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Abstract. Quantum algorithms, represented as quantum circuits, can
be used as benchmarks for assessing the performance of quantum sys-
tems. Existing datasets, widely utilized in the field, suffer from limita-
tions in size and versatility, leading researchers to employ randomly gen-
erated circuits. Random circuits are, however, not representative bench-
marks as they lack the inherent properties of real quantum algorithms for
which the quantum systems are manufactured. This shortage of ‘useful’
quantum benchmarks poses a challenge to advancing the development
and comparison of quantum compilers and hardware.

This research aims to enhance the existing quantum circuit datasets
by generating what we refer to as ‘realistic-looking’ circuits by employ-
ing the Transformer machine learning architecture. For this purpose, we
introduce KetGPT, a tool that generates synthetic circuits in Open-
QASM language, whose structure is based on quantum circuits derived
from existing quantum algorithms and follows the typical patterns of
human-written algorithm-based code (e.g., order of gates and qubits).
Our three-fold verification process, involving manual inspection and
Qiskit framework execution, transformer-based classification, and struc-
tural analysis, demonstrates the efficacy of KetGPT in producing large
amounts of additional circuits that closely align with algorithm-based
structures. Beyond benchmarking, we envision KetGPT contributing
substantially to AI-driven quantum compilers and systems.

Keywords: quantum circuits · generative AI · dataset augmentation ·
Quantum Assembly · quantum compilation

1 Introduction

The journey from knowledge and rule-based artificial intelligence to the contem-
porary era of data-driven deep neural networks-based machine learning (ML)
has marked significant milestones in artificial intelligence (AI). This type of
AI, termed deep learning (DL), focuses on recognizing and extracting patterns
from vast datasets. A proliferation of popular DL models and architectures con-
tributed to use cases such as image and speech recognition, sequence predic-
tion, and reinforcement learning. However, the application landscape changed
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dramatically with the emergence of generative models [16], such as generative
adversarial networks (GAN) and variational autoencoders (VAE). These models
marked a profound shift in the capabilities of DL, allowing machines not only
to recognize patterns in the data but also to generate new, coherent data that
closely resembles the patterns learned from the training data.

Amid this diversity, the model that stands out in recent advances is the gen-
erative pre-trained transformer (GPT) [34] based on the transformer architec-
ture [42]. Transformers achieve impressive performance on tasks like realistic text
and code generation [29,30] by capturing important information about the struc-
ture of sequences of data. GPT’s ability to leverage massive scale with billions of
parameters and self-supervised learning makes it the model of choice for natu-
ral language understanding and generation. A wide spectrum of AI applications
can be formulated as a language modeling and generation task, like chatbots,
text summarization, question answering, code generation, medical diagnosis, and
legal document review.

Simultaneously, another groundbreaking technology is being developed:
quantum computers. Quantum computers can solve certain problems faster than
classical computers [28] by employing information processing capabilities gov-
erned by the laws of quantum mechanics. To solve such problems, quantum
algorithms, typically expressed as quantum circuits, need to be executed on
quantum computers. Besides serving the target use case, these circuits, defined
in quantum assembly languages (QASM) [8], are often also used to characterize,
evaluate, and benchmark the quantum processors and related system software.
Moreover, system software, like the quantum compiler, often employs DL-based
approaches to tackle the complexity of controlling large quantum processors.
This presents the need for large datasets of quantum circuits [11,27] for the train-
ing of the ML-based quantum compilation passes, such as routing and mapping
the circuits to a quantum processor. However, at the moment, only a handful of
quantum algorithms [22] are known to provide quantum computational benefits.
Due to the lack of large quantum circuit databases, these ML-based compilation
techniques resort to randomly generated quantum circuits to train the model.
This use of unrepresentative training data can critically affect the performance
of the quantum computer when deployed for pragmatic use cases.

In an attempt to address this problem in quantum computing and inspired by
the paradigm shift in language generation, in this work, we employ transformer
models to generate realistic-looking quantum circuits to augment quantum circuit
datasets.

This paper’s contribution is threefold:

1. Introducing KetGPT, a transformer model capable of generating realistic-
looking quantum circuits in the QASM language;

2. Developing a method to determine the quality of the generated QASM code
using a different transformer model specifically designed for this task; and

3. Analyzing the generated circuits by extracting their structural parameters
and comparing them to those of previously existing circuits.

