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This paper focuses on the development of metaheuristic algorithms for the real-time traffic management
problem of scheduling and routing trains in complex and busy railway networks. This key optimization
problem can be formulated as a mixed integer linear program. However, since the problem is strongly
NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solutions in a
short computation time. This paper presents a number of algorithmic improvements implemented in the
AGLIBRARY optimization solver in order to improve the possibility of finding good quality solutions
quickly. The optimization solver manages trains at the microscopic level of block sections and at a
precision of seconds. The solver outcome is a detailed conflict-free train schedule, being able to avoid
deadlock situations and to minimize train delays. The proposed algorithmic framework starts from a
good initial solution for the train scheduling problemwith fixed routes, obtained via a truncated branch-
and-bound algorithm. Variable neighbourhood search or tabu search algorithms are then applied to
improve the solution by re-routing some trains. The neighbourhood of a solution is characterized by the
set of candidate trains to be re-routed and the available routes. Computational experiments are per-
formed on railway networks from different countries and various sources of disturbance. The new
algorithms often outperform a state-of-the-art tabu search algorithm and a commercial solver in terms of
reduced computation times and/or train delays.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the last years, European railway companies are experiencing
increasing difficulties to face the ever increasing transport demand
while ensuring good quality of service to passengers, also due to
the limited space and funds to build new infrastructure in bot-
tleneck areas. These facts stimulated the interest for new effective
Operations Research (OR) solutions for real-time train scheduling.
This problem is faced by dispatchers, which have to modify orders,
passing times and routes of trains (on-line train dispatching pro-
blem) in order to counter delays and keep traffic smooth.

In the train scheduling literature, there is a well-known dif-
ference between the level of sophistication of the theoretical
results and algorithms and that of the methods that are employed
in practice. While the theory typically address simplified pro-
blems, achieving optimal or near-optimal performance, the prac-
tice must face all the complexity of real-time operations, often
ano).
with little attention to the performance level. This difference is
especially evident for real-time scheduling, and train scheduling is
not an exception. As a result, the poorly performing scheduling
methods that are used in practice has a direct impact on the
quality of service offered to the passengers, and the negative
effects of disruptions on the regularity of railway traffic may last
for hours after the end of the disruption (Kecman et al. [32]).
However, there are recently many signals that the scheduling gap
could be drastically reduced in the next few years. On the theo-
retical side, recent approaches to train scheduling tend to incor-
porate an increasing level of detail and realism in the models
while keeping the computation time of the algorithms at an
acceptable level. On the practical side, the railway industry is
interested in assessing the suitability of these methods to the
practical needs of real-time railway traffic management.

The design and implementation of advanced mathematical
models is a prerequisite to the development of innovative decision
support systems for solving the on-line train dispatching problem.
This paper is concerned with the modelling of the conflict detec-
tion and resolution (CDR) problem for railway networks. The CDR
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problem is the real-time problem of computing a conflict-free and
deadlock-free schedule compatible with the actual status of the
network and such that the circulating trains arrive and depart
with the smallest possible delay. To solve the CDR problem, a
number of algorithmic improvements are implemented in the
AGLIBRARY solver, a set of OR-based models and algorithms for
complex practical scheduling problems developed at Roma Tre
University. This solver is the main solution engine of the ROMA
dispatching support system [22], used for instance in the EU
project ON-TIME [20]. The solver is based on the alternative graph
model introduced by Mascis and Pacciarelli [38] and on the fol-
lowing framework: a good initial solution for the scheduling
problem with fixed routes is computed by the (truncated) branch-
and-bound algorithm in [25]. Metaheuristics are then applied to
improve the solution by re-routing some trains. This action cor-
responds to the concept of a move, from a metaheuristics per-
spective. In [13], a tabu search algorithm has been applied to solve
practical-size railway instances for a Dutch test case in the
Netherlands.

Previous research left open a number of relevant algorithmic
issues. The first issue concerns the extent at which different search
strategies and alternative solution methods might outperform the
tabu search algorithm. A second issue is to quantify the algo-
rithmic improvements, looking at a reduction of the computation
time and at an improvement of solution quality. Both these issues
motivate the development of the new metaheuristics proposed in
this paper. The paper contributions are next outlined:

� We present routing neighbourhoods that differ from each other
for the set of candidate trains to be re-routed in each move and
for the available routing alternatives.

� We alternate the search for promising moves via systematic
changes of a combination of neighbourhood structures, simi-
larly to Moreno Pérez et al. [41], and present strategies for
searching within these neighbourhoods based on variable
neighbourhood search schemes [30].

� We use fast train scheduling heuristics for the evaluation of
each neighbour.

� We apply the proposed algorithms to the management of
complex CDR problems, characterized by busy traffic, multiple
delayed trains and temporarily disrupted railway resources. The
new metaheuristics are compared with a state-of-the-art tabu
search algorithm [13] and with a commercial solver. Signifi-
cantly better results are obtained in terms of a reduced time to
compute the best-known (sometimes proven optimal) solu-
tions, and for some CDR instances also in terms of an improved
solution quality.

� We evaluate the algorithms over various real-world test cases,
which feature different railway network characteristics and
traffic flows.

Section 2 gives an overview of the literature related to the real-
time railway traffic management. Section 3 formally defines the
CDR problem and Section 4 presents mathematical formulations
for this problem. Section 5 describes the algorithms of AGLIBRARY
and the new metaheuristics proposed in this paper. Section 6
reports on the performance of the algorithms on various practical
case studies from Italy, the Netherlands and UK. Section 7 sum-
marizes the main paper findings and outlines future research
directions. An appendix illustrates the neighbourhoods investi-
gated in this work with a numerical example.

2. Literature review

The study of real-time train scheduling and routing problems
received increasing attention in the literature in the last years.
Early approaches (starting from the pioneering work of [50]) tend
to solve very simplified problems that ignore the constraints of
railway signalling, and that are only applicable for specific traffic
situations or network configurations (e.g. a single line or a single
junction), see the literature reviews in the following papers: Ahuja
et al. [1]; Cacchiani et al. [5]; Cordeau et al. [10]; Fang et al. [29];
Hansen and Pachl [31]; Lusby et al. [36]; Meng and Zhou [40];
Pellegrini and Rodriguez [44]; Pellegrini et al. [43]; Törnquist and
Persson [51]. Among the reasons for this gap between early the-
oretical works and practical needs are the inherent complexity of
the real-time process and the strict time limits for taking and
implementing decisions, which leave small margins to a compu-
terized Decision Support System (DSS).

Effective DSSs must be able to provide the dispatcher with a
conflict-free disposition schedule, which assigns a travel path and
a start time to each train movement inside the considered time
horizon and, additionally, minimizes the delays (and possibly the
main broken connections) that could occur in the network. The
main pre-requisite of a good DSS is the real-time ability to deal
with actual traffic conditions and safety rules for practical net-
works. In other words, the solution provided by a DSS must be
feasible in practice, since the human dispatcher may have not
enough time to check and eventually adjust the schedule sug-
gested by the DSS. A recognized approach to represent the feasi-
bility of a railway schedule is provided by the blocking time the-
ory, acknowledged as standard capacity estimation method by UIC
in 2004 (Hansen and Pachl [31]), which represents a safe sequence
of train movements in the railway network with the so-called
blocking time stairways.

With the blocking time theory approach, the schedule of a train
is individually feasible if a blocking time stairway is provided for it,
starting from its current position and leaving each station (or each
other relevant point in the network) not before the departure time
prescribed by the timetable. A set of individually feasible blocking
time stairways (one for each train) is globally feasible if no two
blocking time stairways overlap. The timetable prescribes the set
of trains that are expected to travel in the network within a certain
time window, the stops for each train and a pair of (arrival,
departure) times for each train and each stop. At other relevant
points (e.g. at the exit from the network or specific relevant points
between two consecutive stations) can be defined minimum and/
or maximum pass through times.

Many models and algorithms for train re-scheduling have
already been proposed in the literature, but only a few of them
with successful application in practice. So far, the most successful
attempt in the literature to incorporate the blocking time theory in
an optimization model is based on the alternative graph model
introduced by Mascis and Pacciarelli [38]. This model is a gen-
eralization of the disjunctive graph for job shop scheduling, in
which each operation denotes the traversal of a resource of the
network by a job (train). Effective applications to real-time train
scheduling are described in D'Ariano et al. [25], Mannino and
Mascis [37], Mazzarello and Ottaviani [39]. However, other pro-
mising approaches have been provided in the literature, either
based on mathematical formulations (Cadarso and Marín [3];
Caimi et al. [7]; Lamorgese and Mannino [34]; Pellegrini et al. [43];
Rodriguez [46]; Şahin [47]; Törnquist and Persson [51]; Wegele
et al. [54]) or on algorithmic approaches (Almodovar et al. [2]; Cai
and Goh [6]; Cheng [8]; Chiu et al. [9]; Liu and Kozan [35]; Törn-
quist Krasemann [52]; Wegele and Schnieder [53]). Another
important aspect when dealing with rail operations is the pas-
senger behaviour (Cadarso et al. [4]; Corman et al. [19]; Dollevoet
et al. [28]; Kroon et al. [33]), even if this latter aspect is not con-
sidered explicitly in this paper.

The alternative graph model allows to directly model the
individual and global train schedule feasibility concepts expressed
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by the blocking time theory. This enables the detailed recognition
of timetable conflicts in a general railway network with mixed
traffic for a given look-ahead horizon, even in presence of heavy
disturbances and network disruptions. Several later studies have
confirmed the ability of the model to take into account different
practical needs, such as train priorities (Corman et al. [11]), energy
consumption issues (Corman et al. [12]), passenger and rolling
stock transfer connections (Corman et al. [15]; D'Ariano et al. [23]),
train re-routing (Corman et al. [13]; D'Ariano et al. [23]), man-
agement of complex and busy stations (Corman et al. [17,18]),
traffic coordination between dispatching areas (Corman et al.
[14,16]). Clearly, an alternative graph model of the CDR problem
can be easily translated into a mixed integer program, and then
solved with a commercial or academic software. However, the CDR
problem is inherently strongly NP-hard, so it is often not possible
to compute a feasible solution quickly via any commercial soft-
ware for practical-size CDR instances. Such NP-hard problems are
typically solved via heuristic algorithms that enable the compu-
tation of good quality solutions in a computation time compatible
with real-time operations.

