

Delft University of Technology

Generating Understandable Unit Tests through End-to-End Test Scenario Carving

Deljouyi, A.; Zaidman, A.E.

DOI
10.1109/SCAM59687.2023.00021
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 23rd IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM)

Citation (APA)
Deljouyi, A., & Zaidman, A. E. (2023). Generating Understandable Unit Tests through End-to-End Test
Scenario Carving. In L. Moonen, C. Newman, & A. Gorla (Eds.), Proceedings of the 23rd IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM) (pp. 107-118). (Proceedings -
2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation, SCAM
2023). IEEE. https://doi.org/10.1109/SCAM59687.2023.00021
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCAM59687.2023.00021
https://doi.org/10.1109/SCAM59687.2023.00021

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Generating Understandable Unit Tests through
End-to-End Test Scenario Carving

Amirhossein Deljouyi
Delft University of Technology

The Netherlands

a.deljouyi@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands

a.e.zaidman@tudelft.nl

Abstract—Automatic unit test generators such as EvoSuite are
able to automatically generate unit test suites with high coverage.
This removes the burden of writing unit tests from developers,
but the generated tests are often difficult to understand for them.
In this paper, we introduce the MicroTestCarver approach that
generates unit tests starting from manual or scripted end-to-
end (E2E) tests. Using carved information from these E2E tests,
we generate unit tests that have meaningful test scenarios and
contain actual test data. When we apply our MicroTestCarver
approach, we observe that 85% of the generated tests are
executable. Through a user study involving 20 participants, we
get indications that tests generated with MicroTestCarver are
relatively easy to understand.

Index Terms—Automatic Test Generation, Carving and Re-
playing, Readability, Understandability, Unit Testing

I. INTRODUCTION

In the software-enabled world that we live in, reliable and

correct software is crucial [1]. As such, software quality

assurance has become a critical asset in the software engineer’s

toolbox. For example, automated testing in the form of unit

tests has become an important ingredient to ensure high quality

software [2]. While the importance of testing is generally

acknowledged, writing tests is seen as a tedious and time-

consuming task [3]–[6]. To relieve developers and/or testers of

the burden of writing test cases, the research community has

invested in developing and evaluating automatic test generation

approaches [7]–[10]. Two important test generation approaches

are Randoop [11] and EvoSuite [9]. For example, EvoSuite

is a search-based test case generation tool that uses genetic

algorithms to construct a test suite [12]. While the results in

terms of coverage are very convincing, industrial case studies

have indicated that the understandability of the generated test

cases is a considerable limitation [13]. The understandability

is hampered by the difficulty to follow the scenario depicted

in the test case, the unclear test data, and the meaningfulness

of generated assertions [14], [15].

Motivating example: Consider Listing 1 which depicts both

a manually written JUnit test and an EvoSuite-generated JUnit

test. When we compare the scenarios of these test cases, the

manually written one is seemingly easier to understand. For

example, when we zoom in on line 3 of and 11 of Listing 1,

we can see that in the former case we are constructing an

object to represent rainy weather, while the latter case does not

correspond to an actual weather situation (“S:q$ZHC!0J3”).

Moreover, in Line 6 a REST API response is mocked, which

checks if the weather that is returned by the mock corresponds

to an expected weather situation. In the case of the generated

test in lines 12–14, the test checks whether the object is null,

and checks the result of the toString() method, albeit with

constants that do not make sense in the domain.
In this paper we present an approach that carves information

from end-to-end (E2E) tests to generate understandable unit

tests. Resting on the assumption that E2E tests are available

for the system, during carving we extract the execution trace

from a running E2E tests, including the order of calls and

the actual inputs. Using that information, we gather scenarios

that are meaningful in the domain, and (parameter) values to

instantiate objects and pass to method calls.
When could our approach be of use to software engineers?

In a situation where a system is evolving and mainly has E2E

tests, e.g., Selenium tests, a software engineer might decide

that it is good to also have lower-level test cases, e.g., unit

tests, to act as a safety net during evolution. This safety net

will enable faster fault localisation than a typical E2E test can.

In this scenario, a software engineer can use our approach to

quickly and efficiently generate understandable unit tests.
We have created a prototype implementation for our ap-

proach, which we have coined MicroTestCarver. In this paper,

we evaluate that prototype. Our investigation is steered by the

following research questions:

RQ1 Can MicroTestCarver generate unit tests based on infor-

mation carved from E2E tests? (Feasibility)

RQ2 How do the tests generated by our approach compare to

EvoSuite-generated tests in terms of understandability?

RQ3 How do the tests generated by our approach compare to

manually written tests in terms of understandability?

We carry out an exploratory case study on 4 subject sys-

tems and a user study involving 20 participants to evaluate

MicroTestCarver. Our initial findings are that MicroTestCarver
is quite successful in generating unit tests, and in the compar-

ison with EvoSuite-generated and manually written tests, it

generates tests that are relatively easy to understand.

II. BACKGROUND

A. Unit Test Generation
Automated test generation approaches have been developed

in order to reduce testing costs. Today, tools such as Evo-

107

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM59687.2023.00021

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l W

or
ki

ng
 C

on
fe

re
nc

e
on

 S
ou

rc
e

C
od

e
A

na
ly

si
s a

nd
 M

an
ip

ul
at

io
n

(S
C

A
M

) |
 9

79
-8

-3
50

3-
05

06
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

SC
A

M
59

68
7.

20
23

.0
00

21

979-8-3503-0506-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

1| @Test
2| public void shouldCallWeatherService() {
3| var expectedResponse = new

WeatherResponse("raining", "a light drizzle");↪→
4| given(restTemplate.getForObject("Weather API",

WeatherResponse.class))↪→
5| .willReturn(expectedResponse);
6| var actualResponse = subject.fetchWeather();
7| assertThat(actualResponse,

is(Optional.of(expectedResponse)));↪→
8| }

9| @Test(timeout = 4000)

10| public void testEqualsWithNull() throws Throwable {
11| WeatherResponse weatherResponse0 = new

WeatherResponse("S:q$ZHC!0J3", "&_>!@K");↪→
12| boolean boolean0 =

weatherResponse0.equals((Object) null);↪→
13| assertFalse(boolean0);
14| assertEquals("WeatherResponse{weather=[Weather{mai �

n='S:q$ZHC!0J3', description='&_>!@K'}]}",
weatherResponse0.toString());

↪→
↪→
15| }

Listing 1: An example of (A) a manually written unit test and

(B) a EvoSuite-generated unit test

Suite [9] and Randoop [11] generate a test suite starting from

Java source code using a search-based or random approach

to reach higher coverage [16], [17]. Several recent empirical

studies focused on the challenges automated test generators

face in real life, and the quality of the tests generated [14],

[18]–[22]. Even though automated unit test generation has

made significant progress, generated unit tests are less readable

than their human-written counterparts [23]. Almasi et al. have

conducted an extensive evaluation of automatically generated

unit tests in the financial services domain, observing that

developers (1) find it difficult to follow the scenario of the

test case, (2) find the test data unclear, and (3) have difficulties

with the meaningfulness of generated assertions [14].

