
Coordinated optimization
of equipment operations
on a container terminal

Tim Jonker

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

Coordinated optimization of
equipment operations on a container

terminal

by

Tim Jonker

Master of Science
in Mechanical Engineering

at the Delft University of Technology,
to be defended publicly on Wednesday August 1, 2018 at 14:00.

Graduation thesis: ME54035
Student number: 4281004
Report number: 2018.TEL.8250
Supervisor: ir. M.B. Duinkerken
Company supervisor: A. de Waal

Abstract

Increased international marine transport has increased the use of containers. This goes hand in hand
with the increased demand for well-functioning container terminals. The speed at which containers
can be handled on the container terminal is an important performance indicator for container termi-
nals. In particular, the productivity of the Quay crane (QC)s is used to determine the performance of a
container terminal. To achieve a high performance, a well designed schedule of operations is required.
This research investigates to what extent a coordinated planning can contribute to increasing the QC
productivity. Currently, an uncoordinated scheduling heuristic is used to dispatch the equipment op-
erating on a container terminal. With a coordinated schedule, operations of all equipment working on
the terminal can be considered at once to achieve optimal QC productivity. A Hybrid Flow Shop (HFS)
model with revolutionary features is used to model the waterside of a container terminal in a coor-
dinated way. The revolutionary features are called: bi-directional and job-pairs. The former enables
jobs to move through the HFS in both directions, the latter constrains certain jobs to be performed
simultaneously by a single machine. Subsequently, a tailored Simulated Annealing (SA) algorithm is
used to obtain a heuristic solution to this mathematical model. The performance of the HFS model
in combination with the SA algorithm is evaluated with a sophisticated and validated container ter-
minal simulation model developed by TBA. Therefore, the SA algorithm should balance between both
quality and computational time. Computational time should not be excessive since the schedule has
to be adjusted frequently since operations on a container terminal vary quickly and predictions with
regards to processing times are unreliable. To evaluate the performance of the coordinated schedule,
it will be compared with the uncoordinated scheduling heuristic of TBA. Based on the results obtained
during this research, the QC productivity whilst using TBA’s uncoordinated scheduling heuristic cannot
be increased with a coordinated schedule that uses a HFS to model the container terminal and a SA
algorithm to solve that model (p-value 0.2731). On the other hand, it can neither be concluded that
TBA’s uncoordinated scheduling heuristic results in higher productivity compared to the coordinated
schedule. Therefore, the coordinated schedule is a solid alternative to TBA’s uncoordinated schedul-
ing heuristic. However, it is expected that with certain changes to the coordinated schedule the QC
productivity could be increased.

iii

Abstract

Door toegenomen internationaal zeetransport is het gebruik van containers toegenomen. Dit gaat
hand in hand met de toegenomen vraag naar goed functionerende containerterminals. De snelheid
waarmee containers kunnen worden verwerkt op een containerterminal is een belangrijke prestatie-
indicator voor containerterminals. In het bijzonder wordt de productiviteit van de kadekranen gebruikt
om de prestaties van een containerterminal te bepalen. Om een hoge prestatie te bereiken, is een goed
ontworpen planning vereist. Dit onderzoek onderzoekt in hoeverre een gecoördineerde planning kan
bijdragen aan het verhogen van de kadekraan productiviteit. Momenteel wordt een ongecoördineerde
planningsheuristiek gebruikt om de machines op een containerterminal aan te sturen. Met een
gecoördineerde planning kunnen operaties van verschillende machines tegelijkertijd worden beschouwd
om een optimale productiviteit van de kadekranen te bereiken. Een Hybrid Flow Shop (HFS) model
met revolutionaire kenmerken wordt gebruikt om de waterkant van een containerterminal op een
gecoördineerde manier te modelleren. De revolutionaire functies worden genoemd: bi-directional
en jobpairs. Met de eerste kunnen taken in beide richtingen door de HFS worden verplaatst, de
laatste zorgt ervoor dat taken tegelijkertijd door één machine moeten worden uitgevoerd. Vervolgens
wordt een Simulated Annealing (SA) algoritme aangepast op dit specifieke probleem gebruikt om
een heuristische oplossing voor dit wiskundige model te verkrijgen. De prestaties van het HFS -
model in combinatie met het SA algoritme worden geëvalueerd met een geavanceerd en gevalideerd
simulatiemodel voor containerterminals ontwikkeld door TBA. Daarom moet het SA algoritme een
balans vinden tussen kwaliteit en rekentijd. De rekentijd mag niet buitensporig lang zijn, omdat de
planning vaak moet worden aangepast. Dit is omdat de bewerkingen op een containerterminal snel
variëren en voorspellingen met betrekking tot behandeltijden onbetrouwbaar zijn. Om de prestaties
van de gecoördineerde planning te evalueren, wordt het vergeleken met de ongecoördineerde
planningsheuristiek van TBA. Op basis van de resultaten die tijdens dit onderzoek zijn verkregen, kan
de kadekraan productiviteit tijdens het gebruik van de ongecoördineerde planningsheuristiek van TBA
niet worden verhoogd met een gecoördineerde planning dat een HFS gebruikt om de containerterminal
te modelleren en een SA algoritme om dat model op te lossen (p-waarde 0.2731). Aan de andere kant
kan evenmin worden geconcludeerd dat de ongecoördineerde planningsheuristiek van TBA resulteert in
een hogere productiviteit in vergelijking met de gecoördineerde planning. Daarom is de gecoördineerde
planning een solide alternatief voor de ongecoördineerde planningsheuristiek van TBA. Het is echter
te verwachten dat met bepaalde wijzigingen in de gecoördineerde planning de productiviteit van de
kadekranen kan worden verhoogd.

v

Acknowledgements

I would like to thank everyone who had unconditional confidence that this thesis would be successful.
During times of personal despair you all held faith. This gave me both stress and strength. I pushed
myself to the limits of my capacities to satisfy your expectations. In the end this is what lead to a thesis
of which I am proud.
A few people deserve some special acknowledgements. These are my supervisors: M.B. Duinkerken,
R.R. Negenborn, A. de Waal and N. Yorke-Smith. I want to thank them for their support and criticism.
All colleagues at TBA who helped me solving problems and gave me a wonderful graduation period.
Chris Langhout who has helped me countless times with fixing the layout of my report and for being a
sounding board to many of the problems I encountered.
Arent Jonker and Marielle Schmitz for their weekly interested in my report without actually understand-
ing what it was about.
Sebastiaan van Bruggen en Bo Langeveld who have helped me each weekend to escape the grind of
graduation. Without them I would have been consumed by stress and been unable to achieve what I
have achieved now. You both helped me to burst my university bubble and enter another world. I am
very glad that I have such amazing friends.
Finally, I would like to thank Yvonne Schouten, without her I would have never been able to graduate
university. This is the last piece of my life that you will ever know of. From now on my life will be
completely separated from the one that you knew. You stimulated my curious and critical attitude
which had brought me to this point. For this and many other things you deserve eternal gratitude.

Tim Jonker
Delft, July 2017

vii

Preface

This report contains a graduation thesis as part of the Master Mechanical Engineering with the track
Transport Engineering and Logistics. Within this track the report topic is related to theme three: Real-
time Coordination for Operational Logistics. The graduation assignment is based on a agreement
between TBA and the TU Delft. The assignment is provided by TBA, the main working environment
will be in their office. The TU Delft is responsible for the grading and to guarantee a sufficient technical
and scientific level.

Tim Jonker
Delft, July 2017

ix

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Research goal and scope . 3
1.3 Research questions . 4
1.4 Approach . 4
1.5 Structure of the report. 5

2 Introduction to container terminals and analysis of the current scheduling and
dispatching strategy 7
2.1 Introduction to container terminals . 7

2.1.1 Container . 7
2.1.2 Container terminal layout. 8
2.1.3 Deep-sea vessels . 9
2.1.4 Yard crane . 10
2.1.5 Horizontal transport vehicle . 10
2.1.6 Quay crane . 11

2.2 Analysis of the current scheduling and dispatching strategy 11
2.2.1 Planning and scheduling . 12
2.2.2 Stack crane scheduling . 13
2.2.3 Stack crane dispatching. 14
2.2.4 Horizontal transport vehicle dispatching . 15
2.2.5 Quay crane bay plans . 16
2.2.6 Grounding . 17

2.3 Current performance of the scheduling & dispatching strategy 18
2.3.1 Simulation model validation . 19
2.3.2 Benchmark terminal . 20
2.3.3 Key performance indicators. 21
2.3.4 Benchmark results . 21

2.4 Concluding remarks . 24

3 Literature study 25
3.1 Literature review . 25
3.2 Hybrid Flow Shop Problems . 26

3.2.1 Hybrid flow shops with uncertainties . 28
3.2.2 Hybrid flow shops applied to integrated container terminal scheduling. . . 28
3.2.3 Reflection on the problem. 31

3.3 Model Predictive Scheduling . 32
3.3.1 Greedy scheduling algorithm . 32
3.3.2 Reflection on the problem. 33

3.4 Markov chains . 33
3.4.1 Reflection on the problem. 34

3.5 Solution techniques . 35
3.5.1 Problem complexity . 35
3.5.2 Mixed Integer Programming . 36
3.5.3 Constraint programming . 36
3.5.4 Branch and bound . 37
3.5.5 Shifting bottleneck . 37
3.5.6 Tabu search . 38
3.5.7 Simulated annealing . 39
3.5.8 Genetic algorithms . 40

xi

xii Contents

3.5.9 Particle Swarm Optimization . 41
3.5.10Ant colony optimization . 41
3.5.11Comparison of different algorithms . 42

3.6 Concluding remarks . 43

4 Scheduling model applied to a container terminal 45
4.1 Hybrid Flow Shop Problem . 45

4.1.1 Basic notation and assumptions. 45
4.1.2 Problem classification . 46
4.1.3 Conceptual model . 47
4.1.4 Mathematical formulation . 49

4.2 Initial solution heuristic. 53
4.2.1 Minimum Extra Time heuristic. 54
4.2.2 Minimum Completion Time heuristic . 54
4.2.3 Non-Delay heuristic . 54
4.2.4 TBA’s uncoordinated scheduling heuristic . 55

4.3 Solution method . 56
4.3.1 Mixed integer programming. 56
4.3.2 Simulated Annealing. 57
4.3.3 Summary of the simulated annealing algorithm 65
4.3.4 Algorithm performance . 66

4.4 Concluding remarks . 67

5 Simulation results 69
5.1 Coupling between eM-Plant and MATLAB . 69

5.1.1 Communication between eM-Plant and MATLAB 69
5.1.2 Order assignment . 71
5.1.3 Parameters introduced by coupling eM-Plant to MATLAB 71
5.1.4 AGV interference . 71

5.2 Small scale experiments. 72
5.2.1 Results of small scale experiments . 73
5.2.2 Analysis of results . 75
5.2.3 Summary . 82

5.3 Controllable simulation experiments . 82
5.3.1 Statistical methods. 82
5.3.2 Hypotheses . 83
5.3.3 Assumptions . 83
5.3.4 Results . 83
5.3.5 Conclusion . 84

5.4 Large scale experiments . 84
5.4.1 Analysis of results . 85

5.5 Iteration two of the large scale experiment . 86
5.5.1 Model improvement . 86
5.5.2 Results of iteration two . 88
5.5.3 Analysis of results . 89
5.5.4 Discussion of the results . 90

5.6 Model improvement directions . 90
5.7 Discussion on the results . 92

6 Conclusion and future research 93
6.1 Recommendations to TBA. 94
6.2 Future research. 95

Bibliography 97

A Simulation results 115

B Simulation results coordinated schedule vs uncoordinated heuristic 121

Acronyms

AGV Automated Guided Vehicle. 3, 11, 31, 46, 62, 67, 70–72, 75, 76, 81, 86, 90

ASC Automated Stacking Crane. 10, 12, 23, 31

B&B Branch and Bound. 36–38, 56, 57, 65–68

CNT Containers. 67

CP Constraint Programming. 31, 36

ECT European Container Terminal. 11

FIFO First In First Out. 54, 55

GA Genetic Algorithm. 40–42

HFS Hybrid Flow Shop. iii, v, 25–33, 35, 36, 42–51, 53, 56, 57, 59, 66–68, 93, 94, 96

HTV Horizontal Transport Vehicle. 2–4, 7, 9, 10, 12–17, 20, 24, 26, 29–32, 93

JIT Just in time. 86

KPI Key Performance Indicator. 3, 11, 21

Lift-AGV Lift Automated Guided Vehicle. 3, 4, 9–11, 20, 22–24, 31, 45–48, 50–53, 55, 56, 58–61,
67, 71, 73, 74, 76–81, 83–86, 88–91, 94

LP Linear Programming. 63, 65, 68, 94

MCT Minimum Completion Time. 54

MET Minimum Extra Time. 54

MIP Mixed Integer Programming. 31, 32, 36, 56, 92, 96

MPS Model Predictive Scheduling. 25, 32, 33, 43, 94

ND Non-Delay. 54–56

QC Quay crane. iii, 1, 3, 4, 7, 10–17, 20–25, 29–32, 45–48, 50–56, 58, 60, 61, 65–67, 71, 73–90, 93,
94, 96

RMG Rail Mounted Gantry crane. 2–4, 10, 23

RTG Rubber Tyred Gantry crane. 2, 3, 10

SA Simulated Annealing. iii, v, 39, 40, 42, 44, 56, 57, 59, 63–67, 80, 81, 93, 94, 96

SC Straddle carrier. 3, 10

ShC Shuttle carrier. 3, 17

xiii

xiv Acronyms

SMPL Switching Max-Plus Linear. 32, 33, 43

TBA Technisch Bestuurskundig Adviesbureau. iii, v, vii, ix, 4, 5, 7, 11, 18–21, 25, 45, 53, 55–57, 69,
71–73, 75, 78, 81–86, 88–90, 92–96

TEU Twenty-Feet Equivalent units. 7, 11, 20

TT Terminal Truck. 3

TU Technische Universiteit. ix, 19, 32

VRP Vehicle Routing Problem. 59, 60, 62, 63

YC Yard Crane. 2–4, 7–15, 18, 20, 24, 29–32, 45–48, 50–54, 58, 60–62, 67, 75, 78–81, 93, 94

1
Introduction

Today, 60% of the total transport volume is transported in standardized boxes called containers [1].
These containers have universal dimensions to allow quick transshipment. Increased international
marine shipping has increased the use of containers. This goes hand in hand with the increased
demand for well-functioning container terminals. The function of a container terminal is to transship
containers. Deep-sea vessels, barges, trains and trucks all arrive to deliver and pick-up containers.
The container terminal ensures that the correct containers are loaded and unloaded to and from their
respective carriers. The speed at which containers can be handled on the container terminal is an
important performance indicator. In particular, the turnaround time of deep-sea vessels is used to
determine the performance of a container terminal [2]. This is because the berth of deep-sea vessels
is expensive. Furthermore, container terminals wish to decrease the turnaround time of deep-sea
vessels since the container terminal becomes more attractive for shipping lines to move their wares
through. Moreover, the shorter the turnaround time of deep-sea vessels, the higher the container
terminal capacity.

1.1. Problem statement
The turnaround time of a deep-sea vessel is influenced by the number of Quay crane (QC)s handling
the deep-sea vessel and their (un)loading rate. Therefore, container terminals wish to increase the
number of QCs and their (un)loading rate. However, the maximum number of QCs that can handle
a single deep-sea vessel simultaneously is limited by their size and safety regulations. Besides that,
QCs are rarely able to work as fast as their technical (un)loading rate specifies [3]. This can partly be
attributed to insufficient feed and discharge of containers to and from the QC [3]. In other words, once
the QC is stuck with a container without the ability to discharge. Or once there is no new container
available to be loaded onto the deep-sea vessel whenever the QC becomes available for the next op-
eration, the QC remains idle for a certain time. Idle times of the QC decrease the (un)loading rate and
thus increase the turnaround time of the deep-sea vessel that is being handled.
The problem of insufficient feed and discharge of containers to the QC could be reduced by either
using more vehicles to serve the QC or by using the fleet of vehicles in a smarter way. The former
option works only to a certain limit and requires huge investment costs. The latter option also works
to a certain limit but, is much cheaper. This is because, smart usage of QC serving vehicles could be
re-used for multiple terminals and is easily scaled. One method to use the fleet of vehicles in a smarter
way is by creating sophisticated schedules that minimize the idle times of the QC.
Schedules could be subdivided into three different categories which are strongly connected. These cat-
egories are scheduling, dispatching and routing. Scheduling signifies the process of assigning operating
times to the individual containers. Subsequently, dispatching is a process during which equipment is
assigned to handle the individual containers. Thereafter, routing describes the process of determin-
ing the routes of equipment required to handle the containers. Coordinated schedules are schedules
that recognize the connection between the different categories and adapt their schedule accordingly.
Furthermore, coordinated schedules integrate these categories while considering all equipment simul-
taneously.

1

2 1. Introduction

On a container terminal, containers are being moved between different carriers via a stack. In the
stack, containers are temporarily stored awaiting to be loaded on the next carrier. A schematic drawing
of a typical container terminal is presented in Figure 1.1.

Figure 1.1: Schematic drawing of a container terminal [4].

This report focuses on the interchange of containers between the stack and the deep-sea vessel,
called the seaside of a container terminal. This interchange requires three different types of vehicles.
These types of vehicles will further be addressed as machine sets.

1. Machine set 1- Yard cranes: are responsible for handling containers within the stacking yard.
Yard Crane (YC)s connect Horizontal Transport Vehicle (HTV)s and road trucks. In case of linked
interchange, containers are loaded and discharged directly on/from the HTV. In case of unlinked
transport, containers can be placed somewhere where both the Yard Crane (YC) and the HTV can
access the container. Considering road trucks, the interchange is always linked. However, road
trucks are handled on the landside whereas HTVs are handled at the seaside.

2. Machine set 2- Horizontal transport vehicles: are responsible for delivering and picking-
up containers at the quay cranes. Containers are moved to and from the yard where the HTVs
discharge and obtain their containers. This can either be linked or unlinked.

3. Machine set 3- Quay cranes: are responsible for loading and unloading containers to and
from the deep-sea vessel. In nearly all cases containers are obtained and delivered directly from
and to a HTV.

Each machine set is responsible for one and only one move within an order. On a container terminal,
there are multiple types of orders: loading, discharging, housekeeping, custom inspection and repairs.
This research focuses on loading orders and discharging orders. Each order type requires its own
sequence of moves to be completed. For loading orders the move sequence is: Machine set 1 followed
by Machine set 2 followed by Machine set 3. For unloading orders the sequence is reversed.
The responsibilities of each machine set are fixed but, the design of the machine is still variable. YCs
are either Rubber Tyred Gantry crane (RTG)s or Rail Mounted Gantry crane (RMG)s. These are both

1.2. Research goal and scope 3

overhead cranes that can transport containers over a certain lane in the stacking yard. RTGs are
capable of switching lanes whereas RMGs should remain in the same lane.
HTVs have the most variable designs. These are: Automated Guided Vehicle (AGV)s, Lift Automated
Guided Vehicle (Lift-AGV)s, Straddle carrier (SC)s, Shuttle carrier (ShC)s and Terminal Truck (TT)s. The
advantage of Lift-AGVs, SCs and ShCs is that they are unlinked. This means that they can pickup a
container on their own. However, Lift-AGVs can only pick-up a container independently at the stacking
yard. On the contrary, AGVs and TTs require containers to be loaded onto them by the QCs and YCs
and are thus considered linked. Moreover, a special feature of SCs is that they access the stacking yard,
which means that no YCs are required. A few designs for different equipment are shown in Figure 1.2.
This figure could be used to get a feeling for the sizes of the different machine sets.

(a) RTG (b) AGV (c) QC

Figure 1.2: Possible machine designs on a container terminal [5–7].

Machine set 3 is leading upon the creation of a schedule for the different machines. This is for
two reasons. The first is that QCs determine the turnaround time of a deep-sea vessel directly, so
they should have a schedule which is close to optimal. Furthermore, QCs can only load or discharge
containers in a pre-specified sequence. This sequence is constructed together with the captain of the
deep-sea vessel, who is responsible for the stability of the deep-sea vessel. This means that once
the loading and unloading sequence of containers is determined, QCs should obey this sequence.
Therefore, it seems logical to schedule the different machine operations such that QCs can maintain
their ideal schedule most closely.
However, the problem that the scheduling software currently encounters is that there is no coordination
between the different machine sets and between the different machines within a set. This could mean
that two different QCs wish to use the same YC at the same time, which is impossible. Therefore, the
YC should give priority to one of the two moves. A similar type of conflict could occur at the HTVs.
Therefore, the problem that container terminals experience is to construct a schedule which minimizes
the idle times of the QC.

1.2. Research goal and scope
The goal of this research is to contribute to the improvement of container terminal performance. This
research focuses on an important Key Performance Indicator (KPI), namely the productivity of QCs.
More specifically, this research studies the effect of scheduling machine operations in a coordinated
way to increase QC productivity.
A coordinated schedule applied to container terminals is a schedule that considers the operations of all
equipment operating on the container terminal simultaneously to achieve overall optimal performance.
Contrary to an uncoordinated schedule that considers operations of all equipment separately and tries to
find optimal solutions for all equipment individually. Since different equipment operating on a container
terminal could have conflicting objectives an uncoordinated planning does not lead to the optimal
holistic solution. Therefore, a richer coordinated scheduling model than currently exists is desired to
find the optimal holistic solution.
The research is bounded by a scope. This is to isolate a certain aspect of the container terminal with
the purpose to study the effects of a coordinated schedule on that specific aspect. Furthermore, the
scope is used to set limitations which are required to ensure that realistic solutions are found. Finally,
the scope is used to narrow the size of the research.

• This research focuses on scheduling and dispatching of the three aforementioned machine sets

4 1. Introduction

to handle containers. We ignore routing of individual machines. In other words, the developed
schedule stops once a specific machine is assigned to a move with a specific start time. Individual
machine instructions are not considered.

• Both the landside and the waterside of the container terminal are considered. The waterside
defines the area where YCs, HTVs and QCs operate. On the landside, containers arrive and
depart by road trucks which are directly handled by the YCs. Trains are not considered in this
study.

