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Geometry-based Direct Simulation for Multi-Material Soft Robots

Guoxin Fang1, Christopher-Denny Matte2, Tsz-Ho Kwok2∗, Charlie C.L. Wang1

Abstract— Robots fabricated by soft materials can provide
higher flexibility and thus better safety while interacting
with natural objects with low stiffness such as food and
human beings. However, as many more degrees of freedom
are introduced, the motion simulation of a soft robot becomes
cumbersome, especially when large deformations are presented.
Moreover, when the actuation is defined by geometry variation,
it is not easy to obtain the exact loads and material properties to
be used in the conventional methods of deformation simulation.
In this paper, we present a direct approach to take the
geometric actuation as input and compute the deformed shape
of soft robots by numerical optimization using a geometry-based
algorithm. By a simple calibration, the properties of multiple
materials can be modeled geometrically in the framework.
Numerical and experimental tests have been conducted to
demonstrate the performance of our approach on both cable-
driven and pneumatic actuators in soft robotics.

I. INTRODUCTION

In recent years, soft robotics has become a popular mul-

tidisciplinary research area due to its better robustness and

safety. Most common designs for soft robots are realized

by distributed actuation on soft materials [1]. With more

Degrees-Of-Freedom (DOFs) than rigid robots can provide, it

can better complete highly dexterous tasks like grasping [2]

and detection of confined area [3]. While molding techniques

are used to fabricate soft robots in the past, the advancement

in 3D printing allows the fabrication of soft robots with

multi-materials [4], [5], which provides a new method to

control the deformation of soft manipulator to handle more

complicated tasks. For example, a cable-driven soft hand

shown in Fig.1 is 3D-printed with two materials having

different elasticity. The fingers are in the same shape but with

different material compositions. When applying the same

actuation – i.e., the same length of string stretching, different

deformed shapes are presented on the four fingers. In short,

designing soft robots by different material compositions can

achieve a variety of behaviors without changing the shape.

A. Motivation
Soft matter and multi-material printing open up many op-

portunities in designing new robots. However, the high DOFs

have also brought many challenges to numerical simulations.

Unlike the rigid robots for which the forward and inverse

kinematics can be used to compute the position of end-

effector or the joint parameters, soft robots are deformable

objects which can be actuated by various mechanisms.
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Fig. 1. A cable-driven soft hand with multiple materials. (a) The digital
model designed with different material compositions on different fingers.
(b) The actuated physical model fabricated by 3D printing, and the fingers
have different shapes under the same actuation. (c) The simulation result
generated by the proposed method.

The problem to be solved in this paper is how to predict the

deformed shape of a soft manipulator fabricated by multiple

materials effectively. A common technique for estimating

the deformation of elastic materials is the Finite Element
Method (FEM). However, the framework of FEM relies on

the accurate input of structural loads and material properties,

which is not easy to be obtained in many scenarios of

soft manipulator. Actually, actuations in soft robotics are

often defined by geometric variations. For instance, a cable-

driven gripper actuated by motors [6] is controlled by the

length change of cables. Pneumatic actuators are usually

driven by the volume change in a chamber [7]. Converting

these actuations into structural loads will cause unnecessary

errors of approximation. Differently, we develop a novel

algorithmic approach in this paper to compute the deformed

shape of a soft manipulator directly.

B. Related Work

With a good understanding of material properties and the

mechanism of actuation, precise FEA can be conducted with

given forces / torques. Commercial software like Abaqus and

ComSol have been used in the research of soft robotics [7].

