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SUMMARY

The world is in a renewable energy transition, and accelerating it requires solar energy to
assume an even more competitive position. The subfield of Concentrator Photovoltaics
(CPV) employs optical elements such as mirrors to focus solar flux to a small target area
with a PV receiver, making more efficient yet expensive cells appealing. Additionally,
the more intense irradiance due to concentration inherently improves energy conver-
sion efficiency. CPV therefore boasts significantly higher energy conversion efficiency
compared to conventional photovoltaic technologies, and could potentially have a role
to play in the transition. The viability of CPV hinges upon whether the extra incurred
costs can be justified, and it is understood in the industry that innovative system design
is an absolute requirement.

CPV system designers are immediately presented with a significant problem, which
is that there no standardised workhorse model to accurately evaluate CPV topologies.
The spectral irradiance standards - the backbone of representative photovoltaic system
analysis - could be used, but lose in validity the higher the concentration. The Sun is not
a point source, and neither does it appear as a uniform disk. A different source model -
the so-called sunshape - is used in the related field of Concentrated Solar Power (CSP),
which also utilises concentrating optics but relies on thermal energy generation instead
of the photovoltaic effect. The sunshape considers - without considering spectral infor-
mation - the distribution of intensity over the extended source that is the Sun, because
even these small angles matter for a concentrating application. It follows that CPV sys-
tem analysis requires a spectral radiance model of the Sun that contains both spectral
and directional information.

Simply combining the sunshape and the spectral irradiance standards is the most
straightforward solution, but in doing so the assumption is made that the spectral and
directional distribution of solar flux are independent. Observations with solar telescopes
from the field of astronomy demonstrate that the two are not independent. In this the-
sis, a model from the astronomical literature is combined with the spectral irradiance
standards to establish the spectral sunshape, a spectral radiance model of the Sun. This
spectral sunshape is compared to the spectral radiance profile resulting from simply
combining the sunshape and spectral irradiance standards. Additionally, a model in
this framework for the most relevant optical element - the heliostat, a tracking mirror
- is introduced. The spectral sunshape is combined with the heliostat model to arrive at
the so-called effective spectral sunshape, which in turn is a representation of the spec-
tral radiance post-reflection. With the (effective) spectral sunshape, the field of CPV can
hopefully work towards realising its potential.
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INTRODUCTION

Fossil fuels’ finite supply and environmental impact have resulted in a strong societal
desire to shift towards a renewable energy economy. Increased public awareness - as
well as the strategic importance of energy autonomy - have encouraged governments to
commit political resources towards making this wish a reality, and currently the renew-
able energy transition is in full swing. It is extremely likely that photovoltaic (PV) energy
conversion will play a prominent role in the future energy supply, because of its abun-
dant potential to meet societal demand and because of the competitive price level of PV
systems.

The theoretical potential is evident from a back-of-the-envelope calculation, detailed
in Appendix A.1, which demonstrates that it takes only 110 minutes for an amount of so-
lar radiation equal to the annual global energy consumption to arrive at the Earth’s sur-
face. In case of an average conversion rate of 20% from irradiation to useful energy, and
an average 90% loss from the location of generation to the location of useful consump-
tion, dedicating just 1.0% of the Earth’s surface to energy generation would be necessary
to meet the aggregate demand.

Secondly, solar energy is already economically competitive as an energy source. The
conventional metric used to compare economical performance of electricity generating
technologies is the Levelised Cost of Electricity (LCOE). It is defined as the sum of the net
present value of total expenditures of a system divided by the net present value of total
generated electricity. That is, for technology i,

LiBo) * Ciy
LR * Eiy

Bc and B respectively denote the appropriate discount factors for money and elec-
tricity. They reflect the time value of money and electricity, and typically assume a value
of about 0.9 to 0.95 depending on the investment climate. C; ; denotes the total net cost
of technology i in year ¢, and E; ; the electricity generated by technology i in year ¢. T

LCOE; = (1.1)
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is the economical lifetime of the system. Figure 1.1 below shows the unsubsidised lev-
elised costs of electricity for various technologies, according to financial advisory and
asset management firm Lazard (2019):

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances
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Renewable Energy
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Figure 1.1: Low- and high-end LCOE estimates for various renewable and nonrenewable electricity sources,
as estimated by Lazard [1].

It is apparent that utility-scale solar is already competing with the cheapest sources
of electricity. However, an important caveat to the LCOE comparison is the intermittent
nature of solar and wind energy, a fundamental drawback versus e.g. fossil fuel power
plants that can deliver variable, controllable power. The golden diamond points repre-
sent the mean price points of intermittent sources including an electricity storage sys-
tem (ESS), and therefore allow for a more appropriate comparison. In that case the gas
combined cycle technology still reigns supreme, but utility-scale PV is close.

Besides the LCOE snapshot depicted in Figure 1.1, the rates of change are even more
important to gauge economical performance in the near future. The historical means are
presented in Figure 1.2. It is clearly visible that solar energy has been exhibiting an im-
pressive LCOE decrease of 89% over ten years, or a compound annual growth rate (CAGR)
of about -20%. Similar to wind energy, this rapid decrease is associated with increasing
technological maturity and installed capacity. Since the installed solar energy capacity
is expected to continue its increase, it is very likely that the downward trend will persist.
Furthermore, it is estimated that ESS prices will fall by between 50% and 66% by 2030 [2].

The competitive present price level, the rapidly dwindling historical price levels, and
the increasing cumulative deployment jointly suggest that utility-scale PV will be amongst
the most competitive electricity sources in the near future. It should be stressed though
that this future viability is conditional on continuing the downward trend in the LCOE.
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Figure 1.2: Evolution of the average LCOE of selected electricity generation technologies. [1]

From Equation (1.1) it follows that decreasing costs - the numerator - and increasing
electricity output - the denominator - are both means to this end. In recent history the
LCOE CAGR has been largely attributable to the numerator. The cumulative installed
PV capacity grew from 70.4 GW in 2011 to 623.2 GW in 2019, and the accompanied
economies of scale - translating into factors such as easier access to finance, mass man-
ufacturing, and more efficient supply chains - have driven rapid cost decreases of PV.
As for the denominator in the LCOE equation, the efficiency of average commercial Si
modules increased from 12% to 17% over ten years [3], exhibiting a CAGR of 3.5%. Whilst
sizeable, the figure pales in comparison to the exhibited LCOE CAGR of -20%. Further-
more - as the following Section 1.1 will elucidate - even the 3.5 % CAGR of efficiency will
be difficult to maintain in the short term, and impossible to maintain in the long term.

1.1. PHOTOVOLTAIC ENERGY CONVERSION AND THE SHOCKLEY-

QUEISSER LIMIT

This section evaluates the current PV industry from a technological point of view, and
considers the fundamental efficiency limitations that arise due to inherent properties of
PV cells and the nature of solar irradiance. Semiconductor physics and working princi-
ples underlying PV energy conversion are not covered in this section, but are well docu-
mented in the literature, e.g..

Currently, the global annual PV module supply is dominated by two crystalline sili-
con technologies: mono-Si and multi-Si [3]. The other category depicted in Figure 1.3,
of thin-film technologies, is in turn dominated by three technologies: CdTe, CI(G)S and
a-Si. As such, just three semiconductor materials - Si, CdTe and CI(G)S - constitute the
backbone of the current PV landscape. All technologies are single-junction technologies,
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Figure 1.3: Global annual PV module production, subdivided into multi-Si, mono-Si and thin-film tech-
nologies. The category of thin film modules is almost entirely comprised of three technologies: CdTe,
CI(G)S and a-Si [3].

which is an important factor in estimating the room for efficiency improvement.

1.1.1. THE SHOCKLEY-QUEISSER LIMIT

In 1960, William Shockley and Hans Queisser formulated the theoretical maximum effi-
ciency limit for a single-junction PV cell [4]. The PV cell is devoid of practical imperfec-
tions, and only limited by fundamental physical phenomena. Examples of fundamental
limitations are the principle of detailed balance, i.e. the creation of an electron-hole pair
is possible if and only if the reverse process is also possible, and the inevitable blackbody
radiation of the PV cell itself due to its temperature of 300 K. The eponymous Shockley-
Queisser (SQ) limit follows from the following set of assumptions:

SQ1) There is a single junction, with a corresponding band gap energy level Eg.
SQ2) The incident spectral irradiance profile is the standard AM1.5G spectrum.
SQ3) The PV cell operates at a temperature of 300 K

SQ4) Every incident photon possessing less energy than the junction’s characteristic
band gap will not be absorbed, i.e. if E,;, < Eg no electron-hole pair can be gener-
ated.

SQ5) Anincident photon excites a single electron-hole pair only if the photon is at least
as energetic as the junction’s characteristic band gap, i.e. if Epj, = Eg.

SQ6) If By, > Eg, the excited electron relaxes to Eg before collection such that an amount
of Eyp, = Epp — Eg is converted into unusable thermal energy.

Assumptions SQ5) and SQ6) essentially imply that, if an electron-hole pair is excited,
the collectable energy is equal to the band gap energy regardless of the exciting photon’s
original energy. It should be noted that assumption SQ2) here is an improvement upon
the original assumption invoked by Shockley and Queisser, who considered the radia-
tion profile emitted by a 6000K black body rather than the irradiance actually arriving at
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Earth’s surface. For terrestrial photovoltaic applications, the latter is obviously more rel-
evant. The standard reference AM1.5G (ASTM G-173-03 [5]) spectrum was established
to model terrestrial irradiance, and the original Shockley-Queisser study simply predates
its establishment.

The SQ limit as a function of a junction’s band gap energy Eg is depicted in Figure
1.4. The dependency on band gap energy follows not just because of the AM1.5G spec-
trum, but also from assumptions SQ4), SQ5) and SQ6). Decreasing the band gap energy
E; implies that a larger share of the AM1.5G photons will excite an electron-hole pair,
yet every excited pair only delivers the smaller band gap energy E; as a consequence of
SQ6). Excess photon energy is lost in thermalisation, which thus increases as the band
gap decreases. On the other hand, although increasing the band gap energy directly cor-
responds to an increased amount of collectable energy per electron-hole pair, less such
pairs will be excited because a decreasing share of photons will be sufficiently energetic
to bridge the band gap. A trade-off as a function of band gap arises, which is apparent in
Figure 1.4. Since the band gap energy is fixed for any particular single-junction PV cell,
energy will necessarily be lost either way:.

Figure 1.4 clearly reveals how sizeable these loss mechanisms are. Even an idealised
single-junction PV cell has an upper conversion efficiency bound of just 31.0% [6]. This
SQ limit corresponds to a band gap energy of 1.34 eV. Figure 1.5 shows the Shockley-
Queisser limit for spectral utilisation in the market-dominating case of Si, with a band
gap of Eg = 1.11 eV corresponding to 1100nm. Photons below the band gap energy
(above 1100nm) are not absorbed at all, whilst an increasing share of energy is lost due
to thermalisation as the photon energy increases (and photon wavelength decreases ac-
cordingly. The Figure also shows that the conversion efficiency at the band gap is 100%
under the idealised SQ limit assumptions.

EEN Eg=1.11 eV, PCE=33.2%

thermalisation
losses

Efficiency (=)

SQ limit

05 1 15 2 25 3
Bandgap energy (eV) 500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)

Figure 1.4: The Shockley-Queisser limit
and fundamental loss mechanisms as a  Figure 1.5: The SQ limit for crystalline silicon with Eg =
function of semiconductor band gap en-  1.11eV visualised in red, as a fraction of the total AM1.5G

ergy, reprinted from [7]. spectrum.

The crux is that single-junction PV cells have a fundamentally limited spectral re-
sponse. Photons constituting the AM1.5G spectrum possess a range of energy values, yet
any single-junction PV cell is incapable of converting efficiently across the entire range.
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Owing to the poor spectral response, the upper efficiency bound is rather low. Even in
case of ideal PV cells, the SQ efficiency limit stands at 33.2 %. For real PV cells, an even
sharper upper efficiency bound holds. For indirect band gap materials - like Si - Auger
recombination dominates radiative recombination, yet it is not even considered in the
original SQ calculation. A recent study for the most prevalent material, crystalline Si,
estimates its maximum theoretical efficiency to be 29.43% [8].

As for actually attained efficiencies, the current record Si cell boasts an efficiency of
26.7 £0.5%, whilst the current record single-junction cell is a GaAs cell with an efficiency
of 29.1 +0.6% [9].The commercially successful PV cells from Figure 1.3, which are opti-
mised with respect to value for money rather than efficiency, are about 17% efficient on
average [3]. The record demonstrated Si efficiency is thus already within 10% of the the-
oretical upper bound, and average commercial cell efficiency is about 60% of the upper
bound. Efficiency-wise, the room for improvement is fundamentally limited.

Photovoltaic efficiency exceeding the SQ limit is only possible by deftly circumvent-
ing the aforementioned SQ assumptions. Technologies both demonstrated and concep-
tual that attempt this feat are collectively referred to as third generation concepts [10].
The following section will discuss the one third generation concept which has thus far
enabled photovoltaic energy conversion beyond the SQ limit: the multi-junction (M])
approach.

1.2. THE MULTI-JUNCTION APPROACH

The MJ approach entails utilising multiple single-junction subcells to improve the spec-
tral response. A general description of properties relevant for this thesis is provided,
more elaborate documentation is present in e.g. [11] or [12]. Two different M]J strategies
are explored in this section: the conventional multi-junction stack, and spectral beam
splitting. Both approaches boast advantages yet also suffer from inherent limitations
and challenges, which will all briefly be discussed.

1.2.1. TANDEM CELLS

The first MJ approach is that of the tandem cell - also known as the multijunction stacked
cell - where multiple semiconductors with different band gaps are stacked on top of each
other. The tandem cell constitutes the most technologically mature adaptation of the ap-
proach, and was the first successful third generation concept that demonstrably yielded
an efficiency beyond the SQ limit. Photons with insufficient energy to interact with the
uppermost semiconductor layer, i.e. photons with E,j, < Eg, tend to simply pass through
without being absorbed or transmitted. These photons then enter a subcell with a lower
band gap energy, in which the sufficiently energetic photons are absorbed and the insuf-
ficiently energetic are again largely transmitted to yet another different subcell. A tan-
dem cell hereby essentially defers subsets of the spectrum to the subcells where conver-
sion is the most efficient. A schematic of a typical triple-junction cell is depicted in Fig-
ure 1.10. Compared to a single-junction cell, both thermalisation and non-absorption
losses are reduced; this improved spectral response is illustrated in Figure 1.6. The po-
tential efficiency exceeds the SQ limit by simply violating assumption SQ1).
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Figure 1.6: A spectral response comparison under the AM1.5G spectrum of a practical Si cell (left), versus
a triple-junction GaInP-GalnAs-Ge cell (right). Note that photon energy is inversely proportional to wave-
length: E,j, = %, where h and c respectively denote the Planck constant and the speed of light in vacuum.
Reprinted from.

Additionally, tandem cells have more degrees of freedom in their design: it is not
strictly necessary to select a material from the optimal band gap range from Figure 1.4,
since many combinations can cover the spectrum adequately. Other properties relevant
for photovoltaic conversion, such as external quantum efficiency (EQE), can be consid-
ered to solve an overall spectral utilisation problem. Tandem cells often employ III-V
compound semiconductors because of their excellent photovoltaic properties, and be-
cause alloy ratios can be adjusted to tune subcells’ band gaps. All in all, the potential
overall efficiency is significantly higher compared to the single-junction case. Under a
6000K blackbody spectrum, the theoretical limit for an infinite number of junctions is
69.9% [6]. Triple- and quadruple-junctions already have a significantly higher ceiling
(49.1% and 53.0% respectively) than the single-junction limit of 31.0% [6]. The current
record efficiency under standard testing conditions stands at 38.8 +1.2% for a quintuple-
junction cell, and at 37.9 +1.2% for a triple-junction cell [9].

Tandem cells also suffer from a number of drawbacks, which impose additional re-
strictions. Most drawbacks stem from the series-connection of the subcells in a stack
[13]. Since a series-connected circuit is characterised by a single current, a tandem cell
is current-limited by the subcell with the smallest current. Excess generated current is
essentially lost, and it therefore follows that a delicate balance must be struck amongst
the subcells such that each generates the same current when exposed to the solar spec-
tral irradiance. This design goal is referred to as current matching. Current matching
is achieved in practice by careful material selection based on the junction band gaps,
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as well as by adapting the individual junctions’ absorptivities through e.g. thickness. It
is very important to note that a series-connected tandem cell design is fundamentally
linked to the reference spectral radiance. A hypothetical current-matched tandem cell
designed for the AM1.5G spectrum will generate the same current in every subcell only
when actually exposed to the AM1.5G spectrum, or upscaled and downscaled versions
thereof.

Unfortunately, the incident spectral irradiance for a fixed location on Earth is not
even remotely constant over time in practice, due to a plethora of factors. The most
important factor is the position of the Sun in the sky, with increased scattering resulting
in redshifted light as the Sun is closer to the horizon. Atmospheric disturbances such
as clouds also impact the real-time spectral irradiance profile incident on a location on
Earth.

The incident spectral irradiance profile also varies significantly across locations, in
the sense that the spectral content varies. Latitude is an important factor here because
it directly determines the optical path length through the atmosphere of sunlight. The
AM1.5G standard spectrum is representative for mid latitudes, such as the contiguous
U.S.A. Closer to the equator, the optical path length through the atmosphere is shorter on
average, resulting in less absorption and a more redshifted incident spectral irradiance
profile. Whilst it is of course possible to design a tandem cell for every location’s specific
annual spectral irradiance profile, this is not economically feasible or mass producible.

Although AM1.5G is a tried and tested representative for the average irradiance at a
typical location, it is never the case that a surface on Earth is only exposed to upscaled
or downscaled AM1.5G spectra during the day. Since a tandem cell itself is by nature in-
flexible in adapting its spectral response post-construction, it follows also that frequent
current-limited operation is inevitable.

Another drawback is that reverse junctions arise at the interfaces if one would sim-
ply connect subcells with different band gaps in series directly. These reverse junctions
would significantly limit the voltage, effectively wiping out the advantage of using mul-
tiple junctions in the first place. Tunnel junctions separating the subcells are imple-
mented to prevent this voltage drop, but they also result in parasitic losses.

The tandem cell approach conveys material design constraints in addition to the
current-matching requirement outlined above. Another requirement is that the pho-
tons with only sufficient energy for the lower junctions should pass through the upper
layers unimpeded. In other words, the transmittance of photons through both the up-
per layers and tunnel junctions should be as close to unity as possible. This constitutes
an additional material requirement for selecting the upper layer materials, and it is also
important to note that this requirement interacts with the current matching problem
described above.

Another design constraint worth noting stems from the conventional production
method of tandem cells, epitaxy. Epitaxially grown tandem cells require subcells with
the same lattice constant, in order to prevent defects between subcells that decrease
performance. In recent times however, production methods for metamorphic (i.e. not
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lattice-matched) tandem cells have been developed and demonstrated [14].

Due to the increased complexity, the scarcer materials, and above all the significantly
smaller market size, tandem cells are orders of magnitude more expensive than the dom-
inant single-junction technologies. Since the efficiencies attained by tandem cells are
not orders of magnitude higher to offset this, it follows that tandem cells are not remotely
competitive under terrestrial standard operating conditions. Despite this, tandem cells
have found their niche in space applications, where the goals and constraints are differ-
ent and the benefit of more generated electricity per unit area can outweigh the costs.

Glass GalnP
|

\
\ 1

]
Pc-Si

Figure 1.7: A spectral beam splitting configuration where a dichroic mirror reflects high energy light to the
high band gap GaInP, and where low energy light is transmitted to the low low band gap Pc-Si, Reprinted
from [15].