• The research focuses on RMG cranes, Lift-AGVs and QCs. All other designs for equipment are not
considered. This is because these equipment designs are most frequently automated and show
good value for money [8].

Considering the scope of the research, the goal of the schedule is to determine the starting times of
the individual YCs, HTVs and QCs for individual containers. Furthermore, the schedule should assign
equipment to a container move.
Since the operations at the waterside of a container terminal are highly interactive, the research fo-
cuses on schedules that promote coordination among the different machine sets that are active at the
waterside of a container terminal.

1.3. Research questions
The main research topic is to investigate how a coordinated schedule could lead to increased produc-
tivity of Quay cranes on a container terminal. The main research question of this report is:

Can Quay crane productivity be increased compared to an uncoordinated schedule by developing a
coordinated schedule considering Quay cranes, Yard Cranes and Horizontal Transport Vehicles?

To answer this research question, several sub questions need to be answered.

1. How is the current uncoordinated schedule constructed for the different machine sets?

2. What is the current productivity of Quay cranes? under different to-be-specified operating con-
ditions.

3. Which coordinated scheduling approaches are available for operations involving multiple stages?

4. How could coordinated scheduling approaches be applied to reality?

5. What is the theoretical performance of the coordinated scheduling approach?

6. What is the Quay crane productivity whenever the coordinated schedule is used?

1.4. Approach
TBA uses a sophisticated and validated model [9] of a container terminal to represent a real container
terminal. The model allows users to evaluate the effects of different strategies in a controlled environ-
ment. The model has numerous advantages compared to reality. Since the environment is controlled,
comparison between different strategies is fair. Furthermore, implementation and start-up is much
cheaper compared to testing on a physical terminal. The model of TBA is considered valid by an ex-
ternal party. Therefore, from now on, the model will be used as reality. This means that scheduling
approaches will be evaluated within a model and not on a physical terminal.
The sub questions defined in the previous section are answered in subsequent order and will eventu-
ally lead to an answer to the main research question. The approach to answer the sub questions is
explained in more detail in this section.
The first two sub questions will mainly be answered by analysis of TBA’s internal documentation on
the current system. Furthermore, the model of the current system will be studied carefully to get a
detailed insight of the current operation. This information will be complemented with a small literature
study. Furthermore, simulations can be used to acquire the current productivity of QCs under the
to-be-specified operating conditions.

1.5. Structure of the report 5

To find available coordinated scheduling approaches, an extensive literature study will be performed.
This literature study will not restrict itself to container terminals alone but, will be focused on coordi-
nated scheduling with multiple stages in general. Subsequently, a synergy between the current system
and the literature should be formed. This will, most likely, require a combination and modification of
multiple coordinated scheduling approaches which were found during the literature study. Probably,
the coordinated scheduling approach consists of a model and a solution technique. First, the model
should be defined mathematically. Afterwards, the model should be implemented and possibly mod-
ified to be usable by the selected solution technique. The theoretical performance of the combined
and modified scheduling approach will be evaluated. The theoretical performance of the coordinated
scheduling approach will determine whether the coordinated scheduling approach can be solved, within
reasonable time, to optimality or whether it requires approximations. It could be that multiple new co-
ordinated scheduling approaches can be constructed from the literature. In that case, the theoretical
performance of the coordinated scheduling approach will determine which of the coordinated schedul-
ing approaches will be selected to proceed to the next stage of the research.
The selected coordinated scheduling approach, should then be implemented in the simulation model
of TBA. It is not yet clear if this will be done directly in the software of TBA or with intervention of an
external software package.
Once the coordinated scheduling approach is implemented in the simulation model, simulations can
be used to determine the performance of the coordinated scheduling approach. This performance
can thereafter be compared with the current performance of the system in a simulation environment
considering the to-be-determined different scenarios.
It is expected that the above stated approach will lead to sufficient information to answer the main
research question.

1.5. Structure of the report
In this section we present the global structure of the report. The structure of the report is as follows:
First, some general information with regards to container terminals is presented in Chapter 2. Subse-
quently, in the same chapter, the current scheduling technique of TBA is discussed together with its
performance. In Chapter 3 an extensive literature study is performed to find coordinated scheduling
techniques whether or not applied to container terminals. Furthermore, previous efforts to coordi-
nated scheduling on container terminals is categorized and their relevance is discussed. First, different
mathematical models for coordinated scheduling are discussed. Second, available solution techniques
to these mathematical models are introduced with their advantages and disadvantages. Thereafter,
in Chapter 4 the mathematical model that is used to represent the container terminal of this study
is presented. Subsequently, the solution technique that is used to solve that mathematical model is
presented. The performance of the model and the solution technique is theoretically evaluated in this
chapter. Thereafter, in Chapter 5, the coordinated schedule is integrated with TBA’s software. Experi-
mental results are published and compared with the realised performance of the current uncoordinated
schedule as used by TBA. Finally, we present our conclusions and suggest future research directions
Chapter 6.

2
Introduction to container terminals

and analysis of the current
scheduling and dispatching strategy

In this chapter we will start with an introduction to container terminals. This introduction will discuss
the layout of a container terminal and the equipment that is deployed. Furthermore, some specifics of
containers and the stacking yard will be discussed to identify containers and their location. Throughout
the chapter, several terms used on container terminals will be explained. Subsequently, the current
scheduling and dispatching strategy on container terminals used by TBA will be investigated.

2.1. Introduction to container terminals
In this section we introduce several terms used on container terminals. Furthermore, it will give some
general information with regards to a container, the container terminal layout, deep-sea vessels, YCs,
HTVs and QCs.

2.1.1. Container
A container is a standardized box which allows for easy intermodal transport without the need to reload
upon switching carrier [10]. The standardization of containers results in flexibility, low transport cost
and rapid transshipment [11]. However, there are different sizes of containers. These are expressed
as Twenty-Feet Equivalent units (TEU). The most common sizes are 20-foot (6m x 2.6m) and 40-foot
(12m x 2.6m/2.9m) containers, respectively one and two TEU. These account for 84% of all trans-
ported containers worldwide [12]. Two 20-foot containers make one 40-foot container, this feature is
commonly used to handle multiple containers simultaneously. To fix and secure a container, twistlocks
are used. These are positioned at each of the eight corners of a container. In contrast to dry bulk con-
tainers, there are reefers. Reefers use external power to control the temperature inside the container.
This allows them to store perishable goods. Reefers account for another 6% of the total amount of
transported containers [12].
Whenever a group of containers is considered, there are some important terms to classify the com-
position. First is the TEU-factor, which expresses the average size of containers within a group of
containers. Once a group of containers is composed of solely 20-foot containers, the TEU-factor is
1. Once there are only 40-foot containers, the TEU-factor is equal to 2. Second is the dwell time,
which expresses the average time that containers remain in the stack of the container terminal before
they are transported. Thirdly, there is the modal split of a container stack. The modal split defines, in
percentages, how many containers arrive and depart by what modality [13, 14].
Furthermore, there are certain characteristics which determine the location of the container within a
stack. Containers are grouped together based on their shared attributes. These attributes are: con-
tainer type, container size, container weight (divided into weight classes) and container destination.
Especially containers which are to depart the container terminal by vessel need to be organized very

7

8
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

neatly. This is because these containers need to be loaded quickly onto the vessel. The purpose of
organizing containers within a stack is to reduce the number of shuffle moves. Shuffle moves are
moves that are required once a container cannot be directly handled since other containers are on top.
However, sometimes shuffle moves are unavoidable because a container switches destination while it
is already in the yard. In that case, this container needs to be removed from the pile. These containers
are called rollings [13, 14].

2.1.2. Container terminal layout
A container terminal is primarily a material handling system; it is a link in the intercontinental trans-
portation chain. Within this chain, the container terminal fulfills a buffer function in between sea and
land transportation. Furthermore, the container terminal provides secondary services like inspection,
washing, repairs and cargo consolidation [13]. The layout of a container terminal was already shown
in Figure 1.1. Additionally, a section view of a similar terminal can be found in Figure 2.1.

Figure 2.1: Section view of a container terminal [15].

The quayside is sometimes also referred to as the waterside. At the quay, both deep-sea vessels
and barges are served. Deep-sea vessels sail on seas and oceans and move containers between large
container terminals. Whereas barges use rivers and canals for inland transport of containers over water.
At the landside of a container terminal, trucks and trains are served from the same stack. Trucks all
enter and leave the terminal via a gate [15].
The stack on a container terminal is organized into certain blocks which are just as wide as the span of
the YC. Within a block, container terminals use a specific coordinate system to describe the location of
individual containers. This coordinate system is shown in Figure 2.2. Within the stack, certain locations
are reserved for special types of containers. These are: reefers which require electricity, dangerous
goods and alternative sized containers [15].

Figure 2.2: Coordinate system to describe the position of a container within a block [16].

2.1. Introduction to container terminals 9

Most yards have their blocks either parallel or perpendicular to the quay. Both stacking arrange-
ments have their advantages and there is no general consensus which stacking arrangement is superior
[17]. As can be seen in Figure 2.3, the transfer point in parallel stacks is along the entire block. This
means that the width of the YC is one container wider then the block itself to allow for interaction with
the HTVs. Once perpendicular stacks are used, the transfer point of containers is located at the head
of each block. The perpendicular layout is most common once Lift-AGVs are used. In that case, racks
are placed at the transfer point. Both Lift-AGVs and YCs can interact with this rack by themselves [18].

Figure 2.3: Parallel stack (left) arrangement and perpendicular stack (right) arrangement [18].

2.1.3. Deep-sea vessels
With increasing intercontinental freight transport, also the deep-sea vessels have increased in size
significantly. This effect is shown in Figure 2.4. On the right side of the Figure, views of individual
bays are shown. With the grey scale, the number of tiers in the hold and on the deck of the ship is
indicated. Upon loading, first the hold needs the be completely filled before the deck can be loaded.
Upon discharge, this is in reverse order [19]. Furthermore, containers are always handled in such a
way that the container can be seen from the quay. For loading this means that the containers are
handled from waterside to landside and in reverse for discharging [20]. Bigger vessels also lead to
larger call sizes [3, 21]. Larger call sizes are not necessarily negative since less time is wasted with
mooring vessels to the quay [21].

Figure 2.4: Container ship size development over the years [22].

10
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

Once a ship arrives at the terminal, a berthing location needs to be assigned to this ship. This
is a complex assignment problem in itself; since container terminals typically have multiple quays
available and not all quays have the same characteristics [23, 24]. Subsequently, quay cranes need
to be assigned to specific bays on the container ship. This is also a though scheduling problem since
there are multiple quay cranes and variable bay sizes [23–26]. Furthermore, it is complicated to assign
quay cranes to bays since the QCs cannot pass each other. Besides that, it is important to note that
the container terminal proposes a loading or discharging sequence but, that the captain of the ship is
responsible for the stability of the ship [20]. Therefore, the captain of the container ship is the person
who approves the schedule and without his approval, operations cannot start.

2.1.4. Yard crane
A YC is a crane that can pick and place containers from and in the container yard. There are typically
three different types of stacking cranes which all define a specific yard layout [27]. This is illustrated
with Figure 2.5. The most important difference is the location of the transferzone. This research will
not consider the usage of SCs since once SCs are used, there are only two handling stages (QCs and
SCs). That is why no transfer point is indicated for the SC-stack. Both RMG cranes and RTG cranes
have three translational degrees of freedom: gantry, trolley and spreader movement. Gantry drive is
used for switching bays, trolley ride is used to switch rows and the spreader is used to change the tier.
Sometimes the spreader is also able to rotate if required. Typically, both RMG and RTG cranes can span
8-12 rows and stack up to 10 tiers high [15]. However, high stacks are preferably avoided since the
chance for shuffles is large and other containers need to be lifted high to pass high placed containers.

Figure 2.5: Examples of yard layouts and their respective YC. Form left to right: RMG-stack, RTG-stack and a SC-stack [28].

Rail mounted gantry crane
RMG cranes are attached to a rail on the sides of a stack. Therefore, they are unable to switch blocks
within the stack. Often, RMG cranes are fully automated. Therefore, sometimes they are referred to
as Automated Stacking Crane (ASC)s. Since on both the head and tail of the stack transfer points
are located, trucks can be served directly from the stack. Whenever the stack is long, multiple RMG
cranes can be used on a single block [29]. Considering movement, the spreader is always moved to a
specified position before the gantry and trolley can move, these are allowed to move simultaneously
[14]. This research will mainly focus on RMG cranes since these are automated.

Rubber tired gantry crane
Contrary to RMG cranes, RTG cranes drive freely on the container terminal since they have rubber
tires. This allows them to switch lanes, for instance if one stacking module is more heavily used.
Furthermore, RTG cranes are operated manually. Therefore, they are popular in countries where labor
costs are low [27]. Often stacks are placed parallel to the quay once RTG cranes are used. Considering
movement, gantry travel of RTG cranes is only allowed once the trolley and spreader are stationary.
However, the trolley and spreader are allowed to move simultaneously to speed up the process [14].

2.1.5. Horizontal transport vehicle
As was discussed in Section 1.1, a HTV is responsible for moving containers between the stack and the
quay cranes. This research will focus on Lift-AGVs. Lift-AGVs can pick-up and deliver a container from/to
a rack which is also accessible by the YC. The advantage is that handling speed is increased since the
Lift-AGV does not have to wait for a YC or vice versa. Lift-AGVs are bidirectional, which means that
they do not need to turn, upon delivery at either of the two crane types. Furthermore, Lift-AGVs have

2.2. Analysis of the current scheduling and dispatching strategy 11

space for two TEU. This means that they can also carry two 20-foot containers simultaneously. With
regards to driving and collision avoidance, a central planning system is used to claim space for specific
Lift-AGVs. Usually, Lift-AGVs are given priority on a First Come First Serve policy which means that a
Lift-AGV tries to minimize its own travelling time without considering other Lift-AGVs [14]. Furthermore,
the central planning system determines the directions and the speed of the individual Lift-AGVs [18].

2.1.6. Quay crane
The most critical pieces of equipment on a container terminal are the QCs. They are most expensive
and directly influence the turnaround time of vessels. Furthermore, together with the water depth and
the quay size, the size of the QC determines which vessel sizes can be handled. Similar to a YC, QCs can
move their gantry, trolley and spreader. To save time, the QC only moves the gantry once a complete
bay is handled. QCs have the ability to load single containers or multiple containers simultaneously.
The distribution between the different moves is strongly related to the considered terminal. Twinlift
moves means that two 20-foot containers are hoisted as one 40-foot container. This requires one AGV
since they can carry two 20-foot containers simultaneously. Whereas in tandem moves, two containers
are loaded side by side. This is mostly done for two 40-foot containers. Tandem moves require two
AGVs since containers are loaded side by side.

The performance of a container terminal is often expressed as the average turnaround time of
deep-sea vessels. An important KPI which influences the turnaround time is the productivity of the
QCs. The QC productivity is expressed as the number of boxes per hour. An extensive study into QC
productivity is performed by Schim van der Loeff [3]. Within this study, the operation time of QCs is
divided into inactive losses and cycle time. Inactive losses occur once a QC should be moving but,
stands still. Cycle time represents the time during which the crane is in operation. Cycle time was
further subdivided in inactive cycle intervals and active cycle intervals. Inactive cycle intervals contain
delays such as; positioning of the spreader. Active cycle intervals are the actions which add value to
the operation.
Schim van der Loeff [3] found that on the European Container Terminal (ECT) the achieved productivity
was 22.5 boxes/hour. When all inactive losses could be avoided, the productivity could increase to 30.47
boxes/hour. Almost 10% of the total production time of the QC is lost because the QC is waiting for
an AGV. With a more advanced schedule, AGVs are expected to be more punctual and thus the QC
productivity increases.

2.2. Analysis of the current scheduling and dispatching strategy
The analysis of the current operation will be based on the simulation model of the current system
constructed by TBA [14]. This simulation model is a representation of reality. However, it shows close
resemblance with reality. Therefore, the simulation model will be used to evaluate the performance of
the different schedules instead of a real terminal.
A simulation study is initiated by a scenario. The scenario contains the vessel, truck and train arrivals
and their respective cargo. Furthermore, it defines the type of equipment on the terminal and its
specifics. On top of that, the scenario distributes the work over the different QCs. The scenario only
releases certain information to the terminal at specified times which resembles reality. For vessels,
18 to 24 hours in advance of arrival; the load list is shared. This allows stacking cranes to start
’housekeeping’. This means that containers are moved to favourable locations in the stack. 60 to
120 minutes before arrival of the deep-sea vessel, the QC determines the load/unload sequence. The
sequence is mainly based on the weight class and port-of-discharge of the containers. This means that
containers can be shuffled in the yard to promote quick handling. Approximately 20 minutes prior to
arrival, containers are allowed to be moved from the stack to the waterside buffer.

TBA uses a complicated classification method for different parts of the planning on the terminal.
The different classes are:

• Work: Contains a list of orders, multiple containers must be (un)loaded by one specific QC.

• Order: Is a list of moves. An example of an order is: Container A must be moved from stack
module 1 to QC 4.

12
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

• Move: Contains a list of jobs. Moves are operations for different machine sets. For example:
Container A must be moved from stack module 1 to the waterside transferpoint by a YC.

• Job: Specifies a list of instructions. A job itself could be: Transport container A from position
[bay,row,tier] in stack module 1 to waterside transferpoint B by ASC 1.

• Instruction: An instruction is the lowest level of actions these actions specify the different
operations very detailed. One example could be: ASC 1 should gantry travel 2.6 meters.

2.2.1. Planning and scheduling
Once the work is distributed to the QCs, the planning and scheduling of the moves on the other
machines starts. Based on the operation times of the QC and the cycle time estimates, the desired
start times of the other machines could be determined.
The cycle time estimates of loading orders are more accurate compared to those of unloading orders.
This is because the exact location of a container in the yard is known far in advance. This allows
for an accurate cycle time estimate of the YC and the HTVs. Both the YC and the HTV determine
their cycle time based on the distance between the origin and destination of the move. However,
possible congestion on the route is ignored. This is a routing problem, which is out of scope of this
research. Therefore, during this research, the estimate is considered accurate. Finally, the QC cycle
time is estimated based on the type of hoisting (single, twinlift or tandem). In Figure 2.6 an example
of the schedule for different moves is shown. Moreover, this Figure illustrates the difference in planning
strategy between linked and unlinked HTVs. The capacity of the buffer determines the robustness of
the schedule and the filling rate of the racks.

(a) Cycle time estimates for linked interchange (b) Cycle time estimates for unlinked interchange

Figure 2.6: Cycle time estimates for loading orders based on the start time of the QC operation [14].

Unloading orders are slightly more complicated to schedule since the destination of the container
is unknown. Similar to loading orders, the QC start time is known so the interchange with the HTV
could be scheduled directly. However, the stack module where the container should be placed in the
yard is only determined once the container is being loaded on the HTV. At that moment, the HTV can
estimate, with the same accuracy as for loading orders, at what time it will arrive at the stack. For
unloading orders, no buffer is scheduled since unloading containers have a lower priority compared to
loading orders (see Section 2.2.3). Naturally, in case of linked interchange, a HTV will be discharged
with a higher priority such that it becomes available for the next move. This procedure is illustrated
with Figure 2.7. The final end time of the ASC move is only determined once the ASC is assigned to
the container.

2.2. Analysis of the current scheduling and dispatching strategy 13

(a) Schedule 60-120 minutes prior to ship arrival (b) Schedule at the first interchange

Figure 2.7: Cycle time estimates for discharging orders based on the start time of the QC operation [14].

It should be noted that all of these start times indicated in Figures 2.6 and 2.7 are desired start
times from the perspective of the QC. The start times are not necessarily realistic nor do they have any
relation with the capacity of the system. For instance, the number of available HTVs is not included
in these desired start times. Therefore, this initial schedule is referred to as planning. Based on this
planning the individual machine (sets) will try to meet the planning by developing their own schedule
without further considering the other equipment.

2.2.2. Stack crane scheduling
A possible outcome of the constructed plan for a single YC could be the one as shown in Figure
2.8. Naturally, this plan is not feasible, multiple moves need to be performed simultaneously. Such
unfeasible plans occur once the QC is quicker then the YC and requires multiple operations within the
same stack module. Or once multiple QCs require operations within the same stack module. When the
YC cannot follow the plan, it will construct a new schedule which most closely resembles the plan.

Figure 2.8: Conflict of multiple container moves (three loading moves, one discharge move) planned at the same time [14].

In case of unlinked interchange, the YC prioritizes loading moves over discharging moves. Because
delayed load orders delay multiple machines in contrast to delayed unloading orders which only cause
delays at the YC. Furthermore, the YC will try not to postpone any orders to minimize the effect on
the QC operations. The adjusted feasible schedule is indicated in Figure 2.9a. Note that moves can
only be scheduled forward to a certain degree. Because of previous orders which are not displayed in
this Figure. For linked interchange discharge, moves cannot be postponed for so long since this would

14
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

cause large delays. This is because, the HTV will be unavailable for a long time. Therefore, the plan is
adjusted to the schedule shown in Figure 2.9b. Delays for loading moves 2 and 3 are unavoidable in
this case.

(a) Adjusted schedule for unlinked interchange (b) Adjusted schedule for linked interchange

Figure 2.9: Adjusted schedule for an individual YC based on the unfeasible plan presented in Figure 2.8 [14].

2.2.3. Stack crane dispatching
Once the schedule is adjusted, the YC will not simply follow the schedule. This is partly because
there could be multiple YCs working in one stacking module. And the realised schedule may have
deviated from the constructed schedule. Therefore, a dispatching algorithm has been developed to
assign specific YCs to specific containers. Each move which is to be performed by a YC receives a score
based on the following parameters:

• Origin of the move (bay, row, tier or the specific transferpoint);

• Destination of the move (bay, row, tier or the specific transferpoint);

• Latest delivery time of the move;

• Sequence position of the move at the QC;

• The buffer occupancy, in case of unlinked interchange.

