
March 2012AMERICAN METEOROLOGICAL SOCIETY | 307

AFFILIATIONS: Schalkwijk and Jonker—Department of
Multi-Scale Physics (Clouds, Climate and Air Quality Group),
Delft University of Technology, Delft, the Netherlands;
Griffith—Petrotechnical Data Systems, Rijswijk, the Netherlands;
Post—Department of Mediamatics (Data Visualization Group),
Delft University of Technology, Delft, the Netherlands
CORRESPONDING AUTHOR: J. Schalkwijk, Delft University of
Technology, Faculty of Applied Physics, Department of Multi-Scale
Physics, Lorentzweg 1, 2628 CJ Delft, the Netherlands
E-mail: J.Schalkwijk@tudelft.nl

DOI:10.1175/BAMS-D-11-00059.1

©2012 American Meteorological Society

High-Performance Simulations of
Turbulent Clouds on a Desktop PC

Exploiting the GPU
by Jerôme Schalkwijk, Eric J. Griffith, Frits H. Post, and Harm J. J. Jonker

Processor clock speeds have increased exponen-
tially over the last several decades. This has gone a
long way toward supplying the necessary computa-
tional power for running these numerical simulations.
Yet the computational demands of the atmospheric
models have outpaced even this exponential growth.
Most numerical simulation codes have been paral-
lelized so that they can take advantage of the extra
computational power provided by supercomputers or
computational clusters.

After years of predictable evolution, though,
the high-performance computing landscape is now
changing. Computer central processing units (CPUs)
are now increasing in number of cores rather than
clock speed. Specialized processing units such as
graphics processing units (GPUs, or, more commonly,
video cards) and field-programmable gate arrays
(FPGAs) are being used increasingly for general-pur-
pose numerical computing. Computational clusters
and supercomputing facilities now have computing
nodes with traditional processors, specialized pro-
cessors, or both. The number of processing cores in
computing nodes is also increasing. These changes
mean that adapting numerical codes will be increas-
ingly important if they are to get the most out of the
available computing facilities.

However, these changes also offer new opportuni-
ties. By taking advantage of specialized processing
units, some simulations may no longer need a cluster
at all, which would allow them to return to the realm
of the desktop computer. The GPU, in particular, is
becoming a mature platform for running numerical
simulations. It was designed to perform the intensive
matrix projection calculations associated with gam-
ing graphics. In order to efficiently and quickly per-
form such calculations, modern GPUs are designed
as massively parallel calculating devices. Aided by the
vast commercial market for visually high-performing
computer games, these GPUs have experienced tre-

COMPUTATIONAL ATMOSPHERIC
SCIENCE. Advances in atmospheric
science have been strongly coupled with

technological advances in computational resources.
This started early in the twentieth century when it
became apparent that an analytical solution to the
Navier-Stokes equations in the context of atmospheric
weather prediction would not be feasible. Richardson
pioneered the numerical approach to weather predic-
tion in 1922 using pencil and paper, but the first suc-
cessful forecasts were not made until the 1950s, when
digital computers became available. Since that time,
the field of numerical weather and climate modeling
has continued to grow, and its predictive accuracy
has increased, as it has continued to take advantage
of increasing computer power.

Today, atmospheric science relies heavily on nu-
merical modeling on a variety of scales. Climate and
weather predictions cover entire continents in large-
scale models, whereas mesoscale models provide
more detailed simulations of selected regions. On
smaller scales, turbulent boundary layer processes
and clouds are studied in high-resolution models like
large-eddy simulations. Regardless of the scale, all of
these models are computationally intensive.

mailto:J.Schalkwijk@tudelft.nl

March 2012|308

mendous development while remaining reasonably
priced. NVIDIA’s current top-of-the-line gaming
video card, the GeForce GTX 580, has 512 parallel
computing cores, and is available off-the-shelf for
less than $500. Compared to CPU cores, which are
traditionally designed for complex serial work, GPU
cores are simpler at heart. Nevertheless, in the case
of the GTX 580, their combined computing power
reaches 1.58 TFLOPS (1.58 x 1012 floating point opera-
tions per second) in single precision. For comparison,
the Dutch supercomputer facility SARA-HUYGENS
reaches a total peak performance of 60 TFLOPS
(albeit in double precision), but requires all its 1,728
dual-core processors to do so.

