAe1
(f )(x) = He1

(f ◦ A)(A−1x), x ∈ R
d,

so the above inequality holds true for any directional Hilbert transform Hθ .

Suppose that � : Sd−1 → R is an odd function satisfying ||�||L1(Sd−1) = 1 and

define the associated operator

T�f (x) = 2

π
p.v.

∫
Rd

�(y/|y|)
|y|d f (x − y)dy, x ∈ R

d.

Then T� can be expressed as an average of directional Hilbert transforms:

T�f (x) =
∫

Sd−1
�(θ)Hθ f (x)dθ , x ∈ R

d.

(Sometimes this identity is referred to as the method of rotations.) Consequently, if � is

convex and even, we get

∫
Rd

�(T�f )dx =
∫
Rd

�

(∫
Sd−1

�(θ)Hθ f (x)dθ

)
dx

≤
∫

Sd−1
|�(θ)|

∫
Rd

�(Hθ f (x))dxdθ ≤ |HR

�,� |
∫
Rd

�(f )dx.

In particular, if we fix d and j ∈ {1, 2, . . . , d}, then the kernel

�j,d(θ) =
π�

(
d+1

2

)
2π(d+1)/2

θj, θ ∈ Sd−1,

gives rise to the Riesz transform Rj. Therefore, we see that any �, �-estimate for the

nonperiodic Hilbert transform (where � is assumed to be a convex and even function on

X) holds true, with an unchanged constant, also in the context of Riesz transforms. In

particular, the Lp norms of Riesz transforms are dominated by the Lp norms of Hilbert

transform.
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The following theorem connects the �, �-norm of an odd power of a Riesz

transform with the �, �-norm of the Hilbert transform.

Theorem 4.41. Let X be a Banach space, d ≥ 1, j ∈ {1, . . . , d}, m ≥ 1 be odd. Let Rj,X be

the corresponding Riesz transform acting on X-valued step functions, �, � : X → R+ be

convex continuous such that � is even. Then

|Rm
j,X |�,� ≤

∣∣∣ 2�(m+d
2 )

�(d
2 )�(m

2 )
HR

X

∣∣∣
�,�

.

Proof. The proof follows from the discussion above, the fact that Rm
j,X is a singular

integral of the following form (see, e.g., [29, p. 33]):

Rm
j,Xf (x) = �(m+d

2 )

π
d
2 �(m

2 )

∫
Rd

f (x − y)ym
j

|y|m+d
dy, x ∈ R

d,

where f : R
d → X is a step function, and the fact that the volume of Sd−1 equals

2π
d
2 /�(d

2 ). �

Notice that if d is fixed, then
2�(

m+d
2 )

�(
d
2 )�(

m
2 )

is of the order md/2, so in particular we

have that for all 1 < p <∞,

‖Rm
j,X‖Lp(Rd;X)→Lp(Rd;X) �d md/2‖HR

X‖Lp(R;X)→Lp(R;X).

4.7 Hilbert operators

Let X be a Banach space, let d be a positive integer, and pick j ∈ {1, . . . , d}. Let f : Rd
j+ → X

be locally integrable function, where R
d
j+ = {x ∈ R

d : xj > 0}. We define Tjf : Rd
j+ → X by

the formula

Tjf (x) := �(d+1
2 )

π(d+1)/2

∫
R

d
j+

f (y)(xj + yj)

|x + y|d+1
dy, x ∈ R

d
j+.

This type of operators resembles Riesz transforms, but due to the domain restrictions

the use of principal value is not necessary. Note that if d = 1, then Tj is the Hilbert

operator T given by

Tf (x) := 1

π

∫
R+

f (y)

x + y
dy, x ∈ R+.

We have the following statement.
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Theorem 4.42. Let X be a Banach space, �, � : X → R+ be convex continuous such

that � is even, d ≥ 1, j ∈ {1, . . . , d}, 1 < p <∞. Then

|Tj|�,� ≤ |HR

X |�,� . (4.34)

Proof. By the discussion in Subsection 4.6 it is sufficient to show that

|Tj|�,� ≤ |Rj,X |�,� .

Fix a step function f : Rd
j+ → X. Let f̃ : Rd → X be such that f̃ (x1, . . . , xd) = 0 if xj < 0

and f̃ |
R

d
j+
= f . Then Tjf (x) = Rj,X f̃ (−x) for any x ∈ R

d
j+, and therefore

∫
R

d
j+

�(Tjf (x)) dx =
∫
Rd

�(Rj,X f̃ (−x))1xj>0 dx ≤
∫
Rd

�(Rj,X f̃ (−x)) dx

=
∫
Rd

�(Rj,X f̃ (x)) dx ≤ |Rj,X |�,�

∫
Rd

�(f̃ (x)) dx

= |Rj,X |�,�

∫
R

d
j+

�(f (x)) dx.

�

Remark 4.43. Notice that if � and � are of the form �(x) = φ(‖x‖), �(x) = ψ(‖x‖) for

some convex symmetric functions φ, ψ : R → R+, then one can improve (4.34). Indeed,

one can show that |Tj|�,� = |Tj|φ,ψ , which does not depend on the Banach space X: for

any step function f : Rd
j+ → X one has that

∫
R

d
j+

�(Tjf (x)) dx =
∫
R

d
j+

ψ(‖Tjf (x)‖) dx

=
∫
R

d
j+

ψ
(∥∥∥ �(d+1

2 )

π(d+1)/2

∫
R

d
j+

f (y)(xj + yj)

|x + y|d+1
dy
∥∥∥)dx

≤
∫
R

d
j+

ψ
( �(d+1

2 )

π(d+1)/2

∫
R

d
j+

g(y)(xj + yj)

|x + y|d+1
dy
)

dx

=
∫
R

d
j+

ψ(Tjg(x)) dx ≤ |Tj|φ,ψ

∫
R

d
j+

φ(g(x)) dx

= |Tj|φ,ψ

∫
R

d
j+

�(f (x)) dx,
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where g : Rd
j+ → R+ is a step function such that g(·) = ‖f (·)‖. In particular, if �(x) =

�(x) = ‖x‖p for some 1 < p <∞, then by [41, Theorem 1.1]

‖Tj‖Lp(Rd
j+;X)→Lp(Rd

j+;X)
= sin−1(π/p).
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