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I 
 

Preface 

 

 

This thesis report contains the entire project process and final results of my Master Thesis 

Research, with which I hope to complete my degree in Bio-Mechanical Design. In this research, 

I have investigated human activity recognition (HAR) and machine learning algorithms from a 

scientific perspective. The research is a tripartite cooperation project in the field of tennis 

sports, supervised by Delft University of Technology, Vrije Universiteit Amsterdam (VU) and 

Koninklijke Nederlandse Lawn Tennis Bond (KNLTB). For me, the tennis sports field turned out 

to be a perfect subject fit with my interests and track specification in Sports Engineering. But 

human activity recognition, machine learning algorithm, and recognition and classification 

model were totally unfamiliar topics to me, and I had to study these from scratch. In the 

project, I proposed an experimental method to collect and record the raw data of tennis 

strokes of participants by using a special IMU system made by a technician in VU. After that, 

the pre-processing method, window segmentation and feature extraction were chosen to 

process the data. Support vector machines was the machine learning algorithm to train the 

classification model in this project and several “simulated” rally data (between tennis players 

and ball machine) were used to test the classification model to achieve the results of 

recognition and classification of eight tennis strokes. After the leave-one-out validation 

procedure, the classification of the proposed method was detected by comparing results with 

the Golden Standard (video footage).  

This project is new to the field of tennis stroke recognition and classification . Only a few 

research had been done to comprehensive classification of all eight tennis strokes. A relatively 

qualified accuracy result of tennis stroke classification was achieved at the end of the research. 

Through this research, I achieved more professional knowledge and dialectical thinking ability 

in the scientific research field. Even though this research comprises some weaknesses, both 

in the experimental process and in the conclusion derivation, I hope they could be improved 

in future work. And I sincerely hope that this project may have a small step forward in human 

sports activity recognition and classification field. I sincerely hope that this project may make 

a small contribution to building real-time tennis stroke strategy guidance and coaching system 

for both elite players and amateurs. 

 

 

 

Xinyu Liu 

Delft, November 2019 



 

II 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

III 
 

Acknowledgement 

 

 

To be honest, the last year of my life in TUD has been a unique experience for me. After just 

having experienced the pain of losing my loved grandparents, I started this project in a bad 

mood situation, mild depression, and procrastination. Sometimes during the project, not only 

the difficulties of research but also my own loss of emotional control both hindered the 

conduct of this thesis work. But, fortunately, during this hard period, so many people have 

helped and inspired me not only in my research study but also in my daily life. And since this 

may be one and only opportunity to thank them all in a formal and public way, then I must say 

the following words to them. 

Foremost, I would like to express my primary and sincere gratitude to my advisor, Prof. Dr. 

DirkJan Veeger, for not only being my main supervisor who I benefited his expert comments 

during my thesis, but also showing his kindness, sympathetic, and encouragement to me in 

my hardest time. And I would like to thank my daily supervisor PHD candidate Bart van Trigt, 

for giving me the most subtle guidance and help during the entire experimental processing 

and thesis writing period. Weekly meeting that we had was the most efficient way for me to 

report the progress of the project and to ask the unfamiliar knowledge and technical problems 

that are difficult to deal with. Bart always gave me positive feedbacks and inspiration for the 

research. Besides, I need to say thanks to former PHD candidate Evelien Schat in Applied 

Mathematics, who is now being PHD candidate at Utrecht University. She gave me the most 

helpful guidance during my data processing period, even this guidance work is not the 

compulsory work for her. Also, I would like to thank Ton Leenen from VU Amsterdam, for his 

revision and guidance in experiments.  

During this research, I also got a lot of support from other people. Many thanks are owed to 

embedded scientist Aldo Hoekstra and other researchers and staffs in KNLTB, who provided 

convenience and help during the tennis experiment. And I would like to express my sincere 

gratitude to all the participants in my experiments, for their voluntary participation and 

contributing themselves to complete the experiments without reservation. 

And I would also like to thank my academic counsellor Drs. Lourdes Gallastegui Pujana, who 

helped me to adjust myself in a good mood and gave me useful guidance in arranging study 

and life. At last, but not least, thank you, my dear brothers, and friends Mounir El Hassnaoui 

and Anindito Kusumojati, for your spiritual support and valuable advice pushing me forward, 

in the times when I lost my way. 

I dedicate this thesis to my parents and my grandparents who have always loved, encouraged, 

and supported me in my life. Thank you for being spiritual support for me.  



 

IV 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V 
 

Abstract 

 

 

 

One interesting part of the application of human activity recognition is sports motion 

recognition and classification. In recent years, many commercial wearable devices have been 

used for recording and supervising motion data information during sports. However, their 

claimed high-accuracy results but motion recognition and classification method have not been 

proven. This thesis project presents work special related to tennis stroke detection and 

classification. An automated and comprehensive tennis stroke recognition and classification 

method based on the inertial measuring unit sensor (accelerometer and gyroscope) and 

machine learning algorithm (Support vector machines) was proposed in this study. Seven 

tennis players with a different level of tennis skills were tested and recorded using a self-made 

IMU sensor system with four sensors (forearm, upper arm, trunk, and pelvis). Video footage 

from Playsight was manually notated as the golden standard for stroke type identification. 

SVMs was constructed to train the classification model to classify true shots to eight types of 

tennis strokes from the IMU signals. Across leave-one-out seven-fold cross-validation, the 

SVMs classification models were trained with data from a single IMU sensor on the forearm 

and upper arm with the prediction accuracies of 0.69 and 0.70 respectively. And further, both 

SVMs models were trained by enlarged training data, resulting in improved prediction 

accuracies of 0.75 and 0.77. Noticeably, the best prediction accuracy was achieved by training 

the SVMs classification model with fused data from the previous two sensors and with the 

enlarged training data. The final prediction result was 0.79. Even though there exist 

deficiencies such as skill level different of subjects, insufficient training dataset which may lead 

the results of validation and prediction less credible, the IMU sensor and SVMs machine 

learning algorithm still played well in the tennis stroke classification task. And we expect to 

have better accuracy results by feeding enough training data and using data-fusion 

combination of different IMU sensors to the upper extremity to SVMs classification model in 

future work. 
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 Chapter 1 
Introduction 

 

 

 

 

 

Human activity recognition (HAR) aims to detect and identify the actions and objectives 

of humans from a series of observations on subjects’ movements and the 

environmental conditions. This active research field shows its advantages in providing 

personalized support for many different applications and fields of study, such as sports 

science, healthcare, surveillance, human-machine interaction (HMI) and sociology[1]. 

Sport-specific movement recognition is one of the most interesting and difficult 

subfields of HAR. During sports and sportive leisure activities, massive and continuous 

body gestures, actions and complex movements are generated by human participants. 

Detection and recognition of human sport-specific motions and gestures could lay the 

foundation for movement analysis, guidance, and evaluation. Moreover, it also helps 

the improvement of performance and prevention of injuries. The main process of HAR 

(same as sport-specific movement) is to interpret human body gestures or motion via 

sensors and determine the type of activity or action in the next stage.  

In the early days, direct observation and annotation for sports activity are quite original 

and intuitive. The instruction of this method is more based on empirical knowledge. 

Apparently, activity recognition by observation and annotation costs too many human 

resources and is time-intensive. Another limitation is that it is prone to human error and 

bias[1]. Visual information such as video and photography is used to record human 

movement and achieve activity recognition[2]. But it has the same dilemma as manual 

notation and needs more specific knowledge of image processing technology. To 

achieve more precise results, 3D modelling technology is generated by building a 3-
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dimensional model of the movement of the human body with a motion capture 

system[3]. This method could provide activity recognition analysis results accurately, but 

the exaggerated price of professional devices and the requirement of the specific 

testing court may be hard for amateurs to afford.  

In the recent few decades, thanks to the emergence of micro-mechatronics and 

microsystems technology, Microelectromechanical systems (MEMS) have changed the 

way of biometric data acquisition for human movement recognition on medical 

professionals, business and military forces and so on [4]. For sports applications, small 

MEMS devices can be embedded in smartphones for more commonly daily use, also in 

all kinds of wearable accessories, such as a watch, wristband, necklace or even clothes 

like sports vests or sneakers. Take running, for instance, Nike+ running watch with its 

accelerated parallel processing (APP) has the ability to distinguish the running type of 

human to walking, jogging, sprinting and jumping[5]. Moreover, MEMS sensors have 

more widespread use in some swing-sports, like badminton, tennis, ping-pong, and golf. 

During these sports activities, human movements and gestures have more significant 

and representative sports features, which attracted more interest in research in HAR. 

In the following part of this master thesis, tennis will be the main research object of 

sport-specific activity.  

 

1.1 Motivation 

Tennis is a popular sport for both men and women, youths and elders, amateurs and 

elites in the world. According to the statistics, there are over 1,700 tennis clubs and 

more than 570,000 affiliated tennis players registered in the Dutch national tennis 

association (Koninklijke Nederlandse Lawn Tennis Bond, KNLTB), which is the second-

largest sports association in the Netherlands [6]. That indicates that many, no matter 

professionals, amateurs or novices, engage themselves in tennis sports now. However, 

as in many other sports, playing and training improve skills and bring better 

performance. To another extent, practicing also results in sports injury. According to 

the study of tennis injuries, it shows that tennis has a unique profile of injuries, such as 

the distal humeral stress reaction which may cause the popular “tennis elbow”. 

Biomechanics of movement and training strategy can all result in an injury profile that 

differs from other swing-sports like golf or baseball[7]. For elite players, how to achieve 

higher and faster performance under high-intensity training without getting any injuries 

is an urgent problem to be considered most frequently. And for amateurs, how to 

manage the training intensity and time in a self-dominant way is equally important. For 

tennis coaches and data analysts, how to analyse movement data, to plan training 
strategies and to provide suitable guidance are the main emphases of their work. 

For solving the problems mentioned above, focusing on tennis activity detection and 

recognition can be of added value as it reflects every detailed movement of participants 
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during matching or training. To be specific, according to the way of holding the racket, 

the skills of hitting balls and tennis rules[11]. Tennis activity consists of different types of 

strokes such as forehand, backhand, topspin, slice, and volley. Macroscopically, the 

strategy is playing against the opponent with reasonable skills. Therefore, the most 

important goal of tennis activity recognition is to provide information about a player’s 

behaviour which allows them to improve both stroke skills and preventive strategy.  

Like mentioned above in the introduction of HAR, in earlier days, manual notation was 

the original way in tennis activity recognition, which was time and labour intensive, also 

in the risk of human error and bias. To overcome these drawbacks, tennis activities 

detected by computer vision and inertial sensing devices are represented as signal 

features corresponding to specific strokes in the processing of computers, which can be 

logged and extracted[8]. Machine learning algorithms with the powerful computational 

processing of computers can handle a huge amount of signals with less time. Thus, 

machine learning algorithms take the place of manual notation to achieve the goal of 

classification and recognition. But it is noteworthy that the camera and inertial sensor 

are as the carrier for signal input, which reflects different strengths and weaknesses in 

practical application. 

Research in computer vision has been at the forefront of the work of tennis activity 

recognition. Data from tennis broadcast record information of movements and actions 

directly. Still, images and videos of tennis matches were used to investigate gestures 

and activity recognition in many scientific types of research. Relatively accurate results 

have been achieved successfully through visual approaches even using low-resolution 

footage[9][10]. Similarly, stroke recognition can be performed by locating the player’s 

racquet arm in the keyframe in which the racquet contacts the ball[11]. But still, several 

challenges including occlusion, viewpoint variations, and environmental conditions may 

impact results by using data from video footage. Moreover, most of the video-based 

recognition systems have to be equipped with high-speed cameras or motion capture 

systems, which makes the entire recognition protocol costly. And the complicated 

recording system and a specific court make it hard to meet the requirement of portable 

use. 

With the emerging trend of MEMS sensors, Inertial measuring units (IMU) provide a 

low-cost, effective alternative for tennis activity recognition. Generally, the most widely 

used inertial measuring units are accelerometers and gyroscopes measuring along one 

to three axes, and magnetometers are included in a few specific situations. These 

sensors measure acceleration, angular velocity and the direction and orientation of 

movements or actions quantitatively while playing or training tennis. The collected data 

from IMU reflect detailed information of every tennis stroke in training sessions or 

competitions. As it is known that human movement activities are considered to be 

hierarchic construction and are composed of basic movement frames[8]. Therefore, a 

series of consecutive tennis movements can be detected and recognized to different 
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stroke labels by distinguishing IMU data with a machine learning algorithm. Being 

wireless, portable and self-contained in operation are the highlights of this method. In 

daily life, IMUs have been utilized in cellphones, watches, wristbands, and other 

wearable devices to record tennis activity and provide feedback.  

On the commercial market nowadays, Zepp Tennis 2 is a powerful swing analyzer, 

tracking training sessions and match statistics and gaining insights about stroke 

performance and classification instantly through mobile app[12]. Sony Smart Tennis 

Sensor and Babolat POP have similar measurement systems and functions[13][14]. 

Interestingly, most of the commercial tennis sensors could only detect and record three 

basic tennis strokes, forehand, backhand and serve. Due to the business confidentiality 

principle, the processing method and algorithm behind those tiny sensors are unclear. 

Beyond that, there is no scientific explanation for the reliability of the accuracy of the 

obtained results. 

In terms of scientific research, IMUs play an important role in activity recognition of 

swing sports like table tennis, baseball, badminton, and tennis as well. Table tennis 

strokes were detected in time-series and classified into eight-stroke categories by using 

inertial sensors were attached to table tennis rackets [15]. Similar research did in 

badminton activity, a more complex classification of 14 types of badminton strokes was 

recognized based on the IMU sensor network on the body[16]. And it provided a two-

layer hidden Markov model (HMM) as a machine learning classification algorithm, 

which acquired the best accuracy among others such as Naïve Bayes (NB), Support 

Vector Machines (SVMs)[16]. As for baseball, IMUs have a widely use in identifying the 

key events and evaluating pitching performance in scientific research[17][18].  