This paper presents a number of algorithmic improvements
implemented in the AGLIBRARY optimization solver in order to
improve the possibility of finding good quality solutions quickly. A
set of specialized algorithms based on the alternative graph model
is included in AGLIBRARY. This re-scheduling system includes
solution algorithms ranging from fast heuristic procedures that
can be chosen by the user to sophisticated branch-and-bound
algorithms for train scheduling [25] or metaheuristics for train re-
routing [13,16,23]. AGLIBRARY has been tested on various railway
networks managed by the Dutch infrastructure manager ProRail
(the railway networks Leiden–Schiphol–Amsterdam; Utrecht–Den
Bosch; Utrecht–Den Bosch–Nijmegen–Arnhem), by the British
infrastructure manager NetworkRail (part of the east coast main-
line nearby London) and by the Italian infrastructure manager RFI
(the regional line Campoleone–Nettuno), even if in principle the
software can tackle any national or international traffic manage-
ment system standard. AGLIBRARY has also been used in other
application contexts, including steelmaking-continuous casting
production scheduling [42], real-time air traffic scheduling and
routing at a terminal control area [24,26,48,49], real-time man-
agement of containers at a container terminal [21,55].

The new AGLIBRARY algorithms proposed in this paper can be
potentially applied to improve the results obtained both in railway
traffic management and in the other application contexts. How-
ever, the algorithmic structures and parameters would need to be
customized for each particular railway network and test case from
other application fields. This work is focused on the customization
and application of the new algorithms to solve the CDR problem in
various railway networks, including issues related to the man-
agement of complex station areas, connection constraints, train re-
scheduling and re-routing variables. The new algorithms are
compared with previously-published algorithms and with a
commercial solver.
3. Problem definition

Signals, interlocking and Automatic Train Protection (ATP)
systems control the train traffic by imposing safety constraints
between trains, setting up train routes and enforcing speed
restrictions on running trains. Fixed block ATP systems ensure
safety through the concept of block section, a part of the infra-
structure that is exclusively assigned to at most one train at a time.
Train movements can be modelled by a set of characteristic times,
as follows. The running time of a train on a block section starts
when its head (the first axle) enters the block section and ends
when the head of the train reaches the end of the block section.

Safety regulations impose a minimum separation between
consecutive trains traveling on the same block section, which
translates into a minimum headway time between the start of the
running times of two consecutive trains on the same block section.
This time depends on the length of the block section, as well as on
other factors like the speed and length of the trains and includes
the time between the entrance of the train head in a block section
and the exit of its tail (the last axle) from the previous one, plus
additional time margins to release the occupied block section and
to take into account the sighting distance.

Proactive re-scheduling of railway traffic must take into
account several facts. The network is composed of block sections
and platform stops at stations. A train is not allowed to depart
from a platform stop before its scheduled departure time and is
considered late if arriving at the platform later than its scheduled
arrival time. At a platform stop, the scheduled stopping time of
each train is called dwell time.

Disturbances affect rail traffic. We can distinguish between
light traffic perturbations from neighbouring dispatching areas and
heavy traffic disruptions. The former are light disturbances caused
by a set of delayed trains in a dispatching area, while the latter are
much stronger disturbances of the scheduled times and routes
(e.g. due to some block sections being unavailable for a certain
amount of time). Other kinds of disturbances include extensions to
dwell times due to passengers boarding, connection constraints, or
technical problems; and running time prolongation because of
headway conflicts between trains or technical failures.

Moreover, the railway infrastructure is increasingly becoming
utilised, towards a saturation level. This results in a strong sensi-
tivity to initial delays, which are due to breakdowns, failures,
extended dwell time at stations due to passengers; those phe-
nomena are almost unavoidable. In saturated networks, those
initial delays are particularly hard to be managed, and easily
generate knock-on (or consecutive) delays which spread over the
network in time and space, affecting more trains.

Delays propagate between trains when solving potential con-
flicting routes. Namely, a potential conflict between two trains
arises if the trains request a same block section within a time
interval smaller than the minimum time headway between them,
which is needed for safety reasons and smooth running. The
solution of the potential conflict is to fix the order of trains over
the block section; in that case, one of the approaching trains might
be forced to decelerate and thus experiencing a knock-on delay.
Unscheduled braking and stopping of trains increases the running
time and may cause an additional delay. Similarly, trains can be
held at stations due to unavailability of outbound routes, or con-
versely prevented to enter stations as far as platforms and inbound
routes are not available. In general, delays may propagate to other
trains causing a domino effect of increasing traffic disturbances.

The conflict detection and resolution (CDR) problem studied in
this paper can be defined as follows: given a railway network, a set
of train routes and passing/stopping times at each relevant point
in the network, and the position and speed of each train being
known at a given starting time t0 of traffic prediction, find an
optimized plan of operations that solves all potential conflicts
between trains, does not result in deadlock situations (i.e. a set of
trains that are circularly waiting for each other, making any
planned movement impossible), it is compatible with initial
positions of trains, and such that the selected train timing,
ordering and routing decisions are feasible, no train appears in the
network before its expected entrance time (including the initial
delays), no train departs from a relevant point before its scheduled
departure time, and trains arrive at the relevant points with the
smallest possible consecutive delay.
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4. Problem formulation

The CDR problem is characterized by train routing and sche-
duling decisions. The general problem can thus be divided into
two sub-problems: (i) the selection of a route for each train, and
(ii) the scheduling decisions once the routes have been fixed for
each train. This section describes the problem decomposition in
scheduling and routing variables. The general alternative graph
model is given for the CDR problem with fixed routes. A Mixed
Integer Linear Programming (MILP) formulation is proposed for
the alternative graph model. An extended MILP formulation is
then given for the overall CDR problem. Binary variables are
introduced both for the train scheduling and routing decisions.
An illustrative example of the alternative graph model is reported
in the appendix of this paper.

4.1. Alternative graph model

The alternative graph (AG) generalizes the classical disjunctive
graph in order to take into account constraints arising in real-
world scheduling applications. Regarding the CDR problem, AG
allows to easily and efficiently check the feasibility of a train
scheduling solution (all operations are to be processed with no
deadlock and conflict situations), as well as the quality of a train
scheduling solution (the maximum consecutive delay collected at
each relevant location). The CDR problem is based on fixed and
alternative constraints.

Fixed constraints model the individual feasibility of a train
schedule, i.e. the blocking time stairway. A timing variable is
associated to the entrance of each train in each resource (block
section, platform of station route). The schedule is individually
feasible if the entrance in a resource is at least a sufficient amount
of time after the entrance in the former resource, respecting all the
safety and operational constraints. Assuming that the route of a
train has been fixed, if at the current time the train occupies a
certain resource, it cannot enter the next resource in its route
before the time needed to traverse the remaining part of the
current resource. Since the timetable prescribes a departure (or a
pass through) time for the train at each relevant point in its route,
the train cannot enter the next resource of the route before a
minimum prescribed time.

Alternative constraints model the global feasibility of a set of
blocking time stairways (one for each circulating train). Given a
resource traversed by two trains, the second train cannot enter the
resource before the entrance time of the previous train plus its
blocking time, i.e. the time interval in which the resource is
reserved for the first train. If a precedence constraint has not been
fixed between the two trains on that resource (either by the
timetable, or the dispatcher, or the physical network topology),
then two orderings are possible and one of them has to be chosen
in a train scheduling solution. This fact is represented in the
alternative graph by a pair of alternative constraints, one of which
must be chosen in a solution.

The AG formulation of the CDR problem with fixed routes (i.e.
in which the route is prescribed and cannot be changed) is a triple
G¼(N, F, A) where N¼ f0;1;…;n�1;ng is a set of nþ1 nodes, F is a
set of fixed directed arcs and A a set of pairs of alternative
directed arcs.

Each node, except the start 0 and end n nodes, is associated
with the start of an operation krj, where k indicates the train, r the
route chosen and j the resource it traverses. The start time tkrj of
operation krj is the entrance time of train k with route r in
resource j.

The fixed arcs are used to model running, dwell, connection,
arrival, departure, and pass through times of trains. Let the
resources p and j be two consecutive resources processed by train
k with route r, the fixed arc ðkrp; krjÞAF models a job constraint
between the nodes krp and krj. The weight wF

krp_krj represents a
minimum time constraint between tkrp and tkrj: tkrj�tkrpZwF

krp_krj.
A fixed arc ðumv; krzÞAF is used to enforce a connection constraint
between train k with route r and train u with route m, i.e.
tkrz�tumvZwF

umv_krz .
The alternative arcs are used to model the headway times

between two consecutive trains. Each pair of alternative arcs
ððkrj;umpÞ; ðumi; krpÞÞ AA models train ordering decisions between
train k with route r and train u with route m on resource p. Note
that j [respectively i] is the next resource processed by train k [u]
when using route r [m]. The two arcs of the pair are associated
with the weights wA

krj_ump and wA
umi_krp. In any solution, only one arc

of each pair can be selected. If alternative arc (krj,ump) [(umi,krp)]
is selected in a solution, the constraint tump�tkrjZwA

krj_ump ½tkrp�
tumiZwA

umi_krp� has to be satisfied. This corresponds to fixing the
order of trains, first k and then u [first u and then k].

A solution to the CDR problem with fixed routes is represented
by the following graph structure. A graph selection S is a set of
alternative arcs obtained by selecting exactly one arc from each
alternative pair in A and such that the resulting graph GðF; SÞ ¼
ðN; F [ SÞ does not contain positive weight cycles. This allows to
associate train orders and times to all operations.

The objective function is the minimization of the maximum
consecutive delay, i.e. the largest positive deviation from the
scheduled times at relevant locations. In the alternative graph, the
maximum consecutive delay minimization is measured as a
makespan minimization. Given a selection S and any two nodes
krp and uml, we let lSðkrp;umlÞ be the weight of the longest path
from krp to uml in GðF; SÞ. By definition, the start time tkrp of krpAN
is the quantity lSð0; krpÞ, which implies t0 ¼ 0 and tn ¼ lSð0;nÞ.

To summarize, the alternative graph model corresponds to the
following mathematical formulation:

min tn
s:t: tkrj�tkrpZwF

krp_krj ðkrp; krjÞAF

tkrz�tumvZwF
umv_krz ðumv; krzÞAF

ðtump�tkrjZwA
krj_umpÞ3 ðtkrp�tumiZwA

umi_krpÞ ððkrj;umpÞ;
ðumi; krpÞÞAA ð1Þ

4.2. MILP formulations

A natural mathematical formulation of the CDR problem with
fixed routes can be obtained from the alternative graph formula-
tion (1) by translating each alternative pair into a pair of con-
straints and by introducing a binary variable representing the
choice of one of the two constraints. The CDR problem with fixed
routes can be viewed as a particular disjunctive program:

min tn
s:t: tkrj�tkrpZwF

krp_krj ðkrp; krjÞAF

tkrz�tumvZwF
umv_krz ðumv; krzÞAF

tump�tkrjZwA
krj_umpþMxðkrj;umpÞ;ðumi;krpÞ ððkrj;umpÞ; ðumi; krpÞÞAA

ðtkrp�tumiZwA
umi_krpþMð1�xðkrj;umpÞ;ðumi;krpÞÞ ððkrj;umpÞ;

ðumi; krpÞÞAA
xðkrj;umpÞ;ðumi;krpÞAf0;1g ð2Þ
The variables are the following: jNj real variables tkrj associated

to the start time of each operation krjAN, and jAj binary variables
xðkrj;umpÞ;ðumi;krpÞ associated to each alternative pair ððkrj;umpÞ;
ðumi; krpÞÞAA. The constant M is a sufficiently large number, e.g.
the sum of all arc weights.

