
Predictive Maintenance Decisions for a Multi-Component Aircraft based on Prognostics
A Two-Fold Deep Learning Approach

L.C.M. Posthuma

Te
ch

ni
sc

he
U
ni
ve

rs
ite

it
De

lft





Predictive Maintenance Decisions for aMulti-Component Aircraft based onPrognostics
A Two-Fold Deep Learning Approach

by

L.C.M. Posthuma
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on January 20, 2022.

Student number: 4967585
Project duration: March 2021 – January 2022
Thesis committee: Member: Department:
Chair Prof. Dr. H.A.P. Blom TU Delft - Air Transport & Operations
Supervisor Dr. M. Mitici TU Delft - Air Transport & Operations
Co-Supervisor Ir. I. I. de Pater TU Delft - Air Transport & Operations
External Committee Member Dr. C. Borst TU Delft - Control & Simulation

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Acknowledgements

This thesis is the final work of my MSc Aerospace Engineering at the TU Delft. It has been an enjoy-
able journey in which I have developed both personally and professionally. The challenges I have
faced have taught me to become a stronger person in life.

First of all, I would like to thank my daily supervisor, Mihaela Mitici, for her consistent guidance and
support. It was a pleasure to work with you, especially because I was constantly given the space to
develop my ideas. The lessons I learned, regarding how to be a better researcher, during my time
with you will continue in life. In addition, I would like to thank Ingeborg de Pater for attending the
milestone meetings and providing constructive feedback.

Second, I would like to thank my friends who supported me during my studies and in my personal
life. The time in Delft was unforgettable, considering the demanding periods interspersed with re-
laxed ones.

Third, a special thanks goes to my girlfriend, Greta, for always being there for me during every pe-
riod. You have enriched my life in many different ways.

Finally, I would like to sincerely thank my family for their constant support during my studies. To
my parents and siblings, you have always encouraged me to keep going and achieve my dreams. I
know I can count on you.

Luuk Posthuma
The Hague, January 2022

iii





Contents

List of Figures vii
List of Tables xi
List of Abbreviations xiii
List of Symbols xv

I Scientific Paper 1
II Literature StudyPreviously graded under AE4020 31

1 Introduction 33
2 Aircraft Maintenance 35

2.1 Aircraft Maintenance Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Reactive Maintenance (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Preventive Maintenance (PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.3 Predictive Maintenance (PdM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Airline Maintenance Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Scheduled Maintenance (A,B,C,D Checks) . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Unscheduled Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Planning Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Recent Studies on Maintenance Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Line Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Base Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Aircraft Component Prognostics 41
3.1 Prognostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Model-Based Prognostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Data-Driven Prognostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Hybrid Prognostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Prognostics for Multiple Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Recent Studies on Prognostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Integrating Prognostics in Planning 45
4.1 Prognostics in Maintenance Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Research Studies on Integrating Prognostics into Maintenance Scheduling. . . . . . . 46

4.2.1 A new dynamic predictive maintenance framework using deep learning for
failure prognostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Modelling and application of condition-based maintenance for a two-component
system with stochastic and economic dependencies . . . . . . . . . . . . . . . 49

v



vi Contents

5 Research Proposal 51
5.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Research Scope and Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusion 55
7 Research Planning 57

III Supporting Work 59
1 Predictive Maintenance Framework 61

1.1 Reinforcement Learning Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.1.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.1.2 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.1.3 Action Example Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.1.4 Motivation Shaded Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.2 Scenario 1: PdM Framework with γ= 0.999 . . . . . . . . . . . . . . . . . . . . . . . . 65
1.2.1 Detailed Action Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.3 Scenario 2: PdM Framework with γ= 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.3.1 Results Statistical T-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Component Prognostics 75
2.1 LSTM Cell Explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.1.1 LSTM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2 Turbofan Engine Degradation Simulation Data Set . . . . . . . . . . . . . . . . . . . . 77

2.2.1 Dataset Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.2.2 Sensor Overview and Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 78

2.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3.1 Results Window Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3.2 Training and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.3.3 Component Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3 Sensitivity Analysis 87
3.1 Learning Rate (α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Discount Factor (γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Corrective Maintenance Factor (θcm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 Opportunistic Maintenance Factor (ϵom). . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5 Smoothing Factor (αs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 Time-Based Threshold (Ta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Verification and Validation 95
4.1 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Key Performance Indicator (KPI) Example . . . . . . . . . . . . . . . . . . . . . 96
4.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99



List of Figures

2.1 Lit. Study: Maintenance policies. Figure taken from Tingo [2013]. . . . . . . . . . . . . 36
2.2 Lit. Study: Hazard function over time, classical bathtub curve. Figure taken from

Klutke et al. [2003]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Lit. Study: Statistical data driven approaches for RUL estimation. Figure taken from Si
et al. [2011]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Lit. Study: Dynamic predictive maintenance process. Figure taken from Nguyen and
Medjaher [2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Lit. Study: Probability confusion matrix (%) on a test set. Figure taken from Nguyen
and Medjaher [2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Lit. Study: Dynamic framework. Figure taken from Nguyen and Medjaher [2019]. . . . 48

5.1 Lit. Study: Illustrative example predictive maintenance framework . . . . . . . . . . . 53

1.1 The Agent-Environment interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.2 Neural network used to estimate the value function in the Deep Q-Learning Network. 64
1.3 The reward development for Ne = 200, Ns = 1, and Nt s = 1200. Illustrating the conver-

gence of the DQN agent’s policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.4 The reward stimulants for Ne = 200, Ns = 1, and Nt s = 1200. Illustrating the received

rewards per timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.5 The working principle of the proposed maintenance decision framework for Ne = 1

and Nt s = 1200. Illustrating a corrective maintenance action at t = 393. . . . . . . . . . 66
1.6 Corresponding component utilization values for En1 and En2 and for Ne = 1 and Nt s =

1200. Illustrating a corrective maintenance action at t = 393. . . . . . . . . . . . . . . . 67
1.7 Corresponding reward for Ne = 1 and Nt s = 1200. Illustrating a corrective mainte-

nance action at t = 393. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.8 Action space analysis for Ne = 200 and Ns = 1 during training (Note: y-axis uses log

scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9 Maintenance activity analysis for Ne = 200 and Ns = 1 during training (Note: y-axis

uses log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.10 Maintenance activity analysis for Ne = 200 and Ns = 10 during training (Note: y-axis

uses log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.11 Illustration of Component 1 utilization rate for the preventive maintenance action.

Where Ne = 200, Ns = 1, and Npm = 2269. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.12 Illustration of Component 1 replacement time and true component lifetime. Where

Ne = 200, Ns = 1, and Npm = 2269. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.13 Illustration 2 of Component 1 utilization rate for the preventive maintenance action.

Where Ne = 200, Ns = 1, and Npm = 2525. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.14 Illustration 2 of Component 1 replacement time and true component lifetime. Where

Ne = 200, Ns = 1, and Npm = 2525. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.15 Illustration of Component 2 utilization rate for the preventive maintenance action.

Where Ne = 200, Ns = 1, and Npm = 2569. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



viii List of Figures

1.16 Illustration of Component 2 replacement time and true component lifetime. Where
Ne = 200, Ns = 1, and Npm = 2569. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.17 Illustration of the component utilization rates for the opportunistic maintenance ac-
tion. Where Ne = 200, Ns = 1, and Nom = 866. . . . . . . . . . . . . . . . . . . . . . . . . 70

1.18 Illustration 2 of the component utilization rates for the opportunistic maintenance
action. Where Ne = 200, Ns = 1, and Nom = 1235. . . . . . . . . . . . . . . . . . . . . . . 70

1.19 Component utilization values for En1 and En2 and for Ne = 1, Ns = 1, and Nt s = 1200.
Illustrating the corrective maintenance actions. . . . . . . . . . . . . . . . . . . . . . . . 70

1.20 The working principle illustrated by the engine lifetime counter for Ne = 200, Ns = 1,
and Nt s = 240000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.21 Degradation level probabilities for one specific UnitID. Including proposed replace-
ment time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.22 Degradation level probabilities for one specific UnitID. The proposed replacement is
at t = 229 with state space: st = [1,0.022,0.839,0.139]. . . . . . . . . . . . . . . . . . . . 71

1.23 Scenario 2: The reward development for Ne = 200, Ns = 1, and Nt s = 1200. Illustrating
the convergence of the DQN agent’s policy. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.24 Scenario 2: The reward stimulants for Ne = 200, Ns = 1, and Nt s = 1200. Illustrating
the received rewards per timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.25 Scenario 2: The working principle of the proposed maintenance decision framework
for Ne = 1 and Nt s = 1200. Illustrating the influence of the discount factor. . . . . . . . 72

1.26 Scenario 2: Corresponding component utilization values for En1 and En2 and for Ne =
1 and Nt s = 1200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.27 Scenario 2: The working principle illustrated by the engine lifetime counter for Ne =
200, Ns = 1, and Nt s = 240000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.28 Scenario 2: Illustration of Component 1 utilization rate for the preventive mainte-
nance action. Where Ne = 200, Ns = 1, and Npm = 1711. . . . . . . . . . . . . . . . . . . 72

1.29 Scenario 2: Illustration of Component 1 replacement time and true component life-
time. Where Ne = 200, Ns = 1, and Npm = 1711. . . . . . . . . . . . . . . . . . . . . . . . 72

1.30 Scenario 2: Illustration of Component 2 utilization rate for the preventive mainte-
nance action. Where Ne = 200, Ns = 1, and Npm = 1692. . . . . . . . . . . . . . . . . . . 73

1.31 Scenario 2: Illustration of Component 2 replacement time and true component life-
time. Where Ne = 200, Ns = 1, and Npm = 1692. . . . . . . . . . . . . . . . . . . . . . . . 73

1.32 Scenario 2: Illustration of the component utilization rates for the opportunistic main-
tenance action. Where Ne = 200, Ns = 1, and Nom = 492. . . . . . . . . . . . . . . . . . . 73

2.1 Long-Short Term Memory cell structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2 The sigmoid (blue) and tanh (orange) functions used in the LSTM network. . . . . . . 77
2.3 Histogram showing the distribution of the true engine lifetimes of subset FD001 (C-

MAPSS dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4 Overview of Sensor 1 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 80
2.5 Overview of Sensor 2 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 80
2.6 Overview of Sensor 3 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.7 Overview of Sensor 4 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.8 Overview of Sensor 5 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.9 Overview of Sensor 6 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.10 Overview of Sensor 7 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.11 Overview of Sensor 8 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.12 Overview of Sensor 9 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . . 81
2.13 Overview of Sensor 10 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 81
2.14 Overview of Sensor 11 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 81



List of Figures ix

2.15 Overview of Sensor 12 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 81
2.16 Overview of Sensor 13 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.17 Overview of Sensor 14 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.18 Overview of Sensor 15 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.19 Overview of Sensor 16 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.20 Overview of Sensor 17 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.21 Overview of Sensor 18 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.22 Overview of Sensor 19 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.23 Overview of Sensor 20 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.24 Overview of Sensor 21 for the complete FD001 C-MAPSS dataset. . . . . . . . . . . . . 82
2.25 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 20. . . 83
2.26 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 30. . . 83
2.27 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 40. . . 83
2.28 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 50. . . 83
2.29 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 60. . . 83
2.30 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 70. . . 83
2.31 Degradation level probabilities UnitID for window configuration: T0 = 10,T1 = 80. . . 84
2.32 Illustrative example of moderately predicted prognostics, window configuration: T0 =

10,T1 = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.33 Training and validation loss graph for window configuration: T0 = 10,T1 = 30. . . . . . 85
2.34 Training and validation accuracy graph for window configuration: T0 = 10,T1 = 30. . . 85
2.35 Degradation level probabilities for one specific UnitID. Visible is that the data points

are coarse for all degradation levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.36 Overview of degradation level probabilities for several components. . . . . . . . . . . . 86

3.1 Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the
learning rate (α). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Overview of relevant results for the local sensitivity analysis for the learning rate (α).
Neps = 200 and Ns = 1 during testing for every single learning rate (α). . . . . . . . . . 88

3.3 Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the
discount factor (γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Overview of relevant results for the local sensitivity analysis for the discount factor (γ).
Neps = 200 and Ns = 1 during testing for every single discount factor (γ). . . . . . . . . 89

3.5 Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the
corrective maintenance factor (θcm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Overview of relevant results for the local sensitivity analysis for the corrective main-
tenance factor (θcm). Neps = 200 and Ns = 1 during testing for every single corrective
maintenance factor (θcm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the
opportunistic maintenance factor (ϵom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Overview of relevant results for the local sensitivity analysis for the opportunistic main-
tenance factor (ϵom). Neps = 200 and Ns = 1 during testing for every single opportunis-
tic maintenance factor (ϵom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.9 Overview of the local sensitivity analysis of the smoothing factor (αs), including the
accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.10 Heatmap for the relevant KPIs in the Ta analysis, where Ta ∈ {50−225}. . . . . . . . . . 93
3.11 Number of components for several Ta values, indicating the (Min-Max) values. . . . . 93
3.12 Average component utilization for several Ta values, indicating the (Min-Max) values. 93
3.13 Average wasted component lifetime for several Ta values, indicating the (Min-Max)

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



x List of Figures

3.14 Average replacement lifetime for several Ta values, indicating the (Min-Max) values. . 93

4.1 Reward development for Ne = 200 and Ns = 10 during training. . . . . . . . . . . . . . . 97
4.2 Number of components for Ne = 200 and Ns = 10 during training. . . . . . . . . . . . . 97
4.3 Maintenance activity analysis for Ne = 200 and Ns = 10 during training. Note: y-axis

uses log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Tables

2.1 Lit. Study: Scheduled base maintenance checks. Taken from Spreen [2019]. . . . . . . 38

1.1 Scenario 2: P-values of the statistical t-test for the long-term maintenance cost (Cm),
number of replaced components (Tc ), wasted component lifetime (Wt ), component
utilization (Cu), and component replacement time (Rt ). . . . . . . . . . . . . . . . . . . 74

2.1 Overview of the different subsets (FD001-FD004) within the C-MAPSS dataset. . . . . 78
2.2 Overview of the 21 different sensors within the C-MAPSS dataset. . . . . . . . . . . . . 78
2.3 Descriptive statistics of subset FD001 (C-MAPSS dataset). . . . . . . . . . . . . . . . . . 79
2.4 Operational settings statistics of subset FD001 (C-MAPSS dataset). . . . . . . . . . . . . 79
2.5 Sensor data trends of subset FD001 (C-MAPSS dataset). . . . . . . . . . . . . . . . . . . 79
2.6 Descriptive statistics used components in the PdM framework. . . . . . . . . . . . . . . 79
2.7 Descriptive statistics sensor values FD001 (C-MAPSS dataset). . . . . . . . . . . . . . . 80

3.1 Overview of experiments performed within scientific paper. . . . . . . . . . . . . . . . 87

4.1 Example of calculation of key performance indicators (KPIs) for the Time-Based main-
tenance policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xi





List of Abbreviations

AI Artificial Intelligence

CBM Condition-Based Maintenance

CDF Cumulative Density Function

CM Corrective Maintenance

CNN Convolutional Neural Network

CPP Compound Poisson Process

DL Deep Learning

DQL Deep Q-Learning

DQN Deep Q-Network

FM Fault Modes

GP Gamma Process

HMM Hidden Markov Models

IM Ideal Maintenance

KPI Key Performance Indicator

LRU Line Replaceable Units

LSTM Long Short-Term Memory

MCTS Monte-Carlo Tree Search

MDP Markov Decision Process

ML Machine Learning

MLP Multilayer Perceptron

MRO Maintenance, Repair, and Overhaul

MTBF Mean Time Between Failure

NN Neural Network

OC Operating Conditions

OEM Original Equipment Manufacturer

OM Opportunistic Maintenance

PDF Probability Density Function

xiii



xiv List of Abbreviations

PdM Predictive Maintenance

PHM Prognostics and Health Management

PL Predicted Label

PM Preventive Maintenance

PWL Piece-Wise Linear

RL Reinforcement Learning

RM Reactive Maintenance

RNN Recurrent Neural Network

RUL Remaining Useful Life

TBM Time-Based Maintenance

TBO Time Between Overhaul

TL True Label



List of Symbols

Greek Symbols

α Learning Rate [−]

αs Smoothing Factor [−]

γ Discount Factor [−]

ϵ Exploration Rate [−]

ϵom Opportunistic Maintenance Factor [−]

θ Neural Network Weights [−]

θcm Corrective Maintenance Factor [−]

π Reinforcement Learning Policy [−]

σ Sigmoid Activation Function [−]

Latin Symbols

at Action at timestep t [−]

ACt Aircraft at timestep t [−]

Ccm Long-Term Maintenance Cost Corrective Maintenance Policy [−]

Cim Long-Term Maintenance Cost Ideal Maintenance Policy [−]

Cm Long-Term Maintenance Cost [−]

Cu Average Component Utilization [−]

Cpdm Long-Term Maintenance Cost Predictive Maintenance Policy [−]

Ctbm Long-Term Maintenance Cost Time-Based Maintenance Policy [−]

dl 1 Degradation Level 1 [−]

dl2 Degradation Level 2 [−]

dl3 Degradation Level 3 [−]

El Episode Length [t ]

Eni ,t Engine i at timestep t [−]

Ena
i ,t Engine i Actual Lifetime a at timestep t [t ]

En
dl j

i ,t Engine i Probability Degradation Level j at timestep t [−]

Enl
i ,t Engine i Lifetime l at timestep t [t ]

Enp
i ,t Engine i Identifier p at timestep t [−]

Ens
i ,t Engine i Status at timestep t [−]

Ne Number of Episodes [−]

xv



xvi List of Symbols

N f Number of Features [−]

No Number of Outputs [−]

Ns Number of Simulations [−]

Nt Sequence Length [t ]

Ncm Number of Corrective Maintenance Actions [−]

Nom Number of Opportunistic Maintenance Actions [−]

Npm Number of Preventive Maintenance Actions [−]

Nt s Number of Timesteps [t ]

Qπ(st , at ) Q-(Action-Value) Function [−]

rt Reward at timestep t [−]

R Total Maintenance Reward [−]

Rcm Corrective Maintenance Reward [−]

Rnm No Maintenance Reward [−]

Rom Opportunistic Maintenance Reward [−]

Rpm Predictive Maintenance Reward [−]

Rt Average Component Replacement Time [t ]

st State Space at timestep t [−]

Ta Average Time Threshold for the TBM policy [t ]

Tc Number of Replaced Components [−]

T0 Lower Limit [t ]

T1 Upper Limit [t ]

V π(st ) State-Value Function [−]

Wt Average Wasted Component Lifetime [t ]

X i
t Sensor Value i at timestep t [−]



I
Scientific Paper

1





L.C.M. POSTHUMA | PREDICTIVE MAINTENANCE DECISIONS FOR A MULTI-COMPONENT AIRCRAFT BASED ON PROGNOSTICS 1

Predictive Maintenance Decisions for a
Multi-Component Aircraft based on Prognostics

L.C.M. Posthuma, MSc. Student, TU Delft,
Dr. M. Mitici, Daily Supervisor, TU Delft, I.I. de Pater, Co-Supervisor, TU Delft.

Section of Air Transport Operations, Faculty of Aerospace Engineering, Delft University of Technology,
Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract—Aircraft maintenance is critical to an airline’s op-
erations to ensure the reliability, availability, and safety of their
assets. Recently, the approach of using component prognostics
in aircraft maintenance has received increasing attention in
academic- and industrial research. Predictive maintenance has
demonstrated promising results in using sensor-based prognostics
for maintenance decisions. In this paper, we propose a novel
predictive maintenance framework that is capable of mapping
the individual component degradation levels to an optimal
maintenance decision. The independent component degradation
levels are computed by a supervised learning model, called "Long
Short-Term Memory Networks". Subsequently, the computed
degradation levels are utilized in a multi-component mainte-
nance decision framework, by using a model-free reinforcement
learning technique named "Deep Q-Learning". The predictive
maintenance framework aims to minimize a cost objective based
on the type and frequency of a maintenance action. In addition,
we analyzed several key performance indicators, such as the num-
ber of components used, the component utilization level, as well
as the wasted component lifetime. The predictive maintenance
framework was evaluated using NASA’s turbofan degradation
dataset. Ultimately, the results of the numerical experiments
showed that the proposed predictive maintenance framework
resulted in lower costs than when using a time-based and cor-
rective maintenance policy and competitive costs compared to an
ideal maintenance policy. The proposed predictive maintenance
framework opens new directions for multi-component sensor-
based maintenance decisions. The results found form the basis for
application suggestions and future research directions in practice.

Keywords—Cost Minimization, Deep Q-Learning, Long Short-
Term Memory Network, Multi-Component Aircraft, Prognostics
and Health Management.

I. INTRODUCTION

Aircraft maintenance is a major expense for airlines and
thus plays an important role in their Maintenance, Repair,
and Overhaul (MRO) strategies [1]. Therefore, airlines op-
timize their maintenance activities in order to reduce costs
[2]. Traditional maintenance strategies are based on replacing
components when they are defective, in other words Corrective
Maintenance (CM), or when they have reached a certain time
interval, which is known as Time-Based Maintenance (TBM).
However, airlines are shifting from a CM and TBM strategy to
a Predictive Maintenance (PdM) approach [3]. A PdM policy
is based on the health status of the system and indicates if and
when a component should be maintained. Being able to detect
and respond to the degradation of certain components reduces

L.C.M. Posthuma is a MSc. Student, Air Transport and Operations, Faculty
of Aerospace Engineering, Delft University of Technology.

maintenance cost, aircraft downtime, and unexpected flight
delays [4]. The PdM approach utilizes sensor data from com-
ponents to generate prognostic data, which can then be used
to make specific maintenance decisions. Useful sensor data is
collected by monitoring the components during operation or
inspection. The PdM approach can be split into two parts. The
objective of the first part is to predict the degradation levels
or remaining-useful-life (RUL) of a component or system.
This prognostic data can then be used in the second part to
optimize maintenance activities and minimize overall mainte-
nance costs. Extensive research has been conducted separately
in the areas of prognostics and maintenance optimization.
However, research in an end-to-end PdM framework is notably
lacking. Moreover, current research often focuses on single-
component systems while ignoring multi-component systems.
In this paper, we propose a predictive maintenance framework
for a multi-component aircraft, which is able to map the
independent component degradation values at each inspection
point to make a maintenance decision with a cost minimization
objective. To use independent component degradation levels
for maintenance decisions, a two-fold Deep Learning (DL)
approach is used. The method chosen to obtain the component
prognostics is the application of a Long Short-Term Memory
(LSTM) network on a turbofan degradation dataset created
by NASA. The obtained prognostic data is then used for
maintenance decisions in the second part of the framework.
The PdM framework is modeled as a Markov Decision Process
(MDP) in which a Reinforcement Learning (RL) method
called "Deep Q-Learning" (DQL) is used to find an optimal
policy. In general, the DQL agent is able to obtain a policy
that is capable of minimizing long-term maintenance costs.
DQL has been successfully applied on various applications
such as robotics and autonomous separation of aircraft [5, 6].
However, studies that use DQL for sensor-based maintenance
decision-making in multi-component systems are lacking.

The proposed PdM framework is capable of comput-
ing maintenance decisions based on component prognostics.
Therefore, the PdM framework is of great interest to airlines
since it provides an integrated solution for predictive main-
tenance. Numerical experiments show promising results and
make an important contribution to the body of knowledge.
The approach used combines novel techniques in a dynamic
PdM framework applicable to various realistic sensor-based
problems.
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A. Related Work

Previous work has made important contributions to the
knowledge of predictive maintenance. However, little research
has been conducted on the complete framework that integrates
sensor data and maintenance decisions for multi-component
systems. The following section consists of a brief literature
review on the computation of component prognostics and
methods for maintenance decisions.

Several articles have described the methodology for using
supervised learning methods to compute prognostics for sys-
tems. Data-driven methodologies are divided into Convolu-
tional Neural Networks (CNN), Recurrent Neural Networks
(RNN), and other approaches. CNNs are predominantly used
in studies concerning image and speech recognition. However,
[7], showed an application of CNNs for predicting the RUL of
turbofan engines. A more recent approach, [8], has performed
well in predicting the degradation of turbofan engines. Yet,
RNN perform better than CNN because RNN are more suitable
for processing sequential data. [9, 10, 11] use a data-driven
approach for component prognostics using LSTM networks,
which is a specific type of RNN. Beyond that, other ap-
proaches are incorporating Hidden Markov Models (HMM)
[12] or Multilayer Perceptrons (MLP) [13]. A comprehensive
overview can be found in [14].

Alternatively, other studies extend the prognostics to include
maintenance decisions in a framework, indicating whether
or not a component should be replaced. In [15], a data-
driven condition-based maintenance framework is proposed.
The authors used an LSTM network to obtain information
on component degradation and failure probabilities. This in-
formation is then used in a maintenance optimization model
based on degradation thresholds. However, their approach
only considers one component and short-term maintenance
decisions. In, [16], the authors have described a new approach
to integrate prognostics into maintenance decision-making, but
the decisions are based on a threshold and do not consider
multiple components. [17] is a continuation of [16], but lacks
the dynamics of a longer-term multi-component framework.

In, [18], a strategy for optimizing the maintenance of a
cooling system is proposed. A multi-stage Wiener process is
used to characterize degradation trends, and a numerical opti-
mization of the preventive control limit to minimize the cost
objective is performed. In [19], a condition-based maintenance
model, based on RL is defined. The study was one of the
first articles in the field to describe how Q-Learning can be
used for maintenance decisions. The authors use a simplified
failure distribution for a single component to illustrate its
effectiveness for a binary maintenance decision. In, [20], a
long-term aircraft optimization strategy is formulated, using a
RL approach. It takes into account various input parameters,
such as profile data and prognostics, to decide whether or
not a mission should be carried out. Moreover, in [21] is
described how a RL approach can be used for maintenance
decisions based on a normalized health status indicator. They
limit their research to a single turbofan component and do not
consider opportunistic maintenance. In, [22], a RL approach
is used to derive a real-time maintenance policy for a system

monitored by sensors. Yet, they used a regression approach for
prognostics and only considered a single-component system.
In, [23], a RL approach is used to establish a condition-
based maintenance model for a multi-component system under
dependent competing risks. However, they use a Gamma
Process (GP) and a Compound Poisson Process (CPP) as the
stochastic deterioration process. [24] showed the application
of a RL model to an opportunistic maintenance policy for
a machine production system. The paper considers various
maintenance strategies, taking into account the reduction of
downtime and maintenance costs. Although, they use a Weibull
distribution for the component failure probability.

B. Research Paper Contribution

The main research gap in the above-mentioned studies is the
lack of an end-to-end PdM framework that takes into account
sensor data for multi-component systems. To overcome that
challenge, we propose a novel PdM framework that uses sensor
data to evaluate component degradation and then utilizes these
prognostics to make maintenance decisions. To the best of our
knowledge, this is the first end-to-end maintenance decision
framework which uses RL for data-driven decisions for a
multi-component aircraft. Furthermore, the main contributions
of this research are the following:

• A novel PdM framework is proposed. The framework
is capable of performing maintenance actions for multi-
component aircraft systems based on data-driven degrada-
tion levels. Moreover, the PdM framework can be applied
to various sensor-based systems with N-components.

• The PdM framework is able to learn the degradation be-
havior of a given component based on historical data and
does not require degradation threshold levels. In addition,
the framework can handle unknown degradation levels in
a large state space to make maintenance decisions.