The dispatching strategy that is currently applied to dispatch the YCs is shown in Figure 2.10. The
penalties in the latest block are introduced to prevent the buffer from getting full. This is because a
high penalty is given to every container besides the ones currently in the buffer awaiting to be placed
in the stack. Furthermore, penalties are given to containers which are likely to lead to inference of
multiple YCs. The urgency multiplier reflects the nature of the order (productive move, shuffle order,
housekeeping or pre-positioning) and the desired time in the schedule. Furthermore, the urgency
multiplier is used to prioritize discharging a loaded HTV in case of linked interchange.

2.2. Analysis of the current scheduling and dispatching strategy 15

Figure 2.10: Dispatching strategy of a YC [14].

In other words, the YC schedule is used as a guideline since it directly influences the urgency score.
However, it is not a strict sequence, the YC could still deviate from this sequence.

2.2.4. Horizontal transport vehicle dispatching
Not related to linked or unlinked interchange, there are two types of dispatching strategies for HTVs:

1. Dedicated assignment strategy: Each HTV is assigned to one specific destination. How-
ever, one destination might have multiple HTVs assigned. For instance, a HTV is merely allowed
to handle moves for one specific QC. Dedicated assignment strategy is not very efficient since
whenever the destination has no moves available, the HTVs are idle as well. On the other hand,
dispatching with the dedicated assignment strategy is rather simple.

2. Pooling strategy: A group of HTVs is assigned to a group of destinations. This strategy is
much more efficient at the cost of complicating the dispatching strategy. The pooling strategy is
more efficient since the chance that none of the equipment in the destination group has a move
available is smaller compared to when there is only one equipment in the destination group. The
complexity of dispatching lies in the decision making and prioritization of certain moves.

Similar to the YC dispatching strategy, the HTV dispatching strategy relies on a scoring mechanism.
From the total orderlist, certain orders are excluded on an individual basis for each HTV. This is based
on the destination of the move, the due time and moves leading to deadlocks. Furthermore, each
crane, QC or YC, has a maximum number of HTVs that could be assigned to it to prevent congestions.
Now that each HTV has its own set of possible moves, scores are assigned to each move individually
based on: the travel time, the urgency of the move, the relative handling sequence of the move at the
QC and the number of moves which are already assigned to a particular destination to avoid congestion.
The difference between linked and unlinked interchange is that with linked interchange, the focus is
more on arriving on time instead of short driving distances. This is promoted by giving a high priority
to moves which are started by the same equipment as was involved in the interchange. The exclusion
and dispatching strategy applied to HTVs is shown in Figure 2.11.

16
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

Figure 2.11: Dispatching strategy of a HTV [14].

2.2.5. Quay crane bay plans
For each bay, the QC determines the sequence of containers to be handled. The sequence strategy is
different for discharging and loading orders. Note that in the real world, the load and discharge plan
is constructed together with the captain of the vessel who is responsible for the stability of the vessel
and has the final say.

• Discharging: the model generates a batch of discharge containers to fill up a vessel bay. The
number, the type and the size of the containers is determined randomly based on user specified
distributions. Subsequently, the sequence of discharging containers is determined solely based
on the weight class. Such that the containers in the heaviest weight class are placed in the lower
tiers and the containers in a lighter weight class are placed on the higher tiers.

• Loading: the model generates a batch of loading containers with a random port of discharge,
type and size. The QC randomly selects containers from the yard that match the specifics. Sub-
sequently, the sequence of container loading is determined intelligently based on the weight; the
heaviest containers are placed on the lower tiers. Furthermore, yard operations are optimized;
top tier containers are selected first and the sequence of containers is spread over multiple stack
modules to reduce the workload. In case of twin-lifting operations, containers from the twin-
loads either originate from the same stack to reduce travel distance of the HTV or from different
stacks to reduce workload. The selected strategy is pre-specified before the simulation starts and
is based on the expected workload on the different machine sets.

Once the sequence of container handles is determined, the start times of the different moves are
also determined. This process also initiates the scheduling of the other machine sets (see Section
2.2.1). Currently the schedule remains fixed and is not coordinated with the other machine sets.
However, once a move is delayed more then two minutes, the QC updates its schedule to reflect the
new status.

To avoid deadlocks, the QCs make sure that the sequence at which HTVs are directed to the QC
transferzone corresponds with the sequence of operations. The sequence number of the container on

2.2. Analysis of the current scheduling and dispatching strategy 17

the HTV arriving in the QC waiting area is compared with the actual sequence number. Once these are
equal there is no sequence conflict and the HTV is allowed to proceed to the transferzone. Sometimes
the transferzone at the QC can hold 𝑁 HTVs. In that case, the first 𝑁 containers from the sequence
may proceed to the transferzone. Whenever this condition is not satisfied, HTVs are usually directed
to the QC waiting area. However, sometimes the model is given permission to handle out of sequence
moves. This can be done according to three different strategies:

1. Fixed sequence gap: All orders with a sequence gap below a user-specified threshold are
allowed to be handled by the QC.

2. Vessel-bay-dependent sequence gap: All containers that can be loaded on their originally
planned slot are allowed to be loaded. This means that all containers directly on top of the current
stored containers are allowed to be loaded.

3. Category loading: Containers are allowed to switch order given that they have the same port
of discharge, type and weight class.

However, the handling time for out of sequence orders is increased since these are slightly harder for
the QC. The process of ensuring correct sequences is visualized in Figure 2.12. A ShC is a type of HTV
(see Section 1.1).

Figure 2.12: Sequence manager scheme [14].

2.2.6. Grounding
Grounding is a definition used to specify the logic and strategy which is used to determine the locations
of inbound containers in the yard. Generally, grounding is a two step procedure. First, the stack module
is determined. Thereafter, the specific slot within the stack module is determined. A rule of thumb
with regards to grounding is: the later, the better. Since the later the decision to assign a grounding
location is made, the more accurate the yard information is.

Stack module assignment
A stack module is assigned to a container once it is unloaded from a deep-sea vessel or train and placed
on a HTV or once a road truck arrives at the gate. The stack module is selected based on a scoring
mechanism incorporating the following criteria:

• Distance from the origin to the stack module transfer point;

• The expected next destination, preferably a container is brought close to the next destination;

• Presence of similar containers (modality, container type, container size, container weight and port
of discharge), preferably containers with similar properties are stacked on top of each other;

• The occupancy of the transferzone;

• The workload at a stack module, stack modules with a low workload are preferred;

• The availability of HTVs, once availability is low; short trips are preferred.

18
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

The result of this scoring mechanism is that gradually each stacking module fills to an equal filling rate.
The strategy is also visualized with a scheme; shown in Figure 2.13

Figure 2.13: Scheme illustrating the strategy for selecting a stack module [14].

Slot assignment

A slot within a stack module is assigned to a container once a YC is assigned to a container. An ideal
slot is determined based on the workload, travel distance and the possibility of placing containers with
similar properties together. When the workload is very high, containers can be placed in a location
close to the transferzone. Such that the YC is available quickly again for a new move. However, the
container will need to be moved to the ideal slot later.

2.3. Current performance of the scheduling & dispatching strat-
egy

The scheduling algorithm used by TBA is reactive and uncoordinated. Reactive means that decisions
are made following discrete events. The scheduling algorithm thus reacts to the current situation on the
terminal. Uncoordinated means that decisions are made which seem best for the specific machine that
requires a new schedule. In other words, other machines are not considered when making scheduling
decisions. This strategy offers a lot of flexibility with regards to scheduling and dispatching. The
advantage of the current scheduling and dispatching strategy is that there is always a solution available
without long computation times. The disadvantage is that the constructed schedule is not optimal when
considering the container terminal as a whole. Furthermore, there is no theoretical time available at
which a move is completed. This is why it is not possible to compare the current scheduling strategy
with another strategy purely from a theoretical point of view. Therefore, simulations are used to
estimate the effects of other strategies and only afterwards compared to the current strategy.

2.3. Current performance of the scheduling & dispatching strategy 19

Figure 2.14: Overview of the planning with regards to waterside moves [14].

Formally, the scheduling and dispatching strategy currently in use by TBA is a heuristic control. This
means that decisions with regards to scheduling and dispatching are based on a set of pre-defined rules.
Based on the current situation, the system knows what to do by following the set of pre-defined rules.
The advantage is that computational times are low. The disadvantage is that optimality cannot be
guaranteed whenever heuristics are used. Therefore, there is a major difference between heuristics
and optimized planning. Optimized planning uses a model to optimally plan container moves over a
fixed horizon. The obtained solution guarantees optimality for that fixed horizon but, requires longer
computation times. Furthermore, optimized plannings deliver a theoretical performance that can be
used for comparison. Contrary to heuristic control that does not have a theoretical performance.

2.3.1. Simulation model validation
Most optimization models require certain assumptions and simplifications to limit the problem size.
Therefore, the practical performance could be different from the theoretical performance. The prac-
tical performance of a planning cannot be evaluated on real systems since this is far too expensive.
Therefore, simulations are extensively used to mimic a real system and allow quick evaluations of dif-
ferent strategies. However, an important question is whether the model is a valid representation of
reality. First, the definition of a simulation model is given to establish a framework. Simulation is ”An
experimental and applied methodology which seeks to describe the behavior of systems, in order to
to understand the observed behavior and to predict future behavior.” [30]. Second, the definition of
validation: ”The relation between a model, a source system and an experimental frame” [31]. A team
of TU Delft experts and TBA employees evaluated the validity of the simulation model. This was done
by comparison of the simulation results and experimental performance of APM terminals. The valida-
tion team considered the models to be valid. The models behave as intended based on face validity

20
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

tests and input-output tests [9]. Therefore, the simulation model can be used to evaluate the effects
of decisions on container terminal performance.

2.3.2. Benchmark terminal
To answer the research question it is important to establish a benchmark to compare different ap-
proaches [32]. The benchmark terminal is created together with TBA to represent real terminal sizes.
It was decided to start with one small sized benchmark terminal to allow proper comparison. The
benchmark terminal size is shown in Table 2.1. In was chosen to use Lift-AGVs as HTVs since Lift-AGVs
offer the best value for money [8]. Therefore, it is expected that most people are specifically interested
in performance with Lift-AGVs. The number of QCs typically determines the number of other equip-
ment on the terminal as well. This is reflected by the factors under the different machines. The exact
number of required Lift-AGVs is typically unknown and is part of the study. Logically, more Lift-AGVs
leads to more boxes/hour. However, this is a decreasingly increasing function, at a certain point adding
extra Lift-AGVs does not result in much more productivity. Therefore, four different factors are used
to determine the number of Lift-AGVs. These factors are based on experience of TBA. The number of
YCs is directly related to the number of QCs. At the landside of the yard, approximately ten containers
arrive each hour by truck. However, the landside schedule is not optimized, it cannot be neglected
since it introduces uncertainties in the handling times. In other words, the boxes arriving at the gate
introduce disturbances. The baysize is not a function of the terminal size but, is somehow related to
the terminal size. This is because at larger terminals typically larger vessels are being served. Larger
vessels come with larger baysizes.

QC Lift AGV YC Baysize Truck arrival [box/hr]
Factor 1 3 4 5 6 2.5 25
Academic example 5 15 20 25 30 13 50 130

Table 2.1: Benchmark problem sizes in case Lift-AGVs are used.

Besides the terminal size, other parameters have to be specified as well to generate a scenario.
These parameters are introduced in Table 2.2. The TEU-factor and twinlift % are important parameters
which partially determine the productivity of the QCs. Since 40 ft. containers are heavier, their pro-
cessing time is longer thus the productivity decreases. Whereas twin moves increase the productivity
since two boxes are simultaneously handled. Furthermore, the initial yard density is required to create
a realistic scenario.

TEU-factor 1.5
Twinlift % 40
Initial yard density 0.75

Table 2.2: Parameters to support the benchmark terminals.

Additionally, the modal split of container arrivals and departures should be specified. The modal
split defines the fraction of containers arrived by one modality that departs by another modality. This
is useful information for the container terminal since it supports the yard allocation of containers. The
location of containers in the yard directly determines the processing times of the YCs. A matrix showing
the modal split at the considered benchmark terminal is presented in Table 2.3.

Departure
Arrival

Vessel Truck
Volume
Delivery Share Yard Share

Vessel 0.3 1 0.65 0.545
Truck 0.7 0 0.35 0.455

Table 2.3: The modal split for each benchmark terminal. The first two columns indicate the fractions of transshipment. The last
two columns indicate the share of containers in the yard for each modality.

2.3. Current performance of the scheduling & dispatching strategy 21

2.3.3. Key performance indicators
To quantify the performance of the current system, KPIs can be used [33]. It is important to recog-
nize that different actors value different aspects of a container terminal. However, some KPIs will be
recognized by multiple actors. The most dominant one; the turnaround times of deep-sea vessels, is
top priority of both shippers and container terminal operators [1, 15, 24, 34]. The turnaround time is
directly influenced by the productivity of the equipment on the container terminal [19, 35]. Other rele-
vant aspects of container terminal performance are energy consumption [36, 37] and driving distance
[38]. Additionally, KPIs could be used to define the quality and practical applicability of the developed
scheduling approach. The specific KPIs that are used in this research are:

• The QC productivity [boxes/hour];

• Computation time;

These KPIs are sufficient to quantify the performance of the current system with regards to scheduling
and dispatching. The QC productivity directly reflects the performance of the terminal. Whereas the
computation time could be perceived as the costs required to achieve the desired performance.
Other relevant performance indicators could be used to explain the QC productivity. Primarily, this is
the distribution of actions of all equipment on the terminal.

2.3.4. Benchmark results
We provide results of the simulation runs on the benchmark terminal within this section.

Small terminal 5 Quay Cranes and Lift-AGVs
To acquire valid results 15 replications of each simulation are performed. This is to mitigate the effects
of randomness. 15 replications was chosen as an initial guess based on experience of TBA personnel.
Later, the number of replications is considered sufficient once the confidence interval of the acquired
productivity is smaller than, or equal to 1 box/hr. Subsequently, the average productivity over all QCs
for every hour is used as the QC productivity. The results of the simulation runs are presented in Figure
2.15. Sometimes a simulation experiment is not valid, for instance when a deadlock manifests. Dead-
locks manifest when two vehicles claim the same area and are unable to move anywhere. Whenever a
simulation experiment is not valid, the hours of failure are deleted. Furthermore, the first hour of each
replication is also deleted to remove the start-up effects of the simulation experiment. Deleting failed
simulation hours is common practice and is valid since the causes are unrelated to the investigated
effects. Whenever the failed data is deleted, the number of simulation hours and the performance
during the remaining hours is used to determine the average QC productivity and the 95% confidence
interval. The confidence interval is determined with a two-tailed student t-test with 𝑛 − 1 degrees of
freedom, where 𝑛 is the number of successful simulation hours (samples). The number of replications
is accepted whenever the confidence interval is smaller than, or equal to 1 box/hr. The average QC
productivity and the confidence intervals are presented in Table 2.4. The number of samples is not
equal for every experiment since a different number of failed hours manifested.

22
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

Figure 2.15: Bar-chart indicating the QC productivity on the small terminal whenever 15, 20, 25 and 30 Lift-AGVs are deployed.

LAGV 15 20 25 30
Average QC productivity [box/hr] 32.71 36.36 38.07 38.67
Standard deviation [box/hr] 3.68 4.03 3.95 4.05
Samples 98 99 98 105
𝑡. 1.98 1.98 1.98 1.98
Confidence interval [box/hr] ±0.74 ±0.80 ±0.79 ±0.78

Table 2.4: Confidence intervals for the benchmark terminal with 5 QCs

As can be seen in Table 2.4 the confidence interval is smaller than, or equal to 1 box/hr for every
number of Lift-AGVs. This means that the number of samples is considered sufficient. Subsequently, the
status of every equipment type is used to extract more detailed information regarding the productivity.
The status reports are shown in Figures 2.16 to 2.18.

Figure 2.16: Bar-chart indicating the QC status on the small terminal whenever 15, 20, 25 and 30 Lift-AGVs are deployed.

2.3. Current performance of the scheduling & dispatching strategy 23

Figure 2.17: Bar-chart indicating the Lift-AGV status on the small terminal whenever 15, 20, 25 and 30 Lift-AGVs are deployed.

Figure 2.18: Bar-chart indicating the RMG crane status on the small terminal whenever 15, 20, 25 and 30 Lift-AGVs are deployed.

Analysis
Additional results of the simulation runs that can be used for verification and validation are presented
in Appendix A. As expected, the QC productivity increases with increasing number of Lift-AGVs. From
the status report the cause becomes clear, the QC spends less time waiting for Lift-AGVs. However,
the increase in productivity of QCs stagnates quickly. Indicating that the number of Lift-AGVs is no
longer the bottleneck. Logically, the reverse effect is found for the Lift-AGV productivity. Whenever
more Lift-AGVs are deployed, the productivity decreases. Finally, similar to the QC productivity, the
waterside RMG productivity increases and stagnates quickly whenever more Lift-AGVs are deployed.
Interesting is that the buffer in between the RMG crane and the Lift-AGV is never full. This can be
concluded since the percentage of ”Idle TP Full” and the percentage of ”Waiting and interchanging at
ASC” are (almost) zero.

24
2. Introduction to container terminals and analysis of the current scheduling and

dispatching strategy

2.4. Concluding remarks
At the waterside of a container terminal are three different machine sets: YCs, HTVs and QCs. Each
of the machine sets is responsible for a specific move within an order. Each container has its own
specific order. The majority of orders are loading and discharging orders. Since the QC is the most
critical machine set with regards to the turnaround time of deep-sea vessels, the QCs are the initiators
of the planning on the container terminal. QCs determine the sequence of discharging a vessel based
on the weight. During loading the characteristics of the containers as well as the workload at the stack
modules is considered upon determining the load sequence. For loading orders, the complete planning
for each machine set is immediately scheduled upon the creation of the order. Discharging orders are
more flexible, so their planning is updated gradually.
Since there is no coordination among the different machine sets and the machines within a machine
set, moves at the stacking crane could overlap. Once this is the case, the YC adjusts the planning to
a new schedule. Once the schedule is complete, the dispatching process of the YC begins. A move
is assigned to a YC based on various parameters which are all converted to a single score. The HTVs
are subsequently assigned to moves based on a similar scoring mechanism. Generally, containers are
handled in the sequence specified by the QC. However, sometimes out of sequence containers can also
be handled.
For discharge orders the planning updates gradually since the destination of a container is not yet
known in advance. This is because the stack module is only determined once the container is loaded
on the HTV. The slot within the stack module is determined once a stack crane is assigned to the
container. Both the stack module and the slot within the stack module are determined based on a
scoring mechanism. A partial overview of the planning and scheduling procedure is shown in Figure
2.14.
Based on the results obtained with the benchmark terminal it was found that 4 Lift-AGVs per QC is
efficient. Therefore, most experiments within this report will be based on terminals with 4 Lift-AGVs
per QC.

3
Literature study

In this chapter we present the literature published on integrated scheduling of container terminal op-
erations. Supported by general literature published on integrated scheduling. First, a brief overview of
other research in the field of container terminals is given to establish a framework and to put this re-
search into perspective. Subsequently, three scheduling techniques are presented which could be used
for integrated multi-stage scheduling. These are Hybrid Flow Shop (HFS), Model Predictive Scheduling
(MPS) and Markov chains. Each of these techniques are explained first in a broader sense and later
converge towards container terminals specifically. Thereafter, a brief reflection of the applicability of
the scheduling technique on the problem at hand is presented. Next, different solution techniques are
presented which could be used to solve the scheduling problems. Finally, we conclude with a summary
of the available scheduling and solution techniques and the most promising scheduling and solution
technique will be selected.

3.1. Literature review
In this section we highlight the relation of this research with other research topics regarding container
terminals. As was indicated in Section 2.1.3, two scheduling problems precede the scheduling problem
of individual containers. These scheduling problems were berth allocation and bay scheduling. The
solutions to these scheduling problems define the starting point of the scheduling problem considered
in this research [23–26]. However, since peak simulations (Section 1.2) are considered and no actual
ships are being served, within the simulation program of TBA, these scheduling problems are ignored
in the simulation program. Remember that a QC receives a bay containing a certain number of con-
tainers which it should handle based on the specified scenario, not based on an arriving ship. Since
the scenario is determined prior to the start of the simulation, berth allocation and bay scheduling are
not required.
Another problem which should be solved prior to the individual container scheduling problem is the
problem of determining the yard location of containers [15]. This problem is addressed in [39–41] all
using different assumptions. Contrary to berth allocation and bay scheduling, yard allocation is con-
sidered in the simulation model. Individual container schedules and yard allocation are closely related.
Therefore, the quality of the yard allocation solution partially determines the performance of the in-
dividual container handling schedule. This is why certain researchers integrated yard allocation with
individual container scheduling [42].
Research towards constructing schedules for individual containers can be divided into two different
categories. The first is category is optimization. Within this category, research is dedicated towards
finding optimal solutions for the individual container scheduling problem. This is also the category
of this research. The second category concerns the construction of simulation models for container
terminals. These simulation models are used to evaluate the performance of different policies and
strategies. TBA already possesses a well designed simulation model. Therefore, the focus of this re-
search is not the construction of a simulation model. Interested readers are referred to [43, 44] for
more information on simulation models for container terminals.
Another problem present on container terminals is routing [15]. Routing considers the problem of

25

26 3. Literature study

determining the route of HTVs on the container terminal. Routing is often used to avoid congestions
and collisions between different automated HTVs while guaranteeing short driving times. Routing
involves path planning, area claiming, energy consumption and prioritization. Typically, routing prob-
lems are solved after scheduling and dispatching problems are solved. Since this research considers
both scheduling and dispatching, routing is the first encountered problem after the individual container
schedule is constructed. Routing problems are frequently studied and interested readers are referred to
[18, 45, 46]. However, since scheduling, dispatching and routing are closely related; some researchers
aim to integrate these functions [47, 48].