We model the variables and constraints of the CDR problem for
the different routes of each train as follows. The formulation (2)
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can be extended to the problem with routing flexibility by enlar-
ging sets N, F and A to contain all possible train routes. In addition
to the jNj þ jAj variables of the CDR problem, jC j binary variables
y are associated to the routes of the set of trains considered. The
CDR problem with routing flexibility can also be viewed as a
particular disjunctive program:

min tn
s:t: tkrj�tkrpZwF

krp_krjþMð1�ykrÞ ðkrp; krjÞAF

tkrz�tumvZwF
umv_krzþMð2�yum�ykrÞ ðumv; krzÞAF

tump�tkrjZwA
krj_umpþMð2�yum�ykrÞþMxðkrj;umpÞ;ðumi;krpÞ

ððkrj;umpÞ; ðumi; krpÞÞAA

tkrp�tumiZwA
umi_krpþMð2�yum�ykrÞþMð1�xðkrj;umpÞ;ðumi;krpÞÞ

ððkrj;umpÞ; ðumi; krpÞÞAA

XRb

a ¼ 1

yab ¼ 1 b¼ 1;…; Z

yabAf0;1g
xðkrj;umpÞ;ðumi;krpÞAf0;1g ð3Þ

In the CDR problem formulation (3), Z is the number of trains,
and Rb the number of routes for each train b¼ 1;…; Z. The binary
variable yab indicates if route a is chosen (1) or not (0) for train b.
For each train b, only a single route, among the Rb routes, can be
chosen in any CDR solution. The following constraint holds for
train b:

PRb
a ¼ 1 yab ¼ 1.

When a route r is chosen for train k ði:e: ykr ¼ 1Þ, each fixed
constraint related to route r and train k must be satisfied. For each
fixed arc ððkrp; krjÞÞAF , tkrj�tkrpZwF

krp_krj must hold. A fixed arc
ðumv; krzÞAF enforces a connection constraint between train k
with route r and train u with route m.

Regarding the alternative constraints, if yum ¼ ykr ¼ 1 and the
routes of trains u and k use the same infrastructure resource p, a
potential conflict exists on that resource and an ordering decision
has to be taken. This is modelled by introducing the binary variable
xðkrj;umpÞ;ðumi;krpÞ for the alternative pair ððkrj;umpÞ; ðumi; krpÞÞAA.
There are two possible scheduling decisions for each alternative
pair ððkrj;umpÞ; ðumi; krpÞÞAA: if xðkrj;umpÞ;ðumi;krpÞ ¼ 1 then tkrp�tumi

ZwA
umi_krp must be satisfied ði:e: ðumi; krpÞASÞ; if xðkrj;umpÞ;ðumi;krpÞ ¼ 0

then tump�tkrjZwA
krj_ump must be satisfied ði:e: ðkrj;umpÞASÞ.
5. Train scheduling and re-routing algorithms

This section describes the algorithmic approaches proposed in
this paper to solve the CDR problem. Section 5.1 presents the
general framework of the AGLIBRARY solver that is based on a
combination of train scheduling and re-routing algorithms.
Section 5.2 presents the algorithms used to compute a train
schedule for given routes. Section 5.3 describes the neighbour-
hoods for the search of new train routes starting from a routing
and scheduling solution. Section 5.4 is devoted to the scheduling
heuristic
procedures used to evaluate the neighbours (the new routing
combinations). The routing neighbourhoods and the scheduling
algorithms are then used in Sections 5.5 and 5.6 that describe the
former and new re-routing metaheuristics of the AGLIBRARY
solver.

5.1. Solution framework

Fig. 1 shows the architecture of the AGLIBRARY solver. The
input data are given via an XML file, defining the timetable of
scheduled arrival and departure times, the current status of the
infrastructure components (block sections and platforms), the
running time of each train, an off-line defined default route and a
set of re-routing options for each train, and a set of disturbances
(initial delays, and eventually, disruptions). Given the input data,
the AGLIBRARY solver iterates between the computation of a train
schedule for a given set of routes, and the selection of a new set of
routes. The basic idea is to first compute a train scheduling solu-
tion given fixed routes, and then search for better train routes. The
solver solution is provided with another XML file, describing the
CDR solution in terms of train orders and routes.

If no feasible train schedule is found in a given computation
time, the human dispatcher must recover infeasibility manually by
taking some decisions that are not allowed to the solver, e.g. the
cancellation of a train service. When a feasible train schedule is
found, the train re-routing module verifies whether a new set of
routes, leading to a potentially better solution, exists or not.
Whenever re-routing is performed, the train scheduling module
computes a new schedule. The iterative procedure continues till a
stopping criterion is met and returns the best CDR solution. We
next describe the algorithms we use for each module.

5.2. Branch-and-bound scheduling algorithm

The CDR problem with fixed routes is solved by the branch-
and-bound (BB) algorithm of D'Ariano et al. [25], truncated at a
given maximum computation time. A near-optimal solution is
computed in a short time by this algorithm for practical-size
instances. In particular, the algorithm is based on a binary
branching scheme in which the branching decision is a sequencing
order between two trains in a resource. In the alternative graph,
this sequencing decision corresponds to the selection of an alter-
native arc from each pair ððkrj;umpÞ; ðumi; krpÞÞAA. The branching
decision is thus on the arcs (krj,ump) and (umi,krp).

5.3. Routing neighbourhoods

Metaheuristic algorithms are generic solution procedures based
on exploring the solution space by means of considering an
incumbent solution and iteratively changing it in favour of a new
incumbent solution. This action corresponds to the concept of a
move from a solution to a possibly better one, and it is in general
guided by some approximation or evaluation of the objective
value, and/or properties of the solution. Commonly more tentative
solutions are considered, and a single one is chosen as incumbent.
The neighbourhood describes the moves that will be considered,
based on a certain incumbent solution.

This subsection describes the neighbourhood structures used
by the CDR algorithms presented in this paper. To this aim, we
need to introduce the following notations. Let S(F) be a CDR
solution with the routes defined in F and the sequencing decisions
defined in S, and let GðF; SÞ be the graph of this solution. The search
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for a better solution is based on the computation of a new graph
G0ðF 0; S0Þ. This graph differs from the former GðF; SÞ by a different
route for some trains, and different orders and times of operations.
This corresponds to a neighbour, in metaheuristics terms. The
longest path in G0ðF 0; S0Þ is denoted as lS

0 ðF 0 Þð0;nÞ. We observe that F 0

improves over F in terms of the objective function value if
lS

0 ðF 0 Þð0;nÞo lSðFÞð0;nÞ.
The neighbourhoods studied in this paper are based on obser-

vations on the graph GðF; SÞ regarding the nodes that represent train
operations delayed due to the resolution of potential conflicts
between trains. These nodes are critical when they are on the
longest path from the start node 0 to the end node n in the graph
GðF; SÞ, that is called the critical path set CðF; SÞ. Given a solution
S(F), krpANðFÞ⧹f0;ng is a critical node of train k with route r if
lSðFÞð0; krpÞþ lSðFÞðkrp;nÞ ¼ lSðFÞð0;nÞ. A critical node krp is a waiting
node if lSðFÞð0; krpÞ4 lSðFÞð0;νðkrpÞÞþwF

νðkrpÞ;krp, where the node νðkrpÞ
precedes the node krp on route r. For each waiting node krp, there is
at least one hindering node ηðkrpÞ in GðF; SÞ, different from node
νðkrpÞ, such that lSðFÞð0; krpÞ ¼ lSðFÞð0;ηðkrpÞÞþwF

ηðkrpÞ;krp.
Given a node krpANðFÞ⧹f0;ng, we recursively define the back-

ward ramification RB(krp) as follows. If node krp is waiting,
then RBðkrpÞ ¼ RBðνðkrpÞÞ [ RBðηðkrpÞ [ fkrpg, otherwise RBðkrpÞ ¼
RBðνðkrpÞÞ [ fkrpg. Similarly, we recursively define the forward
ramification RF(krp) as follows. If node krp is the hindering of a
waiting node abc, then RF ðkrpÞ ¼ RF ðσðkrpÞÞ [ RF ðabcÞ [ fkrpg,
where the node σðkrpÞ follows the node krp on route r. Otherwise,
RF ðkrpÞ ¼ RF ðσðkrpÞÞ [ fkrpg. By definition, RBð0Þ ¼ RF ð0Þ ¼ f0g and
RBðnÞ ¼ RF ðnÞ ¼ fng. Given CðF; SÞ, we define a ramified critical path
set as F ðF; SÞ¼⋃krpACðF;SÞ½RBðkrpÞ [ RF ðkrpÞ�, and a backward rami-
fied critical path set as BðF; SÞ ¼⋃krpACðF ;SÞ½RBðkrpÞ�. We study the
following five neighbourhood structures.

� Complete K-Route neighbourhood N CKR contains all the feasible
solutions to the CDR problem in which K trains follow a differ-
ent route compared to the incumbent solution. To limit the
number of neighbours to be evaluated, N CKR is only partially
explored as follows. A move is obtained by choosing different
routes from the ones of the current solution at random (i.e. all
alternative routes having the same probability) for K trains,
until a number ψ (parameter) of alternative routing solutions is
obtained.

� Ramified Critical Path Operations neighbourhood N RCPO considers
only the routing alternatives for the trains associated to the
nodes in BðF; SÞ plus F ðF; SÞ. The idea is that the maximum
consecutive delay of a solution to the CDR problem can be
reduced by removing some train conflicts causing it. This
requires either removing, anticipating or postponing some train
operations from the ramified critical path set. The latter result
can be obtained by re-routing the trains associated with the
ramified critical path operations through different resources (i.e.
by re-routing some trains associated to the nodes in BðF; SÞ or
F ðF ; SÞ), and then re-scheduling train movements.

� Waiting Operations Critical Path neighbourhood NWOCP is a
restriction of N RCPO that considers the routing alternatives for
the trains associated to the waiting nodes in CðF; SÞ.

� Delayed Jobs neighbourhood N DJ considers only the trains (jobs)
that have a consecutive delay at some relevant locations on the
incumbent solution.