• The PdM framework is capable of representing a real-
istic long-term situation. The framework is an end-to-
end solution that includes both sensor measurements and
maintenance decisions during a specified horizon.

• The PdM framework outperforms traditional maintenance
policies in terms of several key performance indicators.
Using numerical experiments, it is shown that the PdM
framework outperforms corrective and time-based main-
tenance policies and comes close to ideal maintenance in
terms of maintenance cost.

C. Research Paper Structure

The remainder of this paper is organized as follows: Sec-
tion II introduces the problem statement and describes the
system description. Section III describes how the compo-
nent degradation levels are computed based on sensor data,
including the results of the component prognostics. After-
wards, Section IV discusses the formulation of the PdM
framework and how prognostics can be used in a decision-
making framework. Section V contains the explanation of the
numerical experiments that demonstrate the effectiveness of
the framework. This section also covers parametric perfor-
mance analysis and the train- and test strategy. In Section VI
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we illustrate the performance of the framework compared to
traditional maintenance policies and include the results of the
research. Subsequently, in Section VII the discussion is given.
Finally, Section VIII contains the conclusion of this study and
proposes recommendations for future research.

II. PROBLEM STATEMENT

The goal of this study is to create a PdM framework
which is capable of making maintenance decisions based on
sensor data. In this research, an aircraft with multiple compo-
nents is considered as the system. The aircraft components
are replaceable and independent of each other in terms of
degradation and do not interfere with each other. Furthermore,
the maintenance framework is a discrete time model, where
each timestep t is considered whether or not a maintenance
action should be performed. Overall, the objective of the
framework is to minimize the total maintenance costs over a
specified time period. In addition, the number of components
used, the utilization rate of the components, and the average
wasted component lifetime are taken into account to analyze
the performance of the framework. The problem statement is
based on assumptions that are defined as follows:

1) The aircraft and its components are continuously moni-
tored, which means that the maintenance agent knows the
degradation values of the components at each timestep t.

2) When a component reaches its maximum lifetime, it must
be replaced with a new component and is classified as
corrective maintenance.

3) If the maintenance agent decides to replace a component
based on its dynamic degradation levels and before its
maximum lifetime, it is replaced with a new component
and classified as preventive maintenance.

4) If the maintenance agent decides to replace two compo-
nents at the same time based on their dynamic degra-
dation levels and before their maximum lifetime, this is
considered to be opportunistic maintenance.

5) Maintenance decisions are made every timestep t and
maintenance actions take place immediately. Each of the
maintenance actions described does not cause any system
downtime or interruption.

6) There are no limitations in terms of maintenance oppor-
tunities or the number of available components.

The maintenance framework description is shown in Fig-
ure 1. The aircraft components are continuously monitored
and sensor information, such as temperature and pressure,
is extracted. The specific sensor measurements used in this
research are described in Section III. Based on this sensor data,
component degradation levels are computed using an LSTM
classifier, resulting in the probability that a component will
fail within a given time window. Subsequently, the dynamic
state of the components is used in a maintenance decision
framework based on an MDP. The agent makes a decision
for a component and updates the corresponding system state.
Consequently, the environment is updated based on the de-
cision of the agent. Ultimately, the goal of the agent in the
PdM framework is to obtain an optimal maintenance policy
that minimizes costs. The policy in this research represents

Fig. 1: Overview of the proposed Predictive Maintenance
(PdM) framework. The PdM framework maps sensor data from
a multi-component system to maintenance decisions.

Variable Description

ACt Aircraft at timestep t

Eni,t Engine i at timestep t

Enl
i,t Engine i lifetime l at timestep t

Ena
i,t Engine i actual lifetime a at timestep t

Ens
i,t Engine i status s at timestep t

En
dlj
i,t Engine i probability degradation level j at timestep t

Table 1: Notation of the variables used in the system descrip-
tion.

the mapping of the observed degradation state of components
at each timestep with a specific maintenance action.

A. System Description

We consider a multi-component aircraft (ACt) for each
timestep t, where t ∈ {1, 2, . . . , T}. Each aircraft has two
independent engines, denoted by En1,t and En2,t at timestep
t. Each engine is independent of any other engine in terms
of its sensor data. Therefore, the degradation levels of the
engines and the failure probabilities are also independent. To
track the component lifetime, the age of engine i at timestep
t is defined as Enl

i,t ∈ {1, 2, . . . , L}, where i ∈ {1, 2}
denotes the number of the aircraft engine, and L the maximum
lifetime. Moreover, let Ena

i,t ∈ R represent the actual lifetime
of engine i ∈ {1, 2} at timestep t. Furthermore, the status
of an engine at timestep t is described by Ens

i,t ∈ {0, 1},
where i ∈ {1, 2} indicates whether or not an engine has
failed (Ens

i,t = 0), or has not (Ens
i,t = 1) at timestep t. If

an engine has failed, it will be replaced with another engine
and considered new. In addition, we consider the degradation
levels (dlj) for each aircraft engine, which are denoted as
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Fig. 2: Reinforcement learning based PdM framework for an aircraft with two engines (Eni,t, where i ∈ {1, 2}). The agent
receives a state space st ∈ S representation, takes an action at ∈ A and receives a reward rt ∈ R.

En
dlj
i,t ∈ [0, 1], where j ∈ {1, 2, 3} and i ∈ {1, 2} for each

timestep t. En
dlj
i,t ∈ [0, 1] is the probability that engine i has

degradation level j at timestep t. Specifically, dl1 indicates that
the engine is healthy, dl2 indicates a degraded engine, and dl3
indicates an engine that is critical to failure. Consequently,
each engine has a state that determines whether the system
has failed or not, and three different values that reflect the
probability that the engine belongs to the specific degradation
levels. The notation of the variables used in the remainder of
this paper is summarized in Table 1. An illustrative overview
of the maintenance decision framework is depicted in Figure 2.
The state space (S) contains the engine status Ens

i,t and the
three degradation levels En

dlj
i,t for each engine i. The action

space (A) contains the four different maintenance actions the
agent can take, i.e., Do Nothing, Repair Engine 1, Repair
Engine 2, or Repair Engines 1 & 2. The rewards (R) are
based on the costs associated with a particular maintenance
action. Section III describes the calculations of the component
degradation levels and Section IV shows how the degradation
level probabilities are used in the PdM decision framework.

III. AIRCRAFT COMPONENT DEGRADATION LEVELS

This section first discusses the method of calculating degra-
dation levels for aircraft components based on sensor data.
Then the results of the component prognostics are discussed.
The main idea is to use supervised learning that has the task
of mapping an input X to an output y, such as classification or
regression (X → y). In this research, we consider the sensor
data as the input (X) and the probability of an engine belonging
to a given degradation level as the output (y).

A. LSTM Classifier

The modeling of the component degradation levels is done
by means of a Recurrent Neural Network (RNN) architec-
ture called Long Short-Term Memory (LSTM) networks. In
general, RNN has been applied to various fields, such as
time-series forecasting, language processing, and operations
research [25, 26, 27]. RNN is a specific type of neural
networks (NN) in which each node in the hidden layer has
the ability to use its internal state as input, as opposed to NN
that only have feedforward states. RNN use their internal state
and form an inner loop to allow information to persist. The
advantage of LSTM networks over traditional RNN is that
LSTM networks are able to capture long-term dependencies

Fig. 3: Long Short-Term Memory network architecture.

[28, 29]. Long-term dependencies in time series analysis,
such as computing prognostics, are often very useful because
they can indicate deterioration over time. Moreover, LSTM
networks are able to capture nonlinear behavior for time-
sequential data.

A representation of the used LSTM network is illustrated in
Figure 3. The input layer for the LSTM network is based on
the number of features and the sequence length expected by the
network. The shape of the input layer is defined by Nt×Nf ,
where Nt is the sequence length and Nf is the number of
selected features. The input layer is connected to a hidden
layer, consisting of multiple LSTM cells, which are capable
of analyzing historical and current sensor data. The LSTM
layer is then fully connected to another LSTM layer, resulting
in two hidden layers. An LSTM cell contains an activation
function, which determines the output of the node, to perform
the classifier learning task. The output layer is specified by the
number of nodes, in this case three different classifications,
each for one degradation level. The output layer has a shape
of No×1, where No is the number of desired outputs, which in
this research is 3. An illustrative example of the relationship
between the input and the output can be seen in Figure 4,
where the input is sensor data of a certain component and the
output is a prediction of the probability a component belongs
to certain degradation levels. The black bars illustrate the
principle of the sliding window determined by the sequence
length Nt. Note that not only the class is predicted, but also
the probability of belonging to each degradation level, which
is useful for indicating the deterioration over time.

A general LSTM cell structure is shown in Figure 5. xt

is the cell input and ht is the cell output value, which in
this research represents the sensor data and the degradation
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Fig. 4: Illustrative example of the relationship between sensor data (left) and corresponding degradation level probabilities
(right) for one specific engine with an actual lifetime of 175 timesteps.

Fig. 5: Long-Short Term Memory cell structure.

level classification, respectively. Each LSTM cell contains a
cell state (Ct) that depends on the previous cell state (Ct−1),
characterized by Equation 1.

Ct = ft ∗ Ct−1 + it ∗ C̃t (1)

Where Ct is the new cell state at timestep t, ft is the forget
layer at timestep t, Ct−1 is the old cell state at timestep t−1, it
is the input layer at timestep t, and C̃t are the candidate values
at timestep t. The information can be altered by the gates,
which are deciding which information is added or removed.
The three gates, described below, consist of a sigmoid function
that outputs a value between 0 and 1. If the value is zero, no
information is added, while if the value is one, all information
is passed through. For all below stated equations, we consider
W∗ as the trainable weight matrix and b∗ as the bias matrix
for each corresponding gate (ft, it, ot). The following three
gate layers can be identified:

1) Forget Gate Layer (ft): considers ht−1 and xt and
outputs a value between 0 and 1 to decide what infor-
mation is carried along and what information is omitted.
Characterized by the equation:

ft = σ (Wf · [ht−1, xt] + bf ) (2)

Where ft is the forget gate at timestep t, σ is the sigmoid
activation function, ht−1 is the output at timestep t − 1
and xt is the input at timestep t.

2) Input Gate Layer (it): consists of two layers, where
the sigmoid layer considers ht−1 and xt and decides

which values are updated. The next layer, based on a
tanh activation function, computes a vector of values (C̃t)
which could be added to the state. These two layers are
then multiplied to generate an update to the current cell
state and are defined by the following equations:

it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)
(3)

Where it is the input gate at timestep t and C̃t is the
vector of new possible information at timestep t.

3) Output Layer (ot): the last layer determines what the
output of the cell will be. The output is a filtered version
of the cell state. The signal is passed through a sigmoid
layer to determine which part will be the output and
then multiplied by a tanh function to obtain values in
the range [−1, 1] and subsequently provides the desired
output values. The output layer is defined as follows:

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)
(4)

Where ot is the output gate at timestep t and ht is the
output value of the current cell and input for the next cell
at timestep t.

In the LSTM network (Figure 5), various sigmoid and
tanh functions are used to specify which information
is transmitted and which is not, and to regulate
the network. The sigmoid function is characterized
by Equation 5 and has a range of [0, 1]. The tanh
function, defined in Equation 6, has a range of [−1, 1].

σ(x) =
1

1 + e−x
(5) tanh(x) =

ex − e−x

ex + e−x
(6)

In this research, a softmax function is used as the activation
function in the output layer of the LSTM network, since
the PdM framework requires failure probabilities between
[0, 1]. The softmax function converts the real values of the
LSTM layer into a vector of probabilities, summing to 1,
characterized by Equation 7. The used LSTM architecture has
3 output nodes, where each node gives the probability that
the component belongs to that particular degradation class.
In addition, dropout layers are used in each LSTM layer to
avoid over-fitting of the training data and to improve the
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Dataset FD001 FD002 FD003 FD004

Train Units 100 260 100 249
Test Units 100 259 100 248
Operating Conditions (OC) 1 6 1 6
Failure Modes (FM) 1 1 2 2

Table 2: Overview of the different subsets (FD001-FD004)
within the C-MAPSS dataset.

performance of the model [8]. The dropout layers act as a
regularization method by probabilistically excluding input and
recurrent connections.

S (xi) =
exi∑J
j=1 e

xj

for i = {1, . . . , J} (7)

B. Dataset Overview & Exploration
The dataset used in the numerical experiments is the "Turbo-

fan Engine Degradation Simulation Dataset", provided by the
Prognostics Center of Excellence at NASA Ames [30]. The
dataset contains four different subsets (FD001-FD004) of a
simulated turbofan engine under various operating conditions,
which mimic the degradation behavior. The system model is
a representation of an aircraft engine in C-MAPPS and is
widely used in prognostics studies [31]. The specifications
of the subsets are shown in Table 2. The subsets FD001
and FD003 have only a single operating condition, while
the subsets FD002 and FD004 are more complex as they
have six operating conditions. Furthermore, in FD001 and
FD002 there is only one failure condition, while in FD003
and FD004 there are two failure modes. The two different
failure modes (FM) are: high-pressure degradation and fan
degradation. The operating conditions (OC) are a combination
of different altitude, Mach number, and throttle resolver angle
settings.

Each subset contains a total of 26 columns of data, including
the engine Unit ID, time cycles, operational settings, and
sensor measurements. The first two columns display the Unit
ID and time cycles, while the next three columns characterize
the operating condition settings. The consecutive 21 columns
correspond to the sensor measurements. The sensor readings,
which are considered observation variables, are given in Ta-
ble 3.

Various descriptive statistics are used to better understand
the different datasets. For the sake of simplicity, FD001 is used
in the remainder of the paper, including during the numerical
experiments of the PdM framework. The values calculated for
the training data of the selected subset are provided in Table 4.
The table shows that there are 100 engines with different
maximum life cycles, ranging from 128 to 362 cycles. Table 4
shows that operational settings (Op Set) 1 and 2 have a very
small standard deviation. Operational setting 3 has a standard
deviation of 0. This indicates that only one combination of
operational settings can be identified, since the settings within
the dataset do not change.

C. Data Preprocessing
Data preprocessing is an essential step within the steps

of the PdM framework. All sensor data must be labeled,

Sensor Description Unit

1 Total temperature at fan inlet ◦R
2 Total temperature at low pressure compressor outlet ◦R
3 Total temperature at high pressure compressor outlet ◦R
4 Total temperature at low pressure turbine outlet ◦R
5 Pressure at fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure at high pressure compressor outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm
10 Engine pressure ratio −
11 Static pressure at high pressure compressor outlet psia
12 Ratio of fuel flow pps/psi
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio −
16 Burner fuel-air ratio −
17 Bleed enthalpy −
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 High pressure turbine coolant bleed lbm/s
21 Low pressure turbine coolant bleed lbm/s

Table 3: Overview of the 21 different sensors within the C-
MAPSS dataset.

Variable UnitID Time [Cycles] Op Set 1 Op Set 2 Op Set 3

count 20631 100 20631 20631 20631
mean 51.51 206.31 -0.000009 0.000002 100.0
std 29.23 46.34 0.002187 0.000293 0.0
min 1.00 128.00 -0.008700 -0.000600 100.0
25% 26.00 177.00 -0.001500 -0.000200 100.0
50% 52.00 199.00 0.000000 0.000000 100.0
75% 77.00 229.25 0.001500 0.000300 100.0
max 100.00 362.00 0.008700 0.000600 100.0

Table 4: Descriptive statistics of the engines and the opera-
tional settings of subset FD001 (C-MAPSS dataset).

normalized, smoothed and sequenced to obtain accurate
prognostics [31]. The sensor data is logged for each timestep
t and forms the vector: Xi

t = [x1
t , x

2
t , x

3
t , ..., x

N
t ] for

each selected feature i ∈ {1, 2, 3, . . . , N} and timestep
t ∈ {1, 2, 3, . . . , T}.

1) Data Labelling: The LSTM network calculates the
probability that the system belongs to each degradation level.
The degradation levels are associated with a certain time
window. The boundaries of these windows (T0 and T1) can
be varied and depend on operational requirements. The choice
of a classification method over a regression method has the
advantage that these windows can be chosen according to
operational planning requirements and may differ for a given
application. A second advantage of predicting probabilities
rather than just classes is that it reveals the degradation
behavior of a component. It shows the duration and intensity
that a component belongs to a certain level, rather than a
single class value. The sensor data is labeled according to
three defined windows: Degradation Level 1, Degradation
Level 2 and Degradation Level 3. The probability that a given
component, based on its sensor data, belongs to each of these
windows is calculated by the LSTM network. The different
windows are defined as follows:

• dl1 - Degradation Level 1: RUL > T1
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Window configuration 1 2 3 4 5 6 7

Lower Limit T0 10 10 10 10 10 10 10

Upper Limit T1 20 30 40 50 60 70 80

Table 5: Overview of the window configurations used to
compute different degradation level probabilities.

• dl2 - Degradation Level 2: T1 ≥ RUL > T0

• dl3 - Degradation Level 3: T0 ≥ RUL
The system belongs to the first class, dl1, when the

remaining-useful-life (RUL) is greater than the specified
upper bound of the window (T1). The second class, dl2,
describes the window in which the RUL of the component
falls between the two limits (T1 and T0). When the system
belongs to the third class, dl3, the component’s RUL is below
the lower window bound (T0).

2) Determination of Window Sizes: The windows in this
research are based on the frequency of A- and C-checks for
the Airbus A319, A320, and A321. The A-check interval is
approximately 750 Flight Hours, 750 Flight Cycles or 120
Calendar Days [32]. The C-check interval is approximately
7500 Flight Hours, 5000 Flight Cycles, or 730 Calendar
Days. In addition, the lifetime distribution of the selected
system is important to determine the appropriate window
size. The distribution of the true engine lifetimes within
the training dataset is given in Table 4 and shows a mean
value of approximately 200 rows. If we assume that the
Time Between Overhaul (TBO) for an engine is 15,000 flight
hours [33, 34] and the average lifetime in the dataset is 200
rows, every row represents about 75 flight hours. An A-check
interval is approximately 750 hours and corresponds to about
10 rows. Therefore, we set the lower limit (T0) to 10 units.
The upper limit (T1) should be at least two A-checks and
at most the C-check interval, so it ranges from 20 to 80
units. By combining the TBO for an engine with the intervals
between A/C-checks and the average engine lifespan in the
dataset, the seven window configurations shown in Table 5
are determined.

3) Feature Selection: Feature selection is the reduction
of the number of input variables of a dataset for use in
a predictive model [35]. Removing redundant or ambiguous
features from a given dataset reduces computation time and
can improve model performance. In this research, we use a
feature selection method based on the statistical characteristics
of the dataset. Features with values below a certain variance
threshold are removed. Features with a zero variance or below
a predetermined threshold have similar values in all samples
and are therefore not considered useful in the prediction of
component prognostics. All features that do not meet the
requirement in Equation 8 are omitted.

Var(Xi
t) ≥ 0.001 for i = {1, . . . , N} (8)

Features with a variance value close to zero, such as Sensor
6, shown in Figure 6, are discarded as they do not improve
model performance. An overview of the statistical values of

Fig. 6: Overview of Sensor 6 for three arbitrary engines of
subset FD001 (C-MAPSS Dataset).

Fig. 7: Overview of Sensor 4 for three arbitrary engines of
subset FD001 (C-MAPSS Dataset).

the sensor measurements is given in Table 6. Table 6 shows
that the standard deviation for Sensor 1, 5, 6, 10, 16, 18, and
19 is zero and will therefore be omitted. The sensors that are
selected are Sensor 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20,
and 21. Furthermore, we examined the trends of the sensor
data, which are also summarized in Table 6 as ascending (A),
constant (C), descending (D), and irregular (I). For example,
Sensor 4, depicted in Figure 7, shows a descending trend.

4) Data Normalization: Normalizing sensor data is nec-
essary because LSTM networks are unable to handle large
absolute differences, as these networks are using relative
distances between sensor data. Scaling sensor data improves
the efficiency and robustness of the LSTM network [36].
In this research, we use minimum-maximum normalization,
shown in Equation 9 [37], since the sensor data may have
different ranges. Table 6 shows the large variation in absolute
numbers, underscoring the importance of normalizing the
features. Normalizing the sensor data results in all feature data
being in the range [0, 1].

xnorm =
x−min(x)

max(x)−min(x)
(9)

Where xnorm is the normalized sensor value, x is the current
sensor value, min(x) is the minimum sensor value and
max(x) is the maximum sensor value in the input vector Xi

t .

5) Sensor Smoothing: Sensor smoothing is applied to the
remaining sensor data to reduce signal noise and improve
model performance. It reduces the signal noise while preserv-
ing its characteristics trends. Exponential smoothing is intro-
duced as powerful yet fairly simple to implement [38]. The
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Sensor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Mean 518.7 642.7 1590.5 1408.9 14.6 21.6 553.4 2388.1 9065.2 1.3 47.5 521.4 2388.0 8143.7 8.44 0.03 393.2 2388.0 100.0 38.8 23.3
Std 0.00 0.50 6.1 9.0 0.00 0.00 0.89 0.071 22.1 0.00 0.27 0.74 0.072 19.1 0.038 0.00 1.55 0.00 0.00 0.18 0.11
Min 518.7 641.2 1571.0 1382.2 14.6 21.6 549.8 2387.9 9021.7 1.3 46.8 518.6 2387.8 8099.9 8.32 0.03 388.0 2388.0 100.0 38.1 22.8
Max 518.7 644.5 1616.9 1441.4 14.6 21.6 556.0 2388.5 9244.5 1.3 48.5 523.3 2388.5 8293.7 8.58 0.03 400.0 2388.0 100.0 39.4 23.6
Trend C D D D C C A D I C D A D I D C D C C A A

Table 6: Descriptive statistics of the sensor values of subset FD001 (C-MAPSS Dataset).

Fig. 8: The influence of exponential smoothing on sensor data
from one specific engine. In the left graph αs = 0.9 was used,
in the right graph αs = 0.1.

formula for exponential smoothing is given in Equation 10.

xt = αsxt + (1− αs)xt−1 (10)

Where xt is the sensor value at timestep t, αs is the smoothing
factor and xt−1 is the previous sensor value. For example, if
αs = 0.9, the sensor value at timestep t consists of 90% of
the current value and 10% of the previous smoothed value.
Figure 8 shows the influence of the smoothing value. The
left graph uses αs = 0.9 and the right graph uses the finally
chosen parameter, αs = 0.1.

6) Data Sequencing: The sensor data must be prepared
for the LSTM network by creating sequences. The sequence
input ensures that the network is able to calculate classification
predictions based on the previous individual timesteps of the
data. An illustration of the sequence length Nt is shown in
Figure 4. The use of sequences allows the LSTM network
to retain information over a certain specified time period. The
larger the value Nt of the data sequences, the more the network
is able to look back [39]. However, the value should not be too
large, as this increases the computation time and may reduce
the performance of the model. If the input vector for one
specific feature (i = 1) is defined as X1

t = [x1
1, x

1
2, x

1
3, ..., x

1
15]

and we assume a sequence length Nt = 4, then the samples
would be ordered as [x1

1, x
1
2, x

1
3, x

1
4], [x1

2, x
1
3, x

1
4, x

1
5] up to

[x1
12, x

1
13, x

1
14, x

1
15].

D. Performance Evaluation Methods

To analyze the performance of the model, evaluation metrics
are introduced. As discussed in the previous sections, we
compute the probabilities that the system belongs to a certain
degradation level rather than predicting a single value. Since
we propose a classification formulation rather than a regression
formulation, we cannot use traditional evaluation metrics such
as the PHM08 score, MSE, MAPE(%) or MAE [40]. Conse-
quently, we adopt the approach proposed in [16]. A confusion

matrix is widely used in evaluating the performance of deep
learning models [41, 42]. The confusing matrix is a specific
table layout that allows visualization of the performance of an
algorithm. The columns in a confusion matrix are representing
the predicted classes ŷ, while the rows are representing the
true classes y. The diagonal entries are representing the
correct predictions for each label. The confusion matrix is
characterized by Equation 11. In this case, the entry within
the confusion matrix (Mij) is based on the predicted and
true class, described by the degradation levels En

dlj
t , where

j ∈ {1, 2, 3} for each timestep t.

Mij =
N∑

x=1

((ŷx = dlj) ∩ (yx = dli)) (11)

In this research, we extend the prediction by including the
probability that the input belongs to a particular class, rather
than only predicting the class. Predicting the probabilities has
the advantage that we can evaluate the degradation progression
over time for each component, visualized in Figure 4. The
confusion matrix, described in Equation 11, is extended by
taking the average probability of each prediction for each
class. The confusion matrix based on probabilities is given
in Equation 12.

M̂ij =

∑N
x=1 P ((ŷx = dlj) ∩ (yx = dli))∑N

x=1 (yx = dli)
(12)

Where P((ŷx = dlj)∩ (yx = dli)) is the predicted probability
that the engine sensor reading x belongs to dlj while its true
class is dli.

E. LSTM Network Architecture

The network parameters used in the LSTM network have a
strong influence on the performance of the model [43]. The
following parameters are important in the calculation of the
degradation levels: smoothing factor αs, sequence length Nt,
number of layers, nodes per layer, number of epochs, and the
optimizer. Table 7 contains the network and simulation param-
eters for the predictions of the prognostics. The parameters are
determined based on a combination of experimental analysis
and literature review [44, 45, 46]. We implemented the model
using a Tensorflow backend for the LSTM network, written in
Python 3.8. All experiments are performed on an M1 processor
with 8GB of RAM. The computational performance of the
experiments is discussed in Subsection VI-F. Furthermore, the
following functions are used within the LSTM network:

• Adam Optimizer is a stochastic gradient descent method
that is based on adaptive estimation of first-order and
second-order moments [47]. The adaptive optimization
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Description Value

Number of Epochs 21
Smoothing Factor (αs) 0.1
Sequence Length (Nt) 30
Number of Layers 2
Nodes per Layer 256
Dropout Value 0.1
LSTM Layer Activation Function Tanh
Output Layer Activation Function Softmax
Batch Size 64
Optimizer Adam

Table 7: Network and simulation parameters for LSTM Net-
work.

algorithm updates the weights of the neural network.
The Adam optimizer is widely used in deep learning
models because it provides strong performance in broad
applications [27, 48, 49].

• Categorical Cross Entropy is used to analyze the class
classification loss function. The loss function measures
the prediction error. The function calculates the cross-
entropy loss between the labels and predictions for multi-
label classes. The loss function is defined as:

LC = −
N∑
i=1

yij ∗ log ŷij (13)

Where ŷij is the predicted probability in the model output
that predicts that element i belongs to class j. yij is the
target value and 1 if class j is consistent with element i,
and 0 otherwise. N is the number of classes in the model.

F. Degradation Level Probabilities Results

We use the confusion probability matrix described in Sub-
section III-D to analyze the prognostics results. The confu-
sion probability matrix also indicates whether the algorithm
predicts the degradation levels (dli) too early or too late.
As mentioned in Subsubsection III-C1, the degradation levels
were defined as: Degradation Level 1 (RUL > T1), Degra-
dation Level 2 (T1 ≥ RUL > T0), and Degradation Level 3
(T0 ≥ RUL). Figure 9 shows the confusion matrix for the
second configuration, where T0 = 10 and T1 = 30. The x-
axis and y-axis represent the predicted labels ŷ and the true
labels y, respectively. The first row describes the predictions
for Degradation Level 1 and exhibits high accuracy. As one can
see, when the engine belongs to dl1, the predicted state, ŷ, is
also mainly dl1. A value of 0.91 means that the class prediction
was correct, i.e., ŷ = y and the probability values for this class
averaged 0.91. However, when the engine belongs to dl1 the
model predicted in some cases dl2, with an average probability
of 0.075. On the other hand, the model predicted that the
system belongs to dl1 while the true class was dl2, with an
average probability of 0.0038. However, these relatively small
values are caused by the transition in classes, mainly driven by
the abrupt change in the true labels of the degradation levels.
Moving to y = dl2, we see that the predictions are dominated
by the predicted labels dl2 and dl3. When the engine belongs
to dl2, the predicted state probabilities are equal to 0.3 for
the correct prediction (ŷ = dl2) and 0.7 for the incorrect

Fig. 9: Confusion probability matrix for window configuration
2, where T0 = 10 and T1 = 30.