When it comes to the IMUs application on tennis stroke recognition, there are several 

recent pieces of research on developing a new measuring system with IMUs and 

applying different machine learning algorithms. A single IMU was attached to the 

forearm of tennis players to detect and recognize their movements and strokes in the 

work of Connaghan et al[21]. Even a massive data set was detected in their experiment 

and a high accuracy tennis recognition results were gained, the type of classification is 

limited to only forehand, backhand and serve.  Yang et al. investigated the fusion of two 

IMU sensors, attached on the racket and right shank of player respectively, is used to 

achieve an online serve assessment system by distinguishing serve and non-serve 

strokes in training sessions[22]. To make a step further and broader, Buthe et al. provided 

a capture coordination system of the dominant arm along with foot reactions of players 

with three IMUs[23]. By implementing a new machine learning algorithm, tennis strokes 

are recognized as six types of classification. As the experimental subjects are too limited, 

meantime, too many variables are involved, the results show highly user-dependent. In 

terms of machine learning algorithms being used in previous research, there is no 

statement about why it is chosen to be used and why it brings the most accurate results. 

In this study, a more detailed tennis stroke classification was considered. A sensor-
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based machine learning method is proposed to recognize and classify all eight popular 

tennis stroke types, forehand topspin, forehand slice, forehand volley, backhand 

topspin, backhand slice, backhand volley, smash and serve. 

In a short summary, some research involved with tennis stroke recognition indeed has 

been done so far. IMU sensors act as an important role in collecting data. But the 

existing literature is all limited to a simple type of tennis stroke classification. That may 

be because of some similar gestures and movements of tennis stroke, where the subtle 

difference of stroke features is hard to detect and recognize.   

 

1.2 Research objective 

The main purpose of this project is to develop a practical and accurate experimental 

setup to measure tennis stroke with IMU sensors and a comprehensive and automated 

tennis stroke recognition method with the applicable machine learning method. To 

check the accuracy of results, a manual notation will be used as the golden standard. 

Thus, the main goal of this thesis can be formulated as: 

 

        “Development and validation of comprehensive and automated tennis 

stroke recognition based on IMU sensors and applicable machine learning 

algorithms.” 

 

To accomplish this objective, we will first review shortly related previous work in both 

commercial and scientific point of view in chapter 2. After understanding the main 

structures and limitations of previous work, the main research goal of this thesis will be 

formulated into several detailed steps at the end of chapter 2. 
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 Chapter 2 
                                                                    Previous work & Challenge 

 

 

In this chapter, we first make a survey about the specifications and functions of three 

commercial tennis sensors. Then some previous scientific researches about tennis stroke 

recognition are briefly reviewed, from where comes the limitations and imperfections of 

previous methods. In the end, we specify challenges to small steps of this thesis. 

 

2.1  Commercial tennis sensor 

There are many applications of wearable tennis sensor on the market, aiming to record and 

improve players’ performance. Three representative products, Zepp [12], Sony Smart[13], 

Babolat POP[14], are chosen to take the survey. The hardware information and functional 

components are shown in Table 2.1 and Table 2.2 respectively. 

 

Table 2.1 Hardware information of commercial tennis sensor 

  

 
 

 

 

 

 

Weight 7.7 gram 8 gram 18 gram 

Battery 
duration 

4 hours 3 hours 10 hours 



Chapter 2 Previous work & Challenge  Xinyu Liu 

                                                                                                                           PAGE 8 
 

Water 
resistance 

Small rain resistant Water & dust resistant Small rain resistant 

Internal 
storage 

Up to 2,000 swings Up to 12,000 swings More than 10 hours of 
tennis 

Display Via smartphone Via smartphone Via smartphone 
Sensor type Dual accelerometers 

3-axis gyroscope 

3-axis motion sensor 

Vibration sensor 

9-axis sensor 

Sensor 
measuring 

range 

N/A N/A N/A 

Attachment At bottom of racket At bottom of racket Around the wrist 

 

Table 2.2 Functional component of commercial tennis sensor 

 Zepp Sony smart Babolat POP 
Effect Yes Yes Yes 

Effect type Topspin 
Slice 
Flat 

Topspin 
Slice 
Flat 

Topspin 
Slice 
Flat 

Impact location Yes Yes No 

Number of strokes Yes Yes Yes 

Stroke type Forehand 
Backhand 

Serve 
Smash 

Forehand 
Backhand 

Serve 
Smash 

Forehand 
Backhand 

Serve 
Smash 

Stroke speed Yes Yes Yes 

Ball speed Yes Yes No 
Video component No 3D serve simulator No 

 

As shown in the tables above, all commercial tennis sensors are able to detect effect types 

(topspin, slice, flat) and stroke types (forehand, backhand, serve, smash). Beyond some 

insignificant aspects like battery duration or inner memory, the most noteworthy part is the 

component of inertial sensor units. Babolat POP has a 9-axis motion sensor, which consists of 

a 3-axis accelerometer, a 3-axis motion sensor, and a 3-axis magnetometer. These three parts 

are the entire configuration of the IMU. And Sony smart uses a 3-axis accelerometer combined 

with a vibration sensor while Zepp only uses a dual accelerometer and 3-axis gyroscope. 

Generally, acceleration and angular velocity measured by accelerometer and gyroscope, are 

used to calculate angular rates, linear velocity and position of a tennis player, finally, these 

data are used to achieve the function of different strokes recognition. Playing or training 

tennis by using the commercial tennis sensors, users could know training time, the number of 

total swings, type of every stroke, and to some extent, the score of achievement in the session 

and so on, displaying by smartphone App.  
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Noticeably, due to business confidential reason, the measuring specifications of 

accelerometer and gyroscope, the inner collecting and processing mechanism of commercial 

sensors are not clear. Beyond that, there exists no information about the validity and reliability 

of measurement. In a scientific point of view, the accuracy of movement detection and 

classification from commercial tennis sensor is invalid, even all their instructions claimed a 

high accuracy rate. Beyond that, as for the performance grading system, there is not much 

more detailed information about it as well. Therefore, find out how to recognize tennis stroke 

automatically using IMUs data has considerable practical significance. 

 

2.2  Previous research  

Generally, tennis stroke recognition has two main parts, data acquisition, and data processing. 

As it is mentioned in the last chapter, IMUs help to measure and movement data. While data 

processing mainly involves signal pre-processing and machine learning procedures. These 

aspects will be discussed respectively in the following part. 

 

2.2.1 Data acquisition 

IMUs & sensor placement 

In scientific research, IMUs are widely used as wireless and wearable sensors to collect data 

of players of swing-sports movement (tennis, badminton, table tennis) and to implement 

stroke recognition. To some extent, tennis stroke detection and recognition can be defined as 

a hand gesture problem[24]. Different tennis strokes can be achieved by executing different 

hand gestures and swing postures. For instance, a smash is a stroke that the hand is travelling 

all over the head. While a forehand is a stroke that player’s palm is facing to the front and a 

backhand stroke is just exactly the opposite. Therefore, the data from the hand movement 

give enough information to detect and distinguish different tennis strokes. Connaghan et al. 

and Kos et al. investigated, similarly, a single standard IMU (a 3-axis accelerometer, a 3-axis 

gyroscope, and a 3-axis magnetometer) sensor attached to the wrist of tennis player’s 

dominant arm to retrieve hand movement data while playing or training tennis. Due to the 

limitation and monotony of data only from the wrist, the three most common tennis strokes 

(forehand, backhand and serve) are able to be recognized in their research  [21][24]. A step 

forward made by Büthe et al. is that a broad view of full-body coordination and timing of the 

movement was considered. To make it simple, a sensor system with three IMUs is used, two 

attached to each foot and one on the racket. The fused movement data of racket and 

footsteps can be used to classify the type of shots of the player [23]. Five different classes of 

shot strokes can be recognized, including forehand topspin, forehand sl ice, backhand topspin, 

backhand slice, and smash. This is the first time that footwork is segmented into tennis stroke 

recognition. However, due to the lack of experimental subjects, meantime, too many variables 

are involved (3 amateur males with right-handed, 1 expert female with left-handed), the 
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results show a high user-dependent trend. Similarly, a fusion of two IMUs (3-axis 

accelerometer and 3-axis gyroscope) system, one mounted on the racket and one on the 

shank of player, is proposed to achieve online serve assessment in the research of Yang et 

al.[22]. Only serve and non-serve events were distinguished. Moreover, there exist other 

attempts like the fusion of IMUs and audio sensor data embedded in a wrist band in  Sharma 

et al. research. 95.6% detection rate was obtained in this research but the classification work 

is still their look in the future[25]. 

Summarized, IMUs with six degrees of freedoms (DoFs), 3-axis accelerometer and 3-axis 

gyroscope are the most commonly used in collecting stroke movement data. And because the 

swing of the upper limb is the representative action of tennis, the forearm, upper arm, 

shoulder, and trunk are suitable to attach IMUs for data acquisition. Among the popular 

attached places, the wrist is the most commonly considered to place the IMU sensor. Due to 

being the distal part of extremity and connected with the racket, it could reflect the motion 

of swing to the maximum amplitude with the most discriminative features.  

 

2.2.2 Data processing  

Data plotting 

Like used in many other sports, acceleration data measured by the accelerometer in an IMU 

are widely used to solve simple classification problems, for example, the three most often 

tennis strokes: serve, forehand, and backhand [21][22][24][26].  
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Figure 2.1 Graphical representation of accelerometer and gyro data. 

 

As shown in Figure 2.1, spikes in acceleration data signals are recorded due to the impact of 

the ball on the tennis racket. Detecting such spike-signal provides the temporal location of 

tennis strokes. Correspondingly, three basic tennis strokes show different configurations and 

features, which will be adopted in machine learning processing to make the classification. 

Noticeably, it can be observed that there are some similarities between strokes, for example, 

there are very similar acceleration curves for both forehand and serve and the feature of peak 

value is not a discriminative enough[24]. While from observation of Figure 2.1 of the gyroscope 

data signal, it could be seen that more discriminative features can be found between strokes. 

For example, different peak values and acceleration direction of individual gyroscope axes are 

achieved for those three basic tennis strokes. In Kos et al. new research, gyroscope 

information for stroke classification is used to supplement the lack of acceleration data in 

providing enough discriminative features[26]. With a larger tennis stroke database, more 

accurate classification results were achieved. Connaghan et al. evaluated the best approach 

for tennis stroke classification using either accelerometer, gyroscope or magnetometer [21]. A 

conclusion that using a combination of all three types of sensors gives the best performance 

of stroke classification than using single sensor classification. Therefore, measured data 

signals with more discriminative features to different tennis strokes should be taken into 

consideration in tennis strokes classification into more detailed sort.  

Beyond that, Wang et. al and Büthe et. al had done with the study that fused more data from 

different IMUs attached to different parts of players[16][23]. And under the premise of ensuring 

that computing is not cumbersome, sensor data fusion could give better accuracy results[16]. 

Sensor data fusion is also an interesting aspect to be considered in this study. 
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Data screening & filtering 

Basically, at the beginning of the tennis stroke classification process, individual tennis strokes 

in one session first have to be detected accurately. Non-tennis strokes, like fake strokes, 

twirling rackets and unexpected swing of the arm, should be filtered manually.  

The main problem when applying IMU sensors on data acquisition of human activity 

recognition is the different types of noise mixed in original data due to sensor errors or noisy 

measuring environments[19]. And Nettleton D.F. et al. managed a study of the effect of 

different types of noise on the precision of supervised learning techniques. It states that input 

features with unprocessed noise result in unreliable output class with errors [20]. Therefore, 

noise in data hampers the human activity recognition and classification process. And noise 

reduction is one of the most important procedures in data processing of human activity 

recognition. 

Afterward, both accelerometer and gyroscope measured tennis stroke movement could 

provide corresponding physical parameters (acceleration and angular velocity) as the 

continuous signal in time series. Correspondingly, enough information can be retrieved from 

recording signals to distinguish different tennis strokes. Therefore, screening and filtering 

procedures to the raw data is a quite necessary pre-processing step before machine learning. 

 

Windowing techniques  

Signal data stream acquired by IMU sensor for activity recognition contains not only motion 

data of specific patterns that need to be recognized and classified but also some other 

unnecessary motions of players. The motion data of specific patterns or shots from recording 

signals have the main characteristics to stand for corresponding movements. Therefore, 

windowing techniques are used to divide the sensor signal data into smaller time segments 

(or windows) in activity classification, also known as window segmentation. After that, feature 

extraction and classification algorithms are then applied separately to each window. Thus, the 

data with the most important information is considered comprehensively while the 

computational amount for machine learning is reduced. 

Different procedures have been used in previous activity classification research. Sliding 

windows is a simple and intuitive method for window segmentation. A signal is divided into 

the fixed-length window without inter-window gaps. And the range of window sizes was 

different for different sports activity pattern classification tasks, from 0.1s to 2.5s[15][37]. An 

over-lapped sliding window including a degree of overlap between adjacent windows was also 

used in some classification cases to get better results. But sometimes, sliding window 

segmentation may cause poor results in aperiodic and unregular signals[41]. Therefore, an 

event-defined window segmentation method is introduced. Specific events are located by pre-

processing data signal, then these events are used to define consecutive or inconsecutive 

windows[16][26]. And there are other window segmentation methods like bottom-up, top-down, 

and adaptive sliding window which are suitable for specific pattern classification.  
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In summary, the window segmentation method should divide signals to windows of proper 

size. For each window, it should include enough data to describe the events or activities. 

Meanwhile, the unnecessary information needs to be eliminated from the window, which 

might complicate computation and affect feature extraction. 

 

Feature extraction 

To prepare for the next stage of the training classification model, the window segmentation 

step aims to divide the pre-processed signal data into segments or windows most suitable for 

recognition and classification. The principle of machine learning is the scientific study of 

algorithms and statistical models that computing system performs or predict a specific event 

without using any other explicit instructions, but only relying on default patterns, inferences 

and features[27]. In practical in tennis stroke classification, machine learning algorithms 

program a mathematical script based on sample data of tennis strokes, also known as training 

data, in order to make predictions or decisions without being explicitly programmed to 

perform the tasks or testing data. Therefore, feature extraction and classification algorithm 

are two main parts in machine learning processing.  

In general, features can be defined as the abstractions of raw data and the purpose of feature 

extraction is to find out the main characteristics of a data segment that could represent the 

expected data accurately[2]. To be more specific, feature extraction transforms large input raw 

data into a reduced representation set of features, which can also be referred to as a feature 

vector. The feature vectors, with important contents for distinguishing various activities, will 

be treated as inputs to feed classification algorithms [40].  