KetGPT can immediately be applied to the following use cases:
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• Extending quantum circuit benchmarks datasets: KetGPT circuits
offer a valuable expansion to existing circuit suites, such as those in [5,33],
commonly employed for benchmarking and comparing quantum compilers
and systems. Unlike typical synthetic circuits that consist of random gates
on random qubits, KetGPT circuits emulate the behavior of real quantum
algorithms, enhancing their relevance as benchmarks. Moreover, compared
to the current practice of employing entirely random circuits with consistent
width and depth, they present a compelling alternative for evaluating success
metrics like quantum volume [7]. Given that quantum computers are designed
to accelerate specific algorithms challenging for classical computers, assess-
ing them using circuits that closely resemble these algorithmic structures is
imperative. A dataset of KetGPT-generated quantum circuits is available as
part of this software in Sect. 6.

• Automating quantum system software: Recent research uses machine
learning models to enhance quantum compilation and error correction
[1,11,27,31]. The substantial data required for training these models often
leads researchers to resort to generating random circuits. However, a system
that solves a certain problem should be trained on representative problem
instances. Therefore, training a compiler to handle realistic circuits is more
beneficial than training it on a random sample of gates, which makes KetGPT
ideal for such a purpose [5]. In an ongoing project, KetGPT is being used to
train a reinforcement learning agent for quantum circuit mapping on noisy
quantum processors.

The remainder of this paper is structured as follows: The transformer models
are introduced in Sect. 2. Section 3 introduces the main contribution of this
work, KetGPT, a transformer model specifically designed to generate QASM
files useful for benchmarking quantum system software. Additionally, a method is
proposed to quantify how realistic these QASM files are. In Sect. 4, the generated
code is examined and results are presented and discussed. Ultimately, Sect. 5
contains the conclusion of this work and presents suggestions for future work.

2 Evolution and Structure of Transformers

Transformer models, as introduced in the groundbreaking work [42], have
changed the landscape of natural language processing. Their applications extend
to code generation [29,40] and music generation [2]. Renowned for their profi-
ciency in capturing dependencies within sequential data, these widely adopted
machine-learning models have proven effective in various domains.

Before the advent of transformers, conventional models for natural language
processing tasks, such as text generation, primarily relied on Convolutional Neu-
ral Networks (CNN) [24], Recurrent Neural Networks (RNN) [37], and Long
Short-Term Memory networks (LSTM) [18]. However, these models encountered
several challenges, including difficulties in handling long-range dependencies and
a lack of parallelizability [42]. A transformer, on the other hand, is a highly par-
allelizable model, well-suited for training on extensive datasets, that excels at
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H q[0];
H q[1];
CX q[0], q[1];

qasm
[9, 10, 55]

[9, 55, 12]
H q[0];
CX q[0], q[1];
SWAP q[1], q[2];

qasm
Tokenizer

Fig. 1. Tokenization Example. A sequence of QASM operations (in text file form) is
provided as input, and each statement (a line of QASM code) is assigned to a number.
The number assigned to each statement does not have an intuitive meaning; rather, it
just depends on how the tokenization algorithm orders its vocabulary. Consequently,
tokenizing a sequence of statements will create a list of numbers. It is important to
note that both gate and qubit(s), we apply the gate on, matter for the assigned token.
For instance, h q[0]; and h q[1]; would have different numbers assigned as shown.

capturing longer-range dependencies and, therefore offers a significant improve-
ment over earlier models.

In what follows, we review the three main components of the transformer
model with quantum assembly language as the data.

2.1 Tokenizer

It is well known that performing any kind of computations on strings necessitates
converting them to numerical tokens through a process called tokenization. While
this tokenization step is not explicitly outlined in the transformer architecture
defined in [42] (as it falls under the domain of dataset preparation), it plays
a crucial role in comprehending how information flows through a transformer
model. A tokenizer plays a significant role in our case as using QASM code
as input requires a different preprocessing type than with standard text. An
example of the QASM code tokenization process is presented in Fig. 1.

To fully describe a tokenization process, it is required to have a system for
segmenting a sequence and a ‘dictionary’ to establish the numerical association
for each possible segment encountered using this segmentation system. There
are different types of tokenization algorithms available. For instance, instead
of the scheme shown in Fig. 1, every character can be converted to a number.
Thus, h q[0]; would be tokenized into 7 integers, one for each character and
whitespace, instead of just a single token.
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2.2 Feed-Forward Neural Network

Neural networks [12] play a key role in various machine-learning approaches and
are one of the fundamental segments of transformer models. They consist of a
series of layers that each perform a linear operation on the input followed by a
(non-linear) activation function.