1.2.2. SPECTRAL BEAM SPLITTING CONFIGURATIONS

A different adaptation of the MJ approach is spectral beam splitting. Spectrally selective
optical filters such as dichroic mirrors are used to decouple the irradiance spectrum, and
redirect subsets of the spectrum to multiple physically separated junctions. The working
principle is illustrated by the dichroic mirror in Figure 1.7. The ideal dichroic mirror has
a transmittance of unity for a subset of the spectrum, and a reflectance of unity for all
other wavelengths.

The advantages of the spectral beam splitting configuration over the stack approach
lie in the inherent physical separation of junctions. Current matching is not required as
the separate junctions are not connected in series, and tunnel junctions are also unnec-
essary. The mechanical challenges of epitaxial lattice matching or metamorphic design
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also do not apply. Furthermore, the heat accumulation of a spectral beam splitting con-
figuration is spread out over the various single-junction cells, and therefore easier to
manage than a single stack. Finally, single-junction cells with different band gap ener-
gies can be deployed, and since these cells are not subject to the strict mechanical con-
straints of a multi-junction cell stack it is even possible to deploy several off-the-shelf PV
cells with different band gap energies.

Figure 1.8 for example shows the spectral utilisation limit for GaAs and Si, with band
gaps of 1.44 eV and 1.11 eV respectively. This limit assumes a beam splitting configu-
ration that ensures photons with energies Ej,;, = 1.44 eV are absorbed by the GaAs cell,
whilst photons with energies 1.44 eV < Epj < 1.11 eV are absorbed by the Si cell. Fur-
thermore, assumptions SQ2) through SQ6) are also invoked here. The joint spectral util-
isation limit is 42.4%, which is already significantly higher than the SQ limits of just GaAs
(32.9%) and Si (33.2%). This configuration is significant because GaAs solar cells and Si
solar cells are readily available on the market, and proven to be economically compet-
itive. It is thus implied that the higher efficiency can be attained at the same solar cell
price level, and such a setup would have a better LCOE if the beam splitting configura-
tion is not too expensive.
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Figure 1.8: Joint detailed balance limited spectral utilisation potential of two technologically mature mate-
rials: Si (1.11eV) and GaAs (1.44eV).

Figure 1.9 depicts the limited spectral utilisation in case of four separate materials:
GaInP with a band gap of 1.88 eV, GaAs with a band gap of 1.44 eV, Si with a band gap
of 1.11 eV, and finally GaSb with a band-gap of 0.73 eV. This configuration is notewor-
thy because it was experimentally tested by scientists from the Fraunhofer ISE in 2010,
whereby conversion efficiencies of 34% were attained outdoors [16]. The working princi-
ples of a beam splitting configuration have thus been demonstrated in an experimental
setting, but the technological maturity of this approach has not progressed significantly
beyond that setting.
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Figure 1.9: Detailed balance limited spectral utilisation potential of four single-junction PV materials:
Gasb, Si, GaAs and GaInP, in order of increasing band gap.

The spectral beam splitting strategy also conveys drawbacks. Additional optical ele-
ments are of course accompanied by losses, and the optical losses of a practical dichroic
mirror are typically larger than the optical parasitic losses due to tunnel junctions and
imperfect transmittance in tandem cells. For the Fraunhofer four-junction configura-
tion, the estimated total optical losses incurred by the beam splitting configuration amounted
to 4.8%. Another drawback is that spectrally selective optical elements are typically very
sensitive to angular deviations [15]. Dichroic mirrors for example optimally decouple
the spectrum for an incidence angle of 45°, and lose performance at different incidence
angles. Even for a simple terrestrial application, a mechanical reorientation system is
therefore necessary to keep the incidence angle near 45° as the Sun apparently moves
across the sky over time.

Both M]J approaches discussed enable energy conversion beyond the SQ limit, but
come with significantly increased complexity and costs. For terrestrial energy genera-
tion, simply covering a larger area with significantly cheaper single junction cells is a
superior strategy. This is clearly evident in Figure 1.3, where the MJ approach is absent.
It can be concluded that, under ordinary terrestrial irradiance conditions, the MJ ap-
proach is not a commercially viable energy generating technology. Tandem cells have
however demonstrated to be optimal for a different application, spaceflight, where the
optimisation problem is fundamentally different. For MJ approaches to become eco-
nomically viable on Earth, it is necessary to fundamentally transform the optimisation
problem. It is exactly this that the field of concentrator photovoltaics (CPV) attempts.
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1.3. CONCENTRATOR PHOTOVOLTAICS

Concentration is the redirection of irradiance incident on an area to a smaller area by
means of optical elements. A suitable optical train, defined here as a system of optical
elements designed to guide light, effectively redistributes the total incident irradiance.
The goal is to have a small area receive higher flux. The concentration ratio C is conven-
tionally defined as the dimensionless ratio of irradiance E to the irradiance contained
within the AM1.5G spectrum, 1000Wm 2.

C(E) = (1.2)

1000Wm—2

Concentration brings about two main advantages for photovoltaics. Firstly, an in-
crease in concentration typically results in an efficiency increase, i.e. a more than pro-
portional increase in energy output. Secondly, only a relatively small area has to be
covered with PV cells. This strongly synergises with more efficient yet more expensive
energy conversion solutions such as the multi-junction approach. These two desirable
properties incited research into concentrator photovoltaics. The realm of CPV is com-
prised of Low Concentrator Photovoltaics (LCPV) and High Concentrator Photovoltaics
(HCPV), where LCPV corresponds to low concentration ratios 1 < C < 100 and HCPV is
characterised by concentration ratios C > 100.

It should be stressed that CPV is distinct from the field of concentrated solar power
(CSP), which similarly concentrates irradiance via an optical train to a receiver area. The
distinction is that CSP generates electricity from heat driving a turbine, rather than the
photovoltaic effect.

Although CPV boasts the two aforementioned advantages, it also faces fundamental
limitations and additional challenges that must be considered. This section will first
expound how concentration allows for conversion beyond the SQ limit. Subsequently
the drawbacks and limitations of CPV are discussed, starting with the most prominent
one: irradiance availability.

1.3.1. EFFICIENCY AS A FUNCTION OF CONCENTRATION

The vast majority of conventional PV technologies exhibit an approximately logarithmic
increase in efficiency, as C increases. This phenomenon is illustrated in Appendix A.2. In
Figure 1.4 the largest share of the 'other losses’ are due to the Vj;pp being lower than the
band gap, and concentration essentially alleviates this fundamental loss contribution.
Concentration violates assumption SQ2, which is why exceeding the SQ limit is possible.
The theoretical efficiency limits per junction number from [6] under a single Sun and
optimal concentration are tabulated in Table 1.1.

Table 1.1: The theoretical limit for 1J, 2], 3], 4] and infinite junction cells under a 6000K blackbody spectrum
and under maximum concentration, copied from [6].

Concentration 1] 2] 3] 4] ooJ
1 (one Sun) 31.0% | 42.7% | 49.1% | 53.0% | 69.9%
46,050 (max) 40.8% | 55.6% | 63.5% | 68.4% | 86.8%




1.3. CONCENTRATOR PHOTOVOLTAICS 13

As documented in Appendix A.2, the initial trend of increasing efficiency as a func-
tion of concentration does reverse at very high concentration levels. A concave char-
acteristic follows, such that there exists a concentration ratio at which efficiency has a
maximum. The optimum ratio varies per material, but it is generally orders of magni-
tude larger than unity. It is therefore implied that concentration generally enhances effi-
ciency. For often used multi-junction configurations, the optimum concentration ratio
typically varies between 100 and 1000 equivalent Suns. For the dominant single-junction
Si, the optimum concentration ratio also stands at approximately 100 equivalent Suns
[17]. The concentration response of a typical GaInP/GalnAs/Ge cell is depicted in Figure
1.11, which shows an experimental optimum around 400 suns.
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Figure 1.11: The concentrator response of a
GaInP/GalnAs/Ge cell, reprinted from [12]. The
dots represent observations, whilst the solid lines are
fitted to these observations.

Figure 1.10: A typical triple-junction
GaInP/Ga(In)As/Ge cell, reprinted from
[18].

1.3.2. DIRECT NORMAL IRRADIANCE

A fundamental limitation of CPV is that a system employing concentrating optics can
only access a subset of the incident irradiance. The total irradiance incident on a sur-
face, Global Horizontal Irradiance (GHI), consists of three collectively exhaustive com-
ponents: direct, diffuse, and albedo. The three components correspond to respective
solid angles from which the irradiance originates. Direct Normal Irradiance (DNI) is
defined as originating from a cone centred on the Sun with an opening half-angle of
2.9°. Diffuse Horizontal Irradiance (DHI) is irradiance from the entire sky excluding
the solid angle reserved for DNI, and the albedo component is irradiance reflected by
non-atmospheric objects like the ground. The albedo component is obviously location-
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specific and often comparatively negligible in magnitude, such that it is not included in
analyses based on a reference standard setting. The simple irradiance relation is there-
fore as follows:

Ecur = Epni(<2.9°)+ Eppi(>2.9°) (1.3)

Scattering of light in the atmosphere increases DHI and decreases DNI, such that
the relative proportion of DNI directly depends on atmospheric parameters. In clear
weather DNI is by far the largest component, which is why refractive and reflective op-
tical elements focus on capturing DNI. Even for a concentrating system with a very low
concentration ratio, the fraction of DHI arriving at the receiver area is negligibly small.
This inability to convert diffuse irradiance is a disadvantage compared to flat-plate mod-
ules, but the significance of this disadvantage strongly depends on location. Total annual
irradiance is highest for locations with minimal atmospheric obstruction, such that lo-
cations with excellent solar potential also have a relatively large DNI component. An
overview of global DNI incident on a plane perpendicular to the Sun is presented in Fig-
ure 1.12, from which it can be concluded that locations with ample DNI exist.

Direct Normal Irradiation (DNI)
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Figure 1.12: Global average annual direct normal irradiance, from [19].

Recognising thatirradiance conditions are strongly location-dependent and also strongly

time-variant, reference spectra are essential to compare various PV systems on a fair ba-
sis. Gueymard’s work ([5]) forms the basis of the established standard spectra. Gueymard
investigated representative parameters, such as aerosol optical depth, that serve as in-
puts for the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS).
SMARTS maps the irradiance arriving at the outer atmosphere (AMO spectrum) into ter-
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restrial irradiance using a radiative transfer model of atmospheric interactions. All rep-
resentative parameters from [5] are tabulated in Appendix A.3.

Two particular SMARTS output spectra are especially important: the full GHI compu-
tation that considers all incident irradiance, and the DNI computation for a total open-
ing angle of 2.9f centred on the Sun. Notice that the 2.9f opening half-angle is signifi-
cantly larger than the solid angle subtended by the Sun itself, which varies from 0.262f
to 0.271f due to the Earth’s elliptical orbit. As such, the reference DNI spectrum by defi-
nition includes some irradiance originating from the annulus surrounding the Sun, de-
fined as circumsolar irradiance. However, this circumsolar irradiance contributes less
than 1% to the total DNI under the atmospheric conditions considered for the SMARTS
reference spectra [20]. The SMARTS spectra have been adopted by the American Soci-
ety for Testing and Materials (ASTM) as the AM1.5D and AM1.5G spectra, respectively.
Both spectra are depicted in Figure 1.13 as functions of photon energy. Note that the two
spectra are derived under the same conditions, the only difference being the opening
angle the AM1.5D spectrum is limited to.
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Figure 1.13: The standardised AM1.5G and AM1.5D spectra, transformed to an energy [eV] scale.

Comparing the reference DNI and GHI spectra from Figure 1.13, it appears that the
DNI curve is shifted downward by 30 to 40 Wm™2?eV~! for photon energies above 1.2
eV. This difference is exactly DHI per Equation (1.3), i.e. the mostly blue sky outside
the AM1.5D opening angle. This not only results in a different spectral profile, but also
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of course in a significantly smaller integral over the entire spectrum: the integral over
AML.5D is about 890Wm =2, versus about 1000Wm~2 for AM1.5G. The diffuse compo-
nent is quite significant even in clear-sky conditions, such that a CPV system is neces-
sarily limited to a subset of the irradiance available to a flat-plate PV system. However,
it should be stressed that the sharp 5.9° opening angle defining DNI is rather arbitrary.
The irradiance available to a concentrator system depends on its specific topology, and
is fundamentally limited by the concentration ratio. LCPV topologies are typically capa-
ble of utilising irradiance from slightly outside e 2.9° opening angle as well, whilst HCPV
systems are even constrained to a subset of the AM1.5D spectrum.

1.3.3. ANGULAR DEVIATION EXACERBATION

A second important limitation of CPV is that the irradiance incident on the receiver area
is necessarily non-collimated. This necessity follows from the fundamentals by which
concentration is achieved and the fact that the Sun is not a point source. Note that con-
centrating optical elements only function optimally for a particular orientation they are
‘aimed’ at. An ideal lens guides rays of light that are parallel to its axis to a focal point,
but off-axis rays by definition do not end up in the focal point. Also note that the Sun
is an extended source, appearing as a disk to an observer on Earth. An ideal lens would
redirect the largest share of the incident flux to the neighbourhood of the focal point, if
its axis were aligned perfectly with the centre of the Sun’s disk. Rays from the Sun’s edge
will deviate from the focal point, but the total deviations are minimal for the orientation
where the Sun’s centre and the lens’ axis overlap. Fundamentally though, it is inevitable
that angular deviations exist even for an idealised optical element.

In any optical configuration where light is concentrated, such angular deviations are
exacerbated. This is a direct consequence of conservation of étendue, which in turn is
a manifestation of the second law of thermodynamics. It is a necessary property, as it
cannot be decoupled from how concentration is actually achieved. Etendue and non-
imaging optics in general are well-documented, for instance in [21]. As the extent of
concentration increases, two incident rays will necessarily be mapped to rays with an
increasing angle between them. It is this phenomenon that is referred to as angular devi-
ation exacerbation in this thesis. Figure 1.14 illustrates how even in the case of idealised
optical elements an initial angular deviation is exacerbated.

Referring to Figure 1.14, consider a hypothetical perfect incident ray incident on p1.
By definition of the parabolic mirror with focal length fp, any ray parallel to its vertex
is redirected to the focal point F. The ray passes through E and arrives at the perfectly
thin converging lens at the point /; with focal distance f;. Note that the lens is perfectly
aligned to also have F as its focal point. By definition of a converging lens, any ray ema-
nating from its focal point will be perpendicular to the lens after passing through.

Next, consider any ray incident on the point p1 that is not parallel to the parabola’s
vertex, but instead deviates by an angle 8;. This ray becomes the red ray in Figure 1.14
after reflection, which does not pass through the focal point F and intersects the lens at a
different point /» instead. From this point of intersection, it is of course possible to draw
a line through the focal point, which intersects the parabola at the point p2. Note that,
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since this line passes through the parabola’s focal point, by definition it corresponds to
an incident ray parallel to the vertex. Additionally, by definition of the converging lens,
this ray is also perpendicular to the lens after passing through the point ;. Note that the
green lines are thus subject to similar operations, and both are parallel to the vertex be-
fore incidence and after passing through the lens. The distance between the green lines
is a measure of concentration. E; denotes the incident irradiance, and E. the concen-
trated irradiance.

Now, crucially, note that the deviating red line will not be perpendicular to the lens
after passing through I,; a ray striking /, will only be if it passes through the point F. In-
stead, it will be at an angle 6., approximately equal to Z(py, Iz, p2), i.e. the angle between
the red ray and the ray from p,. This angle 0. is larger than the initial deviation 0; if and
only if the focal length ratio % > 1. This focal length ratio is also exactly how concen-
tration is achieved. Reducing fi, i.e. placing a stronger lens closer to the mutual focal
point F, increases the ratio ceteris paribus. Repeating the procedure outlined in the pre-
vious paragraph for the new geometry would yield an increase in both the concentrated
irradiance E; and the angle 6.. There is a positive relationship between the degree of
concentration and the angular exacerbation from 0; to 8. It should be stressed that this
phenomenon is a necessary property, and that it arises even if ideal optical elements are
considered. Furthermore, recall that the Sun is not a perfect point source, implying de-
viating rays like the red one in Figure 1.14. Although the deviation between the centre of
the Sun and the edge of the Sun is only 0.266°, much smaller than 8; in Figure 1.14, the
concentration ratio is also much larger than illustrated, particularly for HCPV systems.

This angular exacerbation implies that concentrated flux will be intrinsically less col-
limated than the direct normal irradiance. Optical errors that will be discussed later
further augment this phenomenon. Baig et al. [22] present an overview of the prob-
lems induced by non-collimated irradiance relevant for CPV performance. The resulting
conversion loss depends on the implemented energy conversion method, but for the
prototypical multi-junction tandem cell it always constitutes a significant problem as
documented by Herrero et al. [23]. The Fresnel equations dictate that the transmission
of light into the tandem cell directly depends on the angle of incidence. It is implied that
current generation within the tandem cell will vary locally and across junctions, such
that the efficiency of the entire cell will be limited by the lowest current. Likewise, heat
accumulation will also vary locally and across junctions, and also limit the system as a
whole.

For spectral beam splitting approaches, non-collimated irradiance poses an even
larger problem. The properties of dichroic mirrors - typically stacks of alternating di-
electric materials - worsen significantly as the angle of incidence deviates from 45°, in
the sense that irradiance that ought to be transmitted is increasingly reflected and vice
versa. The more significant the angular exacerbation, the less effective beam splitters be-
come. Additionally, the angle of incidence on the receivers following the beam splitters
will also be suboptimal. In Figure 1.7, hypothetical incident rays other than the depicted
0f beam will be split and absorbed less efficiently. To circumvent these problems, sec-
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Figure 1.14: Illustration of angular exacerbation as a necessary consequence of concentration. Higher con-

centration E—Z is intrinsically tied to a higher angular exacerbation %; see the text for an explanation of the
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figure.

ondary optical stages are often used in CPV systems to collimate the irradiance again
after the necessary deviations induced by the first concentrating stage. Nevertheless,
fundamental deviations in the incident irradiance exist even with a well-designed sec-
ondary stage. The Sun is not a point source, and manufacturing errors, tracking errors
and local atmospheric factors are inevitable. Under concentration such small errors -
which are insignificant for ordinary PV systems - are exacerbated. It is a fundamental
drawback that receiver irradiance is necessarily less collimated post concentration - es-
pecially so with realistic errors - and any energy conversion strategy suffers from this
lesser extent of collimation.

1.3.4. OTHER FUNDAMENTAL LIMITATIONS AND CHALLENGES

CPV suffers from more fundamental limitations, and additional design challenges arise.
Another fundamental loss stems from the optical train itself. Practical mirrors do not
just reflect light, but also absorb and transmit a small fraction. Refraction by a lens also
incurs an optical efficiency loss. The throughput of an optical train depends on both the
geometry and material choice [24], but it is always less than the input.

Another limitation for CPV is that a tracking mechanism is absolutely necessary. The
Sun apparently moves across the sky, requiring either the optical elements to adjust
their orientation or the receiver to move accordingly. Tracking accuracy becomes pro-
gressively more important as the concentration factor increases. Up to a concentration
factor of 70x, single-axis tracking can still be sufficient and the economically optimal
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choice, but for higher concentration factors dual-axis tracking is required. A tracking
mechanism represents additional costs, and constitutes a significant share of total costs
for CPV systems [12]. It should also be noted that tracking is not inherently a drawback,
as it increases the irradiance a system receives by ensuring that the system is continu-
ously perpendicular to the Sun’s rays. This essentially increases the equivalent annual
sun hours relative to a case without tracking and readjustment. Even for ordinary flat-
plate PV systems, a single-axis tracking mechanism can be an economically justifiable
expense for various locations on Earth [25]. However, because tracking constitutes a re-
quirement rather than a design option in case of CPV systems, it must be interpreted as
a limitation.

