<]
TUDelft

Delft University of Technology

Generating Understandable Unit Tests through End-to-End Test Scenario Carving

Deljouyi, A.; Zaidman, A.E.

DOI
10.1109/SCAM59687.2023.00021

Publication date
2023

Document Version
Final published version

Published in
Proceedings of the 23rd IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM)

Citation (APA)

Deljouyi, A., & Zaidman, A. E. (2023). Generating Understandable Unit Tests through End-to-End Test
Scenario Carving. In L. Moonen, C. Newman, & A. Gorla (Eds.), Proceedings of the 23rd IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM) (pp. 107-118). (Proceedings -
2023 |IEEE 23rd International Working Conference on Source Code Analysis and Manipulation, SCAM
2023). IEEE. https://doi.org/10.1109/SCAM59687.2023.00021

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/SCAM59687.2023.00021
https://doi.org/10.1109/SCAM59687.2023.00021

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM) | 979-8-3503-0506-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/SCAM59687.2023.00021

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM)

Generating Understandable Unit Tests through
End-to-End Test Scenario Carving

Amirhossein Deljouyi
Delft University of Technology
The Netherlands
a.deljouyi @tudelft.nl

Abstract—Automatic unit test generators such as EvoSuite are
able to automatically generate unit test suites with high coverage.
This removes the burden of writing unit tests from developers,
but the generated tests are often difficult to understand for them.
In this paper, we introduce the MicroTestCarver approach that
generates unit tests starting from manual or scripted end-to-
end (E2E) tests. Using carved information from these E2E tests,
we generate unit tests that have meaningful test scenarios and
contain actual test data. When we apply our MicroTestCarver
approach, we observe that 85% of the generated tests are
executable. Through a user study involving 20 participants, we
get indications that tests generated with MicroTestCarver are
relatively easy to understand.

Index Terms—Automatic Test Generation, Carving and Re-
playing, Readability, Understandability, Unit Testing

I. INTRODUCTION

In the software-enabled world that we live in, reliable and
correct software is crucial [1]. As such, software quality
assurance has become a critical asset in the software engineer’s
toolbox. For example, automated testing in the form of unit
tests has become an important ingredient to ensure high quality
software [2]. While the importance of testing is generally
acknowledged, writing tests is seen as a tedious and time-
consuming task [3]-[6]. To relieve developers and/or testers of
the burden of writing test cases, the research community has
invested in developing and evaluating automatic test generation
approaches [7]-[10]. Two important test generation approaches
are Randoop [11] and EvoSuite [9]. For example, EvoSuite
is a search-based test case generation tool that uses genetic
algorithms to construct a test suite [12]. While the results in
terms of coverage are very convincing, industrial case studies
have indicated that the understandability of the generated test
cases is a considerable limitation [13]. The understandability
is hampered by the difficulty to follow the scenario depicted
in the test case, the unclear test data, and the meaningfulness
of generated assertions [14], [15].

Motivating example: Consider Listing 1 which depicts both
a manually written JUnit test and an EvoSuite-generated JUnit
test. When we compare the scenarios of these test cases, the
manually written one is seemingly easier to understand. For
example, when we zoom in on line 3 of and 11 of Listing 1,
we can see that in the former case we are constructing an
object to represent rainy weather, while the latter case does not
correspond to an actual weather situation (“S:q$ZHC!0J3").

Andy Zaidman
Delft University of Technology
The Netherlands
a.e.zaidman @tudelft.nl

Moreover, in Line 6 a REST API response is mocked, which
checks if the weather that is returned by the mock corresponds
to an expected weather situation. In the case of the generated
test in lines 12—14, the test checks whether the object is null,
and checks the result of the toString () method, albeit with
constants that do not make sense in the domain.

In this paper we present an approach that carves information
from end-to-end (E2E) tests to generate understandable unit
tests. Resting on the assumption that E2E tests are available
for the system, during carving we extract the execution trace
from a running E2E tests, including the order of calls and
the actual inputs. Using that information, we gather scenarios
that are meaningful in the domain, and (parameter) values to
instantiate objects and pass to method calls.

When could our approach be of use to software engineers?
In a situation where a system is evolving and mainly has E2E
tests, e.g., Selenium tests, a software engineer might decide
that it is good to also have lower-level test cases, e.g., unit
tests, to act as a safety net during evolution. This safety net
will enable faster fault localisation than a typical E2E test can.
In this scenario, a software engineer can use our approach to
quickly and efficiently generate understandable unit tests.

We have created a prototype implementation for our ap-
proach, which we have coined MicroTestCarver. In this paper,
we evaluate that prototype. Our investigation is steered by the
following research questions:

RQ; Can MicroTestCarver generate unit tests based on infor-
mation carved from E2E tests? (Feasibility)

RQ-> How do the tests generated by our approach compare to
EvoSuite-generated tests in terms of understandability?

RQs How do the tests generated by our approach compare to
manually written tests in terms of understandability?

We carry out an exploratory case study on 4 subject sys-
tems and a user study involving 20 participants to evaluate
MicroTestCarver. Our initial findings are that MicroTestCarver
is quite successful in generating unit tests, and in the compar-
ison with EvoSuite-generated and manually written tests, it
generates tests that are relatively easy to understand.

II. BACKGROUND
A. Unit Test Generation

Automated test generation approaches have been developed
in order to reduce testing costs. Today, tools such as Evo-

979-8-3503-0506-7/23/$31.00 ©2023 IEEE 107
DOI 10.1109/SCAMS59687.2023.00021
Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

@Test
public void shouldCallWeatherService() {
var expectedResponse = new

— WeatherResponse ("raining"”, "a light drizzle");

4 given (restTemplate.getForObject ("Weather API",
— WeatherResponse.class))

5] .willReturn (expectedResponse) ;

6| var actualResponse = subject.fetchWeather();

71 assertThat (actualResponse,

— 1is(Optional.of (expectedResponse)));

8l }

9| Q@Test (timeout = 4000)
10| public void testEqualsWithNull() throws Throwable {
111 WeatherResponse weatherResponse0 = new

— WeatherResponse ("S:g$ZHC!0J3", "& >!@K");
12 boolean boolean0 =

— weatherResponse(O.equals ((Object) null);
13] assertFalse (boolean0);
14| assertEquals("WeatherResponse[Weacher:[Weather{maiJ
— n='S:q$ZHC!0J3', description='& >!@K'}]}",

— weatherResponse0O.toString());
151 }

Listing 1: An example of (A) a manually written unit test and
(B) a EvoSuite-generated unit test

Suite [9] and Randoop [11] generate a test suite starting from
Java source code using a search-based or random approach
to reach higher coverage [16], [17]. Several recent empirical
studies focused on the challenges automated test generators
face in real life, and the quality of the tests generated [14],
[18]-[22]. Even though automated unit test generation has
made significant progress, generated unit tests are less readable
than their human-written counterparts [23]. Almasi et al. have
conducted an extensive evaluation of automatically generated
unit tests in the financial services domain, observing that
developers (1) find it difficult to follow the scenario of the
test case, (2) find the test data unclear, and (3) have difficulties
with the meaningfulness of generated assertions [14].