To be precise, the value of each node in the network will be a linear combina-
tion of the values of the nodes in the previous layer weighted by the correspond-
ing weights, passed through an activation function. Then a non-linear activation
function (such as softmax [6] or ReLu [17]) is applied so that the network can
capture complex non-linear patterns.

A Feed-forward neural network is fully defined by specifying the number
of layers, the number of nodes in each layer, the weights of every connection
between nodes of a layer and a previous layer, a bias per node and the activation
function per layer. To train a network, the desired architecture is initialized
with (random) weights and biases. During training, the inputs are iteratively
presented to the network and the weights and biases are adjusted to progressively
align the network’s output with the expected output for each specific input. This
adjustment is typically done using a method called Stochastic Gradient Descent
[36]. In this paper we are not focusing on the details of the neural networks,
even though it represents the core of the transformer model, as it is widely and
generally used as a base of most machine learning models. Instead, we will focus
on the segments of the transformer that are specifically significant for our model,
like self-attention.

2.3 Self-attention

Self-attention is a mechanism that helps a transformer understand the relation
between words and represents the main innovation in transformer models. Con-
sider the sentence, “The computer executes the program because it is told to.”
Humans effortlessly discern that “it” refers to the computer, not the program,
but making automated systems distinguish this difference is very challenging.
The inclusion of a self-attention component empowers transformers to establish
such connections.

The input to the attention mechanism consists of queries, keys, and values.
Each token in the input sequence corresponds to one query and key vector with
dimension dk and a value vector with dimension dv, but for computational pur-
poses, the queries, keys and values for all tokens are packed into, respectively,
matrices Q, K and V . Thereafter, the main equation [42] describing the attention
process is:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (1)

where softmax is the softmax function [6] and KT is the transpose of the K
matrix.

The underlying idea of this equation is in the QKT term, representing the dot
product between queries and keys to discern their “inter-relation.” Subsequently,
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this information forms an attention matrix akin to a correlation matrix. However,
unlike a correlation matrix with values between −1 and 1, the attention matrix
adopts the form of a probability distribution, with values ranging from 0 to 1. The√
dk scaling factor is there to obtain a more dimension-independent dot product,

which helps train the network easier [42]. Multiplying this attention matrix with
V produces the final result, enriching the original matrix V with insights into the
inter-relations between queries and keys. For instance, elements with low scores
in the attention matrix, close to 0, are drowned out. To illustrate, in the context
of encoding the sentence “The computer executes the program because it is told
to.” represented by matrices Q, K, and V , the operation Attention(Q,K, V )
returns a matrix that embodies this sentence with information about the inter-
relations between the words (e.g., clarifying that “it” refers to the computer and
not the program).

3 KetGPT - Transformers for Quantum Circuit
Generation

This section presents KetGPT, a novel software tool designed to generate quan-
tum algorithm-based circuits. These circuits can serve as essential benchmarks
for evaluating the performance of both existing and forthcoming quantum sys-
tems. Within this section, we delve into the technical intricacies of KetGPT,
offering a comprehensive understanding of its architecture and methodology.
Figure 2 shows an overview of the KetGPT design and overall workflow.

3.1 Input Dataset and Data Preprocessing

Several datasets of quantum circuits suitable for benchmarking are available
[5,26,43], including MQT Bench [33], which is utilized in this study. QASM files
were generated to depict circuits implementing algorithms spanning 2 to 100
qubits, employing OpenQASM 2.0 [8]. In cases where algorithms were incom-
patible with a specific qubit count, such as those requiring an uneven number
of qubits, all valid circuits within the feasible range were generated. The full
dataset and additional details can be found in Sect. 6.

The files taken from the dataset require preprocessing in order to comply with
the transformer model. This involves making minor adjustments to the QASM
files in the dataset (e.g., removing comments). Due to technical constraints –
specifically, the model’s incapacity to process large files – a maximum circuit
length of 1024 QASM statements is enforced. This limitation is specific to the
hardware’s RAM constraints and not a general technical restriction. Following
the preprocessing step, the final dataset comprises 713 QASM files.