B. Readability and Understandability

Readability and understandability are two similar terms,

but have different meanings. Readability entails structural and

semantic characteristics that allow developers to understand

source code, while understandability is defined as the ease by

which developers can extract information from a program [24].

Buse and Weimer [25] built a readability metric for source

code. A predictive model was developed by Daka et al. [26] to

assess the readability of unit tests, which was applied to Evo-

Suite to produce more readable tests by including readability

as a secondary objective. However, understandability is more

qualitative and difficult to capture in a model. In this paper,

we use the term understandability to signify this difference.

C. Capturing and Replaying

The purpose of carving unit tests is to automatically extract

a collection of unit tests replicating the calls seen during the

higher-level test [27]. The process is sometimes called “record

and replay”, as the key idea is to record calls, and replay them

later – either collectively or selectively [28].

Web�
Services

Trace�
Agent

Front-
End

E2E Tests
(Manual or
Scripted)

Trace
Information

Test�
Generator Unit TestsGenerate Tests

API Calls

Listening/Capturing the
Method Calls

Collect the information
has been captured in
a trace log

Source
code

Pass the static
information

Parser
Parse the
trace logs

Pass the
dynamic information

A

B

C

Web
Services

Front-
End API Calls

Application

Fig. 1. Overview of the carving framework

III. THE MICROTESTCARVER FRAMEWORK

Figure 1 presents an overview of our approach. The Mi-
croTestCarver framework takes an E2E test, which can either

be a manual or scripted E2E test, and it generates unit tests

in three phases: instrumenting, parsing, and generating unit
tests. In the first step, it instruments the E2E tests and records

information, such as calls and input data; in the second step,

it parses this information, and finally, it uses a template-based

approach to generate unit tests based on the parsed data.

Our approach “carves scenarios” from the E2E tests to

reproduce (smaller elements of) them in the form of unit

tests. Our hypothesis is that these higher-level test scenarios

embedded in the E2E tests and containing concrete values, can

lead to easier to understand unit test scenarios.

Our approach is implemented in a Java-based prototype

called MicroTestCarver (MTC). Our tool focuses on generating

tests for public methods, which is similar to how a developer

would produce unit tests for their production code.

Next, we describe each phase of our approach in detail.

A. E2E tests instrumentation

We use BTrace [29] as the basis for our instrumentation

tool. We have created a fork of BTrace and developed some

additional functionality for our carving approach. In particular,

we now collect detailed information of types, and we also

collect and serialize information on fields, arguments, and

callbacks in a uniform manner. In addition, we chose to use

XStream [30] in the modified Btrace because it is an advanced

and robust serialization library for Java, and it can handle

complex custom objects effectively. The modified version of

BTrace is available in the replication package [31].

All recorded information is written to a trace log. Objects

of non-primitive types are serialized into a serialized object

pool. An example of a trace log is shown in Listing 2.

Basically, a trace log is a graph, in which we identify two

types of methods: a NodeMethod, which is a method that calls

other methods of interest in the test generation process, and

a LeafMethod, which could still call other methods, but those

methods are no longer of interest in the test generation process

(and could for example be mocked). The concept of a trace log

is illustrated in Figure 2, in which three NMs are highlighted

that are called in the ExampleController class. Each NM

108

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

NM1

NM2

LM1

LM2

NM3

LM3 LM4 LM5

NM1: ExampleController.weather()
NM2: ExampleController.fetchWeather()

NM3: ExampleController.hello()

Fig. 2. An example of trace log with their classes

and their LMs are exemplified in Listing 2. The leaves in a

trace log are either a LM or a NM without a method call. We

will now explain both concepts.

LeafMethod. A LeafMethod (LM) is a called method that

does not have a callee that the trace script is watching. An LM

refers to a method that is outside the package being watched;

it may be a method in a third-party library. Each LM has

a name, a type, a set of arguments, a state of the object

(i.e., attribute values) before executing the method body, and

if the return type is not void, a return value. In lines 11–

19 of Listing 2, an LM with the name of RestTemplate

is illustrated: its arguments are a string, class, and an array

of objects. In lines 14–19, its callback is shown, which is a

container object (Optional) of type WeatherResponse; it is

serialized in a serialized object pool with the name 1e23ee0e.

NodeMethod. A NodeMethod (NM) is a method that is

called within the scope of tracing, and a test will be gen-

erated according to this method during the test generation

phase. Each NM, in addition to all the properties of an

LM, includes a set of methods called in it; these methods

can be a LeafMethod or NodeMethod. On line 1 of List-

ing 2, weather is a NM with no arguments and several

fields, such as personRepository and weatherClient.

fetchWeather(), which is a NodeMethod, is also called in

this NM; it finally returns a String on lines 22–24.

An important element to consider is what constitutes a

LeafMethod and a NodeMethod. During the instrumentation

phase, we focus on a particular packageName; we watch the

classes inside the package and generate tests for them. Classes

outside of the package, but that are called in methods residing

inside the package, are labeled LeafMethods.

B. Parsing

As we aim to create building blocks for the test generation

phase, we parse the trace log and deserialize the serialized

objects with the aim of reconstructing the trace data into actual

runtime objects. We do so by unifying all elements that were

recorded, i.e., the trace log itself and the serialized objects. We

create a set of classes that group together NodeMethods based

on the classname in the fully qualified path. For example, in

Fig. 2, ExampleController will be reinitiated based on the

NMs whose class name is ExampleController. In order

to create a class, its arguments, fields, and methods will be

assigned based on its NMs, and its constructor method is a

NodeMethod with <init> name.

C. Generating Unit Tests

We generate test cases based on the classes created in the

Parsing phase and the analysis of the existing source code. We

1 public String ExampleController#weather

NodeMethod1

:{

2 Args: []

3 Fields: [{

4 name: personRepository,

5 type: person.PersonRepository, ...

6 }, {

7 name: weatherClient,

8 type: weather.WeatherClient, ...

9 },]

10 public Optional weather.WeatherClient#fetchWeather

NodeMethod2
:{ ...

11 virtual Object RestTemplate#getForObject (String,

12 java.lang.Class, Object[])[737ff5c4]

13 Args: [...]

14 Callback: {

15 hash: 1e23ee0e,

16 type: java.util.Optional,

17 serialized: true,

18 object: Optional[WeatherResponse{'Clear', 'clear sky'}],

19 }

...