On one hand, small time-steps are needed for systems with

large stiffness for simulating large deformation; on the other,

it requires modeling complicated multi-material properties as

well as their interaction. In order to get a fast simulation

for interactive and iterative design of soft robots, Hiller and

Lipson [8] developed a platform called Voxelyze that is able

to generate results of dynamic simulation for multi-material

soft objects. Voxel representation is used for simulating

large deformation and evolutionary computation is employed

to obtain optimized material distributions [9]. Nevertheless,

large quantity of voxels are needed to represent models with

complex shape, which will tremendously slow down the

computation.
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SOFA [10] is a widely used framework in the field of

surgical and biomedical simulation. Based on SOFA, Duriez

et al. [11] developed a plug-in for real-time simulation of soft

robots that supports interactive deformation. Inverse design

can also be conducted by an optimization based algorithm.

Their algorithm uses the iterative method to solve ordinary

differential equations meanwhile transferring the boundary

conditions using Lagrangian multipliers. This method is fast

but suffers from the problem of numerical accuracy, particu-

larly if there is large deformation (rotations). However, one

benefit of soft actuator is its capability of adapting to highly

curved contact by large deformation [12], which needs to be

precisely simulated for many applications.

With the help of mass-spring system, Allison et al. [13]

presented a close-loop control for haptic jamming de-

formable surface. However, they are application-specific and

may not be generalized to other soft actuators.

There is research [14]–[16] that applies geometry-based

algorithm in optimization. Different from using constrained

nonlinear optimization [17], the geometry-based numerical

computation can converge in a few iterations. This paper

extends this idea to the simulation for soft robots with

multiple materials.

C. Contribution

Based on the observation that many actuations in soft

robotics are directly related to geometry, we hypothesize

that a geometry-based simulation gives better convergence
and accuracy than the mechanics methods. Here higher

accuracy means the results of simulation are closer to the

physical tests. In addition, the simulation should be able

to handle multiple materials. To test this hypothesis, we

apply the technique from geometric computing to formulate

a framework that can directly model and simulate soft robots

based on geometry.

To realize our framework, three research questions need

to be investigated: 1) how to convert the mechanical analysis

to a geometric problem, 2) how to apply different actuations

in the simulation, and 3) how to model the material prop-

erties geometrically. Answering these questions brings the

contributions of our paper as follows:

• A geometric optimization to minimize the elastic energy

with reference to shape variations is formulated to

mimic the physical phenomenon during deformation.

• The geometric constraints of actuations are modeled by

a type of element, which can be directly integrated in

the optimization.

• A simple calibration method is developed to learn the

relationship between material properties and shape pa-

rameters, which are used in our framework to simulate

the deformation of objects with multiple materials.

Our framework is direct and efficient, and its functionality

will be demonstrated and verified on cable-driven and pneu-

matic soft robots with multiple materials.

The rest of this paper is organized as follows. Section II

introduces our framework of the geometry-based simula-

Fig. 2. (a) A bar is being twisted by 90◦. (b) The result without preserving
its shape looks unreal. (c) By preserving the original shape of each element,
the numerical simulation can mimic the physical phenomenon.

tion. After that, Section III discusses how to formulate the

actuations as geometric constraints, which is followed by

presenting a calibration method for multi-material simulation

in Section IV. The experimental tests and validation are given

in Section V, and our paper ends with the conclusion and

discussion in Section VI.

II. GEOMETRY-BASED SIMULATION

When different boundary conditions or external loads

are applied to deform an object M, the elastic energy

is transferred by the corresponding work and distributed

internally in the materials of M. Here the elastic energy

is caused by the shape deformation, which can be evaluated

from the strains (i.e., local deformations throughout M). In

this sense, the total elastic energy can be minimized when

the original shape of M is preserved as much as possible.

To mimic this physical phenomenon, this section formulates

a geometry-based simulation as an optimization problem

to preserve a target shape while satisfying the imposed

boundary conditions and actuation constraints.