3.2 Generator: Architecture and Tokenizer

When it comes to generating text and code, a decoder-only transformer architec-
ture [40] is a popular choice. Accordingly, for the generation of QASM files, we
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Quantum Circuit 
Database

Prompt

Tokenizer

KetGPT

Generated Circuit

Classifier

OPENQASM 2.0;
include “qelib1.inc”
qreg q[13];

OPENQASM 2.0;
include “qelib1.inc”
qreg q[13];
h q[0];
h q[1];
...

Algorithms

training
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Fig. 2. KetGPT Workflow: Firstly, a given text prompt is tokenized. These tokens
are fed into the KetGPT model, which was trained with quantum circuits from an
existing quantum circuit database. KetGPT then generates text to continue the given
prompt, yielding a synthetic circuit. A separate transformer classifier model, trained to
distinguish real from random quantum circuits, tests if the generated circuit is realistic.
If the test is positive, it can be used to augment the quantum circuit database.

have opted for the GPT-2 model architecture [35], known for its use of a decoder-
only transformer. The Python code to construct this architecture is openly acces-
sible through the GPT-2 implementation in the Hugging Face “Transformer”
python library [21,44].

As discussed in Sect. 2.1, we employ a tokenization approach to transform
the dataset text into tokens. The original implementation of GPT-2 relies on a
form of tokenization known as Byte Pair Encoding (BPE). To comprehend this
method intuitively, it dissects text into components (e.g., ‘training’ into ‘train’
and ‘ing’), facilitating a better grasp of the full word’s meaning. However, a
drawback is that it may allow the generation of QASM code that is not syntac-
tically correct, such as the potential generation of the line “hh q0q1;”. To address
this, we modified the tokenization method for the generator to only permit syn-
tactically correct QASM code as tokens. This modification was implemented by
adjusting the GPT2Tokenizer class. By compiling a list of all valid QASM state-
ments in the dataset and using it as our vocabulary, we ensure that any token
generated by the model will be a valid QASM statement. The generator model
workflow consists of the following four parts:
Preparation: The process of generating tokens using the generator model
unfolds as follows: i) A list is compiled containing the qubit count for every
circuit in the dataset, along with another list containing the number of gates for
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each circuit; ii) From these lists, a qubit count and a number of gates are ran-
domly selected, establishing the parameters for the QASM file to be generated;
and finally, iii) With these parameters in hand, any invalid QASM statement
related to the selected qubit count is filtered out. For instance, if the chosen
qubit count is 5, all gates involving qubit 13 are disregarded. This is achieved
by preventing the generator model from producing these tokens.
Model Input: The model will receive input as the following:

OPENQASM 2.0;
include "qelib1.inc"
qreg q[{}];

where {} will contain the chosen qubit count. This is the way all the QASM
files in our dataset start, and it gives us an opportunity to control the qubit
count in a simple manner.
Generation Scheme: Whenever a new probability distribution over the tokens
is generated, the top-k strategy [10] is employed, where the k = 5 most probable
tokens are identified. From this subset, a new token is selected based on the
renormalized probability distribution over these five tokens (the renormalization
ensures that all probabilities add up to one). This approach introduces addi-
tional randomness into the QASM file generation process while maintaining the
realism of the generated tokens, as the five most probable tokens are typically
viable candidates. Furthermore, it is specified that sequences of 15 tokens should
not repeat within the file. While this constraint may not align perfectly with
QASM code generation, in which algorithms often contain repetitive sequences,
it serves to prevent instances where the transformer model becomes stuck in
a loop, repeatedly predicting the same sequence. The top-k generation process
iterates until the desired number of gates is reached.
Post-processing: Finally, to guarantee the validity of all generated files, all
quantum and classical registers utilized in the generated file are instantiated at
the beginning of the QASM file. This ensures every file, including its header, is
syntactically correct.

3.3 Verification Method: KetGPT Classifier

Once the generator produces the QASM files, the next step is to assess their
authenticity. To determine whether the generated QASM files exhibit a “realistic”
quality, we employed a binary classifier. This classifier’s task is to distinguish
whether a generated QASM file bears a closer resemblance to files from our
algorithm-based circuit dataset or aligns more with a randomly generated QASM
file [5].