20 }:

21 public String weather.WeatherResponse#getSummary

LeafMethod2

:{ ... :}

22 Return: {

23 type: String,

24 object: "Clear: clear sky", ...

25 }

26 }:

27 public String ExampleController#hello(String)

NodeMethod3

:{

...

28 interface Optional

person.PersonRepository#findByLastName(String)↪→
29 public String person.Person#getFirstName:{...}

30 public String person.Person#getLastName:{...}

...

31 :}

LeafMethod1

LeafMethod3-5

Listing 2: A shortened example of a trace log

used JUnit as test framework and Mockito for mocking, and

we utilized their annotations to improve legibility. In addition,

we used Khorkiov’s guidelines [32] for writing unit tests, in

order to ensure the carved tests have a clear and readable

structure. Listing 3 shows an example of a unit test generated

by MTC based on the previous phases. We will first explain

how we reproduce objects in a test, and then explain how

different components of a test (fields, set-up, and test method
body) will be produced.

1) Reproducing Objects: In order to accurately reproduce

objects in various parts of a test, such as setting values,

invoking methods, and making assertions, we need both dy-

namic and static analysis. To accomplish this, we combined

Spoon [33] and Java reflection. As a result of analyzing the

source code with Spoon, we are able to identify the appropriate

constructor that can recreate the parsed object and set its fields.

We have implemented three strategies in order to reproduce the

parsed objects: Unmarshalling, ToString, and Guessing. The

Unmarshalling strategy is used when the object is deserialized,

and it will reveal how to recreate the runtime object. We

have implemented unmarshallers for various types: primitive

types, String, Collection, Map, Optional, Enum, Date, Locale,

and BigDecimal. For other types not specifically handled by

109

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

dedicated unmarshallers, we use the ReflectionUnmarshaller

as a fallback, which replicates an object by setting its fields.

This strategy reproduces WeatherResponse in line 15 and

an Optional object in line 22. The guessing strategy is used

when the object is not deserialized, and we are trying to

reproduce it like the custom unmarshaller by setting its fields,

with this difference that its fields come from the trace log,

not a runtime object. The toString strategy is used for the

assertions when the object is not deserialized, but it overrides

the toString() method.

2) Fields: The fields of a test class include the declaration

of the CUT (class under test) and setting up a mocked

object if necessary. As we want to make it very clear what

the CUT is, we name that field subject. The objects that

are annotated as @Mock contain methods that are called in

the test methods. This is illustrated in Listing 3 where the

subject is the declaration of ExampleController, the CUT;

weatherClient and personRepository are the objects

that should be mocked since its methods (fetchWeather and

findByLastName) are called (lines 14 and 22).

3) Set-up: Every test class has a set-up part containing

a common initialization that is repeated in all methods, i.e.,

the test fixture [32]. The heuristic used for setting the default

values of the fields is to select a value that is repeated most

often in the NMs of a class. In doing so, a significant amount

of duplication can be avoided. The state of the subject object

will also be set here, for example, on line 10 the subject object

is initiated and used in lines 16 and 23.

4) Test Method: In order to have a simple and uniform

structure, we use the Arrange-Act-Assert (AAA) pattern [32].

Additionally, this pattern makes test cases easier to read and

understand. We will discuss the elements of a test method in

the following: method name, arrange, action, and assertion.

Test Name: When developers navigate among sets of unit

tests, the names of the tests aid them in understanding the

purpose and scenario of the tests. While there are complex

approaches to naming the methods [34], [35], we used a

simple heuristic approach for creating unique tests cases based

on inputs and output of a NodeMethod. If there is only

one NodeMethod for the MUT (method under test), the test

name will be [MUT]Test, like weatherTest (line 13). If

there are multiple NodeMethods, the test name will be a

combination of the types and values of the inputs and output

like helloWhereCarterTest (line 20). This name is unique

since if all conditions were the same, a duplicate test would

be recognized. The test name pattern is:

([MUT][Where[Inputs]∗][Returning[Output]]?Test)

Arrange: The arrange section involves bringing the subject

and its dependencies into the desired state as well as mocking

any other methods in the MUT that need to be called.

By first determining which objects to mock, which is

done in the fields section, we can mock the methods

based on the NM’s callees (LeafMethods) and their call-

backs. As shown in line 14 of Listing 3, the behav-

1 public class ExampleControllerTest {
2 private ExampleController subject;

3 @Mock

4 private WeatherClient weatherClient;

5 @Mock

6 private PersonRepository personRepository;

7 @BeforeEach

8 public void setUp() throws Exception {

9 MockitoAnnotations.openMocks(this);

10 subject = new ExampleController(personRepository,

weatherClient);↪→
11 }

12 @Test

13 public void weatherTest() throws Exception{

14 given(weatherClient.fetchWeather()).willReturn(

15 Optional.of(new WeatherResponse("Clear", "clear sky")));

16 String weather = subject.weather();

17 assertThat(weather, is("Clear: clear sky"));

18 }

19 @Test

20 public void helloWhereCarterTest() throws Exception{

21 Person carter = new Person("james", "carter");

22 given(personRepository.findByLastName("carter"))

.willReturn(Optional.of(carter));

23 String hello = subject.hello("carter");

24 assertThat(hello, is("Hello james carter!"));

25 }

26 }

Parameters

Set-Up

Test Method

Listing 3: An example of a MTC-generated unit test

ior of weatherClient.fetchWeather, which retrieves the

weather from the weather service, is mocked.

Additionally, if the value of the fields in the NodeMethod

is different from the one set in the set-up, it will be reset in

this section.

Act: This section contains the method called on the CUT,

the input values passed to it, and output values captured. The

return type of the NM is assigned to the output type, e.g.,

weather() (line 16) and hello() (line 23).

Assert: This section contains the verification of the return

value, or the final state of the subject with the expected results.

We use the assertThat assertion, which compares the output

of the MUT and the expected result captured in the NM, e.g,

lines 17 and 24 in Listing 3.

IV. STUDY SETUP AND DESIGN

To evaluate the effectiveness of MicroTestCarver in im-

proving the generation of understandable test cases in real-

world applications, this section describes the methodology of

evaluation. We investigate the following research questions.

RQ1 Can MicroTestCarver generate unit tests based on infor-

mation carved from E2E tests? (Feasibility)

RQ2 How do the tests generated by our approach compare to

EvoSuite-generated tests in terms of understandability?

RQ3 How do the tests generated by our approach compare to

manually written tests in terms of understandability?

