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A B S T R A C T

Understanding and predicting shoreline variability at various temporal and spatial scales is vital for effective, 
data-driven coastal management. Shoreline position, a reliable indicator of beach morphological changes, has 
been assessed using complex numerical models. Recently, equilibrium-based shoreline evolution models 
(EBSEMs) have gained traction for their efficiency in simulating shoreline orientation, including cross-shore and 
rotational (longshore) changes. However, existing EBSEMs for shoreline rotation have been applied predomi
nantly to microtidal beaches, with limited validation across diverse coastal environments.

This study evaluates the performance and scalability of the EBSEM proposed by Jaramillo et al. (2021) in 
modelling shoreline rotational variability at seven embayed beaches: Narrabeen Beach (Australia), Tairua Beach 
(New Zealand), Blackpool Beach (United Kingdom), Poniente Beach, Llevant Beach, Cala Millor Beach, and 
Moncofa Beach (Spain). These sites represent diverse environmental conditions in terms of sediment size, tidal 
regimes, monitoring frequency, and data types. The model was tested across full monitoring periods, elevation 
contours, and temporal resolutions.

Results show that EBSEM performs well across contrasting beach types, effectively capturing short-term and 
seasonal shoreline rotation patterns. However, reduced accuracy was observed in environments with high-energy 
events or human interventions, such as Poniente, Llevant, and Cala Millor beaches. Sensitivity analyses highlight 
the importance of temporal resolution and intertidal elevation in model performance.

While the EBSEM shows significant potential for broader application, further refinement is needed to better 
capture storm-driven and anthropogenic variability. These improvements would enhance its utility for coastal 
adaptation planning, hazard mitigation, and long-term shoreline management in the face of climate change.

1. Introduction

Shoreline variability refers to the changes in the position and shape 
of shorelines, which can occur over various temporal scales, ranging 
from daily to seasonal, and across different spatial scales, from hundreds 
of meters to kilometres (Bryan et al., 2013; Harley et al., 2011a). These 
variations can be attributed to a variety of environmental factors, 
including natural processes such as wave action, tides, sediment trans
port, and erosion, along with anthropogenic influences such as coastal 
development, land reclamation, and human intervention in coastal 
management (Harley et al., 2011a; Jaramillo et al., 2020; Miller and 
Dean, 2004).

Consequently, understanding and accurately predicting this vari
ability has become increasingly important as it frequently involves 
nonlinear coastal processes. The significance of this understanding is 
emphasised by the fact that approximately 40 % of the world’s popu
lation lives within 200 km of the coastlines (Creel, 2003). This value is 
expected to increase in the future due to coastal zone development, 
thereby resulting in increased pressure along the coastline and thus 
changing the natural processes of beaches around the world (Neumann 
et al., 2015). Additionally, coastal infrastructure is at risk due to sig
nificant shoreline movement. These shifts can make existing structures 
vulnerable, prompting the need for mitigation measures.

The complexity of coastal processes occurring at a beach is 
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inherently three-dimensional due to the dynamic interactions between 
hydrodynamic processes, such as wave and tide movements and sedi
mentary processes, including erosion, transport, and deposition 
(González et al., 2010). Factors like coastline shape, sediment charac
teristics, and environmental conditions such as wind and weather in
fluence these interactions. As waves approach the shore, they interact 
with the underwater topography, causing variations in wave height and 
energy that affect sediment movement (Zhang et al., 2020). Addition
ally, the relationship between incoming waves and returning currents 
continually alters the landscape, emphasising the need to study these 
processes to understand coastal dynamics and the impacts of human 
activities and climate change.

However, in engineering applications, the current limitations of 
tools, formulations, and our understanding of these processes hinder a 
comprehensive three-dimensional analysis (González et al., 2010). To 
address this issue, an orthogonality hypothesis is proposed. This hy
pothesis posits that any beach movement can be effectively analysed by 
independently examining the longitudinal (longshore) and transversal 
(cross-shore) movements (de Vriend et al., 1993; González et al., 2010).

Since shoreline variability has been regarded as a reliable indicator 
that can be used to describe the overall changes in beaches at various 
spatiotemporal scales (Smith and Bryan, 2007), the morphodynamic 
processes that influence the shoreline position will be possible to 
simulate through the integration of the longshore, cross-shore and 
gradient or curvature processes. Research has shown that cross-shore 
processes such as overwash due to storm and wave-driven beach pro
file dynamics are responsible for short-term variability. At the same 
time, alongshore gradients in longshore sediment transport have been 
identified as the drivers for long-term variability of the shoreline (Harley 
et al., 2011b).

To evaluate the variability in an embayed beach, shoreline changes 
can be simplified into three movements (Ratliff and Murray, 2014): 
cross-shore migration (Fig. 1a), representing sediment movement 
perpendicular to the shoreline (Davidson et al., 2013; Palalane et al., 
2016; Robinet et al., 2018; Yates et al., 2009): beach breathing (Fig. 1b), 
denoting changes in shoreline curvature (Ratliff and Murray, 2014); and 
beach rotation (Fig. 1c–d), the primary focus of this study, involving the 
landward or seaward movement of one end of a beach with a corre
sponding reverse pattern at the other end (Klein et al., 2002; Thomas 
et al., 2010; Turki et al., 2013a).

To properly assess and quantify shoreline evolution, the scientific 
community has attempted to develop methods to predict shoreline 

variability on medium to long-term scales. The existing shoreline evo
lution models, 3D topo-bathymetric models (e.g. de Vriend et al., 1993), 
multi-line shoreline models (e.g. Hanson and Larson, 1990), one-line 
shoreline models (e.g. Hanson and Kraus, 1991; Pelnard-Considère, 
1957), combined models (e.g. Antolínez et al., 2019; Robinet et al., 
2018; Vitousek et al., 2017), and equilibrium-based shoreline evolution 
models (e.g. Blossier et al., 2017; Jaramillo et al., 2021; Miller and Dean, 
2004; Turki et al., 2013a; Yates et al., 2009) have been mostly 
considered.

All these models require long data series and contain parameter
isations of physical processes with accompanying calibration, making 
them computationally intensive except for the equilibrium-based 
shoreline evolution models (EBSEMs), which are the simplest, compu
tationally efficient, and can be used for forecasting the daily to long- 
term morphological changes in various coastal settings (Davidson and 
Turner, 2009). Due to EBSEM’s reduced complexity, ease of use, and 
effectiveness, which are well described in the methodology section, its 
use has increased in recent years. It has been designed to replicate the 
shoreline variability based on the type of movement. Some focus on 
cross-shore transport, exemplified by the models proposed by Miller and 
Dean (2004) and Yates et al. (2009), among others. On the other hand, 
models tailored for longshore sediment transport are responsible for 
shoreline rotation, such as those by Jaramillo et al. (2021) and Turki 
et al. (2013a).

While extensive research has focused on cross-shore shoreline dy
namics, rotational shoreline movement remains comparatively under
explored despite its significance in coastal engineering. Also, the 
existing shoreline rotation models have been applied to only a handful of 
case studies, raising concerns about their applicability across diverse 
coastal environments. This study addresses these limitations by 
advancing the scalability and predictive accuracy of EBSEMs for broader 
coastal applications through the following objectives: (1) assessing the 
capability of EBSEM to predict shoreline rotation across diverse coastal 
environments, each with its varying hydrodynamic and morphological 
characteristics; (2) identifying the uncertainties that affect EBSEM per
formance, including natural variability of coastal environments and 
model-related uncertainties; and (3) proposing methodological ap
proaches to improve the model robustness and global applicability for 
coastal engineering applications.

To support these objectives, this study introduces methodological 
advancement that could enhance the scalability and robustness of 
EBSEM. Specifically, the model sensitivity is evaluated across different 

Fig. 1. Shoreline variability movement. (a) Cross-shore movement with incoming waves perpendicular to the shoreline causing sediment transport perpendicular to 
the coastline, (b) Beach breathing with incoming waves perpendicular to the shoreline causing changes in the shoreline curvature, (c–d) Rotation movement, where: 
(c) Simplified model of beach rotation with oblique wave arriving on an embayed beach causing alongshore sediment transport downdrift leading to accretion and 
erosion updrift, and (d) A reversing oblique wave direction subsequently creates accretion updrift and erosion downdrift.
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temporal resolutions, ranging from daily to monthly shoreline obser
vations, and across multiple shoreline elevation contours within the 
intertidal zone. These analyses enhance our understanding of how data 
resolution and vertical shoreline variability influence the model 
performance.

By addressing these challenges, this study aims to advance shoreline 
rotation modelling by providing valuable insights for evidence-based 
coastal management practices. Improving the predictive capability of 
EBSEMs will enable more reliable shoreline evolution predictions, 
which is essential for effective coastal management amid climate change 
and human interventions. These advancements will strengthen resilient 
defence strategies and support sustainable adaptation measures, 
ensuring long-term coastal protection (Azorakos et al., 2024; D’Anna 
et al., 2024).

The remainder of this paper is organised as follows. First, the study 
sites are presented in Section 2. The wave climate and shoreline orien
tation data are presented in Section 3. The overall methodology used for 
this study is described in Section 4, starting with the model description 
with underlying assumptions and hypotheses, calibration method and 
performance evaluation. The model results are shown in Section 5. A 
discussion of the model’s performance, sensitivity and limitations is 
presented in Section 6. Finally, the main conclusions are summarised in 
Section 7.

2. Study sites

This study assesses the predictive capability of EBSEM in simulating 
shoreline rotation across seven distinct coastal environments with multi- 
annual shoreline monitoring programs. The selected study sites, Nar
rabeen Beach, Tairua Beach, Poniente Beach, Llevant Beach, Cala Millor 
Beach, Moncofa Beach, and Blackpool Beach, were chosen to represent a 
diverse range of hydrodynamic conditions, sediment compositions, and 
anthropogenic influences. These sites represent diverse wave climates 
and tidal regimes, ranging from microtidal to macrotidal, and exhibit 
sediment characteristics varying from sand to gravel. Additionally, the 
study sites incorporate multiple shoreline monitoring approaches, uti
lising various data sources such as field surveys, video monitoring, and 
satellite imagery. The selected beach lengths range from a few hundred 
meters to several kilometers, allowing for an assessment of shoreline 
evolution processes across different spatial scales. By integrating these 
diverse datasets, the study evaluates how shoreline rotation processes 
vary across different coastal settings.

Hence, this section provides an overview of the selected study sites 
(Table 1 and Fig. 2), detailing their wave characteristics, which are the 
main driving force of the selected EBSEM, and the derived shoreline 
orientation datasets used in the analysis.