B. Readability and Understandability

Readability and understandability are two similar terms,
but have different meanings. Readability entails structural and
semantic characteristics that allow developers to understand
source code, while understandability is defined as the ease by
which developers can extract information from a program [24].

Buse and Weimer [25] built a readability metric for source
code. A predictive model was developed by Daka et al. [26] to
assess the readability of unit tests, which was applied to Evo-
Suite to produce more readable tests by including readability
as a secondary objective. However, understandability is more
qualitative and difficult to capture in a model. In this paper,
we use the term understandability to signify this difference.

C. Capturing and Replaying

The purpose of carving unit tests is to automatically extract
a collection of unit tests replicating the calls seen during the
higher-level test [27]. The process is sometimes called “record
and replay”, as the key idea is to record calls, and replay them
later — either collectively or selectively [28].

108

Application

E2E Tests - Listening/Capturing the
(Manual or Front Web Method Calls Trace
—_— P . L
Scripted) End . Services Agent
Collect the information
has been captured in
Parse the atrace log
Parser trace logs Trace
Information
Pass the
idynamlc information
Pass the static
SOUrce | maion Test Generate Tests | it TeStS
code Generator

Fig. 1. Overview of the carving framework

ITII. THE MICROTESTCARVER FRAMEWORK

Figure 1 presents an overview of our approach. The Mi-
croTestCarver framework takes an E2E test, which can either
be a manual or scripted E2E test, and it generates unit tests
in three phases: instrumenting, parsing, and generating unit
tests. In the first step, it instruments the E2E tests and records
information, such as calls and input data; in the second step,
it parses this information, and finally, it uses a template-based
approach to generate unit tests based on the parsed data.

Our approach “carves scenarios” from the E2E tests to
reproduce (smaller elements of) them in the form of unit
tests. Our hypothesis is that these higher-level test scenarios
embedded in the E2E tests and containing concrete values, can
lead to easier to understand unit test scenarios.

Our approach is implemented in a Java-based prototype
called MicroTestCarver (MTC). Our tool focuses on generating
tests for public methods, which is similar to how a developer
would produce unit tests for their production code.

Next, we describe each phase of our approach in detail.

A. E2E tests instrumentation

We use BTrace [29] as the basis for our instrumentation
tool. We have created a fork of BTrace and developed some
additional functionality for our carving approach. In particular,
we now collect detailed information of types, and we also
collect and serialize information on fields, arguments, and
callbacks in a uniform manner. In addition, we chose to use
XStream [30] in the modified Btrace because it is an advanced
and robust serialization library for Java, and it can handle
complex custom objects effectively. The modified version of
BTrace is available in the replication package [31].

All recorded information is written to a trace log. Objects
of non-primitive types are serialized into a serialized object
pool. An example of a trace log is shown in Listing 2.

Basically, a trace log is a graph, in which we identify two
types of methods: a NodeMethod, which is a method that calls
other methods of interest in the test generation process, and
a LeafMethod, which could still call other methods, but those
methods are no longer of interest in the test generation process
(and could for example be mocked). The concept of a trace log
is illustrated in Figure 2, in which three NMs are highlighted
that are called in the ExampleController class. Each NM

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

NM;

///IEEE!\\\
NM,: ExampleController.weather()

LM, LMs LMy LMs. NM,: ExampleControllerfetchWeather()
NMs3: ExampleController.hello()

LM,

Fig. 2. An example of trace log with their classes

and their LMs are exemplified in Listing 2. The leaves in a
trace log are either a LM or a NM without a method call. We
will now explain both concepts.

LeafMethod. A LeafMethod (LM) is a called method that
does not have a callee that the trace script is watching. An LM
refers to a method that is outside the package being watched;
it may be a method in a third-party library. Each LM has
a name, a type, a set of arguments, a state of the object
(i.e., attribute values) before executing the method body, and
if the return type is not void, a return value. In lines 11—
19 of Listing 2, an LM with the name of RestTemplate
is illustrated: its arguments are a string, class, and an array
of objects. In lines 14-19, its callback is shown, which is a
container object (Optional) of type WeatherResponse; it is
serialized in a serialized object pool with the name 1e23ee0e.

NodeMethod. A NodeMethod (NM) is a method that is
called within the scope of tracing, and a test will be gen-
erated according to this method during the test generation
phase. Each NM, in addition to all the properties of an
LM, includes a set of methods called in it; these methods
can be a LeafMethod or NodeMethod. On line 1 of List-
ing 2, weather is a NM with no arguments and several
fields, such as personRepository and weatherClient.
fetchWeather (), which is a NodeMethod, is also called in
this NM; it finally returns a String on lines 22-24.

An important element to consider is what constitutes a
LeafMethod and a NodeMethod. During the instrumentation
phase, we focus on a particular packageName; we watch the
classes inside the package and generate tests for them. Classes
outside of the package, but that are called in methods residing
inside the package, are labeled LeafMethods.

B. Parsing

As we aim to create building blocks for the test generation
phase, we parse the trace log and deserialize the serialized
objects with the aim of reconstructing the trace data into actual
runtime objects. We do so by unifying all elements that were
recorded, i.e., the trace log itself and the serialized objects. We
create a set of classes that group together NodeMethods based
on the classname in the fully qualified path. For example, in
Fig. 2, ExampleController will be reinitiated based on the
NMs whose class name is ExampleController. In order
to create a class, its arguments, fields, and methods will be
assigned based on its NMs, and its constructor method is a
NodeMethod with <init> name.

C. Generating Unit Tests

We generate test cases based on the classes created in the
Parsing phase and the analysis of the existing source code. We

109

() public String (ExampleController#weather):
NodeMethodl

Args: []
Fields:
name:
type:
oA
name:
type:
I
public Optional (ﬁeatherAWeatherclient#fetchWeatheih{ .
lodeMethod2
virtual Object RestTemplate#getForObject
Object[]) [737££f5c4]

[{
personRepository,

person.PersonRepository, ...

weatherClient,

weather.WeatherClient, ...

Jo © 9 oo W

CEOLEEEO ©

(string,
java.lang.Class,
Args: [...]
Callback: {
hash: 1le23eele,

java.util.Optional, LeafMethodl §}

type:

serialized: true,

object: Optional[WeatherResponse{'Clear', 'clear sky'}],

}e
public String (ﬁeather.WeatherResponse#getSummarj):{ N
LeafMethod2

®s

Return: {
type:
object:

String,
"Clear: clear sky", ...