Fig. 10: Overview of degradation level probabilities (dlj) for
six different engines (Eni).

prediction (ŷ = dl3). Moving to the last row, indicating that the
engine belongs to dl3, shows a probability of 1 for the correct
prediction (ŷ = dl3) and 0.0036 for the incorrect prediction
(ŷ = dl2). However, the probability of 0.7 for the true class
y = dl2 and predicted class ŷ = dl3 indicates that the model
predicts dl3 slightly too early.

An overview of six different component prognostics is
shown in Figure 10, where the horizontal axis represents the
true engine lifetime. Each engine is represented by three rows,
which indicate the different degradation levels. The engines
are separated by a blue horizontal line. A dark color indicates
a value close to one, while a light color indicates a value
close to zero. At the beginning of an engine lifetime, the
probability that the component belongs to dl1 is almost one.
This means that the failure probability for this aircraft engine is
nearly zero. As time passes, the probability that the component
belongs to dl2 increases. When reaching the maximum lifetime
of the engine, the probability of failure increases and so
does the probability that the component belongs to dl3. It is
clear that the engines exhibit different degradation behavior
and failure probabilities. Furthermore, the distribution of the
selected engine lifetime lengths is evident, ranging from about
155 to 260 life cycles.

A summary of the results for the other configurations is
depicted in Figure 11. The visible common trend is that
the accuracy for y = dl1, ŷ = dl1 decreases, as the class
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(a) T0 = 10, T1 = 20 (b) T0 = 10, T1 = 40 (c) T0 = 10, T1 = 50

(d) T0 = 10, T1 = 60 (e) T0 = 10, T1 = 70 (f) T0 = 10, T1 = 80

Fig. 11: Overview of the confusion probability matrices for several configurations, where T0 and T1 are varied.

length increases from T1 = 20 to T1 = 80. The value for
the first setup is 0.93, while the value for the last setup is
only 0.74, about 20% lower. In contrast, the accuracy for
y = dl2, ŷ = dl2 increases as the middle window size becomes
larger. The value ranges from 0.09 in the first setup to 0.75
in the last setup. The consequence of increasing the width
of the middle window is clearly reflected in the prognostic
accuracy. Nevertheless, the large middle window also leads to
an instability problem, which is shown in the appendix [50].

IV. PREDICTIVE MAINTENANCE DECISION FRAMEWORK

This section contains the proposed predictive maintenance
decision framework. The component prognostics information
computed in Section III should now be utilized within a main-
tenance framework to represent a realistic problem setting.

Reinforcement Learning (RL) has shown promising results
in the field of predictive and condition-based maintenance
[20]. In RL, an agent interacts with an environment and
receives a reward after performing an action. The agent learns
how to act by selecting actions that gives larger rewards. The
goal is to maximize the total reward based on the policy
between a state and an action. An overview of the interaction
within an RL model is shown in Figure 12. An agent receives
a representation of an environment in a state space st on
which it takes an action at. Subsequently, it moves to st+1

and receives a reward rt indicating how good the action was.
The maintenance environment is modelled as a discrete time
Markov Decision Process (MDP). An MDP provides a math-
ematical formulation for decision-making under uncertainties.
Moreover, the state transitions satisfy the Markov property,
which implies that the future states are independent of the past
states, given the current state [22]. The MDP is represented as
a five item tuple (S,A, P,R, γ), where S is the set of states,

Fig. 12: Interaction between the Agent and the Environment.

A is the set of actions, P is the transition function, R is the
reward formulation, and γ is the discount factor. The goal is to
find an optimal policy that maximizes the total expected return
R. The total return is defined as the sum of discounted rewards
over a given time horizon T and is defined in Equation 14.

R =
T∑

t=0

γtrt (14)

Where γ is the discount factor (0 ≤ γ ≤ 1), and rt is the
instantaneous reward. When γ is large, future rewards are
considered more than when γ is small.

A. State Space: st ∈ S

The multi-component aircraft is denoted as ACt for each
timestep t. The aircraft has two independent engines, denoted
by En1,t and En2,t at timestep t. The state space vector st is
defined in Equation 16, and contains the engine status Ens

i,t

and the degradation level probabilities En
dlj
i,t for each timestep

t. Each engine has a status Ens
i,t, which indicates whether it
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has failed or not, and is defined as:

Ens
i,t =

{
0, Engine i has failed at timestep t

1, Engine i has not failed at timestep t
(15)

Moreover, En
dlj
i,t ∈ [0, 1] defines the probability that engine

i ∈ {1, 2} belongs to degradation level j ∈ {1, 2, 3} for each
timestep t. The degradation level probabilities are the outputs
of the LSTM network as described in Section III. The state
space st of the environment is defined as:

st(ACt) = {Ens
1,t, Ens

2,t, Endl1
1,t , Endl2

1,t , Endl3
1,t

Endl1
2,t , Endl2

2,t , Endl3
2,t }

(16)

Intuitively, the initial state space (st=1) of a simulation is
defined in Equation 17. Both engines are considered new and
have a value of 1 for their engine state, Ens

i,1, as they have
not failed. In addition, both engines have a value of 1.0 for
Endl1

i,1 , and 0.0 for both Endl2
i,1 and Endl3

i,1 . As time progresses,
the engines will degrade and the values in the state space will
change.

st(AC1) = {1, 1, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0} (17)

An illustrative example for t = 175 is shown in Figure 13.
The left graph indicates En1,175 and the right graph En2,175.
The green lines represent Endl1

i,t , the orange lines Endl2
i,t , the

red lines Endl3
i,t , the blue lines the scaled true remaining-

useful-life, and the black vertical lines t = 175. The corre-
sponding state space representation is given in Equation 18.
The first two values indicate that the engines are still in
operation, the subsequent three values are the probabilities that
the first engine belongs to each specific degradation level, and
the last three values represent the same for the second engine.

st(AC175) = {1, 1, 0.0, 0.369, 0.631, 0.145, 0.855, 0.0} (18)

B. Action Space: at ∈ A

The PdM framework action space is modelled as a vector
of discrete actions. The agent must take an action at at each
timestep t for the aircraft. Let A be the set of actions at, i.e.,
at ∈ A, the agent can take for the aircraft ACt. The action
space is defined as follows:

A = {at}, at ∈ {0, 1, 2, 3} (19)

Where the actions related to the aircraft ACt are defined by
the following rules:

at =


0, Do Nothing ACt

1, Repair En1,t (PM)
2, Repair En2,t (PM)
3, Repair En1,t and En2,t (OM)

(20)

The agent can take only one of the four actions at each
timestep t. The agent can decide to do nothing, repair one
of the two engines as preventive maintenance (PM), or repair
both engines at the same time as opportunistic maintenance
(OM). As a result, we obtain the action space:

A = {DN ACt,Repair En1,t,Repair En2,t,

Repair En1,t and En2,t}
(21)

Parameter Description Value [-] Maintenance

−Rnm Do Nothing ACt 0 None

−Rpm Repair En1,t e1 Preventive

−Rpm Repair En2,t e1 Preventive

−Rom Repair En1,t and En2,t 2 ·Rpm − ϵom Opportunistic

−Rcm Repair En1,t and En2,t 2 · eθcm Corrective

Table 8: Predictive maintenance framework cost-related reward
parameters.

C. Reward Function

The reward function is described as a function of the state,
action, and next state: R(st, at, st+1). The agent receives an
immediate reward rt after each action based on the outcome
of the next state. The values of the reward act as feedback
to improve the agent’s policy, and thus have a large influence
on the learning process. The objective in this research is to
minimize the maintenance cost while considering the failure
probabilities for each engine.

To guide the agent’s actions, a reward formulation is pro-
posed in Equation 22. If the agent takes an action at and in
the next state st+1 the engine does not fail (Ens

i,t+1 = 1),
the agent receives the rewards associated with the specific
action. However, if the agent takes an action and an engine
fails in the next timestep (Ens

i,t+1 = 0), the agent receives the
reward for corrective maintenance. Integrating the maintenance
cost related parameters from Table 8 into a reward function
motivates the agent to perform a preventive maintenance action
before experiencing a corrective maintenance action based
on the state space st. However, since the agent’s goal is
to maximize the cumulative reward, it is also encouraged
to perform the do nothing action, since this results in an
immediate reward of zero.

rt =



−Rnm, if at = 0 ∩ Ens
i,t+1 = 1

−Rpm, if at = 1 ∩ Ens
i,t+1 = 1

−Rpm, if at = 2 ∩ Ens
i,t+1 = 1

−Rom, if at = 3 ∩ Ens
i,t+1 = 1

−Rcm, if at = 0, 1, 2, 3 ∩ Ens
i,t+1 = 0

(22)

The parameters for the maintenance cost are shown in
Table 8. The reward for the do nothing action (Rnm) is zero,
while the agent receives a small negative reward (Rpm), for
replacing one of the engines. If the agent decides to repair
both engines at the same time, classified as opportunistic
maintenance, it receives a reward (Rom) slightly smaller than
double the preventive reward. However, if an engine has failed
and needs to be correctively replaced, the agent receives a
larger penalty (Rcm). Note that the corrective maintenance
activity is not an action, but a consequence of performing an
action too late because the engine has failed.

The total reward R for each episode is shown in Equa-
tion 23. The agent’s goal is to minimize the sum of the
immediate rewards rt related to the maintenance actions at
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Fig. 13: State space st for timestep t = 175. Showing the degradation level probabilities and scaled true RUL for En1 and
En2. Corresponding state space: st(AC175) = {1, 1, 0.0, 0.369, 0.631, 0.145, 0.855, 0.0}.

during the time horizon T .

Minimize R =
T∑

t=0

γtrt (23)

To account for the economic dependence within this re-
search, we introduce a parameter ϵom for the opportunistic
maintenance reward Rom. If the agent decides to replace
both components at the same time, it can gain an economic
advantage over replacing both components individually. The
reward for Rom then amounts to 2 · Rpm, discounted by a
value ϵom. Where, the opportunistic maintenance factor ϵom
holds the following values:

ϵom = {0.6, 0.7, 0.8} (24)

In addition, the reward for corrective maintenance, Rcm,
is a function of θcm. The larger the value of θcm, the more
negative the corrective maintenance reward becomes. This will
affect the agent’s behavior in terms of preventive maintenance
actions. The larger the value of θcm, the more careful the agent
will be about running the engine to its maximum lifetime as
the reward will be more negative. The corrective maintenance
factor θcm holds the following values:

θcm = {3, 4, 5, 6, 7, 8} (25)

Furthermore, to analyze the agent’s behavior and the
model’s performance, we let the discount factor γ include the
values stated in Equation 26. The influence of the discount
factor determines the agent’s cautiousness. With a lower
discount factor, the agent will only consider rewards in the near
future and therefore run the engines longer. The utilization
of the components will be higher, but so will the chance of
failure and consequently the corrective maintenance reward.
The larger the discount factor is, the more the agent will take
future rewards into account and thus be more prudent.

γ = {0.5, 0.6, 0.7, 0.8, 0.9, 0.925, 0.95, 0.99, 0.999} (26)

An additional varied parameter is the learning rate α and
includes the values stated in Equation 27. The learning rate
determines how much the network values are updated and thus
affects the convergence time and performance.

α = {0.01, 0.001, 0.0001} (27)

D. State Transition Function

The state transition function determines how the system
environment evolves from st to st+1. At each timestep t,
the agent processes the engine states st and decides what
maintenance action at ∈ A should be taken. The following
steps are taken in one episode:

1) Compute degradation level probabilities En
dlj
i,t for each

engine i at timestep t.
2) The agent selects a maintenance decision at ∈ A for

aircraft ACt at timestep t.
3) Update the engine system condition En

dlj
i,t+1 based on

taken maintenance decision at at timestep t.
4) Update the environment and state space st+1.
5) Repeat until the maximum timestep is reached and ter-

minate the episode.
The transition of each aircraft engine state depends on this
maintenance decision and is shown in Equation 28. Let
p be the engine identifier in the pool of P engines, i.e.,
p ∈ {1, . . . , P}. If the agent takes the decision to do nothing,
the state evolves to the next engine state: Enp

i,t+1, based
on the prognostics calculated by the LSTM network. If the
agent makes the decision to repair one of the two engines, the
respective engine state resets to a new engine from the pool
P and corresponding initial engine state: Enp+1

i,t=1.

st+1(Eni) =

{
Enp

i,t+1, if at = Do Nothing ACt

Enp+1
i,t=1, if at = Repair Eni,t

(28)

E. Q-Learning

The objective in the MDP is to find an optimal policy π∗

that maximizes the total reward. The policy π defines the
agent’s actions in different states, and is represented as an
action at taken in state st. Formally, the policy π is defined
as a probability π(a|s) of taking an action a ∈ A in state
s ∈ S [51].

π : A× S → [0, 1] (29)

The state-value function V π(st) describes how good it is
to be in state st. It represents the value of a state given a
policy π. The state-value function is defined as the expected
cumulative reward of following the policy π from state st at
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timestep t.

V π(st) = E

[ ∞∑
t=0

γtrt | st, π

]
(30)

Q-Learning is a model-free reinforcement learning algo-
rithm that aims to learn the quality value of an action in a
given state [20]. Q-Learning uses an state-action value function
Qπ(st, at) that specifies the quality of taking a specific action
in a state st. The Q-values represent the expected reward of a
state-action pair.

Q : S ×A→ R (31)

The Q-value function describes how good the state-action
pair is and focuses on a specific action in a specific state. The
Q-value function is defined as the expected cumulative reward
of taking action at in state st and following the policy π. The
Q-value function Qπ is described as:

Qπ(st, at) = E

[ ∞∑
t=0

γtrt | st, at, π

]
(32)

The main difference is that V π(st) considers only the
expected discounted rewards in a given state st over all
actions according to the policy π. While Qπ(st, at) considers
the expected discounted rewards based on state st, following
policy π and taking action at.

The Q-Learning agent initializes a table consisting of the
Q-values Q(st, at), which are state-action quality values and
are used for selecting the optimal actions based on a state.
The agent aims to learn the optimal policy π∗, which yields
sequential decisions with the highest expected discounted
reward. Consequently, the optimal Q-value function Qπ∗

(st, at
is the maximum expected cumulative reward achievable from
a given (st, at) pair. The optimal policy π∗, is described as:

π∗ (st) = argmax
at

Qπ∗
(st, at) (33)

During training, at each timestep t, the agent takes an action
at in state st and observes the reward rt. The quality value of
this state-action pair is computed and the Q-table is updated
as follows:

Q (st, at)← (1− α)Q (st, at)+

α

(
rt + γmax

at+1

Q (st+1, at+1)

)
(34)

Where (1 − α)Q (st, at) is the old value, weighted by
the learning rate α. αrt is the reward obtained by
taking an action weighted by the learning rate α. And
αγmaxat+1 Q (st+1, at+1) is the maximum reward obtained
from the state st+1, weighted by the learning rate α and
discount factor γ.

1) Exploration vs Exploitation: A well-known dilemma in
training an agent is the exploration versus exploitation trade-
off [52]. The agent must choose between exploration (making
new decisions) or exploitation (repeating experienced deci-
sions). At the beginning of the training phase, the agent must
perform random actions because it does not have complete
knowledge of the environment. As the episodes progress, the
agent must choose the most favorable action over exploring

Fig. 14: Neural network used to estimate the value function
in the Deep Q-Learning Network. The state space is the input
and the Q-values are the output.

new actions. An exponentially decaying epsilon parameter
(0 ≤ ϵ < 1), based on the ratio of the initial and final epsilon,
is chosen. The agent chooses the action with the highest Q-
value with P (1 − ϵ) and a random action otherwise [53].
The exploration probability decays over the total amount of
episodes from an initial value of 1 to a final value of 0.01.

F. Deep Q-Learning

The disadvantage of using traditional Q-Learning is the
increase in size of the Q-table when the action- or state- space
increases in size. The original Q-Learning algorithm is not
scalable because it must compute Q(st, at) for each pair. In
this research, the state space is large because of the many
values it can hold. Each entry in the state space can have any
value between [0, 1]. And since we consider a long-term hori-
zon that includes two components, the unpredictability caused
by replacing a component at any given point also contributes
to the size of the Q-table. An improvement to traditional Q-
Learning is Deep Q-Learning (DQL), which uses a neural
network to estimate the Q-value, developed by Mnih et al.
in 2015 [54]. DQL uses a function approximator to estimate
the action-value function. This is done by utilizing a neural
network (Figure 14) with network parameters θ, also known
as weights. DQL approximates the Q-values by a function:
Q(s, a; θ) ≈ Q∗(s, a). The essence is that two similar states
(s1t ≈ s2t ), are about equally good or bad to be in and therefore
also have a similar Q-value: Qπ(s1t , at) ≈ Qπ

(
s2t , at

)
for a

specific at.
The used Deep Q-Network (DQN), shown in Figure 14,

consists of an input layer, dense layers and an output layer.
The input layer of the neural network receives the environment
state space (st). The input is passed through the fully con-
nected dense layers in the network, where the computational
processes are performed. The nodes within the dense layer
consist of non-linear transformation functions with network
parameters θ. The output layer produces the Q-values for each
possible action (at) for the input state (st). The output layer
has a dimension of 4, represented by Q(st, a0), Q(st, a1),
Q(st, a2), Q(st, a3).

1) Training Strategy: The DQN can be trained by iter-
atively minimizing the loss function Li(θi) formulated in
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Equation 35. The network parameters θi are updated with a
stochastic gradient descent algorithm by minimizing the mean
squared error between the target Q-values and the predicted
Q-values.

Li (θi) = (y −Q (st, at; θi))
2

where y = rt + γmax
at+1

Q
(
st+1, at+1; θ

−
i

) (35)

Where the first term, y, are the Q-values of the target network,
and the second term are the Q-values of the online network.
The architecture of the target network is identical to that of
the online network, except for the network parameters θi.
The target network parameters (θ−i ) are kept constant when
calculating the loss function of the online network parameters
(θi). The target network parameters are updated only every
Nθ steps, which prevents the network from slipping into a
worse policy. In addition, an experience sampling method is
used to select a random batch of transitions to avoid correlated
experiences. Each timestep, the transition st, at, rt, st+1 is
stored in the replay memory buffer D. Instead of updating
the network parameters θi based on only the last transition,
a batch of experiences from D is used. Experience replay is
used to ensure that the Deep Q-Network is trained not only on
consecutive samples but on random mini-batches and prevents
the DQN from learning the correlation between transitions.

G. Data Augmentation

Data augmentation is performed to improve the performance
of the RL model [55]. In general, data augmentation is a
method to increase the amount of data by adding slightly
modified copies of the existing data. Data augmentation helps
to reduce overfitting and acts as a regulizer. Several methods
have been identified by [49], e.g. jittering, averaging, flipping,
scaling or warping. We have used a method called pattern
mixing, where one or more patterns are used to create new
ones. Magnitude domain mixing, the most direct application
of pattern mixing, uses a linear combination of the patterns at
each timestep. For example, by averaging the sensor data of
a specific engine between two timesteps, and using this value
as a new point as augmented data. The general trend of the
data remains the same, but the exact data values at a given
time may vary slightly. Figure 15 shows the degradation level
probabilities for a given unit, where it can be seen that the
data for all timesteps t is relatively coarse. The original data
points (Eno

t ), around t = 211, are given in Equation 36, and
the augmented data points (Ena

t ) in Equation 37. It can be
seen that the trends of the data remain the same, but the exact
values differ.

 st(Eno
210)

st(Eno
211)

st(Eno
212)

 =

 0.8002 0.1992 0.0004

0.7207 0.2784 0.0007

0.6282 0.3705 0.0012


 dl1

dl2

dl3

 (36)

 st(Ena
210)

st(Ena
211)

st(Ena
212)

 =

 0.8343 0.1651 0.0003

0.7606 0.2389 0.0006

0.6745 0.3245 0.0010


 dl1

dl2

dl3

 (37)

Fig. 15: Original (OD) and augmented data (AD), zoomed in
on t = [206− 220] for one specific engine.

V. EXPERIMENTAL SETUP AND TRAINING ENVIRONMENT

This section first describes the terminology commonly used
in the experimental design and remaining sections. Subse-
quently, the key performance indicators are provided. In ad-
dition, an introduction to the working principle of the PdM
framework is provided. The section concludes with a para-
metric performance analysis and the train- and test strategy.

A. Commonly Used Terminology

The following terminology is commonly used in the de-
scriptions of the experiments and in the results section.

• Timestep: Each timestep, the agent takes an action and
the environment responds. The agent receives a reward
based on the state-action pair.

• Episode: A sequential decision period of 1200 timesteps
in which the agent considers several components. Each
episode returns a value of the total cumulative reward.

• Simulation: A full run of 200 episodes for a specific
combination of parameters. One simulation returns a list
of results based on the total reward in each episode.

• Experiment: A total of 10 runs of the same simulation,
with random initial parameters.

One episode has a fixed length of El timesteps. The episode
will terminate when the predetermined number of timesteps is
reached:

El = 1200 timesteps (38)

The length of the episode is based on the average number of
components replaced within one episode. As the agent decides
to do nothing or to replace a component preemptively, the
average number of components considered in the first set of
experiments is about 20, as shown in Table 15.

B. Key Performance Indicators PdM Framework

The long-term maintenance cost for a specific episode (with
episode length El) is defined as follows:

Cpdm =
Rcm ·Ncm +Rpm ·Npm +Rom ·Nom

El
(39)
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Where Rcm is the corrective maintenance reward, Ncm is
the number of corrective maintenance actions, Rpm is the
preventive maintenance reward, Npm is the number of pre-
ventive maintenance actions, Rom is the opportunistic main-
tenance reward and Nom is the number of opportunistic
maintenance actions. The long-term maintenance costs are
used to compare with other maintenance policies, described in
Subsection VI-A. In general, the goal is to establish a policy
that determines the optimal maintenance action based on the
given state space and minimizes the long-term maintenance
cost Cpdm. Since we divide a multiplication of reward and
frequency by a scalar representing a time horizon, Cpdm is
considered a dimensionless cost rate.

Using only long-term maintenance costs to evaluate the
performance of the PdM framework is not sufficient. There-
fore, we introduce the following Key Performance Indicators
(KPIs): the number of replaced components Tc, the average
component utilization Cu, the average wasted component
lifetime Wt, and the average component replacement time Rt.
The KPIs are defined as follows:

1) Number of Replaced Components: The number of re-
placed components is interesting to observe the efficiency
of the framework in terms of component usage. It is
complementary to the long-term cost, as it only takes into
account the use of the components and is not affected
by the maintenance cost ratio. The number of replaced
components per episode is calculated as follows:

Tc = Ncm +Npm +Nom (40)

Where Ncm is the number of components replaced by
corrective maintenance, Npm is the number of com-
ponents replaced by preventive maintenance and Nom

is the number of components replaced by opportunistic
maintenance.

2) Average Component Utilization: The average compo-
nent utilization indicates the ratio of replaced lifetime to
true lifetime. It denotes the proportion of the component’s
lifetime that is used. The average component utilization
for one episode is calculated as follows:

Cu =
1

N

N∑
n=1

Enl
n

Ena
n

(41)

Where N is the number of components replaced, Enl
n is

the replaced lifetime of engine n, and Ena
n is the actual

true lifetime of engine n.
3) Average Wasted Component Lifetime: The wasted

component lifetime is the difference between the true
lifetime and the replaced lifetime. It is a measure of how
well the components are utilized and how much lifetime
is wasted. The average wasted component lifetime per
episode is calculated as:

Wt =
1

N

N∑
n=1

(Ena
n − Enl

n) (42)

Where N is the number of components replaced, Ena
n

is the actual true lifetime of engine n, and Enl
n is the

replaced lifetime of engine n.

Description Value

Training Episodes 200
Test Episodes 100
Discount Factor (γ) 0.999
Learning Rate (α) 0.001
Hidden Layers 2
Nodes in Dense Layer 64
Replay Memory Capacity 105

Batch Size 32
Exploration Rate (ϵ) [1 → 0.01]

Table 9: Network and simulation parameters for the Deep Q-
Network.

4) Average Component Replacement Time: The average
component replacement time indicates the replacement
age at which an engine is replaced, and is defined as:

Rt =
1

N

N∑
n=1

Enl
n (43)

Where N is the number of components replaced and Enl
n

is the replaced lifetime of engine n.

C. PdM Working Principle and Network Parameters

We use a Tensorforce backend, which is based on Ten-
sorflow, for the Deep-Q Network, written in Python 3.8. All
experiments were run on an M1 processor with 8GB of RAM.
Table 9 shows the network and simulation parameters for the
maintenance decision framework. The values chosen are based
on experimental analysis and commonly used parameters in
other studies [56, 57, 58] and work well for this application.

We consider 1200 timesteps as one episode, in which the
agent decides each timestep whether an aircraft engine should
be replaced, either by preventive or opportunistic maintenance.
The decisions of the PdM framework are illustrated in Fig-
ure 16, where it can be seen that the agent takes different
actions based on the degradation levels of the components
represented by the state space. If a component is replaced by
a maintenance decision, a random engine is selected from the
dataset as the new engine. The vertical colored lines represent
the maintenance actions taken by the agent. For example, the
green line represents the action Repair En1,t at timestep t.
The lines labeled "En" represent the three degradation levels
for each engine (En

dlj
i,t ) at timestep t. An example of the

state space, when the agent takes the decision to replace both
engines at t = 268, indicated by the orange line, is given in
Table 10.

Figure 17 depicts the reward values, described in Subsec-
tion IV-C, for one episode. For each maintenance decision,
it receives a negative reward. The goal for the agent in one
episode is to minimize the total reward received, resulting in
the minimized maintenance cost. Each timestep that the agent
decides to do nothing does not change the cumulative reward.
Once the agent decides to perform a maintenance action, the
negative reward value increases.

Figure 18 shows the reward development for 10 simulations
(Ns = 10) and 200 episodes (Ne = 200). The reward
convergence shows that the agent is able to learn the optimal
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Timestep (t) State Space (st) Action (at) Reward (rt)

267 1, 1, 0.506, 0.494, 0.0, 0.523, 0.475, 0.003 Do Nothing −Rnm

268 1, 1, 0.389, 0.611, 0.0, 0.422, 0.574, 0.004 Repair Engine 1 and 2 −Rom

269 1, 1, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 Do Nothing −Rnm

Table 10: Example for the state space st representation and corresponding maintenance actions at. Representing the working
principle of the PdM framework for t = [267− 269].

Fig. 16: Working principle of the proposed maintenance deci-
sion framework for Ne = 1 and El = 1200.

Fig. 17: Corresponding reward for Ne = 1 and El = 1200.

policy based on the state space and corresponding actions.
The blue line represents the sum of rewards received in one
episode. The reward converges as the agent learns to perform
the do nothing action until the aircraft engine needs to be
replaced. It can be seen that in the first episodes the agent
obtains a very large negative reward for replacing too many
engines or experiencing corrective maintenance.