2.1. Collaroy-Narrabeen Beach, Australia

Collaroy-Narrabeen Beach is located approximately 20 km north of 
Sydney Harbour along the coastline of the Sydney metropolitan area 
(Fig. 2a). This 3.6 km embayed beach system is bordered by Narrabeen 
Headland in the north and Long Reef Point, a 1.5 km-long headland, in 
the south. The site comprises two beaches: Narrabeen Beach to the north 
and Collaroy Beach to the south. A small, intermittently open lagoon 

exists at the northern end (Morris and Turner, 2010). Sediments are 
predominantly homogeneous fine-to-medium quartz sand with a median 
grain size (D50) of ≈0.3 mm and a carbonate content of ~30 %. Minimal 
sediment interaction occurs between the embayment, the lagoon, and 
adjacent beaches, effectively closing the system (Harley et al., 2011a). 
The beach is classified as wave-dominated (Short, 2006), exhibiting an 
intermediate morphodynamic state with seasonal transitions towards 
reflective or dissipative conditions (Wright et al., 1985).

2.2. Tairua Beach, New Zealand

Tairua Beach is a 1.2 km-long microtidal sandy beach located on the 
Coromandel Peninsula, North Island in New Zealand (Fig. 2b). It is 
flanked by Pumpkin Hill to the north and Paku Hill to the south, with the 
latter extending approximately 600 m seaward from the dune foot. 
Offshore, Shoe Island, situated 3 km east of Paku Hill and spanning over 
1 km from south to north, partially shelters the beach from incoming 
waves. The rocky coasts along its eastern coastline are interrupted by 
many embayed beaches caused by local sediment supply by rivers or 
bypassing effects (Hart and Bryan, 2008). The beach is primarily 
exposed to long-traveling easterly and north-easterly swells and storm 
waves from the Pacific Ocean, with an average wave direction of 53◦

toward the north (Jaramillo et al., 2021). The beach sediments consist of 
quartz-rich sand with a median grain size (D50) ranging between 0.30 
and 0.60 mm (Blossier et al., 2017; Smith and Bryan, 2007). The tidal 
range varies from 1.2 m during neap tide to 2.0 m during spring tide 
(Black et al., 2016).

2.3. Poniente and Llevant Beach, Spain

Poniente and Llevant Beaches are the two main beaches of Benidorm, 
located on the Spanish Mediterranean coastline. Poniente Beach is 3 
008 m long, while Llevant Beach, also known as Levante Beach, extends 
2 261 m (Fig. 2c). Both beaches are classified as microtidal, with a 
maximum tidal range of ~0.3 m and a mean sediment grain size (D50) of 
≈0.30 mm (Aragonés et al., 2015; Ecolevante, 2006). Both beach sys
tems are closed embayments formed by natural headlands, exhibiting 
minimal sediment exchange with adjacent systems.

2.4. Cala Millor beach, Spain

Cala Millor Beach is a semi-embayed microtidal sandy beach, 1.7 km 
long and 35 m wide, situated on the northeastern coast of Mallorca in the 
western Mediterranean Sea (Fig. 2d). The beach is bounded by “Cape des 
Pinar” to the north and “Punta de n’Amer” to the south, with steep 
submarine slopes beneath these cliffs. Posidonia Oceanica meadows at 
the central part of the bay make the bathymetry there different as they 
follow the same regular and shallow slope topography of the Posidonia 
Oceanica. Also, they act as a cover for sediment exchange and attenua
tion to the incoming wave (Abreu et al., 2020). The beach is composed of 
well-sorted medium-to-coarse biogenic carbonate sands with a median 
grain size (D50) of 0.33 mm varying over the cross-shore distance by ±
0.3 mm, depending on depth (Gómez-Pujol et al., 2011).

Table 1 
Summary of study sites and survey data.

Site D50 (mm) Average Length (m) Tidal Range Shoreline Orientation Data Frequency of Monitoring Monitoring Period

Narrabeen Beach, Australia 0.30 3 600 Microtidal Field surveys Monthly 1976–2019
Tairua Beach, New Zealand 0.45 1 200 Microtidal Video camera Daily 1999–2013
Poniente Beach, Spain 0.30 3 008 Microtidal Satellite Images Monthly 1984–2022
Llevant Beach, Spain 0.30 2 261 Microtidal Satellite Images Monthly 1984–2022
Cala Millor Beach, Spain 0.33 1700 Microtidal Video camera Biweekly 2011–2020
Moncofa Beach, Spain >4.00 330 Microtidal Satellite Images Monthly 2017–2020
Blackpool Beach, United Kingdom 5.00 650 Macrotidal Field Surveys Six-Monthly 2007–2020
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2.5. Moncofa Beach, Spain

Moncofa Beach is an urbanised microtidal coastline between the 
ports of Castellón and Sagunto along the Spanish Mediterranean coast 
(Fig. 2e). The beach system consists of artificial embayed beaches 
separated by groins. The sediment sizes range from fine sands to pebbles, 
reflecting variability within the constructed system (Gomes da Silva 
et al., 2024; Rodríguez-Santalla et al., 2021).

2.6. Blackpool Beach, United Kingdom

Blackpool Beach, also known as Blackpool Sands, is one of four 

interconnected gravel barrier beaches in Start Bay, located along the 
south coast of Devon, Southwest England (Fig. 2f). It is a 650 m-long 
macro-tidal beach with tidal ranges of approximately 2 m during neap 
tides and up to 5 m during spring tides (Chadwick et al., 2005; McCarroll 
et al., 2023). The beach face is steep and reflective (tanβ = 0.1), with a 
median grain size (D50) ranging between 2 and 10 mm (Wiggins et al., 
2019)

3. Data

This section presents the wave condition of the studied sites and the 
corresponding derived shoreline position datasets.

Fig. 2. Location of study sites: (a) Narrabeen-Collaroy Beach, Australia, highlighting the location of the five monthly survey transects (PF1, PF2, PF4, PF6, PF8); (b) 
Tairua Beach, New Zealand, including a reference line to estimate the shoreline position and the camera station with a corresponding view; (c) Poniente Beach and 
Llevant Beach, Spain, including the nourished area on Poniente Beach in 1991; (d) Cala Millor Beach, Spain, including the camera station; (e) Moncofa Beach, Spain; 
and (f) Blackpool Beach, United Kingdom, highlighting the location of the four survey transects (BK1, BK2, BK3, BK4).
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3.1. Wave climate data

This subsection presents the wave characterisation of datasets of the 
studied area as the main driving force of the JA21 model.

3.1.1. Narrabeen Beach
The wave climate for Narrabeen Beach was derived from the 

IHCantabria Global Ocean Waves (GOW) reanalysis database based on a 
0.5◦ global mesh (Perez et al., 2017). This dataset, calibrated and vali
dated using buoy and satellite altimetry data (Reguero et al., 2012), 
provides hourly sea state parameters such as significant wave height 
(Hs), peak period (Tp), and wave direction. For Narrabeen Beach, data 
from an offshore point at − 34.0◦ latitude and 151.5◦ longitude, with a 
depth of approximately 218 m, spanning 1979–2019, was utilised. 
Statistical analysis using wave roses (Fig. 3) shows that Hs ranges from 
0.4 to 9.0 m. Waves predominantly originate from the South-Southeast 
20 % of the time, with the most energetic waves from the South and 
Southeast occurring around 17 % and 14 % of the time, respectively. 
Seasonal patterns indicate that east-northeast waves dominate in sum
mer, while waves are primarily from the south during winter.

3.1.2. Tairua Beach
The wave data for Tairua Beach used for this research were sourced 

from the University of Auckland’s Shoreshop hindcast dataset 
(1979–2016) at − 36.988◦ latitude and 175.864◦ longitude, 600 m 
offshore at an 8 m depth (Montaño et al., 2019). Analysis indicates 
(Fig. 3) that the most frequent waves come from the northeast and 
east-northeast 48 % of the time, with Hs ranging from 0.1 to 4.4 m with 
an average of 1.4 m and peaking at 6 m during storms (Smith and Bryan, 
2007). Seasonal variations show a dominance of east-northeast waves in 
austral winter (June–August) and northeast waves in summer 
(December–February).

3.1.3. Poniente and Llevant Beach
Wave climate for Poniente and Llevant Beaches was derived from the 

GOW database for an offshore point at 38.417◦ latitude and − 0.167◦

longitude at an 82 m depth, covering 1979–2022. Wave roses reveal 
(Fig. 3) that considering all months, the most frequent waves originate 
from the East-Southeast (24 %), Southeast (21 %) and South (15 %), 
with Hs ranging from 0.1 to 4.0 m. This is due to these beaches not only 
facing the south but also being conditioned by Benidorm Island (which 
reduces the incoming wave on Llevant Beach by 10 %), Cape Gamell to 
the west, and the massif of Sierra Helada to the east (reduces incoming 
wave by almost 50 % on Llevant Beach compared to Poniente), which 
protect these beaches from the incoming wave from the east, thereby 
reducing the impact of storms compared to other parts of the Spanish 
Mediterranean coast (Fig. 3) (Amores et al., 2020; Aragonés et al., 2015; 
Toledo et al., 2022). During summer, most waves also come from the 
East-Southeast; in winter, the waves come from the South, 
South-Southeast, East, and East-Northeast.

3.1.4. Cala Millor beach
Wave data for Cala Millor Beach were obtained from the GOW 

database at 39.5834◦ latitude and 3.5◦ longitude, with a depth of 56 m 
(1979–2017). The statistical analysis reveals (Fig. 3) that the most 
frequent waves are from the North-Northeast (27 %) and South- 
Southeast (12 %), reflecting the beach’s semi-enclosed, east-facing 
configuration. The Hs and Tp ranges from 0.03 to 6.0 m and 4.0–10.0 s, 
with an average of 8.7 s (Enríquez et al., 2017; Fernández-Mora et al., 
2023; Tintoré et al., 2009).

3.1.5. Moncofa Beach
Wave climate data for Moncofa Beach, spanning 1979–2020, were 

obtained from an offshore GOW point at 39.7◦ latitude and − 0.0833◦

longitude at 30 m depth. Wave roses (Fig. 3) reveal dominant storm 
events originating from the East-Northeast around 25 % of the time, 

with the most frequent swell from the east around 20 % of the time. For 
the summer months, the frequent waves come from the Southeast 
around 33 % of the time, while during winter, most waves come from the 
East-Northeast, thereby depicting a strong seasonal pattern. The coastal 
configuration and the bimodal wave climate in the area cause a seasonal 
shoreline rotation, a process reported previously on other beaches of the 
Spanish Mediterranean coast (Castelle et al., 2020; Ojeda and Guillén, 
2008). The Hs and Tp range from 0.03 to 4.0 m and 0.5–11.5 s, 
respectively.