UTILIZING THE GPU. In order to effectively uti-
lize the full power of today’s supercomputer through
large-scale parallelization, relatively large problem
sizes are required. A “large” problem, in this context,
should have a high ratio of time spent computing
data to time spent communicating data when run on
the supercomputer. The exact definition of “large” is
hardware- and simulation-specific, but a CFD with
1,0243 or more grid cells should generally qualify.

As was recently noted by Michalakes and Vach-
harajani (2008), the strategy of increasing problem
size is not always effective for problems that need fast
time-to-solution ratios. They argued that for these
problems, the kind of parallelism that the GPU of-
fers has large advantages. To demonstrate this, they
ported the time-consuming microphysics module of
the Weather Research and Forecast (WRF) model to
the GPU, which yielded a speed-up by a factor of 10
for this module and a factor of 1.23 for the weather
model as a whole.

This is a promising development, especially
since CPU-to-GPU transfer rates are rather slow.
Michalakes and Vachharajani used a so-called accel-
erator strategy, in which a time-consuming module is
off-loaded to the GPU. A disadvantage of this method
is that the relevant data also has to be transferred to
and from the GPU. In their case, this took 30% of the
total time required by the GPU module.

Cohen and Molemaker (2009) remarked that the
relative cost of data transfer will most likely continue
to increase, and therefore proposed that even larger,
and more sustained, speed-ups are possible in a “full
implementation” design. In such a design, hereafter
referred to as GPU-resident, the simulation data
resides on the GPU, such that (almost) no transfer
is needed between the CPU and the GPU and all

heavy calculations can be performed on the GPU.
They demonstrated the viability of such a design by
creating a GPU-resident CFD code, which showed a
performance increase of more than 800% compared
to an eight-core CPU.

GALES: GPU-RESIDENT ATMOSPHERIC
LARGE-EDDY SIMULATION. We have used
the aforementioned full implementation strat-
egy in our GPU-resident Atmospheric Large-Eddy
Simulation (GALES). GALES is based on the Dutch
Atmospheric LES (DALES) of which an extensive
description is given by Heus et al. (2010). The gen-
eral philosophy of LES (e.g., Deardorff 1970) is to
explicitly resolve the larger, most energetic scales
of turbulence motion and to model the smaller
scales. By doing this, DALES can simulate daytime
and nighttime atmospheric boundary layers, as well
as cloud-topped boundary layers such as shallow
cumulus and stratocumulus. A typical atmospheric
LES encompasses domains of about 10 km wide and
a few kilometers high, discretized on a grid contain-
ing 1283 or 2563 cells and with time steps on the
order of a second. Such simulations can be typically
run on a supercomputer or cluster using a number
(32–64) of computational cores in parallel.

While supercomputers can provide the necessary
computational capacity for such runs, their use also
presents some disadvantages. As supercomputers
typically use a batch-job queuing system, both pre-
and postprocessing is required for a case study to be
performed. The preprocessing involves preparing and
submitting the simulation job to the queue. When
finished, the interpretation of the simulation involves
(sometimes extensive) postprocessing to visualize and
interpret the produced data. These steps are time con-
suming and can be a serious bottleneck in research
workflow when handling large amounts of data.

Although several ways exist to deal with or cir-
cumvent these limitations, a GPU inherently pos-
sesses the power to combine all the needed steps in a
user-friendly process. GPU-equipped PCs are avail-
able at low cost and require relatively little power and
maintenance. As will be shown below, GALES is able
to handle problems, which would otherwise require
32–64 processors in a supercomputer or cluster, on a
single GPU with comparable speed. Moreover, as the
simulation data and results continuously reside on the
GPU, it is possible to directly (during the simulation)
render and interpret simulation data, thereby com-
bining all data processing steps into one.

March 2012AMERICAN METEOROLOGICAL SOCIETY | 309

GALES has a graphical
user interface which shows
statistical information as
well as three-dimensional
visualizations of the run-
ning simulation. An example
of the 3D visualization is
given in Fig. 1, which shows
how GALES visualizes the
current cloud field, volume-
rendered for more realistic
cloud appearance. Since all
simulation data natively re-
side on the video card, these
kinds of visualizations can be
activated with minor impact
on performance. Moreover,
the three-dimensional visu-
alization can be interactively
navigated by rotating and
scaling. This provides the
possibility to study in detail
the turbulent cloud processes
happening in the simulation, without having to wait
for the simulation to finish, or even having to write 3D
fields to disk (which can severely reduce performance
due to relatively slow disk access). Other processing
possibilities include visualization of scalar fields such
as temperature or humidity by an interactively placed
2D-cross section (Fig. 2), as well as live statistics plots
for mean vertical profiles
or time series. During the
simulation, the user can also
release Lagrangian particles
to study dispersion char-
acteristics or to investigate
cloud-mixing properties.
In addition, the simulation
view, including the user’s
navigation actions, can be
stored as an MPEG movie
that can be played back later
for review of the simula-
tion or for demonstration
purposes.