110

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PROJECTS USED IN THE EVALUATION

Application Version #Test Files #Stars #Forks #Commits Scale

Alfio 2.0.5 189 1.5K 2.5K 3.6K Large
Lab-Insurance 1.0.0 24 0.5K 0.2K 384 Large
Petclinic 2.7.3 23 6.5k 20K 0.8K Mid
Spring-Testing 0.0.1 13 0.9K 0.4K 130 Small

A. Study Setup

We have carried out the evaluation on four popular open-

source Java web applications. We have used the following

criteria for our selection of projects:

• The project is an open-source Java web application.

• The project is popular, active, and mature as measured in

terms of forks, stars, and commits.

• The project has a test suite with tests for different layers

of the test pyramid, especially unit tests.

Using these criteria, we found nearly 200 projects on

GitHub. Next, we manually search among these projects to

select four projects from different domains with varying sizes.

Table I shows the selected projects: Alfio1, LAB-Insurance2,

Spring-Testing3, and PetClinic4. We manually conducted end-

to-end tests for these projects, which covered their core

functionalities; the E2E tests are recorded and included in

the replication package [31]. Manually written unit tests are

available for all of these applications, which makes it possible

to compare them with carved tests for RQ3.

B. Study Design

The first research question investigates the feasibility and

analyzes the MicroTestCarver approach. For the second and

third research questions, we designed and conducted a survey

involving 20 participants. The participants compared under-

standability of the MicroTestCarver tests with tests that are

automatically generated by EvoSuite, and to tests that were

manually written and are part of the open source projects.

Although we had 20 respondents in total, we did collect

30 responses for each question. This is due to us assigning

two test methods to 10 of the participants, while the other

10 respondents got a shorter survey. This enabled us to get a

wider range of responses.
1) Participants: We have conducted a survey among BSc,

MSc and PhD students. In order to recruit participants, we

advertised our survey on our university’s internal Mattermost5

chat service, where computer science students can be found.

Our participants include 10 BSc, 3 MSc and 7 PhD students.
2) Survey: The 20 participants were asked to read and

evaluate a set of test cases in six questions, which are depicted

in Table II. In the first round (questions 1–3), participants

selected more understandable test cases among MTC, Evo-

Suite, and manually written tests. By using text highlighting

1https://github.com/alfio-event/alf.io
2https://github.com/asc-lab/micronaut-microservices-poc
3https://github.com/hamvocke/spring-testing
4https://github.com/spring-projects/spring-petclinic
5https://mattermost.com, last visited June 6th, 2023.

Manually- Written�
Tests

EvoSuite TestsMTC Tests
Q1

Q3

Q2

Q4

Q5

Q6

Fig. 3. Coverage of questions with regard to test sources.

and open-ended questions combined in questions 1 and 2,

we can gain more detailed and accurate insights into why

participants think the test is more understandable [36]. Text

highlighting allows participants to quickly and accurately refer

to specific parts of the test that they believe made it more

understandable, while open-ended questions provide a more

in-depth understanding of their opinion. In the second round

(questions 4–6) participants rated the understandability of the

test cases (MTC, EvoSuite, and manually written) based on

the understandability criteria, shown in Table III (similar to

related work [35], [37]).

In order to provide a systematic and unbiased survey we

took three considerations: 1) Test cases were displayed without

identifying which test generator was used to create them or

whether they were manually created, 2) for each question, we

had a pool of test methods that we wanted to evaluate (see

column 4 of Table II); we let the online survey (Qualtrics)

randomly select, 3) for the first three questions in which we

want to compare tests from different sources (MTC, manual,

and EvoSuite), we made sure to compare tests that validate

the same functionality, and we randomized the order of the

presented fragments of test code. Figure 3 illustrates how the

question rounds cover the different types of tests.

In Q1, we compared 21 pairs of MTC and EvoSuite

tests, where pair means that both tests evaluate the same

functionality. In the second question, we compared MTC with

manually written tests through 12 pairs. The third question

ranks MTC, EvoSuite, and manually written tests in terms of

TABLE II
QUESTIONNAIRE OVERVIEW

Title Type of Question #Tests RQs

Q1 Comparison with EvoSuite tests Multiple Choice,
Highlight, Open

21 RQ2

Q2 Comparison with manually written
tests

Multiple Choice,
Highlight, Open

10 RQ3

Q3 Ranking Tests (MTC, EvoSuite,
manually written tests)

Ranking 3 RQ2,
RQ3

Q4 Evaluate MTC test based on the
criteria

Likert, Open 10 RQ2,
RQ3

Q5 Evaluate EvoSuite test based on the
criteria

Likert, Open 12 RQ2

Q6 Evaluate manually written test
based on the criteria

Likert, Open 12 RQ3

111

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

TABLE III
UNDERSTANDABILITY CRITERIA

Criterion Sub-Criterion Description

Semantic
Descriptive naming The names of variables and methods that

describe their functions.
Descriptive test data Test data clearly (input, output, mock

data) illustrate the test scenario.

Naturalness
Meaningful in the context The test scenario is meaningful in the

domain of the system.
Intent (easy to understand) The test behavior is easy to understand.

their understandability among 3 test pairs. In questions 4 to 6,

participants will rate the understandability of MTC, EvoSuite,

and manually written test cases in isolation according to our

proposed understandability criteria on a scale of 1 to 5. In

each of these questions, we randomly selected 12 unit tests

that are not included in questions 1–3. We can gain insight

into how different parts of a test are perceived in terms of

understandability, as well as the understandability of tests not

common to each group of tests, since questions 1–3 only

address tests that cover the same functionality.

V. RESULT

Our focus in this investigation is on the understandability of

the generated test cases, and not so much on their effectiveness

(e.g., in reaching high code coverage). In the following we

discuss the results of our research questions.

A. RQ1: Feasibility of the unit test generation based on E2E
Tests

Table IV presents the results of the carved unit tests in

terms of execution results. In total, 69 tests are carved for

35 CUTs of the four study subjects. Of the 69 carved tests, 59

are executable (85%), 61 have an executable body (88%), and

of the 35 test classes, 31 have executable test fixtures (88%).

In addition, 96% of the tests passed.

Next, we investigate the reasons for generating both non-

executing and failing tests:

1) Execution Failure Analysis: We have identified four

causes for the execution failure of six tests. We annotated them

R1 to R4 and analyze them.

R1: Passing a class as an argument. In the tests of

WeatherClientTest (row 2) and AlfioMetadata (row 21)

a class is passed statically as an argument to invoke a method

(e.g., for mocking, or initializing a CUT). However, as BTrace

only has access to runtime objects during carving, we cannot

determine which object is being passed statically.

R2: Type conversion error. PetTest (row 8) fails to execute

because of a failing type conversion. More specifically, in this

case, Hibernate acts as a proxy and changes the object type

at runtime, which leads to type inconsistency at runtime.