3.1.6. Blackpool Beach
Blackpool Beach data were sourced from the GOW database at 

50.25◦ latitude and − 3.50◦ longitude, with a 47.5 m depth covering 
1979–2022. Analysis (Fig. 3) shows that the most frequent and energetic 
waves come from the West-Southwest at around 47 % of the time during 
all months and 60 % of the time during summer. In contrast, during 
winter, the most frequent waves come from the West-Southwest 45 % of 
the time, and the most energetic, which comes from the Southwest, is 
around 27 % of the time.

3.2. Shoreline orientation data

This subsection presents the shoreline position datasets used in this 
study. This dataset was acquired from multiple sources which includes 
satellite imagery, video monitoring, and field measurements, to analyse 
the shoreline orientation.

3.2.1. Narrabeen Beach
Shoreline orientation data at Narrabeen Beach (Table 1) were ob

tained from monthly field surveys conducted between 1976 and 2019 as 
part of the Narrabeen-Collaroy monitoring program (Harley et al., 
2011a). This dataset includes beach profile measurements at five 
cross-shore locations (PF1, PF2, PF4, PF6, and PF8; Fig. 2a). During the 
first three decades, simple and traditional survey techniques were 
employed, transitioning to advanced methods such as RTK-GPS from 
2004 onwards (Turner et al., 2016). Each profile was surveyed at 10 m 
cross-shore intervals during low tide from a fixed benchmark at the 
landward limit.

For each field campaign, measurements of the five beach profiles 
were used to define the complete coastline. Fig. 4 shows the beach 
orientation index (BOI) (Eq. 1), which is a metric that indicates whether 
a beach’s orientation is predominantly clockwise or anticlockwise 
compared to its long-term average (Harley et al., 2011b). By definition, a 
positive BOI represents a clockwise (CW) beach orientation with respect 
to the long-term average, while a negative BOI represents a counter
clockwise (CCW) beach orientation. This index is essential to assess how 
a beach rotates with respect to coastal processes and climate change 
(Harley et al., 2015). 

BOI(t)=10
(αs(t) − αs(t))

std(αs(t))
(1) 

Where αs(t) is the shoreline orientation at time “t", αs(t) is the time- 
averaged of the shoreline orientation and std(αs(t)) is the standard 
deviation.

The evolution of the BOI over 43 years of analysis highlights multiple 
rotation events (Fig. 4a). Clockwise rotation events were prominent 
from 1992 to 1994, while counterclockwise rotations were dominant 
between 2007 and 2015. The peak clockwise rotation was recorded in 
October 2018, whereas the most pronounced counterclockwise rotation 
occurred in April 1981.

3.2.2. Tairua Beach
Shoreline orientation data for Tairua Beach (Table 1) were sourced 

from the Shoreshop monitoring system, based on daily video recordings 
collected over 15 years (1999–2013) by a camera installed on Paku Hill 
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Fig. 3. Directional wave rose of Hs for study sites, categorised by all months, summer months and winter months. For study sites in the Southern Hemisphere 
(Narrabeen Beach and Tairua Beach), June, July, and August were considered winter months, while December, January and February were categorised as summer. In 
contrast, in Northern Hemisphere study sites (Poniente Beach, Llevant Beach, Cala Millor Beach, Moncofa Beach, and Blackpool Beach.), these periods were reserved, 
with December, January, and February considered for winter, and June, July and August classified as summer.
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Fig. 4. Evolution of the beach orientation index (BOI) at (a) Narrabeen Beach, (b) Tairua Beach, (c) Poniente Beach, (d) Llevant Beach, (e) Cala Millor Beach, (f) 
Moncofa Beach, and (g) Blackpool Beach.
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in the month of September 1997 at an elevation of 70 m (Almar et al., 
2008; Montaño et al., 2019). Funded by the Waikato Regional Council 
and the National Institute of Water and Atmospheric Research (NIWA), 
this system captured the southern section of the beach (Fig. 2b). Pro
cessed by the University of Auckland, the video data provide a detailed 
time series of coastline variability (Table 1).

The 14-year BOI record for Tairua Beach reveals significant rota
tional behaviour (Fig. 4b). Clockwise rotation occurred between March 
2005 and January 2007, with the most pronounced clockwise position in 
September 2003. In contrast, counterclockwise rotation was observed 
throughout 2002, peaking in August 2008.

3.2.3. Poniente and Llevant Beach
For Poniente and Llevant Beaches shoreline orientation data, this 

study employs a time series of the shoreline variability provided by the 
Geo-Environmental Cartography and Remote Sensing Group (CGAT) at 
the Polytechnic University of Valencia (UPV). This dataset consists of 
water lines extracted from Landsat and Sentinel satellite images, which 
were then processed to obtain shoreline positions from 1984 to 2022 
(Table 1).

For Poniente Beach, the 38-year BOI data (Fig. 4c) indicate rotational 
trends corresponding to natural processes and anthropogenic in
terventions. The beach displayed its most counterclockwise orientation 
in December 2021. In May 1991, a significant clockwise rotation coin
cided with nourishment activities, involving 710,847 m3 of sand depo
sition along a 1 305 m stretch, widening the beach by an average of 70 m 
(Aragonés et al., 2015; MOPT, 1991; Toledo et al., 2022). This nour
ishment was due to the coastal erosion the beach has suffered in pre
vious years. Llevant Beach also experienced several rotational events 
(Fig. 4d), with the most clockwise orientation occurring in October 1992 
and the most counterclockwise orientation in April 1990.

3.2.4. Cala Millor beach
Cala Millor’s shoreline orientation data were obtained from the 

SOCIB Data Catalog processed by the Balearic Islands Coastal Observing 
and Forecasting System (Fernández-Mora et al., 2023). These publicly 
available datasets are from five video cameras located at 39.59◦ latitude 
and 3.38◦ longitude, at an elevation of approximately 46 m, recording 
images at 7.5 Hz during daylight hours (Fernández-Mora et al., 2023). 
These shoreline positions from June 2011 to December 2020 are then 
digitised biweekly from georeferenced plan view images (ETRS89), 
calibrated intrinsically and extrinsically (Table 1).

Over the ten years of BOI data, Cala Millor Beach exhibited distinct 
rotational dynamics (Fig. 4e). Clockwise rotation dominated from June 
2014 to March 2016, peaking in June 2017. Conversely, counterclock
wise rotation was recorded from January 2018 to December 2019, with 
the maximum counterclockwise position in February 2019.

3.2.5. Moncofa Beach
Shoreline orientation data for Moncofa Beach (Table 1) were sourced 

from the European Space Agency’s EOEP-5 Coastal Erosion Project 
(Gomes da Silva et al., 2024). These data comprised waterlines derived 
from Landsat 5, Landsat 8, and Sentinel-2 images (April 2017–January 
2020), corrected using tide gauge data from Puerto del Estado and local 
beach slope measurements.

The three-year BOI data for Moncofa Beach (Fig. 4f) illustrates 
rotational variability. A clockwise rotation was observed from May to 
October 2018, while a counterclockwise rotation prevailed from 
October 2018 to May 2019. The beach’s most clockwise orientation was 
in July 2017, and the most counterclockwise position occurred in 
January 2019.

3.2.6. Blackpool Beach
Shoreline orientation data for Blackpool Beach from 2007 to 2021 

(Table 1) were obtained from the South West Coastal Monitoring Pro
gram, operated by the Coastal Processes Research Group (CPRG) and the 

Plymouth Coastal Observatory (McCarroll et al., 2023). Surveys at four 
cross-shore transects (BK1–BK4; Fig. 2f) utilised RTK-GNSS during 
spring tides. These profiles are being surveyed semiannually to annually 
on foot using RTK-GNSS during spring tide extends from the onshore of 
the barrier crest down to the near spring low tide level, which is between 
− 1 and − 2 m Ordnance Datum Newlyn (ODN) (McCarroll et al., 2023).

The 14-year BOI record for Blackpool Beach shows clear rotational 
events (Fig. 4g). Clockwise rotation was prominent between 2013 and 
2014, peaking in May 2013. Counterclockwise rotation was sustained 
from 2013 to December 2018, reaching its maximum extent in February 
2020.

4. Methodology

This section provides a comprehensive explanation of the overall 
methodology used for this study, starting from the data processing, 
model description with underlying assumptions and hypotheses, and 
performance evaluation.

4.1. Model description

Among the limited number of EBSEMs for rotation movement in the 
literature, the model developed by Jaramillo et al. (2021), hereafter 
referred to as JA21, was used in this study to model the shoreline 
orientation evolution of diverse coastal environments, being the most 
recent model among others. This model is based on the following kinetic 
equation: 

dαs(t)
dt

= L±PΔαs(θ) (2) 

Where αs(t) represent the shoreline orientation (◦) at the time “t" and L±

present the proportionality constants (m− 2h− 2); L+ is equivalent to 
clockwise shoreline rotation and L− equivalent to the counterclockwise 
rotation. P (m2s), the incident wave power can be defined as the model 
weighting factor resulting from the product of the squared of the sig
nificant wave height, Hs2 (m2), and the peak period, Tp (s). 

P=Hs2⋅Tp (3) 

αs(θ) (see Eq. 4) is the shoreline orientation disequilibrium. 

αs(θ)= αs − αseq (4) 

Where αseq is the asymptotical equilibrium shoreline orientation, which 
is considered to be a linear relationship between the direction of the 
incident waves and the equilibrium shoreline orientation (see Eq. 5). It is 
crucial to emphasise that, in the case of evaluating a theoretical beach 
case, one could anticipate that αseq ≅ θ the shoreline is perfectly 
straight, and the incident wave direction, θ, is uniform throughout the 
entire beach length. However, if one assumes that the wave conditions 
outside the active beach profile are the model forcing, there is a pro
portional relationship between αseq and θ. 

αseq =
θ − b

a
(5) 

Where a( − ) and b(◦) are empirical parameters corresponding to the y- 
intercept and slope coefficient, respectively, in a linear relationship 
between the equilibrium wave direction and the shoreline orientation.

The equilibrium shoreline orientation has been defined as the equi
librium wave direction function (EWDF) for a given wave direction. This 
function relates to the best adjustment between measurements, dis
tinguishing positions that will rotate clockwise from ones that will rotate 
counterclockwise. Since the approach to equilibrium in this instance is 
exponential, the following is the form of the solution to equations (2)– 
(6): 

αs(t)=
(
αs − αseq

)
e− L±Pt + αseq (6) 
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To summarise, the model formulation has four calibration parame
ters (a, b, L+, and L− ). The coastline rotation rate (either clockwise or 
counterclockwise) is controlled by L±, while parameters a and b estab
lish the equilibrium condition (EWDF) and are calculated from the 
available surveys taken into consideration for calibration.