The long-term maintenance costs associated with the pre-
dictive maintenance strategy are shown in Figure 19. The
maintenance-related cost, consisting of the preventive, op-
portunistic, and corrective maintenance cost, decreases over
time and exhibits a convergent behavior. The agent decides
in the first episodes to replace the engines frequently or to
run them to their maximum lifetime, and these costs increase

Fig. 18: Reward development for Ne = 200 and Ns = 10
during training.

Fig. 19: Long-term maintenance cost for Ne = 200 and Ns =
10 during training.

rapidly. As the episodes progress and the agent updates its
policy, long-term maintenance costs decrease and converge
to a value of 0.0524 for the last 50 episodes. Furthermore,
the number of replaced components per episode is depicted
in Figure 20. At the beginning of the training process, the
number of components used in one episode is about 1000, but
it converges to 19.2 components as an average of the last 50
episodes.

D. Agent Action Analysis

The action space for 10 simulations, 200 episodes of 1200
timesteps, is shown in Figure 21. The agent must take a total
of 1200 · 200 = 240000 actions per simulation. It can be
seen that the agent is taking the Do Nothing action most
of the time. Whereas, the Repair En1,t or Repair En2,t

actions are nearly equally distributed. As expected, the action
Repair En1,t and En2,t is performed the least. The corrective
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Fig. 20: Number of components for Ne = 200 and Ns = 10
during training.

Fig. 21: Maintenance activity analysis for Ne = 200 and Ns =
10 during training. Note: y-axis uses log scale.

maintenance activity is appended. This is not an action of the
agent, but a consequence of performing a maintenance action
too late because the engine failed. The distribution of boxplots
indicates the agent’s ability to deal with the environment in
different simulations with random initial parameters.

E. Parametric Performance Analysis

We performed a parametric performance analysis in which
we varied the model and network parameters. We analyzed
the influence of the network parameters, such as the discount
factor (γ) and the learning rate (α) on the performance of the
model. In addition, we analyzed the influence of the model
parameters, such as corrective (θcm) and opportunistic (ϵom)
maintenance costs. The parameters that were ultimately chosen
for the final scenarios are shown in bold in the respective table
of the parameter results.

The reward development for the discount factor (γ) is shown
in Figure 22. The discount factor indicates the importance
of the reward in the future. If γ = 0, the agent cares only
about the immediate reward. If γ = 1, the agent cares about
all future rewards. The discount factor is important since
the future rewards are heavily influenced by the actions of
the agent. Figure 22 indicates that small discount factors
(γ = {0.5, 0.6}), shown by the green and red lines, trigger
unstable agent behavior.

Fig. 22: Reward development for Ne = 200 and Ns = 1
during the parametric performance analysis for the discount
factor γ. Note: for clarity, only the top two and bottom two γ
values are plotted.

DF γ [-] Reward [-] CM12 [-] Cu [-] Cpdm [-] MF [%]

0.999 -154.0 13 0.688 0.128 0.251
0.99 -172.7 25 0.667 0.143 0.476
0.95 -241.5 77 0.684 0.201 1.55
0.925 -200.0 87 0.751 0.167 3.06
0.9 -233.7 113 0.735 0.195 4.28
0.8 -267.4 134 0.773 0.223 4.80
0.7 -371.6 214 0.831 0.309 9.18
0.6 -473.4 284 0.825 0.395 12.50
0.5 -870.3 558 0.801 0.725 25.84

Table 11: Overview of relevant results for the parametric
performance analysis for the discount factor γ. Ne = 200
and Ns = 1 during testing for every single discount factor.

Table 11 clearly shows that smaller discount factors perform
worse than larger discount factors in terms of long-term
maintenance cost (Cpdm). Moreover, the average reward for
smaller γ is remarkably more negative than for larger γ.
In addition, the number of corrective maintenance (CM12)
actions is noticeably higher for smaller γ than for larger γ.
This can be explained by the fact that the agent only cares
about the next step and reward, and therefore often runs
the engines up to their maximum lifetime. The component
utilization (Cu) is higher with a smaller γ, but so are the
long-term maintenance (Cpdm) costs. The last column (MF %)
indicates the percentage of failed components. The percentage
of failed components for small γ is higher than for large γ,
explained by the myopic policy of the agent.

The reward development for the learning rate (α) is shown
in Figure 23. The learning rate is a network parameter that
determines the step size at each iteration, which involves a
trade-off between convergence speed and overshoot. If the
value of α is too large, the agent learns inefficiently and
continues to overshoot, shown by the blue line in Figure 23.
If the value of α is too small, the convergence rate is slow.
This can be seen by the green dotted line, which shows slow
convergence in the first 25 episodes. The orange line, where
α = 0.001, gives the best performance in terms of convergence
speed and maintenance decision-making.

Table 12 shows that a learning rate α = 0.001 performs the
best in terms of the smallest average reward, highest compo-
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Fig. 23: Reward development for Ne = 200 and Ns = 1
during the parametric performance analysis for the learning
rate α.

LR α [-] Reward [-] CM12 [-] Cu [-] Cpdm [-] MF [%]

0.01 -5189.7 1347 0.087 4.324 1.13
0.001 -151.9 22 0.671 0.127 0.475
0.0001 -454.0 22 0.445 0.378 0.134

Table 12: Overview of relevant results for the parametric
performance analysis for the learning rate α. Ne = 200 and
Ns = 1 during testing for every single learning rate.

nent utilization, and lowest long-term maintenance costs.
The reward development for the corrective maintenance fac-

tor (θcm) is shown in Figure 24. The θcm value determines how
heavily the maintenance activity of corrective maintenance is
penalized. The reward for corrective maintenance is specified
as eθom , which becomes larger as θcm increases. Figure 24
shows the reward development for four different values of
θcm. The peaks in the reward development are caused by the
increase in the corrective maintenance reward. For example,
if θcm = 8, indicated by the red line, it can be seen that
the negative value of the reward becomes very large. As the
reward of corrective maintenance increases, the agent will be
more hesitant to run the engine to its maximum lifetime.

The results listed in Table 13 show that the frequency of

Fig. 24: Reward development for Ne = 200 and Ns = 1
during the parametric performance analysis for the corrective
maintenance factor θcm. Note: for clarity, only the top two
and bottom two θcm values are plotted.

CM θcm [-] Reward [-] CM12 [-] Cu [-] Cpdm [-] MF [%]

3 -93.6 86 0.751 0.078 2.88
4 -171.2 51 0.659 0.143 0.91
5 -152.0 15 0.652 0.127 0.31
6 -175.8 14 0.653 0.147 0.30
7 -240.6 9 0.652 0.200 0.16
8 -413.9 5 0.518 0.345 0.05

Table 13: Overview of relevant results for the parametric
performance analysis for the corrective maintenance factor
θcm. Ne = 200 and Ns = 1 during testing for every single
corrective maintenance factor.

Fig. 25: Reward development for Ne = 200 and Ns = 1 dur-
ing the parametric performance analysis for the opportunistic
maintenance factor ϵom.

the corrective maintenance action (CM12) decreases when the
value of θcm increases. Logically, the component utilization
(Cu) also decreases when θcm becomes larger.

The reward development for the opportunistic maintenance
factor (ϵom) is shown in Figure 25. The reward for the
opportunistic maintenance action is specified as Rom =
2 · Rpm − ϵom. As the value of ϵom becomes larger, the
opportunistic maintenance reward becomes smaller. Figure 25
indicates that there is no major difference in agent performance
when ϵom is varied.

Table 14 lists the relevant KPIs and indicates that the fre-
quency of opportunistic maintenance actions (OM12) increases
when the maintenance reward Rom decreases. The average
reward and component utilization remain about the same,
indicating that the value of ϵom does not have a major impact
on the agent’s performance.

OM ϵom [-] Reward [-] OM12 [-] Cu [-] Cpdm [-] MF [%]

0.6 -116.3 873 0.667 0.096 0.57
0.7 -112.7 804 0.667 0.093 0.51
0.8 -129.9 1490 0.674 0.108 0.33

Table 14: Overview of relevant results for the parametric
performance analysis for the opportunistic maintenance factor
ϵom. Ne = 200 and Ns = 1 during testing for every single
opportunistic maintenance factor.
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Fig. 26: Reward development for Ne = 200 on the training
dataset (blue) and Ne = 100 on the test dataset (orange).

F. Training and Test Overview

We successively conduct a training and a testing phase to
evaluate the agent in the PdM framework. A clear distinction
is made between training data and testing data. For the
experiments, we use 80% of the dataset to train the agent
and 20% of the dataset for the test part. At the beginning
of each simulation, the train-test distribution is randomized,
which ensures that the agent does not overfit certain engines.
We let the agent train for 200 episodes on the selected 80%
of the dataset. In this process, the agent observes the state,
takes an action, observes the next state, receives a reward,
and updates the network weights. For the testing part, we let
the agent only act and not update the network weights on
the remaining 20%, which consists of "held-out" data that the
agent has never seen before.

In Figure 26 we show the reward development for the
training set (blue) and the test set (orange). It can be seen that
the agent is able to make the same decisions on the test set due
to the similarity in the reward development. Figure 27 shows
the rewards for the last 50 episodes to get a better perspective
of the results. The moving average (MA) lines, with n = 5,
for both training and testing show the same trend, indicating
that the agent is able to transfer its knowledge and decisions
onto a "held-out" dataset.

VI. RESULTS - PREDICTIVE MAINTENANCE FRAMEWORK

This section elaborates on the results with respect to the
KPIs described in Subsection V-B, where we consider the
maintenance-related cost, the number of components, the
average component utilization, the average wasted lifetime,
and the average replacement time. For the remaining figures
in this section, the shaded area is defined by the minimum-
maximum values. First, the maintenance policy definitions used
for comparison are described. Then the results for the first
scenario are given. Followed by the results for the second
scenario.

The PdM framework will be evaluated in two scenarios.
In the first scenario, a discount factor of γ = 0.999 will
be used, while in the second scenario, a discount factor of
γ = 0.7 will be used. As described in Subsection V-E, the
discount factor has a major impact on the agent’s decisions. If

Fig. 27: Zoomed reward development, showing similar perfor-
mance for the last Ne = 50 on the training dataset (blue &
green) and the last Ne = 50 on the test dataset (orange &
red).

γ = 0.999 the agent takes into account all future rewards,
while with γ = 0.7 the agent will adopt a more myopic
policy and pay more attention to short-term rewards. The first
scenario is strongly focused on achieving the lowest cost,
while the second scenario shows the influence of relaxing the
cost objective to achieve better performance in the other KPIs.

A. Definitions Comparison Maintenance Policies
The performance of the proposed PdM framework will be

compared with three other maintenance policies to evaluate its
effectiveness. Namely, Ideal maintenance, Time-Based main-
tenance, and Corrective maintenance. The long-term mainte-
nance costs for these policies can be calculated as follows:

1) Ideal Maintenance (IM): It is assumed that the true
lifetime of each engine is known and can therefore be
accurately predicted. Each engine is replaced exactly
one timestep before the maximum true lifetime of that
particular engine, so that no usage is wasted. The ideal
maintenance strategy is chosen to compare the proposed
framework with optimal maintenance decisions. There is
no policy that can have a lower cost than Equation 44 and
is therefore interesting to compare with. The IM policy
costs can be computed as follows:

Cim =
Npm ·Rpm

El
(44)

Where Npm is the number of replaced components, Rpm

is the preventive maintenance reward, and El is the
episode length.

2) Time-Based Maintenance (TBM): The time between
each maintenance action is determined by a value based
on the average lifetime of the selected components, Ta.
When an engine reaches Ta, it is replaced with a new
component and considered as preventive maintenance.
If the failure occurs before Ta, meaning that the true
component lifetime was shorter than Ta, it is considered
as corrective maintenance. The TBM policy costs can be
determined as follows:

Ctbm =
Npm ·Rpm +Ncm · 12Rcm

El
(45)
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Where Npm is the number of preventive replaced compo-
nents, Rpm is the preventive maintenance reward, Ncm

is the number of corrective replaced components, Rcm is
the corrective maintenance reward, and El is the episode
length. Rcm is multiplied by half since only one of the
two engines is replaced.

3) Corrective Maintenance (CM): The aircraft remains in
operation until an engine fails. When an engine fails, it
is replaced with a new one. Therefore, the component
utilization is high, but so is the cost of corrective main-
tenance. The long-term cost of the CM policy can be
calculated as follows:

Ccm =
Ncm · 12Rcm

El
(46)

Where Ncm is the number of replaced components, Rcm

is the corrective maintenance reward, and El is the
episode length.

B. Scenario 1: Performance of the PdM Framework Com-
pared with other Maintenance Policies (γ = 0.999)

The first scenario are the experiments where we set γ =
0.999 to evaluate the performance of the PdM framework in
terms of obtaining the lowest long-term maintenance costs.
As described in Subsection V-F, the method used to evaluate
the performance of the different maintenance policies is to
run ten simulations, each time splitting the dataset randomly
into an 80% train set and 20% test set. We train the agent
for 200 episodes, followed by 100 episodes in the test part.
In the test phase, we let the agent only act on the "held-out"
engines to observe the performance of the agent’s final policy.
The other maintenance policies are evaluated on the same
engines as the PdM framework. A comprehensive overview of
the results, averaged over 100 episodes, is given in Table 15.
The results in Table 15 include the average values as well
as the minimum and maximum values to identify the varying
performance. The average long-term maintenance cost for the
PdM policy is 0.046 and for the IM policy 0.036. The cost
for the TBM policy is 0.68 and 0.97 for the CM policy.
Comparing the decisions of the proposed PdM framework with
other maintenance policies yields the long-term maintenance
cost results shown in Figure 28. It can be observed that the
PdM policy produces superior results compared to TBM and
CM policies in terms of long-term maintenance costs, and is
close to the IM policy. The shaded area indicates the min-max
values of the ten different simulations, whose exact values are
given in Table 15.

A detailed plot of the 100 episodes and a comparison be-
tween the proposed PdM framework and IM policy is depicted
in Figure 29. It shows that the PdM framework is close to
the performance of the IM policy, which is expected since
it takes into account the number of preventive, opportunistic,
and corrective maintenance actions. The difference in cost is
caused by the number of actions performed in an episode,
since the PdM replaces the components earlier and thus
uses more of them. However, the IM policy is an imaginary
hypothesis that cannot be realized in reality. Nevertheless, the

Fig. 28: Scenario 1: Long-term maintenance cost for Ne = 100
and Ns = 10 during testing.

Fig. 29: Scenario 1: Long-term maintenance cost (PdM & IM)
for Ne = 100 and Ns = 10 during testing.

proposed PdM framework performs well and is able to reduce
operational costs compared to other policies.

The next KPI, the number of components, is shown in
Figure 30. The average number of components used by the
PdM framework in 100 episodes is 20.55 units, while the
TBM policy requires 18.76 units. The difference is caused
by the fact that the PdM framework replaces the components
earlier, while the TBM policy replaces them either when they
have failed or at the predetermined interval. Note that Ta

is based on the mean time between failure (MTBF) of the
components used in the simulation. Setting Ta to a more
conservative value would increase the number of components
for the TBM policy while keeping the PdM number the same.
An extensive analysis on the influence of Ta is given in
Subsubsection VI-B1. As expected, the IM and CM policies
require the fewest components, namely 15.71 units.

Figure 31 depicts the average wasted component lifetime
and shows that the TBM policy outperforms the PdM frame-
work. The TBM policy replaces the components as corrective
maintenance if they fail before Ta and thus do not waste com-
ponent lifetime but incur higher costs. When the component
lifetime reaches Ta, it is considered preventive maintenance
and the wasted lifetime is defined as the difference between
Ta and the true lifetime. The objective of the PdM framework
is to minimize costs and therefore replace components before
they reach their maximum lifetime, leading to a higher wasted
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Maintenance Policy Long-Term Maintenance Cost Number Components Mean Wasted Lifetime Mean Component Utilization Mean Replacement Time

Predictive 0.0459 (0.0271 - 0.0711) 20.55 (12 - 35) 46.87 (32.92 - 57.55) 0.664 (0.575 - 0.808) 115.35 (76.37 - 220.0)

Time-Based 0.6834 (0.2722 - 1.2503) 18.76 (12 - 26) 27.80 (9.32 - 44.29) 0.888 (0.841 - 0.959) 133.09 (94.83 - 218.96)

Ideal 0.0356 (0.0226 - 0.0475) 15.71 (10 - 21) 1.0 (1.0 - 1.0) 0.993 (0.992 - 0.996) 160.13 (113.47 - 243.1)

Corrective 0.9720 (0.6184 - 1.2986) 15.71 (10 - 21) 0.0 (0.0 - 0.0) 1.0 (1.0 - 1.0) 161.13 (114.47 - 244.1)

Table 15: Scenario 1: Mean long-term maintenance costs [-], mean number of replaced components [-], mean wasted component
lifetime [t], mean component utilization [-], and mean replacement time [t] for Ne = 100 and Ns = 10. Values are indicated
as: Mean (Min −Max ).

Fig. 30: Scenario 1: Number of components for Ne = 100
and Ns = 10 during testing. Note: CM is omitted because it
has the same values as the IM policy.

Fig. 31: Scenario 1: Average wasted component lifetime for
Ne = 100 and Ns = 10 during testing. Note: CM and IM are
omitted because the values for all episodes would be 0 and 1
respectively.

component lifetime. The wasted component lifetime is a
trade-off between maintenance cost and component utilization.
However, the spread of wasted component lifetime for the PdM
framework is lower compared to the TBM policy. The average
wasted component lifetime for the PdM framework is 46.87
cycles, while the average wasted component lifetime for the
TBM policy is 27.80 cycles. The average wasted component
lifetime for the IM and CM policies is 1 and 0, respectively.
Since the IM strategy is to replace the component exactly one
cycle before its maximum lifetime, and the CM strategy is to
run it to its maximum lifetime.

Fig. 32: Scenario 1: Average component utilization for Ne =
100 and Ns = 10 during testing.

Figure 32 depicts the average component utilization and
shows that the TBM policy has a higher value than the PdM
framework. The TBM policy uses 88.8% of the component
lifetime while the PdM framework only uses 66.4%. The
difference is caused by the fact that the PdM framework is
conservative and replaces components earlier than the TBM
policy. The IM and CM policies have a component utilization
of 99.3% and 100%, respectively.

The average replacement age, depicted in Figure 33, shows
that the PdM framework replaces components around 115.4
cycles, while the TBM does so about 133.1 cycles. The
maximum values of the policies are not identical as Ta is
calculated each episode and is based on the selected engines
and not on the average of the total pool of components. The IM
policy has an average replacement time of 160.1 cycles and the
CM policy of 161.1 cycles. This phenomenon is explainable
because these policies run the components to their maximum
lifetime.

The results of the first scenario show that the PdM
framework reduces long-term maintenance costs compared to
a CM and a TBM strategy, by 95.2% and 93.2%, respectively.
However, as expected, costs increase by 28.9% compared to
the IM policy. Moreover, the PdM strategy uses 9.5%, 30.8%,
and 30.8% more components than the TBM, IM, and CM
policies, respectively.

1) Time-Based Average (Ta) Thresholds: The average time
limit (Ta) reported in the above results strongly influences
the results of the TBM policy. Therefore, we perform an
analysis in which we set Ta to different thresholds, the results
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Threshold LTMC: Ctbm [-] NC: Tc [-] MWL: Wt [t] MCU: Cu [-] MRT: Rt [t]

Ta = Mean 0.664 (0.332 - 1.182) 18.48 (12 - 24) 26.76 (9.32 - 43.35) 0.892 (0.846 - 0.959) 135.26 (104.00 - 218.96)

Ta = 50 0.109 (0.109 - 0.109) 48.0 (48 - 48) 112.36 (72.85 - 188.83) 0.361 (0.217 - 0.456) 50.0 (50.0 - 50.0)
Ta = 75 0.072 (0.072 - 0.072) 32.0 (32 - 32) 86.76 (46.37 - 165.93) 0.544 (0.323 - 0.685) 75.0 (75.0 - 75.0)
Ta = 100 0.306 (0.054 - 0.833) 25.05 (24 - 26) 64.73 (27.24 - 140.5) 0.695 (0.432 - 0.842) 97.71 (93.34 - 100.0)
Ta = 125 0.621 (0.045 - 1.067) 21.35 (20 - 24) 47.18 (12.68 - 115.1) 0.797 (0.54 - 0.948) 115.28 (103.95 - 125.0)
Ta = 150 0.625 (0.036 - 1.122) 19.30 (16 - 23) 34.14 (7.15 - 88.0) 0.86 (0.655 - 0.968) 128.11 (109.56 - 150.0)
Ta = 175 0.672 (0.091 - 1.239) 17.86 (14 - 22) 22.76 (2.11 - 71.25) 0.913 (0.751 - 0.989) 139.17 (113.22 - 174.78)
Ta = 200 0.807 (0.327 - 1.241) 16.97 (13 - 22) 14.67 (0.0 - 51.92) 0.947 (0.825 - 1.0) 147.11 (116.18 - 194.84)
Ta = 225 0.832 (0.265 - 1.239) 16.43 (12 - 21) 8.93 (0.0 - 38.76) 0.969 (0.872 - 1.0) 152.76 (115.04 - 212.08)

Table 16: Key Performance Indicators for the Time-Based maintenance policy for different Ta values in the range [50− 225].
Values are indicated as: Mean (Min −Max ).

Fig. 33: Scenario 1: Average replacement time for Ne = 100
and Ns = 10 during testing.

Fig. 34: Long-term maintenance cost for several Ta values,
indicating the (Min-Max) values.

of which are shown in Table 16. The data in the table
show that the Time-Based policy is sensitive to the value
of Ta and never achieves lower average maintenance costs
than the value of 0.046 for the PdM strategy. When we
set Ta = 50, the long-term maintenance cost is only 0.109
versus 0.832 when Ta = 225. Figure 34 shows the spread
of the long-term maintenance cost for the various Ta values.
Consequently, the number of components drops from 48.0 to
16.43 units. As expected, the average wasted lifetime and the
average replacement lifetime are inversely proportional. The
component utilization rate increases from 0.361 when Ta = 50
to 0.969 when Ta = 225.

Fig. 35: Scenario 2: Long-term maintenance cost for Ne = 100
and Ns = 10 during testing.

C. Scenario 2: Performance of the PdM Framework Com-
pared with other Maintenance Policies (γ = 0.7)

The second scenario are the experiments where we set
γ = 0.7 to evaluate whether the performance of the PdM
framework would increase in terms of the KPIs except long-
term maintenance cost. In the previous results, we saw that the
agent is relatively conservative because it replaces components
early and avoids the corrective maintenance action. When we
reduce the discount factor to 0.7, we expect the agent to run the
components longer and thus utilize more component lifetime.
The results for the second scenario can be found in Table 17.
The maintenance-related costs, depicted in Figure 35, show
that the PdM framework is experiencing the corrective mainte-
nance action more frequently, as indicated by the blue peaks.
The average long-term maintenance cost increases to 0.088,
which is still 86.2% lower than the 0.64 from the TBM policy
and 90.5% lower than the 0.91 of the CM policy. However,
the cost increases by 59.9% compared to the 0.034 of the IM
strategy.

As the agent makes the decision to replace an engine later,
the number of components, shown in Figure 36, decreases
compared to scenario 1. The PdM framework uses only
16.27 components, compared to 17.92 components for the
TBM policy. The IM and CM policies are using the least
components, namely 14.87 units. The component usage of the
PdM framework decreases by 9.2% compared to the TBM
policy and increases by 9.4% compared to the IM and CM
strategies. Lowering the discount factor to 0.7 results in the
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Maintenance Policy Long-Term Maintenance Cost Number Components Mean Wasted Lifetime Mean Component Utilization Mean Replacement Time

Predictive 0.0876 (0.0203 - 0.6523) 16.27 (9 - 31) 23.54 (10.46 - 48.61) 0.844 (0.718 - 0.943) 147.54 (93.14 - 246.63)

Time-Based 0.6370 (0.2609 - 1.1840) 17.92 (10 - 25) 28.61 (7.54 - 51.88) 0.888 (0.817 - 0.951) 140.83 (100.29 - 240.68)

Ideal 0.0337 (0.0204 - 0.0498) 14.87 (9 - 22) 1.0 (1.0 - 1.0) 0.994 (0.990 - 0.996) 170.08 (112.41 - 265.88)

Corrective 0.9193 (0.5565 - 1.360) 14.87 (9 - 22) 0.0 (0.0 - 0.0) 1.0 (1.0 - 1.0) 171.08 (113.41 - 266.88)

Table 17: Scenario 2: Mean long-term maintenance costs [-], mean number of replaced components [-], mean wasted component
lifetime [t], mean component utilization [-], and mean replacement time [t] for Ne = 100 and Ns = 10. Values are indicated
as: Mean (Min −Max ).

Fig. 36: Scenario 2: Number of components for Ne = 100
and Ns = 10 during testing. Note: CM is omitted because it
has the same values as the IM policy.

Fig. 37: Scenario 2: Average wasted component lifetime for
Ne = 100 and Ns = 10 during testing. Note: CM and IM are
omitted because the values for all episodes would be 0 and 1
respectively.

PdM framework using fewer components than the TBM policy
and being closer to the IM and CM policies.

The average wasted component lifetime, shown in Fig-
ure 37, of the PdM policy is lower than that of the TBM
policy. While the PdM policy wastes an average of 23.54
cycles, the TBM policy wastes 28.61 cycles. Use of the PdM
strategy instead of the TBM policy would reduce the wasted
component lifetime by about 17.7%. The IM and CM policies
waste an average of 1.0 and 0.0 cycles, respectively.

Figure 38 shows the average component utilization. In this
scenario, the component utilization is 84.4% for the PdM pol-

Fig. 38: Scenario 2: Average component utilization for Ne =
100 and Ns = 10 during testing.

Fig. 39: Scenario 2: Average replacement time for Ne = 100
and Ns = 10 during testing.

icy, compared to 88.8% for the TBM policy. However, it can
be seen that the dispersion of the min-max values of the PdM
has increased compared to scenario 1, due to the corrective
maintenance occurrences. The component utilization for the
IM and CM policies is 0.994 and 1.0, respectively.

The average replacement time, shown in Figure 39, for the
PdM policy increases to 147.54 cycles compared to 140.83
cycles for the TBM policy. Using a PdM policy over a TBM
policy would increase the average replacement time by about
5%. The IM and CM policies have a replacement time of 170.1
and 171.1 cycles, respectively.

The results from scenario 2 show that the PdM framework
reduces long-term maintenance costs compared to a CM and a
TBM strategy, by 90.5% and 86.2%, respectively. However, as
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Fig. 40: Scenario 1 and 2: Percentage of failed components for
the Predictive and Time-Based maintenance policies. Correc-
tive and Ideal maintenance were omitted because they would
represent 100% and 0% failed components, respectively.

expected, costs increase by 59.9% compared to the IM policy.
However, the PdM strategy now uses 9.2% fewer components
than the TBM policy and is competitive in terms of wasted
component lifetime and replacement time. The second scenario
shows that reducing the discount factor to γ = 0.7 produces
comparable results in terms of cost, but better performance for
the other KPIs compared to scenario 1.

D. Failed Components % Scenario 1 and Scenario 2

Figure 40 shows the percentage of failed components for
the PdM framework and TBM policy for both scenarios. The
Corrective and Ideal policies were omitted because they would
represent 100% and 0% failed components, respectively. A
comparison of the PdM framework with the TBM policy
shows that the former has fewer failed components in both
situations. Figure 40 indicates that the percentage of failed
components, considered as corrective maintenance, is 0.46%
for the PdM framework compared to 54.81% for the TBM
policy for the first scenario. For the second scenario, the
percentage of failed components within the PdM policy is
11.5%, while the percentage of failed components within the
TBM policy is 55.5%. The increase in the failure rate for the
PdM policy is caused by the decrease in the discount factor.