Furthermore, meticulous thermal management is necessary for CPV applications. In
a PV module, the portion of energy not immediately reflected or converted ultimately
ends up as heat. Indeed, all loss mechanisms indicated in Figure 1.4 end up in the form
of heat. Assuming a single-junction module with a realistic initial reflectivity of 5% and
a high conversion efficiency of 20%, 75% of the total irradiance is ultimately converted
into heat. This is problematic, because a PV cell’s efficiency typically decreases as its
operating temperature increases [26]. This constitutes an important design problem for
flat-plate PV systems, where even systems with well-designed passive heat sinks reach
operating temperatures that significantly decrease conversion efficiency already. Now,
even though the percentage of irradiance accumulating as heat is lower for CPV systems
because of the higher conversion efficiency, concentration implies significantly more
heat accumulation per unit area. Rather than a design problem, this increased heat flux
poses an operational threat for CPV systems. Adequate thermal management is abso-
lutely necessary to maintain operating conditions.

On the other hand, the intensified heat accumulation can also be utilised to some
extent. After all, the established and rapidly growing field of Concentrated Solar Power
(CSP) essentially converts a concentrated solar flux into heat to drive a thermal elec-
tricity generation process. The combination of CPV and CSP, where a PV component
converts a portion directly and the heat is also utilised, is known as the field of concen-
trated photovoltaic thermal (CPVT) [27]. CPVT strategies theoretically boast extremely
high energy conversion, solving both the spectral utilisation limitation of PV cells - by
only allocating the suitable subset of the spectrum to the PV subsystem - as well as the
thermal management problem by actually converting the thermal energy. CPVT as an in-
dustry however is in an even more fledgling state than CSP and CPV. The ever-fluctuating
nature of practical irradiance conditions make CPVT strategies complex to execute.

All in all the increased efficiency, CPV represents a vastly different set of design limi-
tations and opportunities. The CPV system design optimisation problem fundamentally
differs from the ordinary flat-plate PV case. Importantly, the significantly smaller re-
ceiver area makes relatively expensive but efficient candidate receivers more attractive.
The MJ approach clearly falls into this category, and the synergies with CPV are apparent.
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1.3.5. THE STATE AND OUTLOOK OF CPV

CPV has mostly manifested as a utility-scale generation technology, and high-concentration

photovoltaics (HCPV) constitutes more than 90% of the cumulative installed capacity
[28]. HCPV refers to concentration factors over 100x, and as such absolutely requires
dual-axis tracking. Recall from subsection 1.3.1 that the interesting semiconductor ma-
terials typically exhibit a maximum efficiency in the HCPV range. Furthermore, for HCPV
systems the advantage of comparatively less required PV cell area is more significant. No
universally adopted optical train configuration exists, but the majority of the installed
capacity features a Fresnel lens as the first optical stage [27]. An overview of popular op-
tical train configurations currently used in CPV systems is given in [12]. In recent years,
the CPV landscape has almost completely shifted to multi-junction conversion because
of the aforementioned synergy [29]. The cumulative installed capacity stands at about
370 MW, globally, but annual deployment has fallen in recent years [28]; see Figure 1.15.
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The decrease in annual CPV installations is a result from the significant LCOE de-
crease exhibited by silicon-based PV (Figure 1.2) as well as the impact of the severe 2007
financial crisis, which steered decision-makers towards relatively safe, mature technolo-
gies. It should be noted that CPV systems compete directly with flat-plate PV because
of the similar power output characteristics. As such, the investment decision between a
CPV system and an ordinary PV system is largely based on LCOE (Equation (1.1)), and
therefore energy output and costs. Silicon-based PV prices dwindled due to a combi-
nation of rapidly scaled manufacturing as China took on the mantle as dominant sup-
plier, and the end of the silicon shortage in 2008 [29]. These cost reductions have out-
weighed the more rapid technological advancement of tandem cells, which have seen
the strongest and most sustained improvement rates amongst PV technologies in recent
years [30]. A 2015 NREL breakdown of costs demonstrates the difference: for a reference
multi-junction CPV system with a Fresnel lens, the optical train and dual-axis tracking
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respectively already represent O.ZOWip and O.BOWip [31]. For comparison, an entire flat-

plate Si module would cost about 0.57Wip at the time. Whilst a comparison of the price

per peak power rating is not entirely representative - as systems with trackers will cap-
ture more irradiance - the fact that just the optical train is about as expensive as an entire
flat-plate energy conversion system paints a gloomy picture for HCPV. The costs of the
MJ energy conversion solution are not even factored in yet, and these costs are sizeable.
The numbers suggest that the traditional Fresnel lens approach simply cannot compete
with flat-plate PV. The optical train alone is too expensive and this expense is not justified
by the additional output of a multi-junction conversion approach. Stated differently, the
conventional CPV motivation of employing cheap optics to offset the expensive PV cell
no longer holds, as the PV cell itself became cheaper than the relatively complex optical
system. For HCPV to succeed, it is necessary to achieve the high efficiencies at a rela-
tively affordable optical system cost.

In addition to installed capacity, it is also insightful to consider the historic evolu-
tion of prices. Haysom et al. estimated the learning curves for HCPV, CSP and flat-plate
PV [32]. The resulting log-log plot of the turn-key price versus the cumulative installed
capacity is depicted in Figure 1.16. It should be stressed that the horizontal axis indi-
cates cumulative installed capacity and not time, as was the case for Figure 1.2. The
points in Figure 1.16 do not necessarily correspond to successive years; instead, they
correspond to publications where both cumulative capacity and the turn-key price were
simultaneously known or estimated. The learning curves’ downward trends are not to be
understood entirely as technological advancement, since increasing economies of scale
by themselves would also result in a downward trend in the absence of technological ad-
vancement. Learning curves capture the joint contribution of economies of scale and
technological advancement to price evolution, and can therefore be interpreted as the
overall effect on price levels of manufacturers 'learning’ from experience, be it techno-
logically or economically.

From Figure 1.16, at first glance HCPV appears to be an attractive alternative to reg-
ular PV because its learning curve is steeper and because its learning curve is shifted
to the left. Even in the aforementioned absence of a universally accepted optical train
- which every party could learn from and improve upon - apparently the technological
and economical learning is significant. However it should be stressed that it cannot be
concluded that HCPV is technologically superior to flat-plate PV, especially considering
the aforementioned silicon shortage which ended in 2008. The final flat-plate PV entries
show a markedly steeper learning curve than before, and the flat-plate PV market has ex-
perienced explosive growth since the most recent data point from Figure 1.16: global PV
capacity is over 627GW [33]. Of course, it should also be pointed out that whilst a steep
learning curve is desirable, it is obviously of no benefit if a technology does not move
along its curve. In light of Figure 1.15, this point should not be taken lightly. Instead, a
learning curve both steeper and shifted to the left should be interpreted as a necessary
condition for a technology to become viable. As such, it can only be concluded from the
exhibited learning curves that economic viability of HCPV might be possible.

In order to attain actual economic viability a significant increase in efficiency or de-
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Figure 1.16: Learning curves and the average learning rate (LR), plotted for HCPV (>200 Suns), CSP and
flat-plate PV from [32].

crease in costs is necessary, whilst simultaneously the unique limitations of CPV must
be addressed. The exact road towards competitiveness has not been determined yet,
but potential factors that have been identified are scaling and maturity [31], increased
efficiency through innovation [28] and possibly thermal energy utilisation, e.g. a steam
turbine [34] or desalination [35]. The declining annual installed capacity in Figure 1.15
paints a pessimistic picture, but on the other hand Figure 1.16 suggests that CPV is not
intrinsically inferior. The consensus is that CPV could be superior to flat-plate PV for
locations with ample DNI, but the viability of CPV hinges upon innovation and cost re-
duction [29] [28].

In the related, rapidly growing field of CSP, where a concentrating optical train is
used to essentially heat a central receiver, the topology of choice for utility-scale sys-
tems is shifting towards that of a solar tower [36]. Solar tower systems employ an array of
mirrors, often simple flat ones, called heliostats. Heliostats reorient themselves to con-
tinuously reflect sunlight to a central receiver, and the accumulated heat at this central
receiver is used to drive an electricity generation process. Heliostats including dual-axis
tracking currently cost about 100%, and are projected to decrease to a target figure of

75% due to technological advances as well as returns to scale in production [37]. Davila-
Peralta et al. documented a heliostat design that is estimated to reach an installed cost
on the order of 60% assuming mass manufacturing [38].

The relative contribution of heliostat array costs to total system costs in Wi,, terms de-
pends on many system-specific factors - most important factor being energy conversion
efficiency - but it is possible to estimate a representative case. Assuming a total optical
train loss from heliostat to multi-junction receiver of 10%, the flux arriving at the receiver

will be approximately 900% based on the standard testing conditions of 1000%. Ata
conversion efficiency of 40% and the target installed heliostat cost of 75%, a heliostat
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cost contribution of about 0.21Wip follows, which is significantly less than the 0.50Wi’[J
corresponding to the Fresnel primary optic with trackers.

Whilst a heliostat array is likely the cheapest primary optic candidate for CPV sys-
tems, it also conveys drawbacks. Most important is optical performance; an array of flat
mirrors approximating a parabola is inferior to a parabola in terms of energy through-
put for a variety of reasons. Firstly, there is spacing between heliostats in array, resulting
in irregular flux at the receiver. Additionally, perpendicular light rays leaving a flat mir-
ror do not intersect, implying that the lion’s share of the flux arrives near the focal point
instead of at the focal point. The sacrifice in optical performance might even interact
with the inherent exacerbation of angular deviations described in Section 1.3.3, possibly
resulting in an optical throughput that is fundamentally incompatible with the sensi-
tive HCPV receiver candidates. Yet another problem that comes to mind is whether the
multi-junction approach is feasible for solar tower receivers on the order of metres, see-
ing as the scale of almost every existing HCPV receiver is on the order of centimetres.
The fundamental question is whether CPV and a heliostat array are compatible, and the
answer to this question necessitates a characterisation of the optical performance loss.

1.4. RESEARCH GOALS

Having introduced the field of CPV and in particular its unique design challenges and
limitations, this section will introduce the objective of this thesis. As was mentioned be-
fore, CPV can only succeed if systems achieve higher output through justifiable increased
costs. Small-scale CPV optical trains - such as the dominant Fresnel lens topologies - are
relatively complex, and by themselves approximately as expensive as entire flat-plate PV
module in terms of Wip. Heliostat arrays represent the cheapest primary optical stage
available, but also represent a loss in optical performance compared to parabolic mir-
rors. Of crucial importance is the extent of this performance loss for CPV applications,
i.e. whether utility-scale HCPV with a heliostat array is feasible. In the absence of dras-
tically cheaper alternative primary optics, it even follows that the viability of HCPV as
a terrestrial energy generation technology depends on heliostat feasibility. Quantifying
the optical performance in HCPV is a problem in itself, as there is no existing metric,
framework or model. Establishing such a framework is the central problem this thesis
seeks to address.

Firstly, it is postulated that it is necessary to calculate the propagation of radiant
energy in its most extensive form for a particular optical train topology. As Chapter
2 demonstrates, the conventional methodology of an AM1.5D spectrum upscaled by a
topology-specific geometric concentration factor C(E) defined in Equation (1.2) is in-
valid. To evaluate an optical train properly, radiant energy must be mapped throughout
the optical train in its most extensive form. Spectral radiance should serve as the quan-
tity of analysis, since CPV energy conversion solutions have a wavelength-dependent
efficiency and also because of the aforementioned angular deviation exacerbation inher-
ent in high concentration systems. Unfortunately, no spectral radiance standard analo-
gous to the AM1.5D spectral irradiance standard exists yet, which precludes a standard-
ised approach to this calculation. It is of utmost importance to establish such a spectral
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radiance standard.

This thesis postulates a workhorse spectral radiance source representation that could
be used to characterise HCPV systems. Chapter 2 will motivate the necessity of such a
model in further detail. The candidate spectral radiance source representation is derived
from the AM1.5D spectral irradiance standard - widely accepted in the CPV literature -
using a wavelength-dependent solar limb darkening model from astronomy literature.
Crucially, the spectral sunshape considers the dependence of flux on both wavelength
and its exact origin on the solar disk. The derived spectral radiance model will be com-
pared to current state-of-the-art models of the Sun from both the PV and CSP literature.
In paricular, it will be demonstrated how the simplifying assumptions underlying the
use of these current models invalidate HCPV analyses. Finally, it is shown how software
can implement the derived spectral radiance source model, such that the capabilties of
existing software can be extended to enable valid HCPV analyses.

Chapter 3 then incorporates a realistic optical error model for heliostat operation
into the analysis. Initially, a geometric optics framework for propagation is motivated
and developed. Optical errors are introduced, and a heliostat error model is combined
with the spectral radiance source model to arrive at a representation of heliostats as ef-
fective sources. As will be documented in Chapter 3, an effective source representa-
tion has the potential to greatly reduce the processing power required to calculate the
optical performance of a HCPV system. The source representation and heliostat error
model finally enable fully characterising the performance price paid upon replacing the
paraboloid mirror by a heliostat array, and and the thesis concludes with a geometric
optics framework that can be used to compare the ideal parabolic mirror primary stage
to a heliostat array.



SPECTRAL SUNSHAPE

This Chapter documents the spectral sunshape, a workhorse spectral radiance model of
the Sun. Itis essentially a vector field representation of the Sun, where irradiance is char-
acterised as a function of both wavelength and polar angle. Section 2.1 introduces the
concept of spectral radiance, and defines the spectral sunshape formally. Afterwards,
a rationale for the spectral sunshape as the source representation of choice for HCPV
applications is provided in Section 2.2. Section 2.3 then discusses well-established so-
lar flux standards are essentially derivative forms of the spectral sunshape. Of course,
it is a necessary condition for a candidate spectral sunshape representation to repro-
duce these established standards. Finally, Section 2.4 develops an analytical functional
form for the spectral sunshape based on the phenomenon of solar limb darkening, well-
documented in astronomical literature. The ultimate goal of this chapter is arriving at
an estimate for the spectral sunshape, based on the literature and industry standards.

2.1. DEFINITION

Prior to deriving a spectral radiance representation of the Sun, it is instrumental to first
define spectral radiance itself. A background on the radiometric quantities introduced
in this section can be found in e.g. [7] or [39]. Radiance L is the radiant power received
or emitted by a given surface per solid angle. It serves as the fundamental quantity in
radiometry, and has units [Wm~2sr~1]. Radiance is thus irradiance per solid angle, and
measures the directional distribution of power. Analogous to how spectral irradiance
g—f{ denotes differential irradiance per wavelength, let us define spectral radiance as the
differential radiance per wavelength:

LA w)
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The latter equality indicates that spectral radiance can also be thought of as spectral
irradiance per solid angle, or as radiance per solid angle per wavelength. Even though
angles are dimensionless, the spectral radiance units are denoted as [£Z (1, w)] = Wm™2nm~
to emphasise angular dependence.
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Spectral radiance as defined above is a general physical quantity, which applies to
any setting involving radiative transfer. Consider in particular the setting of a HCPV
system on Earth, for which the Sun appears as the product of Figure 2.1 and a journey
through Earth’s atmosphere. The spectral radiance in this case is defined as the spectral
sunshape % (A,0):

2,0 Loho) 2.2)
27

Figure 2.1: A photograph of the Sun, adapted to depict the definition of the opening half-angle 6. Adapted
from the image labelled PIA22242 of the NASA Jet Propulsion Laboratory’s Photojournal.

The opening half-angle 6 is defined as the angle with respect to the solar vector. The
solar vector is defined as the vector pointing from the very heart of the Sun to an observer
on Earth. It follows that 6 = 0° corresponds to the solar vector. The opening half-angle
is the only considered polar variable because of assumed azimuthal symmetry, i.e. the
expected spectral radiance is invariant under rotation of the axis in Figure 2.1 around the
centre of the Sun. Since this assumption is made for an observer on Earth, it should not
just hold for Figure 2.1 but also still hold after passing through Earth’s atmosphere. For
clear sky settings when the Sun is not very close to the horizon, this assumption is very
reasonable [40] [41] [42]. This assumption is also supported by the practical fact that a
HCPV system is typically limited to direct irradiance, and the correlation between direct
irradiance and clear sky conditions. Transforming the solid angle w dependence into
an opening half-angle 8 dependence under azimuthal symmetry is equivalent to divid-
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ing by the factor 2z. The spectral sunshape as defined in Equation (2.2) is the radiance
corresponding to a particular vector - not the entire cone - forming an angle 8 with the
Sun’s centre. That is, %, (A,Qedge = 0.266°) corresponds to the spectral radiance from
any vector from the very edge, not the total spectral radiance contributed by the entire
circle.

2.2. RATIONALE

As was extensively reviewed in Section 1.1, various PV technologies differ in their spec-
tral response. Designing an intrinsically spectrally selective receiver requires a spectral
source representation, such as the AM1.5G and AM1.5D spectra in Figure 1.13. For flat-
plate PV systems, dissecting just this one property of solar flux is sufficiently accurate.
Although the Sun is not a point source, it is sufficiently far away to treat it as such. The
very edge of the Sun’s photosphere, visible in Figure 2.1 corresponds with a opening half-
angle of just 0,44, = 0.266°. For a flat-plate PV module, even though light from the pho-
tosphere’s edge technically arrives at a different angle relative to light from the very cen-
tre, the cosine law’s effect is negligible.

If the solar flux is concentrated however, small deviations are necessarily exacerbated
due to conservation of étendue. This principle was illustrated in Section 1.3.3. Conserva-
tion of étendue essentially implies that the angular deviation of ,4¢. = 0.266° between a
ray from the centre of the Sun and a ray from the photosphere edge will increase as these
rays are mapped through a concentrating optical train. Post optical train, the resulting
rays can be significantly divergent. The higher the concentration, the lower the upper
bound on the angle between the two resulting rays.

This principle is important, because the origins of the edge and centre ray are markedly
different. Intensity and spectrum strongly depend on 8, as is apparent in Figure 2.1’s
non-uniformity in colour and brightness. This effect is known as solar limb darkening,
and it mainly follows from two phenomena. Firstly, both the temperature and density
decrease as the solar radius increases, such that the emission spectrum varies with so-
lar radius. Secondly, the solar radius from which photons arriving at Earth originate de-
pends on the half-angle 0, because the radial distance corresponding to an optical depth
varies; see Figure 2.2 for an illustration.

The emission spectrum’s dependence on radius is easily illustrated. Recall that the
solar limb, i.e. the edge of the photosphere, is at 0,4g. = 0.266°. For notational conve-
nience, arcminutes (') will be used from here onwards as the unit for half-angle, moti-
vated by the fact that 0.266° ~ 16.0’. Hence, the domain considered is 8 € [0/,16']. For
0 =0/, the photons originate in the deepest layer of the photosphere where the temper-
ature is approximately 6400K. At the limb, i.e. 0 = 16/, the temperature is only approxi-
mately 4400K. To indicate the impact on the emission spectrum, consider blackbodies
in thermal equilibrium. This is a decent first-order approximation for a shell at a given
radius, and therefore temperature, of the Sun. For a blackbody in thermal equilibrium,
the spectral radiance as a function of temperature follows Planck’s law:
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limb can see only part way into

the relatively cool photosphere...
hence this region appears orange

: Top of
and dim. photosphere
\)Zhat this To observer Ll
observer 3 T 1
sees
Base of
photosphere

What this To ob

observer - DACDSERNCE [
el I 1

sees

An observer looking at the
center of the Sun’s disk can see
to the hot, luminous base of the
photosphere... hence this region
appears yellow and bright.

