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Chapter 1

Introduction

1.1 Background

Maritime transportation plays an unreplaceable and ever-growing role in the global
economy, taking up 96% of the world’s global freight in terms of weight [17]. In 2006,
seaborne trade grew 5.5% to 30,686 billion ton-miles. Of goods loaded, crude oil and
petroleum products represented 36% [22]. Of course, transportation of goods by sea
carries the risk of marine accidents, i.e. an event where a ship adversely interacts
with its environment, possibly causing damage to either the ship, the environment,
or both. When oil tankers are involved in accidents, a typical consequence of result-
ing damage is the release of crude oil or petroleum products into the sea.

Seaborne oil spills from tanker ships have the potential to cause major environmental
damage, interfering with marine and coastal biology and influencing human liveli-
hoods for decades after a spill occurs. These spills are usually accidental in nature;
from 1995 to 2004, over three quarters of spills greater than 7 tons were caused by
collisions and groundings [8]. Although the trend in both frequency and volume of
spills has gone down significantly over the decades, the environmental risk of a spill
remains significant and severe because of both the immensity of worldwide maritime
transportation, the large amounts of oil transported by a typical tanker, and the
increased likelihood of vessels interacting with each other due to traffic growth in
harbors and waterways.

The context of this study was a Vessel Traffic Risk Assessment in which The George
Washington University was tasked to evaluate incremental oil transportation risk as
a result of potential traffic increases due to a dock expansion of a refinery in Wash-
ington State. Oil transportation routes traverse through the San Juan Islands and
the Straits of Juan de Fuca. The San Juan Islands area is considered an environ-
mentally pristine area and serves as a habitat for an Orca Whale family. Moreover,
The San Juan Islands and the Strait of Juan de Fuca are fishing grounds for both
commercial and tribal salmon, crab and shrimp fisheries.

1
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Figure 1.1: Left: the Exxon Valdez, grounded in Prince William Sound. Right: pooled
oil stranded between rocks after the Exxon Valdez grounding. (Source: National Oceanic
and Athmospheric Administration)

1.1.1 The Exxon Valdez Grounding

On March 24, 1989, the oil tanker Exxon Valdez ran aground shortly after leaving
the Valdez oil terminal in Alaska, spilling 36,000 metric tons of crude oil into Prince
William Sound and beyond, in total affecting 1,500 miles of coastline (see Figure
1.1). Although only the 28th largest historical spill by volume [12], this accident
became world news as the spilled oil contaminated the Prince William Sound coast-
line, seriously affecting the health and abundance of local shoreline biology as well
as compromising the economic and public value of Prince William Sound. In its
aftermath, Exxon —the company owning the Exxon Valdez— payed about US$ 2
billion in cleanup costs and court settlements and was sentenced to pay US$ 2.5
billion in punitive damages. In response to the spill, the United States Congress
passed the 1990 Oil Pollution Act to prevent further oil spills from occurring in the
United States.

1.1.2 Modelling Oil Spill Risk

To improve prevention of future oil spills after Exxon Valdez, numerous models for
analyzing oil spill risk were developed. In the Prince William Sound Risk Assessment
[14], a system simulation of Prince William Sound that integrated shipping fleet,
traffic rules and operating procedures was run to generate a dataset of accident
types and locations over a timespan of 25 years. This assessment was based on
Probabilistic Risk Analysis [1], which:

1. Identifies the series of events leading to an accident;

2. Estimates the probabilities of these events;
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3. Evaluates the consequences of the accident.

Brown and Amrozowicz [4] propose a model that consecutively determines

1. Accident probability (grounding, collision, structural failure etc.);

2. Probability of zero outflow and mean outflow volume given a spill;

3. Immediate response to contain the spill;

4. Spill consequence.

A similar methodology is provided by the software package GRACAT [5], short
for Grounding and Collision Analysis Toolbox, which has the following modelling
capabilities:

1. Frequency: estimation of grounding or collision probability for a vessel oper-
ating on a specified route;

2. Damage: establishment of models for calculating the resulting grounding and
collision damage;

3. Consequence: analysis of the conditions of the damaged vessel;

4. Mitigation: identification and evaluation of remedial measures for the consid-
ered consequences.

Looking at these methodologies, to model the risk of an individual tanker spill, one
can argue that in general one has to:

1. Determine the probability of an accident given the state of the surrounding
environment;

2. Determine the oil outflow volume given an accident;

3. Determine the spill consequence given the outflow volume.

This report focuses entirely on the 2nd item: the modelling of oil outflow volume
from an oil tanker given that an accident involving the tanker has occurred.

1.1.3 IMO Outflow Model

A widely accepted model used in determining the oil outflow volume in tanker acci-
dents was drafted by the International Maritime Organization [9]. The purpose of
the model is to measure outflow performance of a particular tanker design against a
reference double hull design.
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For this model, data was taken from approximately 100 historical collision and
grounding scenarios from the period 1980-1990 to establish probability density func-
tions (PDFs) for the location and extent of damage in a collision or grounding
scenario (see Figure 1.2). Based on these distributions, each unique combination of
tanks or compartments in a given tanker design can be associated with a probability
of being damaged.

In a collision, the assumption is made that all oil is lost from a damaged compart-
ment. Hence the sum of cargo volumes of damaged compartments represent the total
volume of spilled oil. In a grounding, a pressure balance calculation is carried out,
where the water level surrounding the tanker determines the amount of oil that flows
out.

After this calculation step, the probability of damage and outflow volume for each
unique combination of compartments is known. Using these numbers, three param-
eters describe the environmental performance of the tanker design in question:

• Probability of no outflow PO: the cumulative probability for all damage com-
binations for which there is no oil outflow.

• Mean outflow parameter OM : the weighted average of outflow volumes of all
combinations.

• Extreme outflow parameter OE : the weighted average of outflow volumes of the
damage combinations falling within the cumulative probability range between
0.9 and 1.0.

These parameters are then combined into a “pollution prevention index” E:

E = k1
PO

POR
+ k2

0.01 + OMR

0.01 + OM
+ k3

0.025 + OER

0.025 + OE
(1.1)

where k1 = 0.4, k2 = 0.5 and k3 = 0.1; and where POR, OMR and OER are respec-
tively the probability of no outflow, mean outflow parameter and extreme outflow
parameter of the reference double hull design. If E > 1, then the design in question
has “satisfactory characteristics”. An analysis using this methodology was used by
the Herbert Engineering Corporation [6] to evaluate 96 different tanker designs to
propose a standard tanker design.

Unfortunately, the IMO model suffers from a number of fundamental limitations.
The following objections are raised as such [16,23]:

• The model uses a single set of damage extent PDFs from limited single hull data
applied to all ships, independent of structural design; realistically, however, this
data should only be used to model single hull accidents.
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Figure 1.2: Damage extent PDFs, IMO model (source: IMO [9])
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• Damage PDFs only consider damage that is significant enough to breach the
outer hull. This penalizes structures able to resist rupture.

• Damage extents are treated as independent random variables when they are
actually dependent variables, and ideally should be described using a joint
PDF.

• Damage PDFs are normalized with respect to ship length, breadth and depth
when damage may depend to a large extent on local structural features and
scantlings. Most notably, Simonsen and Hansen [19] conclude that relative
damage length in groundings is higher for larger ships than for smaller ones.

1.1.4 Collision and Grounding Models

In 2001, the Marine Board of the National Academy of Science published a report
assessing a methodology to compare double hull tanker designs to alternative de-
signs [20]. It noted that the IMO model was insufficient for the goals outlined by the
report and that, consequently, further research was necessary. A risk-based method-
ology was therefore developed that included a model for generating probabilistic
accident scenarios.

For both collisions and groundings this model is based on the physical simulation of
accident damage inflicted on a tanker as developed by Brown [3] and Tikka [21] using
the simulation programs SIMCOL resp. DAMAGE. For the Marine Board research,
10,000 collision and grounding scenarios were randomly generated and put through
a simulation four times; each time using a different tanker design. This resulted in a
dataset of 40,000 collisions and 40,000 groundings, describing input (i.e. ship speed,
displacement, collision angle) and output variables (i.e. damage length, outflow vol-
ume).

The goal of having this large dataset was to compare outflow performance between
single hull and double hull tankers; however, by carefully studying the relationships
between input and output parameters of this large data set one can “empirically” de-
velop a probabilistic model that determines accident oil outflow based on statistical
data analysis techniques rather can computationally intensive physical simulations;
one that nevertheless needs to adhere to the same physical principles as the latter.

The model is envisioned to be used in similar tools as the Prince William Sound Risk
Assessment simulation [14]. These tools generate a large number of scenarios and
hence the oil outflow volume evaluation needs to computationally efficient. With-
out oil outflow analysis, multiple year simulation runs take 8 hours or more, just to
evaluate accident frequencies. Combining such a simulation tool with the physical
damage simulations developed for the Marine Board is from a computational point of
view impossible at this time. An explicit oil outflow model, however, that describes a
statistical relationship between scenario input characteristics and oil outflow output
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characteristics could very well be combined with such a simulation tool. These sta-
tistical relationships are estimated using the physical simulation data of the Marine
Board report containing 80,000 collision and grounding scenarios.

1.2 Thesis Goal

The research goal of this thesis is to

• Develop a new method for modelling the oil spill volume of an oil tanker in
a collision or grounding accident scenario, based on the simulation data as
obtained from [3,21];

• for both single hull and double hull tankers of specific designs;

• emphasizing on the practicality of implementation of the outflow model into
large scale system simulations.

1.3 Thesis Outline

In the first chapter, the dataset generated by the collision and grounding simulations
(as discussed above) are described. Next, the collision outflow model based on this
data is explained and discussed extensively; following this, the grounding outflow
model is treated. Because it adheres to the same principles as the collision model,
only changes to the grounding methodology as opposed to collisions are mentioned.
Third, a concise, practical example of the model is given to demonstrate its use in
determining accidental oil outflow. Finally, the conclusions to the thesis goal and
recommendations for further research are presented.



Chapter 2

Simulation Data

In the aforementioned research, 10,000 sets of input variables for both collisions
and groundings were generated, and subsequently fed into a physical simulation
model. These simulations were performed on four different tanker designs, resulting
in a total of 80,000 sets of output variables; hence in total 80,000 pairs of input
and output variables (‘scenarios’) are available. In this chapter, the ship designs,
input variables, collision and grounding simulations, and resulting output variables
are described and discussed in detail. It must be noted that there are differences
between the ship designs used in the collision and grounding studies, which will be
discussed when relevant.

2.1 Tanker Designs

An oil tanker is mainly characterized by its cargo area, which consists of one or more
tanks or compartments. The cargo capacity is measured in deadweight tonnage
(DWT) representing cargo mass. The displacement equals the water mass that
the ship displaces. Among tankers, single-hull and double-hull designs are the most
widespread used. As the name implies, in a single-hull design only one wall separates
the cargo compartments from the surrounding water; in a double-hull design, these
compartments are protected by ballast tanks. The four different tanker designs
are designated by hull type and tonnage: SH40, SH150, DH40 and DH150. Their
schematic designs can be found in Figures 2.1 and 2.2.

2.2 Collisions

In a collision, an oil tanker is struck by a striking ship (see Figure 2.3). The collision
transforms translational motion mainly into rotational motion, elastic deformation
and plastic deformation. It is assumed that the striking ship does not experience any
damage. When a collision is severe enough, the hull of the oil tanker is penetrated
and ruptured, resulting in a damaged area. If the damaged area overlaps with a
compartment, all contents from this compartment are assumed spilled.

8
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Figure 2.1: 40,000 DWT tanker designs (source: National Academies Press [20])
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Figure 2.2: 150,000 DWT tanker designs (source: National Academies Press [20])
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Figure 2.3: Two ships at the moment of collision

Length Breadth Draft Deadweight Tonnage Displacement
Name Hull Type (Meters) (Meters) (Meters) (Metric Tons) (Metric Tons)

SH40 Single 201.168 27.432 10.603 40,000 47,547
SH150 Single 266.3 50.0 16.76 150,000 175,882
DH40 Double 190.5 29.26 10.58 40,000 47,448
DH150 Double 261.0 50.0 16.76 150,000 175,759

Table 2.1: Tanker specifications, collisions

2.2.1 Input Data

The specifications for the different tanker designs1 that were used in the collision
simulations are described in Table 2.1; an overview of compartment volumes for
these ships is given in Table C.1 in the Appendix.nThe input variables in Table 2.2
are realizations of random variables with specific probability distributions. Together
with other (fixed) parameters, like ship dimensions, plate thickness, compartment
configurations etc. they define a collision scenario at the moment of impact. It is
assumed that these variables are realizations of random variables which are defined
by parametric distributions.2

• V1 is characterized by a Weibull distribution with shape parameter α = 2.2
and scale parameter β = 6.5;

• V2 is given by an exponential distribution with parameter µ = 0.584;

• Φ is the angle between port bows: if vessels travel in the same direction,
1Brown [3] is ambiguous as to whether the small designs (SH40 and DH40) have a deadweight

tonnage (DWT) of 40,000 or 45,000; however, Tikka [21] gives a DWT of 40,000 for these designs.
Therefore the decision was made to assume that the ships in the collision model also have a DWT
of 40,000. Also, Brown mentions a length of 261.0m for the double hull in the report where the
accompanying simulation file says 266.3m.

2By convention, random variables are denoted with capital letters; realizations of random vari-
ables are lowercase.
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Input Variable Symbol Unit

Striking ship velocity v1 Knots
Struck ship velocity v2 Knots

Collision angle φ Degrees
Displacement of striking vessel m1 1000 metric tons

Collision location, relative from the stern l -
Striking ship type t -

Table 2.2: Input variables, collisions

Φ > 90◦; if not, Φ ≤ 90◦. The distribution of Φ is approximated by a truncated
Normal (µ = 90, σ = 28.97) distribution; realizations are selected using Monte
Carlo simulation on the interval [0, 180]. Although the use of Monte Carlo on
a bounded support is only mentioned for Φ in the report, it is believed that
this method is applied to other variables as well when a bounded support is
imposed on distributions with infinite support.

• L gives the relative distance of the collision location from the Aft Perpendicular
(AP) of the ship. L = 0 means the collision takes place at the AP, where L = 1
represents a collision at the FP3. It follows a Beta(1.25, 1.45) distribution with
support on [0, 1] (see Appendix B for an explanation on distributions).