3.2. Hybrid Flow Shop Problems
The problem of assigning jobs to different machines is widely studied since it is relevant to many
different industries. A special case of this problem, which shows promising similarities with the problem
of this research, is the Hybrid Flow Shop (HFS) problem. A HFS problem is a combination of the parallel
machine scheduling problem and the ordinary flow shop scheduling problem. The former assigns jobs to
machines whereas the latter determines the handling sequence of the different jobs [49]. HFS problems
are problems where 𝑛 different jobs should be processed in a series of 𝑚 stages while optimizing an
objective function [49, 50]. A job contains multiple operations which should be performed on the
different stages. Problems classify as HFS problems once the following characteristics apply [19, 50]:

1. The number of processing stages 𝑚 is at least 2.

2. Each stage k has 𝑀 ≥ 1 machines in parallel and at least one stage has 𝑀 > 1.

3. All jobs follow the same production flow through the stages. However, a job is allowed to skip
one or more stages.

4. Each job 𝑗 requires a processing time 𝑝 on stage 𝑘.

Within the standard form of the HFS problem, each job is available from the start and can be
processed on any of the different parallel machines within a stage. Furthermore, each machine is
equal and has the same deterministic processing time which is known in advance. Moreover, machines
can only serve one job at a time. Additionally, sequence dependent setup times are negligible, buffers
between stages are unlimited and preemption of operations is not allowed. However the standard
form of the HFS problem is not always applicable, the basis is the same for many different industries.
Usually, only a few aspects of the basis problem need to be modified to represent the problem at hand.
A visualization of a HFS problem is shown in Figure 3.1.

Figure 3.1: Schematic illustration of a classical 2-stage HFS [51].

To distinguish between different scheduling problems, a classification system was developed which
is described with the triplet 𝛼|𝛽|𝛾 [49, 50, 52]. 𝛼 represents the structure of the shop and is composed
of four parameters 𝛼 , 𝛼 , 𝛼 and 𝛼 . 𝛼 describes the configuration of the shop, 𝐹𝐻 stands for HFS
[50]. 𝛼 gives the number of stages in the shop. For flow shops, 𝛼 = 2…𝑘. 𝛼 and 𝛼 give information
about the machines. 𝛼 represents the type of machines. The base case is that each machine on a
stage has the same processing speed for each job. This is called identical machines in parallel, indicated
with 𝑃. More advanced is the case in which there are multiple machines in parallel on a stage with
different processing speeds, independent of the job. This is indicated with the letter 𝑄. An even more

3.2. Hybrid Flow Shop Problems 27

generic version is called unrelated parallel machines which is indicated with 𝑅. This case states that the
processing speed of an operation at a stage is dependent both on the job and the machine at which it
is being processed. In other words, within one stage each job could have a different processing time
which is also dependent on the machine at which it is being handled [49, 53]. The final possibility is
𝛼 = ∅ which means that there is only one machine. Aforementioned, 𝛼 is used in combination with
𝛼 in the following notation: (𝛼 𝛼) . This means that there are 𝛼 machines of type 𝛼 at stage 𝑘.
𝛽, the second letter of the triplet, describes additional constraints and features of the HFS. Common
modifications to the standard HFS problem are given below [49, 50]. The letter 𝑗 is used to indicate
jobs, 𝑘 to indicate the stage.

• Individual jobs have individual release dates, indicated by 𝑟 ;

• Jobs must be processed in the same order on every stage, indicated by 𝑝𝑟𝑚𝑢;

• Certain jobs must precede other jobs, indicated by 𝑝𝑟𝑒𝑐;

• Certain jobs can only be performed on certain machines; called machine eligibility, indicated by
𝑀 ;

• The setup time between different jobs is dependent on the job preceding it. The setup time is
sequence dependent indicated by 𝑆 ;

• Preemption of jobs is allowed, indicated by 𝑝𝑟𝑚𝑝

• There is a limited buffer size between different stages. This means that jobs cannot be released
by a machine until the upstream buffer opens up, indicated by 𝑏𝑙𝑜𝑐𝑘;

• Jobs are allowed to or must be handled multiple times on the same stage, indicated by 𝑟𝑒𝑐𝑟𝑐;

• Jobs cannot wait between successive stages meaning that a First In First Out strategy is used,
indicated by 𝑛𝑜 − 𝑤𝑎𝑖𝑡;

• All processing times are equal, indicated by 𝑝 = 𝑝;

• Machines have the possibility of breaking down or requiring maintenance, indicated by 𝑢𝑛𝑎𝑣𝑎𝑖𝑙;

• Operations could require processing on multiple machines simultaneously, indicated by 𝑠𝑖𝑧𝑒 .

Finally, the letter 𝛾 is used to indicate which objective function is being used. The completion time
of a job is given by 𝐶 , the flowtime by 𝐹 = 𝐶 − 𝑟 , the lateness by 𝐿 = 𝐶 − 𝑑 , the tardiness
by 𝑚𝑎𝑥(𝐶 − 𝑑 , 0) and the earliness by 𝑚𝑎𝑥(𝑑 − 𝐶 , 0). In these equations 𝑑 represents the due
date of job 𝑗. Besides different abilities and constraints on the model, there are also multiple common
objectives [50]:

• Maximum/Total/Average (weighted) completion time, indicated by 𝐶 /�̄�;

• Maximum/Total/Average (weighted) flow time, indicated by 𝐹 /�̄�;

• Maximum/Total/Average (weighted) lateness, indicated by 𝐿 /�̄�;

• Maximum/Total/Average (weighted) tardiness, indicated by 𝑇 /�̄�;

• Maximum/Total/Average (weighted) earliness, indicated by 𝐸 /�̄�;

• Maximum/Total/Average (weighted) number of late jobs, indicated by 𝑈 /�̄�;

Once a weighted number should be used, a 𝑤 is used in the power. For instance, �̄� indicates that the
weighted total/average completion time is used. With this classification system the basic HFS problem
is classified as 𝐹𝐻𝑚, ((𝑃𝑀()) ||𝐶 . From left to right these mean: a HFS with 𝑚 stages, 𝑀
identical parallel machines on stages 𝑘 = 1 to 𝑚, no additional features and the maximum completion
is used as an objective.

28 3. Literature study

3.2.1. Hybrid flow shops with uncertainties
The majority of research into HFS problems is dedicated to deterministic problems. This means that the
processing times, set-up times, number of available machines, buffer sizes etc. are all fixed numbers
which are known in advance. More advanced, is the use of stochastic distributions to all of these val-
ues. For instance, processing times are no longer equal but, follow a user-defined random distribution
[54, 55]. This is done to better resemble real-world situations [53, 56–58].
To include uncertain parameters in the previously defined classification system, an extra option is added
to the features part (𝛽) of the classification triplet. Once a parameter is uncertain, it will be specified
as 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∼ 𝑃𝐹, where 𝑃𝐹 is the probability function. Another option to specify uncertainty, is by
fuzzy numbers. Once this is the case, the notation 𝐹𝑢𝑧(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) is used.
The techniques that are used to solve HFS problems with uncertainties are slightly different than for de-
terministic HFS problems. Basically there are three different approaches to solve HFS problems. These
techniques are exact solutions, dispatching rules and metaheuristics. More on this topic can be found
in Section 3.5. The distribution of used solution techniques for both deterministic and stochastic ap-
proaches can be seen in Figure 3.2. Interesting is that 8% of the papers which considered deterministic
HFS problems used a genetic algorithm whereas this was 24% for stochastic HFS problems.

Figure 3.2: Distribution of used solution techniques to deterministic [50] and stochastic [54] HFS problems.

3.2.2. Hybrid flow shops applied to integrated container terminal scheduling
The similarity between the container terminal scheduling problem and a HFS problem has not gone
unnoticed by other researchers. Therefore, in this section we compare multiple previous efforts towards
integrated container terminal scheduling approaches applying HFS models. However not all research
explicitly mentions hybrid/flexible flowshops, most mathematical models can be categorized as such.
Therefore, the classification described in [49, 50, 52] will be used to describe the different models
used to solve the integrated container terminal scheduling problem. Besides that, the used solution
technique will also be given since it is a major part of the research. The results of this analysis can be
found in Table 3.1.

3.2. Hybrid Flow Shop Problems 29

Article 𝛼 𝛽 𝛾 Cont QC HTV YC Solution technique
Chen [19, 59] 𝐹𝐻3, ((𝑅𝑀)) 𝑀 , 𝑆 , 𝑏𝑙𝑜𝑐𝑘 𝐶 500 5 30 20 Tabu Search, Constraint programming
Lau [60] 𝐹𝐻3, ((𝑅𝑀)) 𝑝𝑟𝑒𝑐, 𝑆 ,𝑀 �̄� 16 2 4 2 Multi Layer Genetic Algorithm
Bish [2] 𝐹𝐻2, ((𝑃𝑀)) 𝑀 , 𝑆 , 𝑏𝑙𝑜𝑐𝑘 �̄� 2500 4 40 - Transshipment Based Heuristic
Xin [61, 62] 𝐹𝐻3, ((𝑅𝑀)) 𝑏𝑙𝑜𝑐𝑘 𝐶 40 5 10 8 Exact, Variable Neighbourhood Search
Lu [56] 𝐹𝐻2, ((𝑃𝑀)) 𝑝 ∼ 𝑁(𝜇, 𝜎), 𝑆 , 𝑏𝑙𝑜𝑐𝑘 𝑇 30 - 4 1 Particle Swarm Optimization
Kim [63] 𝐹𝐻2, ((𝑃𝑀) , (𝑅𝑀)) 𝑆 �̄� + �̄� 100 2 7 5 Dispatching method
He [64] 𝐹𝐻3, ((𝑅𝑀)) , , (𝑃𝑀) 𝑝𝑟𝑒𝑐, 𝑆 �̄� + 𝑒𝑛𝑒𝑟𝑔𝑦 500 10 50 20 Genetic Algorithm
Kaveshgar [65] 𝐹𝐻2, ((𝑅𝑀)) 𝑏𝑙𝑜𝑐𝑘, 𝑝𝑟𝑒𝑐 𝐶 1050 2 15 - Genetic Algorithm
Cao [35] 𝐹𝐻2, ((𝑃𝑀)) 𝑆 ,𝑀 , 𝑏𝑙𝑜𝑐𝑘 𝐶 500 - 60 40 MIP+Benders Cut
Cao [66] 𝐹𝐻2, ((𝑃𝑀)) 𝑆 ,𝑀 , 𝑏𝑙𝑜𝑐𝑘 𝐶 15 1 4 - Genetic Algorithm + Heuristic
Kizilay [67] 𝐹𝐻2, ((𝑃𝑀)) , 𝑝𝑟𝑒𝑐, 𝑆 ,𝑀 𝐶 550 4 ∞ 6 MIP, Constraint programming

Table 3.1: Classification scheme of other papers considering integrated container terminal scheduling. Extended with the
maximum managed problem size (# of containers, QCs, HTVs and YCs) and the applied solution technique.

As can be seen in Table 3.1, the variation of HFS approaches is quite large. This holds for both the
structure of the shop as for the features. The structure of the shop is either a two-stage or a three-
stage approach. Additionally, the type of machines is different; either identical machines in parallel or
unrelated machines in parallel are used in the flow shop.

The additional features added to the flow shop are different for most researches. Most research
considered at least sequence dependent set-up times. The research that did not use unrelated parallel
machines used the set-up times to compensate for this.
Another common feature is machine eligibility. This feature is used to represent the fact that containers
are positioned within a stack or bay of a ship which can only be handled by a limited number of cranes.
Moreover, precedence is commonly used. However, most research only considers one ship which first
requires loading and afterwards unloading or in reverse order. This could be classified as precedence
but it does not account for precedence among different containers.
Finally, blocking is used multiple times to ensure that a HTV cannot proceed to its next operation
without being discharged of its current container.

The objective function is often either the maximum or total completion time. Only Lu et al. [56]
and He et al. [64] used a different objective function. The objective function of [64] is particularly
special since it also tries to minimize energy consumption of the machines operating on the container
terminal.

Regarding the problem size, the research of [19, 59, 64] most closely represents real terminal sizes.
Other research is either too small with regards to the number of containers or the number of machines.
The minus signs indicate that a certain stage is not considered in that research paper. However, the
problem size gives an indication towards the size of the problem, it does not necessarily mean that
the problem is also solved within reasonable time. For instance, in [61] the maximum sized problem
required more than 10 hours to solve. These computational times are unacceptable when applied to
an operational terminal.

Interesting is that many research applied a different solution technique. Only the genetic algorithm
is used multiple times. However, even among those there is great variation.

Similarities and differences of hybrid flow shops in container terminal scheduling
In this section, the similarities and differences between the different efforts of other researchers to apply
HFS models to integrated container terminal scheduling are explored. The first similarity between all
previous efforts is the definition of the jobs, the machines and the operations.

1. Jobs: correspond to orders; since an order is composed of multiple operations which require
operations sequentially by multiple machines.

2. Machines: correspond to the QCs, HTVs and YCs. Each order should be handled by each of
these machines in a sequential order. However, the sequence through the shop is dependent on
the order type; either loading or unloading.

3. Operations: Correspond to the moves. Each order is composed of several moves: a transfer
between the quay and the ship, a transfer between the stack transfer point and the quay and a
transfer between the stack and the stack transfer point. These moves are respectively handled
by the QC, the HTV and the YC.

30 3. Literature study

A few common assumptions that were made in almost every research to both represent reality and
to reduce the problem size are [19]:

1. Loading operations on a ship can only start after all unloading operations are completed.

2. Within the storage yard, inbound and outbound containers are not mixed within one block. Which
means that a YC only performs either pick-up or retrieval moves.

3. All vehicles on the terminal can only handle one container at a time.

4. Operation and travel times of vehicles are deterministic and independent of the load.

5. All routes are considered available at all times meaning that possible congestions are ignored.

6. Container transfer time between different machines is included within the processing time.

7. There is no buffer space between the different stages.

Together with the assumptions, the integrated container terminal scheduling problem could formally
be defined as a HFS problem. Four modifications are required to modify the classical HFS problem to
be applicable to a container terminal [19]:

1. Unrelated parallel machines: Chen et al. [19] uses a different definition than the one found
in [49, 50, 53]. Chen et al. [19] describes machine eligibility with unrelated parallel machines.
Meaning that certain operations can only be handled by certain machines. This occurs at the
QCs and the YCs since the location of the container defines the equipment that will handle it.
However, the common description of unrelated parallel machines is also applicable since HTVs
have different processing speeds dependent on their current position;

2. Job precedence constraints: This additional feature is required to ensure that containers on
deck are unloaded first before containers in the hold. The reverse order should be applied for
loading operations;

3. Sequence dependent setup times: are used to represent empty trips of HTVs. Ideally the
HTV alternates between loading and unloading moves since the empty travel time is reduced.

4. Blocking: Each machine has a finite buffer size meaning that once the buffer is full, a machine
cannot release a container. Therefore, the machine cannot proceed to the next order and has to
wait. Most research did not consider any buffer at all but, simply considered buffer sizes of zero
or infinity.

The aim of the problem is then to determine the sequence and the starting times of machine moves
for each specific container. With the overall goal to minimize the ship turnaround time. In other words,
find the optimal sequence of moves for which the QC is finished as early as possible. Alternatively, also
the reduction of delays on QC operations could be used as an objective.

The major part of every research mentioned above is not dedicated to describing a container ter-
minal system as a HFS problem. The major part of the research is often dedicated either to additional
features [59, 61, 62, 64, 68, 69] or to the solution technique [2, 19, 35, 56, 59, 60, 63–66]. The aim
of the solution technique is to reduce the computational time. Benchmarks that are used to compare
different solution techniques are: the size of the problem, the CPU-time and the optimality gap. An op-
timality gap is usually present whenever an approximate solution technique is used. Most researchers
claim their uniqueness by either adding special features (𝛽) or by developing a new solution technique
which has a smaller optimality gap or is applicable to larger sized problems.
No different is the research performed by Lu et al. [56] who used a stochastic HFS problem to model
the behaviour of a container terminal. However, since this research is so unique (it is the only found
stochastic model) it deserves some special attention. Three different uncertainties are distinguished
by Lu et al. [56] of which only the second is implemented in the model.

1. External uncertainties: these are uncertainties that originate from external sources. These
are; the quantity and arrival time of vessels, the bay size and the stowage plan.

3.2. Hybrid Flow Shop Problems 31

2. Uncertainties within normal operations: these are the uncertainties that originate from
performance fluctuation of equipment and human operators.

3. Discrete abnormities: these are the uncertainties that occur rarely. Such as, accidents and
machine breakdowns.

The constructed mathematical model is somewhat less extensive compared to models developed by
other researchers, such as [19]. Furthermore, even though the problem is small-scale, it requires an
approximation method to be solvable within reasonable time. A Particle Swarm Optimization based
algorithm was used as an approximation method and that proved to work well [56].
Other special research is performed by Xin et al. [68] and He et al. [64] who have integrated energy
consumption into their scheduling algorithm. However, both of them used a different approach. Xin
et al. used a multi-stage approach. On the first stage, a schedule was created. Subsequently, oper-
ations are smeared out over a longer period to reduce accelerations and thus to use equipment in a
more environmentally friendly way. In [64] the energy consumption is directly integrated in the HFS
problem. This is done by reducing travel distances of the different equipment in addition to optimizing
QC operations.
Xin et al. continued with their previously developed model in [62]. However, the model is now ex-
tended with a layer to avoid collisions of AGVs.
In the most extended version of Xin et al. [61] 5 QCs, 10 AGVs and 8 ASCs are considered. How-
ever, this research did not centrally focus on scheduling. It is more dedicated towards the integration
of discrete-event dynamics (the schedule) and continuous-time dynamics (energy consumption and
collision avoidance). With regards to the scheduling, Xin et al. recommends to investigate how the
computational time can be reduced. Furthermore, Xin et al. recommended to consider simultaneous
loading and unloading of containers. Xin et al. focused on the case where there are merely unloading
containers and each QC serves 8 containers. Besides that, an extra degree of freedom was used since
it was assumed that each container can be directly handled; no precedence relations exist. Therefore,
the research is not similar to the problem of this research. However, the research also considers a
receding horizon, which is used to reschedule events based on new information. A receding horizon
means that a time window is used. Within that time window, the optimization is performed. As time
progresses, the time window shifts along the time line as well. This is an interesting feature since
the complete horizon of moves is generally not known in advance. Besides that, once the complete
horizon is used, the problem would become huge. Huge problems are hard to solve because of the
computational effort.
Moreover, the research performed by Kizilay et al. [67] is rather special. This is because infinite HTVs
were considered in their study. It was chosen to use an infinite number of HTVs because a survey
among small ports within Turkey showed that there are always sufficient HTVs. Another novelty is that
bay scheduling is included. Furthermore, this research compares MIP with CP. The final remarkable
research is performed by Chen et al. [59]. Within this research the scheduling and dispatching problem
is extended and integrated with the routing problem. This is achieved by adding multiple layers to the
problem which are subsequently solved.

An interesting addition to the container terminal scheduling problem is proposed by Jung et al.
[70], who proposed that multiple YCs might be working within the same block. Since YCs are typically
overhead cranes; they cannot pass each other. This means that YCs should coordinate their operations
to reach every location in the yard. Jung et al. developed a model that ensures optimal coordination
between the different YCs.

3.2.3. Reflection on the problem
To solve the problem of this research, a combination of the features: 𝑀 , 𝑆 , 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑝𝑟𝑒𝑐 is
required. This is not earlier performed, to the best of my knowledge, in any other research considering
container terminal scheduling. On top of that, the most recent review paper (2010) regarding HFS
problems, indicates that there is no research that considers all of the above features simultaneously in
any HFS problem.
Furthermore, the blocking constraint should be adjusted once Lift-AGVs are used since up to a certain
number of containers there is no blocking. This is because the racks have some limited capacity to
hold containers and thus acts as a buffer. Nguyen et al. [71] consider Lift-AGV dispatching with a

32 3. Literature study

limited buffer capacity. Within this research an integrated scheduling approach using limited buffers is
suggested by the authors but, has not yet been followed up upon.
Another novel required feature compared to other integrated container terminal scheduling research is
that loading and unloading moves are considered simultaneously. Currently, research has focused on
handling of vessels that require either unloading or loading and in some cases these two operations
sequentially. This research considers the case where loading and unloading jobs can be performed
simultaneously by different QCs. This feature makes the HFS bi-directional which is against the nature
of a flow shop. To the best of my knowledge this feature was not earlier considered in HFSs. For
normal flow shops this additional feature is not so special since the direction of the flow shop can be
reversed whenever required. However, within a HFS different jobs require different flows using the
same machines and buffers.
Additionally, there are twinlift moves on modern container terminals that require simultaneous handling
by the QC and the HTV. In other words, two jobs require simultaneous processing by a single machine
on specific stages. This additional feature was not earlier described in other research considering
integrated terminal scheduling.

3.3. Model Predictive Scheduling
Besides the commonly used HFS approach to scheduling problems, there are other approaches. One of
them is Model Predictive Scheduling (MPS), which is applied to integrated container terminal scheduling
in [72]. MPS uses a radically different approach compared to HFSs. The scheduling problem is perceived
more as a control problem that requires optimal input. This makes this technique ideally suitable for
operations in a receding horizon way. As was said before, receding horizons are often used for container
terminal scheduling since it reduces the problem size and the complete horizon is unknown from the
start. Furthermore, since MPS is predictive, predictions of future behaviour can be used to reschedule
routes of container handling equipment and thus optimize the system’s performance [72].
Not required for MPS, but used in [72] are Switching Max-Plus Linear (SMPL) techniques to model the
system [73]. SMPL systems are used since they are capable of analyzing the evolution of the system’s
states. Max-plus eigenvalues and eigenvectors play an important role towards finding bottlenecks in
the scheduling process [73].
However, the approach of MPS is radically different from HFS scheduling there are also many similarities.
First, the max-plus model is recasted into a MIP problem since there are many efficient solvers available.
Second, additional constraints are added to the MIP problem to represent the special features on a
container terminal. These are: the number of containers on a vehicle is constrained, the sequence of
container operations at the QC is known in advance and blocking constraints are introduced to create
buffers. On top of that, the objective function is, just as in most HFS problems, the minimization of
the makespan at the QCs.
The method proposed in [72], has been positively received by the authors themselves. However, the
authors comment on the computational time required to solve the problem since it is too excessive.
The authors suggest that the computational time could be reduced by a priori elimination of certain
combinations of decision variables leading to infeasible solutions. This would greatly reduce the solution
space. Interesting is that nobody has picked up on the proposal for future research and that articles
describing either MPS and SMPL algebra are only published by the same TU Delft research group DCSC.