Working with full three-
dimensional datasets is im-
portant for more than just
a nice visual display: it pro-
vides a wealth of informa-
tion that might otherwise be

missed. An example of this is the shell of subsiding
air surrounding cumulus clouds, which is vital to
understanding dispersion in shallow cumulus fields
but does not show up in ordinary cloud statistics.

GALES requires no further expensive software
packages, nor does it require dedicated clusters or
network facilities. Indeed, at the time of writing,

Fig. 1. A screenshot of an interactive simulation with GALES. The 3D cloud
field visualization is shown using volume rendering. During the simulation,
the visualization can be actively zoomed and rotated to directly obtain insight
into the simulation process.

Fig. 2. While the simulation is active, users can add horizontal and vertical
cross sections to visualize the 3D fields of velocity, temperature, or (in this
case) humidity. The cross sections can be interactively positioned and the
color scale adjusted.

March 2012|310

simulations of 1283 grid
cells can be performed
on the NVIDIA Ge-
Force® line, available
in computers costing
less than $1,000, with a
total power consump-
tion of less than 500 W
(such a machine is used
for testing as described
below). This makes
h i g h - p e r f o r m a n c e
s i mu l a t ion s av a i l -
able at unprecedented
low costs and ease of
implementation.

Currently, the most
important limitation of
the GPU-resident imple-
mentation is memory.
At the time of writing,
the maximum amount
of available memory
available on an NVIDIA
GPU is 6 GB, which is
available in the sec-
ond Tesla GPU line.
As GALES needs more
than 2 GB of memory
to simulate a grid of 2563
cells, 6 GB is insufficient
to simulate a 5123 cell
grid; 16 GB would be re-
quired. Supercomputers
are therefore a necessity
for large problem sizes.
For this reason, GALES
has been designed such
that it can start from
or produce the exact
same input files as its
supercomputer-based
equivalent DALES, al-
lowing simulations to be
easily scaled up and run
on a supercomputer.

VERIFICATION .
Although GALES is
identical to DALES in
terms of its algorithms

Porting to the GPU

GALES is based on the existing FORTRAN90-based Dutch Atmospheric LES [DALES; see
Heus et al. (2010) for more detail]. All physical considerations and numerical algorithms

are identical in nature, although sometimes implemented somewhat differently in GALES.
This section gives a short summary of the considerations and requirements involved with
porting to the GPU, but attempts to avoid technical details as much as possible.

GALES uses NVIDIA’s CUDA (Compute Unified Device Architecture) to perform
computations on the GPU. Other GPU programming models such as OpenCL work
similarly. CUDA provides extensions to C/C++ allowing certain functions (kernels)
to be executed on the GPU. These kernels divide the computation over a very large
number of GPU threads. The GPU is optimized for data-parallel computation, in which
each thread executes the exact same code but acts on a different portion of data. Many
(atmospheric) modeling schemes are essentially data-parallel, which means that they can
make good use of the GPU’s power.

GPU parallelization is achieved through threading. A thread, in this case, can be seen
as a virtual task that will be run on some processor when scheduled and is itself not
parallel. For instance, four tasks might run in parallel on four processors, yet would run
sequentially on a single processor. GPUs differ from CPUs in that they tend to run best
with a very large number of threads—many more threads than processors—as they are
efficient in scheduling and swapping threads to best utilize the GPU’s architecture.

For a much more complete CUDA overview, the reader is referred to Sanders and
Kandrot (2011) or the CUDA programming guide.

There are two typical strategies for using the GPU for numerical computation. The
simplest is the “accelerator” strategy, which leaves the main code as is and moves only
the most costly computations to the GPU. This provides a relatively easy speedup for
many applications. However, it also requires the relevant data to be copied to the GPU
and back, which requires the data to be transferred over the PCI-E bus every calculation
step, seriously limiting the total speedup.