As mentioned above, in tennis stroke data acquisition and screening, features are the 

discriminative parts of the different signals to different tennis strokes. For each tennis stroke, 

features are computed and then used as an instance for the learning or testing phase. In Figo 

et al. work, a detailed survey shown in Figure 2.2 of the classification of techniques applied to 

sensor signals for feature extraction is achieved to guide the feature extraction in human 

activity recognition[28]. All features from the available sensor signal processing techniques are 

classified into three broad domains, namely time domain, frequency domain, and discrete 

representation domain. This survey contributed to identifying the feature extraction process 

that is better suited for sensor-based signal and human activity recognition. In order to choose 

the most suitable and representative features in tennis stroke classification, thus, a simple 

survey is made as follows to show feature extraction in tennis stroke classification literature 

recently. 
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Figure 2.2 Classification of techniques applied to sensor signals for feature extraction[28]. 

 

After looking deep into the literature about swing sports activity (especially tennis, table 

tennis, and badminton) recognition based on IMU sensors, Table 2.3 shows the survey about 

the application of a variety of features that were used in sensor-based swing sports activity 

classification. From the survey, clearly, time-domain features including mathematical and 

statistical techniques of signal and basic waveform characteristics are the most widely used. 

That is because simple mathematical and statistical metrics can be used to extract basic signal 

information from raw sensor data. Additionally, those features are often used as fundamental 

steps for metrics in other domains as a method to extract key signal features. On the other 

hand, frequency-domain features, focusing on the periodic nature of the signal, have been 

extensively used to capture the repetitive structure of a sensor-based signal[28]. More specific, 

Avci et al. explained that energy and entropy features can be used to capture data periodicity 

of the accelerometer and it can be used to distinguish sedentary and vigorous activities, and 

help to discriminate the activities with similar energy values [41]. And time-frequency domain 

features are often used to investigate complex signal data. The wavelet techniques from time-

frequency domain features are mainly used to detect the transition between different 

activities, usually the classification based on videos or images [9]. In terms of heuristic features, 

inter-axis correlation is the one, especially useful for discriminating between activities that 

involve translation in just one dimension. As can be seen from the survey, several studies use 

the correlation between axes of accelerometer and gyroscope signal data and achieve 

accurate results for distinguishing swing sports like table tennis strokes[30][31]. To the existing 

literature, heuristic features have not been studied in feature extraction, especially for tennis 

stroke classification. 
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Table 2.3 The most frequently used features and their applications in sensor-based swing sports activity classification 

Type Features References 

 
 
 

Time-
Domain 

Mean [16][21][23][25][29][30][31][32][33][34][35][36][37][38][39] 

Variance, 
Covariance 

[16][21][23][25][29][33] 

Standard 

Deviation 

[29][31][32][33][34][35][36][38][39] 

Skewness, 
Kurtosis 

[16][21][30][31][33] 

Root mean 

square 

[33] 

Minimum, 
Maximum, 
median 

[30][31][32][33][34][35][36][37] 

 
Zero or 
Mean 
Crossing 

Rate 

[37] 

 
Frequency-

Domain 

Spectral 
Energy 

[23][25][29][31][33][36][37][38][39] 

Spectral 

Entropy 

[25][29][31][33][36][37][38][39] 

Discrete 
Fast 
Fourier 

Transform 

[16][37][39] 

Time-
Frequency 

Domain 

Wavelet 
Coefficient 

[9] 

Heuristic 
Features 

Inter-axis 
Correlation 

[29][30][31][33][39] 

 

In a short summary, due to the restriction of computation time and requirement of memory, 

statistical features and signal characteristics from time-domain are most widely to be studied 

in sports activity classification. There is a trade-off balance in feature extraction. Simple 

feature vectors with common features are not able to distinguish different activities, while the 

complex ones will be subject dependent and have more requirements in computational 

processing and data storage in running machine learning algorithms. That indicates feature 

extraction is one critical step in data processing of tennis stroke classification. The application 

and selection of features are depending on the type of raw data, subject of analysis, expected 

goal and also the hardware of computational processing and storage. For tennis stroke 

classification in this thesis, detailed feature extraction will be discussed in the next chapter.  

 

Classification algorithms 

After feeding the extracted feature vectors, there starts the step of training classifiers using 

proper classification algorithms in machine learning processing. In the following part, a short 

investigation is made to show several state-of-the-art classification algorithms applying in 

swing-sports activity classification: 
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1. Naïve Bayes (NB). A simple probabilistic classifier based on Bayes’ theorem, also known 

as Bayesian network, simple Bayes or independence Bayes. Without any complicated 

iterative parameter estimation schemes, it is simple to construct only requiring a small 

amount of training data[43].  

 

2. Hidden Markov Model (HMM), represented as the simplest dynamic Bayesian network, 

is a statistical Markov model in which the system being modelled is assumed to be a 

Markov process with hidden states[44]. The computational complexity of the HMM 

classifier is low, additionally, it can do well when dealing with a large dataset. 

 

3. Artificial Neural Network (ANN). A mathematical or computational classifier model has 

been inspired by biological neural networks. ANN is an adaptive system for which its 

structure can be changed using external and internal information flowing through the 

network during the learning phase[45]. 

 

4. Decision Tree (DT). This model able to recursively separates the input space into class 

regions in a hierarchic way. And it is greedy where it locally finds the best attribute to 

split the data and keep repeating until it cannot separate anymore [29]. 

 

5. k-Nearest Neighbour (k-NN). This algorithm is used for the classification of activities 

based on the closest training examples in the feature space. K-NN is a type of instance-

based learning, so-called lazy learning, where the function is only approximately locally 

and all computation is deferred until classification[46]. 

 

6. Support Vector Machines (SVMs). SVMs can be defined as systems that use hypothesis 

space of linear functions in a high dimensional feature space, which are trained with a 

learning algorithm from optimization theory that implements a learning bias derived 

from statistical learning theory[47]. It has secure theoretical foundations, strong 

regularization properties and excellent empirical successes[43].  It is originally to solve 

binary classification problems, but with some analysis strategies, it can be applied to 

multi-class classification tasks. 

 

7. Other classification algorithms: Decision Tables, Threshold-based method, Gaussian 

Mixture Models (GMMs). And some innovative methods by fusion of various classifiers. 

 

The classification algorithms mentioned above all have wide applications in sports activity 

recognition and classification. The following Table 2.4 shows the survey about various 

classification algorithms in the machine learning process of swing sports activity classification, 

especially tennis, table tennis, and badminton. As can be seen from the table, in every study, 

not just only one simple classification algorithm was studied in the data processing procedure. 

Several state-of-the-art classification algorithms in the field of machine learning were 

compared to deal with the same dataset to show their characteristics or drawbacks when 
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applying on sports activity classification. Among the reviewed literature, Wang et al. did the 

most detailed stroke classification study on badminton to recognize all 14 badminton strokes  

with 5 different classification algorithms[16]. To the existing literature, there is no similar work 

having been done on detailed tennis stroke classification. Most of the tennis stroke 

classification studies were restricted to three or five basic strokes[21][23][24]. It is shown that the 

most widely used classification algorithms are HMM, kNNs, NB, and SVMs. According to the 

accuracy results of classification, regardless of the magnitude of the dataset, a considerable 

average accuracy can be achieved in all classification algorithms. Noticeably, those innovation 

methods have the same level of performance. SVMs has become one of the most popular 

classification methods in the machine learning field in recent years. It will be the main 

classification algorithm to be studied in this thesis, and a more detailed discussion about SVMs 

can be found in the next chapter. 

 

Table 2.4 The application of various classification algorithms in the machine learning process of swing sports activity 

classification 

References Classification Algorithm Type of sports and 
number of strokes 

Average 
Accuracy of 
Classification 

(%) 

Processing 
Time (s) or 
Processing 

effort 

[16] 2-layer HMM Badminton 
14 strokes 

97.96 19.5 

NB 72.44 2.5 

C4.5 DT 78.44 16.1 

Linear discriminant function 82.09 6.1 

SVMs 96.98 7452.6 

[21] NB Tennis  

3 strokes 

90 NA 

[22] SVMs Tennis 
Non-strokes & 

strokes 

98.76 NA 

HMM 97.02 

[23] Longest common subsequence (LCSS) Tennis 
5 strokes 

94 NA 

[24] Frame-based prescription and multi-class 
SVM (FDSVM) 

Tennis 
3 strokes 

98.1 NA 

[30] ANN Convolutional neural networks Badminton 77.2 NA 

Long short-term memory networks 78.9 

[31] NB Table Tennis 
8 strokes 

87.1 mid 

Random Forest (RF) 95.7 low 

SVMs Linear kernel  95.6 mid 

Radial based function 96.7 high 

kNNs 94.7 high 

[32] SVMs Tennis 

9 strokes 

93.21 NA 

kNNs 92.52 

RF 90.78 

Neural network 90.36 

[35] SVMs Tennis 88.36 NA 

kNNs 89.41 
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2.3  Project overview 

2.3.1 Thesis overview 

In this thesis project, an automated and comprehensive tennis stroke recognition and 

classification method is developed based on IMU sensors and machine learning algorithms. 

According to the processes of human activity recognition and classification, combin ing with 

specific topic on all tennis strokes, the entire project process can be divided into the following 

subsections: experimental equipment and subjects, method and arrangement, raw data 

acquisition, data pre-processing, window segmentation, feature extraction, machine learning 

algorithm, classifier training, model validation, database testing, classification results, and 

accuracy detection. The contents of this thesis process are organized as follows:  

Chapter 3 describes the experimental method about equipment and subjects, data recording 

and storage step by step. The detailed place of attachment of IMUs and tennis sessions of 

executing tennis stroke detection and collection are discussed in this chapter.  

Chapter 4 presents data processing methods, including raw data pre-processing, window 

segmentation, feature extraction, machine learning algorithm training, model validation, 

database testing. Window segmentation method to the pre-processed data is introduced in 

detailed. And features from both accelerometer and gyroscope signal data in time domain and 

frequency domain are all considered to come up with a proper feature vector used to feed the 

machine learning algorithm. After that, Support Vector Machines (SVMs) as the main classifier 

is used in the training classification model through MATLAB programming.  

Chapter 5 includes the classification model validation and final classification results about all 

8 tennis strokes. Data from different IMU sensor was fed to train classification model and 

tested respectively. The accuracy of automated classification is shown by comparing our 

classification results with the golden standard from video annotation and silver standard from 

commercial tennis sensors. And a data fusion was chosen to train the classification model 

again, aiming to check if the classification accuracy can increase by sensor fusion. 

Chapter 6 discusses the classification results and precision. In this chapter, the important 

achievements of this project are presented which can be used as a practical guideline for real-

time, automated and sensor-based tennis stroke recognition and classification system in the 

future. Beyond that, some drawbacks from this study are summarized to avoid recurrence in 

future work. 

 

2.3.2 Expected contribution 

The main goal of this thesis is specified and refined to “Automated and comprehensive tennis 

stroke recognition and classification based on IMU sensors and Support Vector Machines”. 

With this automated tennis stroke recognition and classification method, a real-time, portable 

and automatic recognition and classification system for swing sports may be studied and 
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developed. It could act as a data analyst or strategy coach for sports athletes by collecting 

their training or competing data. Consequently, after the project of this thesis, the following 

support questions should be answered: 

 

▪ What features could be used to distinguish similar tennis strokes in machine learning 

algorithms, for example, forehand topspin and forehand slice?  

 

▪ Do data from different IMUs attached to different parts of players achieve similar 

classification accuracy by training machine learning model? 

 

▪ What do data fusion show when data from different sensors is combined? Does it 

provide the best data for classification? What is the accuracy then? 

 

▪ How do SVMs perform while training the data? What are the advantages and 

disadvantages compared to other advanced classification algorithms? 

 

▪ Does the magnitude of training dataset have influences on the accuracy result of 

prediction? 

 

▪ What is the accuracy of tennis stroke classification in this study, and how does it 

compare with previous studies? 
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 Chapter 3 
   Method 

 

 

 

In this chapter, the experimental set-up and measurement method are explained respectively. 

The experimental set-up includes subjects, experimental apparatus, tennis court, while 

measurement method consists of IMU sensor attachment, type of tennis strokes, tennis 

session arrangement, data recording, and storage.  

 

 

 

3.1 Experimental set-up 

3.1.1 Subjects 

Seven healthy adolescent tennis players (five males, two females) from Koninklijke 

Nederlandse Lawn Tennis Bond (KNLTB) participated in this study, shown in Table 3.1. Detailed 

information of subjects is shown in Appendix 1. All precautions of the experiment were 

explained and written informed consent was provided and signed by every participant before 

the experiment. And the approval of the ethical committee of Vrije Universiteit Amsterdam 

has been granted. All rights of all subjects are protected through the entire process.  In an 

effort to generate a comprehensive functional classification method across all levels of elite 

or amateur tennis players, this sample was deliberately heterogeneous. 

Seven participants are certainly in good competitive sports states without the following 

circumstances. 
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The exclusion criteria were: 

• History of wrist, forearm, elbow, upper arm or shoulder surgery 

• Incidence of upper extremity pathology in the last six months which restricted the 

normal performance of tennis play for more than two days 

• Recent pain happened on the upper extremity, especially at wrist, elbow or shoulder 

• Any circumstance may affect the normal movement of making tennis strokes 

Table 3.1 Information for seven participants in the study. 

Age (year) Weight (kg) Height (cm) Preferred Hand Rank level 
(Dynamic 
Playing 
Strength 
System (DSS)) 

Years of 
playing tennis 

19.3±2.7 75.4±15.8 180.7±11.1 right 4.3±1.1 11.3±4.1 

 

3.1.2 Experimental equipment and court 

IMU sensor 

The special IMU sensor system was made by Sander van Leeuwen (the technician from the 

technical support team of the VU section Neuro-mechanics), especially used for data 

collection for the human upper extremity. As it is shown in  Figure 3.1, it consists of 4 IMU 

sensors, each IMU sensor contains an integrated tri-axis accelerometer, a tri-axis gyroscope 

(icm20649), and a tri-axis magnetometer (ak20649).  

 

 

Figure 3.1 IMU sensor system 

The icm20649 is a combined tri-axis accelerometer with a range of ±30 g and a tri-axis 

gyroscope with a range of ±4000 dps. During data recording in the experiment, the frequency 

of accelerometer and gyroscope are both sampled at 560 Hz. Moreover, the size of the sensor 

board is 16*24mm and the weight of a sensor board is around 1 gram. The low weight of the 
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sensor does not influence the normal movement of tennis strokes of subjects. The direction 

of IMU sensors attaching to the forearm and upper arm are shown in Figure 3.2 below. The 

detailed specification of sensors is attached in Appendix 2.  

 

Figure 3.2 The direction of IMU sensor on forearm and upper arm 

 

Attachment of IMU 

Before the experiment, the IMU sensor system has to be attached to the subject on the 

forearm (wrist), upper arm, torso, and pelvis, as shown on the dark spots in  Figure 3.3. The 

detailed places of attachment of 4 IMU sensors are shown in Table 3.2. 