3.3.1. Greedy scheduling algorithm
MPS is compared with a greedy scheduling algorithm which is doomed from the start to be less efficient
than algorithms that seek optimality. However, for the sake of completeness the greedy algorithm is
briefly described here as well. The central idea of a greedy scheduling algorithm is that only one
container is scheduled at a time. This is also why the schedule can never be optimal. The steps of the
greedy algorithm are as follows [72, 74]:

1. Find a QC with the lowest ready time from the set of QCs which still have unscheduled cycles.

2. Find the corresponding YC to the unscheduled cycle.

3. Find the set of vehicles which can arrive on time at the loading crane, either the QC or the YC,
depending on the cycle type.

3.4. Markov chains 33

4. If this set is not empty; select the vehicle which will arrive closest to the end time of the cycle.

5. Else; select the vehicle that is able to arrive the earliest at the loading crane.

6. Return to step one.

Because only one container is considered at once, each container is scheduled optimally in a recursive
way. However, this does not guarantee an overall optimal schedule since an optimal schedule for one
container could drastically reduce the optimal schedule of another container. This effect is disregarded
with a greedy algorithm.

3.3.2. Reflection on the problem
MPS supported by SMPL modelling has proven to be a valuable scheduling technique. However, since
this technique is not commonly used, the chances that other researchers will continue with future
research are limited. Since HFSs are widely applied, the chances that other researchers will continue
with the to be performed research are higher. Therefore, the scientific isolation of MPS supported
by SMPL modelling is the major reason for not proceeding with this research. The aim is to develop
a model which can easily be extended and modified to container terminal’s individual desires. This
requires broad scientific support which is not the case for MPS supported by SMPL modelling.

3.4. Markov chains
Yet another technique towards scheduling is the usage of Markov chains. A system is perceived as a
system of queues. Queues are connected to each other and together they form the container terminal.
A container enters the system via one queue and subsequently transfers along different queues until
it is finally removed from the system [75, 76]. The machines on the container terminal are modelled
as resources which determine the processing rate of the queues. By assigning more equipment to
a queue, the queuing process accelerates. The allocation of resources to queues is the optimization
problem and can be based on multiple strategies. Furthermore, queues have finite sizes which means
that not an infinite number of containers is allowed to be moved to a certain queue. Two types of
queues are distinguished by Alessandri et al. [76], storage queues and handshake queues. The former
is used to describe the movement of containers to a new area on the container terminal. The latter
is used to describe an interchange between different storage queues. A simple queuing system that
illustrates the position of storage and handshake queues is shown in Figure 3.3.

Figure 3.3: A visualization of two storage queues connected by a handshake queue [76]. indicates arrival, is used for
departure, and are resources allocated to serve queues and respectively with processing rates and respectively.

Ideally, the handshake queue remains empty which indicates that processing rate 𝑢 ≥ 𝑢 . Once
𝑞 fills up either too many resources are allocated to 𝐴, which means a waste. Or too few resources
are allocated to 𝐵, which indicates a delay. Based on the concept of Figure 3.3, the entire container
terminal is constructed (see Figure 3.4).

34 3. Literature study

Figure 3.4: Queuing model of a complete container terminal [76].

By the time that the container terminal is described with queues. The constraints need to be added
to guarantee that the queuing model represents reality. These constraints are used to constrain working
rates, to ensure balance of input and output, to limit the maximum number of equipment assigned to a
queue and to specify the maximum number of containers in a queue. Additionally, an objective function
should be specified. Commonly, the objective function is minimizing the ship turnaround time [75, 76].

With the model, the constraints and the objective function defined, the aim is to optimally allo-
cate resources to different queues. The first approach is to assign the most resources to the longest
queues. Another approach is to assign the most resources to the queues which have containers in
them for the longest period. Implicitly this strategy leads to serving queues based on a First in First
out basis. However, different carriers could be given a different weight factor to promote, for instance,
quick handling of deep-sea vessels over trucks [76]. Both solution techniques could be considered
as heuristics since they allocate resources based on dispatching rules. These dispatching rules were
pre-defined with knowledge of the structure and the characteristics of the problem at hand [77, 78].

3.4.1. Reflection on the problem
The disadvantage of using Markov chains to address scheduling problems, is that it is more focused
on container flows instead of individual container schedules. This makes the Markov chain approach
more suitable for strategical decisions compared to operational decisions. However, this information is
valuable, it is not the aim of this research. Therefore, the information will not be used. Once the Markov
chains should be applied to operational levels, the number of queues would hugely increase which
also increases the computational effort. Besides that, it is questioned whether the proposed solution
techniques and the approach would lead to optimal results once operational scheduling problems are

3.5. Solution techniques 35

considered.

3.5. Solution techniques
In this section more attention is paid towards the solution techniques used to solve scheduling problems.
In particular, solution techniques applicable to HFS problems will be discussed. First, an exact method
will be presented followed by a tailored heuristic strategy. However, the main part of this section will
be dedicated towards metaheuristics. This is because metaheuristics are suitable alternatives to exact
solutions whenever the problem is large and complex while remaining generic.

3.5.1. Problem complexity
The best suitable solution technique depends on both the complexity and the size of the HFS problem.
With regards to complexity the HFS problem is NP-hard even if there is only one stage with with multiple
parallel machines [79]. NP-hard problems are problems which cannot be solved in polynomial time as
a function of the problem size [53]. Furthermore, NP-hard problems do not necessarily need to be
verifiable in polynomial time either [80]. An Euler diagram of problem complexities is shown in Figure
3.5. This diagram shows that NP-hard problems are the most complex problems [81]. Since P versus
NP is not proven, there exist problems which can be verified in polynomial time but, cannot be solved
in polynomial time. This is the (current) definition of a NP-problem [82]. However, since NP-hard
problems do not necessarily possess polynomial time verifying techniques they are still excluded from
P even if P=NP can be proven. A formal classification of NP-hard problems is: ”A decision problem H
is NP-hard when for every problem L in NP, there is a polynomial-time reduction from L to H.” [82].

Figure 3.5: Euler diagram for sets of P, NP, NP-complete and NP-hard problems. The left side is valid under the assumption that
P NP, while the right side is valid under the assumption that P=NP [81].

However, NP or NP-hard problems are not necessarily ”hard problems” [83]. This is also the case
for the HFS problem [53]. Therefore, many larger HFS problems use (meta)heuristics to approximate
the exact solution within reasonable time. However, if the problem is small enough, a branch and
bound technique is typically used to arrive at an exact solution.
Tailored heuristics is a collective name for solution strategies that use the structure and the characteris-
tics of a problem to quickly find an approximation to the solution [77, 78]. The most common heuristic
strategy in HFS problems is the use of dispatching rules. The use of dispatching rules means that the
assignment of jobs to equipment is based on simple rules such as, First in First out. An illustrative
example of more advanced dispatching rules is presented in [84]. Another popular heuristic method
is divide-and-conquer. This strategy relies on dividing the initial problem into multiple easier solvable
sub-problems. Afterwards, the solutions to the sub-problems can be combined to an overall solution. A
particular well working technique is the shifting bottleneck procedure which focuses on the bottleneck
stage. The general idea is that by optimizing the operations at the bottleneck stage the overall flow
shop is optimized as well [50, 85].
General metaheuristics could also be applied to HFS problems. Using metaheuristics means that a gen-
eral concept to many different problems is applied to find a solution. However the concept is similar for
different problems, the implementation could be different. Often metaheuristics require multiple itera-

36 3. Literature study

tions and exploit randomness; hoping that it will lead to a global optimum quicker than by deterministic
approaches. This is generally the case once efficient metaheuristics are applied to large and complex
problems. The most efficient metaheuristic techniques for HFS problems are: Tabu search, Simulated
annealing and Genetic Algorithms. Examples of Tabu Search metaheuristics applied to HFS problems
are [19, 86, 87]. Simulated annealing was applied to a HFS problem with unrelated parallel machines
in [88]. Moreover, simulated annealing was also used to solve HFS problems with unrelated parallel
machines, sequence dependent setup times and transportation constraints in [89, 90]. Finally, also
genetic algorithms are widely applied to the HFS problem and its different variations such as sequence
dependent setup times [91], unrelated parallel machines and machine eligibility [92] and limited buffers
[93]. In [94, 95], the performances of different (meta)heuristics applied to HFS problems are com-
pared with each other. Generally, tailored heuristics work quicker than metaheuristics at the cost of
losing genericity. This is because tailored heuristics use problem specific information to quicker find a
solution [96]. An important remark towards both tailored heuristics and metaheuristics is that these
methods approximate the exact solution in contrast to exact solution techniques that provably find the
optimal solution.

3.5.2. Mixed Integer Programming
To solve HFS problems, first a mathematical model should be constructed. The mathematical model
contains decision variables and fixed parameters. Typically, a Mixed Integer Programming (MIP) model
is used to represent the HFS problem. The MIP uses integer decision variables to define the sequence
of operations and to assign certain operations to certain machines. Usually, these integer decision
variables are binary. Furthermore, the MIP uses non-integer variables to represent the starting times
of different operations. As a function of decision variables and fixed parameters, the objective function
and the constraints could be mathematically expressed. The number and type of constraints that are
used depends on the specifics of the HFS problem (see 𝛽). Different techniques were developed to
efficiently find a solution to the MIP model that satisfies all constraints while minimizing an objective
value.

3.5.3. Constraint programming
A radically different approach to solve HFS problems is using Constraint Programming (CP) instead
of MIP. CP combines features of logic programming, graph theory and artificial intelligence to solve
combinatorial optimization problems such as, HFS problems. It is particularly effective since these
problems are often described as constraint satisfaction problems [97]. Combinatorial optimization
problems are described by certain variables which can attain certain values within a domain. The
domain is bounded by either implicit or explicit constraints. Implicit constraints are constraints which
constrain one variable as a function of other variables. Whereas explicit constraints are constraints that
constrain a variable with external values. The aim of combinatorial problems is to find a combination of
values assigned to the variables which satisfies all the constraints and optimizes an objective function.
CP does not only check whether a combination of assigned values violates a constraint, it makes
active use of these constraints to reduce the problem size [97]. A typical solution technique of CP is to
construct a tree of attainable values for each variable. Initially, all values can be assigned to all variables.
However, by subsequently adding constraints, the number of attainable values reduces. Sometimes,
the solution method also requires to go back to retry to find a solution from a different angle. Similarly
to ordinary HFS solution techniques, there are different heuristics available to determine the order in
which constraints should be added to the tree [97]. Recently, CP proved to be a powerful and easy-
to-use optimization tool especially suited for scheduling problems. This is because of the available
data-types supported by CP languages. A decision variable could be specified as an interval, which
means that it has a start and an end time. Besides that, variables could be sequences which define a
sequence of operations. These variable types support a major part of a schedule [59]. Furthermore,
these datatypes allow CP to model a problem at a higher level compared to MIP. CP combines multiple
techniques to find solutions that satisfy all constraints and if specified, optimize an objective value.
Among these techniques are backtracking, B&B and several forms of local search [98]. Moreover, CP
is not restricted to linear models; it has access to a much wider range of models [98]. For container
terminal scheduling, CP is rather new but, it has been successfully applied to other HFS problems
[59, 67]. Moreover, hybrid approaches of CP and MIP were used to solve though and large scheduling
problems [99].

3.5. Solution techniques 37

3.5.4. Branch and bound
The first solution technique that is highlighted is Branch and Bound (B&B). B&B is an algorithm used
to find exact solutions to discrete combinatorial problems. More specifically, B&B is a solution method
designed to exactly solve linear programming models containing variables that are restricted to be
integer. The algorithm was introduced first in [100] and currently it is the most widely used solution
technique to NP-hard problems [101]. B&B could be visualized as a tree which starts from a root
and is systematically branched from there. At each node where a branch is split into new branches
the candidate solution is evaluated. The crux of the algorithm is that since the tree is systematically
branched not all candidates need to be evaluated but, only a subset of branches. The branches are
not further explored once the solution of the branch cannot yield any solutions better than the best
one found so far by the algorithm. In other words, the complete search space of feasible solutions is
split into smaller spaces. Each split adds a new branch to the problem. A branch is disregarded or
”fathomed” once it can be proved that branching further will not lead to a better solution compared
to the best found solution thus far. Bounding defines the process to determine the possibilities of
obtaining a solution better than the current best solution [78]. An illustration of B&B is presented in
Figure 3.6.

Figure 3.6: Illustration of a tree being explored by subsequently branching, bounding and fathoming [102].

3.5.5. Shifting bottleneck
The shifting bottleneck procedure is a heuristic specially designed to solve job shop problems. In
particular flow shop problems are considered. The core thought is that once there are multiple jobs
requiring handling by (multiple) machines, called resources, one resource acts as the bottleneck in
the system. The heuristic is designed to use the bottleneck resource in the most efficient way. By
shifting the bottleneck every time the bottleneck is resolved, the total makespan will approach the
optimum. The bottleneck resolving and shifting process is an iterative process of which the steps are
briefly discussed here [85, 103]:

1. Create a graph representing all jobs and required resources to establish the initial makespan. The
makespan is determined by adding all the processing times required on a job. The job with the
largest sum of processing times assuming no conflicts is used as the makespan.

2. Determine and resolve the bottleneck resource. The bottleneck resource is determined by consid-
ering the processing time, release time and due time of each job on each machine. The release
time is found by adding all the processing times of the respective job preceding the operation on
the considered machine. The due time is determined by subtracting the processing times of the
jobs succeeding the job on the respective machine from the previously determined makespan.
Now, for each resource; calculate the minimum lateness by finding the optimal sequence of
jobs for instance with B&B. The resource with the largest minimum lateness is the bottleneck
resource. At the bottleneck resource the optimal sequence of jobs is fixed and the minimum
lateness is added to the makespan to determine the new makespan. At this moment the first

38 3. Literature study

iteration is finished; the first bottleneck is identified and resolved. The solution to the bottleneck
is now fixed by adding constraints for the next iteration.

3. Repeat the previous iteration. However, there is a new makespan and the constraints resulting
from the previous iterations should be respected upon determining the release time and due time.
Repeat iterations until all resources have been accounted for.

The steps listed above illustrate the iterative shifting process of the bottleneck resource. It should
be noted that the shifting bottleneck procedure solves an optimization problem, commonly with B&B,
multiple times. However, since the considered optimization problems on a single machine are much
smaller than the overall optimization problem; the computation time is reduced. On the other hand,
since the overall optimization problem is divided into smaller problems the shifting bottleneck heuristic
cannot guarantee to find the optimum. [103].

To use the shifting bottleneck heuristic on problems where there are multiple parallel machines, the
algorithm should be modified [85]:

1. Convert the problem to a graph;

2. Calculate lower bounds for each stage assuming only one machine.

3. Solve the machine assignment problem sequentially for the stage with the largest lower bound.
It is proposed to use the reversibility of a scheduling problem [85].

4. Identify the critical paths on each stage.

5. Solve the machine assignment problem for the critical stage. If the schedule improves return to
step 4.

6. If all stages have been considered or there are no improvements: stop the algorithm.

The advantage is that the computational time could now be expressed as 𝑂(𝐼𝑚 𝑛), where 𝐼 is the
number of iterations, 𝑚 the number of stages and 𝑛 is the number of arcs connecting the machines
[85]. Unfortunately, the shifting bottleneck heuristic is not suitable once blocking constraints are added
to the problem. Therefore, the shifting bottleneck heuristic cannot be used on the problem considered
in this research [19, 104].

3.5.6. Tabu search
Tabu search is a popular metaheuristic which has been widely used to solve combinatorial optimiza-
tion problems. The core of tabu search is to employ a local search method. This means that from a
given solution, other similar solutions are evaluated. Subsequently, the best one of the alternatives
is selected to obtain the new solution. However, tabu search also allows worsening moves whenever
there is no better alternative. This is to escape local minimums. Furthermore, prohibited moves are
introduced (listed on the tabu list) to prevent the algorithm from moving back and forth between two
solutions. Additionally, the tabu list stores solutions which turned out to be infeasible. This is to prevent
the algorithm from considering an infeasible solution multiple times [105–107].
A local neighbourhood search defines a search strategy that iteratively moves from potential solution
x to an improved solution x . This process is repeated until a stopping criterion is encountered. Com-
monly used stopping criteria are a score threshold or a maximum number of iterations. Unfortunately,
local searches often get stuck in local minimums/maximums. This means that other areas in the search
space remain unexplored. Therefore, tabu search carefully selects possible solutions added to the local
search space N∗(x) to avoid this problem [78]. N∗(x) is created with the aid of memory structures.
The memory structure is used to create the tabu list. The most simple tabu list contains a list of
solutions visited in the previous 𝑛 iterations. This means that a new solution cannot be one of other
recently visited solutions. This is called short-term memory. Intermediate term memory is used to
promote promising search areas by favouring solutions with certain features. Long term memory is
used to promote diversity among solutions by favouring solutions with new features [108]. However,
short-term memory is the core of tabu search, intermediate and long-term memory is required to effi-
ciently solve harder problems [109]. Important is that the tabu list has a finite length which means that
elements on the tabu list could also expire. This feature is implemented to prevent the algorithm from
using much memory. Furthermore, finite tabu lists prevent the algorithm from entering unpromising
search areas [78].

3.5. Solution techniques 39

3.5.7. Simulated annealing
Simulated Annealing (SA) is a stochastic metaheuristic involving randomness. The metaheuristic is
based on the annealing process of metals. It is particularly effective to locate the global minimum of
large problems. The core thought is that the solution iteratively progresses towards the global optimum.
Initially, the algorithm quickly explores the search space by accepting a large portion of moves, both
improving and worsening. This allows the algorithm to escape local minimums. As time progresses, SA
becomes more picky and starts favouring improving moves only [78, 110]. Typically, SA is only used
on very complex problems on which other optimization algorithms have failed since it involves many
function evaluations and is therefore inefficient [78, 110].

The basic working principle of SA is as follows [110]:

1. Select an initial temperature 𝑇 and solution x;

2. Randomly generate a new solution y in the neighbourhood of x and subsequently evaluate 𝑓(y);

3. If 𝑓(y) < 𝑓(x), accept 𝑓(y). Otherwise, compute the probability 𝑃 (𝑇) (Equation 3.1) of
accepting the new solution 𝑓(y). Use a random number generator to decide whether to accept
or reject 𝑓(y);

4. Reduce the temperature and return to step 2.

The probability to accept a worsening move is expressed with Equation 3.1. This chance gradually
decreases towards zero with decreasing temperature, meaning that only improving moves are selected
[111]. In other words, in the beginning SA is exploratory, whereas later SA becomes more investigative.

𝑃 (𝑇) = 𝑒
(x) (y)

(3.1)

Commonly, the temperature is decreased gradually following a linear function. However, also more
dynamic cooling or even re-heating processes might be used [112]. The probability to accept a wors-
ening move is plotted with respect to temperature for several differences in objective value in Figure
3.7.

Figure 3.7: The probability to accept a worsening move with respect to temperature for several differences in objective value.

Generally, SA is only used for unconstrained and continuous problems [110]. However, there are
techniques available to enable SA to solve constrained and discrete optimization problems. Constrained
problems can be solved by SA by modifying the objective function and a reparation method to restore
infeasible solutions [113]. The objective function is extended with the positive difference with each
constraint. Therefore, whenever a solution is infeasible; the objective function increases. Subsequently,

40 3. Literature study

the infeasible solution should be repaired. This is done by iterative modification of the variable which has
the biggest negative effect on the objective value (most helpful when restoring feasibility) with exclusion
of the variable that initiated the infeasible solution [96, 113]. To include discrete variables when
using SA, a discrete variable is altered to any of its attainable values. Thereafter, a similar reparation
algorithm can be used as for continuous constrained optimization [96]. Combinations of discrete and
combinatorial problems could be solved in different ways. One way is to first use SA to assign values
to the discrete variables. Subsequently, an ordinary continuous linear program remains which can be
solved much quicker. However, a condition to this approach is that the remaining continuous linear
program remains small since it requires to be solved many times [114].

3.5.8. Genetic algorithms
Another popular metaheuristic algorithm is a Genetic Algorithm (GA). A GA is inspired on evolution and
natural selection described in [115]. Many genetic processes such as mutation, crossover and selection
are used as operators in GAs [116].
Initially GA generates a set of candidate solutions as the initial population. The fitness (objective
function) of each candidate solution is evaluated. Randomly a portion of the ”fit” candidates is selected
to reproduce. Reproduction involves crossover and mutation and forms a new generation of candidates.
Similarly to tabu search and simulated annealing, GA terminates once a pre-specified fitness level is
reached or once a certain number of generations is produced [78].

Selection
The process of selecting the most fit candidates from a generation is the first genetic operator used in
GA. Numerically the selection process works in the following way [117]:

1. The fitness function of each individual is calculated and thereafter normalized;

2. Sort the population in descending fitness order;

3. The accumulated fitness values are calculated, this means the normalized fitness value of the
respective individual and all its predecessors;

4. Draw a random number between 0 and 1;

5. Select the individual whose accumulated normalized fitness is closest but, smaller than the random
number.

An illustrative example of a selection process is presented in Table 3.2.

Random number=0.38
Candidate Fitness value Normalized Descending order Accumulative
1 1 0.1 3 0.4 0.4
2 3 0.3 2 0.3 0.7
3 4 0.4 4 0.2 0.9
4 2 0.2 1 0.1 1

Table 3.2: An illustration of the selection procedure. Since 0.38 is closest but still smaller than 0.4 that fitness value is selected.
This fitness value corresponds to candidate 3 in this example.

Crossover
Crossover is the first genetic operator used to generate new solutions from the set of selected fit parent
solutions. Crossover means that from multiple parents, two in this case, an equal number of children
is generated with a mixture of the genome of both parents. A solution could be visualized as a string
of numbers. One child starts with the string of one parent and the other child with the string of the
other parent. Subsequently, a crossover point is randomly determined. At the crossover point the child
solution string switches parent. This results in a new solution which is a combination of the parent
solutions. The crossover process is visualized with Figure 3.8. As can be seen in Figure 3.8, there are
multiple strategies to simulate crossover. With uniform crossover not the number of crossover points
is specified but, the mixing ratio is specified. The algorithm subsequently determines the amount and
location of each crossover point.