25 }

26 }:

C j public String (ExampleController#hello(String)?:(

eMethod3

@)

< person.PersonRepository#findByLastName (String)

@9
@

31 &}

interface Optional

public String person.Person#tgetFirstName:{...} LeafMethod3-5

public String person.Person#getLastName:{...}

Listing 2: A shortened example of a trace log

used JUnit as test framework and Mockito for mocking, and
we utilized their annotations to improve legibility. In addition,
we used Khorkiov’s guidelines [32] for writing unit tests, in
order to ensure the carved tests have a clear and readable
structure. Listing 3 shows an example of a unit test generated
by MTC based on the previous phases. We will first explain
how we reproduce objects in a test, and then explain how
different components of a test (fields, set-up, and test method
body) will be produced.

1) Reproducing Objects: In order to accurately reproduce
objects in various parts of a test, such as setting values,
invoking methods, and making assertions, we need both dy-
namic and static analysis. To accomplish this, we combined
Spoon [33] and Java reflection. As a result of analyzing the
source code with Spoon, we are able to identify the appropriate
constructor that can recreate the parsed object and set its fields.
We have implemented three strategies in order to reproduce the
parsed objects: Unmarshalling, ToString, and Guessing. The
Unmarshalling strategy is used when the object is deserialized,
and it will reveal how to recreate the runtime object. We
have implemented unmarshallers for various types: primitive
types, String, Collection, Map, Optional, Enum, Date, Locale,
and BigDecimal. For other types not specifically handled by

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

dedicated unmarshallers, we use the ReflectionUnmarshaller
as a fallback, which replicates an object by setting its fields.
This strategy reproduces WeatherResponse in line 15 and
an Optional object in line 22. The guessing strategy is used
when the object is not deserialized, and we are trying to
reproduce it like the custom unmarshaller by setting its fields,
with this difference that its fields come from the trace log,
not a runtime object. The roString strategy is used for the
assertions when the object is not deserialized, but it overrides
the toString () method.

2) Fields: The fields of a test class include the declaration
of the CUT (class under test) and setting up a mocked
object if necessary. As we want to make it very clear what
the CUT is, we name that field subject. The objects that
are annotated as @Mock contain methods that are called in
the test methods. This is illustrated in Listing 3 where the
subject is the declaration of ExampleController, the CUT;
weatherClient and personRepository are the objects
that should be mocked since its methods (fetchWeather and
findByLastName) are called (lines 14 and 22).

3) Set-up: Every test class has a set-up part containing
a common initialization that is repeated in all methods, i.e.,
the test fixture [32]. The heuristic used for setting the default
values of the fields is to select a value that is repeated most
often in the NMs of a class. In doing so, a significant amount
of duplication can be avoided. The state of the subject object
will also be set here, for example, on line 10 the subject object
is initiated and used in lines 16 and 23.

4) Test Method: In order to have a simple and uniform
structure, we use the Arrange-Act-Assert (AAA) pattern [32].
Additionally, this pattern makes test cases easier to read and
understand. We will discuss the elements of a test method in
the following: method name, arrange, action, and assertion.

Test Name: When developers navigate among sets of unit
tests, the names of the tests aid them in understanding the
purpose and scenario of the tests. While there are complex
approaches to naming the methods [34], [35], we used a
simple heuristic approach for creating unique tests cases based
on inputs and output of a NodeMethod. If there is only
one NodeMethod for the MUT (method under test), the test
name will be [MUT]Test, like weatherTest (line 13). If
there are multiple NodeMethods, the test name will be a
combination of the types and values of the inputs and output
like helloWhereCarterTest (line 20). This name is unique
since if all conditions were the same, a duplicate test would
be recognized. The test name pattern is:

([MUT|[W here[Inputs])*|[Returning[Output]]?Test)

Arrange: The arrange section involves bringing the subject
and its dependencies into the desired state as well as mocking
any other methods in the MUT that need to be called.

By first determining which objects to mock, which is
done in the fields section, we can mock the methods
based on the NM’s callees (LeafMethods) and their call-
backs. As shown in line 14 of Listing 3, the behav-

110

public class ExampleControllerTest {
private ExampleController subject;
@Mock
private WeatherClient weatherClient;
@Mock Parameters

private PersonRepository personRepository;

@BeforeEach

public void setUp() throws Exception {

MockitoAnnotations.openMocks (this);

) subject = new ExampleController (personRepository, Set-Up

weatherClient);

@Test
public void weatherTest () throws Exception{

given (weatherClient.fetchWeather()).willReturn (

Optional.of (new WeatherResponse ("Clear" sky")));
Test Method

String weather = subject.weather(); \

assertThat (weather, is("Clear:

}

@Test
public void helloWhereCarterTest ()

throws Exception{

Person carter = new Person("james", "carter")

given (personRepository.findByLastName ("carter”))

.willReturn (Optional.of (carter));

String hello = subject.hello("carter”);

assertThat (hello, is("Hello james

OO O © GO =0 © OO

N
=N

Listing 3: An example of a MTC-generated unit test

ior of weatherClient.fetchWeather, which retrieves the
weather from the weather service, is mocked.

Additionally, if the value of the fields in the NodeMethod
is different from the one set in the set-up, it will be reset in
this section.

Act: This section contains the method called on the CUT,
the input values passed to it, and output values captured. The
return type of the NM is assigned to the output type, e.g.,
weather () (line 16) and hello () (line 23).

Assert: This section contains the verification of the return
value, or the final state of the subject with the expected results.
We use the assertThat assertion, which compares the output
of the MUT and the expected result captured in the NM, e.g,
lines 17 and 24 in Listing 3.

IV. STUDY SETUP AND DESIGN

To evaluate the effectiveness of MicroTestCarver in im-
proving the generation of understandable test cases in real-
world applications, this section describes the methodology of
evaluation. We investigate the following research questions.

RQ; Can MicroTestCarver generate unit tests based on infor-
mation carved from E2E tests? (Feasibility)

RQ:; How do the tests generated by our approach compare to
EvoSuite-generated tests in terms of understandability?

RQ3; How do the tests generated by our approach compare to
manually written tests in terms of understandability?

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

TABLE 1
PROJECTS USED IN THE EVALUATION

Application Version ‘ #Test Files #Stars #Forks #Commits Scale
Alfio 2.0.5 189 1.5K 2.5K 3.6K Large
Lab-Insurance 1.0.0 24 0.5K 0.2K 384 Large
Petclinic 273 23 6.5k 20K 0.8K Mid
Spring-Testing ~ 0.0.1 13 0.9K 0.4K 130 Small

A. Study Setup

We have carried out the evaluation on four popular open-
source Java web applications. We have used the following
criteria for our selection of projects:

o The project is an open-source Java web application.

o The project is popular, active, and mature as measured in

terms of forks, stars, and commits.

o The project has a test suite with tests for different layers

of the test pyramid, especially unit tests.