4.2. Model hypotheses and basic assumptions

The equilibrium shoreline evolution model selected for this study 
uses a series of assumptions and hypotheses. Beach rotation is assumed 
to be independent of other beach movements, i.e., not influenced by 
beach breathing or cross-shore migration. Hence, the beach rotation has 
been defined as dependent on the wave power and direction of incident 
waves. The model assumes a beach as a linear planform and a constant 
beach profile to separate shoreline movement. Based on the definition of 
beach rotation by Turki et al. (2013b, 2013a) as the lateral migration of 
sand towards opposite ends of an embayment, the model assumes that 
shoreline advancement and retreat are caused mainly by alongshore 
currents rather than wave height gradients, showing slight variation in 
wave height along the beach.

For the shoreline orientation, αs, this model uses a procedure similar 
to that of Harley et al. (2014) and (Turki et al., 2013a). The procedure 
involves 1) the removal of time-averaged dry beach width from all 
recorded data, 2) fitting these demeaned data using linear regression, 
and 3) determining the shoreline orientation as the angle between the 
geographic north and the line perpendicular to the linear regression fit.

For the model forcing, the model uses a single wave point. This de
fines the wave power and the incoming wave direction across the entire 
beach. The model assumes that the waves are homogeneous along the 
coast and assigns a single wave value to the whole beach by selecting a 
representative point beyond the active beach profile outside the closure 
depth (Hallermeier, 1977). Therefore, using a nearshore wave force 
inside the active beach profile would not be appropriate. Using a single 
wave point is a practical choice that simplifies computational 
complexity and minimises the need for extensive data collection. This 
approach enables the model to efficiently simulate shoreline rotation by 
focusing on the dominant wave conditions that drive sediment transport 
and beach morphology changes. It strikes a balance between model 
accuracy and computational efficiency, making it suitable for large-scale 
or long-term simulations where detailed spatial resolution is not as 
critical (Jaramillo et al., 2021).

It is essential to state that the model does not consider short-term 
processes such as beach cusp formation, alongshore variable bar weld
ing, or rip current embayments (Splinter et al., 2014). Aside from 
shoreline orientation, it does not explicitly consider any physical beach 
features, such as the mean grain size or the length of the active beach 
profile. However, there is a relationship between the morphological 
beach parameters and the model parameters that specify the equilibrium 
state and the model velocity. Based on this, the beach’s physical char
acteristics are estimated by comparing calibration parameter values at 
different sites.

Furthermore, the proposed model does not explicitly include any 
additional tidal range parameters; however, as Castelle et al. (2014)
suggested that equilibrium shoreline evolution models can be applied to 
a range of elevation contours in the intertidal zone with satisfactory 
efficiency.

4.3. Model implementation

Several preprocessing steps were implemented before feeding the 
shoreline data into the model to ensure accuracy and consistency. The 
shoreline position data could originate from various sources, including 
remote sensing technologies such as video camera systems, aerial im
agery, orthophotos, or satellites, and in situ field surveys like beach 
profile measurements and topo-bathymetric surveys. The initial step 
involved rectification and geo-referencing, which are crucial for 

achieving accurate measurements, particularly when using oblique im
ages captured from video cameras and satellite images. This intricate 
process requires a deep understanding of the rectification geometry 
within the images (Jaramillo et al., 2021).

Once the data was rectified and geo-referenced, a fixed baseline was 
established to reference all shoreline positions. Cross-shore profiles were 
generated at regular intervals along this baseline to standardize shore
line measurements, ensuring consistency across the different datasets. 
The time-averaged dry beach width was then subtracted from all 
recorded shoreline positions to remove temporal fluctuations associated 
with short-term beach dynamics. The resulting data within a defined 
domain were then demeaned to achieve a normalised shoreline 
orientation.

The shoreline orientation (αs) was determined by fitting a linear 
regression model to the normalised shoreline positions. In this context, 
orientation is defined as the angle between the geographic north and the 
line perpendicular to the regression fit, following the approach of 
(Harley et al., 2014; Turki et al., 2013a).

The next step involves applying the rotation model. This process 
encompasses determining the incident wave power (P), defining the 
equilibrium wave direction function (EWDF), and calibrating and vali
dating the shoreline rotation model to ensure accurate parameterisation 
of variables a, b, L− , and L+ for shoreline evolution predictions.

4.4. Calibration method

The choice of parameters greatly influences the effectiveness and 
efficiency of an algorithm. In this study, the selected EBSEM has been 
applied using a global optimisation algorithm called the SCE-UA (shuf
fled complex evolution method) (Duan et al., 1992, 1993, 1994). This 
robust optimisation technique has been highly successful in calibrating 
hydrology models (Jiang et al., 2023; Rahnamay Naeini et al., 2019) and 
applies to a wide range of fields, particularly in mechanical engineering 
(Lobato et al., 2022) and building energy modelling (Yu et al., 2022).

The model calibration process begins by generating a population of 
potential parameter sets, which are then divided into smaller subgroups 
known as complexes. Within each complex, a simplex search is con
ducted, evaluating the model’s performance using predefined loss 
functions such as the Nash-Sutcliffe coefficient (NSE) or Root-mean- 
square error (RMSE) for different parameter combinations.

The least-performing parameter set within each complex is replaced 
with a new one derived from the other sets, guiding the search towards 
better solutions. Information is periodically exchanged between the 
complexes to prevent them from becoming stuck in suboptimal regions. 
This iterative process continues until the algorithm converges, which 
occurs when a stopping criterion is met, such as reaching a maximum 
number of iterations or achieving a desired level of improvement in the 
objective function (Duan et al., 1993).

4.5. Model performance evaluation metrics

To assess the model’s performance, the rotation model was examined 
using various loss functions, such as the root-mean-square error (RMSE), 
the Nash-Sutcliffe efficiency coefficient (NSE), and the Mielke Skill 
Score (λ), considering the complete dataset of observations during the 
designated monitoring period for each case study.

RMSE (Eq. (7)) measures the differences between the measured data 
and the values predicted by the model. Generally, the smaller the RMSE, 
the more accurate the model’s prediction is compared to the 
measurement. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − Yi )
2

n

√

(7) 

Where Xi and Yi represent the ith simulated and observed value, 
respectively, for the constituent being evaluated and n is the total 
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number of samples.
NSE was also used to assess the model’s skill (Eq. 8). It is a nor

malised indicator that determines the relative magnitude of residual 
variance and is compared to the measured data variance. The value can 
range from -∞ to 1. When NS equals 1, there is a perfect match between 
the model and the observed. When NS equals 0, the model result is 
equivalent to the mean of the observed value, and when less than 0, it 
indicates that the observed mean is a better predictor than the model, 
which indicates unacceptable performance (Moriasi et al., 2007; Nash 
and Sutcliffe, 1970). 

NSE=1 −

∑n
i=1(Yi − Xi )

2

∑n
i=1(Yi − Y)2 (8) 

Where Xi and Yi , represent the ith simulated and observed value, 
respectively, for the constituent being evaluated, while Y is the mean of 
the observed data for the constituent being evaluated, and n is the total 
number of the observations.

λ (Eq. 9) extends Pearson’s correlation by incorporating the impact 
of bias. When no bias is present, λ is identical to the correlation coeffi
cient; however, in the presence of bias, λ decreases proportionally to the 
bias magnitude (Duveiller et al., 2016). λ values range from 1, indicating 
a perfect simulation, to 0, representing no correlation. 

λ= 1 −

n− 1 ∑
n

i=0
(Xi − Yi )

2

σ2
x + σ2

y + (X − Y)2
+ κ

(9) 

Here, Xi and Yi represent the ith simulation and observed value and 
its value at each time step, respectively, while X and Y denote their 
means at each time step. σX and σY are the standard deviations of the 
simulations and observations, respectively. The parameter κ (Eq. 10) 
depends on the Pearson correlation coefficient (R). 

κ =
{

0,
2

⃒
⃒
⃒
⃒
⃒

∑n

i=1
(Xi − X)(Yi − Y)

⃒
⃒
⃒
⃒
⃒

R ≥ 0
R < 0 (10) 

5. Results

This section presents the performance of the selected EBSEM pro
posed by Jaramillo et al. (2021), also known as the JA21 model, in this 
study. These include model results from study sites using the complete 
time series of the observation data available (Section 5.1), model results 
when considering different data frequencies (Section 5.2), and model 
results considering observations at different contours (Section 5.3).

5.1. Model performance

This subsection presents the performance of the JA21 model when 
applied to the selected study sites using the observation dataset. The 
findings are summarised in Fig. 5 and Table 2, where each panel depicts 
results for specific locations: Narrabeen Beach (Fig. 5a), Tairua Beach 
(Fig. 5b), Poniente Beach (Fig. 5c), Llevant Beach (Fig. 5d), Cala Millor 
Beach (Fig. 5e), Moncofa Beach (Fig. 5f), and Blackpool Beach (Fig. 5g). 
In each panel, the red line represents the model results, while the grey 
dots represent the observed orientation data over the study period. 
Additionally, the box in each panel contains the model fitness scores 
(RMSE, λ, NSE) obtained from the comparison between the measure
ments and the model, along with their calibration parameters (L+, L− , a, 
b).

5.1.1. Narrabeen Beach
The performance of the JA21 model for Narrabeen Beach was eval

uated from 1976 to 2019. The model accurately captured the general 
variability of shoreline rotation over this period (Fig. 5a). The observed 
variability was consistently captured within the model’s 95 % 

confidence interval. However, it should be noted that the model 
adjusted better to the measurements from 1995 onward compared to the 
previous years while falling short in January 1990. Despite this occa
sional deviation, most observed data points remain within the confi
dence band.

The model’s accuracy is reflected in the RMSE value of 0.23◦, which 
indicates that the model’s predicted shoreline orientations are in close 
agreement with the measured data with low error. The λ value, 0.82, also 
indicates a strong correlation between the model’s predictions and ob
servations, as a λ value above 0.7 indicates reliable model performance.

(Duveiller et al., 2016), highlighting the robustness of the model in 
simulating the observation. The NSE value of 0.70 further demonstrates 
the model’s effectiveness, as it shows 70 % of the variance in the 
observation data, which is considered acceptable for results based on 
NSE thresholds for environmental modelling (Moriasi et al., 2007; Nash 
and Sutcliffe, 1970). The maximum variability of the shoreline orien
tation (αm) recorded at Narrabeen Beach reached up to 1.96◦ throughout 
the study (Table 2), reflecting the dynamic nature of the beach.

5.1.2. Tairua Beach
The JA21 model’s performance was assessed for Tairua Beach from 

1999 to 2013. The results (Fig. 5b) show a good agreement with the 
measurement except for some specific short periods, winter 2004 and 
2007, where the model could not accurately resolve the shoreline 
orientation, as these periods were when the rotation of the beach 
exceeded and was less than the average model speed, respectively. The 
model achieved an RMSE of 0.55◦, indicating that the model predicted 
shoreline orientation is moderately close to the observed data with some 
deviations.