• T is one out of five types of striking ships: tanker, bulk cargo, freighter, passen-
ger or container. Each type has its own characteristics; among the distinctions
taken into account in the simulations is the bow half entrance angle η, which
is the angle between bow and the longitudinal axis of the ship and is given for
each type, and displacement M1 which is a Weibull-distributed random vari-
able. See Table 2.3 for the probability of occurrence of each striking ship type
and Table 2.4 for the distribution of each type’s displacement. Note that lower
and upper bounds are given for displacement, whereas a Weibull distribution
has support on (0,∞). Again, Monte Carlo simulation was probably used in
selecting realizations of the Weibull distribution within the given bounds.

The aforementioned randomly generated variables are put into the collision simula-
tion together with other parameters such as ship dimensions, struck ship displace-
ment, compartment design, plate thickness, etcetera.

3The AP is the aftmost point of the bottom plane of the ship; the Forward Perpendicular (FP)
is defined likewise.
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Probability
Type t Name of Occurrence η (degrees)

1 Tanker 0.252 38
2 Bulk Carrier 0.176 20
3 Freighter 0.424 20
4 Passenger 0.014 17
5 Container 0.135 17

Table 2.3: Striking ship type distribution

Weibull Bounds (MT)
Type t Name α β Lower Upper

1 Tanker 0.84 11.2 699 273550
2 Bulk Carrier 1.20 21.0 1082 129325
3 Freighter 2.00 11.0 500 41600
4 Passenger 0.92 12.0 997 76049
5 Container 0.67 15.0 1137 58889

Table 2.4: Striking ship displacement distribution, by type

2.2.2 Output Data

When the simulation is over, three output variables are generated:

• Damage length yl, meters

• Maximum penetration yt, meters

• Oil outflow volume z, cubic meters

Damage length is the extent of the damaged area in the struck ship’s longitudinal
direction. Maximum penetration is the maximum extent of the damage in transver-
sal direction. Oil outflow is the total sum of volumes of damaged compartments, i.e.
compartments that coincide with the damaged area. See Figure 2.4 for a schematic
view of an example of the damaged area. The distribution of the resulting output
variables for all ship types are presented in Table 2.5 and Figures 2.5 and 2.6.

It must be noted that, when outflow occurs, yl and yt are nonzero; however, the re-
verse is not always the case. Therefore, there may be collision scenarios where there
is damage but no outflow, for example in the case of plastic deformation without hull
breach, or the rupture of ballast tanks (which contain no oil) but no oil compart-
ments. This is especially likely in double hull tankers, where all oil compartments are
seperated from the outer hull by ballast tanks. In Table 2.6, the number of nonzero
values of yl and yt from the collision scenario are given as well as the number of cases
of zero outflow for each ship type to show how many times this occurs.
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Figure 2.4: Collision damage

SH150 DH150 SH40 DH40
Volume Count Volume Count Volume Count Volume Count

0 6817 0 8974 0 5955 0 8596
3820 358 5515 84 1865 488 2270 97
8365 682 11694 86 2529 869 2277 133

12185 168 13862 129 2641 522 2670 189
13103 723 14650 119 2668 844 2825 84
15311 1150 14651 274 2674 797 2846 471
18864 7 14674 87 3644 20 5095 44
21567 13 19377 56 4506 116 5122 107
23479 5 26369 30 5197 156 5515 74
23676 1 28513 47 5314 131 5671 47
28023 2 29302 79 5507 10 5692 155
30882 8 29325 34 6171 21 7968 1
36875 11 43976 1 6312 12 10244 1
46888 13 6320 12 11383 1
51502 11 8147 6
52449 8 8960 12
55739 10 9956 13
58441 12 9964 5
70367 1 12483 8

12638 1
14275 1
16127 1

Total 10,000 Total 10,000 Total 10,000 Total 10,000

Table 2.5: Outflow volume distribution, collisions
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Figure 2.5: Maximum penetration histogram, collisions

Figure 2.6: Damage length histogram, collisions
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Type SH40 SH150 DH40 DH150

number of nonzero z 4045 3183 1404 1026
number of nonzero yl 7467 7473 7454 7466
number of nonzero yt 7470 7478 7455 7467

Table 2.6: Nonzero output values from collision simulations

Draft Deadweight Tonnage Displacement
Name Hull Type (Meters) (Metric Tons) (Metric Tons)

SH40 Single 10.58 40,000 47,448
SH150 Single 16.78 150,000 175,907
DH40 Double 11.17 40,000 49,410
DH150 Double 17.12 150,000 175,940

Table 2.7: Tanker specifications, groundings

2.3 Groundings

In a grounding, a tanker collides at the bottom with an obstacle, in this case a cone-
shaped rocky pinnacle with a rounded tip (see Figure 2.7). The rock is assumed
fixed and strong enough never to suffer any damage. Specifications for the struck
ships in the grounding simulations differ slightly from those in collisions (see Table
2.7). An overview of compartment volumes for these ships is given in Tables C.5
through C.8 in the Appendix.

2.3.1 Input Data

The input variables in Table 2.8, along with fixed parameters such as ship dimensions,
plate thickness etc. are put into the grounding simulation. They are realizations of
random variables with specific probability distributions to form a specific grounding
scenario at the moment of impact.

• V is distributed as in Table 2.9.

• In the report accompanying the grounding study [21], the distribution men-
tioned for Od is different than the one found in the data. Therefore the latter
distribution will be used later on to get a correct fit.

• Oa is distributed along a ‘truncated’ Normal distribution with support on
the interval [15, 50]. Since the original report doesn’t state the mean nor the
variance of this normal distribution, it is assumed unknown and therefore a fit
for this variable will also be determined later on.

• Or is also characterized by a truncated Normal distribution on [0, 10]. Based on
the data, it is assumed that the mean of the original distribution is 5, meaning
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Figure 2.7: Grounding simulation

Input Variable Symbol Unit

Struck ship velocity v Knots
Obstruction depth from mean low water od Meters

Obstruction apex angle oa Degrees
Obstruction tip radius or Meters

Rock eccentricity c -
Tidal variation from mean low water τ Meters

Inert tank pressure p mm water gauge
Capture in ballast tanks b % of tank volume

Minimum outflow ν % of ruptured tank volume

Table 2.8: Grounding input variables
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Bin Bounds
Lower Upper Probability

0 5 0.25
5 8 0.45
8 15 0.08

15 16 0.20
16 20 0.02

Table 2.9: Velocity distribution, groundings

Bin Bounds
Lower Upper Probability

0 0.7 0.50
0.7 1.7 0.35
1.7 2.5 0.15

Table 2.10: Tidal variation distribution

P (Or ≤ x) = 1 − P (Or > 10 − x) for x ∈ [0, 10]. This variable will also be
fitted later on.

• Rock eccentricity C is defined as the obstruction distance relative from the
centerline, i.e. it is 0 if the obstacle hits the ship in the middle and 1 if it hits
on either port or starboard side. C has a uniform [0, 1] distribution.

• Tidal variation is distributed as in Table 2.10. Tank pressure, minimum outflow
and ballast capture are uniformly distributed on intervals [400, 1000], [0.5, 1.5]
and [0, 50], respectively.

2.3.2 Output Data

Once a grounding simulation is complete, it generates the output variables described
in Table 2.11. ’Elevation’ is the height of the obstruction tip above the ship’s bottom.
If k is the number of cargo compartments, z =

∑k
j=1 zc,j is the total outflow volume

(note that zc,j = 0 if compartment j is not damaged). The histograms of the output
variables yl1, yl2, yt, yv and z are displayed in Figures 2.8 through 2.11. Looking at
the histogram of yv (Figure 2.10), it seems that this variable is directly related to an
input variable. Indeed, when plotted as a function of obstruction depth od (Figure
2.12), it becomes clear that

yv = max(0, sd − od) (2.1)

where sd is the ship’s depth. From the figure, it can be seen that this holds for all
ship types.
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Variable Symbol Unit

Begin of longitudinal damage extent yl1 Meters aft from midship
End of longitudinal damage extent yl2 Meters aft from midship

Transversal damage extent yt Meters
Elevation yv Meters from bottom hull

Outflow volume per cargo compartment j zc,j Cubic meters
Volume captured in ballast tanks zb Cubic meters

Table 2.11: Grounding output variables

Figure 2.8: Longitudinal damage extent histogram, groundings
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Figure 2.9: Transversal damage extent histogram, groundings

Figure 2.10: Elevation histogram, groundings
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Figure 2.11: Total outflow volume histogram, groundings

Figure 2.12: Scatterplot of obstruction depth vs. elevation, all ship types



Chapter 3

Collision Model

3.1 Overview

The simulated collision data discussed in Chapter 2 is used to construct a model that
calculates outflow volume given a collision scenario. The essence of this model is to
establish a relation between known input and output datapoints that are present in
the given sample set, i.e. between velocity, collision angle etc. and oil outflow volume,
so that outflow can be calculated for any given collsion scenario using these variables.

Just searching through a set of 40,000 datapoints is not practical; furthermore, if the
specific scenario is not included in the 40,000 that were simulated, one would need
to be able to interpolate between datapoints. A subsequent issue is that directly
linking a set of input variables to outflow volume is not ideal. There are only a
handful of different outflow values due to the assumption that all oil in a damaged
compartment is lost; the limited number of compartments results in limited possible
outflow outcomes. Also, in a high number of cases there is no outflow at all.

Since data on the size of the damaged area is available, as well as ship designs used
in the simulations, it would be useful to include these aspects into the model.

3.1.1 Model Structure

The collision outflow model is ordered into sequential steps. Given the data obtained
from collision simulations, the model should

1. calculate the damage extent to the struck ship given arbitrary scenario input
variables;

2. determine the occurrence of rupture given damage extent;

3. calculate the oil spill volume given rupture.

22
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Instead of a model that directly relates outflow volume to input variables, this one
is not limited to the scenarios that were generated in the simulations. Also, it makes
use of not only outflow data z but also damage data yl and yt. Furthermore, it
makes use of the different types of data in a sequential fashion. Since data exists
for four different ship types, four different collision models will be developed, each
estimating the accidental outflow volume based on specific ship type -either single or
double hull- and deadweight tonnage -either 40,000 or 150,000. Finally, combining
simulation datasets results in generic models for single hull and double hull ships,
i.e. models where the struck ship design is not fixed but defined by an additional
variable. Thus in total, six models will be developed: four based on a particular
design and two a combination of those.

In essence, this model allows interpolation between collision scenarios and between
small and large ships of the same type (single hull or double hull).

Developing the outflow model requires several data analyses to be performed. Figure
3.1 gives a schematic overview of this model and the accompanying analysis in three
sequential steps. It shows that the available simulation data is fed into different ana-
lytical methods in the analysis part (left); each of which is linked to a corresponding
calculation method in the calculation part (right).

In the following sections discuss the choice of analytical methods and how they were
performed.

3.1.2 Regression Analysis

The usual method of obtaining a relationship between sample sets is through regres-
sion analysis. The input variables are known as predictor- or independent variables;
the output variable is called the response- or dependent variable. Analysis results in
a regression model. Appendix A goes into more detail on various regression models.

3.1.3 Statistical vs. Practical Significance

Goodness-of-fit tests can be useful in determing whether it is suitable to fit a the-
oretical regression model to a dataset. However, these tests deal with statistical
significance, while the practical significance of a model might be a more relevant
issue:

“The question is not whether the input model is absolutely correct; it is
whether the input model is adequate for the analysis at hand. [. . . ] The
fallacy of the goodness-of-fit test is made obvious when a large real-world
data set it fitted to many classical distributions and all are rejected; all are
rejected because the large sample size yields large power and the error in the
model is indeed statistically significant.” [18]
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Figure 3.1: Collision outflow model overview
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Because this report works with large datasets, validity of the models’ significance is
based on an “intuitive” judgment rather than statistical tests, although the latter
will be taken into account.

3.2 Defining Predictor Variables

The input variables in the collision simulation sample (v1, v2, m1, φ, l, t) could be
directly used in regression; however, transforming them into other variables might
result in a more natural, meaningful representation of a collision scenario. For ex-
ample, a higher striking ship velocity (v1) alone does not necessarily lead to a higher
outflow probability or a larger damage area; this outcome also depends on the ori-
entation of the striking ship against the struck ship (represented by collision angle
φ). In this section, the predictor variables to be used in regression are obtained from
the variables in the dataset.

Intuitively, when travelling at the same speeds, a heavy ship will release more kinetic
energy in a collision than a light one; and and a fast-moving ship will release more
kinetic energy than a slow-moving one with the same mass as the former. There-
fore it is plausible that damage extent in a collision is related to kinetic energy. A
relationship between dissipated energy in a collision and damage volume has been
established empirically by Minorsky [15].

Important is the relative direction of motion. If two colliding ships travel in the same
direction, less energy is released on collision than when going in the opposite direc-
tion. Also, since the striking ship collides under a certain angle, the inflicted damage
varies depending on this angle. If it is very oblique, the striking ship will cause less
damage than when it strikes perpendicular to the struck ship’s longitudinal axis.
Hence, it it critical that the energy variable(s) to be developed take into account
relative velocities in the travelling direction of the struck ship and the collision angle
to be effective in an analysis.

To accomodate this, a decomposition of kinetic energy into a tangential and perpen-
dicular component is proposed.

Kinetic Energy

The kinetic energy of a body represents the amount of energy that is being released
when this body is brought from a moving state to a full stop.

The total kinetic energy ek of a system consisting of n separate masses m1, . . . ,mn

in a space is defined as

ek =
n∑

j=1

1
2
mjv

2
j (3.1)
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where vj is the speed of mj and ~vj is the corresponding velocity vector with vj =
‖~vj‖ =

√〈~vj , ~vj〉.