R3: Unable to reproduce an object. An object may fail

to reproduce due to failures during the instrumentation or

generation phases. For instance, in row 21, 30, and 33,

XStream failed to serialize an object, and MTC failed to

reproduce an object using alternative unmarshalling strategies

such as ToString and a guessing approach. In row 14, the

failure to reproduce an object is attributed to the absence of

a suitable unmarshaller for the given type. Furthermore, in

row 22, BTrace was unable to instrument an argument, leading

to the inability to construct an object.

R4: Private method. If the method is private, it is not

possible to instantiate from this class, and technically, it is

out of the project scope to generate tests for private methods.

systemLevelTest (row 23) has a private method, and this

method cannot be invoked in the class.

2) Test Failure Analysis: We use the Hamcrest matcher

(assertThat and is) for assertions, which internally invokes

the equals method to compare two objects. In order for the

test to pass, the equals method needs to be overridden for the

CUT, otherwise it relies on the memory address comparison

implementation of equals in the Object class. petTest

(row 8) and CalculatePriceHandlerTest (row 33) failed

because equals was not implemented for their classes, but

when we we implemented it, the tests passed.

Even though MicroTestCarver is not designed to optimize

test coverage (i.e., it is not search-based), Figure 4 compares

instruction coverage for each application using MicroTest-
Carver, existing manually written tests, EvoSuite-generated

tests, and their combinations for each application. Figure 4

demonstrates the effectiveness of MTC in enhancing coverage

by including scenarios not covered by EvoSuite-generated or

manually written tests. It is important to note that although

search-based approaches excel at generating tests for corner

cases and improving coverage, they may fail to mock certain

methods due to a lack of runtime information access. Notably,

EvoSuite-generated tests combined with MTC-generated tests

provided higher coverage in the projects.

As Alfio is quite a large project, we exclude certain classes,

such as configuration classes, to measure coverage with a

better representation of the core functionality. In the Lab-

Insurance, coverage evaluation was limited to pricing and

product microservices.

Highlight of RQ1: Feasibility
Our results indicate that 85% of the unit tests that Mi-
croTestCarver generates from carved information from E2E

tests are executable. We further provide reasons for the non-

compilation or failure of MicroTestCarver -generated tests.

B. RQ2: Understandability of carved tests vs EvoSuite tests

Figure 5 illustrates the understandability of MTC and Evo-

Suite generated tests based on comparisons, rankings, and

��

��

�� ��

��

��

��

�	

�

��

��

����

�

��

�	

��

�

��

��

�
�

�� ��

�
� �������� ���
���� �� �� ��� �� ���� ���������

��� ����� !" ���#�#���	
��
 �$%�$& ���#'#�$%�$& �&&

Fig. 4. Instruction coverage for each study subject

112

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EXPERIMENTAL RESULTS OF THE GENERATED UNIT TESTS ON THE STUDY SUBJECTS USING MICROTESTCARVER

Test Class Executable Executable Failures Pass/Fail ExecutableFixture Tests

1 ExampleControllerTest True 4/4 4/4 4/4
2 WeatherClientTest False 0/1 R1 - 0/1
3 PersonTest True 2/2 2/2 2/2
4 WeatherResponseTest True 1/1 1/1 1/1

Spring-Testing: 8 Tests 3/4 (75%) 7/8 (87%) 1 7/7 (100%) 7/8 (87%)
5 NamedEntityTest True 2/2 2/2 2/2
6 BaseEntityTest True 1/1 1/1 1/1
7 PersonTest True 2/2 2/2 2/2
8 PetTest True 2/3 R2 1/2 2/3
9 PetTypeFormatterTest True 3/3 3/3 3/3
10 PetTypeTest True 2/2 2/2 2/2
11 SpecialtyTest True 2/2 2/2 2/2
12 VetsTest True 1/1 1/1 1/1
13 OwnerTest True 5/5 5/5 5/5
14 OwnerControllerTest True 1/2 R3 1/1 1/2
15 ClinicServiceImplTest True 1/1 1/1 1/1

PetClinic: 24 Tests 11/11 (100%) 22/24 (91%) 2 21/22 (95%) 22/24 (91%)
16 AuthorityTest True 1/1 1/1 1/1
17 ConfigurationKeyValuePathLevelTest True 2/2 2/2 2/2
18 ProviderAndKeysTest True 1/1 1/1 1/1
19 EventDescriptionTest True 2/2 2/2 2/2
20 LanguageTest True 2/2 2/2 2/2
21 AlfioMetadataTest False 0/1 R1, R3 - 0/1
22 ConfirmationEmailConfigurationTest False 1/1 R3 - 0/1
23 SystemLevelTest False 1/1 R4 - 0/1
24 LocaleDescription True 2/2 2/2 2/2
25 OrganizationContactTest True 2/2 2/2 2/2
26 TicketReservationStatus True 1/1 1/1 1/1

Alfio: 16 Tests 8/11 (72%) 15/16 (93%) 3 13/13 (100%) 13/16 (81%)
27 ChoiceQuestionDTOTest True 1/1 1/1 1/1
28 NumericQuestionDTOTest True 1/1 1/1 1/1
29 ChoiceDTOTest True 2/2 2/2 2/2
30 ProductsControllerTest True 0/2 R3 - 0/2
31 CalculatePriceCommandTest True 5/5 5/5 5/5
32 CalculatePriceResultTest True 2/2 2/2 2/2
33 CalculatePriceHandlerTest True 1/3 R3 0/1 1/3
34 CalculationTest True 3/3 3/3 3/3
35 CoverTest True 2/2 2/2 2/2

LAB-Insurance: 21 Tests 9/9 (100%) 17/21 (80%) 4 17/17 (100%) 17/21 (80%)
Total: 69 Tests, 35 Test classes 31/35 (88.5%) 61/69 (88.4%) 10 56/58 (96.5%) 59/69 (85%)

criteria-based questions. The results indicate that MTC tests

are generally easier to understand than EvoSuite tests, as MTC

received a higher score across all questions.

When participants were asked to select which test case is

more understandable, out of the 30 responses, the majority

(70%) expressed a preference for MTC over EvoSuite, while

the remaining 30% selected EvoSuite. In the ranking question,

24 out of 30 responses indicated MTC tests to be more

understandable than EvoSuite tests.

During the highlight and open-ended questions, participants

emphasized that MTC tests provided clearer test data and logic

compared to EvoSuite tests (8 mentions). Additionally, five

participants found the separate test setup in MTC tests to make

the overall testing process simpler to understand. However,

two respondents highlighted a preference for EvoSuite tests

because objects were instantiated within the same test method.