Using these criteria, we found nearly 200 projects on
GitHub. Next, we manually search among these projects to
select four projects from different domains with varying sizes.
Table T shows the selected projects: Alfio!, LAB-Insurance”,
Spring-Testing®, and PetClinic*. We manually conducted end-
to-end tests for these projects, which covered their core
functionalities; the E2E tests are recorded and included in
the replication package [31]. Manually written unit tests are
available for all of these applications, which makes it possible
to compare them with carved tests for RQ3.

B. Study Design

The first research question investigates the feasibility and
analyzes the MicroTestCarver approach. For the second and
third research questions, we designed and conducted a survey
involving 20 participants. The participants compared under-
standability of the MicroTestCarver tests with tests that are
automatically generated by EvoSuite, and to tests that were
manually written and are part of the open source projects.

Although we had 20 respondents in total, we did collect
30 responses for each question. This is due to us assigning
two test methods to 10 of the participants, while the other
10 respondents got a shorter survey. This enabled us to get a
wider range of responses.

1) Participants: We have conducted a survey among BSc,
MSc and PhD students. In order to recruit participants, we
advertised our survey on our university’s internal Mattermost
chat service, where computer science students can be found.
Our participants include 10 BSc, 3 MSc and 7 PhD students.

2) Survey: The 20 participants were asked to read and
evaluate a set of test cases in six questions, which are depicted
in Table II. In the first round (questions 1-3), participants
selected more understandable test cases among MTC, Evo-
Suite, and manually written tests. By using text highlighting

'https://github.com/alfio-event/alf.io
Zhttps://github.com/asc-lab/micronaut- microservices-poc
3https://github.com/hamvocke/spring-testing
“https://github.com/spring-projects/spring-petclinic
5https://mattermost‘com, last visited June 6th, 2023.

111

Manually-Written
Tests

MTC Tests EvoSuite Tests

Fig. 3. Coverage of questions with regard to test sources.

and open-ended questions combined in questions 1 and 2,
we can gain more detailed and accurate insights into why
participants think the test is more understandable [36]. Text
highlighting allows participants to quickly and accurately refer
to specific parts of the test that they believe made it more
understandable, while open-ended questions provide a more
in-depth understanding of their opinion. In the second round
(questions 4—6) participants rated the understandability of the
test cases (MTC, EvoSuite, and manually written) based on
the understandability criteria, shown in Table III (similar to
related work [35], [37]).

In order to provide a systematic and unbiased survey we
took three considerations: 1) Test cases were displayed without
identifying which test generator was used to create them or
whether they were manually created, 2) for each question, we
had a pool of test methods that we wanted to evaluate (see
column 4 of Table II); we let the online survey (Qualtrics)
randomly select, 3) for the first three questions in which we
want to compare tests from different sources (MTC, manual,
and EvoSuite), we made sure to compare tests that validate
the same functionality, and we randomized the order of the
presented fragments of test code. Figure 3 illustrates how the
question rounds cover the different types of tests.

In QI, we compared 21 pairs of MTC and EvoSuite
tests, where pair means that both tests evaluate the same
functionality. In the second question, we compared MTC with
manually written tests through 12 pairs. The third question
ranks MTC, EvoSuite, and manually written tests in terms of

TABLE 1T
QUESTIONNAIRE OVERVIEW
Title Type of Question #Tests RQs
Q1 Comparison with EvoSuite tests Multiple Choice, 21 RQ2
Highlight, Open
Q2 Comparison with manually written ~ Multiple Choice, 10 RQ3
tests Highlight, Open
Q3 Ranking Tests (MTC, EvoSuite, Ranking 3 RQ2,
manually written tests) RQ3
Q4 Evaluate MTC test based on the Likert, Open 10 RQ2,
criteria RQ3
Q5 Evaluate EvoSuite test based on the Likert, Open 12 RQ2
criteria
Q6 Evaluate manually written test Likert, Open 12 RQ3

based on the criteria

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

TABLE III
UNDERSTANDABILITY CRITERIA
Criterion ‘ Sub-Criterion ‘ Description
. Descriptive naming The names of variables and methods that
Semantic

describe their functions.

Test data clearly (input, output, mock
data) illustrate the test scenario.

The test scenario is meaningful in the
domain of the system.

The test behavior is easy to understand.

Descriptive test data

Meaningful in the context
Naturalness g

Intent (easy to understand)

their understandability among 3 test pairs. In questions 4 to 6,
participants will rate the understandability of MTC, EvoSuite,
and manually written test cases in isolation according to our
proposed understandability criteria on a scale of 1 to 5. In
each of these questions, we randomly selected 12 unit tests
that are not included in questions 1-3. We can gain insight
into how different parts of a test are perceived in terms of
understandability, as well as the understandability of tests not
common to each group of tests, since questions 1-3 only
address tests that cover the same functionality.

V. RESULT

Our focus in this investigation is on the understandability of
the generated test cases, and not so much on their effectiveness
(e.g., in reaching high code coverage). In the following we
discuss the results of our research questions.

A. RQI: Feasibility of the unit test generation based on E2E
Tests

Table IV presents the results of the carved unit tests in
terms of execution results. In total, 69 tests are carved for
35 CUTSs of the four study subjects. Of the 69 carved tests, 59
are executable (85%), 61 have an executable body (88%), and
of the 35 test classes, 31 have executable test fixtures (88%).
In addition, 96% of the tests passed.

Next, we investigate the reasons for generating both non-
executing and failing tests:

1) Execution Failure Analysis: We have identified four
causes for the execution failure of six tests. We annotated them
R1 to R4 and analyze them.

R1: Passing a class as an argument. In the tests of
WeatherClientTest (row 2) and AlfioMetadata (row 21)
a class is passed statically as an argument to invoke a method
(e.g., for mocking, or initializing a CUT). However, as BTrace
only has access to runtime objects during carving, we cannot
determine which object is being passed statically.

R2: Type conversion error. PetTest (row 8) fails to execute
because of a failing type conversion. More specifically, in this
case, Hibernate acts as a proxy and changes the object type
at runtime, which leads to type inconsistency at runtime.

R3: Unable to reproduce an object. An object may fail
to reproduce due to failures during the instrumentation or
generation phases. For instance, in row 21, 30, and 33,
XStream failed to serialize an object, and MTC failed to
reproduce an object using alternative unmarshalling strategies
such as ToString and a guessing approach. In row 14, the
failure to reproduce an object is attributed to the absence of

112

a suitable unmarshaller for the given type. Furthermore, in
row 22, BTrace was unable to instrument an argument, leading
to the inability to construct an object.

R4: Private method. If the method is private, it is not
possible to instantiate from this class, and technically, it is
out of the project scope to generate tests for private methods.
systemLevelTest (row 23) has a private method, and this
method cannot be invoked in the class.