3.5. Solution techniques 41

(a) Single-point crossover (b) Two-point crossover (c) Uniform crossover

Figure 3.8: Crossover process for binary problems[118].

Sometimes the generated children violate constraints since constraints are not considered in the
crossover process. However, this could be repaired with a repair process such as mutation [119].

Mutation
The final genetic operator is mutation. Mutation is used to maintain genetic diversity upon creation of
a new generation. This is an important feature of GA which allows solutions to escape local minimums.
Based on a specified probability, the candidate’s chromosome might change randomly independent of
the parent solutions. Commonly, the mutation probability should be maintained low to prevent GA
from disregarding the selection and crossover operators. Mutation has different variations based on
the number type (binary, integers and floats) and the desired variation [120]. Mutation could also be
used to repair solutions that no longer satisfy the constraints.

All genetic operators come with tuning parameters which can be used to tailor the GA to the consid-
ered problem. The tuning parameters for respectively selection, crossover and mutation are population
size, crossover probability and mutation probability.

3.5.9. Particle Swarm Optimization
Particle swarm optimization is a metaheuristic strategy that is based on swarm intelligence. A set of
particles is released into a search space. Subsequently, the particles start to move based on their
objective value and the objective value of other particles. This behaviour simulates swarm behaviour
where the group has more knowledge than the individual [121]. The particles do not use gradient
information for their movement and only rely on simple kinematic equations often involving random-
ness. Similar to other algorithms, particle swarm optimization requires several tuning parameters and
a stopping criterion.
An important tuning parameter is the swarm topology. This parameter defines the knowledge and com-
munication abilities of the particles. In other words, it defines with which particles a certain particle can
exchange information. This parameter is important since it helps the algorithm exchange information
about local minimums. Therefore, particle topology determines the converging speed [122, 123].
A common explanation for the performance of particle swarm analysis is that the algorithm balances
between exploratory and exploitative behaviour. This means that the algorithm both searches a large
space (exploratory) while the search is directed to an optimum (exploitative). The tuning parameters
are required to maintain a proper balance between these two properties [124].
Initially, particle swarm optimization was developed for unconstrained problems. However, modifica-
tions could be added to include the possibility of dealing with constraints. Furthermore, particle swarm
optimization does only work for continuous problems. Once discrete problems should be solved, it
often requires a relaxation and a rounding [125, 126].

3.5.10. Ant colony optimization
Yet another metaheuristic is ant colony optimization. This metaheuristic is inspired on the behaviour of
an ant colony foraging for food [127]. A group of artificial ants is released into the solution space. Each
time an ant finds a solution, it returns to the source leaving a pheromone trail. Other ants can sense
the pheromone trail and are attracted by it. This leads to convergence, all ants will follow the same
path. However, a pheromone trail also slowly evaporates. This means that distant paths have weaker
pheromone trails compared to shorter paths. Therefore, distant paths will be less attractive. Originally,
ant colony optimization was developed to solve travelling salesman problems. However, recently ant

42 3. Literature study

colony optimizations find their application on different problems as well. Alaykyran et al. first applied
ant colony optimization on HFS problems [128].

3.5.11. Comparison of different algorithms
To compare different solution techniques applicable to integrated container terminal scheduling, com-
putational results which were published for the integrated container terminal scheduling problems are
used. The same papers as in Table 3.1 are used to obtain computational results. Unfortunately, com-
parison is very difficult since each paper considered a different sized terminal and different terminal
features. Furthermore, the stopping criterion could be different as well. This is especially the case
with metaheuristics. Generally, metaheuristics quickly find a feasible solution and the more time they
get, the better the solution will be. This is a major advantage compared to exact methods where
there exists no such thing. In Table 3.3 the results are presented. It was aimed to select the com-
putation experiment which corresponds the best to other research. Furthermore, three different sizes
were considered; small medium and large. Whenever published, the optimality gap is also presented.
Note that since the scheduling problem is NP-hard we cannot determine a polynomial function to in-
terpolate/extrapolate computational time to establish a single benchmark terminal. Finally, research
that used dispatching rules or considered less than three stages was excluded from this table since
comparison makes no sense.

Solution technique CNT QC AGV YC
Computation
time

Optimality
gap

Xin [61] Exact 24 3 6 5 13541s 0%
32 4 8 6 >10h -
40 5 10 8 >10h -

Xin [62] Variable Neighbourhood Search 24 3 6 5 600s 10.0%
32 4 8 6 600s ≥12.7%
40 5 10 8 600s ≥12.1%

Chen [19] Tabu search 20 2 6 4 34s 0.15%
50 4 10 6 131.7s 9.39%
400 5 25 15 3263s -

Chen [59] Constraint programming 15 2 4 4 143s -
200 4 20 12 846s -
400 5 25 15 2954s -

Lau [60] Multi Layer Genetic algorithm 16 2 4 2 4s -
He [64] Genetic Algorithm 20 2 6 4 146s 4.25%

200 4 12 8 621s 13.92%
300 5 20 10 774s 14.74%

Table 3.3: Comparison of computational results of different solution techniques applied to integrated container terminal schedul-
ing.

Table 3.3 and information from [50, 55] shows that a genetic algorithm is the most popular solution
technique whenever dispatching rules are excluded. Surprisingly, [95] found that SA is superior to
GA and Tabu Search for large scale HFS problems. Whereas it is the least used metaheuristic of the
three when considering deterministic cases alone. Additionally, SA is preferred over GA since it is much
easier to modify and tailor to the situation at hand. Besides that, SA requires less computational power
per iteration compared to GA and Tabu Search. Therefore, SA is selected as the basis of the solution
method that is used within this research.

3.6. Concluding remarks 43

3.6. Concluding remarks
As was described in Section 3.1, the problem considered within this research is strongly intertwined
with other problems on container terminals. The relation of the problem at hand and other logistic
problems on container terminals is illustrated with Figure 3.9.

Figure 3.9: Relation of the research problem with other logistic problems encountered on container terminals.

Similar problems to the one considered in this paper have been studied multiple times. Researchers
working on those similar problems used a mathematical model to describe the container terminal.
Subsequently, a solution technique is selected to optimally schedule and dispatch vehicles according
to an objective function. Often, the used objective function is the minimization of the makespan.
Different researchers used different approaches to model the container terminal and to optimize the
objective function. The most often selected modeling strategy is to describe the individual container
scheduling problem as a HFS problem. However, research differed on additional features and the
applied solution technique (see Table 3.1). Other techniques which are used to model the individual
container scheduling problem are MPS supported by SMPL modelling and Markov chains.
This research will continue on previous work completed by other researchers. The HFS will be selected
as the core of the mathematical model. This is because the relation with other research is strong.
Therefore, the likelihood that this research will be used by other researchers and industry increases.
Furthermore, HFS problems can be solved optimally given sufficient computational time. Whenever
computational time is limited, many alternative approximative solution techniques exist which speed-
up the calculation process. Moreover, the HFS problem allows many additional features which can
easily be turned on and off dependent on the user’s wishes. Besides that, the HFS problems appear
better structured and organized compared to MPS and Markov chains. Finally, HFS problems can easily
be scaled to the requirements of the user. Future research indicated by other researchers, with regards
to individual container scheduling, has been grouped and collected in Table 3.4. This research initially
concerns loading and unloading, integration of three machine stages, unrelated parallel machines,
limited buffer positions and precedence relations. Furthermore, decreasing computational time will be
considered as an objective in addition to minimization of the makespan. Therefore, many indicated
future research directions are addressed within this report.

44 3. Literature study

Bish
[2]

Xin
[61]

Lu
[56]

Kim
[63]

He
[64]

Kavesh-
gar
[65]

Cao
[35]

Cao
[66] Kizilay

[67]

Loading and unloading x x x x
Decrease computational time x x
Yard allocation x x
Uncertainties x x x
Precedence relations x
No buffer x x x
Initial solution heuristic x
Parameter tweaking x
Three stage integration x x x x
Unrelated parallel machines x
Due dates x
Release date x
Larger terminal x

Table 3.4: Future research directions indicated by other researchers in the field of integrated container terminal scheduling.

Besides constructing the HFS model, it also needs to be optimized. Since HFS problems are NP-
hard and the integrated container terminal scheduling problem is large, it is unlikely that exact solutions
provide answers within reasonable time. Therefore, approximate solutions are used to approach the
optimal solution quickly. The best metaheuristic available to solve HFS problems is SA [95]. Therefore,
this research will continue on those conclusions.

4
Scheduling model applied to a

container terminal

In this chapter we will translate the integrated container terminal scheduling problem to a HFS prob-
lem. First, the definition of jobs, machines and operations will be presented. Subsequently, a few
assumptions are made which are required to represent the current situation at TBA. Thereafter, the
required features of the HFS will be identified. Afterwards, a conceptional model will be formulated.
Subsequently, the mathematical model will be presented which is used to represent the integrated
container terminal scheduling problem as a HFS problem.
Once the model is constructed, a heuristic to generate a feasible initial solution is presented. Subse-
quently, a solution technique is introduced that uses this initial solution to approximate the optimal
solution to the HFS problem. We conclude with computational results obtained with the designed HFS
model and solution technique.

4.1. Hybrid Flow Shop Problem
The integrated container terminal scheduling problem could be casted into a HFS without much effort.
This is because the structure of both problems is similar. A container must be handled by three different
machine sets in a sequential order. Furthermore, each set of machines contains multiple machines.
However, since this research considers the case that the QC and the location in the yard are already
determined, only the machine set containing the Lift-AGVs has multiple parallel machines. This means
that only one Lift-AGV should be selected to transport a container between the quay and the stack.
The aim of the integrated container terminal handling problem is to determine the sequence and the
starting times of machine moves for each specific container. With the overall goal to minimize the
makespan of all operations. In other words, find the optimal sequence of moves for which the QC is
finished as early as possible given a predefined loadplan.

4.1.1. Basic notation and assumptions
The HFS can be constructed by translating container handling definitions to HFS definitions [19]:

1. Jobs: All actions that need to be performed with one specific container are collected under the
term job. Typically, there are two kinds of jobs: loading (stack to ship) and unloading (ship to
stack) jobs. This definition corresponds to an order in container terminal terminology.

2. Machines: These are the different equipment types: QC, Lift-AGV and YC. Each order requires
actions of all three machines. The equipment types correspond directly to the different stages.

3. Operations: Each job is composed of several operations: a transfer between the quay and the
ship, a transfer between the stack transfer point and the quay and a transfer between the stack
and the stack transfer point. These operations are respectively handled by the QC, the Lift-AGV
and the YC. This definition corresponds to moves in container terminal terminology.

45

46 4. Scheduling model applied to a container terminal

The following assumptions are introduced to formulate the HFS problem:

• The schedule is created to handle peak loads. This means that all QCs are continuously active.
Not necessarily handling vessels. Furthermore, there is a landside peak; which means that it is
busy at the road truck gate. Finally, the number of containers in the yard is large.

• The load and unload sequence plans are known and fixed for each QC. QCs are not allowed to
deviate from these plans.

• Dual-cycling is not considered; a QC will completely finish a loading or unloading bay before
it switches to another loading or unloading bay. However, different QCs could be loading and
unloading simultaneously.

• Tandem moves are not considered; only single 20 ft., single 40 ft. and twinlifting two 20 ft.
containers is considered.

• The locations of containers in the stack and the deep-sea vessels are known. Which means that
the YC and the QC that should handle each container is known beforehand.

• The number of machines in each machine set is fixed and is invulnerable to breakdowns.

• All parallel equipment is equal and can only handle one container simultaneously with the excep-
tion of twinlift moves.

• Orders that have an unknown destination receive a destination located at a place with an average
distance to all possible destinations for that order.

4.1.2. Problem classification
Since a HFS is used to describe the problem, the problem can be classified based on the classification
scheme introduced in [49, 50, 52]. The classification is useful to categorize the problem and compare
performance with other HFS problems. First, the problem will be described in detail to highlight all
facets of the HFS. Subsequently, the 𝛼|𝛽|𝛾 classification will be provided.

• The number of stages in the HFS is equal to three. This corresponds to the number of equipment
types. Each machine within a stage is identical. However, all operations are different. Therefore,
the processing time of each operation is different and dependent on the job. The processing
time is determined by the position of the container in the yard and on the ship for the YC and
QC stage. The processing time on the Lift-AGV stage is determined by the distance between the
respective QC and the respective YC. Therefore, the HFS is classified as a three stage unrelated
parallel machine problem.

• Precedence relations exist on the QC stage. This is because the stowage plan on the ship is
known beforehand; containers can only be (un)loaded in a specific sequence.

• Sequence dependent setup times are used to describe the back route of Lift-AGVs and YCs. A
back route is a route that equipment should travel to pickup their next container after delivering
a container. The travel time is dependent on the sequence of containers since it defines the
origin and the destination of the back route. Additionally, setup times are used at the QC stage
whenever a bayswitch is required.

• Machine eligibility is a required feature since certain containers can only be handled by certain
machines. This holds for all the YC and QC actions. The location in the yard and the position
on the ship directly determines which crane should be selected to handle the container. This is
because QC assignment and yard allocation problems are out of scope.

• Blocking is a required feature to constrain the available buffer space between different operations.
In case of AGVs there is no buffer at all; which means that equipment can only proceed with
its next operation once the next equipment type becomes available. This means that certain
containers block a machine for as long as the next machine is not available. In case of Lift-
AGVs, there is limited buffer capacity present between the Lift-AGV an YC stage. In a HFS this is

4.1. Hybrid Flow Shop Problem 47

modelled by inserting an extra stage with the number of machines equal to the buffer capacity.
Subsequently, the same buffer constraint is used as is used whenever there is no buffer capacity
[53]. The inserted buffer stage does not have any processing times so containers do not require
to stay in the buffer for a certain time. This means that the HFS deploys unrelated parallel
machines on the three stages with machines and parallel identical machines at the buffer stage.

• Bidirectional flow shop is not indicated by [49, 50, 52] but, it is an important aspect on a container
terminal. This is because containers should move between the QC and the YC in both directions.
Some containers might require loading while others require unloading simultaneously. This a
unique aspect of the HFS model considered in this research.

• Release dates are required to couple multiple iterations of the HFS. This is required since a
container terminal is in continuous operation and is not capable of collecting the entire container
plan for its entire lifetime. This means that gradually containers are added to the planning horizon.
Furthermore, the division of the entire container plan into smaller chunks reduces the problem size
significantly. Besides that, on a continuously operating terminal there will always be containers
on the terminal which are currently in progress.

• Twin lift moves should be carried by a single Lift-AGV, which carries both containers simultane-
ously. Furthermore, the QC serves both containers of the twin pair simultaneously. Contrary to
the YC, which serves both containers individually. It is even possible that both containers should
be obtained or delivered from/to different stacks. This feature requires extra constraints which
were not earlier described by other research. Different jobs may require simultaneous handling
by the same machine only on certain stages.

• The objective of the HFS is to minimize the makespan of the entire known container plan. Pri-
marily, the QC should be finished as early as possible. However, also some value is added to the
completion time of other equipment. This is to ensure that containers are removed from the plan
whenever possible.

The above mentioned facets of the HFS lead to the following classification triplet:

𝐹𝐻4, ((𝑅𝑀)) |𝑟 ,𝑀 , 𝑆 , 𝑏𝑙𝑜𝑐𝑘, 𝑝𝑟𝑒𝑐, 𝐵𝑖𝑑𝑖𝑟𝑒𝑐, 𝐽𝑜𝑏𝑝𝑎𝑖𝑟𝑠|�̄� (4.1)

The features Bidirec and Jobpairs are newly introduced in this research. Bidirec is used to describe the
relaxation of unidirectional flow in the flow shop. Jobpairs is a feature introduced to specify that some
containers require simultaneous handling on a stage by one machine. This removes the assumption
that machine capacity is always equal to one. The model developed in this research can be compared
to previous research with Table 4.1.

Article Stages
Machine
type 𝑀 𝑆 block prec 𝑝 ∼ 𝑁(𝜇, 𝜎) Bidirec Jobpairs Objective

Chen [19, 59] 3 R x x x 𝐶
Lau [60] 3 R x x x �̄�
Bish [2] 3 P x x x �̄�
Xin [61, 62] 3 R x 𝐶
Lu [56] 2 P x x x 𝑇
Kim [63] 2 P x �̄� + �̄�
He [64] 3 P,R x x �̄� + 𝑒𝑛𝑒𝑟𝑔𝑦
Kaveshgar [65] 2 R x x 𝐶
Cao [35] 2 P x x x 𝐶
Cao [66] 2 P x x x 𝐶
Kizilay [67] 2 R x x x 𝐶
This thesis 3,4 R x x x x x x Cw

Table 4.1: A table to compare the model developed in this research with previous efforts, indicating the structure, features and
objective value according to the classification scheme of [49, 50, 52]

4.1.3. Conceptual model
Now that the problem is identified, a conceptual model will be constructed which is used to determine
which decision variables are required and what constraints should be imposed.

48 4. Scheduling model applied to a container terminal

The purpose of the model is to determine which machine should handle which container and at what
time. In other words, these are the decision variables. Constraints are required to ensure the following
aspects:

• Operations can only start in the future;

• Two sequential operations on different stages should be separated by the processing time of the
first operation;

• The next stage can only start once the current stage completes an operation;

• A machine cannot proceed with its next operation once there is no possibility to discharge its
current container;

• Setup times between different operations are sequence dependent;

• A machine can only perform one operation simultaneously;

• A job requires one operation on each stage;

• At the QC, the sequence of operations is fixed. Implicitly also specifying which QC handles which
container;

• At the YC the containers that should be handled is known but, the sequence is still variable.

• Twin lift containers should be handled simultaneously at the Lift-AGV and the QC stage.

• Preemption of operations is not allowed. More specifically, the initial states of the machines
cannot be changed.

A visual description of the HFS indicating the different stages is shown in Figure 4.1. Furthermore,
this figure illustrates the difference between the Lift-AGV stage and the other stages. Additionally
it indicates the flow pattern and possible machine options from a given machine. Finally, the figure
indicates the stage indices.

Figure 4.1: Illustration of the HFS applied to a container terminal. The YC and QC stages are represented by multiple small
blocks since the machine assignment is fixed. The Lift-AGV stage is represented by a large block since the machine selection is
an element of the to be developed schedule. Arrows are used to indicate how the different blocks are connected. Containers
can only move along the arrows.

As can be seen in Figure 4.1, each YC has access to its own buffer. This means that the buffer
stage contains multiple spots to place containers but that the buffer is not shared between different
YCs. Therefore, the buffer stage resembles both the YC and the Lift-AGV stage. Containers can only
enter a dedicated pool of buffer locations.

4.1. Hybrid Flow Shop Problem 49

4.1.4. Mathematical formulation
In this section our HFS model is translated into a mathematical formulation. Since the problem size is
often a bottleneck for HFS problems it is of paramount importance to reduce the number of variables.
Therefore, caution should be taken to add artificial variables. However, in some cases it is impos-
sible to avoid adding artificial variables. For this specific problem, artificial variables are required to
mathematically represent the sequence of operations. This is required since setup times are sequence
dependent.
Fortunately, the artificial sequence variables relate very well to the earlier defined decision variables.
Even so well that the artificial variables can replace the decision variables used to describe which ma-
chine handles which container. Since each machine possesses only one sequence of operations, the
handled containers per machine could be extracted from the sequence variables. However, the num-
ber of sequence variables is larger than the number of machine assignment variables. This is because
the artificial sequence variables scale quadratically with the number of containers whereas machine
assignment variables scale linearly with the number of containers. Additionally, two artificial jobs are
created which define the first and the last job of a sequence [35]. These jobs are excluded from the
constraint that they can only be selected once.

The first step towards creating a model is to declare certain parameters and sets.

𝑖, 𝑘 job index 𝑖, 𝑘 ∈ 𝜙 ∩ 𝜙

𝑗 stage index 𝑗 ∈ 1, 2, 3, 4

𝑚 machine index 𝑚 ∈ 1, 2, ...𝑛

𝑛 number of machines on stage 𝑗

𝑁 total number of containers

𝜙 Set of all jobs excluding 𝑖 = 0, 𝑖 = 𝑁 + 1

𝜙 Set of all jobs including the first dummy job 𝑖 = 0

𝜙 Set of all jobs including the last dummy job 𝑖 = 𝑁 + 1

𝑃 set of job pairs with precedence relations

𝑂 operation 𝑖 at stage 𝑗

𝑀 set of machines which can process 𝑂

𝐸 set of jobs that can be performed on machine 𝑚, includes jobs 𝑖 = 0 and 𝑖 = 𝑁 + 1.

𝐾 set of jobs that can form a pair with job 𝑖 on stage 𝑗, includes jobs 𝑘 = 0 and 𝑘 = 𝑁 + 1.

𝑇 set of twinlift operations.

𝑇 the twin pair of container 𝑖.

𝐴 set of containers that is already assigned to equipment.

𝑃𝑟 set of containers that is already assigned to equipment but not in current progress.

𝐿 set of all loading containers.

𝐽 set of stages that a container 𝑖 already past or is being currently processes job 𝑖.

𝑄 number of jobs that must be performed on machine 𝑚

𝑟 release date of job 𝑖 on stage 𝑗.

𝑝 processing time of operation 𝑂

𝑝 processing time of operation 𝑂 whenever operation 𝑖 directly precedes operation 𝑘.

50 4. Scheduling model applied to a container terminal

𝑝 processing time of operation 𝑂 whenever operation 𝑘 directly precedes operation 𝑖.

𝑠 setup time between job 𝑖 and job 𝑘 at stage 𝑗

𝑠 setup time between the dummy job and job 𝑘 on stage 𝑗 for machine 𝑚.

𝐻 a sufficiently large constant.

𝛽 a constant indicating the weight of completion time of operations on the YC stage, 𝛽 ≪ 1.

To get a better feeling of the relative position of sets with respect to other sets, Figure 4.2 is created.
It should be noted that sets 𝜙 and 𝜙 are enclosed by sets 𝜙 and 𝐸 .

(a)
(b)

Figure 4.2: Euler diagrams displaying the enclosement of different sets.