Assume a soft robot is digitally represented by a volu-

metric mesh Ms = (V, E), where V and E stand for the

sets of vertices and elements on the mesh. The shape of the

i-th element is defined as Vi = [v1 v2 . . . vn], where n
is the number of vertices of the element, e.g., n = 4 for

a tetrahedron in this paper. Let Vt
i = [vt

1 vt
2 ... vt

n] be

the target shape that the element would preserve, then the

optimization can be formulated as minimizing the difference

between Vi and Vt
i for all m elements. That is defined by

an energy as

E =

m∑
i=1

d(Vi,V
t
i). (1)

To measure the difference d(·, ·) of two shapes, they have to

be properly aligned in terms of both position and orientation.

Therefore, both the shapes are centered at the origin and a

rotation is applied to match Vt
i with Vi, such that the above

energy can be further defined as

E =

m∑
i=1

ωi||NVi −Ri(NVt
i )||2F . (2)

ωi is a weight for each element, which is normally set as the

element’s volume. || · ||F is the Frobenius norm, and N is a
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4× 4 matrix to transfer an element’s center to origin:

N(i, j) =

{
3/4 if i = j

−1/4 if i �= j
∀i, j ∈ (1, 2, 3, 4).

There are two sets of unknowns in Eq.(2): one is the positions

of vertices Vi, and the other one is the rotation matrices Ri.

They are dependent on each other, which leads to a nonlinear

system. A two-step iterative method [16] is conducted to

solve this problem. Specifically, one set of unknowns is fixed

while solving the other set, and the fixed set is switched

alternatively between two neighboring steps. This two-step

method has been proven to be very efficient. When the target

shape Vt
i for each element has been defined, this framework

of optimization can deform the element shape Vi to approach

its target shape as much as possible. A demonstration of its

functionality is given in Fig.2, where a bar in (a) is twisted

by 90◦ (b) without and (c) with preserving the target shapes

Vt
i . The target shape of each element in this example is

set as its original shape shown in (a). When applying this

optimization based deformation framework for the simulation

of soft robots, we need to tackle the problem of defining

an appropriate target shape so that different actuations and

materials can be incorporated. These will be discussed in the

following sections.

III. ACTUATION AS GEOMETRY CONSTRAINTS

Soft robots are deformed by external actuations such as

shortening the length of a cable or expanding the interior

volume of a chamber. These actuations actually are the

geometric hard constraints C for the simulation framework,

which leads to a constrained optimization problem as

min
V,R

E subject to C. (3)

When solving such a problem by a penalty-based method

such as Lagrange multiplier, the convergence problem may

occur especially when the initial value is not feasible (i.e.,

the constraints C are not satisfied at the initial value of

numerical computation). To solve this problem efficiently,

we formulate an actuation as a special type of element and

use the target shape Vt
i to model these hard constraints,

which can be seamlessly integrated to our geometry-based

simulation framework. Details about how to convert physical

actuations into target shapes for both the cable-driven and the

pneumatic actuations are presented below.

A. Cable-driven actuation

Figure 3(a) demonstrates a common model of cable-driven

soft gripper, which is a rectangular bar with a few gaps

located in one side. The gripper is fixed at one end, and

a cable shown as a dotted line is passed through the holes

along the gripper. The gripper is actuated by pulling the cable

(i.e., by changing its length). As a result, it bends towards the

side with gaps. To integrate the cable in the simulation, the

V-shaped gaps are modeled as a set of tetrahedral elements

Ṽ1, Ṽ2, ..., Ṽn. There is a triangular face on each of these

elements that aligns with the cable. These faces called cable-
component will be used to drive the simulation.

Fig. 3. The geometric constraints of actuation. (a) In cable-driven actuation,
the gaps are modeled as tetrahedral elements and the edges aligned with the
cable will be shortened as the cable is stretched. (b) In pneumatic actuation,
the chamber are modeled by tetrahedral elements, which will expand when
air is pumped in.

The total length of the cable L equals to the length of

the gripper that includes the rigid portions Rd and the gaps

li, i.e., L = Rd +
∑k

i=1 li, where k is the number of gaps.