 

Figure 3.3 The attachment of the IMU system on the upper extremity of participant 
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Table 3.2 The detailed places of attachment of the IMU system 

IMU sensor Segment Location 
IMU 0 Torso Attach to the surface of the back, at the point of fifth thoracic vertebra 
IMU 1 Pelvis Attach to the surface right above sacrum on spine in medial level, at the 

middle point in the line of spina iliaca posterior superior 
IMU 2 Upper arm Attach to the distal of humerus, on the middle point between the lateral 

and medial epicondyle 
IMU 3 Forearm (wrist) Attach to the distal of ulna and radius, in the middle point between the 

styloid process of radius and head of the ulna 

 

Commercial sensor 

One interesting question in this thesis is to verify tennis stroke classification accuracy of 

commercial tennis sensors currently on the market. In this study, the Zepp tennis sensor, 

mentioned in the introduction was used to collect movement data of tennis players during the 

experiment. Tennis stroke classification results of Zepp were shown through a specific APP on 

cellphone called ZEPP TENNIS. And all experimental results from Zepp tennis sensor were 

recorded through this APP. 

Attachment of Zepp 

As every player has his/her own tennis racket, thus, Zepp tennis performance sensor is 

attached to the bottom part of the racket handle by using a flex-mount. It will not affect the 

use of a tennis racket. Moreover, all attached sensors should be stable and cannot block the 

general swing movement of a tennis player. 

 

Tennis court & ball machine 

All experimental procedures were executed in the indoor tennis hardcourt at the KNLTB. The 

six-camera video recording system, Playsight (see https://playsight.com), was helped to 

record all movements of players in the entire experiment. It provides detailed information for 

manual annotation of tennis strokes.  

All tennis balls in this experiment were shot automatically by a ball machine. The speed, height, 

frequency, and direction of the ball were set up in advance to feed subjects the corresponding 

tennis strokes.  
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Figure 3.4 Tennis court set-up 

The set-up of the tennis court is shown in Figure 3.4. During the experiment, the participants 

stood at the opposite side to the ball machine and were instructed to hit tennis balls back to 

2m*2m target areas on the testing court. In this way, the motion data can be collected when 

there is only one subject in each time. We simulate a “rally” environment for the subject in 

this study. 

 

3.2 Experimental procedures 

3.2.1 Tennis stroke classes 

In this study, all eight common types of tennis strokes were recorded.  

• Serve (SR) – Tossing the ball into the air and hitting it (usually near the highest point of 

toss) so that the ball falls into opposite service box without being stopped by the net 

• Forehand topspin (FHT) – Hitting over the ball with the racket and giving it forward 

rotation from the player’s dominant hand side 

• Backhand topspin (BHT) – Hitting over the ball with the racket and giving it forward 

rotation from the player’s non-dominant hand side 

• Forehand slice (FHS) – Hitting the ball with the racket and giving it backward rotation 

from the player’s dominant hand side 

• Backhand slice (BHS) – Hitting the ball with the racket and giving it backward rotation 

from the player’s non-dominant hand side 

• Forehand volley (FHV) – Hitting the ball before it bounces on the ground with a short 

punching stroke at the player’s dominant hand side 
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• Backhand volley (BHV) - Hitting the ball before it bounces on the ground with a short 

punching stroke at the player’s non-dominant hand side 

• Smash (SM) – Hitting the ball above the head with a serve-like motion from the player’s 

dominant hand side 

Other tennis stroke subtypes like half-volleys, flat shots which are less common and used 

stroke techniques[32] were not included in this study.  

 

3.2.2 Data collection 

To collect enough tennis stroke data for both training and testing datasets of the machine 

learning process, tennis sessions for all eight tennis strokes were performed to collect basic 

data of all types of tennis strokes used to extract the features of different strokes and feed 

the classification algorithms. Moreover, a tennis stroke database in a competitive tennis 

session was collected, mainly used as a testing dataset to input into the classification model. 

Thus, for each subject, there were two main parts of the data collecting procedure.  

First, basic data of all eight tennis strokes were collected separately by testing subjects with 

tennis session with a fixed number of identical strokes. A ball machine was set up in a 

repeating model to launch balls for subjects to perform different strokes respectively. And in 

total, every type of tennis stroke was performed 5 times in each trial except the serve shot. 

Tennis serve was performed 10 times. 

The participants were instructed to hit tennis balls back to the target area on the opposite side 

of the testing court by performing different tennis strokes on the list. And clear and powerful 

movement and swing strike were asked to perform when hitting the ball. The data collected 

in this part were mainly used to extract the features and train the classifier in the data 

processing. 

Second, the tennis stroke database in tennis rally was collected to use as testing data to check 

the performance of the classification method in the final stage. Due to the inconvenience of 

arranging the timetable of participants and the unbalanced rank level of players, it was hard 

to arrange the real competitive tennis rallies for collecting testing data in this study. In an 

alternative way of thinking, several programs in ball machine were set to simulate as an 

“opponent”. In each program, ball launching direction, speed, height and time interval were 

set randomly but reasonably in one rally. For each rally, players started with a serve and 

perform nine tennis shots according to the nine coming balls from the ball machine. They were 

instructed to perform any tennis strokes according to their judgement, willingness, reaction 

and technique skills. In this way, the simulated tennis rally between subjects and ball machine 

was much more similar to the real competitive tennis rally between players. In order to make 

sure there are eight types of tennis stroke for testing data, the participants were also asked to 

try to perform as many as types that he or she could. For each subject, there were 3 rallies 

contains 10 strokes. In total, the testing dataset was around 300 tennis strokes. 
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3.2.3 Data recording method 

IMU data 

In a highly efficient and convenient way of IMU data recording and storage, the raw data of 

four IMU sensors are collected in real-time by a transmitter and sent to a laptop via File 

Transfer Protocol (FTP) wirelessly. With a MATLAB script for plotting, the raw data can be 

checked immediately after the experiment. In this study, the program of FTP used on the 

laptop is called FileZilla[50]. 

Commercial sensor 

All movement data of tennis strokes by participants were recorded and stored automatically 

when the Zepp tennis sensor was on and connected to the cell phone by APP. Though the APP 

of Zepp, all tennis training session history could be retrieved. And the results of tennis stroke 

classification were shown at the same time as shown in Figure 3.5. The total number of shots 

and types of stroke classification were recorded in detailed, which will be used to compare 

with classification results of the proposed method in this study to verify the classification 

accuracy of the commercial products. Meantime, the classification results from the 

commercial sensor were treated as a silver standard. 

 

Figure 3.5 The results of tennis stroke classification of the commercial sensor in its APP 

Video footage 

Experiment video footage was saved through the internet automatically. In order to build the 

ground truth, the video footage was manually annotated by author and tennis coaches from 

KNLTB empirically. All tennis strokes in this study from video footage were labelled as “Serve 

Stroke”, “Forehand Topspin Stroke”, “Backhand Topspin Stroke”, “Forehand Slice Stroke”, 

“Backhand Slice Stroke”, “Forehand Volley Stroke”, “Backhand Volley Stroke”, “Overhead 
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Smash”. Then, the labelled tennis strokes from video footage were treated as the golden 

standard, also known as ground truth, to compare with classification results by the proposed 

classification method in this study in the final stage to achieve validation of accuracy.  
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 Chapter 4 
  Data processing 

 

 

 

Chapter 4 presents data processing after the data collection procedure from the experiment. 

The detailed information of raw data pre-processing, window segmentation, feature 

extraction, machine learning algorithms, classification model training and database testing is 

explained comprehensively in this chapter.   

 

 

 

 

In the last chapter, raw data of all tennis strokes of every subject has been collected. According 

to human activity recognition based on inertial sensors, raw data cannot be used to training 

the classifier and testing machine learning model directly. Before the final stage of recognition 

and classification, for example, raw data should be filtered and smoothed. And, furthermore, 

not the entire signal will be used to training the classification model and testing. Features 

should be selected and extracted, as mentioned in the last chapter. Generally, the main steps 

of data processing in activity recognition can be categorized as pre-processing, segmentation, 

feature extraction, dimensionality reduction and classification[2]. In this study, data processing 

was refined in the following steps: raw data pre-processing, shot detection and window 

segmentation, feature extraction, dimensionality reduction, training classifier, dataset 

testing(Figure 4.1.)  
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 Figure 4.1 Data processing flowchart for tennis stroke recognition 

 

After raw data collection, the preliminary screening of raw data is necessary before it goes to 

the pre-processing step. Since the IMU sensor system was newly developed just for data 

collection of the upper extremity of players in swing-sports, it works not as stable as a 

commercial IMU sensor. Moreover, due to the unstable attachment of IMU sensor system and 

the effect of sweating during the experiment, parts of IMU sensor had the problems of 

unstable attachment or falling off sometimes. These could result in incomplete data records 

and missing data in some trials. MATLAB scripts were programmed to plot acceleration and 

angular of velocity data in time series to check whether there exists reasonable and pre-set 

number of spikes generated by ball impact and whether the measured data is reasonable 

without exaggerated or empty data.  



Chapter 4 Data processing Xinyu Liu 

                                                                                                                           PAGE 31 
 

 

 

Figure 4.2 Sample signal from preliminary screening 

 

As can be seen from Figure 4.2 above, it shows clearly that there are ten prominent spikes in 

both acceleration and angular velocity signals, which represent ten tennis strokes or shots 

generated by ball compact with the racket. Raw data signals (both acceleration and angular 

velocity signal) with abnormal fluctuations, dramatic changes, and missing data were rejected 

in this period. It is clear that the signals have large fluctuations and exaggerated peaks, caused 

by noise. Denoising and smoothing signal procedures were executed in the next step to make 

signals refined. 

 

4.1 Data pre-processing  

Noise filtering 
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Raw data acquired by wireless inertial sensor units were subject to noise in the form of system 

noise, environmental noise, and soft-tissue artefact. In this study, three noise reduction 

methods were adopted to remove noise from acceleration and angular velocity signals. 

1. Low-pass filter  

From literature, human activity frequencies are between 0 and 20 Hz, and the frequency 

range of human body motion is within 10Hz[51]. While the noise generated by IMU sensor 

system or in the measuring environment is high frequency. A 4-order butter-worth 

lowpass filter was used in this study. A cut-off frequency of the low-pass filter is selected 

to 20Hz to attenuate noise with higher frequency than the cut-off threshold. In this way, 

acceleration and angular velocity signals contain the main characteristics of tennis stroke 

motion are retained. 

2. Zero-phase digital filter 

Zero-phase filtering helps preserve signal features in a filtered time waveform exactly 

where they occur in the unfiltered signal. And it could reduce noise in the s ignal and 

generate a clear and smooth waveform of the signal. 

3. Wavelet analysis 

Wavelet analysis or wavelet transform is a critical analytical method in the field of signal 

processing. It has found engineering applications in computer vision, pattern recogn ition, 

signal filtering. Wavelet denoising technique is popular for processing biomechanical and 

biomedical signals like acceleration signal and EMG/ECG signal  nowadays. The conclusion 

of Wachowiak et al. is that wavelet-based noise removal techniques are very effective in 

removing noise from differentiated signals with sharp transients [52]. And Wavelet filter has 

the added advantage that it is fast and easy to implement through MATLAB Wavelet 

Toolbox. 

 

By programming script in MATLAB, three noise filter methods above were implemented to all 

data signals by using lowpass, filtfilt and wdenoise function. In order to show the changes in 

the signal before and after the noise reduction, a comparison plot of the x-axis acceleration 

data of one trial is generated in Figure 4.3. From the figure, by comparison, raw signal with 

denoising signal, exaggerated peak value and vibration are eliminated through denoising 

procedure. And in a zoom-in perspective, the signal waveform after noise reduction is quite 

smooth than the raw data signal.  
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Figure 4.3 Comparison of sample signal before and after denoising  

 

4.2 Stroke detection & Window segmentation 

All data signals of movement of players were recording in real-time continuously, which 

means not only motion data of tennis strokes but also other motion data like waiting, 

preparation, and step move were fully contained in one signal data stream. To perform tennis 

stroke motion detection and classification, the signals must be adequately partitioned so that 

the main representative data only for tennis strokes can be distinguished from other motion 

data. In this study, window segmentation is implemented and benefited by combing with 

tennis stroke detection method. It is also called event-defined window segmentation. 
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4.2.1 Stroke detection 

The IMU sensor attached to the dominant arm of players registered a peak acceleration. In 

recording data, the number of peak accelerations also indicated the number of tennis strokes. 

By detecting such data-spikes in acceleration signals provided the temporal location of tennis 

strokes. To get the resultant acceleration magnitude of every sampling point, the length of the 

3D acceleration vector is calculated simply.  

𝐴𝑚 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 (1) 

By programming in MATLAB, we could plot resultant acceleration magnitude in time-serious, 

for example, one of the resultant acceleration magnitude signals of one trial is shown in Figure 

4.4. We may find out that there are five tennis strokes in this acceleration signal. By 

implementing findpeaks function in MATLAB[53], local peaks of the input signal were returned 

and additionally, the indices (time in our case) at which the peaks occur were obtained at the 

same time. For example, the peak values and time indices that were found out in Figure 4.4 

represent the stroke points in this acceleration signal. Additionally, to avoid find redundant 

peaks and irrelevant peaks, the minimum threshold of acceleration magnitude and the time 

interval between peaks were pre-set to find the real peak for tennis strokes respectively. In 

this case, the exact orientation of IMU is irrelevant, which makes the system more robust. 

    

 

Figure 4.4 Sample resultant magnitude of acceleration and the found peaks 
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4.2.2 Window segmentation 

From stroke detection to acceleration data signals, the positions of tennis strokes were 

located. Empirically, the window size of 1s has information to describe tennis strokes 

sufficiently, avoiding additional movement motions before and after tennis strokes. To fill the 

window with useful data and remove any irrelevant information, the stroke points were put 

at the centre of window. For each stroke point, a time extending 0.5s to either side of the 

stroke was considered to form one observing window. Taking a signal for example, as shown 

in Figure 4.5. 