Figure 2.2: An illustration of limb darkening, from [43].

h,c, and kp denote Planck’s constant, the speed of light in vacuum and Boltzmann’s
constant. A few blackbody spectral radiance curves for the temperature range in the
photosphere are depicted in Figure 2.3. It follows that, as the half-angle 6 increases
and accordingly temperature decreases, the spectrum loses intensity and is simultane-
ously redshifted. Limb darkening therefore implies that the spectral radiance observed
on Earth depends on the origin of the ray, i.e. £ = £(1,0).

Rays arriving at Earth at an opening half-angle 6 = 0/, i.e. aligned with the solar vec-
tor, correspond roughly to the 6400K spectrum. On the other hand, rays from the limb
with 8 = 16’ correspond to the 4400K spectrum. Since an optical element like a mirror
can only have one orientation, the optimal orientation always redirects rays from the
centre of the Sun to the focal point. This implies that the relatively blueshifted 6 = 0’ ray
intersects the focal plane at the focal point, yet the redshifted 6 = 16’ ray misses the focal
point and intersects the focal plane at a different location. Exactly this phenomenon is
illustrated in Figure 1.14, where the deviating red ray does not intersect the focal point.
Generalising this result to all rays ending up at the focal plane, it follows that arriving
rays are more blueshifted the closer they are to the focal point.

This phenomenon is clearly relevant for receivers placed at the focal plane, which
will be subject to non-uniform irradiance as a fundamental consequence. The focal
point receives blueshifted flux, and any other point in the focal plane receives progres-
sively more redshifted flux the further it is distanced from the focal point. The described
phenomenon is also relevant for designs with a secondary optical stage, as every sec-
ondary optical stage is fixed in orientation. As such, the most blueshifted ray from the
centre of the Sun and the focal point is mapped according to design. However, the in-
creasingly redshifted deviating rays that originated elsewhere do not arrive at the second
stage properly, because they do not arrive from the focal point. After the secondary opti-



2.3. EXPLORING THE SPECTRAL SUNSHAPE 29

cal stage then, the deviation will be even more significant. This implies that blueshifted
light is more likely to be propagated throughout the optical train than redshifted light.

It is important to note that it is therefore physically impossible to end up with an
‘upscaled’ version of the input spectrum after multiple optical stages, since the more
blueshifted incident centre rays are more likely to end up at the receiver at a more per-
pendicular angle than redshifted limb rays. Finally, it should be noted that properties of
optical stage elements themselves depend on angle of incidence. Section 3.3 expands
upon the reflectance of a mirror, which is indeed a function of both incidence angle and
wavelength. It is clear that, for every possible HCPV receiver design, angular exacerba-
tion implies that both the angular and spectral properties of radiance must be consid-
ered in the analysis of every optical stage.

Summarising the argument, the radiance observed on Earth depends on both wave-
length and opening half-angle due to limb darkening. Section 1.3.3 detailed how con-
centration of sunlight necessarily exacerbates angular deviations between incident rays.
Optical properties of any optical train element also depend on both wavelength and in-
cident angle. As a consequence, the flux after the primary optical stage is the result of an
interaction effect between this exacerbation and the primary stage’s optical properties.
It then follows that both wavelength and incident angle must be considered for sub-
sequent optical stages - including the receiver - in a high-concentration settings. Stated
differently to contrast the HCPV setting with the conventional realm of flat-plate PV, high
concentration invalidates the assumption of the Sun as a point source. As such, consid-
ering just spectral irradiance in an analysis is insufficient. For HCPV applications, the
directional aspect of the flux matters too. Both the angular and wavelength dependence
of the source radiance and optical train elements must therefore be considered.

2.3. EXPLORING THE SPECTRAL SUNSHAPE

Having established the importance of the spectral sunshape, the next step is estimating
a functional form that can be used. There is unfortunately no reference spectral sun-
shape in existence, unlike how for example AM1.5D is a reference spectrum for DNI.
However, several standards exist in the literature that are functionally equivalent to the
spectral sunshape collapsed along one of the two dimensions. For example, recall that
the AM1.5G and AM1.5D spectra are respectively defined as the spectral irradiance from
the entire sky and from a 2.9° half-angle centred on the Sun. From the definition of spec-
tral radiance in Equation (2.1), it follows that the AM1.5G and AM1.5D spectra are the
spectral radiance integrated over a particular solid angle. The AM1.5G reference spec-
trum is simply the spectral radiance at an observer point integrated over the entire hemi-
sphere:

an,sky
AM1.5G(A) = -
Note that the integration is over solid angle dQ, which can be expressed in polar co-
ordinates as dQ = sin(0)dfd¢. Compared to Equation (2.2), the term £, (A,0) referring
to the Sun in general has been substituted by a term Zas7a(A,0) to stress that AM1.5D

sky
f ZLastm(A,Q)dQ 2.4
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Figure 2.3: Black-body spectral radiance curves for selected temperatures within the photosphere’s tem-
perature range, from Equation (2.3)

is a particular estimate by the American Society of Testing and Materials. In a similar
fashion, AM1.5D follows from integration of the same Z4s7a(A,0) over a solid angle
corresponding to a 2.9° half-angle centred on the Sun. Assuming azimuthal symmetry
in 0 = 0, the integration over the azimuthal direction ¢ results in a factor 2. This fac-
tor is however cancelled out by the half-angle counterpart definition in Equation (2.2),
defined as such for notational convenience:

2.9°

E 5 oo
=28 LastmA,0)sin(@)do (2.5)

0
AM1.5D(A) = M
By integrating over the solid angles the two standard spectra are respectively defined
by, the spectral sunshape Z4s70(A,0) collapses along the angular dimension to the fa-
miliar spectral irradiance in [Wm~2nm~!]. Of course, it is also possible to collapse the
spectral radiance along its other dimension, i.e. the entire wavelength domain A. This
results in a so-called sunshape profile [44]:

A
SS(@)=[ Zss(A,0)dA (2.6)

The sunshape profile is a measure for the radiance derived from a particular open-
ing half-angle, and has units [SS(6)] = Wm ™ 2arcmin!. The sunshape is the workhorse
model in Concentrated Solar Power (CSP) system design, where solar concentration is
used to generate a high heat flux. CSP systems utilise receivers that convert concentrated
irradiance into heat effectively across the entire spectrum, i.e. the spectral response is
rather uniform. As such, the information contained in a spectral profile is largely ir-
relevant for CSP purposes; what matters is the total irradiance that can effectively be
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mapped to the receiver. As the previous section also indicated, this mapping from inci-
dent irradiance to receiver flux strongly depends on the source’s angular profile and the
optical train.

The sunshape that is effectively detected on Earth strongly depends on atmospheric
conditions; several normalised sunshapes plotted by Blanc et al. [42] based on telescope
measurements by Grether et al. [45] are depicted in Figure 2.4. The study of sunshape
profiles is closely linked to the study of circumsolar radiation, i.e. radiation emanating
from the solid angle just outside the angle subtended by the Sun, because this circum-
solar radiation is typically at the border of being accessible for a CSP system.

Three main sunshape models are prevalent in the literature and software packages:
the uniform sunshape, the Gaussian sunshape, and the Buie sunshape [41], in order of
increasing complexity and accuracy. These three sunshapes are all particular forms of
the sunshape SS(0) as defined in Equation (2.6). Note that neither of these models dis-
tinguishes spectral information; all consider radiance as a function of opening half-angle
only. There is no established standard sunshape analogous to how AM1.5D is a spectral
irradiance standard, however the Buie sunshape is by far the most accurate sunshape
profile that very accurately reproduces the data from Figure 2.4.

10°

Sunshape (log-scale)

i i i i i iiiii i
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Figure 2.4: Three normalised sunshape profiles from LBNL circumsolar telescope data [45]. The leftern
vertical black line indicates the edge of the solar disk, whilst the rightern indicates the opening angle of a
typical pyrheliometer. half-angle of a typical pyrheliometer. The degree of scattering due to atmospheric
parameters increases from the blue curve to the green curve to the red curve.

It is important to highlight that the workhorses in PV and CSP design - the spectral
irradiance and the sunshape - are essentially simplified forms of the spectral radiance
collapsed along one dimension. Both fields disregard information of one kind, as it is not
relevant to the energy conversion strategy. Flat-plate PV features an energy conversion
strategy with a specific spectral response, such that the spectral content of the irradiance
is extremely important to consider. On the other hand, the half-angle between the so-
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lar limb and the solar centre is negligibly small for ordinary PV systems, such that it is
superfluous to consider irradiance as a function of opening half-angle. CSP features en-
ergy conversion strategies with a rather uniform spectral response, as the receiver simply
converts all irradiance into heat regardless of wavelength. On the other hand, for CSP the
irradiance per opening half-angle is a crucial design variable due to the fundamentals of
concentration. It follows logically that CPV - which by definition features a specific spec-
tral response as well as a concentrating optical train - should consider spectral radiance
in its most extensive form.

The AM1.5G/AM1.5D solar spectra and the sunshape have been extensively scruti-
nised in the literature, and there is consensus within the respective fields of PV and CSP
that they are adequately representative and accurate. As Equations (2.2), (2.4) and (2.5)
demonstrate, the solar spectra and sunshape can be interpreted as the spectral sunshape
integrated with respect to a particular variable. This suggests that it is a necessary con-
dition for any candidate spectral sunshape representation to reproduce these reference
AML1.5 spectra and the sunshape, upon substitution into the aforementioned equations.
This requirement rings especially true for the AM1.5D spectrum, as it has been specif-
ically established with concentrator appplications in mind. Stated differently, a candi-
date 2(A,0) that does not adequately reproduce the AM1.5D spectrum when plugged
into Equation 2.5 makes a poor candidate, since it will not hold up to the scrutiny the
AM1.5D spectrum has faced over the years.

2.4. DERIVING AN ANALYTICAL FORMULATION

2.4.1. ASSUMPTIONS ON THE NATURE OF IRRADIANCE

In formulating an analytical spectral sunshape, it is instrumental to consider how the
opening half-angle affects both the origin and the journey of a ray of light to an observer
on Earth. Three characteristic solar regions can be identified: the solar disk from 6 =0
up until 8 = 0.266°, the circumsolar region from 6 = 0.266° to 6 = 2.9°, and finally the
remaining sky 6 ¢ [0°,2.9°]. Rays within the solar disk are mostly unscattered photons
which originate in the Sun’s photosphere. There are also radiant solar layers exterior
to the photosphere, such as the corona, which are evidently not as bright as the pho-
tosphere and only visible during a solar eclipse. Unscattered photons from these exte-
rior layers contribute to the circumsolar radiation, and also a sizeable amount of pho-
tons scattered in either the Earth’s atmosphere or the solar exterior layers. The radiance
from the remaining sky consists of photons that are scattered in the Earth’s atmosphere,
amounting to the Diffuse Horizontal Irradiance (DHI). The solar disk and circumsolar
region jointly constitute the DNI component. By decomposing the total radiance ac-
cording to opening half-angle, an exhaustive piecewise spectral sunshape follows:

21(A,0), 0 €[0°,0.266°)
Z£(A,0)=1 £(4,0), 0 €10.266°,2.9°] 2.7
Z£3(A,0), 0¢0°,2.9°]

The three domains correspond to the half-angle regions discussed in the previous
paragraph. £ (A,0) denotes radiance emanating from the solar disk, £»(A,0) from the
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circumsolar region, and #£3(A,60) is DHI. Reviewing Equations (2.4) and (2.5), it follows
that £ (A,0) and £, (A,0) jointly constitute DNI as per AM1.5D, whilst GHI and the cor-
responding AM1.5G standard are comprised of all three exhaustive components.

It follows from the fundamentals of concentrating optics that the amount of irradi-
ance available to a concentrator system depends on the extent of concentration. A non-
concentrating system has access to all three radiance components of Equation (2.7), but

the accessible radiance decreases as the concentration ratio is increased. Low-concentration
systems quickly lose access to £3(A,0), and are therefore limited to DNI. For high-concentration

systems the Z»(A,0) component is partially unavailable, implying that such systems are
even limited to a subset of DNI. The extent of the limitation of irradiance depends on
the extent of concentration, and it is therefore important to characterise the distribution
of DNI among its two components Z; (4,0) and %£>(A,0). This characterisation, also
known as the circumsolar contribution to beam radiation, is a well-documented topic in
the CSP literature [42].

Figure 2.4 suggests that the extent of scattering, and by extension the contribution
of £, (A,0) relative to £ (A,0), strongly depends on atmospheric conditions. The at-
mospheric conditions assumed for the standard spectra AM1.5G and AM1.5D are tabu-
lated in Table A.1. Note in particular that the standard spectra are defined by an Aerosol
Optical Depth (AOD) of 0.084, which essentially corresponds to a very clear sky. The
standard spectra are therefore consistent with the assumption of azimuthal spectral ra-
diance symmetry. Figure 2.5 shows the circumsolar contribution to beam radiation as a
function of wavelength, i.e. CSC(A). In the terminology of Equation 2.7, the CSC(A) is
defined as follows:

2.9°
- Z5(1,0)d0
cscny Y f?)zz‘jfs 2(L0)
925 £ (1,0)d0

(2.8)

Referring again to Figure 2.5, note that the blue line corresponds to an Aerosol Op-
tical Depth (AOD) of 0.084, which is the value used for the ASTM standard spectra cited
in Table A.1. It is shown that the contribution of %, (A, 0) relative to %; (1,60) amounts to
much less than 1% over almost the entire wavelength range. In other words, assuming
the same conditions under which the reference spectra were generated, the contribution
of %, (A,0) from Equation 2.7 is marginal. Furthermore, it was already mentioned earlier
that the domain 6 ¢ [0°,2.9°] is inaccessible for any HCPV system. It therefore follows
that only the £, (A,0) component is generally relevant for HCPV systems.

It should be mentioned that it might be worthwhile to model #»(1,0) and even
Z3(A,0y) for LCPV applications, where a wider range of opening half-angles reaches the
receiver due to the lower concentration. Additionally, quantification of £ (1,0) under
conditions other than a clear sky would also be insightful for a complete HCPV system
analysis. These topics however elude the scope of this thesis, which will focus on #; (4, 0)
under clear sky conditions. This focus is motivated by the emphasis on HCPV, and also
by the fact that the vast majority of incident solar flux will come from this component.
The next step is developing a model for the £ (1,6) component.
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Figure 2.5: The total circumsolar contribution CSC(1) =
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[20]



2.4. DERIVING AN ANALYTICAL FORMULATION 35

2.4.2. INCORPORATING A LIMB DARKENING MODEL

Having established the scope of analysis, let us analyse the radiance £ (A,0) originat-
ing within the solid angle subtended by the solar disk in more detail. Three subsets of
rays jointly constitute this radiance: photons emitted by the Sun passing through both
the Sun’s and Earth’s atmospheres, photons scattered in the solar atmosphere that pass
through the Earth’s atmosphere, and finally photons that scatter in Earth’s atmosphere.
In practice, both scattered sets of photons represent an insignificant contribution to the
photon flux within this limited solid angle [42]. For the non-scattered photon flux, limb
darkening - as introduced in Figures 2.1 and 2.2 - is the dominant phenomenon that af-
fects the spectral sunshape. Limb darkening observations of the Sun have been made by
instruments on Earth, and the most straightforward spectral sunshape candidate would
be a functional form in both 1 and 6 agreeing with these observations.

Pierce and Slaughter [46] and Pierce et al. [47] fitted polynomials, labelled PS(W),
in the opening half-angle to various sets of intensity observations. Every set of observa-
tions is made at a particular wavelength in the broadband spectrum, corresponding to
the telescope filter used. Neckel and Labs [48] fitted similar polynomials, labelled NL,
to 30 sets of observations in the [303nm,1099nm] range. The PS(W) and NL data were
all observed using the McMath-Pierce solar telescope at Kitt Peak National Observatory
in Arizona, USA. That is, these observations also boast the advantage that any possible
effects between the origin of the photons and their arrival at the McMath-Pierce solar
telescope have also been accounted for; a suitable spectral sunshape model for terres-
trial applications should also account for these. In the terminology of this thesis, the
PS(W) and NL polynomials are essentially estimates of £ (1,0) for particular values of
A, i.e. .521 (1,0). A hat superscript indicates an estimate, whilst a bar superscript denotes
a particular value.

To arrive at £ (A,0), it is necessary to fit a functional form in A as well. Neckel
demonstrated that limb darkening is smooth in wavelength, i.e. interpolation of the par-
ticular A values at which the PS(W) and NL observations were made is feasible [49]. The
only exception is in the neighbourhood of the Balmer jump, around 364.6nm. Hestroffer
and Magnan postulated the following parsimonious empirical law for relative intensity
as a function of wavelength and opening half-angle [50]:

ZLum(1,0) 1
T 1 - u(1 - p(@)W) (2.9)
ZLum(A,0) K
@ =1/1 sin” (9) 0e0,16'] 2.10)
pEr= sin? (16/)’ ' ’
—0.507 + 4411 ' nm, A € [303.327nm, 349.949nm]
aM)={  apaimer A € (349.949nm,416.320nm) 2.11)
—0.023+2921 1 nm, A € [416.320nm, 2401.800nm]

In Equation (2.9), LM (A,0) denotes the spectrum at the centre of the Sun. The
function p(8) appearing in Equation (2.9) is the conventional representation of opening
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Figure 2.6: The function u(6) as defined in Equation (2.10) depicted over its entire domain.

half-angle in stellar limb darkening literature; it is related to the opening half-angle 6
employed thus far by Equation (2.10). It is used in the stellar limb darkening literature
for its numerical convenience, beacuse it assumes a value between 0 and 1; 0 for = 16/,
i.e. at the limb, and 1 for 6 = 0/, i.e. at the centre of the Sun. The function u(6) is plotted
over the limb domain 0 € [0, 16'] in Figure 2.6.

The factor u in Equation (2.9) is a dampening factor, and it follows from the [0,1
range of p(0) that 1 — u equals the ratio of intensity at the limb to intensity at the centre.
a(A) represents the wavelength-dependent limb darkening, and also assumes a value
between 0 and 1. The piece-wise function in Equation (2.11) follows from fitting the
model to the PS(W) and NL observational data for u = 0.85. a(A) as a function of wave-
length from Equation (2.11) is depicted in Figure 2.7, in which apgjmer is a cubic spline
interpolation of the 14 particular values from this region that were tabulated in the Hes-
troffer Magnan paper.

This model agrees with the data within +1% for a radius up to 0.9 times the solar
radius [50]. Beyond this point the deviation increases as the edge of the solar disk is
approached, but remains within +£10%. The vast majority of the solar radiance stems
from the region with excellent agreement, such that the parsimonious Equation (2.9)
is a suitable building block for a spectral sunshape model. A more elaborate treatise
on the agreement with the PS(W) and NL observational data is included in the original
article by Hestroffer and Magnan. The analytical form of the Hestroffer-Magnan model is
convenient for the analytical approach in this thesis, but it is recognised that the original
observational data themselves would constitute a more accurate estimate.