The classifier adopts an encoder-only transformer model, specifically the
architecture of the DistilBERT model [38], leveraging the implementation from
the Huggingface transformers library [21]. This model is a smaller version of the
highly influential encoder-only BERT model [9] and is chosen for quicker training
and inference.
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Unlike the generator, which required a customized tokenization method to
ensure the generation of valid QASM code, the classifier employs the tokeniza-
tion method used to train the original DistilBERT model, known as WordPiece
[45]. This method, similar to the BPE tokenizer briefly mentioned in Sect. 3.2,
breaks down words into sub-words. It is important to note that the choice of how
these sub-words are determined distinguishes WordPiece from BPE, but this is
not pertinent to this work. To adapt the QASM sequences for the classifier,
the tokenization truncates them after 512 tokens. Since these tokens represent
sub-words instead of complete QASM lines, the 512-token limit corresponds to
approximately 50 lines of QASM code, dependent on the sequence. This adjust-
ment ensures compatibility with the maximum input size of the classifier model
used. While this approach has the drawback of only considering the initial por-
tion of the QASM file in determining its authenticity, it offers the advantage of
expedited training and inference, necessitating a less technically intricate model.
Moreover, the initial segment of a QASM file typically provides sufficient cues
to discern its nature as random or structured.

During the training phase of the classifier, a dataset is prepared in which
all real quantum circuits are assigned the label ‘0’ (total of 1112 QASM files).
Correspondingly, an equal number of QASM files are randomly generated, com-
prising gates randomly selected from a list of all unique QASM statements in
the dataset, and labeled ‘1’. To ensure fairness in the classification process, akin
to the methodology employed for generating KetGPT QASM files, the randomly
generated QASM files are structured to encompass the same distribution of qubit
counts and number of gates as the original dataset. Subsequently, the model is
trained on the labeled dataset, and upon completion of training, the trained
model is employed to predict whether the KetGPT-generated circuits are clas-
sified as ‘0’ or ‘1’, indicating their proximity to genuine algorithms or random
circuits, respectively.

3.4 Implementation Details

Our experiments were conducted using a Jupyter notebook [23] executed on
the Google Colab environment [13]. This Notebook is provided in Sect. 6. The
Google Colab GPU has 16Gb of GDDR6 memory, 320 Turing tensor cores and
2560 CUDA cores. At the time of writing, Google Colab uses Python version
3.10.12. Relevant packages for the code used to obtain the results of this work are
the transformers [44] (version 4.34.0) and datasets [25] (version 2.14.5) libraries
from Huggingface, PyTorch [32] (version 2.0.1+cu118) and NumPy [15] (version
1.23.5).

Table 1 contains the parameters that define the structure of our generator
model. Default values correspond to those used in the original GPT-2 imple-
mentation [35]. The training settings are specified in Table 2. On the other
hand, Table 3 specifies the settings that were used to define the classifier model.
The training settings for the classifier model are in Table 4. All the parameters’
detailed definitions can be found in [20].
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Table 1. Generator model settings

Name Value

n_embd 768 (default)
n_layer 3
n_head 4
n_positions 1024 (default)
vocab_size 48291

Table 2. Generator training settings

Name Value

Epochs 5
Learning Rate 5e-5 (default)
Batch Size 4
Optimiser AdamW (default)
Loss function Cross-entropy (default)

Table 3. Classifier model settings

Name Value

n_embd 768 (default)
n_layer 6 (default)
n_head 12 (default)
n_positions 512 (default)
vocab_size 30522

Table 4. Classifier training settings

Name Value

Epochs 3
Learning Rate 5e-5 (default)
Batch Size 4
Optimiser AdamW (default)
Loss function Cross-entropy (default)

It is worth noting that KetGPT training time was 240 s, and generating 1000
QASM files took 8818 s (147min), or 8.8 s per generated file on average. However,
the QASM files are of varying size (as explained in Sect. 3.1), and the amount of
time needed to generate one file is dependent on its size, so this number should
be taken as a rough estimate.

4 Results and Discussion

In this section, we unveil outcomes of this work by showing the results of the
three verification steps: manual inspection and Qiskit execution, transformer-
based classifier and structural analysis of the circuits. Note that the usage of the
term ‘realistic’ or ‘real’ when describing the circuits generated by KetGPT is not
meant to be interpreted as describing circuits that implement useful quantum
algorithms. The circuits might describe some undiscovered quantum algorithms,
but it is nearly impossible to reverse engineer an explainable description.