The coordinate system (x, y) used in the simulations is two-dimensional and defines
the coordinate system’s origin (0, 0) as midship of the struck ship at the moment
of collision. The struck ship, at that point, travels with speed v2 in the positive
x-direction; the striking ship moves towards the struck ship under an angle φ at
speed v1 (see also Figure 2.3). The corresponding velocity vectors are then:

~v1 = (−v1 cosφ,−v1 sinφ) (3.2)
~v2 = (v2, 0) (3.3)

It is noteworthy that the y-components of the velocities are perpendicular to the
struck ship’s direction of motion, and that the x-components are tangential to it.
Considering the ships as separate masses, total kinetic energy becomes

ek =
1
2
m1v

2
1 +

1
2
m2v

2
2 (3.4)

This term can be decomposed into perpendicular and tangential components, ek,p

and ek,t, respectively:

ek,p =
1
2
m1(v1 sinφ)2 (3.5)

ek,t =
1
2
m1(v1 cosφ)2 +

1
2
m2v

2
2 (3.6)

It follows that ek = ek,p + ek,t. However, this decomposition does not discriminate
in relative direction of motion. If two ships collide at certain speeds and φ = 0◦, ek,t

will have the same value as when they travel at the same speeds and φ = 180◦. In
Figure 3.2, it can be seen that in the left situation, a lot less damage will be inflicted
as opposed to the right situation because of the difference in tangential velocity,
although ek,t as defined in Equation 3.6 stays the same. Therefore, a modified
definition of tangential kinetic energy could be introduced:

ek,t =
1
2
m1κ(φ)(v1 cosφ)2 +

1
2
m2v

2
2 (3.7)

where

κ(φ) =





1, 0 < φ ≤ π
2

−1, π
2 < φ ≤ π

(3.8)

However, in that case ek,p and ek,t do not sum up to ek when κ(φ) = −1 and is thus
not consistent with the kinetic energy formulation of a set of seperate bodies. From
this argument, the notion arises that the difference in perpendicular and tangential
velocities has to be taken into account. Consider the following:

ek =
1
2
m1v

2
r +

1
2
m2v

2
2 (3.9)
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Figure 3.2: Tangential velocity difference

which might be decomposed into

ek,p =
1
2
m1v

2
p (3.10)

ek,t =
1
2
m1v

2
t +

1
2
m2v

2
2, (3.11)

where
~vr = ~v2 − ~v1 = (v2 + v1 cosφ, v1 sinφ) = (vt, vp)

is the velocity of the striking ship relative to the struck ship’s velocity. However, con-
sider again two ships travelling in the same direction with exactly the same speed.
No collision damage will occur, but this decomposition will not accomodate that
scenario.

Hence, it appears that interpreting the vessels as seperate bodies does not lead
to a set of predictor variables with the desirable properties. To get a consistent
decomposition of kinetic energy that holds up to the concepts mentioned at the
beginning of this subsection, one should consider the two ships to represent a single
mass at the exact moment of impact with a residual velocity that is the vector sum
of the velocities of the individual vessels. Now imagine a measure of kinetic energy
that represents the “collision kinetic energy”, being the kinetic energy that can be
released in a collision in perpendicular and tangential directions:

ek = ek,p + ek,t =
1
2
mtotv

2
r (3.12)

where

ek,p =
1
2
mtotv

2
p (3.13)

ek,t =
1
2
mtotv

2
t (3.14)
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and mtot = m1 + m2. It is important to mention that, using this kinetic energy
model, two ships travelling in the same direction at the same speed will result in
zero kinetic energy upon collision, regardless of their masses.

Location

The relative collision location l possibly has an influence on the ability to convert
the perpendicular motion of the striking ship into rotational motion of the struck
ship can be determined. If a collision occurs at the bow or stern, more kinetic
energy is transformed into rotation of the struck ship around the vertical axis. When
the collision instead occurs near midship, the struck ship is less able to transform
perpendicular motion into rotation. A new variable l′ is introduced that indicates
how far a collision takes place from midship of the struck ship:

l′ =
∣∣∣ l − 1

2

∣∣∣ (3.15)

Striking Ship Type

The striking ship type t determines the mass, dimensions and other parameters of the
striking ship. t itself cannot be used as a predictor variable because it qualifies rather
than quantifies a ship’s characteristics (“type” cannot be measured whereas, for ex-
ample, “mass” or “length” can). Since dimensions are directly related to mass [3],
and since mass is already taken up in ek,p and ek,t, the only variable that could
further represent t is the bow half entrance angle η.

η affects the striking ship’s ability to penetrate te struck ship. The sharper the angle,
the higher the probability that the striking ship will penetrate the struck ship, and
the further the striking ship will penetrate.

Combined Model Variable

In the combined collision models the single hull datasets (SH40, SH150) and double
hull datasets (DH40, DH150) are combined into combined single hull and double
hull datasets (SHCOM, DHCOM). These datasets are thus twice as long as the
original ones and represent simulation data for a generic single hull or double hull
ship. Because the variables in these sets do not present explicit information on the
origin of the data -i.e., which dataset it belonged to originally- an additional variable
will be added that improves the quality of the regression model. This variable, d,
represents either the length or the width of the ship (depending on which dependent
variable it is used on in regression, e.g. yl or yt). In a sense, it is an indicator variable,
indicating ship type, but because it d ∈ R it can be used in regression among the
other variables.
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3.3 Transformation of Predictor Variables to CDF

Now there are four variables defining the input of a collision event for four types of
tankers, and five variables for two combined tanker designs. Each set of predictor
variables (ei

k,p, e
i
k,t, l

′i, ηi, di), for all i ∈ {1, . . . , n} can be seen as realizations of ran-
dom variables Ek,p, Ek,t, L

′,H and D. Their corresponding cumulative distribution
functions (CDFs) are FEk,p

, FEk,t
, FL′ , FH and FD. Instead of taking the predictor

variables as they are, all realizations for each variable are transformed through their
CDF values, resulting in the transformed predictor variables

x1,i = FEk,p
(ei

k,p),

x2,i = FEk,t
(ei

k,t),

x3,i = FL′(l′
i), (3.16)

x4,i = FH(ηi),
x5,i = FD(di),

∀i ∈ {1 . . . , n}
The rationale behind this transformation step is as follows:

• The transformed variables are in the domain [0,1], increasing numerical stabil-
ity in regression computations.

• The transformed variables are dimensionless, since a CDF typically represents
the probability of an event. Any regression analysis performed on these vari-
ables will yield parameters that have the same dimension as the response vari-
able.

Note that the CDFs for variables l′ and η are the same in all collision models, even
in the combined ones, but not ek,p and ek,t because the masses of the struck ships
vary. Since d only plays a role in the combined models, it is not used in the other
ones. Figure 3.3 gives an overview of the transformation steps converting the original
variables to predictor variables to be used in the regression analysis.

3.3.1 CDFs of Ek,p, Ek,t

Ek,p and Ek,t are stochastic variables composed of other stochastic variables, as can
be derived from Equations 3.13 and 3.14:

Ek,p =
1
2
(M1 + m2)V 2

1 sin2 Φ (3.17)

Ek,t =
1
2
(M1 + m2)(V2 + V1 cosΦ)2 (3.18)

Because of the complexity of these equations, it is difficult to find the exact distribu-
tion functions FEk,p

and FEk,t
. An alternative would be to use the empirical CDFs
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Figure 3.3: Transformation of input variables to predictor variables

of Ek,p and Ek,t, which is found by looking at the distribution of the realizations of
these random variables (see Appendix B). Since n = 10, 000 and thus sufficiently
large, the empirical CDFs for Ek,p and Ek,t would be excellent approximations for
the real CDFs because of the strong limit properties of the empirical CDF.

Herein, however, also lies also a weak point: since there are 10, 000 realizations for
Ek,p and Ek,t, it would be cumbersome to implement their empirical CDF in the
application of the outflow model: each time it is invoked, up to 10,000 values have
to be looked up from a table containing the realizations, which will lengthen the
run time of a application using the model significantly and makes the model higly
unportable, i.e. these values have to be stored somewhere.

Therefore, it’s better to find a parametric fit to the empirical CDF, which, in the case
of a closed-form parametric fit, would require a calculation time that is magnitudes
less than using empirical CDFs. A parametric CDF to fit a random variable X is
denoted by FX(x|α), where α is a set of parameters that define the function’s char-
acteristics. For Ek,p and Ek,t, numerous options exist for a parametric distribution.
The Weibull distribution (see Appendix B) does a good job, is only nonnegative, is
closed-form and is shaped by two parameters instead of 10,000 realizations of ran-
dom variables.

Fits for FEk,p
and FEk,t

were generated using Minitab: see Figure 3.4 for a compar-
ison between the Weibull and empirical CDF of perpendicular kinetic energy in the
SH40 case, and a probability plot that shows how well the data aligns with the fit.
In Table 3.1 the coefficients for all Weibull fits are given.

The drawback to using the Weibull fit is that the p-value for the Anderson-Darling
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SH40 SH150 SHCOM DH40 DH150 DHCOM

Ek,p α 0.4699 0.4724 0.4515 0.4699 0.4724 0.4514
β 320.3 1010 590.0 319.8 1010 589.4

Ek,t α 0.4546 0.4567 0.4379 0.4546 0.4567 0.4378
β 385.7 1217 709.9 385.1 1217 709.1

Table 3.1: Coefficients for Weibull fits, kinetic energy

test1 is very low, which essentially means that the use of the parametric CDF as
a fit for the empirical CDF has to be discarded. However, because the number of
datapoints is so high, the margin of acceptance becomes extremely narrow and it is
unlikely that any parametric fit would be accepted. For practical reasons, judging
a fit by ‘visual’ goodness-of-fit trumps the statistical test (as discussed in Section
3.1.3). In that view, the Weibull distribution is accepted. Alternative parametric
distributions, such as Gamma, Exponential (which is a special case of the Weibull
family) and Logistic have significantly worse fits (see Figure 3.5).

3.3.2 CDF of L′

Given that L ∼ Beta(1.25, 1.45), Equation 3.19 returns the exact distribution of L′

which was defined as L′ = |L− 1
2 |. See figure 3.6 for a graph of FL′ .

FL′(x) = P (L′ ≤ x)

= P (
∣∣∣L− 1

2

∣∣∣ ≤ x)

= P (−x ≤ L− 1
2
≤ x)

= P (
1
2
− x ≤ L ≤ 1

2
+ x)

= P (L ≤ x +
1
2
)− P (L ≤ −x +

1
2
)

= FL(x +
1
2
)− FL(−x +

1
2
) (3.19)

3.3.3 CDF of H

Since H only takes on three possible values, namely 17, 20 and 38 degrees, the best
transformation is the empirical CDF, which is given in Table 3.2 and Figure 3.3.3.

1The Anderson-Darling test puts up two hypotheses: one saying that the data follows the specified
distribution (in this case Weibull), and one saying that it doesn’t. A p-value below a certain level
of signifcance, here 0.05, pleads for the latter hypothesis.
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Figure 3.4: Probability plot & Weibull fit of empirical CDF, perpendicular kinetic energy,
SH40 case
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Figure 3.5: Probability plots of alternative parametric fits, perpendicular kinetic energy,
SH40 case

η Count FH(η)
17 2440 0.2440
20 5323 0.7763
38 2236 1.0000

Table 3.2: Empirical CDF of H
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Figure 3.6: Cumulative distribution function for L′

Figure 3.7: Empirical CDF of H
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3.4 Damage Extent

Now that the predictor variables have been defined, it is time to look at the effect
they have on damage extent. Damage extent is measured by two parameters: yl and
yt, or damage length and maximum penetration (the damage is assumed to extend
vertically along the entire depth of the ship). Assume that yi

l and yi
t are realizations

of random variables Yl and Yt. Given a set of predictor variables x, the goal is to
give an estimate of Yl and Yt:

Yl = hl(x) + Rl (3.20)
Yt = ht(x) + Rt, (3.21)

where the functions hl and ht give a conditional expected value for Yl and Yt and
Rl and Rt are random variables that give the variation in Yl and Yt that cannot be
“explained” by x. In linear regression, hl and ht are estimated by a set of coefficients
β = (β0, . . . , β5):

E(Yl|x) = hl(x|βl) = βl
0 + βl

1x1 + . . . + βl
5x5 (3.22)

E(Yt|x) = ht(x|βt) = βt
0 + βt

1x1 + . . . + βt
5x5 (3.23)

Regression analysis on the datasets {(x1, y
1
l ), . . . , (xn, yn

l )} and {(x1, y
1
t ), . . . , (xn, yn

t )}
yields the models

ĥl(x) = hl(x|β̂l) (3.24)
ĥt(x) = hl(x|β̂t) (3.25)

where β̂l and β̂t are found by minimizing the sum of squared residuals over βl and
βt:

min
βl

n∑

i=1

(yl
i − hl(xi|βl))2

min
βt

n∑

i=1

(yt
i − ht(xi|βt))2

(See Appendix A for a concise discussion about linear regression.)

Linear regression for Yl and Yt might not be adequate, because this would assume
the fitting of a flat slope through the data whereas the data shows a more curved
behaviour. For example, take the SH150 case. From Figure 3.8, it can be seen that
there is a strong nonlinear relationship between yt and x1 (the CDF of perpendicular
kinetic energy): instead of a straight line, a nonlinear curve would describe this
relation more accurately. Therefore linear regression is expanded to polynomial
linear regression to accomodate for curve fitting: besides x1, . . . , x5, their powers
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(up to a certain order) are introduced as predictor variables, giving an extended set
of variables

x =

(x1,. . . ,x5,
x2

1,. . . ,x
2
5,

...
xp

1,. . . , xp
5)

(3.26)

Where p is the polynomial order. Note that polynomial linear regression is the same
as linear regression: the solution is linear in the coefficients βl and βt of hl and
ht, respectively. Polynomials were chosen because of their flexibility as a nonlinear
function and because they are easy to integrate into linear regression.

What has to be noted is that the variation in yt is small for low values of x1 and large
for high values of x1, which is an undesirable effect. However, when transforming
yt by taking the natural logarithm, residual variation is much more constant: see
Figure 3.9. Other transformations, such as taking the root, are possible as well.
The natural logarithm is chosen typically to remove heteroscedasticity in residual
performance which it achieved in this case; moreover, it gives reasonable regression
fits.

Because ln(0) does not exist, all zero values of yl and yt are removed from the dataset.
From now on in this section, the datasets (xj , y

j
l ) and (xj , y

j
t ) are used, with

j ∈ J ⊂ {1, . . . , n}

such that yj
l > 0 and yj

t > 0 for all j ∈ J .

In Minitab, the linear regression for ln yl and ln yt is performed in three steps:

• First, a stepwise regression algorithm sequentially adds and deletes variables
until a suitable set of predictor variables is obtained. The algorithm inserts
variables based on a statistical significance test that requires an assumption of
normality of the residuals. This technique is commonly applied even though
the algorithm does not test for normality of residuals.

• After a set of candidate variables have been determined by the stepwise re-
gression a best subset regression is performed on this set of variables. A best
subset regression algorithm determines which superfluous variables can be re-
moved from the previously obtained set without compromizing its quality, re-
sulting in a best subset of variables. The removal of variables from subsets is
heuristically determined by looking at each subset’s Mallows’ Cp-value, which
indicates possible overfitting of a regression model. Mallow’s Cp allows the
residual distribution to be nonnormal for this method to work. (Alternatively,
it would be possible to remove variables based on significance testing, but this
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Figure 3.8: Matrix plot of yt against x, SH150 case

Figure 3.9: Matrix plot of ln yt against x, SH150 case
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assumes normality of residuals.) A widely accepted approach is that subsets
with N variables are suitable for regression when N < Cp < 2N , of which the
subset with lowest number of variables is chosen [2].