 

 

 Figure 4.5 Window segmentation to sample signal  

 

This sample signal contains both 3-axis acceleration data and 3-axis angular velocity data. The 

detailed window segmentation procedure is described as follows: 

1. By finding peak points of resultant acceleration magnitude, tennis strokes of this signal 

were located. Peak values and location time were obtained; 

2. For one tennis stroke point t, a time interval [t-0.5s, t+0.5s] was chosen to form the 

corresponding observation window. The sampling frequency of IMU sensor was 

around 560 Hz, which means there were 561 sample points for one single signal; 

3. For each window, it contained 3-axis acceleration data and 3-axis angular velocity data. 

Totally, there were approximately 3366 sample data points for every window. 
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4.3 Feature selection & extraction 

During data processing period of human activity recognition and classification, feature 

selection and extraction are affected greatly by subjective factors of the researcher. As 

mentioned in Chapter 2, there are many features that could represent the characteristics of 

signal data distributing in the time domain, frequency domain, and discrete representation 

domain. In order to better describe the representative characteristics of tennis stroke signals, 

features in both time domain and frequency domain were selected in this study. 

 

4.3.1 Feature selection 

In this study, both time domain and frequency domain features were selected to extract and 

form the feature vector to feed the classification algorithm. The selected features are shown 

in Table 4.1. 

Table 4.1 All selected features in this study. 

 Time-domain Frequency-domain 

Feature name Mean, Covariance, Skewness, Kurtosis, 
Maximum, Minimum 

Magnitudes of fast 
Fourier transform 
coefficients; Spectral 
energy 

 

Mean, with a small computational cost, can describe the speed of players’ tennis strokes. And 

covariance stands for the stability of the players’ stroke motion . As for maximum and 

minimum, they often used to combine with covariance to discriminate distinctly different 

tennis strokes. And skewness of acceleration and angular velocity signal represents the 

instantaneous explosive force of performing tennis strokes of players. While kurtosis describes 

the situation of stroke force of motion signal. In terms of frequency-domain features, the 

magnitudes of fast Fourier transform (FFT) coefficients and spectral energy indicate the 

situation of tennis stroke energy of players. They can distinguish different strokes with similar 

acceleration and angular velocity from the internal relation of energy level.  

 

4.3.2 Feature extraction 

To time-domain features, mean, covariance, skewness, and kurtosis were statistical functional 

metrics while maximum and minimum were envelope metrics. All of them were mathematical 

metrics that were calculated by the corresponding function in MATLAB. As for frequency 

domain features like FFT coefficients and spectral energy, in order to drive those features, 

firstly, the windows of all signal data of IMU sensors which were all in time domain must be 

transformed into the frequency domain, using the fast Fourier transform method. After that, 

the results of fast Fourier transform typically performed a set of basis coefficients which 
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represented the amplitudes of the frequency components of signals. And the spectral energy 

of the windows in signal data was computed as the squared sum of its spectral coefficients 

normalized by the length of the sample window. These FFT spectral features were named 

energy metrics. 

All seven features were extracted for both acceleration data and angular velocity data from 

each sensor of IMU sensor system. Acceleration and angular velocity data both consisted of 3 

component signals in three directions. Beyond these six signals, two synthetic signals of 

resultant acceleration and angular velocity were considered in this study. By fusing all features 

together, the dimensionality of the feature vectors was 56 (7 features × 8 signal waveforms). 

It means that for each window, there were 56 features that could describe the characteristics 

of the window. For all training data and testing data, a training data matrix of features and a 

testing data matrix were formed to feed the machine learning algorithm. Before feature 

extraction, all features needed to be normalized to a specific range [0, 1]. This is because, for 

instance, many classifiers calculate the distance between two points by the Euclidean 

distance[54]. And if the selected features have a broad range of values, the distance will be 

governed by some particular features, which will result in bias. Therefore, all selected features 

in this study were normalized to [0,1], so that each feature contributes approximately 

proportionately to the classification. 

With tennis strokes in all training data and associated signal features identified, the last stage 

of data processing required that detected strokes from training data signals be assigned with 

the true tennis stroke labels. The label matrix for training data was an important input for the 

training classification model. In this study, the label for tennis strokes is listed in the following 

Table 4.2. 

Table 4.2 Numbering and labels for tennis strokes. 

Numbering Name of tennis stroke Label 

1 Backhand slice BHS 

2 Backhand topspin BHT 

3 Backhand volley BHV 

4 Forehand slice FHS 

5 Forehand topspin FHT 

6 Forehand volley FHV 

7 Smash SM 

8 Serve SR 

 

Due to the training dataset is designed especially for this study, the false tennis stroke is 

eliminated in data screening procedure and tennis stroke detection. In the classification 

process, there is no need to consider false strokes. 

4.4 Machine learning algorithm 

An extremely powerful machine learning technique known as the Support Vector Machines is 

introduced. It is one of the best “out of the box” supervised classification algorithms [55]. In this 

study, SVMs are used to train supervised learning models with associated learning algorithms 
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that analyse testing data for tennis stroke classification. In the following part, a short 

demonstration was made to introduce the principle of support vector machines and how to 

apply it in this study.  

From literature, the SVMs algorithm is an extension of the support vector classifier, combing 

with the theory of the kernel method[58]. The support vector classifier can solve the problem 

of linear boundaries classification with two classes. In this case, the support vector classifier is 

also regarded as a non-probabilistic binary linear classifier. However, in the input feature 

space, the data points will not always be split by linear boundaries. In addition to performing 

linear classification, SVMs has the ability to perform a non-linear classification using kernel 

method or kernel trick, implicitly mapping the input feature points into high -dimensional 

feature spaces. We will look into support vector classifier, kernel trick and SVMs in multi-class 

classification respectively. 

4.4.1 Support vector classifier 

The support vector classifier is originally applied to solve dichotomous classification problems. 

If we consider a classification problem with 2-class and linear boundaries, as shown in Figure 

4.6. In the left panel, the training data are linearly separable while the case that the training 

data are not distributed linearly in the right panel. In general, many possible decision 

boundaries, as called hyperplane in SVMs, can classify data regardless of the classification 

results. As can be seen in the left part from the figure below, H1 cannot separate the classes, 

H2 separates the classes but with a small margin, but H3 achieves the classification task with 

the maximal margin. This maximum-margin hyperplane, also called hard-margin, is the one 

we could obtain from the support vector classifier. In principle, one that represents the largest 

margin between the two classes makes the best hyperplane reasonable. The found the best 

option of hyperplane is called the maximum-margin hyperplane or optimal hyperplane while 

this support vector classifier is known as a maximum-margin classifier.  

 

 

Figure 4.6 A linear boundaries classification with 2-class (left-data linearly separable; right-data linearly inseparable) 
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Besides, in a linearly inseparable data situation, there exist outliers in training data. Maximum 

margin classifiers are super sensitive to outliers and that makes them incapacitated in classify 

linearly inseparable data. To have a hyperplane that is not so sensitive to outliers, the support 

vector classifier allows misclassifications, which is shown in the figure above on the right. As 

it allows misclassifications, the distance between the hyperplane and the observation data is 

called soft margin. Cross-validation method is used to determine how many misclassifications 

and observations to allow inside of the soft margin to get the best classification.  The name 

support vector classifier comes from the fact that the observations on the edge and within the 

margin are called support vectors. The mathematical computational details of support vector 

classifiers are provided in Appendix 3. 

 

4.4.2 Kernel trick 

In the above, linear boundary classification problems are already discussed by applying 

support vector classifier. However, the data points in the input space will not always be 

located by linear boundaries in the same space. For example, the data points are split non-

linearly in Figure 4.7.  

 

Figure 4.7 Non-linear boundary classification problem 

The idea to solve non-linear boundary classification situations is to transform the data from 

the input space (the original attributes of the upper example, left part) to a higher dimensional 

space using a function 𝜙(𝑥). In this way, linear decision boundaries are sought in the high-

dimensional feature space, which is shown in the figure above the right side. And the 

advantage of the transformation is the linear operations in the feature space are equivalent 

to non-linear operations in the input space. Besides, during the transformation, only the inner 

product of the original input data is needed.  

Kernel functions enable them to operate in a high-dimensional, implicit feature space with 

simply computing the inner products[59]. In the field of SVMs, this approach by using kernel 

functions is the kernel trick. There are many popular kernel functions such as linear kernel, 

fisher kernel, polynomial kernel, and radial basis function kernel. Here in this study, the Neural 

Network (sigmoid) kernel function was constructed in SVMs for tennis stroke classification. 
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Additionally, the details of mathematical computations of kernel tricks and the functions of 

popular kernel methods are shown in Appendix 4. 

 

4.4.3 Multi-class SVMs 

In this study, all eight types of tennis strokes need to be classified by applying SVMs. This 

involves the classification problems of multiclass SVMs. It aims to assign labels to instances by 

using support vector classifiers, where the labels are drawn from a finite set of training data. 

While SVMs are fundamentally designed as two-class classifiers as mentioned in the previous 

subsection. The dominant method for multi-class SVMs is to reduce one single multiclass 

classification problem into multiple binary classification problems [60]. Here three most 

commonly used methods for multiclass reduction are introduced as follows. And the detailed 

information for the principle of multi-class SVMs is in Appendix 5. 

1. One-versus-all (OvA)[61].  

OvA builds binary classifiers that distinguish one of the classes and the rest. When N is 

the number of classes or labels, N classifiers are constructed in OvA strategy, and each 

of them separates one class from the rest of the N-1 labels. The results of the new 

testing data classification for OvA are decided by a winner-takes-all strategy. A new 

instance will be tested on all of the N classifiers and it will be assigned to the one with 

the highest-output function (or largest decision value). 

 

2. One-versus-one (OvO)[61]. 

OvO is to design a binary classifier between every pair of classes, to N classes 

classification, 
𝑁(𝑁−1)

2
 classifiers are built. To the results of new instance classification, 

it follows the max-wins voting strategy, in which every classifier assigns the new 

instance to one of the two classes, also known as voting. In the end, the new instance 

will be classified to the most frequently predicted class. Compared with OvA, OvO is 

quite computationally intense, but it has been shown to provide robust classification 

results with SVMs classifiers[56][57][58].  

 

3. Error-correcting output codes (ECOC)[62]. 

ECOC is used as an output representation for multi-class classification tasks. The main 

idea is to define a series of code words with M bits for each of the N class categories 

in advance. When classifying, it is only needed to compare the distance measure 

between the sample to be classified and each string of codes. And ECCO has a 

significant advantage of being able to correct errors by using some redundant “error-

correcting” bits[62]. In this case, some errors are introduced by finite training samples, 

poor choice of input features, and flaws in the training algorithm can be tolerant. In 

this study, ECOC was implemented in multi-class SVMs.   
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4.5 Algorithm evaluation 

For the evaluation procedure, a leave-one-out cross-validation strategy is used in this study. 

First, the feature samples of 7 subjects are divided into 7 parts according to different players. 

Then, for each time, we leave the feature samples of one subject to be the testing data and 

the other parts of the data of the rest subjects as the training data. After the classification, the 

true labels of the leave-out subject compared with the predicted labels from the SVMs model 

trained by 7 subjects. This evaluation method iterates for every part. Essentially, the leave-

one-out validation method is equal to a special seven-fold cross-validation. The final result can 

be obtained by calculating the average classification rate of every fold. The below will show 

the process of leave-one-out cross-validation more intuitively. 

 

 

 

 Figure 4.8 Seven-fold cross-validation method 
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4.6 Model training & Prediction assessment  

4.6.1 Train multi-class SVMs model 

After evaluating the SVMs algorithm of our case, there came to the final classification step. 

We trained the SVMs classification model with the training data matrix of feature vectors and 

true labels. After obtaining the SVMs classification model, we predicted the labels of testing 

data by feeding the testing data matrix of feature vectors to the classification model. All 

training and testing procedures were implemented by programming MATLAB script with SVMs 

Toolbox. To achieve reliable prediction results and deep discussion about our tennis stroke 

classification method based on IMU sensor and SVMs. There are three main parts of the model 

training period. 

To obtain a dialectical comparison of the classification results with SVMs, we trained the SVMs 

classification model and validated the model with data from IMU sensors on forearm and 

upper arm respectively.   

In the next stage, by statistics from window segmentation, there were around 300 tennis 

strokes as training data and 200 as testing data. To some extent, the training data was at an 

insufficient level compared with testing data. To validate SVMs algorithm with proper training 

data, half of the testing data with true labels were put into training data to train SVMs model. 

In this way, we could find out whether the magnitude of the training data affects the results 

of SVMs classification. And the training efficiency of SVMs model was verified in this part. 

In the last part, both datasets from IMU sensors on forearm and upper arm were used to train 

the SVMs classification model. We introduced the data fusion method by combing feature 

vectors of training data, testing data to validate SVMs algorithm and to check if the accuracy 

of prediction was affected by data fusion from different IMU sensors.  

 

4.6.2 Classification results and assessment  

We trained and validated SVMs model through three main stages with different training data 

from IMU sensors. Both validation and final classification results were analysed by the 

confusion matrix. It allows visualization of the performance of SVMs algorithm in the field of 

machine learning with the multi-class classification task. To make a prediction assessment, all 

final classification results were compared with the golden standard and silver standard. The 

detailed results, prediction assessment, and discussion are in the next chapter. 
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 Chapter 5 
Results  

 

 

 

In this chapter, there are three main parts of SVMs model training. First, we train SVMs model 

with data from IMU sensor on the forearm and upper arm respectively. Both validation and 

classification prediction were executed to two training models. Next, for the same SVMs 

model from one sensor, we enlarged the training data by adding half of the testing data with 

true labels. In the last stage, combing forearm sensor and upper arm sensor by data fusion, a 

combined feature vector of training data and testing data were used to train and test a new 

SVMs model. Confusion matrixes for all validation and prediction results were provided.  

To check the validation results and final prediction accuracy in an intuitive way, confusion 

matrixes were constructed in the following results display process. And precision (positive 

predictive value) and recall (sensitivity) were computed for each tennis stroke type. Precision 

presented the proportion of tennis stroke predictions that were correct, while recall denoted 

the proportion of actual stroke labels that were classified correctly. The calculation of 

accuracies reflected the reliability and precision of the validation of SVMs classification model 

and were the indicators of accuracy assessment of the prediction of final trained SVMs model. 

 

5.1  Train SVMs with single sensor data  

5.1.1 SVMs classification model with forearm sensor data 

IMU sensor attached to the wrist is the most popular one for human sports activity 

recognition[16][21][32]. As for tennis strokes in this study, swing-motions of tennis strokes are 

nearly dominant by the upper extremity of players. The wrist, as the distal end of the upper 
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extremity kinetic chain connected with the racket, reflects the motion of tennis strokes to the 

maximum amplitude with the most discriminative features. Thus, the training data from IMU 

sensor on the wrist was taken to train SVMs. And the testing data were used to feed the 

trained SVMs model to do classification. 