� Free-Net Waiting Operations Jobs neighbourhood N FNWJ considers
only the trains (jobs) that have some waiting nodes in the graph
of the incumbent solution in which all alternative arcs are
unselected. The alternative graph with no alternative arc
selected corresponds to the free-net traffic situation in which
each train travels in the absence of conflicts.
The appendix of this paper will illustrate some neighbourhood
structures for an illustrative example.

5.4. Heuristic evaluation of routing neighbours

The choice of a best neighbour in the neighbourhood requires
the computation of a new CDR solution S0ðF 0Þ starting from an
incumbent solution S(F) that is characterized by the train routing
decisions in F 0 and the train sequencing decisions in S0. To this aim,
we use fast heuristics based on a two-step graph building proce-
dure in which the graph GðF; SÞ is translated into the graph G0ðF 0; S0Þ.
In the first step, a sub-graph of G0ðF 0; S0Þ is generated by considering
all the nodes in NðFIÞ associated to the routes modelled by the arcs
in FI ¼ F⋂F 0, all the fixed arcs AFI and all the alternative arcs in S
(F) incident in nodes in NðFIÞ. This corresponds to keeping a subset
of decisions from the incumbent solution into the neighbour
solution. In the second step, the fixed arcs in FR ¼ F 0⧹FI and the
nodes in NðFRÞ are added to the sub-graph. Finally, G0ðF 0; S0Þ is
obtained by adding a selection of alternative arcs S0ðFRÞ to the sub-
graph.

The selection S0ðFRÞ is computed by selecting the best solution
among two greedy algorithms based on the idea of repeatedly enlar-
ging a selection by choosing an unselected pair at a time from the set A
and by selecting one of the two arcs until a feasible schedule is found
or an infeasibility (i.e. a positive weight cycle in the graph) is detected
[45]. The first greedy algorithm AMSP (Avoid Most Similar Pair) chooses
an unselected alternative pair ððkrj;umpÞ; ðumi; krpÞÞAA maximizing
the quantity lS

0
ðFRÞð0; krjÞþ wA

krj;umpþ lS
0 ðFRÞðump;nÞþ lS

0 ðFRÞð0;umiÞþ
wA

umi;krpþ lS
0 ðFRÞðkrp;nÞ. The other greedy algorithm AMCC (Avoid Most

Critical Completion Time) chooses the alternative pair ððkrj;umpÞ; ðumi;

krpÞÞAA such that the quantity lS
0 ðFRÞð0; krjÞþwA

krj;umpþ lS
0 ðFRÞðump;nÞ is

maximum among all the unselected alternative arcs. Both algorithms
select the arc of the pair causing the minimum consecutive delay.

5.5. Tabu search re-routing algorithm

The Tabu Search (TS) is a deterministic metaheuristic based on
local search, which makes extensive use of memory for guiding
the search. A basic ingredient is the tabu list that is used to avoid
being trapped in local optima and revisiting the same solution.
From the incumbent solution, non-tabu moves define a set of
solutions, named the incumbent solution neighbourhood. At each
step, the best solution in this set is chosen as the new incumbent
solution. Some attributes of the former incumbent are then stored
in the tabu list. The moves in the tabu list are forbidden as long as
these are in the list, unless an aspiration criterion is satisfied. The
tabu list length can remain constant or be dynamically modified
during the search.

The Tabu Search (TS) used in this paper for the CDR problem is
the algorithm of Corman et al. [13]. Two neighbourhood strategies
for the maximum consecutive delay minimization problem are
investigated namedRestart and Complete. Each neighbourhood
strategy restricts the set of moves to be explored in order to speed
up the search of the best move. In particular, the Complete strat-
egy explores ψ (parameter) randomly chosen neighbours in N CKR

with K¼1, while the Restart strategy selects at most ψ promising
moves in N RCPO, unless this neighbourhood is empty. When no
potentially better solution is found on the incumbent solution
neighbourhood, the search alternates the neighbourhood strategy
with a diversification strategy, which consists of changing at ran-
dom the route of μ (parameter) trains at the same time.

In this paper, all neighbours are evaluated via the scheduling
heuristics of Section 5.4. The best neighbour is set as the move to
be made, and re-evaluated via the branch-and-bound scheduling
algorithm of Section 5.2; the resulting best CDR solution is set as



Fig. 2. Example of neighbourhood search strategy with j J j ¼ 4, L¼4 and K¼2.
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the new incumbent solution. The inverse of the chosen move is
stored in a tabu list of length λ (parameter). The moves in the tabu
list are forbidden for λ iterations and no aspiration criteria is used.
From the tuning performed in [13], the best exploration strategies
have the following parameters: for the Complete strategy the best
values of (ψ, λ, μ) are (8; 3; 5); for the Restart strategy the best
values of (ψ, λ, μ) are (8; 27; 5).

5.6. Variable neighbourhood search re-routing algorithms

Variable neighbourhood search (VNS) metaheuristics are pre-
sented in order to efficiently solve the CDR problem. This type of
metaheuristic is based on the combination of neighbourhood
structures. Systematic changes of the neighbourhood structures
are proposed both in a local search phase in order to compute a
local minimum, and in a perturbation phase in order to escape
from a local minimum [30].

In this work, the classic ingredients of the VNS algorithm are
combined with new routing neighbourhood structures and new
specific neighbourhood search strategies to search for better train
routing combinations. A move is obtained by choosing a set of
routes different from the ones of the incumbent solution. Various
variable neighbourhood schemes from [30] and routing neigh-
bourhoods of Section 5.3 are implemented, differing in the set of
candidate trains that are re-routed in each move.

The choice of investigating these search methods is motivated
by the following facts: (i) the train scheduling solution with fixed
routes can be improved in terms of multiple train routing mod-
ifications, (ii) there is a need of improving upon the local minima
found by local search. From (i), we need to explore possibilities to
generate new solutions starting from some reference solutions.
From (ii), we need to develop strategies to spread the search for
better quality solutions. For these reasons, we investigate VNS
intensification and diversification strategies. The main algorithmic
ingredients are next introduced and optionally incorporated in
various versions of the variable neighbourhood search algorithm.

Build neighbourhood: Starting from an incumbent solution, the
N CKR neighbourhood is generated, in which exactly K trains are re-
routed in the graph GðF; SÞ of the incumbent solution.

Shaking procedure: This is a typical diversification procedure
that consists in changing the route of K trains randomly in the
N CKR neighbourhood of the incumbent solution (IncSol), and in
computing a new incumbent solution ðIncSol0Þ via the scheduling
heuristics of Section 5.4 and the new set of routes.

Neighbourhood search strategy: This procedure is proposed in
order to limit the local search to the evaluation of up to L neigh-
bours in the current neighbourhood. Starting from an incumbent
solution and the N CKR neighbourhood of this solution, a restricted
neighbourhood is generated by using a given neighbourhood
structure N i. The selection of L neighbours is achieved in the fol-
lowing steps:

1. Train ranking: Each train gets a score based on the criterion
specified in N i. The train ranking is based on one of the
neighbourhood structures of Section 5.3. In N RCPO, each train on
the ramified critical path gets a score based on the maximum
value lS

0 ðFRÞð0; krpÞþ lS
0 ðFRÞðkrp;nÞ 8ðkrpÞ in the ramified critical

path of the graph of the incumbent solution. In NWOCP , each
train gets a score based on the sum of the consecutive delays
collected at each critical node in the graph of the incumbent
solution. In N DJ , each train gets a score based on the maximum
consecutive delay collected at some relevant locations for each
job. In N FNWJ , each train gets a score based on the sum of the
consecutive delays collected at each waiting node in the graph
of the incumbent routing solution in which all alternative arcs
are unselected (i.e. free-net traffic situation) but the one gen-
erating the waiting node. The scores are used to decide how
many times each train has to be re-routed in the L neighbours.

2. Route ranking: The routes of each train get a score based on the
distance from the route of the incumbent solution. The larger is
the difference between the routes, the higher is the score. The
route ranking thus suggests for each train to select the most
different routes.

3. Neighbour generation: This is the assignment of the routes to the
trains in each neighbour. The trains to be re-routed are selected
via the train ranking and the train routes are selected via the
route ranking. A combinatorial combination of the routes is
used in order to generate L different neighbours. In each
neighbour, exactly K trains are re-routed compared to the
incumbent solution. The neighbours are ordered based on the
train ranking, and in case of tie on the route ranking.

Numerical example regarding the neighbourhood search strategy:
Fig. 2 presents a numerical example of the neighbourhood search
strategy, in which four trains ðJ ¼ fA;B;C;DgÞ can be re-routed in a
railway network. Trains A and D have a default route and three
alternative routes, while trains B and C have a default route and
five alternative routes. As an example, the routes of B are named
B1, B2, B3, B4, B5, B6, with the first one B1 being the default route.
Detailed information regarding the traffic flows and the example
network is reported in the paper appendix.

In the given incumbent CDR solution, the default route is used
by all trains (i.e. the routes A1, B1, C1, D1). The parameters of the
procedure are set to the following values: L¼4 and K¼2 (i.e. the
neighbourhood is restricted to 4 neighbours and 2 trains are re-
routed in each neighbour).

The train ranking procedure determines a score matrix in
which each row represents a train and each column reports a score
used to compute the number of times each train should be



Fig. 3. General sketch of the metaheuristics.
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considered for re-routing. This score matrix is depicted in the left-
hand side of Fig. 2. Specifically, the first column reports the score
for each train based on the neighbourhood structure N DJ (e.g. the
value 14 in this example is the maximum consecutive delay col-
lected for A1, see Appendix). The other columns report the score of
the first column divided by the number of column, e.g. 14/2¼7,
14/3¼4.6, 14/4¼3.5.

The procedure takes the highest KL scores that are provided in
the score matrix (the scores are in bold in Fig. 2). In other words,
from the largest values in the score matrix we obtain the number
of times each train has to be re-routed in the four neighbours (e.g.
train Awill be re-routed in all four neighbours). This information is
reported in the centre table of Fig. 2, in which the four trains are
ordered according to the number of times they will be re-routed.

The route ranking orders the list of re-routing alternatives for
each train based on maximizing the difference with the incumbent
route, in terms of the number of different operations between the
train routes. As an example, the route ranking of A is A2, A3, A4 and
the most different route is A2; the route ranking of D is D2, D3, D4
and the most different route is D2; the most different route for
train B is B2.

The neighbour generation procedure assigns the routes to the
trains in each neighbour. In this example, train A appears in all the
neighbours with one of its alternative routes; trains D and B
appear with respectively three routes and one route. The neigh-
bours are obtained as follows. We first re-route the two trains with
higher train ranking (A and D) and then re-route the remaining
train (B) with the train with the highest train ranking (A). Among
the neighbours with the same re-routed trains, we first consider
the current most different route for the train with the current
higher train ranking, and then consider the current most different
route for the next train with the current higher train ranking, and
so on. Every row of the table in right-hand side of Fig. 2 corre-
sponds to a candidate move.