The λ value obtained was 0.81, signifying a strong agreement be
tween the model predictions and the observations, as values above 0.7 
indicate good model reliability. The NSE value of 0.62 also suggests that 
the models explain 62 % of the variance in the observation data, 
reflecting a reasonable performance. The αm recorded at Tairua Beach 
over the study period is 5.15◦ (Table 2). Highlighting the significant 
changes in the rotational movement of the shoreline during the study 
period.

5.1.3. Poniente Beach
The performance of the JA21 model was evaluated for Poniente 

Beach after the nourishment activities on the beach from May 1991 to 
2022. The model’s results (Fig. 5c) show good agreement with the 
measurement by effectively reproducing the recovery process after the 
beach nourishment until equilibrium was reached in 2010 and 
continuing to perform well in subsequent years.

Quantitatively, the model achieved a RMSE of 0.18◦, indicating a 
high level of accuracy in predicting the shoreline orientation compared 
to the observed data. The λ value was 0.94, demonstrating a robust 
correlation between the model’s predictions and observations, with 
values approaching the maximum agreement. The NSE value of 0.89 
also reflects the model’s ability to explain 89 % of the variance in the 
observation data, which indicates the model’s performance and reli
ability. The αm recorded at Poniente Beach is 3.13◦, highlighting sig
nificant but moderate rotational changes in the shoreline during the 
study period.

5.1.4. Llevant Beach
The JA21 model exhibits variable performance when applied to 

Llevant Beach (Fig. 5d) over the study period (1984–2022), which is also 
reflected in its wider confidence interval. For instance, the model 
demonstrated good agreement with the observed shoreline orientations 
from 1984 to 2005, capturing the rotational trends effectively. However, 
between 2005 and 2010, the model predictions consistently over
estimated the observed shoreline orientation while maintaining the 
correct rotation trend.

The model achieved an RMSE of 0.26◦, indicating a moderate devi
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Fig. 5. Model results of the shoreline orientation evolution model for (a) Narrabeen Beach, (b) Tairua Beach, (c) Poniente Beach, (d) Llevant Beach, (e) Cala Millor Beach, (f) 
Moncofa Beach, and (g) Blackpool Beach. The red line in each panel represents the modelled shoreline orientation, while the shaded region indicates the 95 % confidence 
interval. The observed shoreline orientations are shown as grey dots, with error bars denoting observed variability. The box in each panel provides the model performance metrics 
(RMSE, λ, NSE), along with their calibration parameters (L+, L− , a, b), derived from comparisons between the observed and modelled shoreline orientations. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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ation between the modelled and the observed shoreline orientations. 
The λ value of 0.38 suggests a weak agreement and limited correlation 
between the model’s predictions and the measurement. Furthermore, 
the NSE value − 0.81 highlights that the model performance is poor, with 
the model predictions performing worse than simply using the mean of 
the observed data. This negative NSE value indicates the model’s 
inability to account for significant variability, particularly anthropo
genic influences in the region. The αm recorded for Llevant beach is 
0.90◦ (Table 2), highlighting relatively low rotational dynamics 
compared to other study sites.

5.1.5. Cala Millor beach
The JA21 model demonstrated moderate performance in reproduc

ing the shoreline orientation variability at Cala Millor Beach from 2011 
to 2020 (Fig. 5e), with the measurements generally aligning with the 
model’s confidence interval. The model predictions align reasonably 
well with the observed shoreline rotation trends from 2011 to 2015, 
effectively capturing the general variability over this interval. However, 
discrepancies between modelled and observed orientations were evident 
from 2015 onwards, reducing the model’s accuracy.

Quantitative metrics further highlight these limitations. The model 
achieved an RMSE of 0.22◦, reflecting moderate deviations between the 
model predictions and observations. The λ of 0.34 indicates weak 
agreement between the model prediction and measured data, empha
sising a limited correlation. The NSE of 0.24 suggests that the model 
captures only 24 % variance in the observed data, highlighting its 
limited performance in representing the full range of variability. The αm 
observed at Cala Millor Beach was 1.08◦, pointing to relatively low 
rotational dynamics compared to other sites.

5.1.6. Moncofa Beach
The JA21 model demonstrated a good performance in reproducing 

the shoreline orientation variability at Moncofa Beach during the study 
period (Fig. 5f). The model effectively captured the general trends of 
shoreline rotation and showed better agreement when compared to the 
observation from July 2018 onwards.

The model achieved a RMSE of 1.51◦, which can be attributed to the 
significant rotational dynamics recorded at Moncofa Beach with a αm of 
12.34◦. The λ of 0.79 further indicates a strong correlation between the 
predictions and measurements. Additionally, the NSE value of 0.65 
highlights that the model accounts for 65 % of the variance in the 
observation data, a performance considered acceptable based on the 
standard NSE thresholds. Overall, the statistical results suggest a satis
factory agreement between the model predictions and the observed 
values.

5.1.7. Blackpool Beach
The JA21 model demonstrated a good performance in reproducing 

the shoreline orientation variability at Blackpool Beach during the study 
period (Fig. 5g), with the observed variability comparatively low and 
consistently fitting with the confidence band. The model successfully 
captured the overall trends in shoreline orientation, aligning reasonably 
well with observed data across most periods. However, there were 

exceptions. For instance, no observation data was recorded in 2011, 
making it impossible to evaluate model performance for that year. 
Additionally, during the winter of 2014, the model struggled to resolve 
the shoreline accurately as the rate of beach rotation exceeded the 
model’s average predictive capability.

The model achieved a RMSE of 0.10◦, indicating a good alignment 
between the modelled and observations. The λ of 0.70 reflects a mod
erate correlation between the model predictions and measurements. 
However, the NSE value of 0.34 indicates that the model captures only 
34 % of the variance in the observed data, which is modest. The αm 
recorded at Blackpool Beach was 0.45◦, which is relatively low 
compared to other study sites, highlighting the limited rotational dy
namics observed at the beach.

Table 2 further summarises the quantitative statistics, calibration 
parameters, and maximum degree of shoreline orientation obtained 
from all study sites. The maximum degree of shoreline refers to the 
difference between the degree of the most clockwise shoreline orienta
tion and the degree of the most counterclockwise orientation. This value 
is denoted by αm.

5.2. Model sensitivity to temporal resolution

The performance of the JA21 model was evaluated using three data 
frequencies, daily, weekly, and monthly, at Tairua Beach to assess its 
sensitivity to temporal resolution. The primary objective of this analysis 
is to ascertain whether the data frequency impacts the model’s perfor
mance in reproducing shoreline orientation variability.

The results (Fig. 6a–c) show that the JA21 model can consistently 
and effectively capture the shoreline orientation variability across 
different data frequencies with minimal degradation in accuracy. The 
RMSE values remain steady between 0.54◦ and 0.55◦, signifying that the 
model’s predictive accuracy is robust and largely unaffected by changes 
in data resolution. The performance metrics, such as the λ and NSE 
values, decrease slightly as the data frequency decreases. For daily data 
frequencies, the values are λ = 0.81 and NSE = 0.62. These values 
slightly decrease to λ = 0.80 and NSE = 0.61 for weekly data frequencies 
and to λ = 0.78 and NSE = 0.56 for monthly data frequencies.

Additionally, as the data frequency decreases from daily to monthly, 
the model parameters (’a’ and ’b’) show minor variations. For instance, 
parameter ’a’ increases from 0.397 (daily) to 0.468 (monthly), while 
parameter ’b’ decreases from 35◦ to 31◦. This trend reflects a smoothing 
effect as the data frequency decreases, reducing short-term variability in 
shoreline dynamics. Similarly, the proportionality constants also vary, 
indicating that the model responds to temporal scales differently.

5.3. Model sensitivity across shoreline elevation contours

Building on the suggestion of Castelle et al. (2014), EBSEMs can be 
effectively applied to various elevation contours within the intertidal 
zone with satisfactory efficiency. This study assesses the capability of the 
JA21 model in reproducing shoreline rotation variability at four distinct 
elevation contours (− 0.5 m, 0 m, 1.0 m, and 2.0 m) at Narrabeen Beach, 
a microtidal sandy beach with high-frequency monitoring, and 

Table 2 
Summary of the quantitative statistics and calibration parameters for all selected study sites: root mean square error (RMSE), Mielke skill score (λ), Nash-Sutcliffe 
efficiency coefficient (NSE), proportionality constants corresponding to clockwise rotation (L+), proportionality constants corresponding to counterclockwise rota
tion (L− ) slope coefficient (a), y-intercept (b), and maximum variability of the shoreline orientation (αm).

RMSE (◦) λ NSE L+ (m− 2h− 2) L− (m− 2h− 2) a b (◦) αm (◦)

Narrabeen Beach 0.23 0.82 0.70 1.16E-06 3.76E-07 3.85 − 207.00 1.96
Tairua Beach 0.55 081 0.62 7.80E-06 5.12E-06 0.40 35.00 5.15
Poniente Beach 0.18 0.94 0.89 2.15E-06 8.53E-08 0.66 87.30 3.13
Llevant Beach 0.26 0.38 − 0.81 1.14E-06 3.25E-05 − 4.60 997.00 0.90
Cala Millor Beach 0.22 0.34 0.24 8.92E-07 7.55E-07 4.46 − 327.00 1.08
Moncofa Beach 1.51 0.79 0.65 3.60E-04 9.97E-04 3.72 − 359.00 12.34
Blackpool Beach 0.10 0.70 0.34 3.43E-07 5.28E-07 − 4.98 996.00 0.45
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Blackpool Beach, a macrotidal gravel beach with low-frequency moni
toring. The comparative analysis of these two distinct coastal environ
ments provides more insights into the model’s robustness and 
applicability across different hydrodynamics and sedimentary 
conditions.

At Narrabeen Beach, the JA21 model effectively captures shoreline 
orientation variability with a high level of consistency across all eleva
tion contours (Fig. 7a–d). However, variability in model performance is 
observed across different intertidal elevations. The RMSE values range 
from 0.20◦ to 0.28◦, with contour − 0.5m having the highest RMSE. This 
suggests that model predictions deviate slightly more from observed 
orientations at lower intertidal regions, where increased wave forcing 
and sediment mobility introduce higher uncertainty in shoreline posi
tion predictions. The λ remains consistently high (≥0.75) across all the 
contours, signifying a strong correlation between the model predictions 
and the observed data. The NSE values ranging from 0.61 to 0.71 further 
support the model’s reliability in reproducing the observed shoreline 
variability with the best performance observed at the 1.0 m and 2.0 m 
contours, where the influence of hydrodynamic processes is reduced, 
leading to more stable shoreline configurations. The calibration pa
rameters L+ and L− exhibit considerable variation across contours, 
reflecting differences in sediment redistribution due to tidal and wave- 
driven processes. The most significant rotational response was 
observed at the lower intertidal zones, where the model had to account 
for increased cross-shore sediment transport.