To avoid this bottleneck, GALES uses the other strategy, which is to completely
redesign and rewrite the code and move (nearly) all computation to the GPU. Note
that this required a full rewrite of the FORTRAN code in C++, after which the
code was adapted stepwise for GPU computation. The end result is that data reside
on the GPU throughout the simulation and not on the CPU, thus minimizing data
transfer from GPU to CPU. In this design, the CPU code is used to direct the GPU
to perform the needed calculations.

The GALES code is generally written such that, for each update to the grid, a single
thread is initialized for each grid cell. For example, the advection code on a 1283 grid initial-
izes 1283 (roughly 2 million!) threads, each updating the state of the particular cell it is as-
signed to. When calculating slab-averages or sums, each thread calculates the sum of a single
row, after which the threads communicate to find the slab-average. Note that all threads can
access the GPU’s main memory, such that no MPI-like data segmentation is necessary.

As GPUs (at the time of writing) still perform significantly better in single precision
than in double precision, sensitivity tests were done to implement as much as possible
of the LES simulation in single precision. The pressure solver, which uses a Fast Fourier
transform to determine the pressure fluctuations in order to enforce an incompressible
flow, was found to be the most numerically sensitive step. For this reason, it is the single
module in GALES which is performed in double precision.

In GALES, rendering of 3D information is done using OpenGL. CUDA can cooper-
ate with either OpenGL or Microsoft’s DirectX. In GALES, the cloud field is realistically
rendered with CUDA, using the information already resident on the GPU. The resulting
perspective image is then handled by OpenGL and displayed on screen. Similar proto-
cols are followed for 2D slices or particles. The use of OpenGL has the advantage that
GALES is compatible with Windows, Mac OS, and Linux systems.

March 2012AMERICAN METEOROLOGICAL SOCIETY | 311

and physics, it required a full rewrite of the code.
Also, GALES performs computations in single pre-
cision where possible, while DALES performs all
computations in double precision. The issues involved
in porting the model are further explained in the
“Porting to the GPU” sidebar at left; suffice it to say
that the rewrite is so far-reaching that verification
is in order. To verify whether GALES produces cor-
rect output with respect to DALES (in a statistical
sense), the models are compared in the context of the
BOMEX (Barbados Oceanic Meteorological Experi-
ment) shallow cumulus case. BOMEX was used as
a benchmark case to compare several different LES

models. Figure 3 shows a summary of the results of
11 LES simulations that participated. The intercom-
parison mean of the profiles of liquid water potential
temperature (θl), total water content (qt), and liquid
water content (ql) are shown in black, complemented
with cloud-sampled (ql > 0) profiles. The dark gray
area indicates the standard deviation, while the light
gray area shows the minimum and maximum.

The profiles of DALES and GALES are shown in
red and blue, respectively, denoting an ensemble aver-
age of 50 runs each, with each run having a slightly
perturbed initial condition. From these figures, it
can be concluded that GALES results do not deviate
significantly from any LES model that participated in
the intercomparison study, especially DALES.

SPEED. To put the performance of our GPU-resident
implementation in some perspective, the perfor-
mance of GALES is compared with that of DALES
running in parallel on a 32-core IBM p575 (4.7-GHz)
node of the Dutch supercomputer Huygens. In this
test, GALES was running on an Intel Core i5 K655
quad-core (3.20-GHz) desktop PC equipped with an
NVIDIA Tesla C1060 GPU. Secondly, GALES was
tested on a budget (under $1,000) PC equipped with
an Intel Core i5 K655 and an NVIDIA GTX 460 GPU.
Figure 4 shows the wall clock time per time step per

Fig. 3. Results from DALES (red) and GALES (blue) are
compared in the context of the BOMEX intercompari-
son case. The results of DALES and GALES are 50-run
ensemble averages; the shaded areas denote standard
deviation and minimum/maximum of the BOMEX
intercomparison cases.

Fig. 4. Wall clock time, per time step per grid cell, plot-
ted against the number of grid cells, for DALES (red)
and GALES (blue and green), the latter with visualiza-
tion deactivated or activated (solid and dashed lines, re-
spectively). DALES is run on a single node of the Dutch
supercomputer SARA-HUYGENS, GALES on a Tesla
C1090 (blue) and GeForce GTX460 (green). Note that
the GeForce is somewhat faster than the Tesla, but does
not have the capacity to perform the 2563 run.