Best improvement strategy: This is a local search procedure in
the restricted neighbourhood in which all the candidate moves are
evaluated via the train scheduling heuristics. This procedure lasts
until all L neighbours in the restricted neighbourhood have been
evaluated. At each step of the procedure, a neighbour is con-
sidered, a new graph is built with the new routes of the neighbour,
and a new CDR solution is computed via the scheduling heuristics
for the new set of routes. The best neighbour is set as the move to
be made, and re-evaluated via the branch-and-bound scheduling
algorithm of [25]; the resulting best CDR solution is set as the new
incumbent solution.

Move Or Not procedure: This procedure is responsible for pos-
sibly performing a move. In case the best solution found in the
neighbourhood is better than the incumbent, the resulting train
scheduling problem is solved by the branch-and-bound algorithm
of [25], and the best solution is set as the new incumbent solution.
Otherwise, the best solution in the neighbourhood is chosen as
incumbent, or some diversification strategy is employed depend-
ing on the adopted VNS scheme.

Neighbourhood change: This procedure is used to diversify the
search by alternating Kmax applications of the neighbourhood
search strategy with N 1 and Kmax applications of the neighbour-
hood search strategy with N 2.

The metaheuristics proposed in this paper are an adaptation of
the VNS schemes described in Hansen et al. [30]. Specifically, we
consider the four algorithmic schemes named “VND”, “General
VNS”, “Basic VNS”, “Reduced VNS”. The general structure of the
studied metaheuristics is the following. The metaheuristics start
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from an incumbent solution IncSol of the CDR problem, computed
via the branch-and-bound scheduling algorithm of [25] by
assigning a default (off-line) route to each train. In each meta-
heuristic, a counter K is adopted to fix the number of trains that
are re-routed in each move. The initial value of K is set to 1, i.e. a
single train is re-routed in IncSol. The metaheuristics iterate the
search for better solutions starting from IncSol until a stopping
criteria is reached.

The stopping criterion of all the metaheuristics is a maximum
computation time Tmax or the particular situation in which the
maximum consecutive delay (i.e. the best objective function value
f(IncSoln)) is equal to 0. Additionally, VND stops the search when
no improvement is obtained during a local search.

At each iteration, a neighbourhood of IncSol is generated and a
new solution IncSol0 is selected. Then, the Move Or Not function is
performed as follows. In case an improving move IncSol0 is
obtained via the local search ði:e: f ðIncSol0Þo f ðIncSolÞ, a new
iteration is performed by setting IncSol0 as the new incumbent
solution and K is set to 1. Otherwise, the parameter K is set to Kþ1
and a new iteration is performed until KrKmax. When K ¼ Kmax

the algorithm diversifies the search with a change of neighbour-
hood structure (if the algorithm works with a single neighbour-
hood structure this step is not performed).

The general pseudo-code of the variable neighbourhood search
algorithms is reported in Fig. 3. Each metaheuristic returns the
best CDR solution (IncSoln) and the objective function value (f
(IncSoln)).

The iterative step of the metaheuristics studied in this paper
differs in the choice of IncSol0:

VND: This is a deterministic version of variable neighbourhood
search in which a local search is performed in a restricted
neighbourhood of IncSol, via the neighbourhood search
strategy (for a given value of parameters L and N i) and the
best improvement strategy. The best neighbour is set as
IncSol0.

General VNS: This is a generalization of the VND in which the
neighbourhood of IncSol is generated and a solution
IncSol″ is selected via the shaking procedure (for a
given value of parameter K) that takes a neighbour
of IncSol at random. The VND algorithm is applied
starting from the solution IncSol″. The resulting
solution is IncSol0.

Basic VNS: This version of VNS combines the deterministic and
random changes of neighbourhoods. This algorithm
first performs the shaking procedure (for a given value
of parameter K) on the incumbent solution IncSol,
obtaining a solution IncSol″. Then, a local search is
performed in a restricted neighbourhood of IncSol″, via
the neighbourhood search strategy (for a given value of
Table 1
Experimental setting of the algorithmic parameters.

Tmax BBTime (s) Kmax L

180 2/4/8/12 3/4/5/7 5/10/15/20

Table 2
Best configurations of the CDR algorithms for each test case.

Test case Best TS [13] Best VND

Italian (I) Complete DJ
First Dutch (FD) Restart WOCPþFNWJ
Second Dutch (SD) Complete DJ
British (B) Restart DJ
parameter L and neighbourhood structure N i) and the
best improvement strategy. The best neighbour is set
as IncSol0.

Reduced VNS: This is a completely randomized version of the VNS
metaheuristic. The shaking procedure (for a given
value of parameter K) is performed starting from
the incumbent solution IncSol. The resulting solu-
tion is set as IncSol0. This VNS can be viewed as a
reduction of Basic VNS in which the local search is
not performed. The rationale is to look at a larger
number of neighbours compared to Basic VNS, even
if these are randomly selected. However, we note
that this metaheuristic scheme has a high risk of re-
evaluating the same solutions several times, and
thus being trapped into a local optimum.
6. Computational experiments

This section presents the experimental results on the TS, VND
and VNS metaheuristics of Section 5.

Four practical railway test cases are investigated in a laboratory
environment:

� an Italian single-track network (named “Italian (I) test case”);
� a Dutch double-track network between Utrecht and Den Bosch

(named “First Dutch (FD) test case”);
� a Dutch busy and complex area around Utrecht central station

(named “Second Dutch (SD) test case”);
� a British double-track network nearby the city of London

(named “British (B) test case”).

All the studied test cases are modelled with a microscopic level
of detail, which means that switches, signals, block sections, and
track segments in complex station areas are considered (yielding
several hundreds of resources per test case). Furthermore, train
movements are described with a precision of seconds.

For each test case, we consider a set of 20 traffic disturbance
instances, varying the initial delays of trains. The experiments are
executed on a workstation Power Mac with processor Intel Xeon
E5 quad-core (3.7 GHz), 12 GB of RAM. The algorithms are imple-
mented in AGLIBRARY and use a total computation time
Tmax¼180 s. The MILP formulation of the CDR problem is solved by
using the commercial solver: IBM LOG CPLEX MIP 12.0 that is
executed with a time limit of 2 h.

Table 1 presents the parameters studied for the variable
neighbourhood search algorithms. Regarding the TS algorithm, the
parameters are set as described in Section 5.5 (according to the
parameter tuning in [13]), expect for the BB computation time
limit that is set as for the VND/VNS algorithms. In Table 1, the
assessment of the new algorithms is based on a set of pilot CDR
instances with Tmax¼180 s.

Regarding the information provided in Table 1, Column
1 reports the maximum computation time (in seconds), Column
2 the computation time given to the branch-and-bound schedul-
ing algorithm (BB Time, in seconds), Column 3 the number of
Best VNS General Best VNS Basic Best VNS Reduced

WOCP WOCP WOCP
FNWJ DJþWOCP DJþFNWJ
WOCPþDJ DJ FNWJþDJ
WOCP WOCP FNWJ



Fig. 4. Quantitative comparison between configurations of the CDR algorithms.
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trains that are rerouted in the current neighbourhood (Kmax),
Column 4 the size of the restricted neighbourhood (L). The best
value of each parameter is reported in bold.
Table 2 presents the best configuration of each CDR algorithm
for each test case. For the TS algorithm we report the best search
strategy, while for the VND and VNS algorithms we report the best



Campoleone NettunoPadiglione Marechiaro

Fig. 5. Italian test case – the Campoleone Nettuno line.

Table 3
Characteristics of the Italian test case instances.

Time
horizon
(min)

Network
length
(km)

Number
of trains

Number
of routes
per train

Number of
resources
per train

MILP variables

jNj jAj jC j

720 26 42 8 18 1094 752307 336
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combination of the neighbourhood structures. In Table 2, the
assessment of the TS, VND and VNS algorithms is performed with
Tmax¼180 s, and is based on the set 20 traffic disturbance instan-
ces for each test case. We used the following two criteria in lex-
icographic order of importance to establish the best algorithmic
configuration: (1) the average value of the objective function of
the CDR problem; (2) the average time required to find the best
CDR solution. Fig. 4 presents these two key performance indicators
that are used to evaluate logically the performance of the algo-
rithms. For each test case we show the two best search strategies
for TS, the best combinations of the neighbourhood structures for
VND and VNS. Specifically, the best neighbourhood structures are:
WOCP, DJ for the I test case, DJþWOCP, WOCPþFNWJ, DJþFNWJ,
FNWJ for the FD test case, DJ, WOCPþDJ, FNWJþDJ for the SD test
case, WOCP, FNWJ, DJ for the B test case.

In the next subsections, we use the best configuration of each
algorithm as indicated in Tables 1 and 2. Specifically, we present a
detailed assessment of the computational results obtained for each
CDR instance by the best TS, VND and VNS algorithms and by the
commercial MILP solver. The computational experiments are
reported per test case, together with additional information on the
tested CDR instances. We conclude the section with some general
discussion and observation on the obtained results.

6.1. Results on the Italian test case

Fig. 5 shows a schematic view of the dispatching area of
Campoleone–Nettuno, (i.e. the regional line FR8) with the amount
of tracks per branch, and stations or minor stops. The railway
network consists of 10 stations and 9 bidirectional single-track
segments between stations. Most stations have two parallel plat-
form tracks to allow re-routing and meet-pass operations. The
railway infrastructure is around 26 km long. There are potential
conflict points (where the dispatcher takes ordering and routing
decisions) at the entrance and exit of each station. In Campoleone,
there is a connection with the regional line FR7 and with the line
towards Roma Termini station, the main station in Rome.

We consider a daily timetable which describes the movement
of all trains running in the line during day hours, specifying, for
each train, planned arrival/passing times at each station platform
along its route. At stations, a train is not allowed to depart from a
platform stop before its scheduled departure time and is con-
sidered late if arriving at the platform after its scheduled arrival
time. The current daily timetable has 42 trains, with an average
travel time for passengers of 42 min. Traffic disturbances are stu-
died in which a set of trains is delayed at their entrance in the
network.

Table 3 reports on the CDR instances of the Italian test case.
Column 1 reports the time horizon of traffic prediction (in min-
utes), Column 2 the approximate length of the railway network (in
kilometers), Column 3 the number of trains in the network during
the entire horizon of traffic prediction, Column 4 the average
number of routes assigned to each train (including the default
route), Column 4 the average number of resources traversed by
each train, Columns 5–7 the average size of the MILP formulation
in terms of the number of timing variables ði:e: the set jNj Þ, the
number of train scheduling variables ði:e: the set jAj Þ and the
number of train routing variables ði:e: the set jC j Þ.