2) Test Failure Analysis: We use the Hamcrest matcher
(assertThat and is) for assertions, which internally invokes
the equals method to compare two objects. In order for the
test to pass, the equals method needs to be overridden for the
CUT, otherwise it relies on the memory address comparison
implementation of equals in the Object class. petTest
(row 8) and CalculatePriceHandlerTest (row 33) failed
because equals was not implemented for their classes, but
when we we implemented it, the tests passed.

Even though MicroTestCarver is not designed to optimize
test coverage (i.e., it is not search-based), Figure 4 compares
instruction coverage for each application using MicroTest-
Carver, existing manually written tests, EvoSuite-generated
tests, and their combinations for each application. Figure 4
demonstrates the effectiveness of MTC in enhancing coverage
by including scenarios not covered by EvoSuite-generated or
manually written tests. It is important to note that although
search-based approaches excel at generating tests for corner
cases and improving coverage, they may fail to mock certain
methods due to a lack of runtime information access. Notably,
EvoSuite-generated tests combined with MTC-generated tests
provided higher coverage in the projects.

As Alfio is quite a large project, we exclude certain classes,
such as configuration classes, to measure coverage with a
better representation of the core functionality. In the Lab-
Insurance, coverage evaluation was limited to pricing and
product microservices.

Highlight of RQ1: Feasibility

Our results indicate that 85% of the unit tests that Mi-
croTestCarver generates from carved information from E2E
tests are executable. We further provide reasons for the non-
compilation or failure of MicroTestCarver -generated tests.

B. RQ2: Understandability of carved tests vs EvoSuite tests

Figure 5 illustrates the understandability of MTC and Evo-
Suite generated tests based on comparisons, rankings, and

B MTC EvoSuite MTC + EvoSuite M Manual BMTC+Manual mAIll

in
S 3

o
=N
© ©
~ ~

3
@
« <
o ©
~
©
- o
—

SPRING-TESTING PETCLINIC ALFIO
Fig. 4. Instruction coverage for each study subject

~
0 N
<
Q-

LAB-INSURANCE

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

TABLE IV
EXPERIMENTAL RESULTS OF THE GENERATED UNIT TESTS ON THE STUDY SUBJECTS USING MICROTESTCARVER

Test Class Exe'cutable Executable Failures Pass/Fail Executable
Fixture Tests

1 ExampleControllerTest True 4/4 4/4 4/4

2 WeatherClientTest False 0/1 R1 - 0/1

3 PersonTest True 22 212 212

4 ‘WeatherResponseTest True 1/1 171 1/1
Spring-Testing: 8 Tests 3/4 (75%) 7/8 (87%) 1 7/7 (100%) 7/8 (87%)

5 NamedEntity Test True 22 2/2 2/2

6 BaseEntityTest True 1/1 1/1 171

7 PersonTest True 22 212 212

8 PetTest True 2/3 R2 172 2/3

9 PetTypeFormatterTest True 3/3 3/3 3/3

10 PetTypeTest True 2/2 212 2/2

11 SpecialtyTest True 2/2 2/2 2/2

12 VetsTest True 1/1 1/1 1/1

13 OwnerTest True 5/5 5/5 5/5

14 OwnerControllerTest True 12 R3 1/1 12

15 ClinicServiceImplTest True 1/1 1/1 1/1
PetClinic: 24 Tests 11/11 (100%) 22/24 (91%) 2 21/22 (95%) 22/24 (91%)

16 AuthorityTest True 1/1 1/1 1/1

17 ConfigurationKey ValuePathLevel Test True 22 22 212

18 ProviderAndKeysTest True 1/1 1/1 171

19 EventDescriptionTest True 2/2 2/2 2/2

20 LanguageTest True 22 212 22

21 AlfioMetadataTest False 0/1 RI1, R3 - 0/1

22 ConfirmationEmailConfigurationTest False 1/1 R3 - 0/1

23 SystemLevel Test False 171 R4 - 0/1

24 LocaleDescription True 22 212 212

25 OrganizationContactTest True 212 22 212

26 TicketReservationStatus True 1/1 1/1 1/1
Alfio: 16 Tests 8/11 (72%) 15/16 (93%) 3 13/13 (100%) 13/16 (81%)

27 ChoiceQuestionDTOTest True 1/1 1/1 1/1

28 NumericQuestionDTOTest True 171 171 1/1

29 ChoiceDTOTest True 22 212 22

30 ProductsControllerTest True 0/2 R3 - 0/2

31 CalculatePricecCommandTest True 5/5 5/5 5/5

32 CalculatePriceResultTest True 272 212 212

33 CalculatePriceHandlerTest True 1/3 R3 0/1 173

34 CalculationTest True 3/3 3/3 3/3

35 CoverTest True 2/2 22 22
LAB-Insurance: 21 Tests 9/9 (100%) 17/21 (80%) 4 17/17 (100%) 17/21 (80%)
Total: 69 Tests, 35 Test classes 31/35 (88.5%) 61/69 (88.4%) 10 56/58 (96.5%) 59/69 (85%)

criteria-based questions. The results indicate that MTC tests
are generally easier to understand than EvoSuite tests, as MTC
received a higher score across all questions.

When participants were asked to select which test case is
more understandable, out of the 30 responses, the majority
(70%) expressed a preference for MTC over EvoSuite, while
the remaining 30% selected EvoSuite. In the ranking question,
24 out of 30 responses indicated MTC tests to be more
understandable than EvoSuite tests.

During the highlight and open-ended questions, participants
emphasized that MTC tests provided clearer test data and logic
compared to EvoSuite tests (8 mentions). Additionally, five
participants found the separate test setup in MTC tests to make
the overall testing process simpler to understand. However,
two respondents highlighted a preference for EvoSuite tests
because objects were instantiated within the same test method.

Regarding identifiers, participants indicated a preference for
clear, sensible, and concise names rather than long and vague
ones. Furthermore, participants noted that the construction of
objects influenced their understanding of identifiers. In this
regard, five respondents favored identifiers in MTC tests, while
three preferred identifiers in EvoSuite tests.

In terms of assertions, participants expressed a preference
for specific assertions that go beyond simple functionality

113

testing. Three participants specifically mentioned a preference
for assertions such as assertNull and assertEquals over
assertThat. Three other participants found the assertions in
EvoSuite to be insufficient for adequately testing the intended
functionality. Participants also emphasized the importance of
legibility in tests and favored the use of Assert] annotations
(for mocking and assertions) over pure JUnit. They suggested
that providing enough space for different parts of the tests
enhances their understandability. One participant noted that
MTC demonstrated a good separation between different parts
of the test, while another mentioned that the separation was
not satisfactory in a question where the test setup was longer.

Furthermore, some participants stated that shorter lines
contribute to simpler tests. Two participants preferred EvoSuite
tests due to this factor, while one participant selected the MTC
test for the same reason. Listing 4 presents examples of tests
generated by MTC and EvoSuite in order to give the reader a
sense of how the tests are generated by different tools.