E. Statistical Significance

Statistical tests are conducted to better compare the perfor-
mance of the PdM framework with the benchmark policies.
The statistical tests are based on the differences between the
values of the long-term maintenance costs and the other KPIs.
Comparing two policies is done by means of a paired t-test, as
the sample populations are equal for both policies. The t-test
was used to test the significance of the difference between
the values of the average long-term maintenance costs and
other KPIs. The null hypothesis of the t-test was that there
would be no difference in the respective average values. The
alternative hypothesis was that the PdM values differ from
the values of the comparison policy. All the statistical tests
were performed with respect to a 5% level of significance.
The p-values for each combination of maintenance policies

Maintenance Policy Time-Based Corrective Ideal

PdM Cm [-] 9.55e−111 9.21e−144 2.58e−89

PdM Tc [-] 9.94e−56 1.47e−90 1.47e−90

PdM Wt [t] 4.22e−96 1.11e−171 9.19e−171

PdM Cu [-] 3.58e−127 3.23e−153 2.54e−152

PdM Rt [t] 3.77e−96 3.29e−127 3.81e−128

Table 18: Scenario 1: P-values of the statistical t-test for
the long-term maintenance cost (Cm), number of replaced
components (Tc), wasted component lifetime (Wt), component
utilization (Cu), and component replacement time (Rt).

are shown in Table 18. A p-value close to zero indicates that
the null hypothesis is rejected. As can be seen in Table 18,
all p-values are less than 0.05, i.e., p < 0.05. This means that
for all KPIs there is a difference in the average values for
the compared policies. The p-values in Table 18 are related
to scenario 1, while the values for scenario 2 can be found in
the appendix [50]. All values are also close to zero, with the
largest value of 2.06e−38 for the PdM long-term maintenance
cost compared with the IM policy.

F. Computational Time

This section provides information on the computational time
for the numerical experiments performed. All experiments
were performed on an M1 processor with 8GB of RAM.
The computational time for one experiment, consisting of 20
epochs, for the component prognostics was approximately 130
seconds. The prediction of the LSTM classifier on the test set
took about 3 seconds. The second part of the experiments, in
which the agent was trained on the component prognostics for
maintenance decisions, took noticeably longer. The training
part for the MDP, consisting of 200 train episodes, lasted
approximately 630 seconds. The test part for the MDP, which
included 100 test episodes, took approximately 285 seconds.
The reduction in computational time for the test part comes
from the fact that the agent only observes and acts, and no
longer learns by updating the network parameters. When the
model is trained and run for a couple of episodes as in the
test section, it has a good computation time for practical
applications. The computation time for industrial applications
could be reduced by using high-performance clusters.

VII. DISCUSSION

This section describes the strengths and limitations of the
proposed PdM framework, as well as a general picture of its
broader application.

A. Strengths

In this paper, we proposed a new PdM framework which
is capable of mapping independent component degradation
levels to maintenance decisions for a multi-component aircraft
with a cost minimization objective. The numerical experiments
showed that the PdM framework is able to reduce long-term
maintenance costs compared to the traditional maintenance
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policies. This finding is highly relevant because it demon-
strates a cost-effective, viable approach to making maintenance
decisions based on data-driven prognostics.

Another important finding is the effect of the discount factor
on the results of the PdM framework. When this observation
is put into perspective at a higher level, it appears that in
a real-world application, it could be a trade-off between
component utilization and maintenance costs. In the first
scenario (γ = 0.999), the agent is relatively conservative
and components are replaced early in anticipation of failure.
The results show that the goal of the agent is to replace
the components before they fail and when the state space
shows an increased probability for degradation level 2. In
contrast, the findings of scenario 2 show that a reduction in the
discount factor (γ = 0.7) results in higher maintenance costs,
but also higher component utilization and replacement time.
The large difference in the percentage of failed components,
0.5% versus 11.5%, highlights the effect of the discount factor
on the agent’s maintenance policy. In a realistic application,
the different scenarios could be used when focusing on long-
term maintenance costs or component utilization. Furthermore,
another observation is that the agent is able to adapt to different
initial data distributions, demonstrated by the same conver-
gence behavior of the reward. From a broader perspective,
this indicates that the developed PdM framework can actually
be used in a real-life scenario for unknown and varying
prognostics.

Moreover, this paper illustrated the PdM framework for a
two-component system. Theoretically, the model could even
be further extended to include a third or more components.
The addition of a third component would increase the state
space by 4 states and the action space by 4 actions. Therefore,
the PdM framework can be scaled up relatively easily for an
N-component system by increasing the state space and the
action space. In addition, the PdM framework can handle
different qualities of prognostic information. However, the
component utilization efficiency of the framework depends on
the prognostics in the state space. Finally, since the trained
DQN has a strong computational performance, it can be
used in practice by maintenance engineers as the maintenance
decisions are made almost instantly. Nevertheless, if the PdM
framework is applied in a different environment, the DQN
network must be re-trained.

B. Limitations

The PdM framework also has its limitations because several
assumptions and simplifications were made. The maintenance
environment is a simplified representation of a real-life en-
vironment. For example, we have assumed that maintenance
slots and replacement components are always available. A
more realistic representation would include specified slots
and a limited number of components. In reality, maintenance
opportunities are highly dependent on the availability of
components and manpower. Including resource availability
could influence the PdM framework and lead to different
results. Furthermore, we assumed an immediate replacement
of the engines, whereas in real life the replacement of an

engine would take several days or weeks and could affect the
decisions of the PdM framework. An additional limitation in
this research is the sample size of the dataset, which could be
mitigated by using a larger dataset or one that is based on real
data. Moreover, the rewards for maintenance are a function of
ef . For a more realistic model, the costs should be based on
real costs reported by the industry. The use of real costs could
influence the agents’ policies in a way that leads to different
maintenance decisions.

In addition, some unexpected findings were noted. Contrary
to our expectations, the variation of the opportunistic mainte-
nance factor (ϵom) was found to have no significant effect on
the performance of the model, which could be a consequence
of the magnitude of ϵom. As described above, this limitation
point can be mitigated by using realistic costs and adjusting
the acceptable risk of component failure. Finally, the PdM
framework could not be compared to existing literature, as to
date there is no study that reflects the exact same problem
statement. An interesting experiment would be to apply the
PdM framework in practice and analyze how it relates to a
real maintenance policy.

C. Broader Application

Apart from its performance and flexibility in terms of the
number of components, the PdM framework could also be used
for other types of components. In this paper, we have demon-
strated the PdM framework on a turbofan engine. However, in
theory, any sensor-based component could be used, as long as
it collects sensor measurements and sufficient fault information
is available. For example, the PdM framework could be used
for aircraft brakes, cooling units, and auxiliary power units.
At a general level, if a homogeneous degradation formula can
be computed for different parts, the PdM framework could
be extended for a complete aircraft. In order for the PdM
framework to be of practical use to an airline, it first must
be analyzed in terms of efficiency and reliability in a real-
world environment. Based on the results of the numerical
experiments conducted, the PdM framework is likely to be of
great value to an airline’s maintenance operations because it
can identify and respond to component deterioration behavior.

VIII. CONCLUSION AND RECOMMENDATIONS

This section contains the conclusion of this research, fol-
lowed by the recommendations for future work.

A. Conclusion

Aircraft maintenance is a challenging branch of engineering
that constantly seeks to improve maintenance decision-making
based on sensor data. In this paper, we proposed a novel
end-to-end framework for maintenance decisions based on
component sensor data for a multi-component system. The
Predictive Maintenance (PdM) framework covers the entire
process, from computing component prognostics to making
maintenance decisions. The first part of the proposed method
uses a Long-Short Term Memory (LSTM) network to classify
to which degradation levels a component belongs. The LSTM
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network computes the probability that a component belongs
to a given degradation level and estimates the failure within
a given time window. The bounds of the time window can
be chosen based on operational requirements. We evaluated
the LSTM network on the C-MAPPS dataset, and the results
show that the model is able to calculate accurate prognostics
for several configurations.

In the second part of the PdM framework, the mainte-
nance environment is modeled as a Markov Decision Process
(MDP). A Deep Q-Learning (DQL) approach is used to obtain
the optimal policy for decision-making. The objective of
the PdM framework is to reduce maintenance-related costs.
Maintenance decisions are made based on the probability of
degradation levels, which are represented in the MDP state
space. The Deep Q-Network (DQN) agent can take several
actions, including do nothing, preventive, or opportunistic
maintenance. The MDP rewards are based on maintenance
costs and encourage the agent to replace components only
when truly necessary. We evaluated the effectiveness of the
PdM framework through numerical experiments. The results
showed that the proposed framework outperforms traditional
maintenance policies. Several Key Performance Indicators
(KPIs) were used to assess the performance of the different
policies, including the long-term maintenance cost, number of
replaced components, component utilization, and the wasted
component lifetime. The first experiment focused on obtaining
the lowest long-term maintenance cost, while the second
experiment focused on obtaining improved results in the other
KPIs.

Specifically, the first numerical experiment, where the dis-
count factor of the agent is equal to 0.999, showed that
the PdM framework reduces long-term maintenance costs by
95.2% compared to a Corrective maintenance policy, by 93.2%
compared to a Time-Based policy, but increases long-term
maintenance cost by 28.9% compared to an Ideal policy.
Moreover, the PdM policy uses 9.5% more components than
the Time-Based policy, and 30.8% more than the Corrective
and Ideal policies. It should be noted that in the proposed
PdM framework, only 0.5% of the components failed during
the decision period, compared to 54.8% in the Time-Based
policy. The Corrective and Ideal policies represent 100% and
0% failed components, respectively. The combination of low
maintenance costs and percentile improvements suggests that
the proposed PdM framework is superior to using traditional
approaches.

The second numerical experiment, where the discount factor
of the agent is equal to 0.7, shows that long-term mainte-
nance costs are reduced by 90.5% and 86.2% relative to the
Corrective and Time-Based policies, respectively. In contrast,
the long-term maintenance cost increased by 59.9% relative
to the Ideal policy. However, the PdM framework now uses
9.2% fewer components than the Time-Based policy, and 9.4%
more than the Corrective and Ideal policies. In this scenario,
about 11.5% of the components in the PdM framework failed,
compared to 55.5% of the components in the Time-Based
policy. Reducing the discount factor yields better performance
for the other KPIs, while keeping maintenance costs low
compared to other traditional maintenance policies.

Finally, our proposed PdM framework shows how compo-
nent prognostics can be successfully integrated into a mainte-
nance decision framework. The approach taken is able to deal
with an aircraft system consisting of multiple components. In
summary, this paper evaluated a novel predictive maintenance
framework capable of mapping degradation levels of indepen-
dent components to make maintenance decisions for a multi-
component aircraft with a cost minimization object.

B. Recommendations

Based on the results of this study, several directions for
further research are identified. In future work, it would be
interesting to look at multi-objective optimization to address
other objectives. Addressing multiple objectives can be done
by including other variables in the reward function in addition
to maintenance costs (e.g., operating costs or downtime costs).
To provide a more realistic picture, a time penalty for repairs
can also be included. In addition, the state space could be
expanded in future work to include component availability
and maintenance slots. The inclusion of maintenance oppor-
tunities would provide a more realistic view of a maintenance
environment. Furthermore, the possibility of "imperfect" main-
tenance could be added to the model by a different initial
distribution of the degradation levels. Flight schedules and
crew assignment could be taken into account, which would
result in additional mathematical modeling. Finally, to better
understand the performance of the model, benchmarking with
a real maintenance policy can be performed and a larger
number of key performance indicators could be used.
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1
Introduction

A large percentage of an airline’s operation costs are caused by the maintenance of airplanes. There-
fore, airlines try to reduce the expenditures, which are caused by maintenance costs as much as
possible (IATA [2019]). One of the top three savings for airlines comes from ’Health monitoring and
predictive maintenance driven by improved reliability’. An effective application of health monitor-
ing and predictive maintenance results in reduced maintenance costs and improved aircraft avail-
ability. Within the field of engineering, the above described method is known as ’Prognostic Health
and Management’ (PHM). The development and improvement of Predictive Maintenance (PdM) is
an important branch in this field because it may result in lower operational costs. PdM is focusing
on using intelligent sensors to provide reliable prognostics about the remaining useful life (RUL) of
a component or system. These prognostics can be used to efficiently adjust the required mainte-
nance activities to the system’s properties.

The PdM framework consists of two sub components. The first component focuses on com-
puting prognostics for components or systems while the second part focuses on maintenance opti-
mization. Little research has been done in the field of a complete PdM framework. Therefore, this
literature review focuses on integrating the prognostics into aircraft maintenance planning. The
following topics are discussed within this literature review:

• Relevant literature

• Problem formulation

– Research objective

– Research questions

– Research methodology

• Project planning

The report is structured as follows: in Chapter 2, the theoretical background of aircraft mainte-
nance is discussed. Among others, the planning of maintenance and existing constraints are de-
scribed in detail. Chapter 3 contains a review on the development of prognostics and different
methods to compute them. Afterwards, in Chapter 4 the combination of maintenance and prog-
nostics is reviewed, which covers the implementation of prognostics into maintenance planning.
Subsequently, within Chapter 5, the problem formulation is defined. This includes the research ob-
jective, questions, scope and methodology. Finally, in Chapter 6 the conclusion is drawn. After a
brief recap of the literature on ’integrating prognostics into aircraft maintenance planning’ the con-
clusions are discussed. Additionally, in Chapter 7 a Gantt Chart is provided for the research project
planning.
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2
Aircraft Maintenance

Aircraft maintenance is a vital part in the operations of an airline. Maintenance tasks are required
actions, which have to be performed to ensure airworthiness for an aircraft or aircraft part. The
following chapter provides information about the maintenance strategies of airlines. According to
Man [2010], maintenance can be defined as follows: "The combination of all technical, adminis-
trative and managerial actions during the life cycle of an item intended to retain it in, or restore it
to, a state in which it can perform the required function". The differences between various existing
maintenance policies regarding daily operations will be described in Section 2.1. Subsequently, Sec-
tion 2.2 describes the scheduling of maintenance policies.It will be distinguished between sched-
uled and unscheduled maintenance. In Section 2.3 the real life constraints with regards to main-
tenance planning will be presented. Finally, in Section 2.4 recent studies on aircraft maintenance
planning are reviewed.

2.1. Aircraft Maintenance Planning
In order to minimize maintenance costs and maximize aircraft availability, it is from high impor-
tance for airlines to schedule maintenance in an efficient manner. Thus, optimizing the scheduled
checks (A/B/C/D checks) while respecting the safety regulations is of special interest for an airline.
Generally, maintenance operations are re required for three principal reasons: operational reasons,
value retention reasons and regulatory requirements (Ackert [2010]). Operational reasons mean,
that an aircraft needs to function in a reliable condition to generate revenue for an airline. Further-
more, to retain the value of an aircraft it needs to be maintained properly to reduce the physical
deterioration. Typically, aircraft, which are maintained accordingly have a higher value for a longer
time in comparison to aircraft which do not get maintained appropriately. Finally, maintenance
planning is required to meet the regulatory requirements. For each aircraft there are certain re-
quirements for repair and overhauls specified by aviation authorities. These requirements must be
met to retain the airworthiness.

In general, an airline has to minimise the costs and maximize the efficiency for keeping the air-
line fleet in an airworthiness state. Optimizing the utilization involves many stakeholders. These
stakeholders include different parties, such as original equipment manufacturer (OEM), operators,
airports as well as regulatory bodies. Therefore, maintenance planning is a complex process with
various steps and procedures (Papakostas et al. [2010]). Typically, the first step in an aircraft main-
tenance framework is programme development and implementation. In this step new mainte-
nance frameworks and methodologies are developed and integrated. Afterwards the maintenance
is planned and prepared, which is followed by the execution. The final steps are reporting and pro-
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gramme improvement.

In Figure 2.1 different maintenance policies are displayed, such as reactive, proactive and ag-
gressive maintenance. Swanson [2001] defines reactive maintenance by saying, that equipment is
allowed to be used until failure. Once a part is broken it is either repaired or replaced. In proactive
maintenance strategies, breakdowns are avoided and actions are taken to restore equipment to an
appropriate condition. The proactive maintenance approach reduces the probability of unexpected
equipment failures. The final strategy, known as aggressive maintenance, aims to improve the func-
tioning of the complete equipment (Swanson [2001]). One example for the aggressive approach is
to improve the design of new and existing equipment.

Figure 2.1: Lit. Study: Maintenance policies. Figure taken from Tingo [2013].

2.1.1. Reactive Maintenance (RM)
In the past, aircraft maintenance mainly consisted of reactive maintenance strategies (Ackert [2010]).
In reactive maintenance the components were replaced or fixed either when they have failed or
when the components were about to fail. There were no scheduled interventions before a failure
occurred. The advantage of reactive maintenance is that the component lifetimes are fully utilized.
However, the reactive maintenance approach has multiple disadvantages: inefficient grouping of
maintenance, no possibility to forecast supportability requirements and an high amount of down-
time. Besides these disadvantages, it can also be very dangerous when a component or system
unexpectedly breaks down. From an airline’s perspective, the reactive maintenance strategy could
result in high costs caused by unexpected failures and corresponding delays in flight schedules.

2.1.2. Preventive Maintenance (PM)
Preventive maintenance was developed to prevent unexpected high costs and possible dangerous
situations caused by the application of reactive maintenance (Vilarinho et al. [2017]). It is assumed
that mechanical parts wear out and show degradation behaviour. The wear out of components
cause failures and affects the safety of a system. Identifying different intervals of a hazard function
results in three consequences: early failures, random failures and wear out failures. This particular
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form of the hazard function is described as the ’Bathtub’ Curve (Klutke et al. [2003]).

Figure 2.2: Lit. Study: Hazard function over time, classical bathtub curve. Figure taken from Klutke et al. [2003].

The idea, which is presented within the bathtub curve, is to replace the components before they
reach the wear-out failure phase and therefore before an actual failure occurs. The hazard func-
tion of a component can be based on statistical and reliability analysis. The maintenance schedule,
based on this analysis, is created with fixed time intervals. These intervals are specified in parame-
ters such as flight time, flight cycles or calender days. During these inspections, the condition of the
component is checked and compared with a given threshold to determine whether the component
must be replaced or not. The preventive maintenance framework increased the safety level of an
aircraft, as it prevents in-flight failures. However, the preventive maintenance strategy still fails to
successfully predict an accurate remaining useful lifetime. Therefore, the preventive maintenance
approach is not perfect, as some components are replaced too early, which results in spilling costs.
The idea of replacing or repairing components before failure occurs prevents critical systems to fail.
Moreover, consequential damage can be reduced when using the preventive maintenance strategy.
The major disadvantage of this approach is, that it is difficult to determine the optimal moment of
replacement as safety considerations often dictates early replacements.

2.1.3. Predictive Maintenance (PdM)
The preventive maintenance strategy is limited because it only describes a small part of system fail-
ures (Klutke et al. [2003]). Therefore, researchers improved the maintenance strategy by combining
the condition-based method with a predictive aspect. This new maintenance method is called pre-
dictive maintenance and aims to predict the time point of a component’s failure. With this method,
unexpected failures can be prevented and repairs as well as replacements can be scheduled effi-
ciently. In comparison to the preventive maintenance, predictive maintenance is using the data of
the equipment to update the mean time of regular maintenance (Einabadi et al. [2019]). The predic-
tive maintenance strategy uses monitoring information to predict the next failure of the system and
perform maintenance before this predicted time. The main challenge of predictive maintenance is
to correctly predict the remaining useful life, which is described later in Chapter 3.

2.2. Airline Maintenance Scheduling
This section will elaborate on the airline maintenance scheduling methods. First the scheduled
maintenance tasks will be covered. Afterwards the unscheduled maintenance tasks will be de-
scribed.

2.2.1. Scheduled Maintenance (A,B,C,D Checks)
Aircraft maintenance checks are inspections performed after a certain time or performance thresh-
old. These thresholds can be specified in calender days, flight cycles or flight hours. During the
inspections the aircraft systems are, if necessary, restored to an airworthy condition. The regular
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maintenance checks are divided into A,B,C and D checks. Typically, within an A-check small op-
erations, such as the replacement of filters and lubrication of systems are done, while in the larger
checks (C and D) systems with higher structural importance will be checked. The intervals for the
maintenance checks are heavily depending on the aircraft type. The inspections are divided into
the following checks (Spreen [2019]):

Check Threshold Duration [Man Hours] Activities

A-Check 80-100 FH / 7-9 DY 10-20 Filters etcetera
B-Check 500-600 FH / 60-90 DY 100-300 Lubrication
C-Check 7500 FH / 2 YR 10000 - 30000 Individual systems and components
D-Check 6 YR 30000 - 50000 Airframe and wings

Table 2.1: Lit. Study: Scheduled base maintenance checks. Taken from Spreen [2019].

Many airlines merge the D-check into the C-check, as it has to be grounded for multiple weeks
and will not generate revenue for the airline (Deng et al. [2020]). Scheduled maintenance is often a
complex procedure, especially for a large non-homogeneous fleet. If the planning of the checks is
not done efficiently, the maintenance costs will increase. Often schedules could be improved when
daily factors and progresses would be taken into account during the time planning. While creating a
maintenance plan, multiple uncertain factors, such as flight planning, have to be considered, which
makes the creation of the maintenance plan difficult.

2.2.2. Unscheduled Maintenance
In contrast to scheduled maintenance, which occurs after a specific threshold of flight hours or cal-
endar time, unscheduled maintenance is required in case of malfunction or damage of aircraft com-
ponents during operation. Unexpected maintenance matters are classified as unscheduled main-
tenance (Hinsch [2018]). Usually, unscheduled maintenance results in high expenses for airlines as
the airline has to perform the reparation at a non-hub airport. Moreover, this can cause delays in
the flight schedule. Sometimes, it requires a team of specialists to travel to the stranded aircraft and
carry out a local repair (Spreen [2019]).

2.3. Planning Constraints
There are multiple constraints in regard to maintenance scheduling. The constraints can be clas-
sified into four different groups (Steiner [2006]). The first group are constraints defined by mainte-
nance actions, such as inter-maintenance flying hours and sequences as well as duration of main-
tenance actions. The second group is related to manual operator settings, such as fixed special
services, quarterly flying hour requirements and max flying hours. Another a very important con-
straint within this group are available maintenance capabilities. To perform certain maintenance
actions, resources such as hangars, personnel and inventory must be available. The third group of
constraints is related to ERP data up to the time of scheduling. This relates to constantly changing of
aircraft specific information. The last group of constraints are general specifications, which include
restrictions due to public holidays.

As described above, many factors influence the maintenance opportunities for an airline. For
maintenance scheduling the following are considered to be important within this field of research:

• Flight schedule (determines the inspection moments)

• Components availability (determines if a component can be replaced or repaired)
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• Manpower availability (determines if there is enough manpower available to conduct the
maintenance)

• Costs of missed / unplanned flights (determines the decision if the components need repair
or do nothing)

The above-stated constraints will be combined into maintenance slots. If a maintenance slot is
available the components of an aircraft can be repaired or replaced. This means that an assumption
will made that if there is a slot available, maintenance can be done for one aircraft.

2.4. Recent Studies on Maintenance Scheduling
There are two types of maintenance, namely line and base maintenance. Line maintenance can
be described as ’unexpected maintenance’, which is performed within the operating environment.
Contrarily, base maintenance requires to remove the aircraft from the service, which results in a
longer period of unavailability.

2.4.1. Line Maintenance
Line maintenance can be performed on the apron, while the aircraft remains in the operating envi-
ronment. The tasks related to line maintenance are relatively easy and contains often Line Replace-
able Units (LRU). These are aircraft components which are designed to be replaced quickly at an
operating location (Sahay [2012] ).

To avoid costs of delay and cancellations, unscheduled maintenance must be planned and car-
ried out in a quick manner. Normally, line maintenance is done during the turn around of an air-
craft and involves a routine check, post-flight inspection and malfunction rectification (Papakostas
et al. [2010]). During this process, a GO or NOGO decision is made for the next flight. The article
by Papakostas et al. [2010] describes an short-term planning methodology of line maintenance ac-
tivities and supports decision making for maintenance actions. The decisions are made on ’Cost’
and ’Operational risk’ criterion, but also takes ’Flight delay’ into consideration. Furthermore, Sarac
et al. [2006] describes a brand-and-price algorithm for an aircraft maintenance routing problem.
The algorithm takes maintenance resource availabilities constrains into consideration. The article
provides an operational view instead of a long term view, which makes it useful in regard to the
present project because of the used constraints. The article by Muchiri and Smit [2011] presents a
method, which clusters certain maintenance actions together to reduce costs and increase opera-
tional availability.

Moreover, stochastic optimization of maintenance schedules under unexpected failures is re-
searched in the article of Basciftci et al. [2018]. The authors create a framework for integrated
condition-based maintenance for a fleet of generators. The framework uses the remaining useful
life of a generator to compute maintenance costs and failure probabilities. These factors are then in-
tegrated into a stochastic mixed-integer optimization model that determines optimal maintenance
and operational decisions.

2.4.2. Base Maintenance
Base maintenance is different from line maintenance as it requires to move the aircraft into a hangar.
The aircraft is separated from the operating environment and involves larger tasks, such as A,B,C
and D checks. The checks are often scheduled with the operational schedule in mind. A method
to come up with an optimized long-term maintenance schedule is proposed by Deng et al. [2020].
The article by Deng et al. [2020] describes a methodology which aims at minimizing the wasted in-
terval between the checks. The methodology takes the following things into consideration: status,
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maintenance capacity, operational constraints and aircraft type. The article provides a Dynamic
Programming method to solve the long term base maintenance problem.

Steiner [2006] provides a heuristic aircraft maintenance scheduling method under various con-
straints using a linear optimization method and includes constraints, such as maximum flying hours
per week. Likewise, Sriram and Haghani [2003] use a heuristic procedure in combination with linear
programming problem. The algorithm uses a combination of random search and depth first search.
The accuracy of the solution depends on the number of aircraft combinations and explored nodes.
In other research, Senturk and Ozkol [2018] are examining how aircraft utility can be maximized and
maintenance cost minimized. Senturk and Ozkol [2018] propose a method which is called ’Single-
task oriented maintenance’ in which they aim to minimize the time spend on the ground.

Maintenance scheduling can also be done by Monte-Carlo Tree search. In the article of Shang
et al. [2020], the researchers describe how Monte Carlo tree search can be used to schedule main-
tenance of a distributed network. Monte-Carlo tree search is a reinforcement learning approach,
which is able to provide a solution in combination with a superior performance over other ap-
proaches. The model is developed to minimize the maintenance costs considering real life con-
straints and reliability indices.

In addition, a review on maintenance optimization is provided by de Jonge and Scarf [2020].
The article provides a concise overview of the research done in the topic of maintenance activi-
ties. There is a distinguish between single-unit and multi-unit systems, followed by a separation
based on deterioration processes. de Jonge and Scarf [2020] describe the research done about con-
tinuous deterioration state space with required inspections to obtain condition information. This
article might be relevant for the project as it will consider a continuous degradation but with fixed
inspection intervals. Furthermore, the article provides a section about multi-unit systems, which
has various types of dependencies: economic dependence, structural dependence and stochastic
dependence. The following definitions are retrieved from Laggoune et al. [2010]:

• Economic dependence: Concerns the influence of component operation and maintenance
actions on the overall system costs. For example, the overall system costs can be lower if
multiple components are maintained at the same time as less maintenance or downtime costs
are induced (Laggoune et al. [2010]).