Mathematical Lift-AGV model
Lift-AGV models require a finite sized buffer stage between the YC stage and the Lift-AGV stage.
Mathematically, finite sized buffers can be modeled as an extra stage with the number of machines
equal to the number of buffer spots. The processing time on this inserted stage should be equal to zero
but, the blocking constraint should remain active. Together this ensures that containers can directly
pass the buffer stage but, that containers cannot enter the buffer stage whenever the buffer spot is
claimed by another container or leave the buffer whenever the next machine is occupied. The impact on
the HFS model is that an extra stage is inserted such that the Lift-AGV stage becomes stage three and
the QC stage becomes stage four. The buffer stage will be referred to as rack stage since containers
are placed on a rack. The rack stage shows similarities with both the Lift-AGV and the YC stage in
terms of processable containers. There is a pool of buffer machines which can accept all containers
assigned to a specific YC. Similar to the YC stage, twin moves are separated whenever they are at the
rack stage. An overview of the stage indices can be found in Table 4.2.

stage index [j]
YC stage 1
Rack stage 2
Lift-AGV stage 3
QC stage 4

Table 4.2: Overview of stage indices for the mathematical Lift-AGV model.

• 𝑡 The start time of job 𝑖 on stage 𝑗

• 𝑧 1, if 𝑂 immediately precedes 𝑂 ; 0, otherwise ∀𝑖 ∈ 𝜙, ∀𝑘 ∈ 𝜙 , ∀𝑗 ∈ {1, 2, 3, 4}.

• 𝑧 1, if 𝑂 immediately precedes 𝑂 ; 0, otherwise ∀𝑘 ∈ 𝜙 , ∀𝑗 ∈ {1, 2, 3, 4}, ∀𝑚 ∈ 𝑀 .

4.1. Hybrid Flow Shop Problem 51

The parameters 𝑝 and 𝑝 are only required for twin moves (∀𝑖, 𝑘 ∈ 𝑇) since twin moves are repre-
sented by two sequential single moves with different processing times. Whenever 𝑖, 𝑘 are pairs of a
twin move 𝑝 is replaced by 𝑝 𝑧 + 𝑝 𝑧 . For example, at the QC stage considering an unloading
move, 𝑝 = 𝑝 seconds and 𝑝 = 0 seconds. This ensures that the second container of the twin
pair does not require additional processing time at the QC stage. A similar approach is used at the
Lift-AGV stage to reflect the different driving distances. The twin containers are separated at the YC
stage. Therefore, the processing time of these containers does not change whenever they were/later
become twin pairs. Subsequently, the integrated scheduling problem can be formulated in a HFS style.

Minimize ∑ ∑ ∑∑ (4.2)

Subject to ∀ ∈ , ∀ ∈ { , } (4.3)
() ∀ ∈ ∩ , ∈ { }, ∀ ∈ (4.4)

() ∀ ∈ ∩ , ∀ ∈ { , } (4.5)
() ∀ ∈ , ∀ ∈ { , } (4.6)

() ∀ ∈ , ∀ ∈ { , } (4.7)

∑∑ ∀ , ∈ , ∀ ∈ { , , , }, ∀ ∈ (4.8)

∑ ∀ ∈ ,∀ ∈ { , , , } (4.9)

∑ () ∀ ∈ , ∀ ∈ { , , , } (4.10)

∑ ∀ ∈ ,∀ ∈ ∩ , ∀ ∈ { , , , } (4.11)

∑ ∀ ∈ ∩ , ∀ ∈ , ∀ ∈ { , , , } (4.12)

∀ , ∈ , ∈ { , } (4.13)
() () ∀ , ∈ ∩ , ∀ ∈ { , , , } (4.14)

() ∀ , ∈ ∩ , ∀ ∈ { } (4.15)
() ∀ , ∈ , ∀ ∈ { , } (4.16)

() ∀ , ∈ , ∀ ∈ { , } (4.17)

∑ ∀ ∈ ,∀ ∈ (4.18)

∑ () ∀ , ∈ ∩ , ∀ ∈ (4.19)

∑ ∀ ∈ ∪ , ∀ ∈ , ∀ ∈ { , , } (4.20)

, ∀ , ∈ ∪ , ∀ ∈ { , , , } (4.21)

52 4. Scheduling model applied to a container terminal

Note that whenever 𝑗 + 1 is listed the next stage is meant, not necessarily being stage 𝑗 + 1. This
is because for unloading the next stage is stage 𝑗 − 1. Furthermore, since 1 ≤ 𝑗 ≤ 4, 𝑗 ∈ {1, 2, 3}
whenever 𝑗 + 1 is required and loading containers are considered. Whenever unloading is considered
and 𝑗 − 1 is required; 𝑗 ∈ {2, 3, 4}.
Since the sequence of operations on stage 4 is already known entirely, all the required 𝑧 variables are
known and can thus be excluded as decision variables.
Additionally, variable 𝑧 does not exist; a job can never immediately proceed or precede itself. There-
fore, these variables are excluded.

Mathematical model description
In this section we give a textual description to all constraints presented in the previous section. In the
objective function (Equation 4.2) the makespan is minimized adding the most weight to the completion
time of operations at the QC stage. Since each operation is considered in the objective function,
most weight is indirectly added to the first few operations on each QC. This is because delays in the
beginning propagate to other operations. This is a desired feature of the objective function since the
first few operations are most accurately predicted and are most important to be finished. Besides
that, distribution of jobs to different machines is stimulated by the small negative factor 𝛽. Whenever
the makespan is equal, the jobs should be evenly distributed over all machines. Although 𝛽 ≪ 1,
the difference should not be too large. This is because solvers might disregard changes in the sums
multiplied by 𝛽 whenever the remaining sum is dominant to determine the objective value. This is
because when the objective value changes less than the objective threshold value, solvers consider
their job done.
Constraint 4.3 enforces that jobs start after they are being released. This is only required at the
starting stage and the first job of the sequence since other operations and jobs are forced to start later.
Practically, this constraint enforces that the YC and the QC should finish their current operation before
they become available for a next planning horizon. Constraint 4.4 has a similar function as Constraint
4.3 but, focuses on the Lift-AGV stage. This is required since it is unknown which container is handled
by which Lift-AGV and each Lift-AGV can become available independently.
Constraint 4.5 ensures that a job can only start at the next stage once the current stage is completed.
Constraint 4.7 is required to make use of the sequence dependent processing times for twin moves.
However, at the YC stage containers cannot be twin containers. Therefore, the processing time remains
unchanged and thus Constraint 4.5 applies for all containers in 𝜙. This is expressed by Constraint 4.6.
Constraint 4.8 is only active once the machine that should handle a job is already known. It ensures that
a sequence of 𝑧 is only selected from a subset of 𝜙 since not all 𝑖 and 𝑘 are available. Furthermore,
the number of sequence variables is constraint to the number of jobs that should be handled on the
machine plus one. This is because each sequence starts and ends with a dummy job. In our specific
case this constraint is only active at the YC stage.
Constraint 4.9 ensures that the number of started sequences is equal to the number of machines.
However, once a sequence cannot start at an arbitrary job, a machine might not be able to process
every job, those jobs are excluded for that particular machine. Subsequently that machine receives its
personal constraint that means that a sequence should start at one of the available jobs. Constraint
4.10 is similar to Constraint 4.9 but now to ensure that each sequence is ended at a dummy job.
Similarly to Constraint 4.9, if a machine cannot process every job that machine is given its personal
variant of Constraint 4.10.
Constraint 4.11 ensures that each operation is proceeded by another operation or is the end of the
sequence. Similar is Constraint 4.12, which states that each operation is preceded by another operation
or is the start of the sequence. Both of these constraints exclude infeasible job pairs whenever they
are obliged to be performed on different machines.
Constraint 4.13 ensures that a pair of twin moves is handled by the same machine. This is not required
at stage 1 since different YCs might work on the same twin pair.
Constraint 4.14 is the blocking constraint; it states that whenever job 𝑖 immediately precedes job 𝑘
on stage 𝑗, job 𝑘 cannot start earlier than the start time of job 𝑖 on the next stage plus the setup
time between job 𝑖 and job 𝑘. This is because the start of job 𝑖 on the next stage marks the point in
time where the container is released from the current stage. A timeline is added to better visualize this
process on stage 𝑗 (see Figure 4.3). It can be seen that a container can be processed on the next stage
while the considered stage is busy with a setup. However, it could be possible that the next stage is

4.2. Initial solution heuristic 53

not directly available at 𝑡 + 𝑝 that is when Constraint 4.14 makes sure that operation 𝑘 has to wait.
This effect is shown in Figure 4.4.
Constraint 4.15 is used to separate operations by their processing times and setup times. Practically,
this constraint is only required at the first and last stage since intermediate stages automatically satisfy
this constraint by a combination of Constraint 4.5 and Constraint 4.14. Furthermore, since the entire
sequence of operations is known at the QC stage, 𝑧 becomes superfluous as a decision variable and
becomes an ordinary parameter. Constraint 4.17 is the same as Constraint 4.15 only for twin moves
which have their processing time dependent on the sequence of operations. Practically, since pairs of
twin moves do not really have a sequence at the QC, the same sequence as the sequence on the Lift-
AGV is used at the QC stage. This results in lesser variables and constraints since 𝑧 is superfluous.
For the same reason as for Constraint 4.6, Constraint 4.16 is added specifically for the first stage since
the twin moves are separated here and thus processing times are sequence independent.
Constraint 4.18 ensures that containers that have already passed a stage or that are currently processed
on a stage start their operation at time zero. However, this constraint is not valid whenever an unloading
twin container is currently assigned to a QC or to a Lift-AGV. This is because twin containers are
modelled as sequential single moves with different processing times. Therefore, Constraint 4.19 is
introduced which specifies that at least one of the twin containers starts at zero. Constraint 4.13
subsequently ensures that the other container of the twin pair is processed directly after its twin pair.
Constraint 4.20 ensures that operations that are assigned to equipment but, that have not currently
started can only proceed: containers that are in current progress or containers that have passed that
stage already or their twin pair or the dummy start container. This situation occurs frequently whenever
a machine is driving empty to the grab location whenever a new schedule is desired.
Finally, Constraint 4.21 is used to enforce binary solutions to the decision variables 𝑧 and 𝑧 .

Figure 4.3: Timeline illustrating the setup process with regards to Constraint 4.14.

Figure 4.4: Timeline illustrating the blocking Constraint 4.14.

The total number of decision variables is dependent on the number of stages, the number of
containers and the number of Lift-AGVs. The number of variables can be expressed with Equation
4.22.

𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑁 ⋅ (# 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠) + (𝑁 + 1) ⋅ (𝑛 + 𝑛) + (𝑁 + 1) + 2(𝑁 + 𝑁) (4.22)

Equation 4.22 is based on the situation at TBA where each container can only be processed by
one specific YC and one specific QC. The Lift-AGVs are allowed to handle any container. However,
machines are not allowed to preempt a job. This means that only the first container is constrained to
be processed on a specific Lift-AGV whenever it was already assigned to that Lift-AGV. Furthermore,
the sequence of operations at the QC is known in advance and therefore requires no decision variables.

4.2. Initial solution heuristic
Almost all numerical solvers require an initial solution to start an optimization process. Generally, the
closer the initial solution is to the optimal solution, the quicker the optimization algorithm converges
to the optimal solution. Therefore, the construction of the initial solution is an important part of the
optimization process. For HFS problems typically dispatching rules are used to find an initial solution.
Dispatching rules are simple rules of thumb used to rank jobs and assign them to machines [50]. In
Chen et al. [19] three different heuristics are compared with each other to determine which of them

54 4. Scheduling model applied to a container terminal

most quickly produces an optimal solution when combined with a Tabu Search algorithm. The three
compared heuristics are: Minimum Extra Time (MET), Minimum Completion Time (MCT) and Non-Delay
(ND). It was concluded that the ND heuristic performed best. Therefore, the ND heuristic will be used
in this research as well.

4.2.1. Minimum Extra Time heuristic
MET relies on minimization of the setup times. The idea is that processing times are unavoidable.
Therefore, the quality of a solution is determined primarily by the length of the setup times. The
pseudo-code of the algorithm is as follows [19]:

1. Arrange the containers in numerical order for use on the first stage;

2. Prioritize containers in numerical order. Insert container 𝑖 at every possible position in the machine
sequence developed so far. Subsequently, calculate the extra time 𝑐 for each insertion;

3. Insert container 𝑖 to the position which leads to a minimum extra time;

4. On subsequent stages, the priority follows a First In First Out (FIFO) strategy. Afterwards, the
extra time can be calculated for each insertion. Finally, the container is inserted at the position
which results in the MET.

The extra time of an insertion of container 𝑖 on stage 𝑗 between containers 𝑎 and 𝑏 can be calculated
with Equation 4.23 [19]:

𝑐 = 𝑠 + 𝑠 − 𝑠 (4.23)

The assumption that the quality of a solution is primarily determined by setup times is not necessarily
valid for the integrated container terminal scheduling. This is because the quality of a solution is
primarily determined by the time that equipment is waiting for preceding stages to finish their jobs and
waiting on proceeding stages to relieve them of their current job.

4.2.2. Minimum Completion Time heuristic
MCT is another heuristic that could be used to prioritize moves. A job which can be completed as
early as possible is given the most priority [129]. Subsequently, jobs are assigned to the machines
completely relying on the priority alone.

4.2.3. Non-Delay heuristic
The ND heuristic schedules jobs in numerical order such that a machine is never idle while a task is
waiting to be processed [53]. This heuristic performed best of all three heuristics during the research
of Chen et al. [19]. Therefore, this heuristic is selected for the problem in this research. Compared to
the problem described in [19] the heuristic is expected to perform even better on the problem of this
research since the entire sequence of operations is known at the QC stage. Furthermore, also the YC
that should be selected is already known so the decision space tightens. The pseudocode of the used
ND scheduling heuristic is as follows:

1. Sort containers in numerical order such that precedence relations are satisfied;

2. Start processing container 𝑖 on the first stage (QC/YC stage) as soon as the machine becomes
available plus the setup time to operation 𝑖.

3. Find the machine on the next stage that comes first available and that is allowed to handle
container 𝑖. Availability is the sum of the start time of the current job, the processing time of the
current job plus the setup time to job 𝑖;

4. Start processing container 𝑖 on the next stage (𝑗+1/𝑗−1) at the maximum time of the availability
of the machine and the completion time at the current stage (𝑗);

5. Repeat steps three and four until all stages have been accounted for;

6. Repeat steps two to four until all containers have been planned.

4.2. Initial solution heuristic 55

This heuristic uses a FIFO strategy on all stages which seems reasonable since the containers should
be handled in FIFO order on one stage (the QC stage). For the second container of a twin pair and
already assigned containers, the machine which should handle the container at the Lift-AGV stage is
already known. Therefore, that machine is the sole machine which is allowed to handle the respective
container.
To improve the performance of the schedule, both sequences of a twin pair are evaluated and the best
one is selected. This is because the sequence of a twin move is not fixed by the QC.

Another advantage of the ND heuristic strategy is that multiple solutions can be generated quickly.
This is because there are multiple sorts available that satisfy the precedence relations. This seems
controversial but, since precedence relations are only active for each QC individually, moves using
different QCs can still be sorted in a different way. This is best explained by a simple example shown
in Table 4.3. As can be seen in Table 4.3, the precedence relations for each individual QC are satisfied.
A move with a higher sequence number for one QC is not performed before a move with a lower
sequence number at the same QC. The number of available sorts rapidly increases with the number of
containers and QCs.

Numerical
order QC Move of QC

Numerical
order QC Move of QC

1 1 1 1 1 1
2 1 2 4 2 1
3 1 3 2 1 2
4 2 1 5 2 2
5 2 2 3 1 3
6 2 3 6 2 3

Table 4.3: Two different sorts of containers that both satisfy precedence relations for all QCs

To find an initial solution the ND heuristic is used on multiple feasible sorts. Subsequently, the sort
with the best objective value is selected as an initial solution. Whenever multiple initial solutions are
required, the best number of required solutions could be selected.

Whenever a receding horizon is used during planning, there will be containers which are already in
the system whenever the scheduling starts. These jobs are exceptional jobs that could have already
passed certain stages or are in current progress by a certain machine. The last option is that a machine
is currently underway to grab a certain container. These actions cannot be interrupted. Therefore, for
these operations the machine that the container is to be processed on is fixed and the starting time
is also predetermined. This is accommodated in the initial solution in the following way: for each
stage all the known information is first assigned. Subsequently, the remaining containers enter the ND
heuristic. This method implies that blocking and precedence relations are no longer naturally satisfied.
Therefore, whenever a new container has to be assigned to a machine. Machines that will violate
blocking and precedence relations should be excluded.

4.2.4. TBA’s uncoordinated scheduling heuristic
Another available heuristic is the uncoordinated scheduling heuristic that is currently in use by TBA. This
heuristic is based on a machine perspective instead of a container perspective. Whenever a machine
completes a task and thus comes available for a new task, a scoring strategy is used to determine which
container should be handled next. The detailed outline of TBA’s uncoordinated scheduling heuristic can
be found in Figures 2.10 and 2.11. This heuristic is effective whenever there is great uncertainty in
processing times and sequence order. Therefore, the heuristic is adaptive and easily accommodates to
unexpected delays. However, once all processing times are considered deterministic, and the sequence
of operations at each QC is fixed, the benefits of a machine perspective heuristic disappear. This is
because the scores of the heuristic are easily maximized. This is because the sequence of orders is
known by each machine and can be distributed to each machine is the appropriate order. Furthermore,
the urgency score is a score based on the desired starting time of each machine. The desired starting

56 4. Scheduling model applied to a container terminal

times of containers on one machine are parallel to the optimal sequence. Therefore, whenever all
containers are sorted on desired starting times, considering all QCs simultaneously, both the sequence
score and the urgency scores are maximized. Subsequently, also the setup time to a container could
be minimized since the setup time to a container is known in advance for each machine. Therefore,
a container perspective outperforms a machine perspective. However, the idea that containers should
be supplied to a machine following an urgency score is promising. Therefore, one of the sorts within
the total number of sorts will be a sort where containers are sorted based on their urgency score.
Subsequently, the containers are assigned to machines with the ND heuristic.

Nevertheless, the uncoordinated TBA scheduling technique was developed as well. This is for two
reasons. First, it allows for an easy comparison between TBA’s uncoordinated scheduling heuristic
and the optimized schedule. Furthermore, the heuristic was used numerous times to find bugs in
the mathematical model and the initial schedule generation. This is because it was easy to spot which
container was the bottleneck in the assignment process. Moreover, since the initial solution is generated
quickly it was later added as a second initial solution technique. Therefore, there are now two initial
solution methods of which the best one is selected to proceed with. TBA’s uncoordinated scheduling
heuristic was implemented as follows:

1. Assign all containers which are passed certain stages, are in current progress or are pre-assigned
to specific machines.

2. Whenever a machine comes available select the most urgent available container as the next
operation.

3. Update the availability of the container on the next stage and the availability of the machine.

4. Repeat steps two and three until all containers are processed on each stage.

4.3. Solution method
In this section we evaluate the efficiency and effectiveness of different solution methods. The evaluation
will be based on solving the mathematical Lift-AGV model.
It should be noted that often there are multiple optimal solutions to a HFS problem. This is because
there are multiple identical vehicles. Therefore, a container could be assigned to different vehicles
without changing the objective value. Furthermore, there are multiple solutions with approximately
the same objective value. This means that the optimal value is in one of the multiple figurative valleys
of the solution space. This complicates the solution process since finding improvements in a valley
is difficult. First, the exact solution method B&B is applied to the HFS problem formulated as a MIP
since it delivers the best possible solutions. Subsequently, SA will be used as a metaheuristic since
metaheuristics approach the optimal solution quicker compared to exact solutions. As discussed in
Section 3.5.11, SA is selected as metaheuristic since it is superior to Tabu Search and Genetic Algorithms
when working with large HFS problems [95].

4.3.1. Mixed integer programming
First, MIP is used to model the HFS. A common way to solve MIPs is B&B. B&B provides optimal solu-
tions within reasonable time. However, the computational time increases exponentially with increasing
problem size. Therefore, B&B is only feasible when solving small scale problems. The computational
speed can be increased significantly by passing an initial solution. However, the algorithm is still not
quick enough to solve any of the benchmark problems described in Table 2.1 within reasonable time.
Both MATLAB’s internal B&B algorithm and the industrial level B&B algorithm of Gurobi were used for
evaluation. It was found that Gurobi’s B&B is much quicker compared to MATLAB’s B&B algorithm. This
is because Gurobi performs complex pre- and post-solving which make the algorithm no longer strictly
B&B. One of differences between traditional B&B and the Gurobi’s B&B algorithm is that Gurobi’s B&B
algorithm does not only phantom branches, it is also able to perform plane cuts in the solution space.
With this action the number of attainable solutions reduces quicker. However, the computational time
is reduced significantly by these actions, the computational time remains too excessive. The solution
speed of the B&B algorithm is indicated in Table 4.8.

4.3. Solution method 57

4.3.2. Simulated Annealing
SA was selected as approximative solution technique whenever the exact B&B solution technique proved
insufficient considering the required computational time. SA works sufficiently quick and delivered
proper results. This is in line with what was found in [95], SA is superior to Tabu Search and Genetic
Algorithms when working with large HFS problems.
Several different techniques are required to enable SA to work with the HFS problem considered in this
report. First, the global outline of the SA program is presented. Subsequently, the different steps will
be explained in more detail.

Global outline
The first step of SA is to find an initial solution. To find an initial solution the non-delay heuristic was
used on the sequence sorted based on the urgency score. The details of this heuristic can be found in
Section 4.2.3. Additionally, TBA’s uncoordinated scheduling heuristic was used, the details of this initial
solution can be found in Section 4.2.4. Subsequently, the best one of these two objective values is
saved as 𝑓(𝑥). Thereafter, an iterative process is initiated. The pseudocode of this process is presented
on the next page.