The criteria-based questions showed that MTC had a signifi-
cantly higher average score than EvoSuite (4.23 vs. 2.85 — see
Figure 5). Figure 6 illustrates the distribution of participants’
opinions regarding each criterion for both MTC and EvoSuite
tests. Analyzing the results of criteria 1 and 2 for MTC and
EvoSuite, it becomes evident that MTC tests’ semantics are

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

clearer and more understandable for developers. Additionally,
criteria 3 and 4 suggest that MTC tests feel more natural
to developers. In response to the open-ended question, par-
ticipants expressed concerns about non-descriptive identifiers
and test data. One participant remarked, “The names of the
variables are not at all descriptive, and the meaning of them
is hard to figure out. Also, the data are hard to understand.”
They also criticized the assertions as obvious and shallow.
Conversely, participants found the test data and identifiers in
MTC tests to be descriptive, albeit with some lines of code in
the arrangement being redundant and unnecessary.

When analyzing the survey results and conducting manual
analysis, we discovered the crucial role of test data in compre-
hending a test case. Specifically, when random, null, empty,
or mocked inputs are employed in EvoSuite, it becomes more
challenging to grasp the underlying logic and purpose of a test.
However, it should be noted that EvoSuite-generated tests tend
to be shorter due to the utilization of test case minimization
as a secondary search objective.

Highlight of RQ2

When we compare carved tests with EvoSuite-generated
tests, we observe that participants value the use of actual
test data which is derived from E2E in carved tests makes
the test easier to understand and more meaningful. Search-
based approaches are good at generating short test cases.

C. RQ3: Understandability of the carved tests vs manual tests

Figure 7 presents a comparative analysis of the under-
standability of MTC and manually written tests through com-
parisons, rankings, and criteria-based questions. The results
indicate a relatively similar level of understandability between
MTC tests and manually written tests.

The participants were asked to select the most understand-
able test case, with 52% choosing MTC tests and 48% opting
for manually written tests. MTC tests perform slightly better
in the ranking question, with 18 responses ranking them as
more understandable against 12 responses for EvoSuite tests.

When participants provided feedback through highlighting
and open-ended questions, their opinions regarding MTC-
generated and manually written test cases were mostly similar.
However, they did indicate that comprehending the test data

W mTC EvoSuite

100%
75%
50%
25%

0%

Comparison (Q1) Ranking (Q3) Criteria Based (Q4, Q6)

Fig. 5. Understandability of MicroTestCarver versus EvoSuite tests

@Test

public void testCreatesPetType() throws Throwable {
PetType petTypel = new PetType();
assertNull (petTypeO.getName ()) ;

}

public void setUp() throws Exception {
subject = new PetType();
subject.setName ("cat") ;
subject.setId(1l);

}

@Test

public void getTypeTest () throws Exception {
PetType getType = subject.getType();

PetType petType = new PetType();
petType.setId(1);
petType.setName ("cat”);

assertThat (getType, is(petType));
}

Listing 4: First test is a test generated by EvoSuite, and second
one is generated by MicroTestCarver .

and the mocking process in MTC tests was relatively easier in
comparison to manually written tests. Specifically, participants
mentioned the superiority of MTC test data seven times,
while favoring manually written test data in three instances.
Additionally, in one case, they indicated a preference for
strong typing over the use of “var” in manually written tests.

Regarding identifiers, they observed that the identifiers
(variable names and test method names) in MTC tests were
shorter, while those in manually written tests were more
descriptive and clear.

Participants had mixed views on the length and structure
of the tests. In five instances, they mentioned that MTC tests
were shorter, while in the other five instances, they mentioned
that manually written tests were shorter. Notably, in two pairs,
we observed that manually written tests are overly long and
try to test too much (so-called eager tests [38]). Furthermore,
participants mentioned that the manually written tests had less
code duplication due to the use of best practices such as the
factory method [39] and parametrized test cases. An example
of a comparison illustrating the greater understandability of
a manually written test than a carved one is depicted in
Listing 5. Although both tests employ meaningful test data
and exhibit understandable logic, the manually written test
has better structure and less duplication. For mocking the
petType list the manual test utilizes the makePetTypes ()
factory method, enhancing readability and reusability.

Moreover, the findings from the criteria-based questions
indicate that MTC exhibited a slightly higher average score
(4.23) compared to manually written tests (3.95), as can be
seen in Figure 5. Figure 6 visually represents the participants’
opinions on test cases generated by MTC and manually
written tests. Although the results for criteria 1 and 2 were
similar between MTC and manual testing, the participants
found the semantics of MTC tests to be more comprehensible.
Additionally, both manual testing and MTC were perceived by
respondents as being almost equally natural.

In the open-ended question, participants mainly empha-
sized that the intent behind manually written tests was easily

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

HEE Strongly disagree
MTC
C1. The identifiers are descriptive =
C2. The test data is descriptive =
C3. The test makes sense in the domain =
; : —
C4. The intent of the test is easy to understand g—

Manually written

I Disagree

Neutral mm Agree HEE Strongly agree

4.3
4.1

4.23
4.3

Average

C1. The identifiers are descriptive B — - Yy
2. The test datn s descriptye EE—— | ————————————————————
C3. The test makes sense in the domain = : = 4.03 g
EvoSuite
C1. The identifiers are descriptiy | —— I ———— -,
2. The test data I descrintive [— B by
C3. The test makes sense in the domain = : ; 337 2
C4. The intent of the test is easy to understand = : E 3.07
Qo\o ’{:;\o 4 QO\O K 6;\0 NQ QO\O
Fig. 6. The criteria-based results for the MTC, EvoSuite, and tests written manually
understandable, a consequence of comprehensible test data eTest ,
void shouldParse() throws ParseException ({
and logic. However, their perception of the descriptiveness given (this.pets.findPetTypes ()).willReturn (makePetTypes (|
of identifiers and test data was mixed. While participants =)i

expressed positive opinions about the identifiers on numerous
occasions (ten times), they also indicated that the identifiers
of the test cases were sometimes unclear (six times). The
understandability of manually written tests varies depending
on the project, e.g., in Spring-Testing and Petclinic, manually
written tests achieved higher scores in the criteria-based ques-
tions than in the Alfio project. In contrast, MTC employs a
template-based approach, and the rating is almost consistent.
Participants often raised concerns about lengthy lines in the
setup methods in MTC tests, which are addressed in manually
written tests through best practices such as parametrized tests.

Highlight of RQ3

Comparing participants’ answers we get indications that
using data derived from E2E tests brings MTC tests closer
to manually written tests in terms of understandability. We
also observe that some manually written tests use some
best practices, e.g., parameterized tests, which enhances
sometimes the understandability of manually written tests.