2.4.3. THE ESTIMATED SPECTRAL SUNSHAPE

The right-hand side of Equation (2.9) has been defined, but an unknown quantity still
appears on the left-hand side: £x(A,0), the spectrum at the very heart of the Sun. No
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Figure 2.7: a(A) as defined in Equation (2.11). The inset shows the second region @ g,;;,er, for which a
cubic spline interpolation is invoked in the absence of data. A significant and a small jump respectively
exist at the boundaries 349.949nm and 416.320nm.
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established standard spectrum exists, but it is possible to estimate it based on a stan-
dard that does exist: the AM1.5D spectrum. Note that Equation (2.9) holds for every
wavelength, and that AM1.5D standard defines the spectral irradiance from the entire
opening half-angle range as per Equation (2.5). Since Z(A,0) by definition does not
depend on opening half-angle, it is possible to calculate £p;(A,0) through combining
Equations (2.5) and (2.9) and substituting the wavelength-dependent limb darkening
function. One problem remains: the domains do not match. The AM1.5D spectrum is
defined corresponding to a 2.9° half-angle, i.e. it includes both #;(1,60) and £»(A,0).
The limb darkening observations only hold for the solar disk, and thus only correspond
to £1(A,0). As such, it is necessary to correct for the contribution of %, (A, 6). This cor-
rection is done through the CSC(A) from Equation (2.8), depicted in Figure 2.5. Since
the raw data are unavailable, the relevant blue line corresponding to AOD = 0.084 is ap-
proximated as follows:

CSC(A) ~ 4501185 (2.12)

The original Figure only depicts the [3007nm,900nm] range, which does not span the
AM1.5D domain of [303.327r1m,2401.800nm]. Since the CSC(A) is a decreasing function
of wavelength, and since the value at 900nm is already rather small and insignificant, the
approximation in Equation (2.12) is extended to the entire domain. The resulting CSC(1)
is depicted in Figure 2.8.
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Figure 2.8: The approximation of the circumsolar contribution as a function of wavelength as defined in
Equation (2.12) over the wavelength range considered. Note that the approximation closely agrees with the
AOD = 0.084 circumsolar contribution depicted in Figure 2.5.

Substituting (2.9) for Lastm(A4,60) in the AM1.5D Equation (2.5), and including the
correction factor (1 + CSC(A)) defined in Equation (2.12), it follows that:

AM15D() [

— = Lrm4,0)(0.15 +0.85u(0)*M | sin(0)dO 2.13
T csou =)y, Lm0 (015:+0.85u0)7V)sin(o) (2.13)
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Again, since the spectral sunshape at the centre of the solar disk Zx(4,0) is inde-
pendent of 6, it can simply be taken outside of the integral. Define the estimator for the
spectral sunshape at the centre of the solar disk based on the Hestroffer-Magnan limb
darkening model to be EEHM(/L 0):

AM1.5D(A)
(1+CSC) * 27 [ (0.15 +0.85(0) W) sin(6) dO

LumA,0) =

(2.14)

It is important to note that the AM1.5D standard spectrum is defined for a wave-
length domain A € [280nm,4000nm] whereas the Hestroffer Magnan limb darkening
function is only defined for the domain A € [303.327nm,2401.800nm]. As such, only
this subset of the AM1.5D spectrum is considered. This limitation does not jeopardise a
HCPV conversion efficiency analysis however, because the excluded regions are largely
irrelevant. The [28071m,303.327nm] domain corresponds to less than 0.001Wm™2, and
is therefore insignificant. The [2401.8007121,4000nm] interval contains approximately
10Wm™2, but even with multi-junction solutions this entire interval is inaccessible. 2401.8nm
corresponds to a band gap energy of 0.5162eV, well below the band gaps of the lowest
band gap semiconductors used in multi-junction cells. That is, the 10Wm~? contained
in the [2401.800nm,4000nm] interval will in practice always be thermalised and thus
lost in the form of heat. However, considering the necessity of meticulous thermal man-
agement in case of HCPV, this 10Wm~2 must be taken into account as additional heat
flux on the receiver.

Finally, the spectral sunshape £ (1,0) can be estimated by substituting the estimator
from Equation (2.14) into Equation (2.9). The estimated spectral sunshape based on the
Hestroffer-Magnan limb darkening model :Z’HM()L, 0) follows. All right-hand side terms
in Equations (2.10), (2.11) and (2.14) have been fully identified:

LruvA,0) = Lrn(A,0) (0.15 + 0.85p(9)“““) (2.15)

It should be noted that this spectral limb darkening characterisation pertains to the
Sun itself, and is independent of perturbations - such as atmospheric attenuation - in-
duced by the journey from the Sun to an observer on Earth. The limb darkening ob-
servations, from which the Hestroffer-Magnan model is derived, have been carefully
purified to remove such perturbations. It is very reasonable to assume that such per-
turbations are independent of the half-angle 8, because attenuation during the optical
journey through space and the Earth’s atmosphere is unlikely to significantly differ for
small 0 variations.

This independence then implies that the bracketed term in Equation (2.15) fully captures
the spectral limb darkening phenomenon. The term Z;)7(A,0) in Equation (2.15) on the
other hand represents the AM1.5D irradiance conditions - as is evident from Equation
(2.14) - and these include wavelength-dependent atmospheric attenuation. It follows
that it is rather simple to extend this model to terrestrial locations for which the AM1.5D
spectrum might not be representative, such as a location with an Air Mass 2 optical jour-
ney. The AM1.5D-specific Zp (A, 0) term can simply be replaced by a different baseline
£(A,0). This baseline can be obtained by replacing the term AM1.5D(A) in Equation
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(2.13), such as the AM2 spectrum in the example at hand. The algorithm then yields a
spectral radiance profile akin to (2.15) for the alternative location of interest.

The goal of this subsection has now been attained: the spectral sunshape in Equation
(2.15) has been estimated by inverting the AM1.5D spectrum based on the Hestroffer-
Magnan solar limb darkening model. A 3D plot of Z(A,6) in both its arguments
is depicted in Figure 2.9. This spectral sunshape representation meets the necessary
condition of reproducing the AM1.5D spectrum (recall Subsection 2.3) by construction.
Importantly, Equation (2.15) can be incorporated into the geometrical optics equations
from the previous section to assign magnitudes to rays, so as to evaluate the radiative

transfer.

.016
.014
.012
.010
.008
.006
.004
.002

.000

Lam(A, 8) [ Wim?inmyarcmin)

500

750 1000
1250 1500
1750 5000

A lnm; 2250 16

Figure 2.9: A 3D plot of the estimated spectral sunshape in both its arguments A and 6. The half-angle

domain depicted spans the entire solar limb.

2.5. SPECTRAL SUNSHAPE PROPERTIES
This section considers the spectral sunshape’s properties in detail, and in particular their
implications for HCPV system analyses. First and foremost, consider the units of the
spectral sunshape: [Wm~2nm~'arcmin™']. Recalling that radiance - or irradiance over
solid angle - has units [(Wm2sr™1], and that spectral irradiance - or irradiance over
wavelength - has units [Wm™2nm™1], it follows that this spectral sunshape is essentially
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a combination of both: irradiance as a function of both solid angle and wavelength. In
this analogy, it is important to clarify that the spectral sunshape has opening half-angle
0 as an argument rather than solid angle w. The reason is that azimuthal symmetry of
the Sun in its centre was assumed, i.e. in the line corresponding to 6 = 0°. Half-angle
dependence rather than solid angle dependence also greatly aids in the intuitive visuali-
sation of the spectral sunshape. The switch to arcminutes as opening half-angle measure
was motivated by the notational convenience of the solar limb extending to 16.0’. The
scale is of course arbitrary, and the half-angle domain could easily be transformed into
[0°,0.266°] or a measure in radians.

Now, since the spectral sunshape depicted in Figure 2.9 is an extension of the AM1.5D
spectrum, it is equal to the AM1.5D spectrum if collapsed along the half-angle dimen-
sion. The total spectral irradiance contained in the AM1.5D spectrum, i.e. the integral
over its entire wavelength domain [280711,4000nm], amounts to 900.1Wm 2. However,
recall that the limb darkening model was only available for the [303.32771m,2401.800nm]
subdomain. The AM1.5D spectrum amounts to 890.0W =2 in this subdomain, omitting
the 10Wm ™2 contained in the [280nm,300nm] interval and the negligible spectral irra-
diance corresponding to the 2401.800nm,4000nm] interval.

Integrating the depicted spectral sunshape over both its domains results in an in-
tegral of 141.3Wm™2. After integrating over the azimuthal direction as well - equiv-
alent to multiplication by the factor 2z due to azimuthal symmetry - this amounts to

887.7Wm2. The difference between this number and the total AM1.5D amount of 890 W m 2

follows from the circumsolar contribution correction factor apparent in Equation (2.13).
As such, the spectral sunshape has been constructed in a valid manner. To reiterate,
this 887.7Wm~2 is the total irradiance contributed by the £ (A,0) component in Equa-
tion (2.7), or the radiance originating in the solid angle subtended by the Sun. The
spectral sunshape peaks at the solar vector § = 0/, and at the same A = 531nm wave-
length where the AM1.5D spectrum peaks. The peak spectral radiance value is 0.0160
Wm=2nmtarcmin™]

2.5.1. COMPARING THE DERIVED SPECTRA AT PARTICULAR OPENING HALF-
ANGLES

Figure 2.10 shows the spectral radiance per opening half-angle for selected wavelengths.
The profiles follow from substitution of the corresponding wavelength for A in Equation
(2.15), and are thus slices of Figure 2.9. Figure 2.10 essentially displays Equation (2.15)
over the opening half-angle domain. Apparent are the more significant limb darkening
for shorter wavelengths as well as the wavelength-dependent starting points Zr(A,0)
from Equations (2.9) through (2.7).

Additionally, spectral radiance profiles for four particular opening half-angles, in-
cluding _@HM()L,O), are depicted in Figure 2.11. The profiles in turn follow from substi-
tution of the corresponding particular half-angle for 8; in Equation (2.15). The profiles
are redshifted and smaller in magnitude as 0; increases, which again corresponds to the
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Figure 2.10: The derived intensity over opening half-angle for five particular values of A :

400nm,550nm, 700nm,850nm and 1000nm. These limb darkening functions are slices of the spectral sun-
shape depicted in Figure 2.9.
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limb darkening phenomenon of a redder, dimmer Sun near the edges. The profiles are
consistent with the trend visible in Figure 2.3, which mapped the blackbody spectral ra-
diance curves for selected temperatures. Again, these profiles imply that the focal point
receives the most blueshifted and most intense spectrum, and that other points in the
focal plane at height F receive a more redshifted and less intense spectrum as the radial
distance increases.
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Figure 2.11: The derived spectra for four particular values of 6 : 0',5',10" & 15’. These spectra are slices of
the spectral sunshape depicted in Figure 2.9.

A few properties apparent in these slices are very relevant for spectrally selective
energy conversion strategies such as solar cells. Firstly, it is implied that the radiance
received by the focal plane is nonuniform. Consider again the illustration of angular
exacerbation in Figure 1.14. Assuming that the perfect, green lines in that illustration
correspond to the heart of the Sun (6) = 0°, it is implied that more energy corresponding
to 400nm than corresponding to 850nm arrives at F. However, if the red line indicated
deviates by more than 8) = 10°, then the point at the same height as F which the red line
crosses receives more energy corresponding to 850nm than to 400nm. Incident radiance
thus inherently depends on distance from the focal point. It should be stressed that this
holds even in case of a perfectly specular optical train, as it is a property of the source.

A second important property that should be considered is that the spectrum post-
concentration will necessarily differ from the spectrum pre-concentration. As such, the
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concentrated spectral irradiance at any receiver will necessarily deviate from a more in-
tense, upscaled AM1.5D spectrum. It should be emphasised that this effect, where rays
are more redshifted the further one deviates from the focal point, does not just apply for
the AM1.5D case. The effect derives from the bracketed term in Equation (2.15), and as
the previous paragraph explained it thus holds globally.

This inevitable consequence of concentration is important, because state-of-the-
art multi-junction (M]J) cell designs do assume a scaled AM1.5D spectrum ?2. In fact,
the ASTM standard for testing solar cells under concentration prescribes a scaled-up
AM1.5D spectrum 22. Recall that stacked M]J cells are generally connected in series, such
that an underperforming junction will current-limit the other junctions’ current output.
This necessitates careful tuning of each junction’s thickness etc. to minimise the discrep-
ancy between the individual junction currents. Clearly, the individual currents depend
on the incident spectrum. If MJ cells are designed assuming a scaled AM1.5D spectrum,
whilst they would inevitably not be subjected to a scaled AM1.5D spectrum in any re-
alistic HCPV setup, it follows that such cells are essentially current-limited by design.
Instead of designing M]J cells assuming scaled AM1.5D, the actual spectral irradiance
incident on the cell must be calculated by mapping a representative spectral radiance
profile through an optical train. Chapter 3 will delve deeper into this problem.

For the other candidate HCPV receiver introduced earlier, the spectral beam splitter
configuration which defers subsets of the spectrum to different specialised photovoltaic
cells, the effect is also significant. Although the current matching problem is circum-
vented altogether, another problem arises due to the coupled dependence on incidence
angle and wavelength. A beam splitting optical filter such as a dielectric stack functions
optimally when the incidence angle is 45°. Post concentration, a significant share of the
concentrated beam will necessarily be incident at a different angle of incidence. The
crux is that the deviation in angle of incidence correlates with redshift. A ray ray from
the centre of the Sun is properly propagated throughout the optical train, such that it
arrives at the intended incidence angle of 45°. On the other hand, relatively redshifted
light from the limb arrives at a different incident angle. The higher the concentration,
the more significant this effect becomes.

In conclusion, the spectral sunshape implies that the irradiance at the focal plane
depends on distance from the focal point due to the nature of the Sun. This implica-
tion maches the intuitive prediction outlined in Section 2.2. It is therefore problematic
to design a HCPV energy conversion receiver by simply assuming an upscaled AM1.5D
spectrum as the incident irradiance profile. This finding is important, because the liter-
ature on HCPV receivers does generally make this assumption. In case of multi-junction
tandem cell design for example, current matching is the goal attained by carefully de-
signing the individual subcells. This calculation requires a spectral irradiance profile as
the input, and if the spectral irradiance profile is incorrect of course the current match-
ing problem will not be solved adequately. In HCPV receiver design, the actual spectral
irradiance incident on the receiver should be calculated by mapping a spectral sunshape
estimate - such as the one developed here - through a specified optical train. Chapter 3
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will delve deeper into this problem, and present a generalised method to perform exactly
this mapping for a heliostat.

2.5.2. COMPARING WITH EXISTING SUNSHAPE MODELS

This section compares the derived spectral sunshape to existing sunshape models, so as
to quantify the improvement of considering the spectral information. Three main sun-
shape models are prevalent in the literature and software packages: the uniform sun-
shape, the Gaussian sunshape, and the Buie sunshape [41]. These three sunshapes are
all particular forms of the sunshape SS(0) as defined in Equation (2.6). Note that neither
of these models distinguishes spectral information; all consider radiance as a function
of opening half-angle only. The sunshapes are therefore not formulated as spectral radi-
ance profiles, but for every single one of them a unique corresponding spectral radiance
function is identified according to Equation (2.6).

A sunshape i is typically expressed in the form SS; (@) = I; * [imb;(8), where I; repre-
sents the intensity at the Sun’s centre and /imb; represents the so-called limb function,
which assumes a value between 0 and 1(at the centre). The limb function therefore rep-
resents the intensity at a particular opening half-angle 6 relative to the intensity at the
centre. It should be noted that this section will only compare the sunshapes as defined
for the [0',16'] opening half-angle domain, corresponding to #;(A,0) from Equation
(2.7). Restriction to the [0’,16'] domain is done through the indicator function 1(0 < 16),
which assumes a value of 1 for 6 < 16’ and 0 elsewhere. As such, every sunshape re-
stricted to the [0',16"] domain can be expressed as SS;(0) = I; * limb;(0) = 1(0 < 16')

It should be noted that the opening half-angle dependence of every sunshape is en-
tirely captured in the limb function term; the intensity at the centre is independent of
0. By construction, every sunshape is required to amount to the total irradiance of
887.7Wm™~2 upon integration over the opening half-angle domain. Since integrals of
particular limb functions over the opening half-angle domain are not necessarily the
same, it follows that the intensity at the Sun’s centre will renormalise to satisfy the cor-
rect total irradiance amount. That is, since the total irradiance is conserved, a different
limb intensity at the centre is implied for limb functions with a different integral over the
half-angle domain.

The uniform or "pillbox’ sunshape is the simplest, and the first step in considering the
Sun as an extended source. It is simply assumed that the Sun is equally bright regardless
of the opening half-angle, i.e. the intensity is I;;; rorm for the entire half-angle domain.
The pillbox sunshape is expressed in Equation (2.16) and shown in the accompanying
figure 2.5.2. It should be noted that, in a ray-tracing setting, the uniform sunshape is im-
plicitly assumed if one randomly samples vectors from the solid angle subtended by the
Sun without applying weights. This is a commonly used approach because of the com-
putational simplicity; often, directional vectors are traced throughout a topology with-
out assigning weights or magnitudes to the vectors. The uniform sunshape is therefore
the default implicit sunshape, and rather common.
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The second commonly invoked sunshape is the Gaussian sunshape. The limb func-
tion assumes the form of the half-domain Gaussian function, as defined in Equation
(2.17) and visualised in the accompanying figure. The Gaussian limb function has a sin-
gle parameter, the standard deviation o, which was set to 2.73mrad in this case. This
number is also the standard deviation implemented in SolTrace, a software package used
to assess CSP systems. The result of this particular value is a limb function with a Gaus-
sian shape, declining from 1.00 at 8 = 0’ to 0.234 at § = 16’. The Gaussian sunshape
is popular because it is easily integrated with typical optical error models. As the next
Chapter 3 will document, the aggregate optical error tends to a Gaussian distribution
too. For now, it suffices to say that the method to calculate the result of a spectral radi-
ance function interacting with an optical surface is through a mathematical convolution.
The convolution of a Gaussian with another Gaussian is yet another Gaussian, which is
very convenient from a computational point of view. As such, the Gaussian sunshape is
often implemented in analyses where the optical error of the optical train is also consid-
ered.
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The final and most accurate sunshape profile is referred to as the Buie sunshape.
Buie constructed the Equation in (2.18) to closely fit actual observations of the Sun ob-
tained by the LBNL circumsolar telescope, the very same telescope that yielded the three
sunshape profiles in Figure 2.4 [41]. The Buie sunshape is the state of the art sunshape
used in thorough CSP analyses. This limb function declines to a value of 0.391 at = 16'.
Since it is a trigonometric function, it is more computationally intensive to convolve the
Buie sunshape with a Gaussian aggregate optical error model. The complexity increases
as more optical stages are added, such that the Gaussian sunshape might be preferable
for such systems.
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Now, note that any sunshape specification should represent the exact same amount
of solar flux: the total. Note also that the sunshape has no spectral information by defini-
tion, which implies the separation of spectral radiance into sunshape SS() and a spec-
tral component # (A1) expressed in Equation (2.19).

Lss(A,0) =W (L) * SS(0) (2.19)

It then follows that a unique spectral sunshape formulation 255, i(A,0) is identified
for every single sunshape specification i. That s, for all three aforementioned sunshapes
the integral over the opening half-angle subtended by the Sun equals the total irradiance.
The corresponding spectral radiance functions 255, i(4,0 is identified in Equation (2.20)
by inverting the AM1.5D spectrum, much in the same vein as Equation (2.13). Recall that
the spectral sunshape only pertains to the spectral radiance component £, (1,0) from

the Sun’s solid angle, such that the same circumsolar contribution correction m is
applied.