 

Validation 

Table 5.1 below shows an example of confusion matrix of results of SVMs validation with data 

from the forearm sensor. The full validation results are shown in Appendix 6. 

Table 5.1 Confusion matrix subject1 was left out (forearm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 
Training time: 

3326s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4 1       0.8 

BHT  3       1.0 
BHV 1  4      0.8 

FHS  1  5     0.83 

FHT     6    1.0 
FHV  0 1   4   0.8 

SM       4  1.0 
SR     4 1 1 NaN NaN 

Recall 0.8 0.6 0.8 1.0 0.6 0.8 0.8 NaN  
Accuracy = 0.75 

 

The average accuracy of SVMs validation with the forearm sensor is 0.69±0.1. “NaN” indicates 

that there is no input training data for this type of tennis stroke of the subject. 

 

Classification 

Table 5.2 Confusion matrix of SVMs model Prediction (forearm sensor) 

Training data: 291 strokes                           Testing data: 218 strokes 

Training time: 
3747s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 10 2 2      0.71 

BHT  14       1.0 

BHV 1 5 5      0.46 
FHS  1  14 15  2 2 0.41 

FHT     74   6 0.94 

FHV    6 1 19   0.73 
SM     3  3 1 0.43 
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SR     18  1 13 0.42 
Recall 0.9 0.64 0.71 0.7 0.67 1.0 0.5 0.63  

Accuracy = 0.69 

 

 

5.1.2 SVMs classification model with upper arm sensor data 

The training data from the IMU sensor on the upper arm was taken to train SVMs. And the 

testing data was used to feed the trained SVMs model to do classification. Processed from 

consideration of controlled variable method for scientific research, feature vectors of training 

and testing data were extracted from the same windows of tennis strokes by using data from 

upper arm sensor. And the numbers and labels of training and testing strokes were exactly 

equal to the SVMs model with forearm sensor data.  

 

Validation 

Below Table 5.3 shows an example of confusion matrix of results of SVMs validation with data 

from upper arm sensor. The full validation results are attached in Appendix 7. 

 

Table 5.3 Confusion matrix subject1 was left out (upper arm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 
Training time: 

3217s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4  1      0.8 

BHT  3       1.0 
BHV 1 2 4      0.57 
FHS    4 1 1   0.67 

FHT     5    1.0 
FHV    1 3 4   0.5 

SM       3  1.0 

SR     1  2 NaN NaN 

Recall 0.8 0.6 0.8 0.8 0.5 0.8 0.6 NaN  

Accuracy = 0.675 

 

The average accuracy of SVMs validation with forearm sensor is 0.67±0.04. 
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Classification 

Table 5.4 Confusion matrix of SVMs model Prediction (upper arm sensor) 

Training data: 291 strokes                           Testing data: 218 strokes 

Training time: 
3772s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 

Strokes 

BHS 9 1       0.9 

BHT  13       1.0 

BHV 2 8 7      0.41 

FHS    17 5 5   0.63 

FHT     79   2 0.97 

FHV    3 1 14   0.78 

SM     3  3 9 0.2 
SR     23  3 11 0.3 

Recall 0.81 0.59 1.0 0.85 0.71 0.74 0.5 0.5  
Accuracy = 0.70 

 

 

5.2 Train SVMs model with enlarged training data  

In this part, we enlarged former training data by using half of the testing data and their true 

labels in previous model. The testing data were chosen randomly and their feature vector was 

put into feature vectors of original training data. And the label of new training data was revised 

according to the appropriate order. At last, we trained the SVMs model with enlarged training 

data for both forearm and upper arm sensors. The confusion matrixes of their classification 

results are shown as follows. 

 

Table 5.5 Confusion matrix of SVMs model Prediction with enlarged training data (forearm sensor) 

Training data: 390 strokes                           Testing data: 119 strokes 

Training time: 
3945s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 7        1.0 

BHT  7       1.0 
BHV  2 5      0.71 

FHS    7     1.0 

FHT    1 44 1  4 0.88 

FHV    2 4 12   0.67 
SM     1 1 NaN  NaN 
SR     11 2  8 0.38 

Recall 1.0 0.78 1.0 0.7 0.73 0.75 NaN 0.67  
Accuracy = 0.75 
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Table 5.6 Confusion matrix of SVMs model Prediction with enlarged training data (upper arm sensor)  

Training data: 390 strokes                           Testing data: 119 strokes 

Training time: 
3912s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 5        1.0 

BHT  9       1.0 

BHV 2  5      0.71 
FHS    8     1.0 
FHT    2 46 1   0.94 

FHV     4 13  1 0.72 
SM       NaN 4 NaN 

SR     10 2  7 0.36 
Recall 0.71 1.0 1.0 0.8 0.76 0.81 NaN 0.58  

Accuracy = 0.77 

 

 

5.3 Train SVMs model with data fusion of two IMU sensors  

In this part, the idea of data fusion was verified by combing data from IMU sensors on the 

forearm and upper arm. The new feature vectors of training data and testing data were built 

by matrix fusion of original feature vectors of training and testing data from each sensor. Here 

we also trained the SVMs model with enlarged training data. The confusion matrixes of the 

prediction results are shown below. 

 

Table 5.7 Confusion matrix of SVMs model Prediction (data fusion) 

Training data: 291 strokes                           Testing data: 218 strokes 

Training time: 
3967 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 9 5 1      0.6 

BHT  17       1.0 

BHV 2  6      0.75 

FHS    16 1 1   0.89 

FHT    4 85   11 0.85 
FHV     4 14   0.78 

SM     2 4 4  0.4 
SR     19  2 11 0.34 

Recall 0.81 0.77 0.86 0.8 0.76 0.74 0.67 0.5  
Accuracy = 0.74 
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Table 5.8 Confusion matrix of SVMs model Prediction with enlarged training data (data fusion) 

Training data: 390 strokes                           Testing data: 119 strokes 

Training time: 
4012 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 5        1.0 

BHT  9       1.0 

BHV 2  5      0.71 
FHS    7     1.0 
FHT    1 48 1  4 0.89 

FHV    2 3 12   0.71 
SM      1 NaN  NaN 

SR     9 2  8 0.42 
Recall 0.71 1.0 1.0 0.7 0.8 0.75 NaN 0.67  

Accuracy = 0.79 
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 Chapter 6 
Discussion 

 

 

This chapter presents in-depth discussion and findings by exploring and analysing the results 

from the last chapter. By comparing our results with literature, we can conduct the 

advantages and deficiencies of this study in field of human sports activity recognition.  

The aim of this study was to develop an automated and comprehensive tennis stroke 

recognition method based on IMU sensors and SVMs machine learning algorithms. Both 

acceleration and angular velocity signals of four parts (forearm, upper arm, trunk, and pelvis) 

of the player’s upper extremity were recorded by a self-made IMU sensor system consists of 

a 3-axis accelerometer and a 3-axis gyroscope. Detailed data processing procedures were 

implemented to refine the data to representative feature vectors which could describe the 

characteristics of different tennis strokes and be used to distinguish eight types of tennis shots. 

And we trained the classification models through the SVMs algorithm and validated the 

models by leave-one-out strategy. Finally, confusion matrixes were used to visualize the 

prediction results and accuracy assessment, which were shown in detailed in the last chapter. 

When the SVMs models were trained with data from a single IMU sensor on the forearm and 

upper arm respectively, the classification accuracies of SVMs algorithm across seven-fold 

leave-one-out validation of forearm and upper arm sensor are 0.69±0.1 and 0.67±0.04. In 

general, the results indicate the SVMs algorithm does not work exceptionally well when 

trained on data from a single sensor. Compared with Whiteside et al. results, they had indeed 

extreme good classification accuracy results of SVMs across 10-fold cross-validation, 97.43±

0.24 for 4 basic shot classes and 90.36±1.08 for 9 shot classes[32]. The good classification 

accuracy of their work is due to a large group of subjects which are all  20 elite tennis players 

and sufficient training data around 30.000 shots. Noticeably, when the classification 

requirement comes to 9 shot classes, the validation results also has a large decrease. For our 

study, on one hand, not only elites but also amateurs, 7 subjects in total, were involved in this 
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study, different level of tennis skills of players increased the uncertainty in data samples, 

which can be seen from the manifest differences of accuracy between every subject during 

leave-one-out validation. It makes the SVMs model trained by data from signal IMU sensor a 

bit extent of user-dependent. Büthe et al. faced the same problems as in the current study. In 

their study, the data of 4 subjects were recorded and validated, resulted in a classification 

accuracy 0.47±0.3[23]. Compared with their study, the classification method that we proposed 

is relatively reasonable and accurate. To the rest, less literature about tennis classification 

claimed the results of algorithm validation but only the results of final prediction accuracy.   

As for the final prediction assessment, the accuracies of SVMs classification model with 

forearm and upper arm sensor data are 0.69 and 0.70 for 8 types of tennis strokes respectively. 

The results are predictable according to the previous validation accuracy. To our knowledge, 

White et al. is the only previous study that has attempted to discriminate such detailed stroke 

classification, achieved the best results 0.97 for 4 shots classification and 0.93 for 9 shots 

classification. While Büthe et al. obtained a general accuracy of prediction 5 types tennis 

strokes around 0.79 and Kos et al. made three basic shots classification with 0.96 accuracy. 

Because it is a more difficult multi-classification problem with a small training dataset, it is 

acceptable to have a final prediction accuracy around 0.7 in stage one. According to the 

precision and recall values, the greatest likelihood of misclassification happened within a 

subtype of tennis strokes (slices and volleys). As can be seen that, even if the subtype of 

strokes was predicted incorrect, the side of swing was recognized right. It may explain why 

prediction accuracy was superior high for basic tennis strokes classification (forehand, 

backhand and serve) in the previous study. And this is confirmed by the results of Zepp sensor 

we used in study. It had a high precise classification of 92.7% to five types of tennis stroke 

except for volley. Moreover, from the confusion matrix, among 218 testing strokes, forehand 

topspin (111 shots) accounts for the majority of all types of tennis strokes, backhand slice, 

backhand topspin, forehand slice, and forehand volley are around 20 shots. Backhand volley 

and smash are the least two shots groups with 7 and 6 shots. All these numbers mean when 

encountering the real or simulated rally games, players have the trend to perform the type of 

tennis stroke that they are familiar with, forehand topspin in this study. And subtypes like slice, 

volley and difficult skills like smash were not performed so much. Thus, with the insufficient 

training data, the precision and recall value of strokes with a small number is not very 

persuasive. As for forehand topspin, the average recall of 0.75 and precision of 0.95 for a single 

IMU sensor could be able to show the prediction accuracy of the SVMs algorithm. 

From the comparison perspective between IMU sensors, results of validation and final 

prediction from SVMs models trained by data from forearm and upper arm sensors are almost 

the same. This part has not been done in the previous study to our knowledge. The existing 

literature about tennis stroke classification using SVMs algorithm only used one single IMU 

attaching to player’s wrist (forearm). Here in this study, we trained SVMs classification model 

through training data from forearm and upper arm sensor, while the results present there is 

not much difference when using IMU sensor data on forearm and upper arm. This may be 

because that forearm and upper arm are both located at the distal part of upper extremity 
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compared with trunk and pelvis. Sensors on these two parts could reflect the motion of swing 

to the maximum amplitude with the most discriminative features which can be used to 

distinguish different types of tennis strokes. We have not trained the SVMs model with data 

from trunk and pelvis sensor in this study. The conclusion of data from different attachment 

places of IMU sensor on the upper extremity may have an effect on the training effect of SVMs 

that cannot be drawn. We can only know from this study that IMU sensors on forearm and 

upper arm both have the ability to provide enough data information to train SVMs 

classification models respectively. And the training effects and prediction accuracies of SVMs 

model with data from forearm and upper arm are almost the same.  

At last, the training time of SVMs algorithm is another important vector need to be considered 

in this study. The mean and standard deviation of the training time of SVMs in stage one 

including validation and prediction process is 3391±195s. It means that one entire training 

and testing with SVMs algorithm costs around one hour. Most literature about tennis stroke 

classification has no clear claim about time cost when using different machine learning 

algorithms. Wang et al. listed the time cost of different classification algorithms when dealing 

with badminton shots classification study[16]. Among several popular machine learning 

algorithms, SVMs algorithm costs the longest training time. Similarly, there cost around one 

hour to training every SVMs model in this study. We could conclude that the time cost of SVMs 

algorithm is quite large. 

When enlarged training data were built to feed the same SVMs classification models from 

forearm sensor and upper arm sensor respectively, an increased prediction accuracy from 

0.69 to 0.75 is achieved for SVMs model trained by forearm sensor, while for the model 

trained by upper arm sensor, the accuracy of prediction also rises from 0.70 to 0.77. This 

further illustrates that the magnitude of training dataset has a large effect on the training 

results of SVMs model and the prediction accuracy. By looking into the confusion matrixes, 

the precision and recall values of subtype like slice and volley are all slightly improved, which 

indicates the proportion of predictions and proportion of actual strokes are predicted right is 

slightly increased. “NaN” of smash means all six smashes were selected to put into training 

data, there is no smash for the new testing data in the case of enlarged training data. 

Noticeably, the prediction results of serve are still lower than the average level of recall and 

precision of other tennis strokes. By statistics, in stage one, 20 serve shots were trained 

through SVMs model and 22 serve shots were tested, while 30 serve shots were trained and 

12 were tested in enlarged training data case. Even the training data was enlarged, but still 

few serve strokes were feed to train SVMs model. This is why the prediction accuracies of 

serve before and after the enlarged training data were not improved significantly. 

But from a general point of view, the prediction assessment performance has been improved 

for both SVMs models (trained by forearm and upper arm sensors) with the enlarged training 

dataset. Therefore, we believe that with a larger dataset of all eight tennis strokes of more 

subjects, we will be able to train better SVMs classification model, allowing for a user-

independent approach to predict all types of tennis strokes.  But as mentioned in the last 
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discussion part, the magnitude of the training dataset also affects the time cost of a training 

prediction model with the SVMs algorithm. Thus, there exists a trade-off between prediction 

accuracy and time costs.   