B MTC M Manually-Written
100%

75%
50%
25%

0%

Comparison (Q2) Ranking (Q3) Criteria Based (Q4, Q5)

Fig. 7. Understandability of MicroTestCarver versus manually written tests

PetType petType = petTypeFormatter.parse("Bird",
— Locale.ENGLISH);
assertThat (petType.getName ()) .isEqualTo ("Bird");
}
private List<PetType> makePetTypes () {
List<PetType> petTypes = new ArrayList<>();
petTypes.add (new PetType () {
{ setName ("Dog"); }
b
petTypes.add (new PetType () {
{ setName ("Bird"); }
1
return petTypes;
}

public void parseWhereBirdTest () throws Exception {
PetType PetType = new PetType();
PetType.setId(5);
PetType.setName ("bird");
ArrayList<PetType> petTypes = new ArrayList<>();
petTypes.add (PetType);

given (owners.findPetTypes ()) .willReturn (petTypes);
PetType parse = subject.parse("bird"”, Locale.ENGLISH);
PetType PetType_1 = new PetType();

PetType_1l.setId(5);

PetType_1l.setName ("bird");

assertThat (parse, is(PetType));

Listing 5: Comparison of a manual (A) and carved test (B)

D. Threats to validity

Threats to construct validity pertain to how we make our
observations. To mitigate this potential issue, we opted for
conducting our survey in person, ensuring that participants
accurately completed the questionnaire and did not select ques-
tions at random. Additionally, prior to starting the survey, we
provided a comprehensive explanation of the study scenario
to ensure participants’ attentiveness to our study’s context.
Moreover, in Section IV-B, we discussed our considerations
to minimize the potential bias in the participants’ behaviors.

Overall, 84% of the open-ended questions were completed.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

This high response rate enhances the reliability of our data.
However, it is important to acknowledge that our study exclu-
sively focused on students, which limits the generalizability
of our findings. To address this limitation in future work, we
intend to expand our evaluation by involving practitioners to
obtain a more diverse audience perspective.

An important threat to validity is that while we examined
test cases from four different subject systems that vary in size
and domain, we only examined 69 generated test cases for
RQ1, and the pool of 68 test cases for RQ2 and RQ3 is also
limited. In future work, we will extend our investigation to
more subject systems and more test cases.

To ensure the reliability of our conclusions, we employed
a two-phase approach that lets respondents both compare
and use criteria to judge test cases. However, it is worth
noting that in the criteria-based phase, we randomly selected
test cases for MTC, EvoSuite, and manually written tests.
Consequently, there exists a possibility that a test case chosen
represents a complex scenario, is more effective, and is less
understandable (especially in manually-written tests); on the
other hand, it might represent a simpler scenario but with
higher understandability. This discrepancy could threaten our
conclusion validity. In future studies, it would be beneficial to
explore more sophisticated selection strategies to account for
the variations in test case scenarios.

VI. RELATED WORK

In this section we briefly compare how our approach com-
pares to relevant other initiatives for test understandability.

A. Improving the understandability of automated testing

A number of studies have tried to improve the readability
of generated unit tests, focusing on the following aspects:

1) Naming and summarization: Zhang et al. proposed an
NLP-based technique that automatically generates descrip-
tive names for unit tests based on the common structure
and names of tests [40]. Daka et al. used coverage criteria
to generate unique names for automatically generated unit
tests [34]; Nijkamp et al. adapted this approach to fit test
amplification [41]. Roy et al. developed DeepTC-Enhancer,
which uses deep learning to automatically generate method-
level summaries and rename identifiers for the generated test
cases [35]. Panichella et al. proposed TestDescriber, which
generates test case summaries that describe the intent of a
generated unit test [42]. Panichella et al. have established that
developers working with the test case descriptions are quicker
in resolving bugs indicated by failing tests.

While these works focus on enhancing identifier names and
documentation, MicroTestCarver aims to generate tests that
are closer to manually written tests in terms of scenario.

2) Realistic Inputs: Afshan et al. have combined a natural
language model with a search-based test generation to improve
the readability of generated inputs [43]. Through a user study
they have observed that participants are faster at evaluating
inputs generated with their language model. Knowledge bases
have been used in some studies to generate realistic inputs;

116

Alonso et al. [44] utilized this approach to generate realistic
web APIs, and Wanwarang et al. [45] have used it to test
mobile applications. It is important to note that these afore-
mentioned works only provide linguistically realistic data. On
the other hand, MicroTestCarver can be used to generate actual
test data in a variety of dimensions; it can generate test data.

B. Capturing/Replaying and Test Carving

Elbaum et al. [27], [46] proposed an approach to carving and
replaying differential unit tests (DUTs) from system tests, as
well as strategies to filter and prune test cases. DUTs are a hy-
brid of unit and system tests that keep the system state. Tiwari
et al. [47] designed a tool to monitor the production workload
to generate DUTs. Kampmann et al. [48] used a carving
approach to extract parameterized unit tests from system test
executions. Thummalapenta et al. [49] mine dynamic traces to
generate .NET parameterized unit tests (PUTs) for the purpose
of regression testing. Derakhshanfar et al. [50] reproduce a
crash based using a search-based algorithm. MicroTestCarver
and these tools use dynamic information, but their purposes are
different; in comparison, MicroTestCarver’s primary objective
is to enhance the understandability of its generated unit tests.

VII. CONCLUSION

In this paper we present the MicroTestCarver approach and
associated tool. MicroTestCarver is a test generation tool that
tries to generate understandable unit tests by carving infor-
mation from E2E tests. The premise is that the information
that we carve from the E2E test enables to create a sensible
unit test scenario that contains actual test data, as opposed to
synthetic and non-realistic test data.

We have carried out an exploratory case study on 4 software
systems and a user study involving 20 participants; we have
made the following observations. Firstly, we were able to
generate 69 unit tests from carved data for 35 CUTs; 85%
of the generated tests are executable, and of those 96% are
passing tests (RQ1). Secondly, we found MicroTestCarver-
generated tests to be more meaningful and easier to understand
when we compare them to EvoSuite-generated tests (RQ2).
Thirdly, when we compare MicroTestCarver-generated tests
with manually written tests we observe that MicroTestCarver-
generated tests are quite close to manually written tests in
terms of understandability (RQ3).

In future work, we intend to combine our approach with
search-based algorithms to generate unit tests for corner cases
and still have meaningful test data and understandable test
cases. We aim to leverage NLP and Large Language Models
(LLMs) to combine source code and runtime execution infor-
mation, thereby improving the understandability of identifiers
and documentation. We also intend to extend our evaluation
by setting up a controlled experiment with practitioners.

ACKNOWLEDGMENTS

This research was partially funded by the Dutch science
foundation NWO through the Vici “TestShift” grant (No.
VI.C.182.032), and the EU Horizon 2020 H2020-ICT-2020-
1-RIA “COSMOS” project (N0.957254).