AM1.5D(}) 16/
—— =27
(1+CSCW)
Again the spectral sunshape formulation must account for the AM1.5D spectrum at
every wavelength, and there is only a single wavelength-dependent term on the right-

hand side due to the separation of variables in Equation (2.19). The implicit spectral
component #;(A) is thus identified for every sunshape i:

#;(A) * SS;(0)sin(0)dO (2.20)

W) = AM1.5D(A) 2.21)

(1+CSC) * 27 [ $5;(6) sin(6)dO

The unique spectral sunshape corresponding to every ordinary sunshape can now
be constructed using Equation (2.19), and the resulting spectral sunshapes are all shown
in Figure 2.12. For all spectral sunshapes, the integral over both arguments amounts to
887.7Wm™2, the total irradiance contained in the AM1.5D spectrum excluding the cir-
cumsolar correction. The uniform spectral sunshape Z,,,; form(A,0) - derived from the
uniform sunshape - is depicted in the upper left of Figure 2.12. It is simply a rescaled
three-dimensional extrusion of the AM1.5D spectrum, and does not take any limb dark-
ening into account. The upper right shows the Gaussian spectral sunshape Zgauss(A,0)
corresponding to the Gaussian sunshape defined by Equation (2.17), which exhibits the
most significant limb darkening. The Buie spectral sunshape me’e (A,0) islocated in the
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lower left, and appears to be very similar to the reference spectral sunshape estimated
earlier in this Chapter, which is the final depicted spectral sunshape £ (A,0).

Recall that the Hestroffer-Magnan spectral sunshape developed in this Chapter had
a peak spectral radiance of 0.0160 [Wm~2nm~'arcmin"']. The uniform, Gaussian and
Buie spectral sunshapes respectively exhibit peak spectral radiance of 0.0142, 0.0212,
and 0.0156 [Wm™2nm~Yarcmin™!), or relative differences of —11%, +32.5% and —2.44%.
The colour map and vertical axes have all been scaled according to the Gaussian spec-
tral sunshape to allow for a fair comparison. Figure 2.12 shows clear differences which
are mostly the result of the underlying limb darkening models. The estimated Zp(A,0)
and quie (A, 0) strongly resemble each other, which makes sense because the Hestroffer-
Magnan spectral limb darkening model and the Buie sunshape are based on similar solar
telescope observations. The Buie model however does not consider spectral informa-
tion, and a closer look is required to distinguish the spectral differences.
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Figure 2.12: All four spectral sunshapes, formatted to share the same colour map and z-axis. (a), (b), (c) and

(d) respectively show ,@uniform(/l,ﬂ), PLGaussM0), Lpuie(A,0), and the estimated Lppr(A,0)

To contrast the spectral sunshapes in more detail, the reference spectral sunshape
LBuie(1,0) was also subtracted from every other spectral sunshape. That is, for every

Lum(A, 6) Wim?inmjarcmin)
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i=uniform,Gauss, Buie, the spectral sunshape difference in Equation (2.22) was con-
structed:

diff(Lruie, Lrm, A 0) = Lruie(A,0) — Lrm(A,0) (2.22)

The spectral sunshape differences also have units [Wm2nm~'arcmin™'], and it

is insightful to also have a relative percentage point difference metric to compare the
representations as a whole. To that end, define the ’average deviation’ AvDev; between
spectral sunshape i and Zp(A,0) to be the average of the absolute difference over the
entire domain divided by the average value of 25 (A,0). Letting | x| denote the absolute
value of x, AvDev; is defined as follows:

(A,0)dAd0O
£100%;  AV[f(,0)]"Y Unot 2.23)

[p01dAdo

The average deviation AvDeyv; is simply a measure of the extent to which a particular
spectral sunshape Z;(A,0) deviates from the reference Zx(1,0) over the entire wave-
length domain A and opening half-angle domain ©. The closer to 0 the value of AvDev;,
the better the two spectral sunshapes agree.

AvDey, = WIIFZ:, Ly, A,0)]
LT AL (A, 0)]

Recall from Section 1.3.3 that an optical train topology is oriented optimally when it
is aimed at the solar vector; this ensures that the largest share of total flux arrives near the
focal point as designed. Section 1.3.3 also elucidated how, in the case of idealised optical
elements, radiance corresponding to the solar vector is perfectly propagated throughout
the optical train and arrives at the focal point as designed. On the contrary, increasing
the value 6 of a ray will also increase the mismatch between the incident ray and the focal
design point. The lower @ is, the better the propagation throughout an optical train. For
CPV applications it therefore follows that spectral radiance is more important the lower
0 is.

It therefore follows that another interesting metric is the spectral sunshape differ-
ence at the solar vector 0 = 0’ or diff(%;, L, A,0') in terms of Equation (2.22). This
difference at the solar vector can likewise be converted to an average deviation by plug-
ging in O = 0’ in Equation (2.23) and averageing over the wavelength domain instead.
Crucially, since the half-angle dimension is collapsed, the average deviation at 0 = 0’ es-
sentially captures the spectral mismatch for the flux that is most likely to arrive at the
receiver. The spectral mismatch is very important, considering the spectral response of
HCPV receivers such as the multi-junction stack or the spectral beam splitting approach.

The uniform spectral sunshape difference, or diff(Ly form Pum), is plotted in Fig-
ure 2.13, with an AvDevy,,; for m 0f 8.44%. The discrepancy due to limb darkening - which
is implicitly absent for the uniform spectral sunshape - is apparent. The uniform spec-
tral sunshape exhibits significantly less spectral radiance near the centre of the Sun: the
average deviation for 6 = 0 is 8.59%. On the other hand, the uniform sunshape vastly
overstates the spectral radiance near the limb. The crossover - where the difference is
approximately zero - occurs for an opening half-angle slightly larger than 6 = 10'. Ap-
plying these results to a CPV optical train topology, it follows that the uniform spectral
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Figure 2.13: Difference between the uniform spectral sunshape Luni(A,0) and the estimated spectral sun-
shape Zgp(A,0). The average deviation is 8.44%.
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sunshape would underestimate the solar flux that propagates properly and arrives near

the focal point.
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Figure 2.14: Difference between the Gaussian spectral sunshape PLGaussA,0) and the estimated spectral
sunshape £y (A, 60). The average deviation is 25.2%.

Secondly, Figure 2.14 shows diff(fcau <5, L), which exhibits avery high AvDevg gy s
of 25.2%. The Gaussian spectral sunshape implies limb darkening that is too severe, as
the spectral radiance is significantly higher at low values of 6 and lower for high values
of 6. The crossover occurs for a value of 6 slightly smaller than 8'. The Gaussian spectral
sunshape vastly overestimates the spectral radiance near the solar vector 6 = 0'; the av-
erage deviation for 8 = 0’ stands at 36.4%. As such, an optical train analysis employing a
Gaussian source model would tremendously overestimate the solar flux propagated by

the optical train.

Finally, diff(Lsuie, Zrum) is displayed in Figure 2.15. The spectral sunshape corre-
sponding to the Buie sunshape model shows good agreement with the spectral sunshape
Zum(A,0) derived in this Chapter. Ignoring the discrepancies near the solar limb, the
differences are approximately an order of magnitude smaller compared to the uniform
and Gaussian cases. AvDevg,;. = 3.19%, but a sizeable share of the deviation is con-
tributed by the region near the limb as 0 approaches 16’. As was mentioned in Section
The limb is the region where both the Hestroffer-Magnan spectral limb darkening model
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Figure 2.15: Difference between the spectral sunshape Zg,;0(A,0) corresponding to the Buie sunshape

and the estimatewd spectral sunshape %y )7(A,0). The average deviation is 3.19%.
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agrees relatively poorly with the data, at £10%. The Buie sunshape model agrees excel-
lently with the measurements at the very limb, but also deviates slightly below the limb
[41]. Both representations suffer from the difficulty of capturing a partially asymptotic
phenomenon - that of the limb - with a parsimonious trigonometric function. Artefacts
of this nature are very likely the culprit for the sudden inversion in the diff(,?guie, L)
plot at short wavelengths and as 6 — 16'.

Aside from the inversion artefact near the solar limb, two important trends are visible
in Figure 2.15. Firstly, the Buie spectral sunshape significantly underestimates the short
wavelength spectral radiance near the solar vector 6 = 0’ and slightly overestimates the
long wavelength spectral radiance there. This observation is underscored by the average
deviation metric at 6 = 0, which stands at 4.11%. This local average deviation is higher
than the overall average deviation, despite the latter being inflated by the apparent arte-
fact. It follows that the differences are most pronounced for spectral radiance close to
the solar vector. Recall again that spectral radiance is more important for CPV the lower
the value of 8, as better propagation to the receiver target is implied for such spectral
radiance.

The second apparent trend is the reversion of the first trend as 6 increases one moves
away from the solar centre to its limb. It is particularly visible that longer wavelength
spectral radiance is underestimated by the Buie spectral sunshape at higher values of 6.
Both trends are direct improvements owed to the spectral limb darkening model incor-
porated into %y (A, 0), and they quantify the quasi-qualitative arguments in the ratio-
nale from Section 2.2.

All in all, the differences between the spectral sunshape QHM(/I,H) derived in this
work and the sunshapes agnostic of spectral limb darkening are striking. The uniform
spectral sunshape, implicit if one were to treat the Sun as an extended source with-
out any limb darkening, significantly deviates from the spectral sunshape Lx(A,6).
It would significantly underestimate the flux at a HCPV receiver. Counter-intuitively,
considering computationally feasible limb darkening in the form of the Gaussian sun-
shape even worsens the problem, although instead the spectral radiance arriving at the
receiver would be overestimated. The exceedingly accurate Buie sunshape model ap-
pears to agree well with the spectral sunshape, but still deviates significantly for exactly
that subset of the spectral radiance domain that matters most for HCPV applications. It
can be concluded that the opening half-angle and wavelength dependence of spectral
radiance cannot be decoupled, and that a full spectral radiance source representation
such as the spectral sunshape is necessary for HCPV system analysis.

2.6. APPLICATION TO OPTICAL MODELLING SOFTWARE TOOLS

This Section discusses how the spectral sunshape can be incorporated into existing op-
tical modelling software. An elaborate review on state-of-the-art optical modelling tools
used in CSP system analysis was presented by Li et al. [51], and a verification on sun-
shape implementations in particular was presented by Wang et al. [52]. A distinction is
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made between two modelling categories: Monte Carlo ray-tracing (MCRT) and a convolution-
based optics method. MCRT essentially randomly samples photons from a specified
directional radiance distribution, computes the optical path of this sample of photons
throughout a specified optical train, and then infers the mapping from the source to the
receiver based on the sample results.

The convolution-based method considers the specified directional distribution of
solar photons in full, and maps this radiance distribution throughout the optical train
by convolving the radiance distribution function with specified input-output distribu-
tion functions of optical element. Because the convolution of two Gaussian functions is
easy from a processing power perspective, the Gaussian sunshape is typically the distri-
bution of choice here. The MCRT method is numerical and therefore applicable to any
topology, whilst the computational feasibility of the convolution-based method depends
on the optical train topology.

All optical modelling tools covered in the cited literature are designed for CSP ap-
plications, and no HCPV-specific software exists. Importantly in the context of this the-
sis, all existing tools also implement the three prevalent sunshapes described in Section
2.5.2 but not a spectral radiance source representation. Whilst tools such as SolTrace
and Tonatiuh do allow for specification of an incident spectral irradiance profile in con-
junction with a sunshape, it is exactly this separate treatment of opening half-angle and
wavelength that results in the corresponding spectral sunshapes depicted in 2.12.

Fortunately, only a single amendment is necessary to make the existing optical mod-
elling tools suitable for HCPV applications: the existing source formulation must be
replaced by ta spectral sunshape formulation such as the estimated spectral sunshape
Zum(A,0) depicted in Figure 2.9. In other words, the spectral sunshape should serve
as the distribution from which photons are sampled in the MCRT tools, and should be
mapped throughout the optical train in convolution-based tools. For MCRT applica-
tions, photons of a particular wavelength and direction 0 should simply be sampled at
a likelihood according to the value of the spectral sunshape. In essence, if the spectral
sunshape in Figure 2.12 were transformed to a photon flux distribution through the pho-
ton energy relation E,p, = %, this transformed distribution could simply be treated as a
probability density function to sample photons from.

Of course, drawing photons from a two-dimensional distribution rather than a one-
dimensional one does require a larger sample size before the MCRT results converge to
a result. An equivalent approach would be drawing vectors from an extended source
much like the existing tools currently do, yet allocating a 8-specific spectrum to the vec-
tor rather than a slightly downscaled version of the AM1.5D spectrum. Referring to Fig-
ure 2.11, a vector making an angle of 0 = 15’ with the solar vector should correspond to
the red spectrum, whilst the solar vector itself should correspond to the blue spectrum.
Essentially, the vectors should lookup the corresponding spectrum from Equation (2.15).

In avery similar vein, the spectral sunshape can also be incorporated into the convolution-
based method. This does require convolution-based tools to relinquish the conventional
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and easily implemented Gaussian sunshape, which is probably a good idea regardless
in light of the Figure 2.14. For such tools, it is the spectral sunshape that should be
convolved with optical train elements. Of course this also requires a representation of
optical train elements where the optical properties are expressed as a function of both
wavelength and incident angle. It is exactly this representation that will be detailed in
the next Chapter 3.






OPTICAL TRAIN MODEL

This Chapter aims to establish a model for heliostats, the optical train elements of inter-
est, in order to put the spectral sunshape derived in the previous Chapter 2 to use. Firstly
the framework of geometric optics to model propagation of light in a utility-scale High
Concentration Photovoltaic (HCPV) system is justified in Section 3.1. Within this frame-
work it is valid to employ rays as the element of analysis, and Section 3.1 also develops
how solar rays should be mapped by a primary optical stage to achieve concentration.
Section 3.2 introduces the paraboloid, and documents how it satisfies the primary opti-
cal stage requirements assuming perfectly specular reflection.

Perfectly specular reflection is impossible in reality, which could be particularly rel-
evant for HCPV systems. A realistic optical train model should also consider imperfec-
tions in optical elements, which can be exhaustively divided into two cases: attenuation
and optical errors. Attenuation is defined as energy loss upon interaction with a stage,
such that the magnitude of the desired outgoing ray is smaller than that of the incident
ray. For a reflective mirror such as a heliostat, attenuation is known as reflectance.

Optical errors are defined as errors resulting in a probability of the outgoing ray’s di-
rection being different than intended despite proper alignment. Section 3.3 will analyse
the conventional heliostat materials, and in particular how reflectance and scattering -
a source of optical error - depend on wavelength and incidence angle. Of interest is se-
lecting a suitable material for HCPV purposes. Section 3.4 discusses other optical error
sources for a HCPV optical train, and motivates the aggregation of several optical error
sources into an overall optical error.

Section 3.5 develops how the overall optical error can be convolved with the spectral
sunshape source representation to produce an effective post-reflection spectral radiance
model. Finally, Section 3.5.1 performs this convolution for the heliostat case at hand, re-
sulting in an equivalent effective source spectral radiance model for heliostats.

57
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3.1. GEOMETRIC OPTICS AND THE VECTOR THEORY OF REFLEC-
TION

Geometric optics employs rays, defined as infinitesimally narrow beams of light. In-
finitesimal quantities tend to be convenient approximations, and this case is no differ-
ent. The exact nature of light propagation is governed by Maxwell’s equations. Solutions
to Maxwell’s equations are so-called wave optical fields, where the direction and ampli-
tude are intertwined. If the wave optical fields are analytic, they can be represented in
the form of a Taylor series. The base order approximation of a wave optical field’s Taylor
representation is called the ray optical field.

Crucially, for the ray optical field, the phase and amplitude are decoupled. This im-
plies that direction and magnitude can be treated separately, which significantly facili-
tates analysis. Wave optical fields are analytic in a homogenous medium, such that the
ray optical field exists. Furthermore, if the objects traversed by the light are consider-
ably larger than the light’s wavelength, higher order Taylor components are negligible.
That is, the ray optical field accurately describes the full wave optical field solution. An
elaborate overview of the relevant considerations for the validity of geometric optics is
provided by Deschamps [53].

For the setting at hand of utility-scale HCPV systems, it can be safely assumed at the
ray optical field approximation holds. Ray-tracing, the dominant method of analysis for
similarly sized CSP systems, implicitly assumes geometric optics to be valid. It is thus
sufficient to consider only the ray optical field, which allows for a decoupled analysis of
direction and magnitude. In other words, it is valid to trace vectors throughout the opti-
cal train and couple This Section will first consider the directional aspect in the idealised
case of rays, to develop the intuition of a concentrating topology.

From Maxwell’s equations and boundary conditions, the general vector formula for
perfectly specular reflection off a dielectric interface follows:

F=1-2@0-m)n (3.1)

Here 7 denotes the unit vector describing the reflected ray, I the unit vector of the
incident ray, and 7 the unit vector normal to the reflection interface. That is, if the nor-
mal vector at the dielectric interface 7 is determined, any incident unit vector can be
mapped to a reflected vector.

Now, consider an Euclidean coordinate system with a focal point at the point (0; 0; F).
Throughout this Chapter, the notation (x; ¥ z) is used for vectors with components in
the x, y and z directions. Additionally, consider a reflecting surface element located at
an arbitrary point I = (%; 7;z). The goal of a primary optical stage is to redirect rays to
the focal point. In terms of Equation (3.1), this is equivalent to requiring that 7 points
from ()'c; 7 2) to (0;0; F). Renormalisation by the vector’s magnitude yields the following
requirement for 7 t:

1

Frog =
T P+ (F-2)2 (

-%-7;F-2) 3.2)
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Equation (3.2) is thus the requirement for any reflecting surface located at (%; j; Z) to
successfully map an incident ray I to (0;0; F). Considering Equation (3.1), this require-
ment fully determines the desired orientation of the surface’s normal vector 7.

In a HCPV central receiver topology, the goal is always to map the Sun’s rays to the
focal point. Recall that the Sun appears as an extended source for an observer on Earth,
and that itis optimal for a HCPV primary optical stage to redirect the { vector correspond-
ing to its centre to the focal point. Denote this unit vector originating in the centre of the
Sun, also referred to as the solar vector, by iy (f). This unit vector is time-dependent be-
cause the Sun apparently moves across the sky. A HCPV primary optical stage therefore
has a required surface orientation 74 () that maps iy (£) to req.

Combining Equations (3.1) and (3.2) and substituting the relevant unit vectors yields
the requirement in Equation (3.3). Recall that the entire left-hand side consists of fixed
parameters: the arbitrary point of incidence I = (%; j; Z) and the fixed focal point height
F. The right-hand side consists of two vectors: the input iy (#) and the required surface
orientation fyeq (£).

1

3.2. PARABOLOID OPTICAL JOURNEY

A familiar topology exists in 3D Euclidean space that is both smooth and capable of sat-
isfying Equation (3.3) for all possible coordinates (%; j; Z): the paraboloid. A paraboloid
is also known as a parabola of revolution, i.e. a 2D parabola revolved around its ver-
tex. Smooth here refers to mathematical smoothness, which implies continuity and dif-
ferentiability everywhere. Smoothness is convenient because it implies a globally well-
defined gradient. Since a paraboloid is conves, it is also implied that reflected rays are
not blocked by other surface elements on their way to the focal point.