This single-track railway network presents several alternative
routings, since each train can be routed in several stations, where
two parallel platform tracks are available.

Table 4 gives the computational results for 20 CDR instances of
the Italian test case. In Column 1, each CDR instance is identified
by a three-field code [α_β_γ], in which α identifies the network, β
is the maximum initial delay (in seconds), and γ is the average
initial delay (in seconds). We recall that the initial delay is caused
by disturbances and cannot be recovered by re-scheduling train
movements, except by using the available time reserves in the
timetable. In the other columns, the performance of each algo-
rithm/solver is presented in terms of the objective function value
(i.e. the maximum consecutive delay, in seconds) and the time to
compute the best solution (in seconds). The best average objective
function values are reported in bold. For each CDR algorithm, we
only present the results obtained for the best configuration of
Table 2.

From the results of Table 4, VNS Basic and VNS Reduced are the
best algorithms in terms of both indicators, while the other algo-
rithms either present a larger delay or a larger computation time.
VND is often the fastest algorithm but it does not provide the best-
known solutions, while VNS Reduced uses VND combined with the
shaking procedure and is able to compute the best-known solu-
tions. TS and VNS General are, on average, much slower than VNS
Basic and VNS Reduced. CPLEX is always outperformed by the CDR
algorithms in terms of both indicators, expect for instance
I_10000_2618.3. Furthermore, the lower bound returned by CPLEX
is very low and does not certify the optimality of any CDR solution.
For this set of CDR instances the low quality of CPLEX is probably
due to the fact that the single-track train scheduling problem
presents several infeasible train timing and ordering solutions,
resulting in deadlock situations.

6.2. Results on the first Dutch test case

Fig. 6 presents the Utrecht – Den Bosch dispatching area, that
consists of 191 block sections and 21 platforms. The railway net-
work is around 50 km long, connecting the cities of Utrecht and
Den Bosch. There are two main tracks, a long corridor for each
traffic direction, a dedicated stop for freight trains nearby Zalt-
bommel and 7 passenger stations.

The infrastructure offers some possibility of train re-ordering
and re-routing. Each train has a default route and a set of local re-
routing options. Re-routing options can be applied along corridors
or within a station, in which a train may be allowed to stop at
different nearby platforms. Only standard train routes are con-
sidered and some less important switches have been omitted.
Considering all possible alternative re-routing options yields a set
of 356 routes. Fig. 6 shows the dispatching area considered with
the amount of tracks per area, and the indication of minor/major
stations.



Table 4
Results obtained for the Italian (I) test case instances.

CDR instance TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s)

I_4000_986.3 237 0.6 237 0.6 237 89.3 237 0.6 237 4.6 79,390 364.2
I_3864_965.6 262 0.6 262 0.6 262 0.6 262 0.6 262 0.6 458 7189.2
I_3883_983.3 270 0.6 270 0.6 270 0.6 270 0.6 270 0.6 83,848 1042.1
I_4000_981.4 249 0.6 249 0.6 249 0.7 249 0.6 249 0.6 56,463 6826.8
I_3976_1077.8 276 0.6 276 0.6 276 0.6 276 0.6 276 0.6 83,471 1644.9
I_3646_949.3 261 0.6 261 0.6 261 164.6 261 0.6 261 0.6 62,933 6023.6
I_4000_979.8 300 0.6 300 0.6 300 0.6 300 0.6 300 0.6 80,187 4833.1
I_4000_971.8 297 0.6 297 0.6 297 0.6 297 0.6 297 0.6 84,282 1325.7
I_3981_981.9 385 1.0 385 1.0 385 1.0 385 1.0 385 1.0 396 5537.1
I_10000_2618.3 436 7.2 436 13.9 436 129.1 436 3.8 436 5.9 64,808 6828.3
I_10000_2629.8 605 23.2 605 0.7 605 0.6 605 0.6 605 0.7 76,458 5547.3
I_9553_2579.1 539 67.6 539 7.7 539 9.0 539 4.6 539 8.0 83,781 1175.5
I_10000_2688 577 135.2 626 3.8 577 174.4 577 19.9 577 7.9 51,731 6457.6
I_10000_2600.1 467 0.6 467 0.7 467 7.6 467 0.6 467 0.7 66,631 6059.3
I_9739_2689.4 345 0.6 345 0.7 345 0.6 345 0.6 345 0.7 55,803 6552.6
I_9008_2504.5 787 33.8 787 0.6 787 0.6 787 0.6 787 0.7 59,847 5822.8
I_9489_2607.9 638 7.1 638 3.6 638 147.4 638 2.8 638 13.9 84,785 900.9
I_10000_2615.3 486 151.4 486 6.4 486 133.4 486 16.4 486 7.7 84,002 1343.1
I_10000_2618.3 448 1.3 448 1.3 448 1.2 448 1.2 448 1.3 448 6456.1
I_10000_2584.3 338 0.7 338 0.7 338 0.6 338 0.6 338 0.8 344 7190.1

Avg results 410.2 21.7 412.6 2.3 410.2 43.1 410.2 2.9 410.2 2.9 58,003.3 4456.0

hcsoBneDneslamredleGnettenuLthcertU

Oss

ZaltbommelCulemborgHouten

Fig. 6. First Dutch test case – the Utrecht – Den Bosch area.

Table 5
Characteristics of the first Dutch test case instances.

Time
horizon
(min)

Network
length
(km)

Number
of trains

Number
of routes
per train

Number
of resour-
ces per
train

MILP variables

jNj jAj jC j

60 50 40 9 31 1615 1,092,557 356
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We consider a provisional hourly timetable for 2007 extended
to the entire railway area. During peak hours, 26 passenger and
freight trains are scheduled, in both directions, for the area around
Geldermalsen. A more complex situation occurs at Den Bosch
station, where up to 40 trains are scheduled each hour.

Additional constraints are included on the minimum transfer
time between connected train services. Connections of the rolling
stock are provided in Zaltbommel and Den Bosch stations. Pas-
senger connections are located at Den Bosch station for the traffic
directions from Oss to Utrecht and vice versa. The minimum time
for passenger transfer connections varies from two to five minutes,
depending on the distance to be travelled between the arrival
platforms.

Table 5 presents average information on the CDR instances of
this test case, with trains subject to random initial delays. This
network presents a huge number of jAj variables, since these are
defined for each pair of trains that have routes sharing resources of
the 50-km-long railway network.

Table 6 reports on the computational results for 20 CDR
instances of the Utrecht – Den Bosch test case. The instance code is
as for Table 4. The best average results are obtained for VNS Basic
in terms of the objective function value (as reported in bold).
Specifically the best-known solution for instance FD_738_256.1 is
only computed by VNS Basic and VNS General. The computation
time of VNS Basic is decreased by more than half compared to TS.
However, TS, VND and VNS Reduced are faster to compute the
best-known solution for some instances. VNS General is the
slowest algorithm to compute the best-known solution.

Regarding the results obtained by the CPLEX solver, the lower
bound is used to certify the optimality of some CDR solutions,
while the upper bound is sometime good, even if those bounds are
computed in a very long computation time. In Table 6, four CDR
instances are solved to proven-optimum by some algorithms. The
optimal solutions are identified with an asterisk in the columns
regarding the objective function value. Two optimal solutions are
also computed by CPLEX, while the other two are only certified by
CPLEX. Overall, the optimality of several CDR instances is not
proved by CPLEX, since the overall problem has a huge number of
train ordering ðjAj Þ variables required when combining all possi-
ble routing alternatives.

6.3. Results on the second Dutch test case

This test case is based on the railway network around the
central station of Utrecht, the busiest station in the Netherlands.
Fig. 7 shows the overall network layout that has a diameter of
around 20 km and 600 block sections, with the amount of tracks
per branch, and the indication of minor/major stations considered.
The main station area (known as Utrecht Central) provides 20
platform tracks, more than 100 switches and around 200 block
sections. There are 5 main traffic directions that are delimited by
the following minor stations: Utrecht Overvecht (on the line



Table 6
Results obtained for the First Dutch (FD) test case instances.

CDR instance TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s)

FD_770_273.4 151 1.5 191 4.2 151 175.8 151 10.4 151 82.3 3900 6836.1
FD_738_256.1 68 59.0 78 0.4 64 176.2 64 45.3 71 11.9 91 6972.5
FD_991_401.1 154 1.2 154 0.3 154 177.6 154 0.7 154 2.7 307 6954.0
FD_1356_495.7 106n 86.9 187 0.0 117 177.9 106n 63.1 106n 57.9 3552 7195.4
FD_1249_534.0 119 117.5 301 0.7 130 180.0 119 81.9 130 48.0 3630 1903.9
FD_972_306.8 202 164.6 257 0.1 225 179.2 202 172.8 208 104.6 4349 7047.0
FD_1321_412.1 68 28.1 113 1.3 68 177.7 68 54.1 68 26.6 197 5872.0
FD_1372_379.6 291 6.4 278 25.9 291 167.5 291 4.0 291 4.0 4239 6292.5
FD_1776_607.0 135 9.5 181 0.1 135 180.2 135 1.9 135 4.5 410 1545.4
FD_659_133.1 94 144.1 142 0.5 98 179.7 94 30.7 94 5.8 111 6047.0
FD_816_158.2 114n 56.0 137 0.3 114n 179.1 114n 17.0 114n 32.6 114n 5272.0
FD_977_191.4 91n 27.4 176 0.4 91n 178.8 91n 92.4 91n 8.9 211 7064.4
FD_1017_201.3 85 42.4 97 0.4 85 179.5 85 0.5 85 2.0 4539 7018.0
FD_1240_293.5 103 143.9 103 1.2 103 178.5 103 2.0 103 14.5 4577 1969.3
FD_1312_294.6 123 116.6 123 2.4 123 178.3 123 12.3 123 10.1 3847 6780.6
FD_888_84.9 71 112.1 116 0.6 102 176.7 71 41.7 98 11.1 916 7132.6
FD_872_117.2 148 0.0 148 0.0 148 158.6 148 0.0 148 0.1 148 4418.1
FD_1371_182.8 122 60.5 150 0.5 122 177.2 122 4.2 122 0.6 3630 1898.1
FD_1769_216.2 99 55.2 99 0.3 99 172.6 99 0.3 99 3.3 99 6661.7
FD_1788_313.3 116n 96.1 116n 0.3 116n 172.9 116n 6.4 116n 0.4 116n 5909.3

Avg results 123.0 66.5 157.4 2.0 126.8 176.2 122.8 32.1 125.4 21.6 1949.2 5539.5

Table 7
Characteristics of the second Dutch test case instances.