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

(11

(2]

(4]

[5

—

=
2

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

A.J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software problems
in the news,” in Proc. Int’l Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). ACM, 2014, pp. 32-39.
K. L. Beck, Test-Driven Development - By Example, ser. The Addison-
Wesley signature series. Addison-Wesley, 2003.

M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261-284, 2019.
M. E. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Trans. Software Eng., vol. 48,
no. 12, pp. 4925-4946, 2022.

M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their ides,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 2015, pp. 179-190.

M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in 37th IEEE/ACM International Conference on Software Engi-
neering (ICSE). 1EEE Computer Society, 2015, pp. 559-562.

S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Trans. Software Eng., vol. 36,
no. 6, pp. 742-762, 2010.

L. Baresi and M. Miraz, “Testful: automatic unit-test generation for
java classes,” in 32nd IEEE/ACM International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 281-284.

G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” in Proc. Joint Meeting Symp. Foundations of
Software Engineering and the European Softw. Eng. Conf. (ESEC/FSE).
ACM, 2011, pp. 416-419.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? A controlled
empirical study,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 4, pp.
23:1-23:49, 2015.

C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” in Conf. on Object-Oriented Programming Systems
and Applications (OOPSLA-Companion). ACM, 2007, pp. 815-816.
G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation
of whole test suites,” Empirical Software Engineering, vol. 20, no. 3,
pp. 783-812, 2015.

A. Arcuri, “An experience report on applying software testing academic
results in industry: we need usable automated test generation,” Empirical
Software Engineering, vol. 23, no. 4, pp. 1959-1981, 2018.

M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in Int’l Conf. on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). 1EEE, 2017, pp. 263-272.
C. E. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, p. 96, 2022.

G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276-291, 2013.

A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Trans. Software Eng., vol. 44, pp. 122—
158, 2018.

F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“Automatic test case generation: What if test code quality matters?” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA). ACM, 2016, pp. 130-141.

F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code:
An empirical study,” in 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST), 2016, pp. 5-14.

G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall,
“Scented since the beginning: On the diffuseness of test smells in
automatically generated test code,” Journal of Systems and Software,
vol. 156, pp. 312-327, 2019.

G. Fraser and A. Arcuri, “EvoSuite: On the challenges of test case
generation in the real world,” in International Conference on Software
Testing, Verification and Validation (ICST). 1EEE, 2013, pp. 362-369.
S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical

117

(23]

[24]

[25]

[26]

@
=

[34]

[35]

[41]

[42

study of effectiveness and challenges,” in International Conference on
Automated Software Engineering (ASE). 1EEE, 2015, pp. 201—-211.
G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical
investigation on the readability of manual and generated test cases,” in
International Conference on Program Comprehension (ICPC). 1EEE,
2018, pp. 348-351.

D. Oliveira, R. Bruno, F. Madeiral, H. Masuhara, and F. Castor,
“A systematic literature review on the impact of formatting elements
on program understandability,” 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2208.12141

R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Trans. on Software Engineering, vol. 36, no. 4, pp. 546-558, 2010.
E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Proceedings of Joint Meeting on
Foundations of Software Engineering (FSE). ACM, 2015, pp. 107-118.
S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differen-
tial unit test cases from system test cases,” in Proc. Int’l Symposium on
Foundations of Software Engineering (FSE). ACM, 2006, pp. 253-264.
A. Zeller, R. Gopinath, M. Bohme, G. Fraser, and C. Holler, The Fuzzing
Book. CISPA Helmholtz Center for Information Security, 2021.
“Btrace - a safe, dynamic tracing tool for the java platform,” December
2022. [Online]. Available: https://github.com/btraceio/btrace

“Serialize java objects to xml and back again.” December. [Online].
Available: http://x-stream.github.io

A. Deljouyi and A. Zaidman, ‘“generating unit tests based on
carving E2E tests,” Aug. 2023. [Online]. Available: https://github.com/
amirdeljouyi/SCAM-2023-microtestcarver-replication

V. Khorikov, Unit Testing Principles, Practices, and Patterns. Manning,
2019.

R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A library for implementing analyses and transformations of
java source code,” Software: Practice and Experience, vol. 46, no. 9,
pp. 1155-1179, 2016.

E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2017, pp. 57-67.

D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella,
D. Gonzalez, and M. Mirakhorli, “Deeptc-enhancer: Improving the
readability of automatically generated tests,” in Proc. Int’l Conf. on
Automated Software Engineering (ASE), 2020, pp. 287-298.

R. G. J. S. R. Ares, G., “Text highlighting combined with open-ended
questions: a methodological extension,” Journal of Sensory Studies,
vol. 38, 2023.

D. Winkler, P. Urbanke, and R. Ramler, “What do we know about
readability of test code? - a systematic mapping study,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022, pp. 1167-1174.

G. Meszaros, xUnit Test Patterns: Refactoring Test Code.
Wesley, 2007.

“Factory method pattern,” 2023. [Online]. Available: https://refactoring.
guru/design-patterns/factory-method

B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proc. Int’l Conf. on Automated
Software Engineering (ASE). ACM, 2016, pp. 625-636.

N. Nijkamp, C. Brandt, and A. Zaidman, “Naming amplified tests based
on improved coverage,” in Proc. Int’l Working Conf. on Source Code
Analysis and Manipulation (SCAM), 2021, pp. 237-241.

S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: An em-
pirical investigation,” in Proc. Int’l Conference on Software Engineering
(ICSE), 2016, pp. 547-558.

S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle
cost,” in International Conference on Software Testing, Verification and
Validation (ICST). 1EEE, 2013, pp. 352-361.

J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-
Cortes, “Arte: Automated generation of realistic test inputs for web apis,”
IEEE Transactions on Software Engineering, pp. 1-1, 2022.

T. Wanwarang, N. P. Borges, L. Bettscheider, and A. Zeller, “Testing
apps with real-world inputs,” in Proceedings of the International Con-
ference on Automation of Software Test (AST). ACM, 2020, pp. 1-10.

Addison-

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

[46] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 29-45, 2009.

[47] D. Tiwari, L. Zhang, M. Monperrus, and B. Baudry, “Production
monitoring to improve test suites,” IEEE Trans. on Reliability, 2021.

[48] A. Kampmann and A. Zeller, “Carving parameterized unit tests,” in 2079
IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2019, pp. 248-249.

[49] S. Thummalapenta, J. de Halleux, N. Tillmann, and S. Wadsworth, “Dy-
gen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in Tests and Proofs. Springer, 2010, pp. 77-93.

[50] P. Derakhshanfar, X. Devroey, G. Perrouin, A. Zaidman, and A. van
Deursen, “Search-based crash reproduction using behavioural model
seeding,” Softw. Test. Verification Reliab., vol. 30, no. 3, 2020.

118

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from |IEEE Xplore. Restrictions apply.