(- =i F = 2) =ty (1) =2 (i () rreq (D)) Arreq(t)  (3.3)

To illustrate the paraboloid’s properties, consider without loss of generality a Sun
directly overhead, such that iy = (0;0; —1). The paraboloid is defined as follows:

2, .2
x°+
Zp(x,y) = 4Fy , Riin <1/ X%+ ¥2 < Rpax (3.4)

The quantity F in the denominator is the focal length, and implies that the focal point
of this paraboloid is indeed (0; 0; F). Both R;;;;;; Riax simply constrain the radial domain
to [Rimin» Rmax]- For any surface, the normal vector at any point can be computed by
evaluating surface’s gradient. Consider the implicit form Hy,(x, y, z) of Equation (3.4),
which follows from simply subtracting z:

2+y2

4F

Hy (x,y,2) = Zu(x,y) —z= -z=0 (3.5)

The del operator is defined as V = fc% + j/% + 26%, where %,  and Z denote the unit
vectors in the Cartesian coordinate system. The gradient is defined as follows:
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VHy =

OHM'OHM.OHM) 3.6)

ox = dy ' 0z
The gradient is not normalised yet, it is still necessary to divide by its magnitude
to obtain the surface normal vector. Additionally, the normal vector of interest has a

positive z-component rather than a negative one, so it is also necessary to multiply by
—1. The desired unit vector follows:

2F -Xx -
ﬁM(x,y)=—(—x;—y; ) (3.7
Vx2+y2+4F2 \2F 2F

Substituting Equation (3.7) for Ai;¢4(f) and iy = (0;0;—1) for iy () in Equation (3.1)
yields a reflected vector for any particular point of incidence (%; j; z). Indeed, this exer-
cise globally yields the required vector 7., in Equation (3.2). This demonstrates that the
paraboloid Zj; properly redirects incident light rays that are parallel to to its vertex. This
property holds for any iy, as long as the paraboloid is rotated such that the vertex of the
paraboloid is parallel to iy. That is, as the Sun moves across the sky, the paraboloid is re-
quired to adjust its position and track it accordingly. This section will proceed assuming,
without loss of generality, that the Sun is directly overhead. That is, iyy = (0;0;—1) is the
solar vector.

Having established that the solar vector ray is mapped to the focal point, let us now
consider the optical journey of other solar rays. Consider a ray incident at an arbitrary
point (%; 7; Z) that forms an angle 6; with the perpendicular incident ray iy = (0,0, -1).
Such a vector satisfies the following constraints:

2

tg = (ix,0:1),0; —cos0), iiye +17

2= sin® 6 (3.8)

It is important to recall that the normal vector 71j;(x, y) is determined for all x and y
according to the vector from the Sun ’s centre iy = (0,0, —1). Equation (3.1) can be used
to compute the reflected ray. Since the incoming vector forms an angle 8; with the ray
(0,0,-1) and the normal vector 71p(X, ) is the same, it can easily be verified that the
reflected ray also deviates from 7.4 by the same angle 8;. As such, the deviating ray will
not pass through the focal point after reflection: the distance between the deviating ray
and the focal point depends on the angle 6 as well as the distance separating the point
of incidence I = (%; j; z) from the focal point (0;0; F).

3.3. MATERIAL PROPERTIES: REFLECTANCE AND SCATTERING

Perfectly specular reflection was assumed in the previous section to illustrate the princi-
ples of concentration, and this section will consider material-induced limitations. Two
relevant material properties, reflectance and scattering, can be discerned. Reflectance
refers to energy loss upon interaction with a mirror, and scattering is an optical error. An
ideal mirror material would have a reflectance of unity over the entire applicable wave-
length and incidence angle domain, such that all of the incident energy is reflected. Fur-
thermore, an ideal material would also exhibit perfectly specular reflection according to
Equation (3.1), i.e. zero scattering, such that energy is redirected exactly as desired. In
practice not all of the incident radiation is reflected, which constitutes a significant loss
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factor, and material-inherent scattering results in imperfect specular reflection.

Both properties have been extensively studied in the literature. Reflectance is governed
by the famous Fresnel equations, in which a material’s reflective index appears. The
refractive index in turn depends on wavelength, such that reflectance simultaneously
depends on both arguments of spectral radiance, the incidence angle and wavelength
[54]. Angular scattering results in a non-zero probability for an incident ray to exactly
follow Snell’s law, and can therefore be interpreted as an optical error. Reflector materi-
als typically exhibit more scattering as the wavelength decreases, and also as the angle
of incidence increases.

Good et al. measured the reflectance and scattering of "conventional and novel re-
flective materials for solar concentrators" under varying experimental conditions, in-
cluding incidence angle and incident wavelength [55]. As such, their work exactly char-
acterises the mirror properties required within the spectral radiance framework. Fur-
thermore, Good et al. also published the raw measurement data [56]. Observations have
been made at incident angles of 15°, 45° and 60°, for wavelengths ranging from 300nm
to 2500nm. As such, the wavelength domain contains the [300,2400] nm domain of the
estimated spectral sunshape from Equation (2.15) and Figure 2.9.

Since photovoltaic energy conversion is wavelength-dependent, reflectance Rspec (1) should
also be considered per wavelength. In assessing a mirror’s performance with respect to
sunlight, it is therefore instrumental to weigh spectral reflectance according to direct
spectral irradiance. To that end, define the solar-weighted spectral reflectance Rspec,o to
be:

[ Rspec(A) ¥ AM1.5D(1)dA
[ AM15D(A)dA

Rspec,@ = (3.9

Rspec,0 = 1is equivalent to all of the energy contained in the AM1.5D spectrum being
reflected. In the Good et al. paper, Table 2 presents Rspec,o for the tested reflectors at the
three incidence angles considered. The silver-based mirrors exhibit the highest solar-
weighted spectral reflectance, particularly the back-silvered glass mirrors and silvered
aluminium sheets.

From Table 3 in the Good et al. paper, it appears that the 4 mm-thick back-silvered
glass reflector by Flabeg and the aluminium reflector film by Toray exhibit the least angu-
lar scattering by a significant margin. The standard deviations of fitted single Gaussian
angular scattering distributions are at least an order of magnitude smaller than for the
other considered mirrors. For these two mirrors, the standard deviations for the same
selection of wavelengths are replicated from the Good et al. paper and presented in Ta-
ble 3.1. These two mirrors exhibit the least scattering, or equivalently a more specular
reflection profile.

Recall that the opening half-angle subtended by the Sun is 16’ = 4.65 mrad, such that
the standard deviations tabulated in Table 3.1 are approximately two orders of magni-
tude smaller. It can be concluded that, for these two mirrors, approximately specular
reflection can be assumed. It follows that the aluminium reflector film and the 4 mm
back-silvered glass reflector constitute suitable choices for a HCPV primary mirror based
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on the scattering selection criterion.

Table 3.1: Standard deviations of fitted Gaussian scattering distributions for a selection of wavelengths and
incidence angles, replicated from Good et al. [55]. The measurement setup has an angular resolution of
0.033 mrad, such that observations below that value are denoted as ’< 0.033".

Alnm] 350 400 500 555 600 700 800 950 1050

AOI [°] o[mrad)]
15 <0.033 (all)

AlFilm 45 <0.033 (all)
60 0.042 0.048 0.042 0.038 <0.033 0.036 0.035 <0.033 <0.033
15 <0.033 0.036 <0.033

Agdmm | 45 0.040 0.043 0.0.042 0.048 <0.033 0.036 0.035 <0.033 <0.033
60 0.060 0.064 0.057 0.055 0.053 0.053 0.058 0.053 0.049

The spectral reflectance data from these two reflectors are plotted in Figures 3.1 and
3.2. The dots denote observations, whilst the lines are cubic spline interpolations of the
observations. For reference, the normalised AM1.5D spectrum is also plotted. The spec-
tral reflectance of the 4 mm back-silvered glass mirror outperforms the aluminium film,
as evidenced by the significantly higher values for Rspec,0. This superiority stems from
the back-silvered glass’ spectral reflectance being higher for those wavelengths where
the direct solar spectrum also peaks. Assuming specular reflection, about 4% more en-
ergy would reach a receiver with back-silvered glass instead of aluminium film.

It should also be noted that the wavelengths at which silver-based mirrors reflect
rather poorly also conveniently correspond to relatively inaccessible energy. Consider
for example the [300,400 nm] interval, in which the reflectances from Figure 3.1 climb
towards 0.9. Photons corresponding to this interval are highly energetic, such that the
lion’s share of their energy will be lost due to thermalisation even in the highest band gap
subcell in a multi-junction (M]) cell. On the tail end of the wavelength range depicted in
Figure 3.1, reflectance also declines. These photons in turn have an energy below even
the lowest band gap material in MJ cells, such that these are non-absorbed anyway. The
solar-weighted reflectance in Equation (3.9) does not fully capture these properties.

Perhaps even more importantly in the context of HCPV is the realisation that the
thermalisation and non-absorption losses will eventually result in heat accumulation
at a receiver. This is undesirable for HCPV systems, as the spatial confinement implies
that heat becomes problematic and could hamper performance. The reflector spectral
response in Figure 3.1 is therefore beneficial, as it filters out exactly those photons that
particularly contribute to heat accumulation.

Finally, glass mirrors are the dominant mirror technology, and it is therefore likely
that back-silvered reflectors are relatively affordable despite silver not being not the most
abundant element. Thus, back-silvered glass is selected to comprise the first optical
stage because of its limited scattering, its high solar-weighted spectral reflectance, and
its beneficial filtering of inaccessible photons.

It is interesting to point out that selecting a material for a primary optical stage also
has implications for successive optical stages. In particular, it is beneficial to choose a
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Figure 3.1: Spectral reflectance of 4 mm back-  Figure 3.2: Spectral reflectance of aluminium film
silvered glass for three angles of incidence [56]. The  for three angles of incidence [56]. The AM1.5D
AM1.5D spectrum is also plotted. spectrum is also plotted.

material with a similar spectral response for successive stages to maximise the ultimate
flux. Multiple optical stages incurs extra losses, but these are minimal if the stages have a
similar spectral response. To illustrate this principle, consider the extreme hypothetical
case of a step-shaped spectral response for an optical stage; unity in an interval, zero
elsewhere. Multiple such stages do not incur additional losses, i.e. 100% of the energy
incident on the successive stages would be reflected.

For the realistic materials at hand, a weakened form of the same principle holds.
Consider a second optical stage featuring a similar spectral reflectance to Figure 3.1. This
second mirror’s poor performance in the [300,400 nm] interval hardly impacts outgoing
flux, since a relatively small amount of energy from within this interval even reaches the
second stage. On the contrary, if an aluminium film like Figure 3.2 is chosen as the sec-
ond stage, one mirror’s spectral strengths are undermined by the other mirror’s weak-
nesses and vice versa. It is therefore beneficial for a second optical stage to exhibit a
similar spectral reflectance as Figure 3.1, which hints at a silver-based second stage.

To incorporate the back-silvered glass mirror into the spectral radiance framework,
a characterisation of reflectance depending on both wavelength and angle of incidence
is necessary. Unfortunately, the information at hand to base such estimates on is rather
limited. The Good et al. measurements cover many wavelengths, but only three an-
gles of incidence. To make matters worse, a 60° AOI hardly ever applies to a heliostat
in a terrestrial application, such that the corresponding reflectance data are meaning-
less. Additionally, Good et al. obtained no measurements for a 0° AOI, and no spectral
reflectance datasheet is presently available from the now-defunct manufacturer Flabeg.
However, Good et al. state that the manufacturer Flabeg reported a Rspec,0 > 0.945 for
0° AOL Consulting the literature, Sutter et al. found that the reflectance of silvered-glass
mirrors is almost independent of incidence angle up until 70° [57].

The small impact of incidence angle is also apparent in Figure 3.3. The [400, 1200 nm]
domain of Figure 3.1 is depicted, which contains 79.7% of the total irradiance in AM1.5D.
The specular reflectance is generally shifted upwards for an AOI of 15° compared to 45°,
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Figure 3.3: Specular reflectance for 4 mm back-silvered glass for the [400,1200 nm] range which corre-
sponds to 79.7% of the irradiance in AM1.5D.

but there is no such apparent global difference between the 45° and 60° series. The 0.07
difference in Rgpec,0 between the 15° and 45° series is small, but still significant in case
of HCPV'’s concentration factors above 100x. The significance is also augmented in case
of multiple optical stages. Thus, in an effort to recognise the impact of incidence angle,
a simple model of specular reflectance linear in angle of incidence is postulated. It is
based on the difference between the 15° and 45° Good et al. data. Letting R;5(A) and
R45(A) denote the corresponding spectral reflectance series from Figure 3.1:

R(A, AOI) = w * (AOI —15°) + R15(A) AOI €[0°,45°] (3.10)

By construction, this simple linear model reproduces the R;5(1) and R45(1) Good
et al. series upon substitution of the two angles of incidence. Validity of the estimator
(A, AOI) is dubious inside the [15°,45°] range, because of the limited information on
which it is based. The [0°,15°] validity is even more questionable because there is no
spectral data for an AOI of 0°. Substitution of normal incidence (AOI = 0°) into Equa-
tions (3.10) and (3.9) results in a solar-weighted reflectance of 0.946. This value agrees
with the value reported by the manufacturer (> 0.945), which supports the validity of the
estimator for the [0°,15°] range.

Thus, despite the limitations of the estimator in Equation (3.10), it will be considered
because it is superior to disregarding AOI entirely. It should be noted that the separation
of spectral reflectance into a spectral component and a linear angle of incidence factor
is supported by the reasonable assumption of specular reflection due to negligible scat-
tering. Decoupling the two variables would otherwise be problematic, especially given
the intertwined nature of the spectral sunshape.
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Combining the representation in Equation (3.10) with the estimated spectral sun-
shape Zy(A,0;) from Equation (2.15), it is now possible to estimate the spectral radi-
ance that reflects off a point on a back-silvered glass mirror placed at a particular angle
of incidence with respect to the Sun:

ZLref1(A, AOLB5,) = R(A, AOD) * Lip(A,07) * cos(AOI) (3.11)

Recall that 6 was defined as the angle between the solar vector (6 = 0') and a particu-
lar vector. Let us label this variable 6 as developed in Chapter 2 as 6;, to emphasise that
it corresponds to an incident ray. Following the reflection identity in Equation (3.1), the
solar vector 0; = 0’ is mapped to some fy. Let us define the angle 07, to be the angle
between any vector and the vector 7.

Similar to how 2y (A,6;) is a cone around the centre of the Sun, Z;, 14,05, is a
cone centred around the vector 7y. Furthermore, the factor cos(AOI) stems from the
cosine law for radiance at an angle. Equation (3.11) is not presented as an exact equality,
because perfect specularity (reflection governed exactly by Equation (3.1)) is implicitly
assumed in the construction of 2(A, AOI). Equation (3.11) thus represents the spectral
radiance leaving a point on a back-silvered glass mirror placed at a particular angle of
incidence.

3.4. OPTICAL TRAIN ERRORS

Optical errors are defined as directional errors that do not attenuate. In terms of Equa-
tion (3.1), an incident ray i has a nonzero probability of resulting in a reflected vector
with a direction different from 7 if an optical error is significant. In other words, the re-
flection identity does not hold with absolute certainty due to optical errors. Scattering at
a material interface is an example of such an optical error, although the previous section
demonstrated the insignificance of this optical error for the selected mirror material.

Another optical error that is often significant in practice is known as the tracking er-
ror. Recall that for a HCPV system with a fixed focal point, primary stage mirrors have
to be continually reoriented as the Sun apparently moves across the sky. This is known
as tracking, and the mechanical nature of reorientation results in inevitable tracking er-
rors. External random events, such as a fluctuating wind load on a heliostat, might also
induce optical errors. Any practical primary optical stage will necessarily deviate from
the idealised system at times. This is particularly important for HCPV applications, as
the inherent exacerbation of angular deviations amplifies the effect on receiver flux.

In the nomenclature of the primary stage requirement expressed earlier in Equation
(3.3), recall that the primary optical stage should readjust its required surface 7iyeq/(1)
over time to track the apparently moving solar vector. Optical errors can be interpreted
as external errors that cause the actual orientation to deviate from the required orienta-
tion. This section will consider these optical errors in detail, and discuss the assumptions
underlying aggregation of these individual errors into an overall optical error.
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3.4.1. TRACKING ERROR

Let us first consider the inevitable tracking error. The tracking problem is the surface re-
orientation to continuously satisfy 7.4 (f). The tracking problem is continuously identi-
fied, because the location ()'c; 7 2) is fixed, the distance F to the focal point is known, and
the apparently moving solar vector iy (#) is also determined at all times. HCPV systems
require dual-axis tracking, which enables freedom in reorientation satisfying Equation
(3.3) is possible regardless of the apparent position of the Sun. Continuously tracking
perfectly is impossible; let the actual reflected vector be 7¢,, rather than the 7., from
Equation (3.2), where € denotes an angular tracking error term. That is, the inner prod-
uct between this reflected vector and the ideal vector 7y; |, is as follows:

cos(esr) = Fe,, * Freq (3.12)

This equation holds by construction; €;, is defined as the error that ensures it holds at
all times. Of interest is the distribution of the error term €, over time. It is an obvious re-
quirement for a viable tracking system that the error term is mean-zero, i.e. the expected
value at a point in time is 0: E[e;, | £] = 0. This is equivalent to the requirement that the
tracking system must aim at the focal point on average. At times the tracking might de-
viate, but it should not systematically do so in any particular direction. If there would be
a systematic bias such that E[e,, | £] # 0, it would be better to readjust the tracking algo-
rithm such that is becomes mean-zero. Not much else can be said about the distribution
of e;,; the literature typically computes a standard sample error based on experimental
data. For the purposes of this chapter, it is sufficient to adopt the mean-zero require-
ment, and that its variance U%r is finite.

Ele, | £1=0, Ele?, |tl=0%, <oco, Vt (3.13)

3.4.2. OTHER OPTICAL TRAIN ERRORS

Secondly, consider the error due to imperfectly manufactured mirrors. Such errors can
be understood as deviations from the ideal surface normal vector for a mirror. That is,
even if the tracking system maintains perfect aim at a point in time, there might be local
bumps or irregularities on a mirror surface such that the reflected vector still deviates
from the required vector 7. Let €., denote this angular manufacturing error, in a sim-
ilar fashion to €;,, with assumed finite variance U?n. The effect of these irregularities is
similar to that of tracking errors, in the sense that the actual reflected vector deviates
from the idealised direction. An important difference arises however, because surface
imperfection errors are systematic in nature. That is, if there is a deformity, the resulting
reflected vector will deviate in the same direction for all points in time.

The crucial assumption for manufacturing errors is twofold. Firstly, there is no ex-
pected preferred direction of manufacturing-induced deviation. Secondly, deformities
are not more likely to exist at any particular position (X; j; z) versus others. Then, the
expected deviation for any point on a surface is still zero: a priori, 7 is the expected
direction for the reflected vector. Note that this assumption does not hold for all points
in time, because as mentioned earlier there will be systematic deviations. However, it
is assumed that exactly how these systematic deviations will appear is indeterminable
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at the time of design. Denoting variance by 02, similar error term requirements are as-
sumed:

Elem | X,7,21=0, Ele?,|% 7,21 =02, <oo, VX7, (3.14)

Other optical errors such as wind pressure on a mirror can be treated in a similar
manner. The crucial assumption that should hold for all significant optical errors is that
the expected resultant vector direction is 7y, | globally.

3.4.3. OVERALL OPTICAL ERROR

Aggregating all individual optical error components into an overall optical error is a com-
mon strategy in the CSP literature, motivated by the central limit theorem. The central
limit theorem states that, if many individual mean-zero error sources with finite vari-
ance contribute to the overall error and no single error source dominates the others,
then the resulting overall error tends to an approximately zero-mean Gaussian distribu-
tion. Note that the central limit theorem does not impose functional form requirements
on the individual error source distributions, other than having finite variance and being
mean-zero.