Despite Blackpool Beach’s macrotidal regime and lower temporal 
resolution of shoreline monitoring, the model exhibits strong predictive 

performance across all elevation contours (Fig. 7e–h). The RMSE value 
remains relatively low (0.07◦–0.10◦), indicating good agreement be
tween the modelled and observed shoreline orientation. The λ increases 
from 0.65 at − 0.5 m to 0.84 at 2.0 m, suggesting that shoreline rotation 
becomes more predictable at higher elevations due to lower hydrody
namic variability. Similarly, the NSE values range from 0.23 at − 0.5 m 
to 0.65 at 2.0 m, reflecting the improved predictive capability of the 
model at higher elevations. The L+ and L− values vary across elevation 
levels, with higher values at lower elevations, indicating increased 
sensitivity of shoreline rotation to wave action at − 0.5 m and 0 m 
contours.

Overall, the results demonstrate that the JA21 model effectively 
simulates shoreline rotation across a diverse range of coastal environ
ments, temporal scales, and elevation contours. Performance varied 
depending on beach type, data resolution, and elevation contours, 
revealing distinct behavioural patterns and sensitivities. These findings 
form the basis for further examination of the model skill, parameter 
variability, and sensitivity in the following discussion section.

6. Discussion

The results presented in Section 5 demonstrate the ability of the JA21 
model to replicate the evolution of shoreline orientation variability 
across seven beaches worldwide: Narrabeen Beach, Tairua Beach, 
Poniente Beach, Llevant Beach, Cala Millor Beach, Moncofa Beach, and 
Blackpool Beach. These study sites exhibit diverse physical and envi
ronmental characteristics, as outlined in Table 1, including a range of 

Fig. 6. Model results for Tairua Beach using different data frequencies: (a) Daily frequency, (b) Weekly frequency, (c) Monthly frequency. The red line in each panel 
represents the modelled shoreline orientation, while the shaded region indicates the 95 % confidence interval. The observed shoreline orientations are shown as grey 
dots, with error bars denoting observed variability. The box in each panel provides the model performance metrics (RMSE, λ, NSE), along with their calibration 
parameters (L+, L− , a, b), derived from comparisons between the observed and modelled shoreline orientations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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sediment types (sandy to gravel), tidal regimes (microtidal to macro
tidal), beach lengths (from hundreds of meters to several kilometers), 
and varying data collection methods (field surveys, video monitoring, 
and satellite imagery). Additionally, the temporal resolution of available 
datasets varies from daily monitoring to six-monthly observations.

Evaluating the performance of this EBSEM for rotation movement 
across such a broad spectrum of coastal settings is crucial, as prior 
studies have been carried out on a handful of case studies of microtidal 
sandy beaches. For example (Turki et al., 2013a), analysed three small 
pocket sandy beaches (Bogatell, Nova Icaria, and Somorrostro) in Bar
celona, Spain, while (Blossier et al., 2017) applied the model to Tairua 
Beach (Jaramillo et al., 2021). extended its application to Narrabeen and 
Tairua Beach. However, the diversity of beaches investigated in this 
study, particularly those characterised by gravel substrates or macro
tidal environments, expands the range of conditions under which the 
model has been validated, thereby enhancing the model’s applicability 
in global coastal management efforts.

6.1. Model skill and performance evaluation

The JA21 model demonstrates robust performance in replicating 
shoreline orientation variability across a range of coastal environments, 
as evidenced by strong correlations between modelled and observed 
data. The performance metrics (RMSE, λ, and NSE) consistently indicate 
high reliability across most sites (Section 4; Table 2). For instance, the 
magnitude of the RMSE between the modelled and measured shoreline 

orientations for Narrabeen Beach, Poniente Beach, Llevant Beach, Cala 
Millor Beach, and Blackpool Beach remains relatively low, highlighting 
the model’s ability to track observed trends closely. However, sites like 
Tairua Beach and Moncofa Beach exhibit high RMSE values. These high 
values can be attributed to the significant variability of the shoreline 
orientation of these locations, with Tairua Beach reaching a maximum 
shoreline orientation variability of 5.15◦ and Moncofa Beach reaching 
12.34◦.

Nevertheless, the model’s performance, even under these conditions, 
aligns with the criteria outlined by (Moriasi et al., 2007; Nash and 
Sutcliffe, 1970), which considers simulations satisfactory when NSE 
>0.50. Notably, the NSE values across most sites meet or exceed this 
threshold, supported by the consistently high λ values across all study 
sites, reinforcing the model’s ability to reproduce shoreline orientation. 
However, exceptions at Llevant Beach and Cala Millor Beach highlight 
areas where specific environmental or data-related challenges influence 
the model’s predictive ability.

At Llevant Beach, the weak performance of the model can be linked 
to the fact that the maximum shoreline orientation is less than one de
gree, which introduces a high level of uncertainty. Furthermore, the 
source data for Llevant Beach was derived from satellite imagery, 
particularly before 2015, when Landsat imagery was available at a 30 m 
resolution and is also characterised by considerable uncertainty. Be
tween 2005 and 2010, the model’s predictions exceeded the actual 
measurements. This discrepancy can be attributed to a significant 
decrease in average storm duration during that period (Toledo et al., 

Fig. 7. Model results across different elevation contours for (a–d) Narrabeen Beach and (e–h) Blackpool Beach at − 0.5 m, 0 m, 1 m, and 2 m elevation contours. The 
red line in each panel represents the modelled shoreline orientation, while the shaded region indicates the 95 % confidence interval. The observed shoreline ori
entations are shown as grey dots, with error bars denoting observed variability. The box in each panel provides the model performance metrics (RMSE, λ, NSE), along 
with their calibration parameters (L+, L− , a, b), derived from comparisons between the observed and modelled shoreline orientations. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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2022), a factor that the model could not incorporate. Nevertheless, the 
model still managed to capture the overall rotation trend observed on 
the beach.

For Cala Millor Beach, the model’s difficulties in replicating the 
beach orientation variation can be attributed to the natural variability of 
the nearby Posidonia Oceanica seagrass beds, known for influencing 
sediment dynamics (Abreu et al., 2020), which is not captured by the 
model forcing. Additionally, human interventions, such as sediment 
redistribution by local municipalities as part of coastal management 
strategies, introduce variability that the model cannot predict.

It is worth noting that the results for Narrabeen Beach and Tairua 
Beach in this study show minor differences compared to the findings of 
Jaramillo et al. (2021). These discrepancies can be attributed to differ
ences in calibration methodologies and the availability of extended 
datasets. For instance, this study incorporates observations for Narra
been Beach up to 2019, whereas the earlier analysis by Jaramillo et al. 
(2021) covered data only until 2015. Despite these variations, the per
formance of the JA21 model in reproducing shoreline orientation vari
ability has consistently demonstrated high accuracy and reliability 
across all datasets.

In terms of rotation speed, Moncofa Beach and Tairua Beach exhibit 
faster shoreline rotation rates compared to other beaches, as evidenced 
by the parameters L+ and L− , which quantifies clockwise and counter
clockwise rotational speeds, respectively. Moncofa Beach’s higher 
rotation speed can be attributed to its relatively small length (330 m) 
despite its coarse sediment size (D50 > 4.0 mm), consistent with Turki 
et al. (2013b) findings that smaller beaches or smaller sediment size 
beaches tend to rotate more rapidly due to reduced alongshore transport 
distance. In contrast, Tairua Beach, the shortest sandy beach in the 
dataset (1 200 m), also exhibits rapid rotation, influenced by both its 
fine sediment (D50 > 0.45 mm), and limited beach length, which en
hances responsiveness to external forcing.

Interestingly, Blackpool Beach displays a slow rotational response 
despite its short length (650 m), a result of its macrotidal environment 
and coarse sediment (D50 > 5.0 mm), which dampens shoreline move
ment by reducing sediment mobility. This highlights the combined in
fluence of tidal range, sediment size, and beach length on rotation 
dynamics. On the other hand, beaches like Narrabeen Beach and 
Poniente Beach, characterised by medium sediment sizes and greater 
lengths (3 600 m and 3 008 m, respectively), exhibit slower rotation 
responses occurring over seasonal to interannual timescales, with fewer 
rapid fluctuations. These results highlight the importance of sediment 
properties and morphodynamic settings in determining shoreline 
orientation changes’ temporal and spatial scales across diverse coastal 
systems.

The rotational variability observed on Moncofa and Tairua Beaches 
is further influenced by storm events and seasonal variations, with 
changes evident over shorter timescales (days to weeks and months). In 
contrast, the rotational movements on Narrabeen and Poniente Beaches 
are primarily shaped by long-term sediment transport and wave climate 
variability, with fluctuations occurring between seasonal and interan
nual time scales.

6.2. Variability in calibration parameters

The calibration parameters of the EBSEM show substantial vari
ability across the studied sites, reflecting the unique hydrodynamic 
forces, sediment dynamics, and morphological responses specific to each 
location.

The L+ values ranged from 3.43 × 10− 7 m− 2h− 2 at Blackpool Beach 
to 3.60 × 10− 4 m− 2h− 2 at Moncofa Beach. The higher values observed at 
beaches such as Moncofa indicate increased sensitivity to clockwise 
rotation, likely driven by wave-induced sediment transport processes. In 
contrast, lower values at Blackpool Beach indicate a more stable 
shoreline orientation under wave-forcing conditions. Similarly, the L−

values varied across study sites, with values ranging from 8.53 × 10-8 

m− 2h− 2 at Poniente to 9.97 × 10-4 m− 2h− 2 at Moncofa Beach. The high 
L− at Moncofa Beach reflect pronounced shoreline rotation due to 
asymmetrical wave exposure and sediment dynamics. In contrast, bea
ches such as Poniente exhibit lower values, signifying reduced coun
terclockwise rotational responses.

The slope coefficient (a), which characterises the relationship be
tween the wave forcing and shoreline orientation changes, showed both 
positive and negative trends. The positive values at sites like Poniente 
indicate a direct correlation between wave forcing and rotational 
response. In contrast, negative values at sites like Blackpool and Llevant 
indicate complex interactions among incident wave forcing, sediment 
supply variability, and morphological feedback processes that diverge 
from direct linear relationships. The intercept coefficient (b), indicative 
of the reference shoreline orientation, also displayed significant varia
tion, from − 359◦ at Moncofa Beach to approximately 997◦ at Llevant 
Beach, emphasising the site-specific nature of shoreline equilibrium 
states.

Overall, this variability in EBSEM calibration parameters highlights 
the need for site-specific calibration when applying shoreline rotation 
models in engineering applications. Improved parameterisation, 
particularly at beaches exhibiting high rotational sensitivity, could 
significantly improve model predictions, thus enabling more informed 
coastal management decisions. It is crucial to account for the distinct 
wave-sediment-morphology interactions observed at each site to 
enhance predictive accuracy and bolster the reliability of shoreline 
rotation models in coastal management practices.