4.1 Manual Inspection

First, we manually examine the QASM lines of a circuit produced by KetGPT.
We juxtapose this with the initial lines of both a genuine and a completely
random circuit to establish a comparative analysis. One can observe some pat-
terns shown in the files of Fig. 3: The lines within the KetGPT file and the
real file exhibit structured patterns, such as the repetition of Hadamard and 2-
qubit gates (CX and CZ), whereas the fully random circuit lacks such repetitive
sequences. Additionally, it is noteworthy that the order in which the Hadamard
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gates are applied in the KetGPT and the real circuit follows an ascending order
based on qubit numbers, whereas in the fully random circuit, as expected, there
is no logical order of operations. Importantly, the random circuit includes invalid
statements, such as operations on nodes that were never defined (e.g., an opera-
tion on node 4 is instructed, but node 4 was never defined). However, this error
is also occasionally present in files generated by KetGPT, albeit seemingly less
frequently. The fact that it is not specifically forbidden for KetGPT to generate
invalid statements, but it still generates such statements considerably less often
than random files, can also be seen as a realistic feature of KetGPT-generated
data. Note that we also ran all our circuits within the Qiskit framework [3] where
96% of the circuits passed the compilation process successfully.

Based on the provided examples and the illustration in Fig. 3, a visual exami-
nation strongly indicates that KetGPT-generated circuits exhibit characteristics
reminiscent of real quantum circuits. This observation underscores the promise
of employing transformers to generate quantum circuit data.

4.2 Classifier-Based Evaluation

As a second measure of verification, we developed and trained a classifier model
to determine whether KetGPT circuits resemble more real algorithm-based or
random quantum circuits. As input, we created a dataset with the same amount
of real and random circuits (1112 each) and used 85% of the data for training
and 15% for testing the classifier.

To assess the model’s performance, a confusion matrix is employed to ascer-
tain the alignment between the model’s predictions and the actual labels of the
data. The corresponding confusion matrix for this evaluation is depicted in Fig. 4.

(a) KetGPT (b) Real (c) Random

Fig. 3. Side-by-side comparison between the lines of a 6 qubit QASM file generated by
KetGPT (a), algorithm-based circuit (b) and a random circuit(c).
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A total of 328 out of 334 test dataset values are predicted correctly, which means
that the classifier model achieved an accuracy of 98.2%.

Subsequently, the classifier was tasked to classify 1000 KetGPT QASM files
as either more similar to its training dataset (real algorithm-based) or to com-
pletely random qauantum circuits. Among the 1000 circuits evaluated, 999 were
classified as authentic, indicating a classification accuracy of 99.9%.

It is difficult to evaluate the reliability of the model. The high accuracy could
potentially be explained by the fact that the test dataset consists of a random
subset of the total data. It is possible, for instance, that the Deutsch-Jozsa
algorithm on 6 qubits is part of the training dataset, and Deutsch-Jozsa on 5
qubits is in the test dataset. The similarity between the training and testing
data may influence the accuracy metric calculation. Nonetheless, using different
instances of the same algorithms for the datasets was inevitable due to the
limited availability of diverse algorithms. The random QASM files in the test
set, however, are not similar to the random files in the training dataset, and are
still predicted correctly every time.

Taking all of these considerations into account, including the classifier’s accu-
racy when evaluated, it appears that the classifier is capable of discerning real-
istic features within the data. However, determining whether this proficiency
results from the model overfitting to specific features of QASM files or genuinely
learning relevant aspects of realistic circuits presents a challenge.

4.3 Analysis Based on Circuit Structure

Another approach to quantifying and validating KetGPT involves extract-
ing structural parameters from circuits. Within this approach, a circuit is trans-
formed into interaction and gate dependency graphs [5] and then analyzed based

Fig. 4. Classifier performance on a test dataset illustrated by a confusion matrix. Diag-
onal values of the matrix are correctly predicted: only 5 QASM files that are actually
“Real” are predicted as being “Random”, and 1 QASM file that is ‘Random’ is predicted
as being ‘Real’.
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Fig. 5. The distribution of clusters obtained through structural parameters analysis is
depicted. Each segment in the outer circle represents clusters characterized by the same
types of circuits (e.g., the dark green segment encompasses all clusters that consist of
KetGPT and real circuits). The inner circles display the quantity of each circuit type
within the respective outer circle segment. (Color figure online)