Time
horizon
(min)

Network
length
(km)

Number
of trains

Number
of routes
per train

Number of
resources
per train

MILP variables

jNj jAj jC j

75 20 79 3 22 2549 44,730 228

Utrecht Central
Culemborg

Maarssen

Driebergen

Vleuten

Utrecht Overvecht

Fig. 7. Second Dutch test case – the Utrecht Central Station area.
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towards Amersfoort), Driebergen-Zeist (on the line towards Arn-
hem and Germany), Culemborg (on the line towards Den Bosch),
Maarssen (on the line towards Amsterdam), and Vleuten (on the
line towards Rotterdam and The Hague).

The reference timetable is periodic with a cycle length of one
hour. The timetable schedules 79 trains in a peak hour, with mixed
passenger and freight traffic flows. The passenger trains are divi-
ded into International services going from the Netherlands to
Germany and vice versa, Intercity services, Local trains and
Sprinter services (faster local trains). The timetable provides con-
nections between passenger services, coupling and splitting of
rolling stock for intercity and local services coming from/going to
Rotterdam, the Hague or Amersfoort, as well as re-use of rolling
stock for commuter services towards Utrecht Overvecht and
Culemborg. The alternative graph model of the traffic running on
this complex station area is based on the aggregated formulation
of the station routings at the interlocking areas described in [18].

Table 7 presents average information on the CDR instances
tested for this network. For this network, the routing alternatives
are platforming options within the main station area of Utrecht.
We limit the number of stop platforms for all trains to a set of
adjacent station platforms, thus limiting the connection time
between two connected trains, i.e. the transfer time of passengers
from one platform to another one.

The train delays are based on a statistical fitting procedure of
the different train categories (similar to the one presented by Yuan
[56]), based on the arrival and departure data recorded by ProRail
at Utrecht Central in April 2008. Here we consider a set of 20
timetable perturbation instances. For each instance, all trains
suffer an entrance deviation, and multiple trains have a positive
delay at their entrance in the network.

Table 8 reports on the results for 20 CDR instances of the
Utrecht Central test case. The instance code is as for Table 4. For
this set of instances, VND is the best algorithm since the best-
known solution is, on average, computed in a shorter computation
time (the computation time is up to 4 s) compared to the other
algorithms. VNS Basic is, on average, the second best algorithm.
Overall, the improvement of VND and VNS algorithms versus both
the TS algorithm and the commercial solver is a strongly reduced
computation time. Specifically, CPLEX is always outperformed by
VND, VNS Basic and VNS Reduced. CPLEX is useful to certify the
optimality for 8 CDR instances (see the values with asterisk).
However, the optimality for the other 12 CDR instances is still not
certified by CPLEX after 2 h of computation.

6.4. Results on the British test case

The test bed is a mixed-traffic railway network nearby the city
of London, approximately from King's Cross station to Huntingdon
station, on the East Coast Main Line of The United Kingdom. Fig. 8



Table 8
Results obtained for the Second Dutch (SD) test case instances.

CDR instance TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s)

SD_360_48.4 88 8.3 88 1.1 88 153.9 88 0.5 88 6.9 88 180.0
SD_510_48.8 95 25.1 95 0.9 95 175.7 95 26.9 95 3.7 95 168.0
SD_259_45.8 99 1.5 99 0.1 99 1.2 99 0.1 99 0.2 99 152.3
SD_253_42 90 135.4 90 2.0 90 174.7 90 2.1 90 51.4 90 255.9
SD_273_48.1 83 0.1 83 0.1 83 180 83 0.1 83 0.1 83 298.7
SD_382_48.6 51n 59.8 51n 1.2 51n 15.4 51n 0.5 51n 5.7 51n 263.5
SD_286_44.2 51n 0.1 51n 0.1 51n 2.1 51n 0.1 51n 0.1 51n 39.8
SD_502_37.2 51n 0.1 51n 0.1 51n 2.2 51n 0.1 51n 0.2 51n 155.3
SD_377_44.3 51n 158.2 51n 2.1 51n 174.3 51n 6.3 51n 27.9 51n 62.8
SD_310_29.7 51n 1.5 51n 1.0 51n 180 51n 0.6 51n 2.3 51n 148.2
SD_418_43.5 160 2.8 160 2.5 160 180 160 3.0 160 9.5 160 190.0
SD_528_34.3 232 4.0 232 4.0 232 180 232 4.0 232 4.0 232 402.5
SD_740_38.1 93 13.9 93 0.1 93 178.5 93 0.1 93 0.1 93 390.5
SD_493_32.3 66 0.2 66 0.2 66 1.2 66 0.2 66 0.2 66 37.9
SD_411_33.4 153 43.7 153 1.1 153 171.8 153 28.4 153 10.2 153 240.0
SD_1165_47.1 51n 3.1 51n 1.8 51n 179.5 51n 6.1 51n 3.2 51n 178.9
SD_493_23.4 51n 0.8 51n 0.7 51n 160.5 51n 0.4 51n 3.4 51n 43.4
SD_370_34.6 51n 30.4 51n 3.5 51n 180 51n 13.1 51n 30.3 51n 129.5
SD_675_28.6 70 12.1 70 2.1 70 175.2 70 6.0 70 113.1 70 619.5
SD_475_27.2 133 6.7 133 0.9 133 180 133 4.3 133 7.9 133 178.1

Avg results 88.5 25.4 88.5 1.3 88.5 132.3 88.5 5.1 88.5 14.0 88.5 206.7

London King´s Cross

Moorgate

Finsbury
Park

Hertford North

Stevenage

Huntingdon

Fig. 8. British test case – the East Coast Main Line nearby London.

Table 9
Characteristics of the British (B) test case instances.

Time
horizon
(min)

Network
length
(km)

Number
of trains

Number
of routes
per train

Number of
resources
per train

MILP variables

jNj jAj jC j

60 80 90 2 69 5565 46,219 128
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shows a layout of the studied network with the amount of tracks
per branch, and the indication of minor/major stations. In this set
of experiments the scheduler has to deal with strongly disrupted
traffic situations in which some trains have speed restrictions and
others are re-routed.

Table 9 presents information on the largest CDR instances
tested for the British test case. For this set of CDR instances we
only consider two routes per train, as provided by an industrial
partner in [27].

Table 10 reports on the computational results for 20 CDR
instances of the British railway network. The instance code is as
for Table 4. For this set of instances, we know the optimal solution
for all CDR instance, as certified by the lower bound of CPLEX.
Regarding the performance of the various algorithms, VNS Basic is
the best algorithm in terms of the average objective function value
(as reported in bold), even if the other algorithms and the com-
mercial solver compute a better solution for instance Brit-
ish_512_52.9. Furthermore, VNS Basic is often the fastest algorithm
to compute the optimal solution. However, some CDR instances
are solved to optimality in a shorter time by VND, VNS Reduced
and TS.
6.5. Discussion on the obtained results

This section gives a brief overview of the average performance
of the algorithms described in this paper.
� Comparing TS and VNS Basic, the latter outperforms the former
in terms of the average objective function value and also pro-
vides an average strong reduction of the time to compute the
best-known solutions. A motivation is that TS mostly performs
single routing changes in RCPO, while VNS Basic is based on
multiple simultaneous routing changes in a combination of
neighbourhood structures.

� VNS Basic is the best variable neighbourhood search algorithm
in terms of the average objective function value, since it com-
bines the local search and the shaking procedures.

� VNS Basic is better than VNS Reduced, since the former is also
guided by the local search procedure, helping to intensify the
search of better quality solutions in specific regions of the
search space.

� Comparing VND and VNS General, the latter algorithm some-
times improves the performance of VND via the shaking pro-
cedure, that can be a profitable attempt to escape from a local
optimum.



Table 10
Results obtained for the British test case instances.

CDR instance TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s) Value (s) Time (s)

B_4558_113.0 2236n 61.9 2236n 0.2 2236n 176.4 2236n 0.1 2236n 0.1 2236n 11.8
B_474_48.1 108n 6.3 108n 3.2 108n 180 108n 16.2 108n 4.6 108n 75.0
B_452_49.6 379n 4.8 979 1.5 379n 179.6 379n 45.2 379n 4.4 379n 111.8
B_2577_152.4 532n 114.0 813 1.9 532n 176.4 532n 6.4 532n 2.3 532n 350.0
B_852_67.4 412n 3.1 412n 1.3 672 179.3 412n 1.8 672 0.7 412n 25.5
B_716_59.9 277n 0.1 277n 0.1 277n 180 277n 0.1 277n 0.1 277n 4.1
B_437_55.1 3151n 118.0 3151n 0.1 3151n 0.1 3151n 0.1 3151n 0.1 3151n 79.9
B_520_54.1 353n 12.4 353n 4.7 353n 180 353n 4.3 353n 1.4 353n 13.6
B_556_56.9 451n 23.3 451n 0.9 901 178.5 451n 0.6 901 1.6 451n 22.0
B_2374_77.4 3199n 68.3 3199n 1.7 3199n 180 3199n 2.4 3199n 0.5 3199n 2410.3
B_1218_77.1 491 157.0 2626 2.1 408n 174.2 408n 70.3 408n 43.6 408n 2434.1
B_561_46.7 3499n 0.1 3499n 0.1 3499n 176.2 3499n 0.1 3499n 0.1 3499n 131.9
B_2194_59.2 1426n 35.3 1426n 0.1 1426n 0.1 1426n 0.1 1426n 0.1 1426n 2489.9
B_2255_65.1 1992n 80.3 1992n 0.2 1992n 0.2 1992n 0.2 1992n 0.2 1992n 2750.8
B_487_49.8 421n 25.4 421n 12.9 421n 153.8 421n 142.0 421n 3.5 421n 1667.3
B_452_46.2 408n 34.6 3030 0.1 1579 159.9 408n 118.7 1579 2.1 408n 352.2
B_1349_98.3 597n 14.6 597n 7.9 597n 180 597n 6.1 597n 6.6 597n 1751.1
B_512_52.9 2788n 103.0 2788n 1.9 2788n 177.6 2838 0.1 2788n 0.8 2788n 14.7
B_540_50.1 1202n 110.6 1266 98.6 1202n 170.5 1202n 40.3 1202n 82.5 2244 2263.0
B_556_52.0 508n 97.8 508n 8.6 508n 179.9 508n 3.1 723 7.1 508n 493.6

Avg results 1221.5 53.6 1506.6 7.4 1311.4 149.4 1219.9 22.9 1322.2 8.1 1269.5 872.6
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� DJ, WOCP and their combination are the best neighbourhood
structures when incorporated in VNS Basic. These neighbour-
hood structures are new promising ingredients to solve the CDR
problem.

� Different CDR instances result in rather unsimilar average
trends regarding the quality of the solutions computed by the
various algorithms. In general a small amount of train traffic, in
terms of trains/hour, makes the CDR algorithms rapidly con-
verge to almost the same solution. When the traffic is more
dense and multiple re-routing options are available, the CDR
algorithms compute more diverse solutions.