6.3. Model sensitivity to temporal resolution and elevation contours

Analysing the JA21 model to temporal resolution reveals its 
robustness in capturing shoreline variability across daily, weekly, and 
monthly data frequencies. Despite slight variations in model perfor
mance metrics, the results indicate minimal degradation in accuracy as 
the temporal resolution decreases. The RMSE values, which remain 
within a narrow range of 0.54◦–0.55◦, highlight the model’s consistent 
predictive accuracy. However, metrics such as λ and NSE exhibit a 
marginal decline from 0.81 to 0.62, respectively, for daily data to 0.78 
and 0.56 for monthly data. This decline suggests that while the JA21 
model effectively reproduces long-term shoreline trends, short-term 
variability may become smoothed as the temporal resolution de
creases. Furthermore, the empirical parameters ’a’ and ’b’ slightly 
decrease with longer averaging periods, indicating reduced variability 
and a more smoothed response to the beach orientation. The calibration 
parameters L+ and L− also vary, reflecting the changes in the forcing at 
different temporal scales.

A Q-Q (quantile-quantile) plot was employed to understand further if 
the measured data from each frequency is generally consistent with the 
theoretical normal distribution. The analysis of the results, as illustrated 
in Fig. 8a–c, indicates a strong alignment between the blue cross symbols 
representing the measurements and the red dashed line representing the 
model. This alignment suggests a reasonable agreement between the 
model and the observed data, indicating that the model effectively 
captures the general distribution of the measurements. However, there 
are noticeable deviations at the distribution’s lower and upper ends. 
These deviations suggest that while most of the data follows a normal 
distribution, outliers may be present or a slight skew in the data, espe
cially in the distribution’s tails.

Upon closer examination of the daily data frequencies (Fig. 8a), it is 
evident that the model demonstrates a slightly better fit with the mea
surements, indicating that it is more effective at capturing the daily 
variations in the data than other frequencies. The agreement between 
the model and measurements remains strong for the weekly data fre
quencies (Fig. 8b), although there is a slight deviation in the upper 
quantiles. This suggests that the model might underestimate the extreme 
values in the weekly data. Lastly, when considering the monthly data 
frequencies (Fig. 8c), the model still shows a reasonable agreement with 
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the measurements. However, a more pronounced deviation in the upper 
quantiles indicates that the model might face challenges in accurately 
capturing the extreme values in the monthly data.

The JA21 model demonstrates strong and consistent performance in 
simulating shoreline orientation across various elevation contours under 
differing intertidal conditions. The statistical metrics obtained at Nar
rabeen Beach and Blackpool Beach, presented in subsection 5.3 and 
Fig. 7, highlight the influence of elevation-dependent hydrodynamic 
processes on model performance. Notably, lower elevation contours 
(− 0.5 m and 0 m) exhibit more significant wave-driven variability, re
flected in the wider confidence intervals, indicating increased uncer
tainty in model predictions. This increased variability is attributed to the 
stronger hydrodynamic forcing and sediment transport processes in the 
lower intertidal zone. In contrast, higher elevation contours (1.0 m and 
2.0 m) demonstrate more stable shoreline orientations, with reduced 
variability and improved model accuracy, as evidenced by the higher 
NSE and λ values (Moriasi et al., 2007; Nash and Sutcliffe, 1970). These 
results confirm the model’s ability to capture elevation-dependent 
shoreline rotation dynamics across both microtidal sandy and macro
tidal gravelly environments.

The sensitivity of L+ and L− parameters across elevation contours 
further highlights the influence of intertidal hydrodynamics on sediment 
redistribution. The results indicate higher rotational sensitivity in lower 
intertidal areas, where short-term shoreline fluctuations are more pro
nounced due to wave and tidal influences. This aligns with previous 
studies emphasising more significant morphological variability in lower 
intertidal regions compared to more stable upper beach zones (Harley 
et al., 2011a). Furthermore, differences in sediment composition be
tween Narrabeen Beach and Blackpool Beach contribute to site-specific 
variations in model performance, reinforcing the necessity of localised 
calibration when applying shoreline evolution models.

The observed variations in model skill scores and calibration 

parameters across elevation contours suggest that intertidal dynamics 
strongly influence shoreline rotation, with lower elevations (− 0.5 m and 
0 m) exhibiting more significant wave-driven variability. This increased 
variability is evident in the wider confidence intervals at these contours, 
suggesting more substantial uncertainty in model predictions. 
Conversely, higher elevation contours (1.0 m and 2.0 m) show more 
stabilised responses due to reduced hydrodynamic forcing, leading to 
reduced variability and improved model accuracy. Hence, the JA21 
model effectively captures these contour-dependent dynamics in both 
microtidal (sandy) and macrotidal (gravelly) environments, as evi
denced by the NSE and λ values (Moriasi et al., 2007; Nash and Sutcliffe, 
1970).

However, parameter sensitivity differs based on sediment composi
tion and hydrodynamic forcing. The L+ and L− parameters exhibited 
contour-dependent variations, reflecting differences in sediment redis
tribution across intertidal zones. Higher rotational sensitivity was 
observed in the lower intertidal areas, where short-term shoreline 
fluctuations due to tidal and wave-induced sediment transport are more 
pronounced. These findings align with previous studies that emphasise 
the more significant morphological variability of lower intertidal re
gions compared to upper beach zones (Harley et al., 2011a).

These findings demonstrate the JA21 model’s adaptability to 
elevation-specific shoreline dynamics and highlight the importance of 
considering intertidal variability in shoreline evolution modelling. The 
observed performance variations across elevation contours emphasise 
the need for site-specific parameterisation in predictive models of 
coastal morphodynamics, particularly in environments where tidal 
range, sediment composition, and wave energy significantly influence 
shoreline stability.

Fig. 8. Quantile-quantile (Q–Q) plots of measurement against model data considering different data frequencies. The red broken line represents the model run, while 
the cross sign represents the observation of (a) Daily frequencies, (b) Weekly frequencies, and (c) Monthly frequencies. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.)

M.B. Abdulsalam et al.                                                                                                                                                                                                                        Coastal Engineering 200 (2025) 104770 

16 



6.4. Model uncertainties and limitations

The JA21 model, while demonstrating robust performance consis
tently across diverse coastal settings, has certain limitations that high
light areas for potential refinement. One key source of uncertainty stems 
from the variability in input datasets’ accuracy, including satellite im
agery, video monitoring, and in-situ field surveys. For example, field 
survey data, such as those collected at Narrabeen Beach, provide the 
highest accuracy, as evidenced by the minimal dispersion observed in 
the measurements (Fig. 5a), unlike satellite-derived datasets, which 
offer extensive temporal and spatial coverage but are limited by their 
resolution, particularly for small-scale rotational dynamics. For 
instance, Landsat imagery (30 m resolution) was used for Poniente, 
Llevant, and Moncofa beaches before 2015 and Sentinel imagery (10 m 
resolution) available from 2015 onward (Acker et al., 2003; Payra et al., 
2023).

The model’s sensitivity to the temporal resolution of input data 
presents another limitation. High-frequency monitoring, such as the 
daily data collected at Tairua Beach, produces more accurate predictions 
than low-frequency datasets, such as the six-monthly intervals used at 
Blackpool Beach. This reliance on temporal resolution may restrict the 
model’s applicability in regions where consistent, high-resolution data 
are unavailable, potentially affecting its accuracy.

Additionally, the model calibration parameters (a, b, L+, and L− ), 
calibrated based on historical data, are effective under normal condi
tions but struggle with nonlinear processes like abrupt morphological 
changes induced by extreme events. This limitation is particularly 
evident in environments with high variability, such as Moncofa Beach 
during the winter of 2014, where storm-induced changes challenge the 
model’s assumptions as the beach rotation exceeds the model’s predic
tive capability. Similarly, in Poniente Beach, the model could not cap
ture the disequilibrium caused by the massive nourishment on the beach 
in May 1991 (Toledo et al., 2022). Nevertheless, the model successfully 
reproduced sediment diffusion, showing beach rotation until reaching 
equilibrium.

7. Conclusions

This study evaluated the performance of the EBSEMs in simulating 
the shoreline rotation variability across diverse characteristics, 
including sediment types, tidal ranges, monitoring frequency, data 
sources, and beach lengths. Analysing Narrabeen Beach, Tairua Beach, 
Poniente Beach, Llevant Beach, Cala Millor Beach, Moncofa Beach, and 
Blackpool Beach broadens the scope of EBSEMs as previous studies have 
primarily focused on a handful of microtidal sandy beaches. Based on 
the research findings, the following conclusions were drawn.

The JA21 model demonstrated satisfactory skills in reproducing the 
rotational variability of shorelines across various beach types. Quanti
tative statistics highlighted satisfactory model performance, with met
rics such as root-mean-square error, the Nash-Sutcliffe coefficient, and 
the Mielke Skill Score across the studied sites indicating strong model 
alignment with observed rotation patterns. Seasonal rotation trends 
were evident, with clockwise rotation occurring from summer to winter 
and counterclockwise from winter to summer, notably over shorter time 
scales at Tairua, Cala Millor, Moncofa, and Blackpool beaches due to 
storm events and seasonal shifts. Longer-term rotation patterns were 
observed at Narrabeen, Poniente, and Llevant beaches, demonstrating 
EBSEM’s applicability across short- and long-term temporal scales.

Despite the model’s robust performance, it encountered difficulties 
in accurately replicating shoreline changes influenced by natural and 
anthropogenic factors. For instance, fluctuations in storm intensity at 
Llevant Beach between 2005 and 2010 revealed limitations in EBSEM’s 
responsiveness to episodic events. Additionally, human interventions 
impacted model accuracy, as observed at Poniente and Cala Millor 
beaches. Morphological parameters such as beach length and sediment 
size also influenced rotation speeds, with shorter beaches and finer 

sediments rotating more rapidly than more extended beaches or those 
with coarser sediment, highlighting a need for parameter refinements.

While the JA21 model has proven effective in numerous settings, 
opportunities for further model improvements remain. Addressing sys
tematic biases and refining parameters to better account for beach- 
specific characteristics, anthropogenic activities, and storm-induced 
shoreline variability could improve scalability and precision, enabling 
broader global application. These developments would enhance the 
model’s ability to support coastal management initiatives by providing 
accurate, location-sensitive insights into shoreline dynamics.

The EBSEM model has practical applications in coastal management, 
supporting shoreline adaptation (e.g., beach nourishment, managed 
retreat) and hazard mitigation (e.g., seawalls, breakwaters) by predict
ing vulnerability and erosion-prone areas. Its scalability across diverse 
beach types makes it a valuable tool for assessing climate change im
pacts, such as rising sea levels and storm patterns. It informs evidence- 
based policies like setback lines and zoning regulations to balance 
development with coastal preservation.