Given the cable-driven actuation with a shrinking ratio S,

the geometric constraint is defined as:

Cc(Ṽ1, Ṽ2, ..., Ṽn) : SL = Rd +

k∑
i=1

sli, (4)

where s is a local shrinking ratio for the gaps. If the local

shrinking ratio s of a gap is given, the target shape for

its corresponding tetrahedral elements can be computed. By

rotating the tetrahedral element Ṽi to its local coordinate

system (resulting in ṼL
i ) where its cable-component is

aligned to the xy-plane, and the main axis of the gap is

aligned to the y-axis, the target shape Ṽt
i can be computed

by scaling in the x-axis, i.e., Ṽt
i = [s 1 1]ṼL

i .

Note that, the input shrinking ratio S is different from

the local shrinking ratio s. The problem here is to compute

the local shrinking ratio s to satisfy the hard constraint Cc.

Computing the ratio and the shapes at the same time is

nonlinearly coupled and therefore hard to solve. Fortunately,

the deformation is a dynamic process with a number of time

steps. We can then determine the ratio during optimization.

Due to the material distribution, the gaps will be optimized

to different shapes. Specifically, starting from s = 0, a small

shrinking ratio, e.g., 0.01, is added to s for each incremental

step in the time domain. This process is iterated until the

constraint Cc is satisfied. Figure 3(a) shows the simulation

result for a shrinking ratio S = 0.7.

B. Pneumatic actuation

A pneumatic actuator usually drives soft robots by pump-

ing pressurized air into a bellow formed by soft materials.

As shown in Fig.3(b), our method is demonstrated by a

commonly used tooth-shape soft gripper. The left part is fixed

while pumping air along the direction of the arrows into the

bellows. The internal tetrahedral elements Ṽ1, Ṽ2, ..., Ṽn

highlighted in Fig.3(b) are used to model the expanding

behavior of air inside the bellows.

Let the volume of an element be ui for the i-th element,
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Fig. 4. (Top) The target shape for rigid material is computed by rotating the
initial shape to align with the current shape. (Bottom) The target shape for
extremely soft material is computed by scaling the current shape to preserve
the volume of the initial shape. (Right) The shape blending method is
applied to align the rigid and the soft materials, and merge their shapes using
material property to define the target shape for an intermediate material.

the total volume of a bellows is then U =
∑n

i=1 ui. Given

the volume change, the geometric constraint for a pneumatic

actuator can be described by an expansion ratio E:

Cp(Ṽ1, Ṽ2, ..., Ṽn) : EU =

n∑
i=1

eui (5)

where e is a local expansion ratio of the internal elements.

When e is defined, the target shape Ṽt
i for the tetrahedral

element can be computed by Vt
i = eṼL

i after centering the

tetrahedron Ṽi to origin. The process of calculating the final

shape of a pneumatic actuator is similar to the cable-driven

actuation discussed above, which is to add a small expansion

ratio to the elements in each time step and iterate until the

constraint Cp is satisfied. Fig.3(b) shows the simulation result

with given expansion ratio E = 1.25.

IV. SHAPE PARAMETERS FOR MULTIPLE MATERIALS

Under an external load, the material deforms and stores

potential elastic energy. The total energy can be minimized

by preserving the original shape of an object. However, if

an object contains multiple materials, regions with different

materials will deform in different ways. In this section, we

propose a method to simulate soft objects with multiple ma-

terials by using shape parameters. The relationship between

material properties and shape parameters needs to be found.

One can calibrate the relationship by applying the same force

to different materials and measuring how much they deform –

e.g., a conventional tensile test. However, when the actuation

is geometry-based, this calibration is indirect and requires an

additional conversion between force and deformation. Rather

than calibrating each material separately with force, we

develop a simple method to calibrate the relative properties

between two materials. Before that, we present how to model

different material properties geometrically.