Regarding identifiers, participants indicated a preference for

clear, sensible, and concise names rather than long and vague

ones. Furthermore, participants noted that the construction of

objects influenced their understanding of identifiers. In this

regard, five respondents favored identifiers in MTC tests, while

three preferred identifiers in EvoSuite tests.

In terms of assertions, participants expressed a preference

for specific assertions that go beyond simple functionality

testing. Three participants specifically mentioned a preference

for assertions such as assertNull and assertEquals over

assertThat. Three other participants found the assertions in

EvoSuite to be insufficient for adequately testing the intended

functionality. Participants also emphasized the importance of

legibility in tests and favored the use of AssertJ annotations

(for mocking and assertions) over pure JUnit. They suggested

that providing enough space for different parts of the tests

enhances their understandability. One participant noted that

MTC demonstrated a good separation between different parts

of the test, while another mentioned that the separation was

not satisfactory in a question where the test setup was longer.

Furthermore, some participants stated that shorter lines

contribute to simpler tests. Two participants preferred EvoSuite

tests due to this factor, while one participant selected the MTC

test for the same reason. Listing 4 presents examples of tests

generated by MTC and EvoSuite in order to give the reader a

sense of how the tests are generated by different tools.

The criteria-based questions showed that MTC had a signifi-

cantly higher average score than EvoSuite (4.23 vs. 2.85 — see

Figure 5). Figure 6 illustrates the distribution of participants’

opinions regarding each criterion for both MTC and EvoSuite

tests. Analyzing the results of criteria 1 and 2 for MTC and

EvoSuite, it becomes evident that MTC tests’ semantics are

113

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

clearer and more understandable for developers. Additionally,

criteria 3 and 4 suggest that MTC tests feel more natural

to developers. In response to the open-ended question, par-

ticipants expressed concerns about non-descriptive identifiers

and test data. One participant remarked, “The names of the
variables are not at all descriptive, and the meaning of them
is hard to figure out. Also, the data are hard to understand.”
They also criticized the assertions as obvious and shallow.

Conversely, participants found the test data and identifiers in

MTC tests to be descriptive, albeit with some lines of code in

the arrangement being redundant and unnecessary.

When analyzing the survey results and conducting manual

analysis, we discovered the crucial role of test data in compre-

hending a test case. Specifically, when random, null, empty,

or mocked inputs are employed in EvoSuite, it becomes more

challenging to grasp the underlying logic and purpose of a test.

However, it should be noted that EvoSuite-generated tests tend

to be shorter due to the utilization of test case minimization

as a secondary search objective.

Highlight of RQ2
When we compare carved tests with EvoSuite-generated

tests, we observe that participants value the use of actual

test data which is derived from E2E in carved tests makes

the test easier to understand and more meaningful. Search-

based approaches are good at generating short test cases.

C. RQ3: Understandability of the carved tests vs manual tests

Figure 7 presents a comparative analysis of the under-

standability of MTC and manually written tests through com-

parisons, rankings, and criteria-based questions. The results

indicate a relatively similar level of understandability between

MTC tests and manually written tests.

The participants were asked to select the most understand-

able test case, with 52% choosing MTC tests and 48% opting

for manually written tests. MTC tests perform slightly better

in the ranking question, with 18 responses ranking them as

more understandable against 12 responses for EvoSuite tests.

When participants provided feedback through highlighting

and open-ended questions, their opinions regarding MTC-

generated and manually written test cases were mostly similar.

However, they did indicate that comprehending the test data

Fig. 5. Understandability of MicroTestCarver versus EvoSuite tests

@Test
public void testCreatesPetType() throws Throwable {

PetType petType0 = new PetType();
assertNull(petType0.getName());

}
--
public void setUp() throws Exception {

subject = new PetType();
subject.setName("cat");
subject.setId(1);

}
@Test
public void getTypeTest() throws Exception {

PetType getType = subject.getType();

PetType petType = new PetType();
petType.setId(1);
petType.setName("cat");

assertThat(getType, is(petType));
}

Listing 4: First test is a test generated by EvoSuite, and second

one is generated by MicroTestCarver .

and the mocking process in MTC tests was relatively easier in

comparison to manually written tests. Specifically, participants

mentioned the superiority of MTC test data seven times,

while favoring manually written test data in three instances.

Additionally, in one case, they indicated a preference for

strong typing over the use of “var” in manually written tests.

Regarding identifiers, they observed that the identifiers

(variable names and test method names) in MTC tests were

shorter, while those in manually written tests were more

descriptive and clear.

Participants had mixed views on the length and structure

of the tests. In five instances, they mentioned that MTC tests

were shorter, while in the other five instances, they mentioned

that manually written tests were shorter. Notably, in two pairs,

we observed that manually written tests are overly long and

try to test too much (so-called eager tests [38]). Furthermore,

participants mentioned that the manually written tests had less

code duplication due to the use of best practices such as the

factory method [39] and parametrized test cases. An example

of a comparison illustrating the greater understandability of

a manually written test than a carved one is depicted in

Listing 5. Although both tests employ meaningful test data

and exhibit understandable logic, the manually written test

has better structure and less duplication. For mocking the

petType list the manual test utilizes the makePetTypes()

factory method, enhancing readability and reusability.

Moreover, the findings from the criteria-based questions

indicate that MTC exhibited a slightly higher average score

(4.23) compared to manually written tests (3.95), as can be

seen in Figure 5. Figure 6 visually represents the participants’

opinions on test cases generated by MTC and manually

written tests. Although the results for criteria 1 and 2 were

similar between MTC and manual testing, the participants

found the semantics of MTC tests to be more comprehensible.

Additionally, both manual testing and MTC were perceived by

respondents as being almost equally natural.

In the open-ended question, participants mainly empha-

sized that the intent behind manually written tests was easily

114

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The criteria-based results for the MTC, EvoSuite, and tests written manually

understandable, a consequence of comprehensible test data

and logic. However, their perception of the descriptiveness

of identifiers and test data was mixed. While participants

expressed positive opinions about the identifiers on numerous

occasions (ten times), they also indicated that the identifiers

of the test cases were sometimes unclear (six times). The

understandability of manually written tests varies depending

on the project, e.g., in Spring-Testing and Petclinic, manually

written tests achieved higher scores in the criteria-based ques-

tions than in the Alfio project. In contrast, MTC employs a

template-based approach, and the rating is almost consistent.

Participants often raised concerns about lengthy lines in the

setup methods in MTC tests, which are addressed in manually

written tests through best practices such as parametrized tests.

Highlight of RQ3
Comparing participants’ answers we get indications that

using data derived from E2E tests brings MTC tests closer

to manually written tests in terms of understandability. We

also observe that some manually written tests use some

best practices, e.g., parameterized tests, which enhances

sometimes the understandability of manually written tests.