March 2012|312

grid cell. Note that for comparison, the node used by
DALES is considered a single computer; otherwise
the time would have had to be multiplied by 32. An
additional complication to the comparison is that
DALES always calculates in double precision, while
GALES performs numerically less-sensitive parts of
the code in single precision.

Therefore, Fig. 4 should not be interpreted as an
exact GPU vs. CPU benchmark; many such bench-
marks already exist. Rather, the figure illustrates what
size of problems can be handled, and at what speed,
by a GPU system. All in all, the speed of our GPU
implementation seems more than adequate to allow
a dedicated PC to perform simulations up to a 2563
grid, which would in our case otherwise require 32–
64 CPU processor cores. To get a feel for time-to-
solution ratios, the numbers in Fig. 4 translate to a
speedup (simulated time to wall-clock time) of about
40x at 1283 (5-s stepping), and 2x at 2563 (2-s stepping,
time steps have to get smaller with higher resolution).
In order words, the simulation of 2 h of cloud evolu-
tion on a 1283 grid is performed in about 3 minutes.

NEW AVENUES. GPU implementation can of-
fer a paradigm shift with regard to how the atmo-
spheric science community performs demanding
numerical experiments on (atmospheric) turbulence.

Simulations can be started at will and analyzed with
ease, even while running. Through the direct visual
rendering of the 3D cloud field, 2D slices of relevant
model variables, and the supplemental graphs of sta-
tistical quantities (mean, variances) as a function of
time or height, the user obtains immediate feedback
on the progress and quality of the simulation. It is
even possible to run and visualize a simulation in a
virtual-reality environment. Such visual cues turned
out to be essential in a recent cloud life-cycle study by
Heus et al. (2009) in which a virtual-reality environ-
ment enabled human observers to select clouds that
were going through a full life cycle. The virtual-reality
environment allowed the researchers to interactively
select clouds in a time-evolving LES environment and
see the relevant statistics of the selected cloud, thereby
allowing one to collect an appropriate cluster of cloud
samples. With GALES, these types of highly specific
statistics can become available on the fly, without the
need for heavy data transfer.

Locally running and visualizing high-performance
simulations can have educational benefits. In GALES,
we have started to experiment with allowing the user
to directly interact with the numerical experiment by
changing parameters or boundary conditions of the
simulation and study their impact. For example, the
user can change the current wind speed, subsidence,

Fig. 5. GALES offers the possibility of direct interaction with the simulation. For example, the surface heat
and moisture fluxes can be readily modified during the simulation by turning the “knobs” shown in the lower
pane. The resulting effects are directly visible in the shown cloud-fraction profile and time series of cloud cover.
The figure shows the response on a user who increased the surface fluxes, subsequently turned them off after
a couple of hours, and then restored the fluxes (green arrows).

March 2012AMERICAN METEOROLOGICAL SOCIETY | 313

or surface fluxes (Fig. 5) and directly see the conse-
quences. More directly, if less realistically, the user
can even “nudge” the mean temperature or humidity
profile of the simulation in order to bring the current
simulation to a desired (user-specified) profile. Figure 6
illustrates how the user can quickly change the current
simulation state from cumulus to stratocumulus using
these controls. This could be a great educational tool
for new students in boundary layer meteorology. In
addition to shallow cumulus situations, stratocumu-
lus or cloud-free situations, such as clear convective
boundary layers or neutral or stably stratified bound-
ary layers, can also be studied. The interaction tools
allow students to see how changing surface properties
or atmospheric conditions can cause clouds to form or
break up. Students can acquaint themselves with the
different characteristics of turbulent boundary layers
with a “learning by doing” approach.

The ability to directly interact with a running
numerical experiment may have wider research impli-
cations. It could constitute a very interesting research
tool for rapidly testing hypotheses or for providing
inspiration for new hypotheses. For example, explor-
ing the high-dimensional parameter phase-space
around stratocumulus break-up could be sped up by
using the direct feedback to more rapidly locate the
critical parameter regions.