A. Deformation with different materials

To model the different properties of materials, a simple

way is to assign different weights ωi for each element in

Fig. 5. Calibration of the shape parameter for simulating objects with
multiple materials: (a) a multi-material bar with displacement on the right,
(b) a physical elongation test on 3D printed specimen using NinjaFlex and
Flexible PLA materials, (c) a simulation result by using the Abaqus FEA
software, (d) the result generated by our simulation framework, and (e) the
calibrated relationship between Rm and Rω .

Eq.(2), and the shapes of elements with different weights

will be preserved differently through the optimization. This

mimics the deformation of multiple materials. However,

this way of handling the material difference at the global

blending step by least-square solution will lead to large

approximation error. In order to gain a better control and

reinforce the physical property in large deformations, we

control the deformation behavior of elements at the local step

by altering their target shapes, Vt
i , according to different

material properties. Basically, if a material is extremely

hard, it will be rigid during the deformation. Respectively,

an extremely soft material will deform and conform to its

neighbors and external loads while preserving its volume.

A shape blending method is developed in our framework to

compute the target shapes Vt
i for different materials based on

their relative properties. As shown in Fig.4, the target shape

of a rigid element comes from the rigid transformation of

its original shape. For a soft element, its target shape comes

from the current shape by scaling back to its original volume

(see Fig.4). For a material in-between (e.g., with a ratio

Rω), the rigid and soft target shapes are aligned and blended

together using the concept of isometric morphing [18] to get

the target shape as shown in the right of Fig.4.

In this way, the target shapes of elements according to

different materials are properly controlled during the de-

formation, and thus the result of optimization will not be

prone to large approximation error caused by least-square

solution. The next sub-section will discuss how to determine

the ratio Rω – the shape parameter – for the relative material

properties.

B. Calibration of shape parameter

To calibrate the shape parameter Rω for the deformation

of multiple materials, we impose a displacement on a rect-

angular specimen at one end while fixing another end (as

shown in Fig.5(a)). Without loss of generality, the specimen
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is fabricated with two materials A and B joined with a

sharp interface. Let the length of the whole specimen be

L and the distance between the interface and the fixed end

be L1, where different values of L1 ∈ (0, L) are used for

different specimens. When imposing a displacement ΔL at

the free end of the bar, the displacement of the interface

will be located at ΔL1 ∈ (0,ΔL) depending on the relative

material properties between A and B. The relationship of two

materials can be presented by a material ratio Rm, which is

mathematically defined as

Rm =
EA

EB
=

L1(ΔL−ΔL1)

(L− L1)ΔL1
, (6)

where EA and EB are the Young’s modulus of two materials

with A being linked to the fixed end and B locating at the

free end. To verify the quality of 3D printed specimens, we

perform the elongation test on them. The results of physical

tests match well with the simulation results generated in

Abaqus (see Fig.5(b) and (c)). With this insight, the rest of

the problem is to find the relationship between the material

ratio Rm and the shape parameter Rω . The basic idea is

to apply different values of Rω to run the elongation tests

in our geometry-based simulation by the same setup (see

Fig.5(d)). By matching our simulation results with the results

of Abaqus, we can determine the value of shape parameter

Rω for two particular materials.

To calibrate the relationship for different material ratios

Rm, we apply different values of Rm in Abaqus and find

the matching value of Rω in our simulator, which is plotted

in Fig.5(e). Note that samples are also generated by using

different values of L1 (i.e., the locations of the interface)

to validate the correctness of calibration. Figure 5(e) shows

that the data have a very good alignment, and a second order

polynomial curve is fitted to define the relationship as

Rω = 0.114R2
m + 1.665Rm − 0.766 (7)

When new materials are used, the ratio Rm in Eq.(6) can

be computed directly if their Young’s modulus are known,

or obtained through a tensile test as in Fig.5(b). Then, the

shape parameter Rω can be determined by Eq.(7).