• Structural dependence: Concerns components which structurally form a part. Therefore
maintenance on failed components implies actions on other components. For example, if
a component in an engine must be replaced the whole engine must be disassembled (Lag-
goune et al. [2010]).

• Stochastic dependence: Concerns when the state of a component influences the lifetime dis-
tributions of other components or when components are subjected to common-cause fail-
ures. For example, when a degraded component leads to an internal force and causes over-
load on other components (Laggoune et al. [2010]).

Within Chapter 4 further existing literature on maintenance policies for multiple component
systems is reviewed.
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Aircraft Component Prognostics

Recently, the field of component prognostics and predictive maintenance receives increasing at-
tention from researchers. Companies have a big interest in optimizing their maintenance planning
and repairs in order to reduce unexpected high costs. This chapter will provide an overview of the
relevant literature regarding the modelling of failure prognostics of aircraft components. First, in
Section 3.1, an overview of different prognostics forms is given. The following different types of
prognostics will be described: Model-Based, Data-Driven or the Hybrid approach. Furthermore,
within Section 3.2, an overview of multiple component prognostics is provided. Finally, in Sec-
tion 3.3, the most recent studies on prognostics are provided.

3.1. Prognostics
Prognostics is known as an technical field which focuses on predicting the time at which a system
or component will no longer perform its intended function (Vachtsevanos et al. [2006]). This can
be in the form that the system is not longer able to meet its original or desired performance. An
example could be a bearing failure within an engine, which impedes the aircraft from flying. The
engine failure can result in high costs for the airline because the incident can cause delay. Moreover,
in case of a non-functioning aircraft, the airline has to provide a replacement, which can cause ad-
ditional costs. To avoid unexpected failures, prognostics are used to determine the remaining useful
life (RUL). RUL gives a prediction of time, which a component can be expected to operate within its
stated specifications (Sri et al. [2019]). Hence, the RUL can be used to decide whether a component
needs service or replacement. The component’s predicted RUL is very useful, if estimated correctly,
because it can be used to prevent the whole system from failing. However, to be able to predict var-
ious modes of failures, useful condition indicators must be identified.

A field that makes use of RUL prognostics, which could be used for preventive maintenance, is
known as Prognostics and Health Management (PHM; Tsui et al. [2015]). There are several meth-
ods to create RUL prognostics, namely Model-Based, Data-Driven and a Hybrid approach (Zhao
et al. [2017]).

3.1.1. Model-Based Prognostics
The first method to predict failure probabilities and RUL is to use a Model-Based approach. This
is done by representing the system’s underlying physics in an appropriate model. Likewise, Rezva-
nizaniani et al. [2014] created a computer simulated model of a battery from an electric vehicle to
identify battery health issues. A major advantage of Model-Based prognostics is that accurate and
precise data can be acquired, if the models are developed correct (Daigle and Goebel [2011]). A dis-
advantage of Model-Based prognostics is that complex systems are almost impossible to represent
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in a simulation model. Usually, the underlying physics are too complex to reproduce. Also from
a practical point of view, the theoretical model are not always able to adapt to various operational
variables, such as temperature or loads over time. Usage of the unsuitable models can lead to wrong
maintenance decisions and will result in a sub optimal solution.

The Model-Based prognostics are based on stochastically modelling the system degradation
evolution. The degradation evolution can be based on Markov processes or variants for which the
transition probabilities and system states are known. These transition probabilities and system
states can be obtained from historical reliability data (Papakonstantinou and Shinozuka [2014]).
Other forms of Model-Based prognostics can be based on the assumption that a stochastic process
characterizes the degradation mechanism of a system (You et al. [2010]). The continuous degrada-
tion of an aircraft brake can be modelled by using a Gamma Process (Lee and Mitici [2020]).

3.1.2. Data-Driven Prognostics

In contrast to Model-Based prognostics, Data-Driven prognostics are using historical data to predict
the RUL without using the nature of the degradation mechanism (Si et al. [2011]). Hence, Data-
Driven models can be used for more complex systems. The Data-Driven models are based on sensor
information of the system’s state. Therefore, the quality of the prognostics is heavily depending
on the data processing and used techniques. In the past, the majority of the processes were done
manually. Nowadays the manual processes are replaced with statistical or Machine learning (ML)
techniques.

Statistical Methods

The RUL of a component or asset is a random variable (X t ), depending on the operation environ-
ment, current age and the health information (Si et al. [2011]). Within this article, the RUL (X t ) is
described as a probability density function (PDF), which is depending on the history of operational
profiles (Yt ):

f (X t | Yt ) = f (X t ) = f (t +X t )

R(t )
(3.1)

Where f (t + X t ) is the PDF of the life at t + X t and R(t ) is the survival function at t . The novelty of
using statistical methods in order to determine the RUL is to estimate f (t + X t ) based on historical
data. The data used to determine the RUL of a component can be divided into two main categories:
event data and condition monitoring (CM) data (Jardine et al. [2006]). Event data can be defined as
recorded failure data, while CM data is ’any’ data about the system. CM data includes data which
might be relevant for the estimation of RUL, such as environmental, operational and performance
data. The idea is to link the CM data to the RUL, such that the CM data can be categorized as direct
CM and indirect CM data. The direct CM data, such as wear and cracks, can be directly linked to
the prediction of RUL. Indirect data, as the name indicates, can only be used to indirectly refer to
the system’s condition. Thus, the CM data can be linked directly or indirectly to the recorded failure
data from the past to detect anomalies. The anomalies can be used to compute realistic confidence
intervals, which compares the measured data to historical data. In statistical methods it is essential
to compute a realistic PDF because if the PDF is inappropriate the comparison with new measured
data could produce wrong estimations and consequently evoke false alarms. Figure 3.1 represents
an overview of the different statistical driven approaches for Direct CM and Indirect CM data.
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Figure 3.1: Lit. Study: Statistical data driven approaches for RUL estimation. Figure taken from Si et al. [2011].

Machine Learning
In the past decade, many studies have examined machine learning (ML) techniques to improve the
performance of RUL prognostics. The supposed function of ML is that these methods can automat-
ically extract and construct useful information. Machine learning methods are more effective than
statistical methods in processing raw data and extracting useful information. ML techniques are
trained on a part of the whole data set and identifies important features which might not be pre-
defined. For example, Lin et al. [2018], provide a integrated hierarchical learning framework based
on both diagnostics and prognostics.

ML is a very broad field of topics. Within the present article only the relevant parts regarding
the research aim will be discussed. In the articles of Zhang et al. [2018] and Wu and Castro [2020], a
Long Short-Term Memory (LSTM) network is used to predict the RUL of a system. LSTM networks
are useful to learn both long and short-term dependencies (da Costa et al. [2020]). The usage of
LSTM networks occurs frequently in recent published articles and shows a promising performance
in the field of RUL prognostics. However, many of the articles solely focus on the prognostics, while
ignoring the corresponding maintenance decisions. Therefore, it would be interesting to investi-
gate the computed prognostics in light of the corresponding maintenance decisions (Nguyen and
Medjaher [2019]).

3.1.3. Hybrid Prognostics
Another form of prognostics is called ’Hybrid Prognostics’. Hybrid Prognostics combine Model-
Based and Data-Driven prognostics. The combining approach is making use of the advantages of
model- and data-driven techniques to improve the prediction performance (Assaf [2004]). In their
article, Celaya et al. [2014], a combination of Data-Driven and Model-Based methodology is used to
make prognostics for power devices under thermal stress.

3.2. Prognostics for Multiple Components
The previously discussed techniques are demonstrated on single components. As described in sub-
section 2.4.2 between several system components there can be multiple kinds of dependencies: eco-
nomic, structural and stochastic dependence. These dependencies can make it complex to predict
the RUL if there is no prior knowledge about the influence from one component on another (Hafsa
et al. [2016]). The prediction of RUL for multi-components systems must be handled differently with
respect to single component systems, because a full understanding of the interactions is needed.
Hafsa et al. [2016], describes a stochastic dependency model for degradation rate interactions and
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a prognostics method, which calculates the RUL considering the degradation rate interaction. The
prognostics for multi-components within this article is done by computing a Weibull probability
density function for each component and then transform the density function into a cumulative
distribution function (CDF) for the whole system. The CDF is then related to system degradation
states and used for computing the RUL. In this article by Arts and Basten [2018], the authors use
different Weibull distributions for different components. Afterwards a periodic usage based main-
tenance (PUBM) policy or periodic condition based maintenance (PCBM) is applied on each com-
ponent. Combining the policies and distributions, a non-linear non-convex programming problem
is solved by using a greedy search algorithm. The important parameters in the optimization prob-
lem are the costs of the policies, down-times and components.

Assaf [2004] uses a generic degradation formula which incorporates the effect of other com-
ponents. The effect of component i on component j is defined in a matrix, where the values are
computed by historical experience. Consequently, the degradation of the system is modelled as a
normal degradation function.

Furthermore, a review about condition-based maintenance policies for multiple dependent com-
ponents was published by Olde Keizer et al. [2017]. The author provides a comprehensive overview
for maintenance policies for multiple components. The article is divided by different dependen-
cies: Economic, Structural, Stochastic and Resource dependencies. The costs related to mainte-
nance can be divided into negative and positive economic dependence. Negative economic depen-
dencies cause more costs when maintaining components individually, while positive dependencies
cause lower costs when maintaining multiple components. Most articles discussed in Olde Keizer
et al. [2017] use a preventive replacement strategy based on a certain threshold in combination with
an optimized inspection interval. Structural dependency can be split into technical or performance
dependence, where the latter is divided into series or parallel systems. Most of the reviewed articles
are describing a performance (series) dependency and are using a threshold for preventive mainte-
nance. Stochastic dependence means that the degradation of a component partially depends on an-
other component. Examples for stochastic dependencies are: load sharing, failure-induced damage
and common-mode deterioration. Many researchers use a threshold for preventive replacement as
a CBM policy structure. Lastly, a novel classification is Resource dependency. The condition based
maintenance model is optimized regarding the following restrictions in mind: maintenance work-
ers, tools, spares, transport or budget restrictions. For instance, maintenance worker restrictions
are introduced to cope with a certain amount of resources available.

3.3. Recent Studies on Prognostics
As described in subsection 3.1.2, much research has been done using Long Short-term Networks
for prognostics. Other studies on prognostics use Convolutional Neural networks, Recurrent Neural
Networks, Hidden Markov Models or alternative approaches (Sri et al. [2019]).
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Integrating Prognostics in Planning

The previous chapters elaborated on aircraft maintenance planning and prognostics separately.
Within the present chapter methods to integrate prognostics in maintenance planning will be dis-
cussed. Much research is done either investigating prognostics or maintenance scheduling in-
dependently from one another. Contrary, this chapter covers the optimization of maintenance
scheduling of the complete framework from data-driven prognostics to maintenance decisions.
Section 4.1 provides a general overview of the usage of prognostics in maintenance planning. Sub-
sequently, Section 4.2 elaborates on State-of-the-art techniques in this field.

4.1. Prognostics in Maintenance Planning
The maintenance concept has advanced significantly over the last time, it uses historical data, mod-
els, simulations and failure probabilities to predict fault and system deterioration for the remaining
useful life (Sakib and Wuest [2018]). This method is called predictive maintenance or condition
based maintenance and is using this information to compute maintenance schedules accordingly.
Scheduling has been incorporated in the policies by various researchers. A scheduling policy for
predictive maintenance based on the least flexible job (LFJ) and the longest processing time (LPT)
has been reported in Paprocka and Skołud [2017]. They have used a Hybrid Multi-Objective Im-
mune Algorithm (HMOIA), supported by minimal impact of the disrupted operation on the sched-
ule (MIDOS). The advantage of this method is that the predicted time of failure is taken into account
for maintenance work. The suggested method reduces the frequency of unpredicted downtime due
to system failure. Paprocka and Skołud [2017] uses three stages in their research to come up with the
final schedule: generating the basic schedule, followed by predictive scheduling and lastly reactive
scheduling.

Furthermore, Zhu et al. [2017], presents a periodic maintenance policy for a single compo-
nent which is part of a complex system. The component follows a stochastic degradation pro-
cess (Gamma Process), which is monitored continuously and assumes a Random Coefficient Model
(RCM). The authors use both scheduled and unscheduled downs for the system. The scheduled
downs follow a fixed interval, while the unscheduled downs follow a Poisson process. The compo-
nent is replaced during a scheduled or unscheduled down when it reaches the control limit. The
authors extend the model into a multi-component system in which 20 components are modelled
by a random coefficient model. Subsequently, the total cost is computed and optimized via an iter-
ative procedure.

Another article, described in Liu et al. [2019], presents an integrated decision model that coor-
dinates predictive maintenance decisions based on prognostics information, It considers a single-
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system and optimizes to minimize the total expected cost. Research about a dynamic predictive
maintenance policy for multi-components which minimizes the long-term mean maintenance cost
per unit time is described by Van Horenbeek and Pintelon [2013]. It uses a Gamma process for
the degradation with a certain threshold for failure. Afterwards the method groups maintenance
actions according to the remaining useful life and corresponding costs. It decomposes the multi-
component maintenance problem into n single-component models considering an age-replacement
policy and optimizes for long-term mean maintenance costs.

The research performed by Poppe et al. [2018], is about a condition-based maintenance policy
for continuously monitored components with two degradation thresholds. When the degradation
level of the monitored component surpasses a first ’opportunistic’ threshold, it will be serviced to-
gether with the other components. This happens for instance during a planned intervention, break-
down or when another component requires maintenance. Another threshold is implemented in or-
der to prevent a failure, such that both thresholds can be optimized to minimise the total expected
maintenance costs or downtime of the system.

4.2. Research Studies on Integrating Prognostics into Maintenance Schedul-
ing

In the following section articles, which are from special importance in this research field will be
presented. Parts of the information discussed in subsection 4.2.1 may be used in further research.

4.2.1. A new dynamic predictive maintenance framework using deep learning for failure
prognostics

The article by Nguyen and Medjaher [2019] focuses on a dynamic predictive maintenance frame-
work, which considers a complete process from data-driven prognostics to maintenance decisions.
The title of this article is "A new dynamic predictive maintenance framework using deep learning for
failure prognostics" (Nguyen and Medjaher [2019]). An overview of the dynamic predictive mainte-
nance process is shown in Figure 4.1. The framework is applicable on various complex systems and
allows fast decisions for multiple options by rapidly evaluating their costs.

Figure 4.1: Lit. Study: Dynamic predictive maintenance process. Figure taken from Nguyen and Medjaher [2019].

As described in subsection 3.1.2, Long Short-Term Memory (LSTM) networks are used to esti-
mate the remaining useful life of a system. Nguyen and Medjaher [2019] also make use of the LSTM
network, but one which indicates the probabilities, that a system will fail into different time inter-
vals instead of predicting a single RUL value. The adaption of the LSTM network by Nguyen and
Medjaher [2019] has two advantages, namely their approach does not require a Piece-wise linear
(PWL) RUL target function compared to previous research. The value of a single RUL estimation de-
pends solely on the prediction horizon and therefore using this value at the first stage of the system
can lead to a wrong decision. The second advantage is that failure intervals adapt better to practical
demands because they can be specified by the operation planner.

As first the failure probabilities for different time windows are estimated, the process is shown
in Figure 4.1. After the probabilities are determined, the maintenance decisions rules are made.
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The prognostics, as described before, are computed with use of LSTM network. These networks are
good in learning over long time sequences and retaining memory. Therefore, applying LSTM for
prognostics allows to look back to the system degradation and uses this information for the pre-
diction (Nguyen and Medjaher [2019]). To train the model, each component has it’s own sensor
measurements and own true RUL. The LSTM classifier will take the sensor measurements and at-
tempts to output the corresponding RUL window probability. The data which is used for the LSTM
network has to be preprocessed first:

• Normalisation for heterogeneous data for training LSTM classifier for each feature (mean &
variance). Every feature has the same range, between zero and one.

• Data labeling to perform classification. The first class is that the system residual time is larger
than the time window: Deg 0 = RU L > w1. The second class describes the RUL laying in the
estimated period: Deg 1 = w0 ≤ RU L < w1. The third class is that the RUL will not exceed the
time period: Deg 2 = RU L ≤ w0.

• Formalisation, create different features from sensor output. Each sensor output is one feature.

After the data is processed, the LSTM network acts as classifier, it seeks the connection between the
inputs (sensor data) and outputs (true RUL values). It also uses a ’Dropout’ function to prevent over
fitting by probabilistically removing inputs to the system. The output then is a probability distri-
bution over the three classes: Deg 0, Deg 1 or Deg 2. The objective function is called caterogical
crossentropy which is specially used to solve the multiple mutually-exclusive class problem. This
function returns the cross-entropy H(p, q) between a predicted probability distribution (p(x)) and
a true probability distribution (q(x)): H(p, q) =−∑

x q(x) log(p(x)). Then, ADAM is used as the op-
timization algorithm, it is an extended version of the stochastic gradient descend.

A probability confusion matrix is used to evaluate the performance of the LSTM classifier. It
shows the true labels and predicted labels, where the values in the matrix corresponds to the mean
probability that the predicted value is correct. An example is shown in Figure 4.2.

Figure 4.2: Lit. Study: Probability confusion matrix (%) on a test set. Figure taken from Nguyen and Medjaher [2019].

The decision rules based on the prognostic information are executed at the beginning of each
inspection period. The inspection periods are equally distributed and have the same interval. Ad-
ditionally the spare part inventory is included within the article ofNguyen and Medjaher [2019] by
minimizing the holding inventory cost. At every inspection period, the failure probabilities are up-
dated according to the monitored data. The following decisions are made each inspection, based
on the prognostics information:
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1. To order (O) or no-order the (N) spare part. This decision is based comparing the cost of
the two options. NO option is specified as: NO = Cos ·P (w1 < RU L ≤ w1 +∆T ). While the O
option is linked to the estimated holding cost and specified as:

O = P (RU L > w1) ·Ci

[
max(TF−h∆T−w1, ∆T )

∆T

]+
∆T .

2. The second decision made at an inspection is to replace (R) or do-nothing (DN). This decision
is based on the cost-rate of each option, where the lower cost rate will be chosen. The R cost

rate is given by: R = Cp+Cos ·δ(Sh=0)
h∆T , which is based on the cost of preventive maintenance and

the cost of an spare part being out of stock. On the other hand, the DN cost rate is specified
as:
DN = P (RU L≤w0)·(Cc+Ci ·δ(Sh=1)∆T+Cos ·δ(Sh+1=0))

(h+1)∆T . This cost rate is based on the probability the
component will fail in the next period in combination with corrective maintenance (including
downtime cost).

At each inspection the probabilities the system will fail (Deg0,Deg1,Deg2) are updated and a de-
cision is made to order, not order, repair or do nothing. To evaluate the performance of the frame-
work, two different maintenance policies are introduced to be compared with. The first one is called
Period Maintenance Policy, in which the mean time to failure is used to determine the predictive
maintenance cost. The second policy is the Ideal Predicted Maintenance Policy and assumes that
the residual life time is correctly determined. A real application case study has been performed in
the article, based on the data set: Turbofan Engine Degradation Simulation provided by NASA Ames
Prognostics Data Repository. The data set contains multiple sub data sets with different conditions,
fault numbers and sensor measurements. As described previously, the dynamic predictive frame-
work uses RUL intervals instead of RUL values which makes it impossible to use general evaluation
criteria such as MAE, MAPS and MSE. Therefore, the authors use confusion probability matrices to
evaluate the accuracy of the prognostics information.

Figure 4.3: Lit. Study: Dynamic framework. Figure taken from Nguyen and Medjaher [2019].

Figure 4.3 shows the life cycle of three different engines and the framework in action. It shows
the life time at each inspection and corresponding True RUL. Then the probabilities of the three
classes are visible in the next three columns. The parts in order and in stock are given in column 6
and 7. The last column shows the maintenance actions performed. The advantage of the framework
is that the decisions are simply and quick made on the prognostics information. In comparison with
the other two policies, this framework performs almost as good as the Ideal Predicted Maintenance
Policy and outperforms the Period Maintenance Policy.

This article is relevant for the research project as it provides a complete framework, where the
prognostics of the components are used for maintenance decisions.
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4.2.2. Modelling and application of condition-based maintenance for a two-component
system with stochastic and economic dependencies

The following article, Do et al. [2019], describes a condition-based maintenance policy for a two-
component system with both stochastic and economic dependencies. The state dependence mod-

elling is done by ∆X i
t = ∆X i i

t + X j i
t . The first element is the intrinsic effect of itself. The second

term is the interaction effect between the two components. The two components are stochasti-
cally dependent and the degradation level of component i depends on its own state and the state of
the other component. In an example given within the article, the random intrinsic effect is follow-
ing a Gamma probability density function and the interaction effect follows a non-linear function:

∆X j i
i =µ j ·

(
X j

i

)σ′
. Another example is given in which the intrinsic effect is described by a Brownian

motion process.

Economic dependence modelling is done by considering that replacements may be correc-
tive(that is on failure of the system) or preventive (prior to system failure). All necessary mainte-
nance resources (spare parts, maintenance tools, repairman) are assumed to be available at planned
inspection time. The individual maintenance costs are modelled by the standard costs (spares,
labour, set-up) and downtime cost C i

c = c i
c + cd · di . Also cost saving is implemented in the way

that replacing two components at the same time, total maintenance cost can be reduced. Joint re-
placement is modelled as: C S−,− = a · (c1−+ c2−

)+b · (d1 +d2) · cd .

For the Maintenance policy is assumed that the system downtime due to failure is known and
the two components of the system are inspected at regular time intervals with inter-inspection in-
tervalT, a decision variable which has to be optimized. According to the maintenance policy, a com-
ponent will be replaced if it reaches the failure threshold between Tk1and Tk. Or if the component is
still functioning, but has to be replaced according to the rules for individual preventive replacement
or opportunistic replacement. The main idea of the proposed opportunistic replacement model is
to capitalize on both the economic dependence and the stochastic dependence. Three policies are
defined: V = Opportunistic replacement policy, V1 = Classical condition-based maintenance policy,
V2 = Joint replacement policy. The optimization of the maintenance policy is done by a cost model,
based on the long-run expected cost per unit of time (cost-rate) including re-placement and inspec-
tion costs. The article of Do et al. [2019] refers to a method based on semi-regenerative theory and
Markov decision processes are introduced to obtain a closed-form expression for the cost-rate of
a two-component system with independent degradation behaviour. However, this cannot be ap-
plied when there is interaction between components as the degradation process are dependent and
non-longer time-homogeneous. Therefore, the cost rate is evaluated by the use of a Monte Carlo
Simulation. The values of the decision variables are varied and the minimum cost-rate can be iden-
tified.





5
Research Proposal

To analyse the conditions of aircraft components the usage of sensor data became more important
in the field of aircraft maintenance during the last decades (Assaf [2004]). The prognostics of the
components can be used to improve the quality of maintenance scheduling, in terms of time and
cost efficiency. To optimize the scheduling of maintenance, failure prognostics of components are
used to determine the remaining useful life of a component. The failure prognostics of components
can be used for the planning of maintenance tasks. The aim of this research is to develop a frame-
work for maintenance schedules, that take both the component prognostics and constraints into
consideration. The constraints, which have an influence on maintenance schedules are for exam-
ple the availability of resources and available maintenance slots. The main challenges to address
are the modelling of constraints related to the component prognostics as well as the integration of
this model into maintenance planning models.

The problem can be divided into two parts:

1. The modelling of the degradation of aircraft components and the corresponding remain-
ing useful life time windows. Currently, this is done by a model based or data-driven ap-
proach. For instance, random failures are represented by an Exponential probability distribu-
tion, while deteriorating failures are represented by a Weibull or Normal probability distribu-
tion.

2. The implementation of prognostics models for multiple aircraft and multiple identical parts
into one maintenance planning framework. This can be done for instance by a Monte Carlo
Tree search, as probability measures are incorporated. The goal of this research is to imple-
ment the degradation models for components into one maintenance planning framework. A
maintenance planning framework needs to take the following parameters into consideration:
component prognostics, maintenance resources, maintenance slots and maintenance costs.

The aim of the research is to create a stochastic optimisation maintenance planning model for
aircraft components with failure prognostics and maintenance resources availability constraints.
Another objective of the research is to formulate implementation requirements for the above-mentioned
model in practice.
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5.1. Research Objective
The problem formulated in the previous paragraph can be translated into a specific research objec-
tive. The research objective for this project is as follows:

To achieve a validated stochastic optimisation maintenance planning model for multiple identical
aircraft components with a specific remaining useful time window for component failure and

maintenance resources availability constrains by means of a Monte Carlo Tree Search algorithm
combined with Reinforcement Learning.

5.2. Research Questions
To fully meet the goal of this research project, the above-stated objective is divided into multiple
research questions. The main research questions which will be answered in this project is:

How can prognostics be integrated into aircraft maintenance planning for multiple identical
components to obtain a complete dynamic framework?

The following sub-questions will be answered to obtain a thorough answer of the overall re-
search question:

1. How is aircraft maintenance scheduled?

(a) Which forms of aircraft maintenance are currently used? Such as: Reactive, Preventive
or Predictive Maintenance

(b) How are these maintenance methods scheduled?

(c) What are real life constraints for maintenance planning?

(d) How is opportunistic maintenance scheduled? What are the objective and cost functions
used in these models?

(e) How to model realistic slot data and determine available maintenance slots?

2. How are aircraft component prognostics modelled?

(a) How are prognostics modelled for multiple components which are identical or depen-
dent?

(b) Which models can deal with real life constrains and are suitable for multiple compo-
nents?

3. How can prognostics be implemented into a planning framework?

4. Which measures are suitable to evaluate the model in terms of accuracy?

5.2.1. Hypotheses
The research questions form a framework for the project and will help to answer the main question.
The theoretical research questions will be answered in this literature review, while the rest of the
research questions will be answered in the final thesis, including results and conclusions. In order
to formulate concrete answers for the research questions, quantifiable hypotheses are formulated
in this section. The verification and validation of the model is done by an analysis with different
forms of maintenance: perfect maintenance, block-based maintenance or age-based maintenance.
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5.3. Research Scope and Assumptions
The research scope is important to specify in order to define the boundaries of this project. The
number of aircraft will vary between 1 and 10, with increments of 2. Also the number of identical
parts will vary between 1, 2 and 3. The identical components might have the same but also different
remaining useful life time windows because the distribution will be randomized. Furthermore, the
maintenance slots will be specified on the basis of a realistic example. The minimum time for the
next schedule opportunity is one day, which means, that the maintenance can be scheduled for the
next day. To compare and evaluate the proposed maintenance framework, the performance will be
compared with a periodic maintenance policy and an ideal predicted maintenance policy.

5.4. Methodology
This section contains an illustrative example of the problem which is aimed to be solved, shown
in Figure 5.1. The figure illustrates the problem for one aircraft with two identical components but
with different remaining life time window probabilities. The probability distribution is defined into
windows instead of a single value. The boxes for each component provides the probabilities that
the component fails in a certain time window. Using a time window instead of a single value has
a practical importance and suits real life applications better because the intervals can be defined
according to the requirements of an operation planner.

In addition, real life constraints such as spare parts inventory, maintenance slots and manpower
availability are shown in Figure 5.1. In the rolling horizon principle every inspection includes a
decision to either repair or do nothing depending on the remaining useful life probabilities. An
extensive dynamic maintenance framework was discussed and explained throughout Chapter 4.