Invoking the central limit theorem is not entirely justified because, in practice, track-
ing errors do tend to dominate the overall optical error [58]. The literature however does
consistently assume a Gaussian tracking error distribution. Overall optical error is then
the aggregation of a dominant Gaussian zero-mean error and several mean-zero error
sources. Such an aggregation also tends towards an approximately zero-mean Gaussian
distribution. Furthermore, more accurate tracking systems could reduce the variance
02, and hence curtail the stochastic dominance of the tracking error term. Attaining a
tracking error variance more in line with the other error sources appears to be a matter
of tracking system quality and thus system costs. In case the tracking error’s variance is
similar in magnitude to the other errors’ variances, the aforementioned central limit the-
orem holds. In conclusion, an aggregated Gaussian optical error follows in both the case
of a Gaussian dominant tracking term, and the case of a dominant optical error source.
Given the limited information on the individual error structures, it is also not possible
to do better. As such, the overall optical error €, is assumed to follow a zero-mean

Gaussian distribution defined by an overall optical error cr%p P
other
05y =0T +0m+ Y 0F (3.15)

1

Bonanos reports that this overall optical error typically has a value in the range of
[1—-3 mrad]. Scattering is normally also considered as a component of this optical er-
ror, but it was already incorporated separately in Section 3.3. It is often also a significant
contributor to the overall optical error, as evidenced by the other reflector characteristics
reported by Good et al. In this case however, having selected a mirror material exhibiting
minor angular scattering, it is not a significant contributor. For this analysis, an overall
optical error of 7/, i.e. slightly over 2 mrad, is assumed.
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The corresponding Gaussian probability density function f,,, () for the overall op-
tical error is depicted in Figure 3.4. The overall optical error should be interpreted as
follows: for a ray of light incident at an angle 8;, with respect to the surface normal, the
probability that the reflected ray is within the angular cone €;,; centred around 8,,; is
equal to the probability density function’s integral. 0,,,; is related to 8;, by the law of
specular reflection. That is, 68.27% of reflected rays fall within an angular cone of 7/,
95.45% fall within an angular cone of 14/, etc. It does not matter which individual error
source - or combination of individual sources - results in the deviation, as all are aggre-
gated into this distribution of outcomes.
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Figure 3.4: Probability density function fe,,, (6) for a Gaussian distribution with a standard deviation of 7.

3.5. COMBINATION INTO EFFECTIVE SOURCE

Recall that Equation (3.11) denoted the spectral radiance reflected by a realistic mirror
which is perfectly aimed. The previous Section (3.4) established a representation for the
overall optical error. Combining these two yields a representation of the expected spec-
tral radiance reflected by a realistic mirror in realistic operating conditions. This proce-
dure yields a spectral radiance profile that is realistically reflected by the primary optical
stage in a HCPV system.

To combine the two, it is necessary to assume that the overall optical error developed
in Section 3.4 is independent of wavelength. This appears to be a reasonable assump-
tion, considering its components. If a tracking error results in a deviation in direction at
a point in time, it is very reasonable to assume that this induced deviation is the same
for any two wavelengths. Thus, the distribution of ¢, does not depend on wavelength.
Analogously for surface imperfections, bumps can be reasonably assumed to reflect blue
and red light to the same incorrect direction.
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The assumption of wavelength independence does not follow as naturally for angular
scattering, which is known to depend simultaneously on wavelength and incidence an-
gle. This is why a representation in both wavelength and incidence angle was developed
in Section 3.3. Since the scattering angular error for back-silvered glass at = 0.04mrad
is two orders of magnitude smaller than the overall optical error of = 2mrad assumed,
it can be safely assumed that wavelength-depending scattering in this setting does not
violate the assumption of the overall optical error being wavelength-independent. Fur-
thermore, the scattering angular error being an order of magnitude smaller also implies
that an interaction effect between scattering and other individual optical errors is in-
significant.

Incorporating the Gaussian optical error model into the reflected spectral radiance
representation from Equation (3.11) requires a convolution. To illustrate why, consider
a particular ray pointing from the surface in the direction of the focal point. Without
loss of generality, consider ;.4 from Equation (3.2). The spectral radiance along this re-
quired direction does not just originate from the incident ray with direction i(0). As a
result of the angular dispersion from the optical errors, a contribution also comes from
other incident rays. Additionally, a share of the incident radiance along i(0') is also dis-
persed to post-reflection directions other than 7.4.

To compute the spectral radiance in a particular direction, it is therefore necessary
to convolve the incident spectral radiance with the Gaussian optical error model. That
is, all incident rays should be considered and appropriately weighted by the probability
that the incident ray results in a particular outgoing ray. Therefore, the effective spectral
radiance centred around 7., is obtained by convolving the spectral radiance leaving a
mirror from Equation (3.11) with the optical error Gaussian distribution fe,,, (6) depicted
in Figure 3.4:

ZLerr(A, AOLO,ry) :ffeopt(geff_gfol) * Lrep1(A, AOL05,)d 05,,) (3.16)

Again, 0.5y is defined as the angle between any vector and the vector .4 around
which the spectral radiance distribution is centred It is important to note that this con-
volution has no relatively simple analytic expression, even though the right-hand side
terms in the integral do. The mean-zero Gaussian probability density function is straight-
forward, and 2, £1(A, AOI, 65,,) also has an analytic representation following Equations
(2.15) and (3.10).

The result for an AOI of 15° is depicted in Figure 3.5. This figure thus represents the
spectral radiance leaving a primary optical stage, considering both a realistic mirror and
an overall optical error with a standard deviation of 7'. For reference, the incident spec-
tral sunshape is also plotted with the same axes and colourmap in Figure 3.6. It is visible
that the optical errors effectively smear the energy out over a wider angular domain.

Furthermore, the optical errors significantly affect the peak of the spectral radiance
profile: the peak value is 0.0142 [Wm™2nm~'arcmin™'], which is 11.3% smaller than
the 0.0160 [Wm™2nm~'arcmin™!] peak in Figure 3.6. The fact that the peak radiance
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is redirected incorrectly at times due to optical errors results in this smaller magnitude
for time-averaged radiance, as does the attenuation due to reflection. Since the solar-
weighted spectral reflectance Rspec,o is approximately 0.942 for an AOI of 15° as visible
in Figure 3.1, it follows that a sizeable percentage of the spectral radiance loss at 0 = 0’ is
due to the optical errors. Recall that the spectral radiance near 6 = 0’ is most important
for a HCPV system, such that the loss is quite significant.

Interestingly, the 6 € [0’,30'] domain depicted in Figure 3.5 contains 132.8 [Wm 2]
upon integration along both dimensions, which is 99.7% of the 141.3 [Wm™2] contained
in the spectral sunshape. That is, assuming an overall optical error with a standard de-
viation of 7/, the lion’s share of the spectral radiance leaves the mirror surface within a
cone of 30'. As Figure 3.5 shows, a very large share is even within a cone of 16’.
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Figure 3.5: Spectral radiance after reflection by a back-silvered glass mirror at a 15° angle of incidence with
respect to the Sun, assuming a total optical error with a standard deviation of 7. The colour mapping is

identical to the mapping in Figures 2.9 and 3.6

3.5.1. THE BENDT-RABL EFFECTIVE SOURCE MODEL
It was already discussed that, for erroneously reflected spectral radiance, it is ultimately
irrelevant to which individual source the error should be attributed. This idea can be ex-
tended to the treatment of optical train stages as a whole. For a receiver, a mirror result-
ing in the spectral radiance profile from Figure ?? centred at 7.4 is equivalent to an emit-
ting surface exhibiting the very same spectral radiance profile. That is, the mirror can be
considered an effective source. Bendt and Rabl developed an analytic effective source
model which incorporates an aggregate optical error model into a sunshape model [59],
and the spectral radiance profile from Figure 3.5 is an extension of an effective sunshape

source model to an effective spectral sunshape model.
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Figure 3.6: Spectral sunshape from Figure 2.9, plotted using the same axes as Figure 3.5.

3.5.2. COMPUTATIONAL ADVANTAGE
Treating heliostats as effective sources is an effective method to reduce the processing

power required to adequately model a HCPV system. Conventionally, a system’s geom-

etry is defined in a setting and then globally illuminated by a specified radiance profile.

Rays from the source then intersect the primary optical stage, a reflection is computed,
and rays are traced further along their path. The entire procedure echoes the optical
train model developed in this Chapter. On the other hand, it is also possible to define
heliostats as emitting surfaces with the spectral radiance profile in Figure 3.5. The differ-
ence between these two strategies is indistinguishable for the receiver, but the effective
source approach does not require computation of the first reflection.

Since illumination is globally the same, i.e. the spectral sunshape is incident on the
entire heliostat field, the only difference between individual heliostats arises from their
individual orientations with respect to the Sun, captured entirely by the parameter AOI.
The required AOI is known at all times since the tracking problem is identified, and it
is thus possible to use Equation (3.16) to determine the spectral radiance profile of he-
liostats as an effective source. This represents an important advantage in terms of re-
ducing processing power, as the primary optical stage interaction step is largely avoided
altogether. The size of the gains do depend on the ease of a convolution with the optical
error model of choice, but they are probably a net positive in many cases.

The effective source approach features another significant computational advantage,
which is that only the heliostat field is emitting rather than the entire domain. Many
modelling tools work with a globally illumination profile as the input. As a result, many

H
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rays will be generated that do not interact with a heliostat due to the open space be-
tween them to prevent shading and blocking. Even though such rays are not the most
demanding, they are entirely spared by an effective source model.



CONCLUSION AND
RECOMMENDATIONS

This work presented the first spectral radiance source representation of the Sun, defined
as the spectral sunshape. Spectral radiance is the physical quantity that should be con-
sidered for HCPV system analysis, since dependence on opening half-angle 6 and wave-
length A is interlinked through spectral limb darkening. To that end, the spectral sun-
shape .,@HM(/I,H) was constructed from the established AM1.5D spectrum in conjunc-
tion with the Hestroffer-Magnan spectral limb darkening model, as detailed in Equations
(2.9)-(2.11).

State-of-the-art software packages implement a sunshape model, the workhorse in
CSP, and a spectral irradiance standard, employed in PV. The spectral sunshape was com-
pared to three prevalent sunshape models used in such software packages, which all im-
plicitly assume decoupling of wavelength and opening half-angle dependence of solar
flux. It was demonstrated that the differences are profound, even in case of the exceed-
ingly accurate Buie sunshape model: a spectral mismatch of 4.11% was found. If one
were to analyse a HCPV system using the Buie sunshape in existing modelling software,
the simulated irradiance at the focal point would be redshifted. If one were to use the
uniform or Gaussian sunshape instead, very significant differences are the result. To
extend the validity of CSP modelling software to the realm of HCPV, it is necessary to im-
plement a spectral sunshape source representation. Both Monte Carlo ray-tracing tools
and convolution-based tools can incorporate the spectral sunshape model presented in
this work.

Itis implied by spectral limb darkening that the spectral irradiance at a receiver nec-
essarily differs from an upscaled version of the incident spectrum, due to the interaction
of angular exacerbation inherent in concentration (Section 1.3.3), spectral limb darken-
ing (2.2, and the fact that the Sun is not a point source. This is a finding with significant

73
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impact on the field of HCPV receiver design, as receiver designs documented thus far
typically did assume such an upscaled spectrum. Considering the spectral response of
HCPV receivers, and in particular the current-matching requirement for multi-junction
stacks, it follows that existing receivers are current-limited by design. It is thus recom-
mended to first calculate how spectral radiance is mapped throughout an optical train to
areceiver, and to only then design a receiver based on the calculated receiver flux profile.

In Chapter 3, a suitable heliostat candidate for HCPV was identified based on supe-
rior specularity, spectral reflectance properties and its current status as market leader:
the back-silvered glass reflector. Successive optical stages should also be based on sil-
ver to minimise the overall attenuation, and to reduce thermal flux generation at the
receiver. Motivated by the relative insignificance of optical errors due to scattering, a
spectral reflectance model of the heliostat linear in the angle of incidence was proposed,
and combined with the spectral sunshape to estimate the spectral radiance reflected off
a back-silvered glass mirror.

The final optical train modelling step was incorporating optical train errors, i.e. er-
rors that violate perfect specularity but that do not attenuate. Several optical error sources
that are comparable in magnitude were aggregated into a single overall Gaussian opti-
cal error by invoking the central limit theorem. A Gaussian optical error with a standard
deviation of 7 arcminutes was assumed, and convolved with the spectral sunshape post-
reflection.

The result of this exercise was the effective spectral sunshape depicted in Figure 3.5.
This effective spectral sunshape can be interpreted as the spectral radiance profile re-
flected off of the heliostat surface under realistic operating conditions. The heliostat can
equivalently be considered as an effective source with the derived spectral radiance pro-
file. Doing so conveys a computational advantage, as it skips the calculation step where
the inbound radiance interacts with the heliostat. Additionally, less processing power
is necessary versus a setting with globally defined illumination as any rays that fall be-
tween heliostats are not even generated.

Unfortunately, the very final intended step of the analysis proved to be unfeasible
with the tools and skills at hand: quantification of the performance loss induced by a
heliostat field. The extent of this performance loss is extremely important for the future
viability of HCPV, seeing as it is very unlikely that other primary optical stages such as
Fresnel lenses will ever reach a price level that justifies the HCPV approach over con-
ventional utility-scale PV. The final step is sorely missed, especially because all of the
inputs required for the quantification were developed in this work. On the other hand,
the quantification of the optical performance loss due to a heliostat field is a textbook
recommendation for future work in this field.

All in all though, the main goal of this research has been attained: the establishment
of a spectral radiance standard, as well as a framework to analyse HCPV systems. In
HCPYV receiver design, the assumption of an incident AM1.5D spectrum upscaled by a
concentration factor C becomes progressively more invalid the higher C is. The most
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valid receiver design method would entail calculating the receiver flux profile by map-
ping the spectral sunshape through a specified optical train. The optical train mapping
should consider both attenuation and optical errors as function of wavelength for the
primary stage, and as functions of both wavelength and angle for succcessive stages. All
tools necessary to assess HCPV receivers in detail have been presented, and it is now pos-
sible for the HCPV industry to quantify designs and hopefully continue moving along its
promising learning curve.







APPENDIX

A.1. DEMONSTRATION OF SOLAR POTENTIAL

The solar constant, defined as the solar flux incident on the outer atmosphere of the
Earth, averages at 1.361 . The flux is incident on the Earth as seen from the Sun, i.e.
on a surface area of where denotes the radius of the Earth: 6,371 km. Assuming for sim-
plicity’s sake that half of the energy is lost in the voyage from the outer atmosphere to the
Earth’s surface due to absorption and scattering, it follows that on average approximately
in irradiation is incident on the Earth’s surface. Total global annual energy production
from all sources amounted to in 2015 according to the IEA (ref:Key World Energy Statis-
tics 2017) , such that it takes less than 110 minutes for that amount of energy to arrive at
the Earth’s surface. In other words, the 2015 annual global energy supply arrives in the
form of sunlight at Earth’s surface in just 0.0209% of the total time in a year. This calcu-
lation demonstrates that dedicating just a fraction of the Earth’s surface to solar energy
generation would be enough to comfortably meet society’s demand.

A.2. DEMONSTRATION OF INCREASED EFFICIENCY UNDER CON-

CENTRATION
The interesting phenomenon that extractable energy increases more than proportionally
as a function of the incident irradiance is easily understood by considering a solar cell
under STC. The maximum-power-point (MPP) output per unit area of a solar cell is given
by
Pypp = Vmpp * Jmpp = Voc * Jsc * FF (A1)
Pyipp ,Vpp and Jyrpp respectively denote the power per unit area, voltage, and cur-
rent density at MPP. V¢ is the open-circuit voltage, Jsc the short-circuit current den-
sity, and FF the fill factor. The total incident irradiance under STC is the integral of the
AM1.5G spectrum, denoted by P41 .56.- Hence, the efficiency of the cell is given by

Pypp Voc * Jsc * FF
Pamisc Pawsc

nstc = (A.2)

7
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Note that the short-circuit current density is given by
A
Jsc = —efo EQE(A) * ® op1.56(A)dA (A.3)

Where e is the elementary charge, A1 = i is the wavelength corresponding to the
band gap energy, EQE(A) is the External Quantum Efficiency as a function of wavelength
and finally ® 41 5¢ is the STC spectral photon flux.

Next, consider incident irradiance scaled by a concentration factor C, such that P¢ =
C* Ppp.56- Since the spectral profile is the same, the photon flux O=C*DapnscA). In
the neighbourhood of STC illumination conditions, the EQE is largely invariant for con-
centrated irradiance: b:(jE (1) = EQE(A) . Therefore, the increased photon flux results in
a proportionally increased short-circuit current density:

A
Jsc=—e f “EQE) * B A = C* Jsc (A4)
0

The effect of concentration on the open-circuit voltage Vo is also relatively straight-
forward. Assuming that the short-circuit current density far exceeds the dark current
density, i.e. Jsc >> Jo, Voc is given by

kT Jsc
Voc=— ln(—) (A5)
Jo
where k is Boltzmann’s constant, T is the temperature. Since the dark current density

by definition does not vary under different illumination conditions, it follows that

kT . ], J. kT kT
Toc = L2 = £ Jscy —In(C) = Voc + —In(C) (A.6)
e Jo e Jo e
That is, the open-circuit voltage increases logarithmically as a function of the con-
centration ratio. Assuming an unchanged fill factor, substituting the derived concentra-

tion into Equations A.1 and A.2, it follows that

3 Byop (Voc + L In(C)) = C * Jsc kT
n= = =nsrtc *(
C * Papse CxVoc*Jsc e* V

In(C) +1) (A7)
C

Equation A.7 shows that efficiency increases logarithmically as the concentration ra-
tio increases. In Figure 1.4 the largest share of the 'other losses’ are due to the Vj;pp being
lower than the band gap, and concentration essentially decreases this fundamental loss
contribution. Concentration violates assumption SQ2, which is why exceeding the SQ
limit is possible. The theoretical efficiency limits per junction number from martilimit
under a single Sun and optimal concentration are tabulated in Table 1.1.

It should be noted though that the derivation assumes that the external quantum ef-
ficiency (EQE), and fill factor (FF) of the considered cell do not decrease. For the vast
majority of semiconductor materials, these assumptions are valid in the neighbourhood
of one Sun. As the concentration ratio increases significantly though the EQE will drop;
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Table A.1: SMARTS inputs to produce reference spectra (Gueymard)

Sun’s zenith angle (degrees) 48.236
Air mass 1.50
Surface slope/azimuth (degrees) 37/180
Angle of incidence: beam normal, hemi- 0,11.236

spherical tilt (degrees)

Field-of-view total angle: beam normal,
hemispherical tilt (degrees)

5.8(DNI), N/A(GHI)

Extraterrestrial spectrum SMARTS/Gueymard AMO
Earth-Sun distance correction 1

Model atmosphere USSAa

Aerosol model S&F Ruralb

Surface pressure (mb) 1013.25

Aerosol Optical Depth at 500 nm 0.084

Carbon dioxide mixing ratio 370 ppm
Pollution level Standard

Ozone (atm-cm) 0.344
Precipitable water (cm) 1.416

Albedo Light sandy soil, non-Lambertian

the available valence electrons will become limiting as the number of photons keeps on
increasing. The FF will also drop as the concentration ratio increases to very high levels;
from Equation (A.4), the current increases proportionally such that at some point Ohmic
losses will play a significant role. Other phenomena might also invaldiate the assump-
tions of constant EQE and FF as concentration increases for particular semiconductor
materials. The initial positive relationship between efficiency and concentration ratio
that breaks down as concentration becomes very high results in a characteristic similar
to 1.11 for the vast majority of PV cells.

A.3. SMARTS INPUTS TO PRODUCE THE REFERENCE SPECTRA
PROPOSED BY GUEYMARD
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