• Third, linear regression analysis is done using this reduced best subset of vari-
ables, resulting in coefficients β̂. Now, the multiple polynomial functions ĥl

and ĥt express the expected value of lnYl and lnYt conditioned on the set of
input variables x:

hl(x|β̂l) = β̂l
0 + β̂l

1,1x1 + . . . + β̂l
1,5x5 +

β̂l
2,1x

2
1 + . . . + β̂l

2,5x
2
5 +

. . . +
β̂l

p,1x
p
1 + . . . + β̂l

p,5x
p
5 (3.27)

In this study, p = 5 was chosen. The set of coefficients β̂l and β̂t for hl and ht,
resulting from the regression analysis, can be found in Tables D.1 and D.3.

Correlation between Predictor Variables

When variables are correlated, some problems might appear that affect the over-
all robustness of a regression analysis. But even with very strong correlation (or
multicollinearity) between predictor variables, the predictive value of the regression
model may still be good as long as predictions are based on combinations of these
variables [13]. The correlation matrix between x1, . . . , x4 is as follows in the SH150-
case:

x1 x2 x3

x2 0.30
x3 0.01 −0.01
x4 0.02 −0.03 −0.02

There is only some positive correlation between x1 and x2 (as could be expected, since
they are the CDFs of perpendicular and kinetic energy, which share some common
variables such as speed and mass). Therefore, one should be cautious when using
the coefficient estimates to explain the individual effects that their corresponding
variables have on damage extent.

Since powers of the predictor variables have been used as variables in the polynomial
linear regression, there is inevitable correlation between higher and lower powers.
This is only problematic for x5, which only takes 2 values: the CDF values of ship
length (or width) distribution. x2

5 is exactly collinear with x5 and leads to a division
by zero somewhere in the regression analysis. Minitab resolves these issues by means
of notification during the regression process.
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3.4.1 Fitting Residual Distribution

Now that the conditional expected value of lnYl and lnYt is known, the set of resid-
uals can be used to model the randomness of the data. The residuals rl and rt are
defined as

rj
l = hl(xj)− ln yj

l , ∀j ∈ J (3.28)

rj
t = hl(xj)− ln yj

t , ∀j ∈ J (3.29)

These sets can be seen as realizations of random variables Rl and Rt, respectively.
These variables are typically assumed to have a Normal distribution with mean 0;
this, however, is not a requirement of least squares estimation; in this case even,
a Normal distribution would not fit as can be seen from the resisual plots and his-
tograms in Figures 3.10 and 3.11. To this end, an alternative parametric distribution
is introduced: the Generalized Trapezoidal distribution (see Appendix B.4). This
distribution is fitted to the empirical CDFs of Rl and Rt by means of least squares.
Because the distribution function is nonlinear in its coefficients, the least squares fit
is approximated numerically. These coefficients are displayed in Table D.2 and D.4
in the Appendix.

The upper bound for the support of these distributions were found by determining
the highest possible value of ln yl and ln yt, which are restricted by respectively the
length and width of the tanker types involved. Since ln yl and ln yt have no lower
bound, the lower bounds for the GT distribution were determined by taking the
difference between the highest and lowest residual value found and substracting this
from the lowest residual value.

The quality of the fit can be measured by looking at the plot of the empirical CDF
against the fitted CDF (see Figure 3.12). When this plot is close enough to the
centerline (going from (0, 0) to (1, 1) in the graph) then the fit is a good representation
of the actual CDF of the random variable.

As can be observed, this is a very close fit; all other plots are similarly close to the
centerline.

3.5 Probability of Rupture

The next step is to relate this damage extent to the outflow volume, or rather the
occurrence of outflow. It is assumed that zero outflow (z = 0) implies no rupture.
Since occurrance of rupture this is a binary event (it either happens or it doesn’t)
the model should yield a measure of how likely rupture occurs, i.e. a probability of
rupture. Binary regression analysis on the dataset (yi

l , y
i
t, zi), i ∈ 1, . . . , n will yield

an expected probability of rupture conditioned on damage extent.
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Figure 3.10: Residual plots for yl resp. ln yl, SH150 case

Figure 3.11: Residual plots for yt resp. ln yt, SH150 case
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Figure 3.12: QQ-plot for the fit of residuals of ln yt, SH150 case

3.5.1 Binary Logistic Regression

Suppose the random variable Z expresses the outflow volume in a collision scenario.
The following variable is introduced:

Z ′ = 1(0,∞)(Z) =
{

1, Z > 0
0, Z = 0

(3.30)

In other words, if outflow occurs, Z ′ = 1, otherwise Z ′ = 0. Again, by assump-
tion, Z ′ = 1 means that rupture occurs. A binary logistic regression analysis (see
Appendix Chapter A) can now be done on this variable against variables yl and yt.
This analysis leads to coefficients that will be used in calculating the probability of
rupture (which is the expected value of rupture occurrence E(Z ′)) in the outflow
model.

However, since that calculation step comes after calculating damage extent (step
1), and since in the outflow model step 1 yields ln yl and ln yt, the binary logistic
regression will be done using the natural logarithms of damage length and maximum
penetration.

Note that the logarithms of observed datapoints are used, not expected values cal-
culated in Step 1 of the collision model. This results in a more accurate analysis
in the sense that an estimation error in the first step (polynomial linear regression)
does not propagate into the binary logistic regression.
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Figure 3.13: Scatterplot of z′ against ln yl and ln yt, SH40 case (left) and DH40 case
(right)

The regression model is expressed as follows:

E[Z ′| ln yl, ln yt] = π(ln yl, ln yt|β)

=
exp(β0 + βl ln yl + βt ln yt)

1 + exp(β0 + βl ln yl + βt ln yt)
(3.31)

It would have been possible to do binary logistic regression of Z ′ against predictor
variables x1, . . . , x5, i.e. the transformed variables used in determining ln yl and ln yt

in the previous section. However, this would mean reusing the same data again and
discard the information present in yi

l and yi
t.

In Figure 3.13, occurrence of outflow (z′) is plotted against ln yl and ln yt for SH40
and DH40 tanker types, respectively. Note that in the single hull case, outflow oc-
curs when damage extent is less severe than in the double hull case. From these
figures it can be observed that ln yl and ln yt are interdependent. This means that
any significance test on either one of these variables will be highly influenced by this
interdependency, and thus no results from these tests may be used to discard either
ln yl or ln yt from the binary logistic regression model.

The logistic function was chosen because it supports the behavior present in the data.
Its range is between 0 and 1, which is essential because it represents a probability,
and is monotonic (changing a predictor variable in a certain direction will either
increase or decrease the logistic function), This fits the data as the number of outflow
occurrences does not decrease when ln yl or ln yt go up.
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3.5.2 Validity of Binary Logistic Model

QQ-plot

Is the binary logistic regression analysis worth the effort–does it provide enough
information given the outflow data? Or would it be easier and simpler to determine
the occurrence of outflow (0 or 1) by chance? In other words, it has to be determined
if the resulting binary logistic model is different from a purely random model, i.e. a
model where an alternative oil outflow variable Z ′RND is Bernouilli distributed with
parameter p:

P (
{
Z ′RND = 1

}
) = p (3.32)

P (
{
Z ′RND = 0

}
) = 1− p, (3.33)

where

p =
# outflow events

# events
(3.34)

This hypothesis is tested by looking at the residuals of the expected probabilities
with the outflow data versus the residuals of the expected probabilities with the
randomly generated data. Two sets of residuals are determined from the binary
logistic regression above, {rOUT,i} and {rRND,i}:

rOUT,i = z′i − π̂(xi), i ∈ {1, . . . , n} (3.35)
rRND,i = z′RND,i − π̂(xi), i ∈ {1, . . . , n} (3.36)

Now, consider the empirical cumulative distribution functions of both residuals:

FOUT (x) =
1
n

n∑

i=1

1(−∞,x](rOUT,i) (3.37)

FRND(x) =
1
n

n∑

i=1

1(−∞,x](rRND,i) (3.38)

Both CDFs are set out against each other in a so-called QQ-plot (see Figure 3.14).
If the plot does not diverge significantly from the centerline, one may conclude that
the regression model concurs with both the available outflow data as with a ran-
domly generated set of outflows. In other words, the BLR model then gives little
information on whether the predictor variables, such as perpendicular kinetic en-
ergy, are significant in determining oil outflow. It would then be perfectly valid to
determine the occurrence of outflow by chance. As can be seen from the figure, this
is not the case.

It is quite possible that this methodology could be developed into a formal statistical
hypothesis test, i.e. how close would the QQ-plot have to be to the centerline where
one would say that the model doesn’t distinguish between “real” data and randomly
generated data?
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Figure 3.14: QQ-plot of probability residuals, SH150 case, collisions

Point-Biserial Correlation Coefficient

For now, the formal statistical model used to determine if the model should be re-
jected is the point biserial correlation coefficient rpb using “real” occurence of outflow
data and randomly generated data. rpb determines correlation between a continu-
ously measured variable (expectation of outflow Z ′, as calculated in the binary lo-
gistic regression) and a dichotomous variable (the actual occurence of outflow values
z′):

rpb =
M1 −M0

sn

√
n1n0

n2
, (3.39)

where

sn =

√√√√ 1
n

n∑

i=1

(z′i − z̄′)2, (3.40)

is the standard deviation of z′, n1 and n0 are the number of occurrences of 1 and 0
in z′, respectively, and M1, M0 are the mean values of Z ′ conditioned on the value
of z′ (either 1 or 0, respectively).

The statistic for assessing the significance of rpb is

t = rpb

√
n1 + n0 − 2

1− r2
pb

.
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Figure 3.15: Bulkhead placement

If P (T > t) < α, where T follows an unpaired Student’s t-distribution with n1+n0−2
degrees of freedom, then the null hypothesis is rejected, i.e. the binary logistic model
should be accepted.

The same thing can be done with random data: z′ is then replaced by z′RND which
is generated in the same way as with the QQ-plot methodology.

The p-values for these tests (random an non-random) can be found in Table D.6.

3.6 Outflow Volume

Based on damage length, maximum penetration and collision location, the last sec-
tion of the model involves calculating the oil outflow volume given that penetration
has occurred and damage length and maximum penetration have been calculated.

3.6.1 Determining Damaged Area

As opposed to the original simulation, the model makes the assumption that the
damaged area is a rectangular volume. Its longitudinal and transversal dimensions
determined respectively by damage length (yl) and maximum penetration (yt). It
is also assumed that damage occurs over the entire vertical extent of the ship, so
this has no influence in the outflow volume. Furthermore, each compartment that
coincides with the damaged area is assumed to lose all its oil. This differs from
the original simulations, where the damaged area is not necessarily rectangular (see
Figure 2.4).

For all four struck ship models, compartment configurations are available in the form
of transverse and longitudinal bulkhead coordinates and compartment volumes. A
schematic of one of these configurations is given below in Figure 3.15. Table C.9 in
the Appendix gives the bulkhead coordinates.
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Figure 3.16: Collision location (l) and damage length (yl) are known, start and end
position (yl1, yl2) are unknown.

Determining Longitudinal Bounds

In each accident scenario, the longitudinal position of the damaged area is determined
by the relative collision location l. However, neither a starting coordinate nor ending
coordinate are present in the output data. Therefore these coordinates yl1, yl2 have
to be calculated by using ship length s, damage length yl and a weight θ (see also
Figure 3.16):

yl1 = (1− θ)yl + (1− l)s, (3.41)
yl2 = −θyl + (1− l)s, (3.42)

θ ∈ [0, 1]

yl1 and yl2 are measured from the forward perpendicular because all bulkhead lo-
cations are given from this point as well. If θ = 0, then all longitudinal damage is
behind the collision location as measured from the forward point. If θ = 1

2 , then
the collision location is in the middle of the longitudinal damage. If θ = 0, then all
longitudinal damage is in front of the collision location.

By taking original datapoints (li, yi
l , y

i
t), and calculating yl1 and yl2 for each i using

a particular θ, one can also calculate which compartments have been breached and
hence the total oil outflow z̃i. If this outflow differs from the outflow value in the
original data (zi), then the model is incorrect. Since the assumption holds that no
outflow implies no rupture, only cases where positive outflow occurs are taken into
account.

Counting the fraction q of correct cases for all datapoints is a metric for assessing
the quality of θ. Additionally, the average absolute error of outflow 1

n

∑ |z̃i− zi| and
conditional average absolute error of outflow can be assessed to this end.
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Figure 3.17: Determining position of damage location

The former measures the average error over all assessed cases, even if |z̃i − zi| = 0.
The latter conditions on cases where |z̃i − zi| > 0. The goal is to find a suitable
model for θ, and then optimize that model by maximizing q.

One can imagine a simple model:

θ =
1
2

(3.43)

i.e. in any situation, collision location will lengthwise always be in the middle of the
longitudinal damage. However, when the collision angle is very oblique, the striking
ship will probably cause the most longitudinal damage on one side of the collision
location. Therefore the following model for is introduced as a function of collision
angle φ (in degrees):

θ =
φ

180
(3.44)

In short, if φ is near 0 degrees, longitudinal damage extends backwards of the colli-
sion location; if φ = 90, the collision location is in the middle of longitudinal damage;
if φ is near 180, then longitudinal damage extends forward of the collision location.
In Figure 3.17 some examples are shown to clarify this model.

The proposed function is linear in φ, but an S-shape could be more appropriate as
one would think that collision location stays close to one end of the longitudinal
damage when φ < 90 and close to the other end when φ ≥ 90. Therefore one might
introduce an extra parameter n that describes this nonlinear behaviour:

θ(φ;n) =





0, φ = 0
1
2( φ

90)n, 0 < φ < 90
1− 1

2(180−φ
90 )n, 90 ≤ φ < 180

1, φ = 180

(3.45)

Note that this model includes the previous models. If n = 0, then θ = 1
2 . If n = 1,

then θ = φ
180 . For n < 0, θ will have a very unusual if not unrealistic profile, so this
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Figure 3.18: Determining position of damage location with added parameter

possibility is discarded. If n →∞, then

lim
n→∞ θ(φ;n) =

{
0, 0 ≤ φ < 90
1, 90 ≤ φ ≤ 180

(3.46)

Some profiles of θ for different values of n are shown in Figure 3.18.