� The computational speed of AGLIBRARY is mostly depending on
the algorithmic structure and configuration, but it also depends
on the railway infrastructure and traffic flow characteristics.

� The complexity of the CDR instance depends on the type of the
re-ordering and re-routing alternatives available for each train.
For instance, a train can avoid a conflict with another train by
changing the stop platform in a station area, while a train can
only slightly anticipate or posticipate a conflict with another
train on a corridor by performing a local re-routing. In the latter
case, the train ordering is the key decision variable to solve the
conflicting traffic situation. In general, the interdependence
between train scheduling and routing variables plays a key role
in the resolution of the CDR problem.

� The commercial solver is not able to compute a good quality
solution for most of the CDR instances in a short computation
time, and therefore cannot be part of a DSS for real-time train
traffic control.
7. Conclusions and future research

This paper proposes fast scheduling and routing metaheuristics
for real-time railway traffic management in busy networks, with
particular focus on the efficient control of strong traffic dis-
turbances (such as multiple train delays and temporarily unavail-
able block sections). The CDR problem is modelled via the alter-
native graph, that is a generalization of the disjunctive graph, and
as a MILP formulation for simultaneous train scheduling and
routing. To solve the CDR problem, several algorithmic innovations
are considered, which relate to design of effective metaheuristics
based on a problem decomposition into train scheduling and
routing decisions. Variable neighbourhood search schemes (VND,
Reduced VNS, Basic VNS and General VNS) are proposed based on
systematic changes of a combination of neighbourhood structures.

The new metaheuristic algorithms are benchmarked against a
state-of-the-art tabu search algorithm [13] and a commercial MILP
solver. The evaluation is performed over multiple networks with
varying traffic and infrastructure characteristics. The algorithms
proposed in this paper, with various combinations of neighbour-
hood structures, improve the effectiveness of the previously
developed CDR algorithms and outperform the commercial MILP
solver. The main contributions of the variable neighbourhood
search are a general significant reduction of the time required to
compute good quality (sometimes proven optimal) solutions, and
the computation of new best known solutions for some CDR
instances.

Further research should be focused on a number of issues: the
assessment of the proposed methodology to solve the CDR pro-
blem for different railway networks, traffic flows and types of
demand or disturbance that could be described by some metric, in
order to find an approximate relation between the instance char-
acteristics and the expected algorithmic performance; the devel-
opment and evaluation of alternative CDR heuristics, metaheur-
istics and exact approaches; the customization and application of
the models and algorithms proposed in this paper to other
transportation and logistics problems.
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Appendix

A small illustrative example is proposed to explain the basic
characteristics of the model, the neighbourhoods, the neighbours
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and their evaluations. We consider 4 trains (A, B, C, D) that are
running on the railway network of Fig. 9; those can be identified
by different colors. Trains A and B cross the network from left to
right, while trains C and D run in the opposite direction. Moreover,
A and D are local services which stop at the stations R and Q, while
the other trains have no planned stop in the network.

The network is composed by 8 resources (block sections),
labelled from 1 to 8 in the top part of Fig. 9. Signals delimit the
block sections. Moreover, the two stations R and Q (respectively
resources 2, 7, 8; and 4, 6) are associated with additional platform
resources, reported as 2R and 8R (station R); and as 4Q and 6Q
(station Q). Those resources model the dwell process, for the trains
that have a scheduled stop at the stations (i.e. trains A and D).

Each train has to be routed in the network and there are mul-
tiple alternative routes. Trains B and C can use any of the resources
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Fig. 11. A CDR solution shown as a time–distance plot, and the associated alternative graph.
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Fig. 10 shows the alternative graph model of the CDR problem
with the default routes. Each train results in a sequence of nodes
(operations) reported horizontally. Each node (e.g. A1-8) is iden-
tified by the name of the train and routing (e.g. A1) plus the
resource over which the operation is performed (e.g. 8).

In the alternative graph model, the fixed arcs are reported in
solid color, while the alternative arcs are reported in dotted grey.
The latter arcs are given for each shared resource, namely
resources 1, 3, 5 for all trains; resource 8 for trains A, D; resource
4 for trains A, B; resource 6 for trains C, D. Moreover, a number of
fixed arcs exit node 0, in relation with the entrance time (including
the initial delay) in the network and the minimum departure time
from the station platforms. Analogously, a number of fixed arcs
enter node n, in relation with the exit time from the network, and
the arrival time at the station platforms. For this illustrative
example, the headway time between consecutive trains is always
equal to 1 time unit.
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A solution to the CDR problem is reported in Fig. 11 as a time
distance path (top) and alternative graph (bottom). For the time
distance graph, space is along the x-axis, time (increasing down-
wards) is along the y-axis. In this solution, train C goes first over
resource 3, followed by trains B, A and D. The minimum headway
time (one time unit) over the sections constrains the departure of
train A from station R, as well as the departure time (in the
opposite direction) of train D. Those trains are assumed to be
waiting at station R until the resource 3 becomes available. In the
dotted lines of Fig. 11, the original plan is reported. The train B
suffers an initial delay of 9 time units, while the other trains have
no initial delays. In Fig. 11, the scheduled arrival times of the trains
are: A1: 6 at station R (no delay); 12 at station Q (the delay is 14, as
the realised arrival time is 26); 19 at exit of the network (the delay
is 10, as the realised exit time is 29). B1: 12 at the exit of the
network (the realised exit time is 24; the consecutive delay is 3).
C1: 21 at the exit of the network (no delay); D1: 18 at station Q (no
delay); 27 at station R (the delay is 6, as the realised arrival time is
33); 30 at the exit of network (the delay is 6 as the realised exit
time is 36).
In the alternative graph model of the CDR solution reported at
the bottom of Fig. 11, exactly one arc from each alternative pair has
been selected, i.e. a train ordering decision has been taken for each
potential conflict. For instance, the chosen train order over
resource 3 (i.e. C–B–A–D) results in the following arc selection:
(C1-7, A1-3); (C1-7, B1-3); (C1-7, D1-3); (B1-4, A1-3); (B1-4, D1-3);
(A1-4, D1-3). This is a scheduling solution with fixed routes, with a
maximum consecutive delay of 14.

We next discuss the four neighbourhoods explained in Section 5.3
in terms of the train and route rankings.

Free-Net Waiting Operations Jobs neighbourhood N FNWJ: The
N FNWJ ranking is based on the sum of the consecutive delays
collected at each waiting node in the graph of the incumbent
routing solution in which all alternative arcs are unselected (i.e.
free-net traffic situation) but the one generating the waiting node.
For example, let's consider the pair ((B1-4, C1-3), (C1-7, B1-3)) that
concerns the order of trains B and C over resource 3. We next refer
to the time distance graph of Fig. 12.

If the arc (B1-4, C1-3) is selected, the order reported in solid
style in Fig. 12 lines is implemented. Train C arrives at the end of
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resource 3 at time 11, and has to wait for the exit of train B from
resource 3, that happens at time 16, plus 1 time unit of headway
time making it 17. This results in a delay to train C of 6 time units.
Train B suffers no additional delay. The max consecutive delay is
thus 6.

If the other arc of the pair (C1-7, B1-3) is selected, the other
train order is considered, as reported via the dotted lines in Fig. 12.
Train B has to wait from time 12, for the exit of train C from
resource 3, that happens at time 16, plus 1 time unit of headway
time. Train B then exits the network at time 24, with a consecutive
delay of 3 time units. Differently, train C can enter resource 3 at
time 11 without additional delay, and exit the network without
any delay. The maximum consecutive delay is thus 3.

The N FNWJ ranking computes the score as the minimum con-
secutive delay generated on the two waiting nodes related to each
alternative pair, i.e. min(3, 6)¼3 is assigned to B1 and C1 due to
the alternative pair ((B1-4, C1-3), (C1-7, B1-3)). The complete score
of each train is computed by summing up the minimum con-
secutive delay generated by each alternative pair. In this example,
no other alternative pair generates any additional score, i.e. if only
two trains at a time are considered in the network (free-net
situation) no other conflict arises.

The N FNWJ ranking values are thus 3 for B1 and C1, 0 for the
other trains.

Ramified Critical Path Operations neighbourhood N RCPO: For the
solution of Fig. 11, the critical path is highlighted in Fig. 13 in color
and black. The operations on the critical path are as follows: B1-1,
B1-2, B1-3, B1-4, A1-3, A1-4, A1-4Q. The ramified critical path is
an extension of the critical path including also the waiting
operations preceding or following the ones on the critical path. In
this case the ramified critical path corresponds to all operations of
trains A1 and B1, highlighted in the thicker lines (grey or black). In
N RCPO, the ranking values for each train are computed as the

maximum value lS
0 ðFRÞð0; krpÞþ lS

0 ðFRÞðkrp;nÞ 8ðkrpÞ in the ramified
critical path of the graph of the incumbent solution. This value
corresponds exactly to the makespan, i.e. the maximum con-
secutive delay of 14, for all nodes in the critical path. For each train
route, the maximum of its ranking values is the ranking score. The
score of A1 and B1 is 14, the score for C1 and D1 is 0.

Waiting Operations Critical Path neighbourhood NWOCP: The
NWOCP ranking is based on the sum of the consecutive delays
collected on the waiting operations on the critical path of the
incumbent solution. We refer to Fig. 14 for a graphical illustration.
In this example, there is a single waiting operation (A1-3) in which
a consecutive delay of value 14 time units is collected for A1. The
consecutive delay (14) of A1-3 is computed as follows: the weight
of the path lS

0 ðFRÞð0;B1�4Þ ¼ 20, corresponding to the time needed
by train B1 to exit B1-3 (and to enter B1-4); plus the weight
wF

ðB1�4Þ;ðA1�3Þ ¼ 1, corresponding to the headway time; minus the

weight of lS
0 ðFRÞð0;B1�3Þ ¼ 7, corresponding to the time at which

train A1 would be able to enter A1-3, without any other potential
conflict. This yields a score of 14. There is no other waiting
operation on the critical path. The ranking of NWOCP is thus 14 for
train A1, 0 for the others.

Delayed Jobs neighbourhood N DJ: The N DJ ranking is based on
the maximum consecutive delays at some relevant locations for
each train. Fig. 15 highlights the fixed arcs going into node n, in
which some consecutive delays are experienced. Train C1 is not
delayed and its score is thus 0. The other trains have the following
consecutive delays: A1-8R: 0 A1-4Q: 14; A1-out: 10; B1-out: 3;
D1-4Q: 0; D1-8R:6; D1-out: 6. For each job, the largest delay is
taken, which corresponds to a rank of 14 for train A1, 3 for B1, 0 for
C1, 6 for D1. Fig. 15 highlights the arcs going into node n in which
consecutive delays are collected.
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