Hence, these conclusions emphasise the potential for EBSEM to 
advance our understanding of coastal processes across diverse settings 
and support evidence-based decision-making in shoreline management 
and planning. By bridging the gap between theoretical modelling and 
practical applications, the JA21 model can contribute to the resilience of 
coastal communities and ecosystems in the face of natural and anthro
pogenic challenges.
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Jaramillo, C., Jara, M.S., González, M., Medina, R., 2020. A shoreline evolution model 
considering the temporal variability of the beach profile sediment volume (sediment 
gain/loss). Coast. Eng. 156. https://doi.org/10.1016/j.coastaleng.2019.103612.

Jiang, C., Zhang, S., Xie, Y., 2023. Constrained shuffled complex evolution algorithm and 
its application in the automatic calibration of Xinanjiang model. Front. Earth Sci. 10.

Klein, A., Benedet, L., Schumacher, D.H., 2002. Short-term beach rotation processes in 
distinct headland bay beach systems. J. Coast Res. 18, 442–458.

Lobato, F.S., Libotte, G.B., Platt, G.M., 2022. A novel multi-objective optimization 
method with local search scheme using shuffled complex evolution applied to 
mechanical engineering problems. Eng. Comput. 39, 2958–2989. https://doi.org/ 
10.1108/EC-07-2021-0381.

McCarroll, R.J., Valiente, N.G., Wiggins, M., Scott, T., Masselink, G., 2023. Coastal 
survey data for Perranporth beach and Start bay in Southwest England (2006–2021). 
Sci. Data 10. https://doi.org/10.1038/s41597-023-02131-0.

Miller, J.K., Dean, R.G., 2004. A simple new shoreline change model. Coast. Eng. 51, 
531–556. https://doi.org/10.1016/j.coastaleng.2004.05.006.

Montaño, J., Coco, G., Antolinez, J.A.A., Beuzen, T.O.M., Bryan, K., Cagigal, L., 
Castelle, B., Davidson, M., Goldstein, E., Vega, R.A.I.I., Idier, D., Ludka, B., Ansari, S. 
M., Mendez, F., Murray, B., Plant, N., Robinet, A., Rueda, A.N.A., Senechal, N., 
Simmons, J., Splinter, K., Stephens, S., Townend, I.A.N., Vitousek, S., Vos, K., 2019. 
Shorecasts: a blind-test of shoreline models. In: Coastal Sediments 2019. World 
Scientific, pp. 627–631. https://doi.org/10.1142/9789811204487_0055.

MOPT, 1991. Proyecto de Liquidacion de Obras de Emergencia de La Playa de Poniente 
de Benidorm (Alicante). General Service of Coasts of the State, Madrid. 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 
2007. Model evaluation guidelines for systematic quantification of accuracy in 
watershed simulations. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 50, 885–900. 
https://doi.org/10.13031/2013.23153.

Morris, B.D., Turner, I.L., 2010. Morphodynamics of intermittently open–closed coastal 
lagoon entrances: new insights and a conceptual model. Mar. Geol. 271, 55–66. 
https://doi.org/10.1016/j.margeo.2010.01.009.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I 
— a discussion of principles. J. Hydrol. (Amst.) 10, 282–290. https://doi.org/ 
10.1016/0022-1694(70)90255-6.

M.B. Abdulsalam et al.                                                                                                                                                                                                                        Coastal Engineering 200 (2025) 104770 

18 

https://doi.org/10.1007/s42452-020-03325-6
https://doi.org/10.1007/s42452-020-03325-6
https://doi.org/10.1016/B0-12-227410-5/00938-8
https://doi.org/10.1016/j.margeo.2008.05.008
https://doi.org/10.1016/j.margeo.2008.05.008
https://doi.org/10.5194/nhess-20-1955-2020
https://doi.org/10.1029/2018JF004790
https://doi.org/10.1016/j.oceaneng.2015.07.005
https://doi.org/10.1016/j.coastaleng.2024.104536
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref8
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref8
https://doi.org/10.1002/2017JF004227
https://doi.org/10.2112/si65-354.1
https://doi.org/10.2112/si65-354.1
https://doi.org/10.1038/s41597-020-00750-5
https://doi.org/10.1038/s41597-020-00750-5
https://doi.org/10.1016/j.margeo.2013.11.003
https://doi.org/10.1016/j.margeo.2013.11.003
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref13
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref13
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref14
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref14
https://doi.org/10.4995/GEOLIT24.2024.18667
https://doi.org/10.4995/GEOLIT24.2024.18667
https://doi.org/10.1016/j.coastaleng.2012.11.002
https://doi.org/10.1016/j.coastaleng.2012.11.002
https://doi.org/10.1029/2007JF000888
https://doi.org/10.1016/0378-3839(93)90050-I
https://doi.org/10.1016/0378-3839(93)90050-I
https://doi.org/10.1029/91WR02985
https://doi.org/10.1029/91WR02985
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref20
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref20
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref20
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref21
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref21
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref21
https://doi.org/10.1038/srep19401
https://doi.org/10.1038/srep19401
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref23
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref23
https://doi.org/10.5194/nhess-17-1075-2017
https://doi.org/10.1038/s41597-023-02210-2
https://doi.org/10.1016/j.coastaleng.2024.104517
https://doi.org/10.1016/j.geomorph.2011.04.026
https://doi.org/10.1016/j.coastaleng.2009.10.009
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref29
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref29
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref30
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref30
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref31
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref31
https://doi.org/10.1007/s11852-013-0292-x
https://doi.org/10.1002/2014JF003390
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref34
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref34
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref34
https://doi.org/10.1029/2011JF001989
https://doi.org/10.1111/j.1745-7939.2008.00133.x
https://doi.org/10.1111/j.1745-7939.2008.00133.x
https://doi.org/10.1016/j.coastaleng.2020.103789
https://doi.org/10.1016/j.coastaleng.2020.103789
https://doi.org/10.1016/j.coastaleng.2019.103612
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref39
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref39
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref40
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref40
https://doi.org/10.1108/EC-07-2021-0381
https://doi.org/10.1108/EC-07-2021-0381
https://doi.org/10.1038/s41597-023-02131-0
https://doi.org/10.1016/j.coastaleng.2004.05.006
https://doi.org/10.1142/9789811204487_0055
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref45
http://refhub.elsevier.com/S0378-3839(25)00075-4/sref45
https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/j.margeo.2010.01.009
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6


Neumann, B., Vafeidis, A.T., Zimmermann, J., Nicholls, R.J., 2015. Future coastal 
population growth and exposure to sea-level rise and coastal flooding - a global 
assessment. PLoS One 10. https://doi.org/10.1371/journal.pone.0118571.

Ojeda, E., Guillén, J., 2008. Shoreline dynamics and beach rotation of artificial embayed 
beaches. Mar. Geol. 253, 51–62. https://doi.org/10.1016/j.margeo.2008.03.010.

Palalane, J., Fredriksson, C., Marinho, B., Larson, M., Hanson, H., Coelho, C., 2016. 
Simulating cross-shore material exchange at decadal scale. Model application. Coast. 
Eng. 116, 26–41. https://doi.org/10.1016/j.coastaleng.2016.05.007.

Payra, S., Sharma, A., Verma, S., 2023. Chapter 14 - application of remote sensing to 
study forest fires. In: Kumar Singh, A., Tiwari, S. (Eds.), Atmospheric Remote 
Sensing. Elsevier, pp. 239–260. https://doi.org/10.1016/B978-0-323-99262- 
6.00015-8.

Pelnard-Considère, R., 1957. Essai de theorie de l’evolution des formes de rivage en 
plages de sable et de galets. Journées de l’hydraulique 4, 289–298.

Perez, J., Menendez, M., Losada, I.J., 2017. GOW2: a global wave hindcast for coastal 
applications. Coast. Eng. 124, 1–11. https://doi.org/10.1016/j. 
coastaleng.2017.03.005.

Rahnamay Naeini, M., Analui, B., Gupta, H., Duan, Q., Sorooshian, S., 2019. Three 
decades of the shuffled complex evolution (SCE-UA) optimization algorithm: review 
and applications. Sci. Iran. https://doi.org/10.24200/SCI.2019.21500.

Ratliff, K.M., Murray, A.B., 2014. Modes and emergent time scales of embayed beach 
dynamics. Geophys. Res. Lett. 41, 7270–7275. https://doi.org/10.1002/ 
2014GL061680.

Reguero, B.G., Menéndez, M., Méndez, F.J., Mínguez, R., Losada, I.J., 2012. A Global 
Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coast. Eng. 65, 
38–55. https://doi.org/10.1016/j.coastaleng.2012.03.003.

Robinet, A., Idier, D., Castelle, B., Marieu, V., 2018. A reduced-complexity shoreline 
change model combining longshore and cross-shore processes: the LX-Shore model. 
Environ. Model. Software 109, 1–16. https://doi.org/10.1016/j. 
envsoft.2018.08.010.

Rodríguez-Santalla, I., Roca, M., Martínez-Clavel, B., Pablo, M., Moreno-Blasco, L., 
Blázquez, A.M., 2021. Coastal changes between the harbours of Castellón and 
Sagunto (Spain) from the mid-twentieth century to present. Reg Stud Mar Sci 46. 
https://doi.org/10.1016/j.rsma.2021.101905.

Short, A.D., 2006. Australian beach systems - nature and distribution. J. Coast Res. 22, 
11–27. https://doi.org/10.2112/05A-0002.1.

Smith, R.K., Bryan, K.R., 2007. Monitoring beach face volume with a combination of 
intermittent profiling and video imagery. J. Coast Res. 23, 892–898. https://doi.org/ 
10.2112/04-0287.1.

Splinter, K.D., Turner, I.L., Davidson, M.A., Barnard, P., Castelle, B., Oltman-Shay, J., 
2014. A generalized equilibrium model for predicting daily to interannual shoreline 

response. J Geophys Res Earth Surf 119, 1936–1958. https://doi.org/10.1002/ 
2014JF003106.

Thomas, T., Phillips, M.R., Williams, A.T., 2010. Mesoscale evolution of a headland bay: 
beach rotation processes. Geomorphology 123, 129–141. https://doi.org/10.1016/j. 
geomorph.2010.06.018.

Tintoré, J., Medina, R., Gómez-Pujol, L., Orfila, A., Vizoso, G., 2009. Integrated and 
interdisciplinary scientific approach to coastal management. Ocean Coast Manag. 
52, 493–505. https://doi.org/10.1016/j.ocecoaman.2009.08.002.
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