Fig. 7. Understandability of MicroTestCarver versus manually written tests

@Test
void shouldParse() throws ParseException {

given(this.pets.findPetTypes()).willReturn(makePetTypes(�
));↪→

PetType petType = petTypeFormatter.parse("Bird",
Locale.ENGLISH);↪→

assertThat(petType.getName()).isEqualTo("Bird");
}
private List<PetType> makePetTypes() {

List<PetType> petTypes = new ArrayList<>();
petTypes.add(new PetType() {

{ setName("Dog"); }
});
petTypes.add(new PetType() {

{ setName("Bird"); }
});
return petTypes;

}

public void parseWhereBirdTest() throws Exception {

PetType PetType = new PetType();
PetType.setId(5);
PetType.setName("bird");
ArrayList<PetType> petTypes = new ArrayList<>();
petTypes.add(PetType);

given(owners.findPetTypes()).willReturn(petTypes);

PetType parse = subject.parse("bird", Locale.ENGLISH);

PetType PetType_1 = new PetType();
PetType_1.setId(5);
PetType_1.setName("bird");

assertThat(parse, is(PetType));
}

Listing 5: Comparison of a manual (A) and carved test (B)

D. Threats to validity

Threats to construct validity pertain to how we make our

observations. To mitigate this potential issue, we opted for

conducting our survey in person, ensuring that participants

accurately completed the questionnaire and did not select ques-

tions at random. Additionally, prior to starting the survey, we

provided a comprehensive explanation of the study scenario

to ensure participants’ attentiveness to our study’s context.

Moreover, in Section IV-B, we discussed our considerations

to minimize the potential bias in the participants’ behaviors.

Overall, 84% of the open-ended questions were completed.

115

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

This high response rate enhances the reliability of our data.

However, it is important to acknowledge that our study exclu-

sively focused on students, which limits the generalizability

of our findings. To address this limitation in future work, we

intend to expand our evaluation by involving practitioners to

obtain a more diverse audience perspective.

An important threat to validity is that while we examined

test cases from four different subject systems that vary in size

and domain, we only examined 69 generated test cases for

RQ1, and the pool of 68 test cases for RQ2 and RQ3 is also

limited. In future work, we will extend our investigation to

more subject systems and more test cases.

To ensure the reliability of our conclusions, we employed

a two-phase approach that lets respondents both compare

and use criteria to judge test cases. However, it is worth

noting that in the criteria-based phase, we randomly selected

test cases for MTC, EvoSuite, and manually written tests.

Consequently, there exists a possibility that a test case chosen

represents a complex scenario, is more effective, and is less

understandable (especially in manually-written tests); on the

other hand, it might represent a simpler scenario but with

higher understandability. This discrepancy could threaten our

conclusion validity. In future studies, it would be beneficial to

explore more sophisticated selection strategies to account for

the variations in test case scenarios.

VI. RELATED WORK

In this section we briefly compare how our approach com-

pares to relevant other initiatives for test understandability.

A. Improving the understandability of automated testing

A number of studies have tried to improve the readability

of generated unit tests, focusing on the following aspects:

1) Naming and summarization: Zhang et al. proposed an

NLP-based technique that automatically generates descrip-

tive names for unit tests based on the common structure

and names of tests [40]. Daka et al. used coverage criteria

to generate unique names for automatically generated unit

tests [34]; Nijkamp et al. adapted this approach to fit test

amplification [41]. Roy et al. developed DeepTC-Enhancer,

which uses deep learning to automatically generate method-

level summaries and rename identifiers for the generated test

cases [35]. Panichella et al. proposed TestDescriber, which

generates test case summaries that describe the intent of a

generated unit test [42]. Panichella et al. have established that

developers working with the test case descriptions are quicker

in resolving bugs indicated by failing tests.

While these works focus on enhancing identifier names and

documentation, MicroTestCarver aims to generate tests that

are closer to manually written tests in terms of scenario.

2) Realistic Inputs: Afshan et al. have combined a natural

language model with a search-based test generation to improve

the readability of generated inputs [43]. Through a user study

they have observed that participants are faster at evaluating

inputs generated with their language model. Knowledge bases

have been used in some studies to generate realistic inputs;

Alonso et al. [44] utilized this approach to generate realistic

web APIs, and Wanwarang et al. [45] have used it to test

mobile applications. It is important to note that these afore-

mentioned works only provide linguistically realistic data. On

the other hand, MicroTestCarver can be used to generate actual

test data in a variety of dimensions; it can generate test data.

B. Capturing/Replaying and Test Carving
Elbaum et al. [27], [46] proposed an approach to carving and

replaying differential unit tests (DUTs) from system tests, as

well as strategies to filter and prune test cases. DUTs are a hy-

brid of unit and system tests that keep the system state. Tiwari

et al. [47] designed a tool to monitor the production workload

to generate DUTs. Kampmann et al. [48] used a carving

approach to extract parameterized unit tests from system test

executions. Thummalapenta et al. [49] mine dynamic traces to

generate .NET parameterized unit tests (PUTs) for the purpose

of regression testing. Derakhshanfar et al. [50] reproduce a

crash based using a search-based algorithm. MicroTestCarver
and these tools use dynamic information, but their purposes are

different; in comparison, MicroTestCarver’s primary objective

is to enhance the understandability of its generated unit tests.

VII. CONCLUSION

In this paper we present the MicroTestCarver approach and

associated tool. MicroTestCarver is a test generation tool that

tries to generate understandable unit tests by carving infor-

mation from E2E tests. The premise is that the information

that we carve from the E2E test enables to create a sensible

unit test scenario that contains actual test data, as opposed to

synthetic and non-realistic test data.
We have carried out an exploratory case study on 4 software

systems and a user study involving 20 participants; we have

made the following observations. Firstly, we were able to

generate 69 unit tests from carved data for 35 CUTs; 85%

of the generated tests are executable, and of those 96% are

passing tests (RQ1). Secondly, we found MicroTestCarver-

generated tests to be more meaningful and easier to understand

when we compare them to EvoSuite-generated tests (RQ2).

Thirdly, when we compare MicroTestCarver-generated tests

with manually written tests we observe that MicroTestCarver-

generated tests are quite close to manually written tests in

terms of understandability (RQ3).
In future work, we intend to combine our approach with

search-based algorithms to generate unit tests for corner cases

and still have meaningful test data and understandable test

cases. We aim to leverage NLP and Large Language Models

(LLMs) to combine source code and runtime execution infor-

mation, thereby improving the understandability of identifiers

and documentation. We also intend to extend our evaluation

by setting up a controlled experiment with practitioners.