Also, the ability to directly and continuously
interact with the numerical experiment could be a
powerful way for models to communicate with each
other. For example, a future operational weather

model might launch a number of high-resolution
“child” (large-eddy) simulations on the GPU for
regions dominated by convective boundary layer
processes, while continuously feeding these models
new boundary conditions as the weather develops.
This could provide extremely high-resolution data
where they are most needed. A recent step in this
direction is described by Neggers et al. (2011, submit-
ted to BAMS), where large-eddy simulations as well
as single-column models are performed each day on
the basis of weather-model data to compare model-
ing results and investigate the effects of different
parameterizations. We are currently investigating the
possibility of utilizing GALES in this context.

OUTLOOK. The future of atmospheric GPU com-
putation seems bright. A GPU-resident implemen-
tation provides the opportunity to run reasonably
high-resolution simulations on a desktop PC. This
provides the opportunity to quickly design and start
a simulation, directly studying its evolution using the
GPU’s rendering capabilities. When desired, the user
can interactively steer the simulation to further study
the phenomenon of interest.

This comes at low cost and energy consumption,
making the possibilities of high-performance GPU
computing a very attractive and accessible research
tool. Furthermore, the possibility of direct visualiza-
tion and interaction with computationally demand-
ing atmospheric simulations opens new avenues in
both education and research.

Fig. 6. GALES offers the possibility of direct interaction with the simulation. This figure shows how the user can
nudge the current simulation state (red line) toward a user-specified target profile (black line with user-drawn
red squares). The nudging can quickly bring the simulation from a cumulus-capped state to a stratocumulus
state. A time-series plot of cloud cover, shown above, quantifies the response.

March 2012|314

ACKNOWLEDGMENTS. This work was sponsored by
the Netherlands National Computing Facilities Foundation
(NCF) for the use of supercomputer facilities, with financial
support of the Netherlands Organisation for Scientific
Research (NWO). The authors gratefully thank the editor
and two anonymous referees for their critical remarks and
suggestions to improve the manuscript. The authors also
thank Erwin de Beus for his help in realizing GALES.

For Further Reading
Cohen, J. M., and M. J. Molemaker, 2009: A fast double

precision CFD code using CUDA. Proc. 21st Intl.
Conf. on Parallel Computational Fluid Dynamics,
Moffett Field, CA.

Deardorff, J. W., 1970: A three-dimensional numerical
investigation of the idealized planetary boundary
layer. Geophys. Astro. Fluid., 1, 377–410.

Heus, T., G. H. van Dijk, H. Jonker, and H. van den
Akker, 2008: Mixing in shallow cumulus clouds
studied by Lagrangian particle tracking. J. Atmos.
Sci., 65, 2581–2597.

——, H. Jonker, H. van den Akker, E. Griffith, M. Koutek,
and F. Post, 2009: A statistical approach to the life
cycle analysis of cumulus clouds selected in a virtual
reality environment. J. Geophys. Res., 114, D06208,
doi:10.1029/2008JD0109172.

——, and Coauthors, 2010: Formulation of the Dutch
Atmospheric Large-Eddy Simulation (DALES) and
overview of its applications. Geosci. Model Dev., 3,
415–414.

Jonker H., T. Heus, and P. P. Sullivan, 2008: A re-
fined view of vertical mass transport by cumu-
lus convection. Geophys. Res. Lett., 35, L07810,
doi:10.1029/2007GL032606.

Lynch, P., 2006: The Emergence of Numerical Weather
Prediction: Richardson’s Dream. Cambridge Univer-
sity Press, 279 pp.

Michalakes, J., and M. Vachharajani, 2008: GPU ac-
celeration of numerical weather prediction. Paral.
Proc. Lett. 18, 531–548.

Neggers, R. A. J., A. P. Siebesma, and T. Heus, 2011:
Continuous single-column model evaluation at a
permanent observation supersite. Bull. Amer. Meteor.
Soc., submitted.

Sanders, J. and Kandrot, 2011: CUDA by Example: An
Introduction to General-Purpose GPU Programming.
Addison-Wesley, 312 pp.

Siebesma, A. P., and Coauthors, 2003: A Large Eddy
Simulation intercomparison study of shallow cumu-
lus convection. J. Atmos. Sci., 60, 1201–1219.

Verzijlbergh R., H. Jonker, T. Heus, and J. Vila, 2009:
Turbulent dispersion in cloud-topped boundary
layers. Atmos. Chem. Phys., 9, 1289–1302.

http://dx.doi.org/10.1029/2008JD0109172
http://dx.doi.org/10.1029/2007GL032606