Finally, one could argue that relative tangential velocity vt plays a role in determining
where longitudinal damage occurs relative to the collision location. If v1,x and v2,x

are the x-components of the striking and struck ships’ velocities, respectively, then
vt = v1,x−v2,x. If the striking ships moves faster than the struck ship in the direction
of the struck ship, then vt ≥ 0; if the striking ship moves slower in that direction,
then vt ≤ 0. The direction of vt should be a factor in the location of longitudinal
damage. So, to integrate relative velocity into θ, the following model is proposed:

θ(φ, vt;m, n) =





0, φ = 0
(1
2( φ

90)n)exp(mvt), 0 < φ< 90
(1− 1

2(180−φ
90 )n)exp(mvt), 90≤ φ< 180

1, φ=180

(3.47)

m determines how much influence vt has on θ. The use of the exponential allows
for positive and negative values of vt. Note that if m = 0 then θ is the same as
in Equation 3.45. If m 6= 0, then vt influences θ because this assumes that if the
striking ship moves faster than the struck ship, longitudinal damage is oriented for-
ward; otherwise it is oriented backwards. In Figure 3.19, the function θ(φ, vt; 1, 1) is
plotted to give an impression of this model.

The idea is now to find optimal values m̂ and n̂ for each ship design, i.e. values that
result in the highest fraction of correct outflow predictions q.

This maximization method is not easily solvable by general methods (the goal func-
tion invokes an algorithm to count the number of damaged compartments). Also,
q is not continuous. Therefore a “brute force” approach was chosen to find a local
maximum m̂, n̂ by taking a grid containing evenly spread values for m and n spread
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Figure 3.19: θ under different angles and relative tangential velocities
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out over heuristically determined intervals and counting the corresponding value of
q. After calulating these values, the values of m and n for which q was the highest
were used as midpoints of a narrower grid. This was repeated down to 3 significant
digits, beyond which it was deemed unlikely that any increase in significant digits
would lead to a higher maximum of q. The maximum values of q are given in Table
D.7.

3.7 Results

Damage Extent

Tables D.1 and D.3 show that the fits calculated for estimating the expected value
of ln yl and ln yt have R2-values between 68% and 75%. Interpreting these values as
a qualitative metric to explain variation in the response variable, this result means
that damage extent can be explained reasonably well by the input variables. The
smaller vessels give slightly better R2-values than the larger ones.

For ln yl, overall, x1 and x2 (representing kinetic energy) seem to account mostly
for this explanation when looking at the coefficients (note that these variables are
correlated). This fits with the idea that longitudinal damage extent is largely caused
by the released amount of energy in the tangential direction. However, x3 and x4

also come into play depending on ship type. A few selected graphs are displayed in
Figure 3.20 to show the difference between the effects of the variables on single hull
and double hull damage (in the combined cases).

For ln yt, x1 and x2 are again dominant in causing transversal damage. x3 (absolute
collision location relative from the center) is also a major factor but only for the SH
models. x4 (bow angle) has little influence overall on the transversal damage extent.
Again, this is a reasonably adequate argument for the notion that transversal dam-
age is caused mostly by the energy release in the struck ship’s perpendicular direction.

A switch in polarity and increase of magnitude of consecutive coefficients (for exam-
ple β3,1, β3,2, . . . , β3,5 in Table D.1) can be observed.

Especially for the DHCOM model and, to a lesser extent for SHCOM, the added
variable used to differentiate between the small ship dataset and the large ship’s one
seems not very significant for either ln yl or ln yt.

Probability of Rupture

Table D.5 presents the coefficients that determine the probability of rupture E(Z ′)
given ln yl an ln yt. Striking is the fact that the coefficient for transversal damage
(βt) is far bigger than βl in the DH models, and the reverse is true for the SH models
although to a far lesser extent; its coefficients are smaller (see also Figure 3.21).
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Figure 3.20: Effects of predictor variables on damage extent for a large ship using com-
bined models
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Figure 3.21: Expected probability of rupture as function of ln yl and ln yt, SH150 vs.
DH150

Also, in the latter, the intercept (β0) is closer to 0.

These observations make clear that, in this model, probability of rupture in double
hull ships is mainly due to transversal damage and that this probability does not
start to become siginificantly large until a certain level of longitudinal damage is
sustained; beyond this threshold, however, rupture becomes a near certainty. For
single hull ships, probability of rupture increases more gradually and becomes quite
large for modest damage extents.

The goodness-of-fit test values given in the table are mostly 0, meaning that —
strictly speaking— their corresponding fits should be rejected based on the tests. As
mentioned before, because of the large sample size, it is highly unlikely that any test
would accept these fits. The QQ-plot (see Figure 3.14 of the data residual vs. ran-
dom residual fits of the regression model show that the regression analysis matters in
determining probability of rupture. The point biserial correlation coefficient, com-
paring the model with the data, gives significantly high values in all cases (between
0.5 and 0.8), thereby rejecting the null hypothesis. Moreover, testing with random
data leads to a failed rejection of the null hypothesis.

Outflow Volume given Damage Extent and Rupture

By optimizing coefficients of a function that gives longitudinal damage location in
relation to collision angle and relative tangential velocity, correct outflow volumes
can be calculated with 95%—98% accuracy (see Table D.7). On average, this gives
an outflow error between 88 and 417 m3.
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The calculation method of start- and endpoints for longitudinal damage might be
improved upon by finding a more principled optimization algorithm. Also, for very
low and very high values of φ the model might not be accurate.



Chapter 4

Grounding Model

Since the grounding model follows the same principles as the collision model, it is
divided into three consecutive stages as well: based on the grounding input and
output variables presented in Chapter 2, the model is supposed to

1. calculate the damage extent to the struck ship given the scenario input vari-
ables;

2. calculate the probability of rupture given damage extent;

3. calculate the oil spill volume given rupture.

This model is represented schematically in Figure 4.1.

The damaged area determines which compartments are ruptured. When the dam-
age area overlaps a compartment it is assumed again that all its cargo is lost. Note
that this methodology differs from the grounding simulation methodology [21] which
this model is based on, because the latter invokes hydrostatic balance equations to
determine final outflow volume. Another difference with the collision model is that
no detailed analysis can be performed in determining damage locations, since the
grounding simulation study does not provide bulkhead locations describing compart-
ment locations.

In total, six different grounding models will be developed: four models based on
individual tanker types and two combined models that are each based on simulation
data from two tanker types.

4.1 Defining Predictor Variables

Kinetic Energy

Again, the grounding input variables can be transformed into predictor variables.
Just as with collisions, kinetic energy is a desired variable to include in the grounding

54
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Figure 4.1: Grounding model schematic
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model. Since groundings are head-on, and includes only one moving object, kinetic
energy is defined as

ek =
1
2
mv2 (4.1)

where m is the ship’s mass and v its speed.

Obstruction Variables

Obstruction apex (oa), obstruction depth (od), obstruction tip radius (or) and rock
eccentricity (c) are straightforward variables and could have a strong influence on
damage size. oa, od and or describe the obstruction geometry and thus have a direct
relationship with damage, whereas c describes how well a tanker can convert the
tanker’s longitudinal motion into other degrees of freedom. If c = 0, the rock tip
is located at the centerline of the ship, making it difficult for the forward motion
to change into a yawing or rolling motion. However, if c = 1 the rock tip is at
either port or bow and leaves some leverage for the tanker to turn, thereby reducing
forward speed and thus kinetic energy.

Other Variables

Since it is assumed that a breached compartment loses all its cargo, variables such as
minimum outflow percentage ν and ballast tank capture b have no influence on the
total amount of outflow. Furthermore, inert tank pressure p is unlikely to influence
outflow since its maximum value (1000 mm water gauge) corresponds to approxi-
mately 0.1 atmosphere. This pressure refers to the inert gas that is added to the
air in cargo compartments to prevent accidental combustion. Overpressure in the
compartments might increase grounding damage and thus influence the probability
of outflow or the size of the damage area, but since the tanks are assumed 98% full,
the case can be made that the volume of air is too small to be of any influence; p
should not make any difference to this argument. Finally, tidal variance τ is used
in hydrostatic balance equations which is ignored in this study’s grounding models.
Hence, ν, b, p and τ will not be used as predictor variables in the model.

4.1.1 Transformation of Predictor Variables

As with the collision model, the predictor variables are transformed over their cu-
mulative distribution functions. In some cases, these CDFs are known exactly: in
other cases, a parametric distribution has to be fitted.

Kinetic Energy

Because the struck ship’s mass m is a constant (four different masses are used for
the four different ship types), kinetic energy is proportional to velocity squared:
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ek = 1
2mv2. The probability distribution of v is known from Table 2.9. From this,

the probability distribution of the kinetic energy random variable Ek kan be derived:

P (Ek ≤ x) = P (
1
2
mV 2 ≤ x)

= P (V ≤
√

2x

m
)

=





0,
√

2x
m≤ 0

1
20

√
2x
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√
2x
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1
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20 (
√

2x
m − 5), 5<

√
2x
m≤ 8

7
10+ 2

175 (
√

2x
m − 8), 8<

√
2x
m≤15

39
50+ 1

5(
√

2x
m − 15), 15<

√
2x
m≤16

49
50+ 1

200(
√

2x
m − 16), 16<

√
2x
m≤20

1,
√

2x
m >20

(4.2)

This distribution is used only for the SH40, SH150, DH40 and DH150 models. For
the combined models (SHCOM and DHCOM), combining the kinetic energy dataset
gives a different probability distribution:

P (Ek ≤ x) =
1
2
[P (Ek1 ≤ x) + P (Ek2 ≤ x)] (4.3)

Where Ek1 represents the kinetic energy of the smaller ship (SH40 or DH40) and Ek2

the one belonging to the larger ship (SH150 or DH150), both following a distribution
as in Equation 4.2. The probabilities are weighted equally because the datasets are
equally large.

Obstruction apex

A parametric distribution is fitted to the realizations of Oa because it is a truncated
Normal distribution with unknown mean and variance. A generalized power distri-
bution (see Appendix B.3) was chosen because it has a closed-form mathematical
expression and is very flexible for a distribution that has bounded support. The
coefficients of the fit are described in Table 4.1.

The fit is chosen by means of the least squares sum method, with n the same on
each side to ensure the fitted probability distribution function is continuous. a and
b were fixed, leaving α, m and n the coefficients to be determined. See Figure 4.2
for a QQ-plot that compares the fit with the cumulative CDF of Oa.

The parameters for the GP distribution of Oa are listed in Table 4.1.
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Figure 4.2: QQ-plot, Empirical vs. Parametric CDF, Oa

Figure 4.3: QQ-plot, Empirical vs. Parametric CDF, Or
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Coefficient Value

a 15
m 19.557
b 50
α 1.186
n 4.018

Table 4.1: Coefficients for GP distribution of Oa

Coefficient Value

a 0
m 5
b 10
α 1.507
n 2.379

Table 4.2: Coefficients for GP distribution of Or

Obstruction Tip Radius

For Or the generalized power distribution was selected for fitting since the original
distribution is a truncated Normal as well. Since the probability distribution is
symmetric around the mean 5, the fit is optimized by means of the least squares
sum method with fixed mean and unknown variance. See Figure 4.3 for a QQ-plot
that compares the fit with the cumulative CDF of Or. The parameters for the GP
distribution are listed in Table 4.2.

Obstruction Depth

By analyzing the grounding data, it is clear that obstruction depth Od has CDF

P (Od ≤ x) = FOd
(x) =

1
400

x2, x ∈ [0, 20] (4.4)

(see Figure 4.5), which is validated by plotting this CDF against the empirical CDF
obtained from the Data (Figure 4.4).

Rock Eccentricity

Rock eccentricity C is distributed uniformly on the interval [0, 1].

So now each set of predictor variables (ei
k, o

i
d, o

i
a, o

i
r, c

i, di) for all i ∈ {1, . . . , n} can
be seen as realizations of the aforementioned random variables Ek, Od, Oa, Or, C
and D. Their corresponding CDFs are FEk

, FOd
, FOa , FOr , FC and FD which are

given. The realizations are transformed through their corresponding CDF functions,
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Figure 4.4: QQ-plot, Empirical vs. Theoretical CDF, Od

Figure 4.5: Obstruction depth distribution: fit vs. data
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od // x2

oa // x3

or // x4

c // x5

d // x6

Figure 4.6: Transformation of input variables to predictor variables

resulting in the following transformed predictor variables:

x1,i = FEk
(ei

k)
x2,i = FOd

(oi
d)

x3,i = FOa(o
i
a)

x4,i = FOr(o
i
r) (4.5)

x5,i = FC(ci)
x6,i = FD(di)

∀i ∈ {1 . . . , n}

An overview of the transformation steps from input variables to predictor variables
is given in Figure 4.6.

4.2 Damage Extent

The damage extent given input variables is determined by polynomial linear regres-
sion on the available datasets, just the same as in the collision model. Assuming that
yi

l and yi
t are realizations of random variables Yl and Yt, polynomial linear regres-

sion determines the expected values of these variables conditioned on input variables
xi = (xi,1, . . . , xi,6). Again, the logarithm of damage extent variables (yl and yt) is
taken to ensure the correct application of linear regression. Since obstruction ele-
vation yv is directly related to obstruction depth od, there is no need to do linear
regression on this variable.
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Figure 4.7: Residual plots for ln yl, SH150 case

lnYl is given as follows:

lnYl = hl(x|βl) + Rl

= βl
0 + βl

1,1x1 + . . . + βl
1,6x6

= + . . .

= +βl
p,1x

p
1 + . . . + βl

p,6x
p
6 (4.6)

(lnYt is expressed analogously.) For this linear regression, p = 5 was chosen with
the same procedure for selecting variables as in the collision model. The coefficients
found by minimizing the sum of squares β̂l and β̂t can be found in Appendix E.
Figures 4.7 and 4.8 show the residual plots.

4.2.1 Fitting Residual Distribution

This analysis is exactly the same as in the collision chapter. Residuals are treated as
realizations of random variables Rl and Rt. The distributions of these variables are
approached by the cumulative CDFs determined by the realizations, which in turn
are fitted by a generalized trapezoidal distribution using a least squares method. The
coefficients of this distribution are found in Tables E.3 and E.4 for ln yl and ln yt,
respectively. The QQ-plot of the empirical vs. the GT distributions of the residual
Rt is plotted in 4.9.