At last, the idea of sensor fusion for training SVMs model was achieved by fusing data from 

forearm and upper arm sensors in this study. With the original training data of 291 strokes, 

the SVMs model trained by fused data achieved a prediction accuracy of 0.74. While with the 

enlarged training data, it obtained the best accurate prediction 0.79 in this study. In the former 

condition, six subtypes of tennis strokes both forehand and backhand (except serve and smash) 

have relatively high recall of 0.80 ±0.04 and precision of 0.82±0.13. As for the SVMs model 

with data fusion, trained by enlarged training data, the recall and precision values of six 

subtypes of tennis strokes are 0.83±0.13 and 0.89±0.14 respectively. There exists no 

literature applying the idea of data fusion to tennis stroke recognition and classification study. 

Wang et al. applied data fusion from different IMU sensors (attached on the right and left 

wrist, waist, and right ankle) to badminton shots classification used several machine learning 

algorithms[16]. They have drawn the conclusion that the IMU sensor plays the dominant role 

when providing discriminative data information among those four sensors. And most 

importantly, data fusion from different body-attached IMU sensors could provide better 

results for recognizing different badminton strokes. Similarly, we draw the conclusion that 

data fusion by using both forearm and upper arm sensor can feed better to train SVMs 

classification model and improve the prediction accuracy to some extent. 

Beyond that, we also find that low values of recall and precision of serve and smash shots 

appear in the confusion matrix of the new SVMs classification model trained with original and 

enlarged training data. This special situation also happened in the previous SVMs model. 

Therefore, we can conclude that data fusion with different sensor data cannot compensate 

for the shortcomings caused by insufficient training data. The insufficient training data for all 

types of tennis strokes in this study was the lapse in data acquisition. 

 

In summary, we first trained the SVMs classification model by using data from single IMU 

sensors on the forearm and upper arm respectively. The accuracy results of validation for the 

trained two SVMS models are 0.69±0.1 and 0.67±0.04. And the results have large differences 

between individuals. The average accuracy results are not as precise as what we expected, 

which may because we only have few subjects and their skills of performing tennis strokes are 

not on the same level.  It increases the bias of the trained SVMS model, reducing the accuracy 

results from validation. And due to the unstable performance of the IMU system itself, some 

of the data files were missing or inferior, as can be seen, the “NaN” in confusion matrixes. 

Generally, around 40 strokes for eight type tennis strokes for every subject were added to the 

SVMs model. Compared with some similar studies, the training data is quite small. The 

insufficient training data for SVMs model makes the classification accuracy results of 

validation less credible. For the final prediction assessment, these two SVMs classification 

models provide the final prediction accuracy of 0.69 and 0.70. Compared with similar tennis 
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stroke classification study with a large group of subjects, the prediction accuracy in this study 

is not as high as their result. But our results have surpassed some peer results when involving 

fewer subjects and insufficient data.  

To make further study, we trained both SVMs model with enlarged training data. Both of them 

result in improved final prediction accuracy to some extent. So we can conclude that the data 

of the IMU sensor attached to the forearm and upper arm can provide enough information to 

train SVMs classification models used for tennis stroke prediction independently. And 

sufficient training data affect the final prediction results. Moreover, we trained a new SVMs 

model by fusing data from the previous two SVMs model. It shows the best prediction 

accuracy of 0.79 in this study. Therefore, we draw another conclusion that SVMs classification 

model trained by fusing data from the forearm and upper arm IMU sensor helps to improve 

the prediction accuracy for tennis stroke classification. 
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 Chapter 7 
Recap & Future work 

 

The objective of this study was the development and validation of a tennis stroke recognition 

and classification method based on the IMU sensor and machine learning algorithm. The 

experimental method and results of validation and classification were discussed in-depth in 

the previous chapters. This chapter provides an overview of the achievements of this study 

and the concluded outcomes and drawbacks from the discussed results in chapter 6. At last, 

some recommendations for further studies and the practical application of tennis stroke 

recognition and classification are presented. 

 

7.1 Recap  

❖ Previous works about tennis stroke recognition were reviewed from both commercial 

and scientific perspective. 

Commercial tennis sensors have a wide range of applications, recoding and recognizing 

basic types of tennis shots. But the inner classification algorithms and the claimed 

accuracy of prediction are not clear and verified. Most of the scientific literature, 

similarly, are restricted to simple type of classification without subtype of strokes. 

Extremely high prediction accuracies (above 95.6%) were achieved by Whiteside et al., 

using several machine learning algorithms[32]. 

 

❖ The experimental method was designed to obtain motion data of tennis strokes with 

IMU sensors. 

IMU system contains four sensors attaching to entire upper extremity was used to 

collect motion data from forearm, upper arm, trunk, and pelvis. Raw signals of motion 

data were divided into training data and testing data for every sensor. This is the first 
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time that a continuous sensor system attached to the kinetic chain of upper extremity 

was applied in tennis stroke classification task. 

 

❖ Discriminative information for distinguishing different types of strokes was extracted 

through data processing procedures.  

Screening and filtering procedures were implemented to raw data signals to filter out 

noise and smooth the waveform. An event-based stroke detection method was used to 

achieve window segmentation which contains representative and discriminative 

information used to distinguish tennis strokes. Consequently, eight data signals (3-axis 

acceleration, 3-axis velocity, resultant acceleration, and resultant gyroscope) and seven 

features (mean, covariance, maximum, minimum, skewness, kurtosis, spectral energy) 

formed the feature vectors which were fed the machine learning algorithm. 

 

❖ SVMs algorithm was used to train classification model in machine learning process. 

SVMs was introduced comprehensively in this study and used to train classification 

model for tennis strokes. To test and validate SVMs algorithm, there were three stages 

in training the SVMs model when using training data. 

 

1. Stage one: The SVMs model was trained by using data from single IMU sensor. 

The data from forearm and upper arm sensors were fed to train the classification 

model respectively in this stage. In previous work, IMU sensor on the wrist was 

the only option when collecting motion data [21][23][26][32]. Across leave-one-out 

seven-fold cross-validation, the accuracy results of validation and final 

prediction of those SVMs classification models were quite similar. Therefore, we 

have drawn the conclusion that IMU sensor on forearm and upper arm can both 

provide enough information to train SVMs model to classify tennis strokes. 

 

2. Stage two: Due to insufficient training data, the results in stage one were not as 

precise as we expected. Two SVMs classification models from stage one were 

trained with enlarged training data. The prediction accuracies were improved in 

both cases. Thus, we concluded that the SVMs algorithm is competent to 

achieve the goal of tennis stroke classification. And the magnitude of training 

data could affect the validation results and prediction accuracy of the model 

trained by SVMs. Moreover, we found out that the magnitude of training data 

and time costs is a trade-off problem. 

 

3. Stage three: To optimize the prediction accuracy of the SVMs model, the idea of 

data fusion was tested in this stage. This was also new for tennis stroke 

classification task, similar study has been done with badminton [16]. Data from 

forearm sensor and upper arm sensor was combined to form the new feature 

vector to feed SVMs algorithm. The new SVMs model was tested by original 

training data and the enlarged one. The best prediction accuracy of tennis stroke 
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in this study was 0.79, obtained by training data-fused SVMs model with the 

enlarged training dataset. We concluded that data fusion of different IMU 

sensors can improve the performance of SVMs classification model. 

 

 

7.2 Deficiencies 

❖ The group of subjects was small.  

Only seven subjects were involved in this study. And their tennis skills were not at the 

same level (mixed with elites and amateurs), which brings the uncertainties of user-

dependent to the validation results of the SVMs model.    

 

 

❖ The sampling frequency was high.  

The high sampling frequency resulted in that a window with 1s time interval of tennis 

strokes contains 561 sampling points, which increases the computational complexity 

when training the SVMs model. Consequently, the training time of SVMs model in this 

study was round one hour, which was quite time-intensive.  

 

 

❖ Both the training and testing datasets of eight tennis strokes were small 

Due to the instability of self-made sensor and flaws in arrangements, some of the data 

recorded were disabled or missing. Through the conclusion of stage two, insufficient 

training data affected the performance of SVMs classification model. Similarly, 

insufficient testing data with less magnitude of all types of tennis strokes could not 

ensure the confidence of prediction accuracy. 

 

❖ Data from trunk and pelvis IMU sensors have not been used in this study. 

The SVMs classification model has not been trained by using data from trunk and pelvis. 

We did not know how they performed when providing information for SVMs algorithm 

to train classification model compared with data from forearm and upper arm sensor. 

Moreover, data fusion for training new SVMs model only considered the combination 

of forearm and upper arm sensor. The other combinations were not included. 

 

7.3 Recommendations for future work 

From the work has been done in this study and the summary of deficiencies, we list some 

recommendations for future work to make a comprehensive classification of tennis strokes. 
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❖ Sufficient subjects and motion data of tennis strokes should be collected and tested. 

A larger group of subjects with similar tennis skills (for example, all elite players) should 

be arranged. For each subject, both training and testing datasets need to be collected 

sufficiently. Moreover, if it is possible, collecting motion data when players deal with a 

real tennis rally or tennis training session. In this case, the collected motion data will be 

closer to the real tennis motion of movement. Additionally, a stable and reliable IMU 

sensor system is needed to record tennis strokes with a relatively low sampling 

frequency (100Hz may meet the requirements). 

 

❖ Take every IMU sensor from sensor system into consideration. 

Train SVMs model with data from four single IMU sensor respectively (forearm, upper 

arm, trunk, and pelvis). From which, we could know if all four IMU sensors on upper 

extremity have the ability to provide enough information for training SVMs classification 

model to distinguish different types of strokes. Additionally, train SVMs model through 

the data fusion method by using all combinations of four IMU sensors. With this study, 

we can find out the best combination of IMU sensors on upper extremity which could 

improve and optimize the prediction accuracy of SVMs classification model. 

 

❖ Applying different machine learning algorithms. 

The final objective of the study is to find the best way to achieve automated and 

comprehensive tennis stroke classification. Here in this study, SVMs is the only machine 

learning algorithm to be considered. In future work, more algorithms like kNN, ANN, 

HMM, and NB should be applied to train classification model by using the same training 

and testing dataset. The best machine learning algorithm can be decided for tennis 

stroke recognition and classification. It will benefit to the final goal of its practical 

application. 

 

 

7.4 Practical application 

The main application of the proposed tennis stroke classification method in this study is to 

provide guidance to develop a real-time and effective tennis stroke strategy and coaching 

system for both tennis amateurs and elites. This system will record every stroke and its type 

for users in training rallies or competition matches. From the results, the batting habit and 

coping strategy are investigated and analysed comprehensively, which will provide the players 

and coaches the guidance and advice to improve their performance and adjust different 

counterattack skills. Beyond that, with this collection and recognition system, a huge database 

of the user will be established. Through the statistics, the user can manage their training skills 

and detect the shortcomings when performing specific strokes from a long-term perspective. 
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Appendices 

 

Appendix 1: Information of Subjects 

 

Subjects Gender Age Weight 
(kg) 

Height 
(cm) 

Preferred 
Hand 

Rank level 
(Dynamic 
Playing 
Strength 
System 
(DSS)) 

Years of 
playing 
tennis 

PP01 Male 15 73 180.5 right 3 10 
PP02 Male 22 72.5 190 right 5 14 
PP03 Male 16 90 189.5 right 6 5 
PP04 Female 20 57 160 right 4 8 
PP05 Male 20 92.5 185 right 3 14 

PP06 Female 20 54 172 right 4 11 
PP07 Male 22 88.7 188 right 5 17 

 

 

Appendix 2: Specification of IMU sensor system 

 

The IMU system consists of four sensor boards, each board has two type of sensors the 
icm20649 and the ak09918c. 
The size of the board is 16x24mm. 
The weight is of the sensor board is ~ 1 gram. 
The icm20649 is a combined 3d +/- 30G accelerometer and a 3d +/- 4000dps gyroscope. 
The ak09918c is a magnetometer. 
The icm20649 is sampled around at ~575Hz. 
The ak09918c is sampled around at 100Hz. 
Here is a picture of one sensor board. 
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Datasheet of the icm20649 and the ak09918c are listed as follows: 

https://www.invensense.com/wp-content/uploads/2016/06/DS-000192-ICM-20649-
v1.0.pdf 
https://www.akm.com/content/dam/documents/products/electronic 

compass/ak09918c/ak09918c-en-datasheet.pdf 
The direction of IMU sensor is shown below. 

 
 

The direction of IMU sensor on the forearm and upper arm is shown below. 

 
 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 
 

https://www.invensense.com/wp-content/uploads/2016/06/DS-000192-ICM-20649-v1.0.pdf
https://www.invensense.com/wp-content/uploads/2016/06/DS-000192-ICM-20649-v1.0.pdf
https://www.invensense.com/wp-content/uploads/2016/06/DS-000192-ICM-20649-v1.0.pdf
https://www.akm.com/content/dam/documents/products/electronic%20compass/ak09918c/ak09918c-en-datasheet.pdf
https://www.akm.com/content/dam/documents/products/electronic%20compass/ak09918c/ak09918c-en-datasheet.pdf
https://www.akm.com/content/dam/documents/products/electronic%20compass/ak09918c/ak09918c-en-datasheet.pdf
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Appendix 3: The mathematical details of the support vector classifier 

 

 

Here we consider a two-class classification task. A training set T with N observation data (X1, 

y1), (X2, y2), …, (XN, yN), where XN∈R, N = 1, …, N are the input features, and yN = {-1, 1}, N = 

1, …, N are the true label of class. If the two classes of points are linearly separable, then we 
assume there exist at least one hyperplane, defined by 
 

𝑊′⃗⃗ ⃗⃗  ⃗ 𝑋𝑁⃗⃗⃗⃗  ⃗ + b = 𝑦𝑁            (2) 

If the data to be classified exceeds their boundaries, then a good classification can be made. 
And we could get the following equations:  
 

{ 
 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁⃗⃗⃗⃗  ⃗ + 𝑏 ≥  +1, 𝑦𝑁 = +1    

𝑊′⃗⃗ ⃗⃗  ⃗ 𝑋𝑁
⃗⃗⃗⃗  ⃗ + 𝑏 ≤ +1, 𝑦𝑁 = −1

    (3) 

 
For the convenience of expression, they can be formed to one equation. 

 

𝑦𝑁( 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁
⃗⃗⃗⃗  ⃗ + 𝑏) ≥  +1,𝑁 = 1,2,… , 𝑁 (4) 

 
 
According to principle of support vector classifier, since the two classes are linearly separable, 
the best hyperplane could divide the two classes with large margin between the points on the 
boundaries. And the classification task is redefined as a problem to find the best hyperplane 
by calculating the largest margin. 
 