on quantum compilation-related, graph theory-based (e.g., degree of nodes)
parameters. Following this methodology, we extracted the suggested 23 met-
rics [4] from our KetGPT circuits in order to compare them with existing cir-
cuit dataset. For comparison, we followed another method suggested in [5] and
clustered the circuits (KetGPT and qbench [5] circuits) based on the extracted
parameters to discover groups of ultimately structurally similar circuits. The
benchmark set qbench consists of real algorithm-based circuits, random circuits,
and QUEKO circuits (synthetic circuits with predefined depth and gate count)
[41], so by doing clustering, we could see where KetGPT would belong within
these groups, or if it would form its own. Notably, we refrained from utilizing this
benchmark set for creating KetGPT circuits, ensuring an unbiased evaluation.

Clustering is done in a two-level manner: first based on size and then sub-
clusters based on the structure of the quantum circuits, resulting in a final tally
of 18 clusters. For clarity, we consolidated clusters sharing identical circuit struc-
tures (in terms of circuit types) into one and illustrated the distribution in Fig. 5.
The depicted clustering reveals that KetGPT circuits consistently align with real
circuits and never with completely random ones. Additionally, a smaller portion
of QUEKO circuits exhibit a similar association with both KetGPT and real cir-
cuits. Given that QUEKO circuits aim to mimic realistic behaviors more closely
than classical random circuits [41], this observation is logical. Figure 5 also sug-
gests how much KetGPT contributes to having more realistic circuits in the
whole set (green segments of the inner circle).
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5 Conclusion and Outlook

The scarcity of quantum circuits ’useful’ for benchmarking, stemming from limi-
tations in existing datasets, poses a significant challenge to the progress of quan-
tum compiler and hardware development. To address this gap, our research intro-
duces KetGPT, a tool that utilizes the Transformer machine learning architec-
ture to generate synthetic circuits resembling real-world quantum algorithms. We
verified our resulting circuits three-fold by: 1) Running the circuits with Qiskit
framework and manual inspection, we achieved a 96% success rate (without
error or warning); 2) Implementing and training a transformer-based classifier
for distinguishing between ’real’ and random algorithms which classified Ket-
GPT circuits as real in 99% of the cases; and 3) Characterizing the generated
circuits by extracting structure-based properties and clustering them together
with another dataset containing real and random circuits. The analysis revealed
that all our circuits closely resembled the structure of algorithm-based ones, and
showcased the expansion of the dataset. In conclusion, this three-step, extensive
verification shows that KetGPT can augment realistic and executable quantum
circuit dataset(s).

Our future steps in expanding and improving KetGPT include: i) Exploring
alternative generation schemes, such as top-p [19], beam search [14], or con-
trastive search [39], to compare their effectiveness in generating QASM files or,
development of a generation scheme tailored specifically for QASM file genera-
tion; ii) Reconsidering the representation of QASM statements as discrete tokens:
Introducing an arbitrary gate token to accommodate QASM files with arbitrary
angles, using a transformer trained for this purpose in post-processing; and iii)
Modifying the tokenization scheme by separating gates and target qubits into dis-
tinct tokens (e.g., treating ‘Hadamard gate’ and ‘on qubit 1’ as separate tokens)
and ensuring that the adjusted scheme generates only valid QASM expressions
and exploring its scalability for higher qubit counts.

In summary, we are confident that KetGPT holds the promise to not only
significantly influence the benchmarking of quantum systems, but also to serve
as a valuable input for data-intensive, AI-based solutions in the development of
innovative quantum compilers and systems.

6 Software Availability

The code that was used for this work is provided as a Jupyter notebook [23],
which was executed in the Google Colab environment [13], available at:
https://colab.research.google.com/drive/1dbtJX6q8sED4yrb1I09KUuXWYH0-
AVN8r.

The data that was used for this work, comprising of the train-
ing dataset, and a KetGPT folder that contains: the pre-trained Ket-
GPT model, the KetGPT tokenizer, the pre-trained classifier model,
all KetGPT generated circuits and all random circuits, is available at:
https://www.kaggle.com/datasets/boranapak/ketgpt-data.

https://colab.research.google.com/drive/1dbtJX6q8sED4yrb1I09KUuXWYH0AVN8r
https://colab.research.google.com/drive/1dbtJX6q8sED4yrb1I09KUuXWYH0AVN8r
https://www.kaggle.com/datasets/boranapak/ketgpt-data
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