CHAPTER 4. GROUNDING MODEL 63

Figure 4.8: Residual plots for ln yt, SH150 case

Figure 4.9: QQ-plot of empirical vs. parametric CDFs of rt, SH150 case
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Figure 4.10: z′ vs. ln yv, DH150 case

4.3 Probability of Rupture

The probability of rupture given grounding damage is determined by binary logistic
regression of the occurrence of outflow, just the same as in the collision model. Again,
the assumption goes that no outflow means no rupture. However, from the three
variables that determine grounding damage - yl, yt and yv - only yv has positive values
when z′ = 0, i.e. when there is no outflow. This means that when transforming these
variables by taking the natural logarithm, zero values of yl, yt cannot be used and
leaves only those cases where outflow occurs. But binary logistic regression requires
that all possible values of z′ are present in the data, making regression on z′ by yl

and yt impossible. Therefore, binary logistic regression is carried out with only one
predictor variable, ln yv, resulting in the following model:

E(Z ′| ln yv) =
exp(β0 + βvyv)

1 + exp(β0 + βvyv)
(4.7)

In Figure 4.10 the occurrence of outflow z′ is plotted against ln yv. Results are given
in Table E.5.

The significance of this model against a purely random model is measured again
by looking at the departure of the residuals of this model with the current dataset
against the residuals of this model with a Bernouilli generated dataset (which gen-
erates 1’s with probability p and 0’s with probability 1− p, p being the frequency of
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outflow occurrence).

For formal significance testing, the point-biserial correlation coefficients are tested
in the same way as in collisions, for the real data and randomly generated data.
Results of these tests are in Table E.6.

4.4 Outflow Volume

Both start and end locations (yl1 and yl2) appear in the original dataset for longitu-
dinal damage extent. However, because yl1 = 0 in an overwhelming amount - above
98.5% and 94% in SH and DH cases, respectively - it is assumed in the modelling of
oil outflow that yl1 = 0.

There is no data available on innermost and outermost edges of transversal damage
extent yt1 and yt2 but it is assumed that these factors are determined as

yt1 = (
1
2

+ c) · sb − 1
2
yt (4.8)

yt2 = (
1
2

+ c) · sb +
1
2
yt (4.9)

Unlike in the collision model, there are no bulkhead locations given for the ship
types in groundings so there is no way to validate these assumptions directly. When
the grounding bulkhead locations are set to be the same as with collisions (as in
Table C.9) there is a poor match with the real data w.r.t. which compartments are
damaged.

Furthermore, setting the damaged area equal to a rectangular volume with dimen-
sions yl, yt and yv at the determined coordinates, all compartments coinciding with
this volume will be assumed ruptured and all oil from these compartments is assumed
lost.

4.5 Results

4.5.1 Damage Extent

By looking at the coefficients in Table E.1, ln yl is by far the most dependent on
kinetic energy (x1) in the polynomial linear regression model. Obstruction depth
(x2) and tip radius (x4) to a much lesser extent with some minor significance to
rock eccentricity in the DH models. The R2-values are high: around 93% for all
SH models, and above 87% for the DH40 and DH150 models. Only the combined
DH model performs less according to this metric, but is still reasonably good at 79%.
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The regression results for ln yt (see Table E.2) are even better in this view: all six
models have R2-values ranging between 90% and 94%. x4 is the most influential
variable, followed by x2. A simple explanation for this is the fact that

• a bigger tip radius makes a bigger hole;

• because its shape is broader at the base, the rock will create more transversal
damage if its tip is at lower depth;

• a higher apex angle means a broader cone base and thus creates a bigger hole.

Finally it should be noted that in the combined models for ln yl, the added variable
(x6) doesn’t play a big role and shows a negative relationship. In ln yt, this variable
is more substantial.

In Figure 4.12 some graphs are plotted between predictor variables and response
variables yl (longitudinal damage extent) and yt (transversal damage extent) where,
for each graph, all other variables are fixed at 0.5. It appears that damage extents
are smaller for the SH40 case than for the SH150 case. It can be seen that

Tip radius has a negative influence on damage length; this is because the force exerted
on the ship is greater when tip radius is larger. Note that longitudinal damage goes
down when the kinetic energy CDF increases in the last few percentiles. This is not
plausible and could be attributable to artifacting of the polynomial function.

4.5.2 Probability of Rupture

From Table E.5, it seems that the double hull ships are more resistant to rupture
(the lower values for β0 mean that the probability of rupture is near zero even for
a relatively high ln yv). Probability of rupture goes up fast after a certain threshold
has been reached (higher values for βv). A plot of all logistic fits are given in 4.11.
At least one of the goodness-of-fit tests for each binary logistic model give a p-value of
1 (see Table E.5), with the DH40 model scoring a p-value over 0.05 in all three tests.
The point biserial correlation coefficient gives significantly high values in all cases
(over 0.58), thereby rejecting the null hypothesis. Moreover, testing with random
data leads to a failed rejection of the null hypothesis.
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Figure 4.11: E(Z ′) as function of ln yv
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Figure 4.12: Effects of predictor variables on damage extent for a large ship using
combined models



Chapter 5

Calculation Examples

Now that the outflow models have been discussed, a collision example and a ground-
ing example are given to suggest how these models should be applied.

5.1 Struck Ship Configuration

To keep things simple, a single hull and double hull design are used in the examples
in this chapter, each sharing the same input variables. The struck ship parameters
that need to be configured are:

• Displacement

• Dimensions (length, breadth, depth)

• Bulkhead locations (longitudinal and transversal)

• Compartment volumes

For both collisions and groundings, a struck ship is chosen with 175,000 metric tonnes
displacement.

• The dimensions, bulkhead locations and compartment volumes for the collision
struck ships are determined according to the configurations of the SH150 and
DH150 tankers as specified in the collision section of Chapter 2.

• For groundings, the dimensions and compartment volumes are the same as in
the grounding section of Chapter 2; the bulkhead locations will be the same as
the collision struck ships.

The outflow models of choice will be the combined single hull (SHCOM) and com-
bined double hull (DHCOM). Because the struck ship dimensions are the same as
the large ships specified in Chapter 2, the dimensional variable d is set to 1 in all
models.

69
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Variable Value Unit

v1 12 knots
m1 50 × 1000 metric tons
v2 5 knots
φ 45 degrees
l 0.7 -
η 25 degrees

Table 5.1: Collision example variables

5.2 Collision Example

5.2.1 Input Variables

In a collision scenario, aside from the struck tanker’s parameters, six input variables
are needed to calculate expected damage size and expected probability of rupture.
In Table 5.1, five arbitrary input variables are given. These fall within the bounds
given by the probability distributions in Chapter 3.

Note that to obtain the collision models in Chapter 3, the variable t was involved
in determining bow angle η. In this section η is arbitrarily chosen directly instead.
This factually introduces a new striking ship type and shows the flexibility of the
collision model.

5.2.2 Transformations

Now, calculate ek,p and ek,t as in Equation 3.13:

ek,p =
1
2
(m1 + m2)(v1 sinφ)2

=
1
2
(50 + 175)(12 · 1

2

√
2)2

= 8100 (5.1)

ek,t =
1
2
(m1 + m2)(v2 + v1 cosφ)2]

=
1
2
(50 + 175)(5 + 12 · 1

2

√
2)2

= 20458 (5.2)

Calculate l′:

l′ = |l − 1
2
| = |0.7− 1

2
| = 0.2 (5.3)

Transforming these through CDFs from Chapter 3 gives the set of input variables
x = (x1, x2, x3, x4, x5):
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x1 = FEk,p
(ek,p) = 1− exp(−ek,p

β
)α (5.4)

x2 = FEk,t
(ek,t) = 1− exp(−ek,t

β
)α (5.5)

x3 = FL′(l′) = Beta(l′ +
1
2
|1.25, 1.45)−

Beta(−l′ +
1
2
|1.25, 1.45) (5.6)

x4 = FH(η) = 1 (5.7)
x5 = FDd = 1 (5.8)

Because the transformation parameters for ek,p and ek,t are almost the same for single
hull and double hull models, the transformations have (almost) the same values:

Single Hull Double Hull

x1 0.962 0.962
x2 0.987 0.987
x3 0.465 0.465
x4 1 1
x5 1 1

5.2.3 Step One: Damage Extent

Given the input variables x, one can now get the expected logarithm of damage length
(ln yl), the expected logarithm of maximum penetration (ln yt) and their associated
random error terms rl and rt:

ln yl = hl(x|β̂l) + rl (5.9)
ln yt = ht(x|β̂t) + rt, (5.10)

or, taking the exponential,

yl = exp(hl(x|β̂l) + rl) (5.11)
yt = exp(ht(x|β̂t) + rt) (5.12)

where hl and ht are functions given in Equation 3.27; rl and rt are the corresponding
error terms and generated from random variables Rl and Rt. For simplicity, the
random terms are ignored in this calculation. The coefficients β̂l and β̂t can be
found in Tables D.1 and D.3. Calculating results in the following values:
Or:
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Single Hull Double Hull

ln yl 3.376 3.084
ln yt 2.289 1.915

Single Hull Double Hull

yl 29.249 21.854
yt 9.863 6.789

5.2.4 Step Two: Probability of Rupture

Next, ln yland ln yt are put into the probability function π(ln yl, ln yt|β̂), where coef-
ficients β̂ can be found in Table D.5.

π(ln yl, ln yt|β̂) =
exp(β0 + βl ln yl + βt ln yt)

1 + exp(β0 + βl ln yl + βt ln yt)
(5.13)

This is the probability of rupture. The results are:

Single Hull Double Hull

π 0.822 0.976

5.2.5 Step Three: Outflow Volume

With the probability of rupture π = P (Z ′ = 1), the actual occurrence of rupture can
be determined by “flipping a coin” (i.e. sampling a Bernouilli distributed random
variable with parameter π). Suppose that the outcome is zero: then no rupture
occurs and thus no outflow. In the other case, the longitudinal coordinates of the
damaged area have to be determined.
Take m,n from D.7:

Single Hull Double Hull

m 0.112 0.091
m 5.91 5.62

Then vt = v2 + v1 cos(φ) and θ can be calculated (see Equation 3.47):

θ(φ, vt; m,n) = (
1
2
(

φ

90
)n)exp(mvt) (5.14)

This results in:

Single Hull Double Hull

θ ≈ 0 ≈ 0
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Determine damaged compartments from yl1, yl2 and yt using ship length s:

yl1 = (1− θ)yl + (1− l)s (5.15)
yl2 = −θyl + (1− l)s (5.16)

Which leads to

Single Hull Double Hull

yl1 79.89 78.30
yl2 109.14 100.15

Now, for the single hull tanker, the bulkheads have to be looked up from the second
column of Table C.9 that bound these locations: these are bulkheads 2 and 4 (which
are 53.9 resp. 137.1 meters away from the FP). From this it can be seen that the
longitudinal damage runs across the 3rd and 4th compartment as counted from the
FP. (The first compartment is in between the FP and the first bulkhead.) Since
yt = 9.863 meters, the transversal damage extends only into the outermost compart-
ments. Thus, the 3rd and 4rd outer compartments have been ruptured. Looking at
Table C.2, the 3rd contains 15311m3 of oil; the other zero. Hence the total outflow
volume z for the single hull tanker equals 15311 m3.

In the double hull case, the bulkhead locations are looked up from the 4th column
of Table C.9. This shows that the longitudinal damage is contained by bulkheads 3
and 4. Since yt = 6.789, transversal damage reaches 2 compartments inward from
the outer hull. Thus, one outer and one inner compartment in the the 4th row from
the front are ruptured. Since the outer one is a ballast tank (compartment volume
is 0) only the inner compartment spills oil, which amounts to 14651 m3.

5.3 Grounding Example

5.3.1 Input Variables

In Table 5.2, some possible values of grounding input variables are given.

The only predictor variable that has to be calculated is ek:

ek =
1
2
mv2 =

1
2
· 175 · 8.12 = 5741 (5.17)
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Variable Value Unit

v 8.1 knots
od 15 meters
oa 42 degrees
or 6.7 meters
c 0.61 -

Table 5.2: Grounding example variables

5.3.2 Transformations

x is determined through transformating the input variables through their CDF val-
ues:

x1 = FEk
(ek) =

7
10

+
2

175
(

√
2ek

m
− 8) = 0.7001 (5.18)

x2 = FOd
(od) =

1
400

o2
d =

1
400

225 =
9
16

(5.19)

x3 = FOa(oa) = 0.843 (5.20)
x4 = FOr(or) = 0.737 (5.21)
x5 = FC(c) = c = 0.61 (5.22)

5.3.3 Step One: Damage Extent

yl and yt are determined using the polynomial linear regression model, whose coef-
ficients βl and βt can be found in Tables E.1 and E.2, respectively.

ln yl = hl(x|β̂l) + rl (5.23)
ln yt = ht(x|β̂t) + rt (5.24)

rl and rt are the corresponding error terms and generated from random variables Rl

and Rt. Again, for simplicity the random terms are ignored. The coefficients β̂l and
β̂t can be found in Tables D.1 and D.3, resulting in:

Single Hull Double Hull

ln yl 4.602 3.740
ln yt 2.462 1.755

Or:

Single Hull Double Hull

yl 99.63 42.10
yt 11.73 5.781

Using the ship depth sd = 16.76 for both ships, one can calculate yv = max(0, sd −
od) = 1.76.
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5.3.4 Step Two: Probability of Rupture

Next, put ln yv into the binary logistic model π(ln yv|β̂), where coefficients β̂ can be
found in Table E.5.

π(ln yv|β̂) =
exp(β0 + βv ln yv)

1 + exp(β0 + βv ln yv)
(5.25)

This results in the following probabilities

Single Hull Double Hull

π 0.665 0.002

5.3.5 Step Three: Outflow Volume

Given rupture, it is assumed that damage starts at the front of the ship. Also, rock
eccentricity c is assumed to be in the middle of transversal damage extent. So,

yl1 = 0 (5.26)
yl2 = yl (5.27)

yt1 =
1
2
(1 + c) · sb − 1

2
yt (5.28)

yt2 =
1
2
(1 + c) · sb +

1
2
yt (5.29)

This results in

Single Hull Double Hull

yl1 0 0
yl2 99.63 42.10
yt1 34.38 37.36
yt2 46.12 43.14

Where sb = 50.0 is the ship’s breadth in meters. Since yt2 is larger than the ship’s
breadth, it is reset at 50.

Using these coordinates, ruptured compartments can be determined using the bulk-
head locations in Table C.9.

In the single hull case, longitudinally, the first four compartments as seen from the FP
are damaged; transversally, the center and side compartments. The corresponding
cargo volumes are presented in Table C.6, and thus the total outflow volume can be
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calculated:

z = 3, 951, 288 + 2, 911, 920 + 4, 793, 184 + 0
+ 4, 792, 392 + 3, 402, 960 + 4, 192, 584 + 0
= 24, 044, 328 gallons,

corresponding to 91, 018 m3.