The margin D is calculated as  
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𝐷𝑁 =
| 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁⃗⃗⃗⃗  ⃗ + b|

‖ 𝑊⃗⃗⃗⃗  ⃗‖
(5) 

 
As we already know that 

 

| 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁⃗⃗⃗⃗  ⃗ + b| == 1 (6) 

 
Then, we can deduce that  
 

D =
1

‖ 𝑊⃗⃗⃗⃗  ⃗‖
(7) 

 

And  
 

𝐷𝑁 =
2

‖ 𝑊⃗⃗⃗⃗  ⃗‖
(8) 

 

 
Finally, we conclude a constraint equation as follows 

 
 

{
𝐷𝑁 =

2

‖ 𝑊⃗⃗⃗⃗  ⃗‖

𝑦𝑁( 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁
⃗⃗⃗⃗  ⃗ + 𝑏) ≥  +1,𝑁 = 1,2,… , 𝑁

    (9) 

 
 
For the convenience of mathematical calculations, the above constraint equation is equal to  
 
 

{ 𝐷𝑁 =
‖ 𝑊⃗⃗⃗⃗  ⃗‖

2

2

𝑦𝑁( 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁⃗⃗⃗⃗  ⃗ + 𝑏) ≥ +1,𝑁 = 1,2, … , 𝑁

(10) 

 
 
After that, we use Lagrangian solve this constrained optimization task by introducing Lagrange 
multiplier. 
 
 

L( 𝑊⃗⃗⃗⃗  ⃗, b, α) =
1

2‖ 𝑊⃗⃗⃗⃗  ⃗‖
2 + ∑𝛼𝑁 (1 − 𝑦𝑁( 𝑊′⃗⃗ ⃗⃗ ⃗⃗   𝑋𝑁⃗⃗⃗⃗  ⃗ + 𝑏)) (11) 
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Then we let L( 𝑊⃗⃗⃗⃗  ⃗, b, α) do partial derivative of  𝑊⃗⃗⃗⃗  ⃗ and b 
 
 

{
 𝑊⃗⃗⃗⃗  ⃗ = ∑𝛼𝑦𝑁𝑋𝑁

0 = ∑𝛼𝑦𝑁

(12) 

 
In the end, we will get 
 

F(X) = ∑𝛼𝑦𝑁𝑋′
𝑁𝑋𝑁 + 𝑏 (13) 

 
After input of all data, the final best hyperplane can be obtained. 
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Appendix 4: The mathematical details of the Kernel method[58] 

 

The support vector classifier can solve linear boundary 2-class classification task like 

mentioned in Appendix 3. However, in practical, the training data are located linearly 

separable in most of classification cases. To solve non-linear separable tasks, support vector 

classifier still uses linear boundaries, but in the high-dimensional feature space where all the 

input data in the original input feature space are mapped into by a transformation. 

Let take an example for deep study. Set four input data points in R2: (0,0), (0,1), (1,0), and (1,1), 

as can be seen in figure below. The 2 classes are indicated by different colour of points.  

 

We cannot separate a 2-class classification task by linear boundary with input data points like 

this, while curve lane boundary will do. But this is not what we do in SVMs. In SVMs, we use a 

transforming function φ(𝑥) to map the data from the input space to a higher dimensional 

space. Like the one in example above,  

 

φ(𝑥1,𝑥2) = (𝑥1, 𝑥2, |𝑥1 − 𝑥2|) (14) 

 

In this way, the four-input data is shifted to 3 dimensions. New data points are (0,0,0), (0,1,1), 

(1,0,1), and (1,1,0), which are shown in right part in the figure. From a 3-dimension perspective, 

we can easy to find out any plane which parallel to the x-y plane with z from 0 to 1 can be the 

hyperplane to classify the data. The advantage of the transformation is the linear operations 

in the feature space are equivalent to non-linear operations in the input space. Besides, during 

the transformation, only the inner product of the original input data is needed. It means that 

if the computational method of the product is defined, then, there is no necessary to explicitly 

build it. 
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In SVMs, for some classification cases, the formulas we use to transform input data  (φ: 𝑅𝑝 →

𝑅𝑞) only through the form of its inner product are like 

 

K(x, y) =  φ(x), φ(y) (15) 

for all x, y ∈Rp, then we do not have to transform all the data points. We can only work in the 

original input space through the newly defined kernel function K. 

Several kernel functions are popular used in SVMs recently. Here list some of them. 

 

1. Linear  

                                                         

K(x, x′) = 𝑥𝑇𝑥′ (16) 
 

2. Radial Basis 

          

K(x, x′) = 𝑒−𝛾‖𝑥−𝑥′‖
2

(17) 

 

3. Neural Network (Sigmoid) 

                                                         

K(x, x′) = tanh(𝑘1𝑥
𝑇𝑥′ + 𝑘2) (18) 

 

 

4. dth Degree Polynomial 

                                                                     

K(x, x′) = (1 + 𝑥𝑇𝑥′)𝑑 (19) 
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Appendix 5: The principle of multi-class SVMs 

Disassembly method: disassemble the multi-class classification task into several binary 

classification. And the classic strategy of disassembling multi-class SVMs are split, train, and 

integration. 

 

OVA 

Take one of the N classifications as a positive label of a binary classifier and set the rest as 

negative examples. In this way, the multi-class task is divided into N binary classification tasks. 

The integrated method is to consider the confidence of each classifier that is judged as a 

positive example, and it selects a class label with a large confidence as the classification result. 

(If there is only one, choose it directly.)  

 

OVO 

The N classifications task is paired one by one to divided them into N(N-1)/2 binary 

classification tasks. In order to distinguish the two classes Cp and Cq during training, one of 

binary classifier treats Cp as positive, and Cq as negative. During testing the new sample, it is 

submitted to all classifiers at the same time, N(N-1)/2 classification results will be obtained. 

The integrated method is to vote for the final result among these results. 

Here we take a 4-class classification task as an example. 

 

ECOC 

There are two main steps for ECOC in SVMs. The first is encoding, which divides the N classes 

classification task with M times and generates M classifiers. After that, the classification comes 
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to the decoding step. The testing sample will be tested by M classifiers to get M prediction 

marks. These prediction marks compose to a code. Comparing this code with each of the N 

categories of codes, the category with the smallest distance is returned as the result of the 

final prediction. Additionally, the encoding form is further divided into binary code and ternary 

code. The former designates “positive class” and “negative class”, and the latter one has an 

additional “Null class”. Here we take a 4-classes classification with binary code strategy as 

example. 
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Appendix 6: Leave-one-out validation results when use forearm sensor 

Confusion matrix subject1 was leaved out (forearm sensor)  

Training data: 251 strokes                           Testing data: 40 strokes 

Training time: 

3326s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4 1      NaN 0.8 

BHT  3      NaN 1.0 
BHV 1  4     NaN 0.8 

FHS  1  5    NaN 0.83 
FHT     6   NaN 1.0 

FHV  0 1   4  NaN 0.8 
SM       4 NaN 1.0 

SR     4 1 1 NaN NaN 
Recall 0.8 0.6 0.8 1.0 0.6 0.8 0.8 NaN  

Accuracy = 0.75 

 

Confusion matrix of Leave subject2 out validation (forearm sensor)  

Training data: 259 strokes                           Testing data: 32 strokes 

Training time: 
3192s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 6 1 3  NaN   NaN 0.6 

BHT  3   NaN   NaN 1.0 
BHV   2  NaN   NaN 1.0 

FHS    3 NaN   NaN 1.0 
FHT     NaN   NaN NaN 

FHV    3 NaN 3  NaN 0.5 

SM     NaN 2 5 NaN 0.71 

SR  1   NaN   NaN NaN 
Recall 1.0 0.6 0.4 0.5 NaN 0.6 1.0 NaN  

Accuracy = 0.68 

 

Confusion matrix of Leave subject3 out validation (forearm sensor)  

Training data: 251 strokes                           Testing data: 40 strokes 

Training time: 
3122s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 5 1     1 NaN 0.71 

BHT  2      NaN 1.0 

BHV  2 5     NaN 0.71 

FHS    2 7 1  NaN 0.2 
FHT     3   NaN 1.0 

FHV    3  4  NaN 0.75 
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SM       4 NaN 1.0 
SR        NaN NaN 

Recall 1.0 0.4 1.0 0.4 0.3 0.75 0.75 NaN  
Accuracy = 0.625 

 

Confusion matrix of Leave subject4 out validation (forearm sensor)  

Training data: 242 strokes                           Testing data: 49 strokes 

Training time: 
3217s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 5      1  0.83 

BHT  1 1      0.5 
BHV  4 4   2   0.4 

FHS    5   1  0.83 

FHT     5    1.0 
FHV      3   1.0 

SM     5  3 7 0.2 

SR        2 1.0 

Recall 1.0 0.25 0.75 1.0 0.5 0.6 0.6 0.28  
Accuracy = 0.57 

 

Confusion matrix of Leave subject5 out validation (forearm sensor)  

Training data: 241 strokes                           Testing data: 50 strokes 

Training time: 
3361s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 5        1.0 
BHT  1       1.0 

BHV  4 5      0.44 
FHS    2 7  3 4 0.12 

FHT     2    1.0 
FHV      5   1.0 

SM    3   1  0.25 

SR     1  1 6 0.75 

Recall 1.0 0.25 1.0 0.4 0.2 1.0 0.1 0.6  

Accuracy = 0.55 

 

Confusion matrix of Leave subject6 out validation (forearm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 
Training time:    

3548s 
Actual Strokes 

Precision 
BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4       NaN 1.0 
BHT  5      NaN 1.0 
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BHV 1  5     NaN 0.83 
FHS    2 1   NaN 0.67 

FHT     9   NaN 1.0 
FHV    3  5 3 NaN 0.45 

SM       2 NaN 1.0 
SR        NaN NaN 

Recall 0.8 1.0 1.0 0.4 0.9 1.0 0.4 NaN  

Accuracy = 0.8 

 

Confusion matrix of Leave subject7 out validation (forearm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 

Training time: 
3473s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 3       NaN 1.0 
BHT  5      NaN 1.0 

BHV 2  5   1  NaN 0.625 

FHS    5 2  3 NaN 0.5 

FHT     7   NaN 1.0 
FHV      4  NaN 1.0 
SM     1  2 NaN 0.67 

SR        NaN NaN 
Recall 0.6 1.0 1.0 1.0 0.7 0.8 0.4 NaN  

Accuracy = 0.775 
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Appendix 7: Leave-one-out validation results when use upper arm sensor 

Confusion matrix of Leave subject1 out validation (upper arm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 

Training time: 

3217s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4  1     NaN 0.8 

BHT  3      NaN 1.0 
BHV 1 2 4     NaN 0.57 

FHS    4 1 1  NaN 0.67 
FHT     5   NaN 1.0 

FHV    1 3 4  NaN 0.5 
SM       3 NaN 1.0 

SR     1  2 NaN NaN 
Recall 0.8 0.6 0.8 0.8 0.5 0.8 0.6 NaN  

Accuracy = 0.675 

 

Confusion matrix of Leave subject2 out validation (upper arm sensor)  

Training data: 259 strokes                           Testing data: 32 strokes 

Training time: 
3273s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4  2  NaN   NaN 0.67 

BHT 2 4   NaN   NaN 0.67 
BHV   3  NaN   NaN 1.0 

FHS    3 NaN 2  NaN 0.6 
FHT    1 NaN   NaN NaN 

FHV    2 NaN 3  NaN 0.6 

SM     NaN  5 NaN 1.0 

SR  1   NaN   NaN NaN 
Recall 0.67 0.8 0.6 0.5 NaN 0.6 1.0 NaN  

Accuracy = 0.68 

 

Confusion matrix of Leave subject3 out validation (upper arm sensor)  

Training data: 251 strokes                           Testing data: 40 strokes 

Training time: 
3331s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 5 1      NaN 0.83 

BHT  4      NaN 1.0 

BHV   5     NaN 1.0 

FHS    3 2 2  NaN 0.42 
FHT     5   NaN 1.0 

FHV    2 3 3  NaN 0.375 
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SM       2 NaN 1.0 
SR       3 NaN NaN 

Recall 1.0 0.8 1.0 0.6 0.5 0.6 0.4 NaN  
Accuracy = 0.675 

 

Confusion matrix of Leave subject4 out validation (upper arm sensor)  

Training data: 242 strokes                           Testing data: 49 strokes 

Training time: 
3459s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 3  1      0.75 

BHT  4       1.0 
BHV 2 1 4      0.57 

FHS    3  1   0.75 

FHT     6   3 0.67 
FHV    2 1 3 2  0.375 

SM     3 1 3 4 0.27 

SR        3 1.0 

Recall 0.6 0.8 0.8 0.6 0.6 0.6 0.4 0.3  
Accuracy = 0.59 

 

Confusion matrix of Leave subject5 out validation (upper arm sensor)  

Training data: 241 strokes                           Testing data: 50 strokes 

Training time: 
3482s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 4  1      0.8 
BHT 1 3       0.75 

BHV  2 4      0.67 
FHS    4 2    0.67 

FHT     5    1.0 
FHV    1  3  2 0.6 

SM      2 3 5 0.3 

SR     3  2 3 0.375 

Recall 0.8 0.6 0.8 0.8 0.5 0.6 0.6 0.3  

Accuracy = 0.58 

 

Confusion matrix of Leave subject6 out validation (upper arm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 
Training time:    

3329s 
Actual Strokes 

Precision 
BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 3       NaN 1.0 
BHT 1 3 1     NaN 0.6 
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BHV 1 2 4     NaN 0.57 
FHS    3 2   NaN 0.6 

FHT     5   NaN 1.0 
FHV    2  5  NaN 0.71 

SM     3  3 NaN 0.5 
SR       2 NaN NaN 

Recall 0.6 0.6 0.8 0.6 0.5 1.0 0.6 NaN  

Accuracy = 0.65 

 

Confusion matrix of Leave subject7 out validation (upper arm sensor) 

Training data: 251 strokes                           Testing data: 40 strokes 

Training time: 
3413s 

Actual Strokes 
Precision 

BHS BHT BHV FHS FHT FHV SM SR 

Predicted 
Strokes 

BHS 3       NaN 1.0 
BHT  3      NaN 1.0 

BHV 2 2 5     NaN 0.56 

FHS    4 3 1  NaN 0.5 

FHT    1 4  1 NaN 0.67 
FHV      4  NaN 1.0 
SM       2 NaN 1.0 

SR     3  2 NaN NaN 
Recall 0.6 0.6 1.0 0.8 0.4 0.8 0.4 NaN  

Accuracy = 0.625 
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