Figure 5.1: Lit. Study: Illustrative example predictive maintenance framework





6
Conclusion

This literature review illustrated the importance of making use of prognostics into maintenance
planning. The first component of the Prognostic Health and Management (PHM) framework is
computing prognostics for components or systems. The second part of the framework focuses on
the maintenance optimization. Within this field of research, Predictive Maintenance (PdM) is re-
ceiving increasing importance as it can result in lower operational costs. PdM focuses on using
sensor data to provide reliable prognostics for the remaining useful life (RUL) of an individual com-
ponent or complete system. These prognostics can be used to improve the scheduling of mainte-
nance activities, which eventually results in lower costs and higher utilization.

The aim of the research project will be to integrate these prognostics into maintenance plan-
ning. As there is still a lack of research which investigates the complete framework, this project will
be of high relevance within the research field. An elaboration of the research sub-questions can be
found in Chapter 5. The main research question which will be answered in the research project is:

How can prognostics be integrated into aircraft maintenance planning for multiple identical
components to obtain a complete dynamic framework?

The goal of the present research is to create a stochastic optimisation maintenance planning
model for multiple identical aircraft components which includes failure prognostics and resource
availability constraints. The methodology for the component prognostics is to use a probability
distribution for specific time intervals instead of a single RUL number. This is out of practical im-
portance and suits real life applications better due to the fact it can be used by an operation planner.
Afterwards, these prognostics will be used to make the maintenance decision between Repairing or
Not Repairing, dependent on the evaluation of costs and availability of maintenance slots.

Within the literature review of this research field, different existing aircraft maintenance method-
ologies and recent studies are described. Generally, maintenance planning is divided into scheduled
maintenance and unscheduled maintenance. Scheduled maintenance consists of maintenance
checks which have to be performed after a certain threshold, such as flight hours, flight cycles or
calendar days. Unscheduled maintenance is required in case of a malfunction during operation
and has to be performed on the apron. Maintenance scheduling is subject to important constraints
such as flight schedules, components availability, manpower availability and the costs of missed as
well as delayed flights. These constrains have a significant influence on the availability of mainte-
nance opportunities.
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The prognostics of the remaining useful life of aircraft components can be computed by three
different categories: model-based, data-driven and the hybrid approach. Model-based prognostics
use a model which represents the underlying physics of a system or a individual component. Data-
driven prognostics use historical data to predict the RUL which can then be split into statistical or
machine learning methods. Hybrid prognostics combine the two previously described methods.
The major challenge of computing prognostics is to estimate the RUL correctly, which is especially
difficult for multiple dependent components that interact with each other. In order to obtain an
useful framework for airlines, maintenance planning and component prognostics should be com-
bined.



7
Research Planning

This chapter provides the research planning according to the general planning of the Faculty of
Aerospace Engineering. The department of Air Transport Operations predefined the important
deliverables and corresponding time windows. The enumerated list below shows the key review
points, milestones and deliverables. The deadline of the first draft of the Literature review report is
on the 24th of July 2020. Afterwards, a break is planned until the 31st of August 2020. After the sum-
mer break an internship of six months is scheduled from the 7th of September 2020 until the 5th of
March 2021. Therefore, the Kick-off meeting will be planned at 22nd of March 2021. The starting
dates are indicated in blue. The following topics are incorporated into the Gantt Chart:

1. Kick-off meeting ( 22/03/2021)

• Report on the literature study

• Problem formulation

• Methodology

• Project planning

2. Initial phase (3.5 Months) ( 16/03/2021-02/07/2021)

• Initiate research

• Model development

• Data analysis

3. Mid-term meeting ( 05/07/2021)

• Assess progress and project management

• Prepare presentation

• Concise report

• Model, results and analysis

4. Final phase (2.5 Months) ( 06/07/2021-15/11/2021, including vacation)

• Incorporate mid-term feedback

• Develop case studies

• Validation and verification

• Report on research

• Hand in draft thesis
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5. Green light meeting ( 18/11/2021)

• Present final results

• Hand in final thesis ( 01/12/2021)

• Establish exam date and committee



III
Supporting Work
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1
Predictive Maintenance Framework

This chapter contains additional information about the predictive maintenance framework. First,
additional information is provided on Reinforcement Learning and Deep Q-Learning. Second, there
is a section on reward analysis where the overall reward and individual episode reward are discussed
for Scenario 1. Followed by information about the agent actions and illustration of convergence for
Scenario 2. Finally, the results for the t-test for Scenario 2 are provided.

1.1. Reinforcement Learning Elaboration
Recently, Reinforcement Learning (RL) has grown in popularity and has shown promising results in
the field of predictive and condition-based maintenance [15]. The idea behind RL is to create an
agent that receives a reward after performing an action. The agent learns how to act in a specific
way based on an environmental state. The goal is to maximize the total reward based on the policy
between a state and an action. Therefore, the probability of taking specific actions will increase or
decrease based on previous experiences. The long-term goal in RL is to maximize the cumulative
reward based on a sequence of actions. An overview of the interaction within an RL model is shown
in Figure 1.1. An agent receives a representation of an environment in a state description. Based on
this state description, the agent takes an action to maximize the reward received. The goal of the
agent is to interact with the environment and obtain maximum rewards based on state-action pairs.

The maintenance environment is modelled as a discrete time Markov Decision Process (MDP).
An MDP provides a mathematical formulation for decision-making under uncertainties. More-
over, the state transitions satisfy the Markov property, which implies that the future states are in-
dependent of the past states, given the current state. The MDP is represented as a five item tuple

Figure 1.1: The Agent-Environment interaction.
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(
S, A,Pa ,Ra ,γ

)
:

1. S is a set of states. At every timestep t, a new state st ∈ S takes place.
2. A is a set of actions. At every timestep t, a new action at ∈ A is performed.
3. Pa is a probabilistic distribution of state transitions. Which is the probability of being in st+1

after being in st after taking action at .
4. Ra(st , st+1) is the reward function. Which is the immediate reward, received after transition-

ing from state st to st+1 due to an action at .
5. γ is the discount factor. Which implies the importance of the future rewards considered in

state st .
The goal is to find an optimal policy that maximizes the total expected return R. The total return

is defined as the sum of discounted rewards over a given time horizon T and is defined in Equa-
tion 1.1.

R =
T∑

t=0
γt rt (1.1)

Where γ is the discount factor (0 ≤ γ≤ 1), and rt is the instantaneous reward. When γ is large, future
rewards are considered more than when γ is small.

1.1.1. Q-Learning
The objective in the MDP is to find an optimal policy π∗ that maximizes the total reward. The policy
π defines the agent’s actions in different states, and is represented as an action at taken in state st .
Formally, the policy π is defined as a probability π(a|s) of taking an action a ∈ A in state s ∈ S [25].

π : A×S → [0,1]
π(a, s) =P (at = a | st = s)

(1.2)

The state-value function V π(st ) describes how good it is to be in state st . It represents the value
of a state given a policy π. The state-value function is defined as the expected cumulative reward of
following the policy π from state st at timestep t .

V π(st ) = E

[ ∞∑
t=0

γt rt | st ,π

]
(1.3)

Q-Learning is a model-free reinforcement learning algorithm that aims to learn the quality value
of an action in a given state [15]. Q-Learning uses an state-action value function Qπ(st , at ) that
specifies the quality of taking a specific action in a state st . The Q-values represent the expected
reward of a state-action pair.

Q : S × A →R (1.4)

The Q-value function describes how good the state-action pair is and focuses on a specific action
in a specific state. The Q-value function is defined as the expected cumulative reward of taking
action at in state st and following the policy π. The Q-value function Qπ is described as:

Qπ(st , at ) = E

[ ∞∑
t=0

γt rt | st , at ,π

]
(1.5)

The main difference is that V π(st ) considers only the expected discounted rewards in a given
state st over all actions according to the policyπ. While Qπ(st , at ) considers the expected discounted
rewards based on state st , following policy π and taking action at .

The Q-Learning agent initializes a table consisting of the Q-values Q(st , at ), which are state-
action quality values and are used for selecting the optimal actions based on a state. The agent aims
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to learn the optimal policy π∗, which yields sequential decisions with the highest expected dis-
counted reward. Consequently, the optimal Q-value function Qπ∗

(st , at is the maximum expected
cumulative reward achievable from a given (st , at ) pair. The optimal policy π∗, is described as:

π∗ (st ) = argmax
at

Qπ∗
(st , at ) (1.6)

In Q-Learning, Qπ∗
satisfies the Bellman optimality equation, which is used to find the optimal

policy. Ensuring that for each (st , at ) the Q∗(st , at ) values are known, then the optimal strategy is
to take the action that maximizes the expected value of the consecutive total rewards. The optimal
action-value function, obeying the Bellman equation, is defined in Equation 1.7.

Q∗(st , at ) = E

[
r +γmax

at+1
Q∗ (st+1, at+1) | st , at

]
(1.7)

During training, at each timestep t, the agent takes an action at in state st and observes the
reward rt . The quality value of this state-action pair is computed and the Q-table is updated as
follows:

Q (st , at ) ← (1−α)Q (st , at )+α

(
rt +γmax

at+1
Q (st+1, at+1)

)
(1.8)

Where (1−α)Q (st , at ) is the old value, weighted by the learning rate α. αrt is the reward obtained
by taking an action weighted by the learning rate α. And αγmaxat+1 Q (st+1, at+1) is the maximum
reward obtained from the state st+1, weighted by the learning rate α and discount factor γ.

Algorithm 1 Q-Learning Algorithm for the Predictive Maintenance Framework

Input: State Space S, Action Space A, Reward Function R.
Output: Maintenance Decisions.
Initialization: Q(st , at ) = 0,∀st ∈ S, at ∈ A.
Settings: Learning rate α, Discount rate γ.

for episode e ∈ {1, . . . ,E } do
Initialize state st

for timestep t ∈ {1, . . . ,T } in the episode do
Observe the state of the system st

Select action at using ε-greedy strategy, otherwise select at = maxat Qπ∗
(st , at )

Execute at in the simulation
Observe the reward rt and the new state st+1

Update Q-Table: Q (st , at ) ←Q (st , at )+α
[
rt +γmaxat+1 Q (st+1, at+1)−Q (st , at )

]
end

end

Exploration vs Exploitation
A well-known dilemma in training an agent is the exploration versus exploitation trade-off [53]. The
agent must choose between exploration (making new decisions) or exploitation (repeating experi-
enced decisions). At the beginning of the training phase, the agent must perform random actions
because it does not have complete knowledge of the environment. As the episodes progress, the
agent must choose the most favorable action over exploring new actions. An exponentially decay-
ing epsilon parameter (0 ≤ ϵ < 1), based on the ratio of the initial and final epsilon, is chosen. The
agent chooses the action with the highest Q-value with P (1−ϵ) and a random action otherwise [46].
The exploration probability decays over the total amount of episodes from an initial value of 1 to a
final value of 0.01.
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Figure 1.2: Neural network used to estimate the value function in the Deep Q-Learning Network.

1.1.2. Deep Q-Learning
The disadvantage of using traditional Q-Learning is the increase in size of the Q-table when the
action- or state- space increases in size. The original Q-Learning algorithm is not scalable because
it must compute Q(st , at ) for each pair. In this research, the state space is large because of the many
values it can hold. Each entry in the state space can have any value between [0,1]. And since we
consider a long-term horizon that includes two components, the unpredictability caused by replac-
ing a component at any given point also contributes to the size of the Q-table. An improvement
to traditional Q-Learning is Deep Q-Learning (DQL), which uses a neural network to estimate the
Q-value, developed by Mnih et al. in 2015 [24]. DQL uses a function approximator to estimate the
action-value function. This is done by utilizing a neural network (Figure 1.2) with network param-
eters θ, also known as weights. DQL approximates the Q-values by a function: Q(s, a;θ) ≈ Q∗(s, a).
The essence is that two similar states (s1

t ≈ s2
t ), are about equally good or bad to be in and therefore

also have a similar Q-value: Qπ(s1
t , at ) ≈Qπ

(
s2

t , at
)

for a specific at .
The used Deep Q-Network (DQN), shown in Figure 1.2, consists of an input layer, dense layers

and an output layer. The input layer of the neural network receives the environment state space
(st ). The input is passed through the fully connected dense layers in the network, where the com-
putational processes are performed. The nodes within the dense layer consist of non-linear trans-
formation functions with network parameters θ. The output layer produces the Q-values for each
possible action (at ) for the input state (st ). The output layer has a dimension of 4, represented by
Q(st , a0), Q(st , a1), Q(st , a2), Q(st , a3).

Training Strategy
The DQN can be trained by iteratively minimizing the loss function Li (θi ) formulated in Equa-
tion 1.9. The network parameters θi are updated with a stochastic gradient descent algorithm by
minimizing the mean squared error between the target Q-values and the predicted Q-values.

Li (θi ) = (
y −Q (st , at ;θi )

)2 , where y = rt +γmax
at+1

Q
(
st+1, at+1;θ−i

)
(1.9)

Where the first term, y , are the Q-values of the target network, and the second term are the Q-values
of the online network. The architecture of the target network is identical to that of the online net-
work, except for the network parameters θ. The target network parameters (θ−i ) are kept constant
when calculating the loss function of the online network parameters (θi ). The target network pa-
rameters are updated only every Nθ steps, which prevents the network from slipping into a worse
policy. In addition, an experience sampling method is used to select a random batch of transitions
to avoid correlated experiences. Each timestep, the transition st , at ,rt , st+1 is stored in the replay
memory buffer D . Instead of updating the network parameters θ based on only the last transition, a
batch of experiences from D is used. Experience replay is used to ensure that the Deep Q-Network is
trained not only on consecutive samples but on random mini-batches and prevents the DQN from
learning the correlation between transitions.
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The algorithm for Deep-Q Learning used by the PdM framework is given in algorithm 2. The
core idea is the same as for ordinary Q-Learning. However, the value function is now approximated
by a neural network. In addition, a target network is used whose network weights are updated only
every Nθ time steps.

Algorithm 2 Deep Q-Learning Algorithm for the Predictive Maintenance Framework

Input: State Space S, Action Space A, Reward Function R.
Output: Maintenance Decisions.
Initialization: Q(st , at ) = 0,∀st ∈ S, at ∈ A. Initialize replay memory D. Initialize network Qθ and

target network Q̂θ.
Settings: Learning rate α, Discount rate γ.

for episode e ∈ {1, . . . ,E } do
Initialize state st

for timestep t ∈ {1, . . . ,T } in the episode do
Observe the state of the system st

Select action at using ε-greedy strategy, otherwise select at = maxat Qπ∗
(st , at ;θ)

Execute at in the simulation
Observe the reward rt and the new state st+1

Store transition {st , at ,rt , st+1} in D
Sample random minibatch of transitions from D
Compute yi = rt +γmaxat+1 Q(st+1, at+1;θ) if state st+1 is not terminal. Else: yi = rt

Calculate loss by gradient descent step on
(
yi −Q (st , at ;θ)

)2 with respect to network pa-
rameters θ.
Update target network weights Q̂θ every Nθ timesteps

end
end

1.1.3. Action Example Algorithm
An arbitrary example for the algorithm of action at = Repair En1,t (PM) is given in algorithm 3.
The algorithm describes the steps taken in a simulation and shows the operating principle of the
agent and the calculations of the KPIs. For example, if the agent decides to replace an engine, the
component utilization Cu is calculated as Enl

1/Ena
1 , where Enl

1,t is the engine lifetime at timestep t
and Ena

1,t is the actual lifetime of the engine at timestep t . In addition, if the engine is repaired, it

will be replaced with a new one from the pool P of components, indicated by Enp+1
1,t=0.

1.1.4. Motivation Shaded Area
The figures in the scientific paper use the shaded area, which is defined by the minimum-maximum
values. The standard deviation does not give a good indication of the minimum-maximum perfor-
mance, since it can be caused by a single outlier run or by large variability between runs.

1.2. Scenario 1: PdM Framework with γ= 0.999
This section contains additional information on Scenario 1, in which the PdM framework is used
with γ= 0.999. Figure 1.3 shows the reward evolution for one simulation and illustrates the conver-
gence of the agent’s policy. The figure shows the cumulative reward for each episode. In contrast,
Figure 1.4 shows the reward given per timestep, which clearly shows that the agent experiences cor-
rective maintenance at the beginning of the episodes. An example of an episode in which the agent
experiences corrective maintenance (t = 393) is shown in Figure 1.5. The corresponding component
utilization and reward are depicted in Figure 1.6 and Figure 1.7, respectively.
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Algorithm 3 Perform Maintenance Action at : Repair En1,t

Input: State space: st (ACt ), including the engine states and degradation level probabilities
Output: State space: st+1(ACt+1)
for timestep t in the episode do

Observe the state of the system st

Select action at = Repair En1,t

if Ens
i ,t+1 = 0 (e.g., Enl

i ,t+1 = Ena
i ,t+1) then

Maintenance Activity = Corrective Maintenance
Set Maintenance Reward: rt = −Rcm

Ncm ← Ncm +1
Cu ← 1.0
Enp

i ,t ← Enp+1
i ,t=0

else if Ens
1,t+1 = 1 (e.g., Enl

1,t+1 < Ena
1,t+1) then

Maintenance Activity = Preventive Maintenance
Set Maintenance Reward: rt = −Rpm

Npm ← Npm +1
Cu ← Enl

1/Ena
1

Enp
1,t ← Enp+1

1,t=0
return st+1,rt , Ncm , Npm ,Cu

end

Figure 1.3: The reward development for Ne = 200, Ns = 1,
and Nt s = 1200. Illustrating the convergence of the DQN
agent’s policy.

Figure 1.4: The reward stimulants for Ne = 200, Ns = 1,
and Nt s = 1200. Illustrating the received rewards per
timestep.

Figure 1.5: The working principle of the proposed maintenance decision framework for Ne = 1 and Nt s = 1200. Illustrat-
ing a corrective maintenance action at t = 393.
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Figure 1.6: Corresponding component utilization values
for En1 and En2 and for Ne = 1 and Nt s = 1200. Illustrat-
ing a corrective maintenance action at t = 393.

Figure 1.7: Corresponding reward for Ne = 1 and Nt s =
1200. Illustrating a corrective maintenance action at t =
393.

Figure 1.8: Action space analysis for Ne = 200 and Ns = 1 during training (Note: y-axis uses log scale).

1.2.1. Detailed Action Analysis
This section contains a detailed analysis of the agent’s actions for the first scenario. Figure 1.8 shows
the analysis of the action space for one episode in which the agent has to take 240000 actions. The
agent takes the action Do Nothing most of the time, namely 234158 times. The actions Repair En-
gine 1 and Repair Engine 2 are almost equally distributed with about 2500 occurrences. The action
to Repair Engine 1 & 2 at the same time is performed the least often, only 804 times. Figure 1.9 shows
the distribution of the maintenance activities for one episode. The corrective maintenance activity
is appended, which is not an action of the agent but a consequence of the late execution of a random
action. However, it is executed only 17 times, which is very few compared to the other maintenance
activities. In addition, Figure 1.10 shows the action space for 10 simulations to analyze the distribu-
tions. It can be seen that the boxplots show the same distribution for several simulations, indicating
that the agent is able to learn the optimal policy for various initial parameters. Figure 1.11 shows the
utilization of the components for a specific simulation, in which the agent performs the preventive
maintenance action 2269 times. It can be seen that at the beginning of the actions, the utilization is
close to zero. As the timesteps pass, the agent learns to use the components more and the utilization
rate begins to increase up to a stable level. Figure 1.12 shows the same components as Figure 1.11
only with the replacement time in blue and the true component lifetime in orange.
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Figure 1.9: Maintenance activity analysis for Ne = 200 and Ns = 1 during training (Note: y-axis uses log scale).

Figure 1.10: Maintenance activity analysis for Ne = 200 and Ns = 10 during training (Note: y-axis uses log scale).

Figure 1.11: Illustration of Component 1 utilization rate
for the preventive maintenance action. Where Ne = 200,
Ns = 1, and Npm = 2269.

Figure 1.12: Illustration of Component 1 replacement
time and true component lifetime. Where Ne = 200, Ns =
1, and Npm = 2269.
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Figure 1.13: Illustration 2 of Component 1 utilization rate
for the preventive maintenance action. Where Ne = 200,
Ns = 1, and Npm = 2525.

Figure 1.14: Illustration 2 of Component 1 replacement
time and true component lifetime. Where Ne = 200, Ns =
1, and Npm = 2525.

Figure 1.15: Illustration of Component 2 utilization rate
for the preventive maintenance action. Where Ne = 200,
Ns = 1, and Npm = 2569.

Figure 1.16: Illustration of Component 2 replacement
time and true component lifetime. Where Ne = 200, Ns =
1, and Npm = 2569.

Another utilization rate of a component is depicted in Figure 1.13. Now, however, it can be seen
that the agent experiences high utilization rates before stable behavior occurs. This is the point at
which he has experienced corrective maintenance a few times and therefore runs the components
no longer. Figure 1.14 shows the replacement time and true component lifetime from the same
components as in Figure 1.13.

As expected, component 2 exhibits the same behavior, since the engine data is not linked to the
component number. Figure 1.15 shows the component utilization for engine number 2. Figure 1.16
shows the corresponding replacement time and true component lifetimes.

For the opportunistic maintenance action, depicted in Figure 1.17, we see the same behavior as
for the individual maintenance actions. At the beginning of the episodes, the component usage is
low. As the agent begins to recognize the state spaces, the component usage increases. For another
simulation, shown in Figure 1.18, we can identify the same behavior.

Analyzing the corrective maintenance actions, whose utilization rates are given in Figure 1.19,
we see each time that one of the two components reaches the value 1.0. Figure 1.20 shows the engine
lifetime counter for one simulation and 240000 timesteps. In which is visible that the lifetimes are
increasing up to their maximum lifetime.

Figure 1.21 shows an example of a proposed replacement decision for one specific engine. The
agent decides to replace the component when the second degradation level is at its highest point.
Another example, including the representation of the individual data points, is depicted in Fig-
ure 1.22.
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Figure 1.17: Illustration of the component utilization rates for the opportunistic maintenance action. Where Ne = 200,
Ns = 1, and Nom = 866.

Figure 1.18: Illustration 2 of the component utilization rates for the opportunistic maintenance action. Where Ne = 200,
Ns = 1, and Nom = 1235.

Figure 1.19: Component utilization values for En1 and
En2 and for Ne = 1, Ns = 1, and Nt s = 1200. Illustrating
the corrective maintenance actions.

Figure 1.20: The working principle illustrated by the en-
gine lifetime counter for Ne = 200, Ns = 1, and Nt s =
240000.
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Figure 1.21: Degradation level probabilities for one spe-
cific UnitID. Including proposed replacement time.

Figure 1.22: Degradation level probabilities for one spe-
cific UnitID. The proposed replacement is at t = 229 with
state space: st = [1,0.022,0.839,0.139].

Figure 1.23: Scenario 2: The reward development for Ne =
200, Ns = 1, and Nt s = 1200. Illustrating the convergence
of the DQN agent’s policy.

Figure 1.24: Scenario 2: The reward stimulants for Ne =
200, Ns = 1, and Nt s = 1200. Illustrating the received re-
wards per timestep.

1.3. Scenario 2: PdM Framework with γ= 0.7

A relaxation of the discount factor from γ= 0.999 to γ= 0.7 produces a different behavior in the de-
velopment of the reward, as shown in Figure 1.23. As the agent has a more myopic policy, he expe-
riences the corrective maintenance action more often. This is indicated by the peaks in Figure 1.23,
representing the large negative corrective maintenance reward. In addition, the reward incentives
in Figure 1.24 now occur more frequently and show that the corrective maintenance action occurs
more often.

The working principle for the second scenario is depicted in Figure 1.25. A clear difference can
be seen at the moment when the agents decide to take an action, compared to the first scenario.
Now the probabilities for dl2 and dl3 show higher values. The component utilization rate, as shown
in Figure 1.26, is now significantly higher than in Scenario 1. Where Scenario 1 had an average
component utilization of about 0.7, Scenario 2 reaches a value of almost 0.92.

Also, the component utilization for the preventive maintenance action for engine 1 shows the
expected behavior. As depicted in Figure 1.28, the blue dots are now closer to one, indicating a
higher utilization rate. In addition, Figure 1.29 shows the same components as Figure 1.28, but now
the replacement time in blue and the true component lifetime in orange. As expected, the same
behavior is visible for the second component, shown in Figure 1.30 and Figure 1.31.

The opportunistic maintenance action, depicted in Figure 1.32, sometimes shows a total com-
ponent utilization rate close to 2, indicating that both individual engines are being utilized to their
maximum.
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Figure 1.25: Scenario 2: The working principle of the proposed maintenance decision framework for Ne = 1 and Nt s =
1200. Illustrating the influence of the discount factor.

Figure 1.26: Scenario 2: Corresponding component uti-
lization values for En1 and En2 and for Ne = 1 and Nt s =
1200.

Figure 1.27: Scenario 2: The working principle illustrated
by the engine lifetime counter for Ne = 200, Ns = 1, and
Nt s = 240000.

Figure 1.28: Scenario 2: Illustration of Component 1
utilization rate for the preventive maintenance action.
Where Ne = 200, Ns = 1, and Npm = 1711.

Figure 1.29: Scenario 2: Illustration of Component 1 re-
placement time and true component lifetime. Where
Ne = 200, Ns = 1, and Npm = 1711.
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Figure 1.30: Scenario 2: Illustration of Component 2
utilization rate for the preventive maintenance action.
Where Ne = 200, Ns = 1, and Npm = 1692.

Figure 1.31: Scenario 2: Illustration of Component 2 re-
placement time and true component lifetime. Where
Ne = 200, Ns = 1, and Npm = 1692.

Figure 1.32: Scenario 2: Illustration of the component utilization rates for the opportunistic maintenance action. Where
Ne = 200, Ns = 1, and Nom = 492.
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1.3.1. Results Statistical T-Test
The results for the statistical t-test for Scenario 2 are given in Table 1.1, which shows that all results
are significant (p < 0.05).

Maintenance Policy Time-Based Corrective Ideal

PdM Cm [-] 2.73e−109 1.71e−139 2.06e−38

PdM Tc [-] 2.35e−61 1.78e−52 1.78e−52

PdM Wt [t] 5.26e−40 2.40e−116 1.66e−114

PdM Cu [-] 2.02e−62 2.00e−116 1.75e−114

PdM Rt [t] 4.06e−52 1.52e−97 2.26e−99

Table 1.1: Scenario 2: P-values of the statistical t-test for the long-term maintenance cost (Cm ), number of replaced
components (Tc ), wasted component lifetime (Wt ), component utilization (Cu ), and component replacement time (Rt ).



2
Component Prognostics

This chapter contains a sector that further explores the structure of the LSTM cell, followed by a
pseudocode representation of the LSTM algorithm. This is followed by a section describing the
C-MAPSS dataset. This chapter concludes with the results and illustrations of various window con-
figurations, including the training and validation loss.

2.1. LSTM Cell Explanation
A general LSTM cell structure is shown in Figure 2.1. xt is the cell input and ht is the cell output
value, which in this research represents the sensor data and the degradation level classification.
Each LSTM cell contains a cell state (Ct ) that depends on the previous cell state (Ct−1), characterized
by Equation 2.1. Which information is retained depends on the internal cell gates, which are able to
learn which information should be retained and which should be omitted.