In the double hull case, longitudinally, the first two compartments as seen from
the FP are damaged; transversally, the center compartments. The corresponding
cargo volumes are presented in Table C.8, and thus the total outflow volume can be
calculated:

z = 2, 593, 272 + 3, 254, 064 = 5, 847, 336 gallons,

corresponding to 22, 135 m3.

5.4 Conclusions

Comparing the example results, it should be noted that the double hull ships incur
less damage extent given the same input variables: particularly in the grounding
examples, the damaged area is more than four times smaller in the double hull case.
This results an outflow volume four times smaller than in the single hull case. The
difference in the collision examples is much less striking.



Chapter 6

Conclusions and
Recommendations

In this report, twelve accidental outflow models have been presented: six collision
models and six grounding models. These models determine the amount of oil that
flows from an oil tanker in case it is struck by another ship or runs aground on a
rocky pinnacle. Based on simulation data, these models have the ability to calculate
fairly accurately the extent of collision or grounding damage, the probability of rup-
ture and oil spill volume and the damage location given a set of accident variables.
Uncertainties in outcomes of damage extent have been accurately modeled by fitting
residuals to a parametric distribution.

Each of these models can be quickly and easily implemented in large scale system
simulations of tanker movements because they involve formulas using only elemen-
tary functions and include an overseeable amount of parameters and coefficients. In
short, they combine the power of physical simulations with the simplicity of explicit
functions.

Moreover, these models improve significantly upon the previous IMO model since

• they are based on a large dataset obtained by physically meaningful simula-
tions, rather than a model with simplistic assumptions based on a small historic
dataset;

• they allow for size-dependent damage extent and probability of rupture assess-
ments, whereas the old model gave damage and probability independently of
ship size;

• damage extent parameters are dependent on scenario input variables as op-
posed to independently distributed;

• damage extent parameters take into account the physical characteristics of the
ship designs and accident scenarios, such as speed, mass, collision angle etc.
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6.1 Collision Model Results

• Kinetic energy is mostly responsible for damage extent;

• The regression model for damage extent fits reasonably well with data, giving
R2-values of 68%-75%;

• Single hull ships incur more damage overall than double hull designs;

• The regression model for probability of rupture shows higher rupture resistance
for double hull tankers;

• Probability of rupture is strongly influenced by maximum penetration for dou-
ble hull designs, whereas damage length is mostly responsible for rupture in
single hull ones;

• Probability of rupture shows significant correlation with outflow occurrence in
data;

• Damage location and outflow calculation model gives 95%-98% accuracy of
outflow volume given rupture and damage extent.

6.2 Grounding Model Results

• Kinetic energy is mostly responsible for longitudinal damage;

• A large obstruction tip radius reduces longitudinal damage;

• Variables that describe rock geometry have the overhand in predicting transver-
sal damage;

• The regression models for damage extent fits very well to the data, with 10 out
of 12 giving R2-values over 90%;

• The rupture probability model shows higher rupture resistance for double hull
tankers, given obstruction elevation;

• Probability of rupture shows significant correlation with outflow occurrence in
data.

6.3 General Remarks

A number of aspects should be considered in light of this research.

• The actual shape of the damaged area in collisions and groundings cannot be
determined from the data: the models are only based on simplified measure-
ments. They assume the damaged area to be a rectangular block, which holds
the maximum damage volume possible.



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 79

• Given rupture, all compartments coinciding with the damaged area are as-
sumed ruptured, whereas it might be possible that rupture takes place in a
fraction of that area.

• All oil in a ruptured compartment is assumed lost, which is —in the case of
grounding— a worst case simplification.

• The event that no outflow occurs is assumed to imply that there is no hull
rupture, since no information is provided that would allow one to conclude
otherwise.

6.4 Recommendations for Further Research

Below are some issues that may be considered topics of further research.

Using the large data set and great number of predictor variables available, reasonable
to good fit performance was achieved for both polynomial linear and binary logistic
regressions. As with any regression technique and especially due to the large number
of predictor variables, other combinations of independent variables (taking advan-
tage of e.g. interaction terms) could potentially lead to even better performance in
terms of fit. A preliminary investigation of the use of interaction terms only showed
a marginal improvement, while not reducing the number of variables.

The outflow models are based on statistical analysis, where output data is compared
to input data. These factors mostly concern the ‘outside’ aspects of the struck
tanker: no consideration is given to the influence of the ship’s inner conditions, such
as number of bulkheads etc. on damage size or probability of rupture—they only
matter in determining the outflow volume. Improvements could be made in this,
but it should be noted that the model in its current form is already both simple and
effective; therefore any inclusion of mentioned internal aspects should only marginally
increase the model’s complexity. It then has to be tested how effective this inclusion
is.
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Appendix A

Regression

A.1 Binary Logistic Regression

This section discusses binary logistic regression as described by Hosmer and Lemeshow
Chapters 1 and 2 [7]. Given is a binary random variable Y . In a regression anal-
ysis, the expected value of Y (the response variable) is related to a function of a
set of predictor variables x = (x1, . . . , xm), which in turn is based on a sample set
(xi, yi), i ∈ {1, . . . , n}.

In a binary logistic regression, this function is the logistic function π and represents
the expected value of Y conditioned on x. Notation:

E(Y |x) = π(x|β) (A.1)

Where π is defined as

π(x|β) =
eg(x|β)

1 + eg(x|β)
. (A.2)

With

g(x|β) = β0 + β1x1 + . . . + βmxm (A.3)

β = (β0, . . . , βm) is a set of coefficients that defines the shape of g and thus π.
Binary linear regression determines an optimal set of coefficients β̂, i.e. coefficients
that result in the ‘most accurate’ fit of π against the variables.

A.1.1 Fitting the Logistic Regression Model

Given n realizations of independent, identically distributed sets of variables

(Xi, Yi), i ∈ {1, . . . , n} (A.4)

Now, the coefficients β are fitted from the dataset of scenarios xi by means of the
maximum likelihood estimation. Consider the set (xi, yi) of observed data, where yi
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is the dependent variable corresponding to independent variables xi.

The maximum likelihood method yields values for the unknown coefficients β which
maximize the probability of obtaining the observed set of data. This is done by con-
structing a likelihood function l, which expresses the probability of observed data as
a function of β.

Since, by definition,

E(Y |x) = 0 · P (Y = 0|x) + 1 · P (Y = 1|x) (A.5)
= P (Y = 1|x) (A.6)

for any x, it follows that P (Y = 1|x) = π(x|β) and P (Y = 0|x) = 1 − P (Y =
1|x) = 1 − π(x|β). Then, one may express the contribution for the pair (xi, yi) to
the likelihood function as

π(xi|β)yi
[
1− π(xi|β)

]1−yi . (A.7)

As the observations are assumed independent, the likelihood function is obtained as
the product of these contributions:

l(β) =
n∏

i=1

π(xi|β)yi [1− π(xi|β)]1−yi . (A.8)

Now, β is estimated as the value which maximizes the right hand side of A.8, also
referred to as β̂. The loglikelihood is defined as follows:

L(β) = ln[l(β)] (A.9)

=
n∑

i=1

yi ln[π(xi)] + (1− yi) ln[1− π(xi)] (A.10)

Because l and L have a maximum at the same value(s) of β, It becomes relatively
straightforward to find β by maximizing L (as opposed to l), which in turn is done
by partially differentiating L(β) to β0, . . . , βm and equating the resulting expressions
to 0:

∂L

∂β0
= 0 (A.11)

∂L

∂βj
= 0, j ∈ {1, . . . ,m} (A.12)

These are the likelihood equations; solving them for β0, . . . , βm will result in the
maximum likelihood estimate β̂. However, these equations are nonlinear and the
workings of the required solving method go beyond the scope of this report. The
statistical software package Minitab 15 is capable of performing this method and
was used in this report.
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The maximum likelihood estimate of π(x|β), which is π(x|β̂), is denoted as π̂(x) and
represents a ”best” estimate of the probability that outflow occurs, given a scenario
x = (x1, . . . , xm). Thus, π̂(x) is the probability of the event Y = 1 happening based
on binary logistic regression.

A.2 Linear Regression

The method of linear regression as described here was based on Chapter 3 of [10].
Given a set of scenarios x1,x2, . . . ,xn ∈ Rp and outcomes y1, y2, . . . , yn ∈ R realiza-
tions of random variables Y1, Y2, . . . , Yn. Then a linear regression model expresses
the relationship between Yi and xi as follows:

Yi = h(xi|β) + Ri (A.13)
= β0 + β1xi,1 + . . . βpxi,p, ∀i ∈ {1, . . . , n} (A.14)

Where R1, R2, . . . , Rn are assumed to be uncorrelated random variables with mean
zero and finite variance. Yi is the response variable and xi is the vector containing
predictor variables. h is the function that needs to be determined by changing the
coefficients in vector β = (β0, β1, . . . , βp) ∈ Rp+1.

Based on a sample {(x1, y1), . . . , (xn, yn)} ∈ Rp ×R, an estimate of β can be found.
A systematic method to do this is the least squares method, whereby a least squares
estimate β̂ is found by minimizing the sum of squares of the residuals over β:

S(β̂) = min
β

S(β) (A.15)

= min
β

n∑

i=1

(yi − h(xi|β))2 (A.16)

Minima of S are found by determining the partial derivatives of S to β, equating these
derivatives to 0 and solving these equations for β, resulting in the linear regression
estimator β̂. If S is convex, then β̂ is a global minimum.

∂S

∂βj
= 2

n∑

i=1

εi
∂εi

∂βj
(A.17)

= −2
n∑

i=1

(yi − f(xi, β))
∂f(xi, β)

∂βj
, ,∀j ∈ {0, . . . , p} (A.18)
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Probability Distributions

B.1 Empirical Distribution Function

For a random variable X the cumulative distribution function F is defined as F (x) =
P({X ≤ x}). The empirical cumulative distribution function Fn of a sample of n
i.i.d. random variables X1, . . . , Xn ∼ X is defined as

Fn(x) =
1
n

n∑

i=1

1(−∞,x](Xi) (B.1)

,
Where 1(−∞,x](y) = 1 if y ≤ x, and 1(−∞,x](y) = 0 otherwise. The empirical CDF
has the property that Fn(x) → F (x) almost surely for a fixed x by the strong law of
large numbers.

B.2 Typical Distributions

Beta Distribution

The Beta probability distribution function is given as

f(x; α, β) =
Γ(α + β)

Γ(α) + Γ(β)
xα−1(1− x)β−1 (B.2)

Where Γ is the Gamma function and α, β are the function’s parameters.

Normal Distribution

The Normal probability distribution function is given as

f(x;µ, σ) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
) (B.3)

Where µ and σ2 are the mean and variance and determine location and scale of the
distribution, respectively.
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Weibull Distribtion

The Weibull distribution has the following cumulative distribution function:

F (x|α, β) = 1− e
(− x

β
)α

(B.4)

Where α ≥ 0 is the shape parameter and β ≥ 0 is the scale parameter. Note that for
α = 1, the Weibull distribution is equivalent to the Exponential distribution with
parameter β.

B.3 Generalized Power Distribution

For 0 < m < 1 and 0 ≤ x ≤ 1, the Generalized Power Distribution [11] is defined as
follows:

f(x|α, m, n) =
{

p( x
m |α, n), 0 ≤ x ≤ m

p( 1−x
1−m |α, n), m < x < 1 (B.5)

where
p(x|α, n) = α + n(1− α)xn−1

and, for 0 ≤ x ≤ 1,
{

0 ≤ α ≤ n
n−1 , n > 1

0 ≤ α ≤ 1, 0 < n ≤ 1.

If x is on an interval [a, b], then it should be scaled by transforming it to a variable
y on the interval [0, 1]:

y =
x− a

b− a
(B.6)

Thus,

f(y|α, m, n) = f(
x− a

b− a
|α,m, n)

.

B.4 Generalized Trapezoidal Distribution

Suppose X is a random variable on the bounded support [a, b]. If X follows the Gen-
eralized Trapezoidal distribution [24], its probability distribution function is defined
as follows:

f(x|a, b, c, d, n1, n3, α) =





0, x < a
2αn1n3

2α(b−a)n3+(α+1)(c−b)n1n3+2(d−c)n1
(x−a

b−a )n1−1, a ≤ x < b
2n1n3

2α(b−a)n3+(α+1)(c−b)n1n3+2(d−c)n1
((α− 1) c−x

c−b + 1), b ≤ x < c
2n1n3

2α(b−a)n3+(α+1)(c−b)n1n3+2(d−c)n1
(d−x

d−c )n3−1, c ≤ x < d

0, x ≥ d
(B.7)



APPENDIX B. PROBABILITY DISTRIBUTIONS 87

Provided that n1 > 0, n3 > 0, α > 0 and a < b < c < d.
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Tanker Data

Compartment
location Port Center Starboard

Bow 1865.4 3641.1 1865.4
2640.8 0.0 2640.8
2673.5 3646.1 2673.5

0.0 3644.4 0.0
2668.0 3643.6 2668.0

Stern 2529.1 3642.2 2529.1

Table C.1: Tanker compartment volumes (m3), SH40, collisions

Compartment
location Port Center Starboard

Bow 13102.9 17779.5 13102.9
0.0 21566.6 0.0

15311.4 21563.4 15311.4
0.0 18864.3 0.0

8364.9 19658.5 8364.9
Stern 3820.4 19658.5 3820.4

Table C.2: Tanker compartment volumes (m3), SH150, collisions
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Compartment Port Starboard
location Port Center Center Starboard

0.0 2269.7 2267.7 0.0
0.0 2825.3 2825.3 0.0
0.0 2845.9 2845.9 0.0
0.0 2845.9 2844.9 0.0
0.0 0.0 0.0 0.0
0.0 2276.5 2276.5 0.0
0.0 2845.9 2844.9 0.0
0.0 2845.9 2845.9 0.0

Stern 0.0 2669.5 2671.5 0.0

Table C.3: Tanker compartment volumes (m3), DH40, collisions

Compartment Port Starboard
location Port Center Center Starboard

Bow 0.0 11694.3 11694.3 0.0
0.0 14674.2 14674.2 0.0
0.0 14650.4 14650.4 0.0
0.0 14651.2 14651.2 0.0
0.0 14650.8 14650.8 0.0
0.0 13861.9 13861.9 0.0

Stern 0.0 5514.7 5514.7 0.0

Table C.4: Tanker compartment volumes (m3), DH150, collisions

Compartment
location Port Center Starboard

Bow 413,688 792,528 413,688
585,552 0 585,552
592,944 808,632 592,944

0 808,104 0
591,624 808,104 591,624

Stern 560,736 783,816 560,736

Table C.5: Tanker compartment volumes (gallons), SH40, groundings
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Compartment
location Port Center Starboard