V. RESULTS

The proposed method of geometry-based direct simulation

has been implemented in C++ and tested on a standard

PC with an Intel i7 2.4GHz CPU and 8GB RAM. All the

simulations can be run in an interactive speed (i.e., 4-5 fps)

with a mesh size of up to 7.5k tetrahedra, which can be

seen in the supporting video of this paper. With the same

configuration, the commercial FEM software Abaqus needs

1.5 minute to compute the deformation for a single frame,

i.e, our result is 45 times faster.

The models of soft robot are digitally represented by

tetrahedral meshes, and their corresponding physical objects

are fabricated by Ultimaker 3 which can print two materials

in a build. The two materials used in our experiments are

NinjaFlex and Flexible PLA with Young’s modulus 12MPa

and 45MPa respectively. Therefore, Rω = 7.08 is used for

Fig. 6. Comparisons on a cable-driven gripper among physical test (left),
our simulation(middle), and the simulation by the SoftRobots plug-in for
SOFA [11](right).

our simulation. Our results are compared with the SoftRobots

plug-in for SOFA [11] and also verified with physical exper-

iments.

A. Comparison with the SoftRobots plug-in for SOFA

To compare the performances between SOFA and our

framework, a cable-driven gripper with single material is

used as shown in Fig.6, which is fabricated with the Flexible

PLA. The top and bottom rows show two sequences of

deformations at different time instants, where from left to

right show the results of physical test, our simulation and

SOFA. Due to the reason that the deformation accuracy

is traded off for computational speed in SOFA, its results

do not match with the physical tests in large deformation.

Specifically, simulation starts to variate from reality when

cable length change is larger than 45% or chamber’s volume

change is greater than 30%. In contrast, our simulation

can produce very realistic results while having a similar

computational speed as SOFA.

B. Verification

To verify the result of our simulation for multiple ma-

terials, we tested two cable-driven grippers with different

material compositions. The simulation and physical results

are compared visually with its dynamics in the top and

the middle rows of Fig.7. The deformations are also com-

pared quantitatively by the trajectory of three corresponding

markers located on the boundary of the grippers (i.e., P1,

P2 and P3). It can be seen that both results match with

the physical experiments very well. Another example has

been shown in Fig.1 as a hand model compounded by a

few manipulators with different material compositions. The

results of simulation and physical test show a great match.

As presented in Section III, our framework can work not

only for the cable-driven but also the pneumatic soft robots.

One example is shown in Fig.8, and it is compared with the

physical experiment by increasing the pressure of air pumped

into the chamber to control bending of the gripper. From all

these tests, it is easy to conclude the high accuracy of our

geometry-based direct simulation framework.
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Fig. 7. Two cable-driven soft grippers (left and right) with different material
distributions have different behaviors under actuation. Locations of markers
determined by our simulation are well-matched with theirs in physical test.

Fig. 8. Pneumatic-driven soft gripper: (top) the results of our simulation
and (bottom) physical test by increasing the pressure of air pumped into the
chamber. The gripper is fabricated by the NinjaFlex material.

VI. CONCLUSION AND FUTURE WORK

In this paper, we develop a new geometry-based simulation

for soft robots. The motivation of this work comes from

the observation that the current actuations of soft robots

such as length shortening of cable and volume changing of

chamber are based on geometry variation. In summary, we

develop a geometric optimization for preserving shape during

deformation with the function of representing actuations

as different type of geometric constraints to be imposed

on specially designed elements. Moreover, multi-material

simulation is also supported by our framework with a well-

designed calibration process for finding relative material

properties. The experimental results support our hypothesis

and verify that the proposed simulation framework is valid,

direct, and promising.

We have demonstrated the framework by cable-driven and

pneumatic-driven soft robots, but it will be extended to other

actuations driven by geometry transformation and to model

multiple-actuations. Another future work is to extend this

simulation for the soft robots that are made up of more than

two types of materials. One way is to introduce more degree

of freedom in the calibration of shape parameters.
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