ACKNOWLEDGMENTS

This research was partially funded by the Dutch science

foundation NWO through the Vici “TestShift” grant (No.

VI.C.182.032), and the EU Horizon 2020 H2020-ICT-2020-

1-RIA “COSMOS” project (No.957254).

116

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software problems
in the news,” in Proc. Int’l Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). ACM, 2014, pp. 32–39.

[2] K. L. Beck, Test-Driven Development - By Example, ser. The Addison-
Wesley signature series. Addison-Wesley, 2003.

[3] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[4] M. F. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Trans. Software Eng., vol. 48,
no. 12, pp. 4925–4946, 2022.

[5] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their ides,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 2015, pp. 179–190.

[6] M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in 37th IEEE/ACM International Conference on Software Engi-
neering (ICSE). IEEE Computer Society, 2015, pp. 559–562.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Trans. Software Eng., vol. 36,
no. 6, pp. 742–762, 2010.

[8] L. Baresi and M. Miraz, “Testful: automatic unit-test generation for
java classes,” in 32nd IEEE/ACM International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 281–284.

[9] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” in Proc. Joint Meeting Symp. Foundations of
Software Engineering and the European Softw. Eng. Conf. (ESEC/FSE).
ACM, 2011, pp. 416–419.

[10] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? A controlled
empirical study,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 4, pp.
23:1–23:49, 2015.

[11] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” in Conf. on Object-Oriented Programming Systems
and Applications (OOPSLA-Companion). ACM, 2007, pp. 815–816.

[12] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation
of whole test suites,” Empirical Software Engineering, vol. 20, no. 3,
pp. 783–812, 2015.

[13] A. Arcuri, “An experience report on applying software testing academic
results in industry: we need usable automated test generation,” Empirical
Software Engineering, vol. 23, no. 4, pp. 1959–1981, 2018.

[14] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in Int’l Conf. on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp. 263–272.

[15] C. E. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, p. 96, 2022.

[16] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[17] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Trans. Software Eng., vol. 44, pp. 122–
158, 2018.

[18] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“Automatic test case generation: What if test code quality matters?” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA). ACM, 2016, pp. 130–141.

[19] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code:
An empirical study,” in 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST), 2016, pp. 5–14.

[20] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall,
“Scented since the beginning: On the diffuseness of test smells in
automatically generated test code,” Journal of Systems and Software,
vol. 156, pp. 312–327, 2019.

[21] G. Fraser and A. Arcuri, “EvoSuite: On the challenges of test case
generation in the real world,” in International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2013, pp. 362–369.

[22] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical

study of effectiveness and challenges,” in International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 201—-211.

[23] G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical
investigation on the readability of manual and generated test cases,” in
International Conference on Program Comprehension (ICPC). IEEE,
2018, pp. 348–351.

[24] D. Oliveira, R. Bruno, F. Madeiral, H. Masuhara, and F. Castor,
“A systematic literature review on the impact of formatting elements
on program understandability,” 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2208.12141

[25] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Trans. on Software Engineering, vol. 36, no. 4, pp. 546–558, 2010.

[26] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Proceedings of Joint Meeting on
Foundations of Software Engineering (FSE). ACM, 2015, pp. 107–118.

[27] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differen-
tial unit test cases from system test cases,” in Proc. Int’l Symposium on
Foundations of Software Engineering (FSE). ACM, 2006, pp. 253–264.

[28] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, The Fuzzing
Book. CISPA Helmholtz Center for Information Security, 2021.

[29] “Btrace - a safe, dynamic tracing tool for the java platform,” December
2022. [Online]. Available: https://github.com/btraceio/btrace

[30] “Serialize java objects to xml and back again.” December. [Online].
Available: http://x-stream.github.io

[31] A. Deljouyi and A. Zaidman, “generating unit tests based on
carving E2E tests,” Aug. 2023. [Online]. Available: https://github.com/
amirdeljouyi/SCAM-2023-microtestcarver-replication

[32] V. Khorikov, Unit Testing Principles, Practices, and Patterns. Manning,
2019.

[33] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A library for implementing analyses and transformations of
java source code,” Software: Practice and Experience, vol. 46, no. 9,
pp. 1155–1179, 2016.

[34] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2017, pp. 57–67.

[35] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella,
D. Gonzalez, and M. Mirakhorli, “Deeptc-enhancer: Improving the
readability of automatically generated tests,” in Proc. Int’l Conf. on
Automated Software Engineering (ASE), 2020, pp. 287–298.

[36] R. G. J. S. R. Ares, G., “Text highlighting combined with open-ended
questions: a methodological extension,” Journal of Sensory Studies,
vol. 38, 2023.

[37] D. Winkler, P. Urbanke, and R. Ramler, “What do we know about
readability of test code? - a systematic mapping study,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022, pp. 1167–1174.

[38] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[39] “Factory method pattern,” 2023. [Online]. Available: https://refactoring.
guru/design-patterns/factory-method

[40] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proc. Int’l Conf. on Automated
Software Engineering (ASE). ACM, 2016, pp. 625–636.

[41] N. Nijkamp, C. Brandt, and A. Zaidman, “Naming amplified tests based
on improved coverage,” in Proc. Int’l Working Conf. on Source Code
Analysis and Manipulation (SCAM), 2021, pp. 237–241.

[42] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: An em-
pirical investigation,” in Proc. Int’l Conference on Software Engineering
(ICSE), 2016, pp. 547–558.

[43] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle
cost,” in International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2013, pp. 352–361.

[44] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-
Cortes, “Arte: Automated generation of realistic test inputs for web apis,”
IEEE Transactions on Software Engineering, pp. 1–1, 2022.

[45] T. Wanwarang, N. P. Borges, L. Bettscheider, and A. Zeller, “Testing
apps with real-world inputs,” in Proceedings of the International Con-
ference on Automation of Software Test (AST). ACM, 2020, pp. 1–10.

117

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

[46] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 29–45, 2009.

[47] D. Tiwari, L. Zhang, M. Monperrus, and B. Baudry, “Production
monitoring to improve test suites,” IEEE Trans. on Reliability, 2021.

[48] A. Kampmann and A. Zeller, “Carving parameterized unit tests,” in 2019
IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2019, pp. 248–249.

[49] S. Thummalapenta, J. de Halleux, N. Tillmann, and S. Wadsworth, “Dy-
gen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in Tests and Proofs. Springer, 2010, pp. 77–93.

[50] P. Derakhshanfar, X. Devroey, G. Perrouin, A. Zaidman, and A. van
Deursen, “Search-based crash reproduction using behavioural model
seeding,” Softw. Test. Verification Reliab., vol. 30, no. 3, 2020.

118

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 12:03:48 UTC from IEEE Xplore. Restrictions apply.