Bow 2,911,920 3,951,288 2,911,920
0 4,793,184 0

3,402,960 4,792,392 3,402,960
0 4,192,584 0

1,859,088 4,368,936 1,859,088
Stern 849,024 0 849,024

Table C.6: Tanker compartment volumes (gallons), SH150, groundings

Compartment Port Starboard
location Port Center Center Starboard

Bow 0 505,560 505,560 0
0 626,472 626,472 0
0 629,376 629,376 0
0 630,168 630,168 0
0 503,712 503,712 0
0 630,168 630,168 0
0 628,320 628,320 0

Stern 0 590,832 590,832 0

Table C.7: Tanker compartment volumes (gallons), DH40, groundings

Compartment Port Starboard
location Port Center Center Starboard

Bow 0 2,593,272 2,593,272 0
0 3,254,064 3,254,064 0
0 3,248,784 3,248,784 0
0 3,249,048 3,249,048 0
0 3,249,048 3,249,048 0
0 3,074,016 3,074,016 0

Stern 0 1,083,192 1,083,192 0

Table C.8: Tanker compartment volumes (gallons), DH150, groundings
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Transversal bulkheads
(Location from FP (m))

SH40 SH150 DH40 DH150

14.63 12.3 16.46 12.3
37.948 53.9 33.99 43.5
61.265 95.5 51.51 74.7
84.582 137.1 69.04 105.9

107.899 173.5 86.56 137.1
131.216 199.5 90.07 168.3
154.534 214.3 104.09 199.5

121.62 214.3
139.14
156.67

Longitudinal bulkheads
(Location from port bow (m))

SH40 SH150 DH40 DH150

8.23 14.8 2.438 3.34
19.202 35.2 14.63 25

26.822 46.66

Table C.9: Bulkhead locations
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Collision Model Results

SH40 SH150 SHCOM DH40 DH150 DHCOM

number of data points 7467 7473 14940 7454 7466 14920
R2-value 70.9% 68.1% 68.9% 71.5% 69.9% 70.6%

Mallows Cp-value 19.0 19.8 13.1 14.2 24.0 16.0

Coefficients
β0 -2.914 -2.661 -2.982 -2.931 -2.786 -2.632

β1,1 3.078 -1.215 2.246 2.128 2.047 -0.117
β2,1 5.550 5.303 5.231 6.180 4.692 4.670
β3,1 0.031 -2.493 -3.369 0.708 -3.224 -1.973
β4,1 0.546 1.613 1.188 0.655 1.429 1.155
β5,1 - - 0.223 - - 0.052
β1,2 - 10.181 0.687 0.598 - 5.792
β2,2 - - - -5.563 - -
β3,2 - 20.261 25.010 - 24.187 16.819
β4,2 - -0.931 -0.560 - -0.784 -0.566
β5,2 - - - - - -
β1,3 - -8.145 - - - -
β2,3 -11.982 -6.405 -6.750 - -5.410 -5.756
β3,3 - -68.750 -75.742 -13.309 -69.908 -53.668
β4,3 - - - -0.158 - -
β5,3 - - - - - -
β1,4 -2.924 - - - - -10.900
β2,4 9.403 - - - - -
β3,4 - 94.811 96.400 27.442 85.081 69.372
β4,4 - - - - - -
β5,4 - - - - - -
β1,5 2.823 2.008 - - 0.542 7.798
β2,5 - 4.134 4.529 2.291 3.724 4.031
β3,5 -0.480 -44.783 -43.224 -15.354 -36.872 -31.216
β4,5 - - - - - -
β5,5 - - - - - -

Table D.1: Polynomial linear regression coefficients for ln yl, collisions
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SH40 SH150 SHCOM DH40 DH150 DHCOM

α 1 1 1 1 1 1
A -17.266 -16.802 -17.261 -15.478 -15.402 -15.851
B -0.153 -0.362 -0.278 -0.191 -0.312 -0.254
C 0.217 0.426 0.352 0.254 0.425 0.356
D 5.304 5.585 5.585 5.250 5.585 5.585

N1 35.833 26.036 30.196 31.101 26.547 29.222
N3 10.299 8.089 9.221 9.995 10.133 10.471

Table D.2: Parameters of GT distributions, Rl, collisions

SH40 SH150 SHCOM DH40 DH150 DHCOM

number of data points 7470 7478 14948 7455 7467 14922
R2-value 73.8% 70.4% 71.4% 74.6% 72.6% 73.5%

Mallows Cp-value 14.0 18.2 15.0 12.8 20.1 20.6

Coefficients

β0 -3.730 -3.507 -3.977 -3.655 -3.629 -3.681
β1,1 8.661 4.492 6.767 6.527 6.793 6.650
β2,1 5.439 3.479 4.828 4.585 2.790 3.985
β3,1 -4.126 1.357 -3.234 -0.321 0.308 0.427
β4,1 0.010 0.378 1.267 0.030 0.289 0.051
β5,1 - - 0.227 - - 0.044
β1,2 -6.939 - -3.339 -3.250 -4.298 -3.758
β2,2 -7.083 - -5.251 -5.971 - -4.329
β3,2 28.940 -6.123 23.896 5.613 - -
β4,2 - - -1.313 - - -
β5,2 - - - - - -
β1,3 - - - - - -
β2,3 - -5.602 - - -4.492 -
β3,3 -80.644 - -72.669 -25.920 -6.807 -9.296
β4,3 - - - - - -
β5,3 - - - - - -
β1,4 3.268 - - - - -
β2,4 3.229 - - 2.848 - -
β3,4 96.373 19.916 93.704 40.495 16.125 20.693
β4,4 - -0.585 - -0.345 -0.531 -
β5,4 - - - - - -
β1,5 - 0.243 1.534 1.462 2.212 1.828
β2,5 - 3.841 2.074 - 3.285 1.872
β3,5 -41.499 -15.976 -42.700 -20.501 -10.209 -12.407
β4,5 -0.263 - - - - -0.354
β5,5 - - - - - -

Table D.3: Polynomial linear regression coefficients for ln yt, collisions
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SH40 SH150 SHCOM DH40 DH150 DHCOM

α 1 1 1 1 1 1
a -15.282 -17.654 -17.346 -16.113 -14.270 -16.355
b 0.056 -0.207 -0.099 0.030 -0.256 -0.110
c 0.192 0.355 0.287 0.182 0.372 0.304
d 3.312 3.912 3.912 3.376 3.912 3.912

n1 29.369 25.266 27.822 30.668 25.556 29.228
n3 7.299 5.577 6.580 7.161 7.128 7.761

Table D.4: Parameters of GT distributions, Rt, collisions

SH40 SH150 SHCOM DH40 DH150 DHCOM

No. Cases 7440 7430 14811 7423 7436 14788

Coefficients
β0 -0.229 -0.864 -0.511 -7.026 -10.823 -7.142
βt 0.162 0.164 0.158 5.943 7.330 5.443
βl 0.536 0.514 0.498 0.257 0.283 0.143

MLR -4534 -4367 -9065 -1114 -796 -2190
Pearson Test 0 0 0 0 0 0

Deviance Test 0 0 0 1 1 1
Hosmer-Lemeshow Test 0 0 0 0 0 0

Table D.5: Binary logistic regression coefficients, collisions

SH40 SH150 SHCOM DH40 DH150 DHCOM

No. Cases 7440 7430 14811 7423 7436 14788

rbp (data) 0.40 0.43 0.41 0.85 0.86 0.82
p-value (data) 0 0 0 0 0 0

rbp (random) -0.01 -0.02 -0.00 0.00 0.01 0.01
p-value (random) 0.50 0.17 0.78 0.80 0.36 0.14

Table D.6: Binary logistic regression point-biserial correlation tests, collisions

SH40 SH150 SHCOM DH40 DH150 DHCOM

No. of cases 4045 3183 7228 1404 1026 2430
% correct predictions 97.11% 97.86% 97.40% 94.87% 96.78% 95.60%

m 0.112 0.098 0.112 0.061 0.091 0.091
n 5.90 6.20 5.91 4.59 5.60 5.62

avg. absolute error (m3) 88 289 189 134 417 255
conditional average
absolute error (m3) 3045 13513 7248 2609 12950 5800

Table D.7: Damage location coefficients



Appendix E

Grounding Model Results

SH40 SH150 SHCOM DH40 DH150 DHCOM

number of data points 1806 5899 7705 609 2673 3282
R2-value 93.3% 93.3% 93.2% 87.0% 90.8% 79.4%

Mallows Cp-value 21.8 23.4 30.8 18.2 15 21.7

Coefficients
β0 -2.866 -1.327 -1.403 -3.925 -2.403 -0.592

β1,1 41.818 41.940 30.664 50.806 41.949 16.217
β2,1 3.398 1.141 4.703 6.133 3.761 4.394
β3,1 0.102 -0.044 0.085 -0.326 -0.150 -0.136
β4,1 -4.750 -2.277 -3.194 -5.365 -3.027 -3.708
β5,1 -0.406 -0.226 0.085 1.298 -0.610 1.175
β6,1 - - -0.146 - - -0.320
β1,2 -104.639 -116.403 -74.472 -139.873 -106.135 -25.308
β2,2 - - -12.152 -20.431 -4.750 -8.377
β3,2 - - - - - -
β4,2 11.369 4.509 7.174 8.726 4.519 6.078
β5,2 - -1.842 -2.851 -1.951 6.895 -
β6,2 - - - - - -
β1,3 96.878 140.345 85.822 168.169 98.551 -
β2,3 -5.096 0.286 14.138 20.867 - 4.459
β3,3 - - - - - -
β4,3 -12.822 -4.769 -8.234 -5.621 -2.568 -3.568
β5,3 1.362 4.033 5.109 - -11.504 -3.524
β6,3 - - - - - -
β1,4 - -59.455 -35.523 -70.533 - 47.300
β2,4 - - - - - -
β3,4 0.206 0.104 - - - -
β4,4 5.047 1.853 3.453 - - -
β5,4 - - - - - -
β6,4 - - - - - -
β1,5 -26.548 - - - -26.883 -32.250
β2,5 - - -5.977 - - -
β3,5 - - - - - -
β4,5 - - - - - -
β5,5 -2.361 - 5.330 - 5.330 2.444
β6,5 - - - - - -

Table E.1: Polynomial linear regression coefficients for ln yl, groundings
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SH40 SH150 SHCOM DH40 DH150 DHCOM

number of data points 2720 5904 8624 644 2724 3368
R2-value 90.0% 93.6% 91.6% 92.5% 93.7% 92.7%

Mallows Cp-value 21.7 23.1 21.2 18 25.2 33.7

Coefficients

β0 1.473 2.049 1.112 1.229 1.769 1.095
β1,1 0.065 0.111 0.096 0.170 0.095 0.142
β2,1 -5.088 -4.060 -4.251 -0.775 -3.258 -4.002
β3,1 0.720 1.239 0.740 0.008 0.767 0.782
β4,1 7.520 5.857 6.397 9.308 6.709 7.575
β5,1 -0.148 -0.186 -0.002 -0.825 0.103 -0.488
β6,1 - - 1.004 - - 0.692
β1,2 - -0.093 - - - -
β2,2 25.437 12.507 8.287 -14.912 6.663 7.987
β3,2 -2.210 -2.624 -1.025 - -1.153 -1.315
β4,2 -19.182 -14.714 -16.229 -28.430 -17.836 -20.824
β5,2 0.175 - - 2.922 - 1.652
β6,2 - - - - - -
β1,3 - - - - - -
β2,3 -104.542 -17.161 - - - -
β3,3 2.893 2.865 0.593 - 0.668 0.801
β4,3 22.161 16.975 18.870 37.140 21.247 25.400
β5,3 - 1.303 - - - -
β6,3 - - - - - -
β1,4 - - - - - -
β2,4 187.918 - -23.858 72.857 -37.722 -37.565
β3,4 -1.291 -1.078 - - - -
β4,4 -9.019 -6.974 -7.793 -16.758 -8.939 -10.917
β5,4 - -1.734 - -11.801 -2.828 -6.571
β6,4 - - - - - -
β1,5 - - -0.058 - - -
β2,5 -106.772 7.761 19.393 -62.279 37.674 36.762
β3,5 - - - - - -
β4,5 - - - - - -
β5,5 -0.753 - -0.591 9.846 2.639 5.347
β6,5 - - - - - -

Table E.2: Polynomial linear regression coefficients for ln yt, groundings
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SH40 SH150 SHCOM DH40 DH150 DHCOM

α 1 1 1 1 1 1
a -10.994 -10.103 -13.431 -9.172 -13.119 -13.650
b 0.006 -0.090 -0.106 -0.037 0.033 0.105
c 0.006 0.049 0.105 0.157 0.033 0.296
d 5.304 5.585 5.585 5.250 5.585 5.585

n1 64.487 61.720 71.475 33.447 67.252 34.301
n3 30.138 27.469 27.964 20.649 30.055 23.793

Table E.3: Parameters of GT distributions, Rl, groundings

SH40 SH150 SHCOM DH40 DH150 DHCOM

α 1 1 1 1 1 1
a -6.125 -5.983 -6.776 -5.504 -7.561 -7.433
b 0.012 -0.026 0.014 -0.047 -0.006 0.012
c 0.012 0.013 0.014 0.041 -0.006 0.012
d 3.312 3.912 3.912 3.376 3.912 3.912

n1 61.834 85.192 65.877 69.486 126.004 88.989
n3 36.823 49.919 43.771 37.596 57.874 52.855

Table E.4: Parameters of GT distributions, Rt, groundings

SH40 SH150 SHCOM DH40 DH150 DHCOM

No. Cases 2812 7035 9847 3116 7323 10439

Coefficients

β0 -1.274 -0.348 -0.694 -6.431 -9.818 -8.648
βv 2.339 2.590 2.438 3.356 5.204 4.597

MLR -1044 -1365 -2518 -984 -1981 -3003
Pearson Test 0 0 0 1 0 0

Deviance Test 1 1 1 0.831 1 1
Hosmer-Lemeshow Test 0 0 0 0.18 0 0

Table E.5: Binary logistic regression coefficients, groundings

SH40 SH150 SHCOM DH40 DH150 DHCOM

No. Cases

rpb (data) 0.71 0.78 0.76 0.58 0.80 0.76
p-value (data) 0 0 0 0 0 0

rpb (random) -0.02 0.00 -0.00 0.00 0.01 -0.01
p-value (random) 0.32 0.82 0.78 0.81 0.48 0.40

Table E.6: Binary logistic regression point-biserial correlation tests, groundings