Ct = ft ∗Ct−1 + it ∗ C̃t (2.1)

Where Ct is the new cell state, ft is the forget layer, Ct−1 is the old cell state, it is the input layer, and
C̃t are the candidate values. The information can be altered by the gates, which are deciding which
information is added or removed. The three gates consists of a sigmoid function, which outputs
a value between 0 and 1. If the value is zero, no information is added, while if the value is one,
all information is passed through. For all below stated equations, we consider W as the trainable

Figure 2.1: Long-Short Term Memory cell structure.

75
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weight matrix and b as the bias matrix.

W =


W f

Wi

Wc

Wo

 ,b =


b f

bi

bc

bo

 (2.2)

Looking closer at the LSTM cell structure, the following three gate layers can be identified:

1. Forget Gate Layer: considers ht−1 and xt and outputs a value between 0 and 1 to decide what
information is carried along and what information is omitted. Characterized by the equation:

ft =σ
(
W f · [ht−1, xt ]+b f

)
(2.3)

Where ft is the forget gate, σ is the sigmoid activation function, ht−1 is the output at timestep
t −1 and xt is the input at timestep t .

2. Input Gate Layer: consists of two layers, where the sigmoid layer considers ht−1 and xt and
decides which values are updated. The next layer, based on a tanh activation function, com-
putes a vector of values (C̃t ) which could be added to the state. These two layers are then
multiplied to generate an update to the current cell state and are defined by the following
equations:

it =σ (Wi · [ht−1, xt ]+bi )

C̃t = tanh(WC · [ht−1, xt ]+bC )
(2.4)

Where it is the input gate and C̃t is the vector of new possible information.

3. Output Layer: the last layer determines what the output of the cell will be. The output is a
filtered version of the cell state. The signal is passed through a sigmoid layer to determine
which part will be the output and then multiplied by a tanh function to obtain values in the
range [−1,1] and subsequently provides the desired output values. The output layer is defined
as follows:

ot =σ (Wo [ht−1, xt ]+bo)
ht = ot ∗ tanh(Ct )

(2.5)

Where ot is the output gate and ht is the output value of the current cell and input for the next
cell.

In conclusion, the forget gate layer determines what is important to retain from previous timesteps.
The input gate layer determines what information from the current timestep should be added. The
output gate layer determines the next cell state and output. In the LSTM network (Figure 2.1), var-
ious sigmoid and tanh functions (Figure 2.2) are used to specify which information is transmitted
and which is not, and to regulate the network. The sigmoid function is characterized by Equation 2.6
and has a range of [0,1]. The tanh function, defined in Equation 2.7, has a range of [−1,1].

σ(x) = 1

1+e−x (2.6)

t anh(x) = ex −e−x

ex +e−x (2.7)

A softmax function is used as the activation function in the output layer, as the PdM framework
requires failure probabilities between [0,1]. The softmax function converts the real values of the
LSTM layer into a vector of probabilities, summing to 1, characterized by Equation 2.8. The LSTM
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Figure 2.2: The sigmoid (blue) and tanh (orange) functions used in the LSTM network.

architecture used has 3 output nodes, where each node gives the probability that the component
belongs to that particular degradation class. In addition, dropout layers are used in each LSTM
layer to avoid over-fitting of the training data and to improve the performance of the model [21].
The dropout layers act as a regularization method by probabilistically excluding input and recurrent
connections.

S (xi ) = exi∑J
j=1 ex j

for i = {1, . . . , J } (2.8)

2.1.1. LSTM Algorithm
The pseudocode for the LSTM network classifier is given in algorithm 4.

Algorithm 4 LSTM Network Classifier for Degradation Level Probabilities

Input: Preprocessed sensor data: X i
t = [x1

t , x2
t , x3

t , ..., xN
t ]. Relevant features selected, normalized,

exponential smoothed, labeled and sequenced.

Output: Probabilities that Engine i belongs to degradation level j at timestep t : En
dl j

i ,t .
Notation: X = Sensor data (Input)

y = Degradation classes (Output)
ŷ = Predicted Degradation classes (Output)

Initialization: Split data in train, test, and validation subsets.
Settings: Number of epochs = 20, Number of layers = 3, Nodes per layer = 256, Batch size = 64.

while max number of epochs not reached do
Set model: sequential LSTM
Set loss function = categorical crossentropy
Set optimizer = Adam
Compile LSTM model output: ŷ = f (LSTM(X )) based on train set
Compile loss: LC =−∑N

i=1 yi j ∗ log ˆyi j

Update LSTM network weights
end
Predict probabilities ŷ on test set by using LSTM classifier

2.2. Turbofan Engine Degradation Simulation Data Set
Description from NASA [37]: "Engine degradation simulation was carried out using C-MAPSS. Four
different were sets simulated under different combinations of operational conditions and fault modes.
Records several sensor channels to characterize fault evolution. The data set was provided by the
Prognostics CoE at NASA Ames." The system model is representing an aircraft engine in C-MAPSS
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Data Set Train Units Test Units Operating Conditions Fault Modes

FD001 100 100 1 1
FD002 260 259 6 1
FD003 100 100 1 2
FD004 249 248 6 2

Table 2.1: Overview of the different subsets (FD001-FD004) within the C-MAPSS dataset.

Sensor Number Description Unit

1 Total temperature at fan inlet ◦R
2 Total temperature at low pressure compressor outlet ◦R
3 Total temperature at high pressure compressor outlet ◦R
4 Total temperature at low pressure turbine outlet ◦R
5 Pressure at fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure at high pressure compressor outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm
10 Engine pressure ratio −
11 Static pressure at high pressure compressor outlet(Ps30) psia
12 Ratio of fuel flow to Ps30 pps/psi
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio −
16 Burner fuel-air ratio −
17 Bleed enthalpy −
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 High pressure turbine coolant bleed lbm/s
21 Low pressure turbine coolant bleed lbm/s

Table 2.2: Overview of the 21 different sensors within the C-MAPSS dataset.

Saxena et al. [2008]. The data set contains four different scenarios, described in Table 2.1.

The two fault modes are high-pressure degradation and fan degradation. The input for the op-
erating conditions are altitude, Mach number and throttle resolver angle, which combined result
in six different operating conditions. Each data set contains the following variables: Engine Unit
ID, Time [Cycles], Operational Setting [1,2,3], Sensor Readings [1-21]. Where the sensors details are
given in Table 2.2.

2.2.1. Dataset Exploration
Various descriptive statistics are used to gain a better understanding of the various data sets. The
values are computed for the first subset, ’FD001’, and shown in Table 2.3. Table 2.3 shows that there
are 100 engines with various maximum life cycles. The mean and intervals are not exactly lining
up due to the fact that each unit can have different maximum life cycles and therefore a different
amount of rows in the data set. Furthermore, the Time [Cycles] column shows that a unit broke down
at first at 128 cycles and at last at 362 cycles. The distribution of the true engine lifetimes within the
training dataset is shown in Figure 2.3. Moreover, the statistical values of the Operational Settings
are shown in Table 2.4. In addition, the statistical values of the sensor values are given in Table 2.7.

2.2.2. Sensor Overview and Feature Selection
Only the useful features are selected by statistical analysis to reduce the feature space of Table 2.7.
The feature selection method is described in Part I. Moreover, the sensor trends are indicated in
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Variable UnitID [-] Time [Cycles]

count 20631 100
mean 51.51 206.31
std 29.23 46.34
min 1.00 128.00
25% 26.00 177.00
50% 52.00 199.00
75% 77.00 229.25
max 100.00 362.00

Table 2.3: Descriptive statistics of subset FD001 (C-MAPSS dataset).

Figure 2.3: Histogram showing the distribution of the true engine lifetimes of subset FD001 (C-MAPSS dataset).

Variable Operational Setting 1 Operational Setting 2 Operational Setting 3

count 20631 20631 20631
mean -0.000009 0.000002 100.0
std 0.002187 0.000293 0.0
min -0.008700 -0.000600 100.0
25% -0.001500 -0.000200 100.0
50% 0.000000 0.000000 100.0
75% 0.001500 0.000300 100.0
max 0.008700 0.000600 100.0

Table 2.4: Operational settings statistics of subset FD001 (C-MAPSS dataset).

Trend Sensor Number

Ascending 7, 12, 20, 21
Descending 2, 3, 4, 8, 11, 13, 15, 17
Irregular / Constant 1, 5, 6, 9, 10, 14, 16, 18, 19

Table 2.5: Sensor data trends of subset FD001 (C-MAPSS dataset).

Variable mean std min 25% 50% 75% max

LT 166.6 69.9 79.0 110.7 152.0 217.0 320.0

Table 2.6: Descriptive statistics used components in the PdM framework.
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Sensor count mean std min 25% 50% 75% max

Sensor 1 20631 518.67000 0.00000 518.67000 518.67000 518.67000 518.67000 518.67000
Sensor 2 20631 642.68093 0.50005 641.21000 642.32500 642.64000 643.00000 644.53000
Sensor 3 20631 1590.52312 6.13115 1571.04000 1586.26000 1590.10000 1594.38000 1616.91000
Sensor 4 20631 1408.93378 9.00060 1382.25000 1402.36000 1408.04000 1414.55500 1441.49000
Sensor 5 20631 14.62000 0.00000 14.62000 14.62000 14.62000 14.62000 14.62000
Sensor 6 20631 21.60980 0.00139 21.60000 21.61000 21.61000 21.61000 21.61000
Sensor 7 20631 553.36771 0.88509 549.85000 552.81000 553.44000 554.01000 556.06000
Sensor 8 20631 2388.09665 0.07099 2387.90000 2388.05000 2388.09000 2388.14000 2388.56000
Sensor 9 20631 9065.24294 22.08288 9021.73000 9053.10000 9060.66000 9069.42000 9244.59000
Sensor 10 20631 1.30000 0.00000 1.30000 1.30000 1.30000 1.30000 1.30000
Sensor 11 20631 47.54117 0.26709 46.85000 47.35000 47.51000 47.70000 48.53000
Sensor 12 20631 521.41347 0.73755 518.69000 520.96000 521.48000 521.95000 523.38000
Sensor 13 20631 2388.09615 0.07192 2387.88000 2388.04000 2388.09000 2388.14000 2388.56000
Sensor 14 20631 8143.75272 19.07618 8099.94000 8133.24500 8140.54000 8148.31000 8293.72000
Sensor 15 20631 8.44215 0.03751 8.32490 8.41490 8.43890 8.46560 8.58480
Sensor 16 20631 0.03000 0.00000 0.03000 0.03000 0.03000 0.03000 0.03000
Sensor 17 20631 393.21065 1.54876 388.00000 392.00000 393.00000 394.00000 400.00000
Sensor 18 20631 2388.00000 0.00000 2388.00000 2388.00000 2388.00000 2388.00000 2388.00000
Sensor 19 20631 100.00000 0.00000 100.00000 100.00000 100.00000 100.00000 100.00000
Sensor 20 20631 38.81627 0.18075 38.14000 38.70000 38.83000 38.95000 39.43000
Sensor 21 20631 23.28971 0.10825 22.89420 23.22180 23.29790 23.36680 23.61840

Table 2.7: Descriptive statistics sensor values FD001 (C-MAPSS dataset).

Figure 2.4: Overview of Sensor 1 for the complete FD001
C-MAPSS dataset.

Figure 2.5: Overview of Sensor 2 for the complete FD001
C-MAPSS dataset.

Table 2.5. The selected sensors are: Sensor 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21. The first
sensor is depicted in Figure 2.4, up to the last sensor in Figure 2.24. The descriptive statistics for the
data used in the numerical experiments are shown in Table 2.6.

2.3. Additional Results
This section contains the results of the different window configurations. Followed by an overview
of degradation levels for several components. It concludes with a section on training and validation
losses.

2.3.1. Results Window Bounds
This section illustrates the consequence of varying the window bounds on the probabilities for a
specific engine. The degradation level probabilities for the first configuration, where T0 = 10,T1 =
20, is depicted in Figure 2.25. The last configuration, where T0 = 10,T1 = 80, is depicted in Fig-
ure 2.31.
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Figure 2.6: Overview of Sensor 3 for the complete FD001
C-MAPSS dataset.

Figure 2.7: Overview of Sensor 4 for the complete FD001
C-MAPSS dataset.

Figure 2.8: Overview of Sensor 5 for the complete FD001
C-MAPSS dataset.

Figure 2.9: Overview of Sensor 6 for the complete FD001
C-MAPSS dataset.

Figure 2.10: Overview of Sensor 7 for the complete FD001
C-MAPSS dataset.

Figure 2.11: Overview of Sensor 8 for the complete FD001
C-MAPSS dataset.

Figure 2.12: Overview of Sensor 9 for the complete FD001
C-MAPSS dataset.

Figure 2.13: Overview of Sensor 10 for the complete
FD001 C-MAPSS dataset.

Figure 2.14: Overview of Sensor 11 for the complete
FD001 C-MAPSS dataset.

Figure 2.15: Overview of Sensor 12 for the complete
FD001 C-MAPSS dataset.
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Figure 2.16: Overview of Sensor 13 for the complete
FD001 C-MAPSS dataset.

Figure 2.17: Overview of Sensor 14 for the complete
FD001 C-MAPSS dataset.

Figure 2.18: Overview of Sensor 15 for the complete
FD001 C-MAPSS dataset.

Figure 2.19: Overview of Sensor 16 for the complete
FD001 C-MAPSS dataset.

Figure 2.20: Overview of Sensor 17 for the complete
FD001 C-MAPSS dataset.

Figure 2.21: Overview of Sensor 18 for the complete
FD001 C-MAPSS dataset.

Figure 2.22: Overview of Sensor 19 for the complete
FD001 C-MAPSS dataset.

Figure 2.23: Overview of Sensor 20 for the complete
FD001 C-MAPSS dataset.

Figure 2.24: Overview of Sensor 21 for the complete
FD001 C-MAPSS dataset.
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Figure 2.25: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 20.

Figure 2.26: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 30.

Figure 2.27: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 40.

Figure 2.28: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 50.

Figure 2.29: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 60.

Figure 2.30: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 70.
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Figure 2.31: Degradation level probabilities UnitID for
window configuration: T0 = 10,T1 = 80.

Figure 2.32: Illustrative example of moderately predicted prognostics, window configuration: T0 = 10,T1 = 30.
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Figure 2.33: Training and validation loss graph for win-
dow configuration: T0 = 10,T1 = 30.

Figure 2.34: Training and validation accuracy graph for
window configuration: T0 = 10,T1 = 30.

Figure 2.35: Degradation level probabilities for one specific UnitID. Visible is that the data points are coarse for all degra-
dation levels.

2.3.2. Training and Validation
The training and validation loss for configuration 2 is depicted in Figure 2.33. The loss in training
and validation indicates how well the model fits the training and the new data. The training and
validation accuracy for configuration 2 is depicted in Figure 2.34.

2.3.3. Component Overview
An overview of different components can be seen in Figure 2.36, which shows a clear difference in
prognostics and true engine lifetime. An example of the degradation level probabilities for a given
UnitID is shown in Figure 2.35, which shows that the data points are relatively coarse.



86 2. Component Prognostics

Figure 2.36: Overview of degradation level probabilities for several components.



3
Sensitivity Analysis

This chapter provides a brief description of the experiments conducted on local sensitivity. As dis-
cussed in the scientific paper, the parameters have a strong influence on the performance of the
PdM framework. The conducted experiments are presented in Table 3.1. The separate sections for
each varied parameter contain the reward development for a simulation of 200 episodes and the
extended results table.

Experiment Analysis

Exp 1 The effect of using different learning rates (α)
Exp 2 The effect of using different discount factors (γ)
Exp 3 The effect of using different corrective maintenance factors (θcm )
Exp 4 The effect of using different opportunistic maintenance factors (ϵom )
Exp 5 The effect of using different smoothing factors (αs )
Exp 6 The effect of varying the Time-Based threshold (Ta )

Table 3.1: Overview of experiments performed within scientific paper.

3.1. Learning Rate (α)
Figure 3.1 shows the reward development for all varied learning rates α. The learning rate deter-
mines how much the network weights are updated and thus affects the convergence behavior. It
can be seen that α = 0.001, indicated in orange, obtains the best performance. The simulation
with α = 0.01, indicated in blue, shows an unstable slow convergence. While the simulation with
α= 0.0001, indicated in green, shows a slow learning behavior in the first 25 episodes. The results of
the relevant Key Performance Indicators (KPIs) are given in Figure 3.2. The main conclusion is that
the average reward for both 50 and 200 episodes is the lowest for α = 0.001, the final chosen value
for both scenarios in the scientific paper.

3.2. Discount Factor (γ)
Figure 3.3 shows the reward development for all varied discount factors γ. The discount factor de-
termines how much the agent takes into account immediate and future rewards. It can be seen
low discount factors trigger unstable behavior, indicated by the large negative reward values at the
beginning of the episodes. Moreover, higher discount values show more stable results with rela-
tively smaller peaks. The difference in agents’ behavior can be explained by the fact that when the
discount factor is high, the agent takes more account of future rewards and therefore replaces the
engines sooner. The results of the relevant KPIs are given in Figure 3.4. The most important conclu-
sion is the trend indicated by the corrective maintenance actions, component utilization, and the

87



88 3. Sensitivity Analysis

Figure 3.1: Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the learning rate (α).

Figure 3.2: Overview of relevant results for the local sensitivity analysis for the learning rate (α). Neps = 200 and Ns = 1
during testing for every single learning rate (α).
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Figure 3.3: Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the discount factor (γ).

Figure 3.4: Overview of relevant results for the local sensitivity analysis for the discount factor (γ). Neps = 200 and Ns = 1
during testing for every single discount factor (γ).

average reward. When γ = 0.999, the agent is considering future rewards and replaces the engines
in anticipation of failure. When γ= 0.5, the agent runs the engines longer and obtains a higher uti-
lization rate of the components, but also higher average maintenance costs. The value γ= 0.999 is
used in the first scenario in the scientific paper to obtain the lowest average long-term maintenance
cost. In the second scenario, γ= 0.7 is used to improve the performance of other KPIs while keeping
maintenance costs low.

3.3. Corrective Maintenance Factor (θcm)
Figure 3.5 shows the reward development for all varied corrective maintenance factors θcm . The
corrective maintenance factor determines how heavily the corrective maintenance activity is pe-
nalized. The greater the value of θcm , the larger the penalty becomes. In Figure 3.5 can be seen
that high corrective maintenance factors trigger large negative rewards, shown by the brown dotted
line. The results of the relevant KPIs are given in Figure 3.6. The main conclusion is that the average
reward is more negative for larger θcm . However, only slightly penalizing corrective maintenance,



90 3. Sensitivity Analysis

Figure 3.5: Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the corrective maintenance
factor (θcm ).

Figure 3.6: Overview of relevant results for the local sensitivity analysis for the corrective maintenance factor (θcm ).
Neps = 200 and Ns = 1 during testing for every single corrective maintenance factor (θcm ).

with θcm = 3, yields a higher number of corrective maintenance actions.

3.4. Opportunistic Maintenance Factor (ϵom)
Figure 3.7 shows the reward development for all varied opportunistic maintenance factors ϵom . The
opportunistic maintenance factor determines how much economic benefit the opportunistic main-
tenance action provides. It can be seen that the opportunistic maintenance does not have a signifi-
cant impact on the reward development. The results of the relevant KPIs are given in Figure 3.8. The
main conclusion is that the average reward remains about the same, but the maintenance cost and
the number of opportunistic maintenance actions increase when ϵom = 0.8.

3.5. Smoothing Factor (αs)
Figure 3.9 shows the results of varying the smoothing factor αs . When αs = 1.0, no sensor smoothing
is applied, which is visible in the degradation level prognostics. The probabilities of the degradation
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Figure 3.7: Reward development for Ne = 200 and Ns = 1 during local sensitivity analysis for the opportunistic mainte-
nance factor (ϵom ).

Figure 3.8: Overview of relevant results for the local sensitivity analysis for the opportunistic maintenance factor (ϵom ).
Neps = 200 and Ns = 1 during testing for every single opportunistic maintenance factor (ϵom ).
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Figure 3.9: Overview of the local sensitivity analysis of the smoothing factor (αs ), including the accuracy.

levels contain noise and are not characterized by smooth lines. Decreasing the factor αs shows that
the signal becomes smoother. For example, when αs = 0.1, one can observe that the degradation
levels reflect the degradation behavior and consist of smooth lines. However, αs = 0.01 shows that
the prognostics are not representing the original degradation behavior anymore and should there-
fore be avoided. The peak of degradation level 2 becomes low and the predictions for degradation
level 3 are inaccurate. The final chosen parameter for both scenarios is αs = 0.1.

3.6. Time-Based Threshold (Ta)
As described in the scientific paper, the threshold Ta has a strong influence on the results for the
time-based maintenance policy. Figure 3.10 shows the relevant results for varying the time-based
threshold Ta . The acronyms in the heatmap represent the following terms: T = time-based thresh-
old Ta , LTMC = long-term maintenance cost, NC = number of replaced components, MWL = mean
wasted component lifetime, MCU = mean component utilization, and MRT = mean replacement
time. As can be seen in Figure 3.10, long-term maintenance costs increase as Ta becomes larger,
which is caused by the fact the policy experiences corrective maintenance more frequent. As ex-
pected, the number of components and the average wasted component lifetime decrease as Ta in-
creases. The component utilization and replacement time are increasing, which is caused by the
time-based threshold becoming larger. Figure 3.11 depicts the number of components used per
episode. The shaded area indicates the (minimum-maximum) values from Figure 3.10 and shows
a large spread. The shaded area is the difference between the lowest and highest value for the TBM
policy. Figure 3.12 depicts the average component utilization, Figure 3.13 shows the average wasted
component lifetime, and Figure 3.14 indicates the average replacement time.
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Figure 3.10: Heatmap for the relevant KPIs in the Ta analysis, where Ta ∈ {50−225}.

Figure 3.11: Number of components for several Ta values,
indicating the (Min-Max) values.

Figure 3.12: Average component utilization for several Ta
values, indicating the (Min-Max) values.

Figure 3.13: Average wasted component lifetime for sev-
eral Ta values, indicating the (Min-Max) values.

Figure 3.14: Average replacement lifetime for several Ta
values, indicating the (Min-Max) values.





4
Verification and Validation

This chapter contains the verification and validation of this study. The verification part verifies that
the model is implemented correctly and does the right things. Then the validation part verifies that
the model is consistent and works within a satisfactory accuracy range. We occasionally refer to the
figures in the previous chapters to avoid reproducing the same figure twice in this report. The model
verification is described in Section 4.1, followed by the model validation in Section 4.2.

4.1. Model Verification
The verification approach is done by analyzing the agent’s behavior. We compared the agent’s de-
cisions with common knowledge and determined that the agent is following a feasible approach.
Model verification is described by comparing the model’s behavior to "common knowledge" be-
havior and answering the question: does it work as expected?

Our approach is to analyze different episodes to see if the agent performs the expected mainte-
nance actions based on the state space. We analyzed several episodes, as shown in Figure 1.5 and
Figure 1.25. During the episode, the agent makes the appropriate decisions based on the probabil-
ities of the degradation levels. If degradation level 2 increases, the agent replaces the engines pre-
ventively. However, if the engine reaches its maximum lifetime, the corrective maintenance activity
is performed correctly, as can be seen in Figure 1.7. The component utilization rates are depicted in
Figure 1.6. The results shown verify the correct working principle of the framework as it does what
is expected of the agent. Not only does the agent make the decisions correctly, but the framework
works well in selecting random engines, as shown by the different distributions in various figures,
such as Figure 1.11. In addition, the framework exhibits the expected behavior in terms of correc-
tive maintenance: when the engine reaches its maximum lifetime, it is replaced with a new one. A
second verification of the model decisions is given in Figure 1.25, applicable to scenario 2. It can
be verified that the agent behaves differently depending on the setting of the discount factor. When
the discount factor is reduced, from γ= 0.999 to γ= 0.7, it was expected and verified that the agent
obtains a higher component utilization, but also higher maintenance costs. Another example is pro-
vided in Part I, in which the opportunistic maintenance actions are shown. The model also behaves
as expected regarding the component utilization development given in Figure 1.15 and Figure 1.17.
Moreover, varying the discount factor exhibits the expected behavior for the opportunistic mainte-
nance action as it almost reaches the value 2, shown in Figure 1.32.

Moreover, the approach to verify the implementation of the code is performed by unit testing,
debugging, and total testing. These different aspects are done during the research by separating a
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KPI Unit 1 Unit 2 Unit 3 Unit 4 Average

True Lifetime 100 140 200 300 Average: 185 LT
Number Components 1 2 3 4 Total: 4 Components
Maintenance Action Cor Cor Prev Prev Cost: 153/El
Component Utilization 1 1 0.75 0.5 0.8125
Wasted Lifetime 0 0 50 150 50
Replacement Time 100 140 150 150 135

Table 4.1: Example of calculation of key performance indicators (KPIs) for the Time-Based maintenance policy.

piece of code and experiments to check if the code works as expected. In addition, analyzing the in-
puts and outputs, in this case the agent’s behavior, ensures the correctness of the code. An example
is the analysis of the discount factor γ, shown in Figure 3.3 and Figure 3.4, where we have seen that
the model exhibits the expected behavior. When the discount factor is reduced, the agents’ pol-
icy becomes more myopic and higher component utilization and replacement time are achieved.
Moreover, the verification of the learning rate α, shown in Figure 3.1 and Figure 3.2, guarantees that
the Deep Q-Learning algorithm has been correctly implemented. The results of all the sensitivity
analyses, including the maintenance factors θcm & ϵom , can be found in Chapter 3.
Finally, the results of varying the window boundaries, described in subsection 2.3.1, show the ex-
pected model behavior. As the window bounds are increased, the probabilities of degradation for
the middle window become higher and wider. In addition, an example of a proposed replacement
action and corresponding degradation level probabilities is given in Figure 1.22, which shows ex-
pected behavior by replacing the component at a high degradation level 2.

4.1.1. Key Performance Indicator (KPI) Example
Table 4.1 contains an example calculation for the Time-Based maintenance policy assuming an av-
erage of Ta = 150 cycles. In this example, we show the calculation of the defined KPIs.

4.2. Model Validation
We validated the model by running multiple simulations and verifying that the agent exhibited con-
sistent behavior. As expected, the agent’s behavior is consistent across multiple runs, as evidenced
by similar experimental results. To analyze the model validation, we conducted several simulations
with different initial parameters. The results for 10 simulations are shown in Figure 4.1. The fig-
ure shows the minimum, maximum, and average values for the reward obtained by the agent. The
distribution of values shows that the model is accurate and can handle different initial parameters.
Moreover, the number of components for 10 simulations is depicted in Figure 4.2, which exhibits
the same converging behavior. The distribution of the agents’ actions is given in Figure 4.3. The fig-
ure shows that the actions are distributed in a consistent manner and thus indicates high accuracy
of the model during various simulations.

Overall, the results obtained are logical when compared to the other maintenance policies. The
original purpose of the framework is to replace components before they fail, which is done by using
the probability of their degradation levels. Compared to the Time-Based maintenance policy, the
PdM framework has proven to work and be useful, serving the original purpose of cost reduction.
Compared to the Ideal maintenance policy, the agent achieves competitive costs in the first sce-
nario. This validates the model in terms of purpose and accuracy. Since the PdM framework only
considers engines and does not follow a true maintenance policy, which includes multiple compo-
nents, it is difficult to compare with actual real-world performance.
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Figure 4.1: Reward development for Ne = 200 and Ns = 10 during training.

Figure 4.2: Number of components for Ne = 200 and Ns = 10 during training.

Figure 4.3: Maintenance activity analysis for Ne = 200 and Ns = 10 during training. Note: y-axis uses log scale.
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