58 4. Scheduling model applied to a container terminal

WHILE # 𝑜𝑓𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 # 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 AND # 𝑜𝑓𝑠𝑡𝑎𝑙𝑙𝑠 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 # 𝑜𝑓 𝑠𝑡𝑎𝑙𝑙𝑠

Draw a random number 0 ≤ 𝑅 ≤ 1.
IF 𝑅 ≤ 𝑌𝐶 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

Select a random container 𝐵 from the YC stage which is not currently in progress or
already removed from the stage.
Select another container 𝐴 at random which is being processed on the same machine
within 𝑡 . seconds of container 𝐵 and is currently not preceding container 𝐵.
Insert container 𝐵 directly after container 𝐴 (see Section 4.3.2).
IF a reparation is required, repair the sequences of other stages in the following order
(see Section 4.3.2):

Repair Rack stage by YC stage.
Repair Lift-AGV stage by Rack stage.
Repair Lift-AGV stage by QC stage.
Repair Rack stage by Lift-AGV stage.
Repair YC stage by Rack stage.

ELSE

Select a container 𝐵 at the Lift-AGV stage which is not currently in progress or already
removed from the stage. The selection process can be found in Section 4.3.2.
Select another container 𝐴 following the selection process described in Section 4.3.2
which is being processed within 𝑡 . seconds of container 𝐵 and is currently not
preceding container 𝐵.
Draw a random number 0 ≤ 𝑅 ≤ 1.
IF container 𝐴 cannot switch machines OR IF 𝑅 ≤ 𝐼𝑛𝑠𝑒𝑟𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐴𝐺𝑉

Insert container 𝐵 directly after container 𝐴 (see Section 4.3.2).
ELSE

Swap container 𝐵 with container 𝐴 (see Section 4.3.2).
IF a reparation is required, repair the sequences of other stages in the following order
(see Section 4.3.2):

Repair Lift-AGV stage by QC stage.
Repair Rack stage by Lift-AGV stage.
Repair YC stage by Rack stage.

Obtain the quality of the new obtained sequence and save it as 𝑓(𝑦) (see Section 4.3.2).
Draw a random number 0 ≤ 𝑅 ≤ 1.

IF 𝑓(𝑦) ≤ 𝑓(𝑥) OR 𝑅 ≤ 𝑒
() ()

𝑓(𝑥) = 𝑓(𝑦) and store the new obtained solution.
Update the temperature based on the temperature schedule.

As can be seen in the pseudocode, YCs do only allow inserts whereas Lift-AGVs allow both inserts
and swaps. Since containers on the YC can only be processed on one machine an insert is productive.
This is because the entire sequence remains intact and only one containers shifts. Generally, an optimal
sequence is a sequence that ensures that loading containers are always available whenever a Lift-AGV
arrives. Unloading containers can be processed at any time and only have priority whenever they
prevent another machine from continuing to process its next container. Therefore, a swap could be
too destructive whereas an insert is more productive on the YC stage.
Lift-AGVs benefit more of swaps instead of inserts. Since containers can be handled by any Lift-AGV
an optimal sequence is generally a sequence that distributes workload evenly over all Lift-AGVs. This
is more natural when using swaps instead of inserts. This is because the initial solution is likely to
produce an evenly distributed workload to all Lift-AGVs. The problem with inserts alone, is that two
inserts are required to restore the initial workload. This is unlikely to be productive for two reasons.

4.3. Solution method 59

First, after the first insertion the chance that the new sequence has a better objective value compared
to the current best objective is slim. Secondly, since containers are chosen at random, it is unlikely
that the machine that received an extra container is chosen in the second insert iteration to discard a
container. Therefore, workload becomes unbalanced when inserts alone are used at the Lift-AGV stage
which is unlikely to lead to a low objective value. On the other hand, swaps alone do not guarantee
to produce the optimal sequence either. This is because with swaps alone, the number of processed
containers on each Lift-AGV can never change. Therefore, a balance is required between the chance
to swap and the chance to insert a container. To complicate things further, whenever a more intelligent
selection procedure is used, inserts on the Lift-AGV stage become more productive than swaps. Since
containers are specifically selected to be removed and added to other sequences (see Section 4.3.2)
Therefore, a balance between swaps and inserts is also determined by the intelligence of the selection
process.
When performing swaps and inserts on the Lift-AGV stage, one has to deal with twin containers as
well. Twin containers should always remain together. Therefore, they are inserted or swapped as a
pair with another container. The other container does not need to be a twin pair as well. Furthermore,
the sequence among the twin pair could also change by an insertion or swap. This is natural by the
definition of a swap or insert, for instance if container 𝐵 is directly inserted after container 𝐴. This
means that when container 𝐵 is the second container of a twin pair, it will become the first container
after the insert. A similar logic is applied with a swap.

Throughout the SA process, several parameters are used. The values assigned to these parameters
can be found in Table 4.4. The parameters will be explained in more detail throughout this chapter.

Parameter Value
Maximum number of iterations 550
Maximum number of stalls 350
% YC inserts 0.45
% AGV inserts 0.75
Initial population 1
time_limit.YC 400
time_limit.AGV.advance 1000
time_limit.AGV.after 100
Horizon length 500

Table 4.4: Values assigned to the parameters used by SA.

Neighbour solution generation
Many heuristics are based on the fact that from a given initial solution a neighbouring solution is
selected and accepted based on certain criteria. This is called local search. A solution is considered
a neighbouring solution whenever the solution has exactly the same sequences of containers on each
machine except for one container which is inserted after another container or one container which
is swapped with another container. This is because this definition of a neighbour ensures that the
neighbour is close to the original solution while maintaining feasibility. Furthermore, the same definition
of neighbours is used in [19, 35, 64, 66, 78]. The insertion or swap should be performed whilst
respecting precedence and machine assignment constraints. To remove a container from one sequence
and insert it somewhere else requires the modification of three sequence variables. Whereas a swap
requires the modification of four variables. To better visualize this, the analogy with a Vehicle Routing
Problem (VRP) is used. On a single stage, the containers handled by machines could be perceived
as cities. The different machines are the available pool of vehicles. The arcs represent the setup
times between the different containers. Finally, the depot represents the dummy-start and dummy-
end container which initializes and completes each sequence. The removal and construction process
is illustrated with Figure 4.5. However, the analogy of the HFS problem with a VRP process raises the
suspicion that the HFS problem is an addition of different VRPs. This suspicion is wrong: the HFS
problem is much more complicated since the different VRPs on each stage are coupled with each other
(see Section 4.3.2). Furthermore, the costs of a route is not equal to the sum of the arc lengths.
Therefore, proven VRP solution techniques do not necessarily work on HFS problems.

60 4. Scheduling model applied to a container terminal

(a) Initial solution (b) Neighbouring solution ob-
tained by an insertion.

(c) Neighbouring solution ob-
tained by a swap.

Figure 4.5: Two possible neighbours of an initial solution for a VRP obtained by a swap of two jobs or by inserting one job in the
job sequence of another machine.

Container selection strategy
To select a container at the Lift-AGV stage, either to swap or to insert, a predictive selection procedure
is used. The selection procedure predicts which containers are most likely to reduce the objective
value. Subsequently, a container is selected based on the likelihood to reduce the objective value. The
selection procedure is explained with an illustration. In Figure 4.6 all containers that cause a delay
in the QC schedule are marked yellow. Furthermore, it can be seen that the container highlighted
pink causes the most delay in the QC schedule. Therefore, it is most likely that by reassigning this
container an improvement in the overall schedule could be realized. However, to include randomness
in the algorithm, which is often beneficial [78], the chance of selecting a container is a function of the
caused delay. Therefore, each of the yellow marked containers could be selected with their probability
proportional to the caused delay in the QC schedule. The cumulative distribution function used to
determine this probability can be found in Figure 4.7. This function shows that the higher the caused
delay a container produces, the more likely it becomes to select that container. The caused delay by
a single container is always scaled with the total delay that is currently in the system. Therefore, the
chance that a container is selected is always equal to one.

Figure 4.6: A schedule of the YC, Lift-AGV and QC, the yellow boxes represent containers that cause delay in the QC schedule.
The pink box represents the container that causes the most delay in the QC schedule. Processing time is the productive working
time of a machine on a container. Setup represents the driving empty time between two containers. Hold time is the time that
a machine cannot proceed with its next operation since there are no discharge opportunities for the current operation. Within
white areas a machine is idle.

4.3. Solution method 61

Figure 4.7: Cumulative distribution function used to select a container at the Lift-AGV stage.

Whenever container B, currently handled by Lift-AGV B, that causes delay in the QC schedule is
selected to be removed, it needs to swap or be inserted with/after another container A, processed by
Lift-AGV A. This selection process could also be done in a predictive way. A swap or insert becomes
more likely to be productive whenever Lift-AGV A is idle during the handling time of container B. This
means that containers after which an idle period is present become more likely to be selected. The
likeliness can be expressed with Figure 4.7. Only now not the caused delay but the idle time is on the
x-axis. Similar to the selection procedure for container B, the waiting time is expressed as a factor of
the total waiting time. Therefore, the chance that a container is selected is always equal to one. In
the situation of Figure 4.6, it is most likely that reassigning the pink marked container to Lift-AGV 13
is the most productive. Since that Lift-AGV has the longest idle time within the black rectangle. The
black rectangle is drawn based on 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡.𝐴𝐺𝑉.𝑎𝑑𝑣𝑎𝑛𝑐𝑒 and 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡.𝐴𝐺𝑉.𝑎𝑓𝑡𝑒𝑟 surrounding
the pink marked container on the Lift-AGV stage. 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡.𝐴𝐺𝑉.𝑎𝑑𝑣𝑎𝑛𝑐𝑒 and 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡.𝐴𝐺𝑉.𝑎𝑓𝑡𝑒𝑟
are not equal since it is more likely that bringing a container forward reduces delay instead of sending
it further back.

A similar selection strategy could be applied to the YC stage. However, tests revealed that the
quality of the obtained solution does not improve significantly within an equal number of iterations.
Since the computational time did increase with respect to a random selection procedure, the predictive
selection procedure is not used at the YC stage. The lagging performance at the YC stage could be
attributed to the fact that the YC and the QC stage are not successive. This means that delay in the
QC schedule is not a proper estimator for delays originating at the YC stage.

Repair algorithm
As said in Section 4.3.2, not every insertion of one container into another sequence of containers leads
to a new feasible solution. This is because since there are no infinite buffers between different stages,
it could be that two subsequent stages have containers sorted in different orders. Such a solution
satisfies all equality constraints (constraints containing sequence variables only) but, is infeasible for
the inequality constraints. Therefore, after an insertion of a container is performed on one stage, the
other stages are repaired to ensure that precedence and blocking constraints are taken into account.
This means that all containers which are present on two machines operating on subsequent stages
should be handled in the same order. A sequence that requires reparation is shown on the left of
Table 4.5. The sequence of operations on AGV1 conflicts with the sequence of operation on QC1. For
this particular problem, the QC sequence is always leading when repairing another sequence. This
is because the precedence relations on the QC stage completely define the sequence. On the other
stages, it was chosen that the stage on which the insertion took place is leading when repairing another
sequence.

62 4. Scheduling model applied to a container terminal

AGV1 2 7 1 9 5 AGV1 1 7 2 9 5
AGV2 6 3 4 8 10 AGV2 6 3 4 8 10

QC1 1 2 3 4 5 QC1 1 2 3 4 5
QC2 6 7 8 9 10 QC2 6 7 8 9 10

Table 4.5: Left: A faulty sequence. Right: A repaired sequence. The sequence in the left is faulty since the order of containers
handled on AGV1 is different from the order of handled containers on QC1

The type of required reparation indicated in Table 4.5 is most common when inserting containers
to another position in the sequence. However, there is also another possible sequence conflict that
could manifest when adjusting sequences. This conflict could occur whenever the sequence of handled
containers is different over multiple stages. Therefore, this conflict has to do with multi-stage blocking.
The conflict is best explained by an example (see Table 4.6). Each YC has access to two different
racks, racks 1 and 2 for YC1 and racks 3 and 4 for YC2. Although the sequence of containers handled
by both subsequent machines is valid, the complete schedule is not valid. This is because container
5 cannot be discharged to Rack4 as long as container 3 is not removed. But, the AGV is unable to
remove container 3 since it is first waiting for container 1 which is handled after container 5 by the
YC. This problem could be resolved similar to the previous conflict. However, it was chosen to ignore
this possible conflict. This is because it is rather conservative to schedule all containers along every
stage in the same order. There are many possible sequences that do not experience the described
flaw whenever the sequence of containers is different along different stages. The flaw is quite rare
and mainly manifests itself whenever an insertion is applied on really small problems as described in
the example. Therefore, whenever a neighbour is suggested that contains this flaw it is simply ignored
and a new neighbour is sought.

YC1 2
YC2 3 5 1 4

Rack1 2
Rack2
Rack3 1 4
Rack4 3 5

AGV1 1 2 3 4 5

QC1 1 2 3 4 5

Table 4.6: A faulty sequence of operations. The yard crane cannot start processing container 1 since there is no ability to
discharge container 5.

Quality of an obtained sequence
As was indicated in Section 4.3.2, the sum of the arc lengths in the ’VRP’ is not equal to the objective
value. This is because a vehicle has to remain in a given city for a while (the processing time).
Furthermore, the time of arrival in a city influences the time spend by another vehicle from a different
stage in the same city. Either it has to wait because it is too early, or the vehicle cannot leave because
the next vehicle is not ready. In other words, the objective value is strongly dependent on the starting
time of each machine on each container since it influences the starting times on other stages. This
has been tried to visualize with Figure 4.8. Therefore, to calculate the objective value; the complete
problem, with exclusion of the sequence variables, should be solved once the quality of a new sequence
is desired. Fortunately, this can be done rather efficiently. This is because when the sequence of
operations is known, by insertion and reparation, the only unknown variables left are the continuous
variables representing the starting times of different operations. Furthermore, each equality constraint
is naturally satisfied whenever a feasible sequence was found. Therefore, to find optimal starting times
corresponding to a given sequence, an optimization problem consisting solely of continuous variables
and inequality constraints should be solved. An optimization problem that consists solely of continuous
variables can be solved much quicker compared to problems consisting of both discrete and continuous

4.3. Solution method 63

variables.
The remaining linear program was solved with both MATLAB’s internal Linear Programming (LP) solver
and with Gurobi’s solver. It was found that Gurobi’s solver was approximately five times as fast as
MATLAB’s solver. Therefore, Gurobi’s LP solver was selected to solve the continuous LP problem.
Gurobi’s algorithm is very advanced and allows users to control many different settings. Whereas
MATLAB’s solver is much more closed off. Gurobi’s default settings are generally very good and do not
need to be changed unless there is a problem. Therefore, all settings remained at their default values.
During future research; it is advised to better investigate the effect of tuning Gurobi’s solver parameters.
One of the features that speeds up Gurobi’s solver is that it employs a presolver. Presolving means
that the constraints and variables are examined and removed whenever possible [130]. This could be
because they are redundant. Furthermore, the problem is properly scaled by presolving algorithms
which improves the computational efficiency. However, the benefits of presolving scale with the quality
of the initial model.

Figure 4.8: A visualization of the dependencies of different VRPs on two different stages. The pink, green and red sequences
are on a different stage than the yellow, cyan and blue sequences.

Temperature schedule
Important when using SA is the temperature schedule. In essence, the temperature schedule defines
the probability of accepting a worsening move. The presence of a probability to accept a worsening
move is important since it offers the possibility of escaping a local minimum. The temperature schedule
that was used during this research is shown in Figure 4.9. The initial temperature is set to 100. Each
7th iteration the temperature is multiplied by 0.5 which means an exponential decrease in temperature.
Each 50th iteration a reheating with 75 degrees takes places. This means that the temperature attains a
stable envelope whenever the temperature reaches 75 after reheating. This temperature schedule was
chosen for two reasons. First, it is assumed that the initial solution is quite good so an investigation
to that solution should start immediately. Whenever that in depth search is complete, a relatively
new solution could be explored which is subsequently investigated. Besides that, the objective value
could change very rapidly even after a single swap or insertion. Therefore, differences in objective
value above 1000 are not uncommon. These solutions are nearly always discarded but, this illustrates
the need for relatively high temperatures somewhere along the process. All constants that are used
to specify the temperature schedule are based on the performance on a limited number of samples.
Therefore, it is not excluded that there exist better temperature schedules. The constants that are
used are displayed in Table 4.7.

64 4. Scheduling model applied to a container terminal

Start Temperature 100
Multiplication 0.5
Reheat 75
Iterations till multiplication 7
Iterations till reheat 50

Table 4.7: Parameters used in the temperature schedule by the SA algorithm.

Figure 4.9: The temperature schedule used by the SA algorithm.

Stopping criteria
The SA process is stopped once a stopping criterion is encountered. Three different stopping criteria
are present in the SA algorithm of this thesis. The first, most dominant, stopping criterion stops
the optimization process as soon as a certain number of iterations are performed. To find a proper
value for the maximum number of iterations; a study into the development of the objective value
is performed. The study is based on the development in objective value for 40 different samples.
The progress in objective value with respect to the number of iterations is shown in Figure 4.10. To
compare performance of different samples, the objective values are scaled between 0 and 1. The
highest attained objective value is set to 1 and the lowest attained objective value within 800 iterations
is set to 0. Subsequently, intermediate objective values are scaled proportionally.

4.3. Solution method 65

Figure 4.10: Averaged, normalized progress of the objective value of 40 different instances with 5 QCs.

As expected, the normalized averaged objective value shows high frequency behaviour. This is
expected since the objective value could change rapidly even by only one swap/insert. Furthermore,
also as expected, the low frequency behaviour approximates a negative exponential function. This is
logical since gradually delays are removed focusing on the larger delays first.
To determine the maximum number of iterations, one should balance between the potential gain and
the extra effort in terms of computational time. As can be seen in Figure 4.10, the objective value
stabilizes between 700 and 800 iterations. This is at an objective value that is 6.5 times as low as the
initial objective value. At approximately 550 iterations the objective value has decreased by a factor
5. The extra 150 iterations are considered too expensive in terms of computational time with regards
to the potential gain. Therefore, 550 iterations is selected as the maximum number of iterations.
However, it should be stressed that constraining the number of iterations is just a trade-off between
performance and computational time.

Additionally, the SA iterative cycle is ceased once the objective value does not improve for 350
successive iterations (see Table 4.4). This happens rarely but, prevents the algorithm from spending
too much time on cycling iterations.

Lastly, the SA algorithm is terminated when the QC schedule contains no delays anymore. Once
the QC schedule can no longer be improved; the potential gain is considered insufficient. Therefore,
the optimization can be stopped to save time.

4.3.3. Summary of the simulated annealing algorithm
Summarizing, as a solution technique a tailored variant of SA is selected. This is because B&B did
not find solutions sufficiently quick. Therefore, an approximative solution technique is selected. This
solution technique is SA since it balances well between performance and computational time. The
different blocks of the SA algorithm are visualized with Figure 4.11. This figure highlights the separation
of the different blocks of the algorithm. Furthermore, it indicates the relative position of each block with
respect to the others. First, find and select an initial solution. Subsequently, select two containers on
the same stage that are used to generate a neighbouring solution. If required, repair this neighbouring
solution to ensure feasibility. As soon as the neighbouring solution is feasible, evaluate the quality with
LP. Depending on the quality of the newly obtained solution, accept or reject the neighbouring solution.

66 4. Scheduling model applied to a container terminal

Finally, reset and update the parameters to repeat the cycle. This process is repeated until a stopping
criterion is encountered.

Figure 4.11: The SA algorithm visualized by breaking it up in successive blocks.

4.3.4. Algorithm performance
The performance of B&B and SA is compared in this section. The comparison is made for increasing
problem sizes. For each problem size, only one sample is evaluated. The SA algorithm was repeated
for each different sample with five different seeds to mitigate the effects of randomness. Besides that,
the SA algorithm is also evaluated when more time is available. This obtained solution is called the
better solution. To obtain the better solution the maximum number of iterations is increased to 1000
and the SA is repeated 10 times with different initial solutions. Subsequently, the best found solution is
selected. The results of the comparison between B&B and the two SA variants are shown in Table 4.8.
All of these experiments are performed with an Intel i7-7700HQ CPU @ 2.8 GHz processor. It can be
seen that the optimality gap grows with increasing problem sizes. However, the terminal with two and
seven QCs do not follow this pattern. This is because for certain samples the SA algorithm performs
better than on others. This is not related to the terminal size but, to the characteristics of the container
orders. Overall, the performance of the SA algorithm is good. Especially compared to performance of
algorithms developed by other researchers (see Table 3.3). On top of that, the SA algorithm is quick
compared to other research [19, 59–62, 64] (see Table 3.3). Therefore, this research delivered a new
algorithm to solve HFS problems very efficiently (balance between performance and computational
time). To achieve this performance, the number of iterations was set to 550 for each experiment.
More iterations will lead to a lower optimality gap but also, a longer computational time.
The computational time of the SA algorithm is more stable compared to the B&B algorithm. It should be
stressed that there is no polynomial formula to describe the computational time since the HFS problem
is NP-hard [79].
It is possible to qualitatively say something about the expected computational time. Whenever B&B
solution technique is selected, the computational time is dependent on the number of variables and
the number of constraints. Where the number of variables has a bigger effect than the number of
constraints [78]. After several experimental runs, it was found that the computational time is also
correlated strongly with the average number of jobs per machine. Whenever a machine is very busy, the
computational time increases significantly compared to an instance where machines are predominantly
idle. This effect could be attributed to the fact that when there is enough idle time available, the
consequences of swapping two jobs in the sequence are marginal or absent. This means that the
solution converges quicker to the global optimum since there are lesser local minimums. Therefore,
the global optimum is in a larger valley. Instead of a single gap. To arrive in a large valley is much
easier compared to finding a single deepest gap within a rough landscape.

4.4. Concluding remarks 67

To considerably improve the computational speed of both the SA and the B&B algorithm. The
buffer between the YC and the Lift-AGV could be assumed to have infinite capacity. This is a major
simplification to the mathematical model since an entire stage, associated with the most machines, is
removed. The computational time reduces since two complete sets of blocking constraints disappear.
However, since buffers are not really infinite the model separates itself from reality. The simplification
could be justified because benchmark runs revealed that machines did never have to wait for buffers
to free up (see Section 2.3.4). Therefore, buffers seemed infinite since capacity was always available.
For the SA algorithm specifically, the removal of the rack stage removes the requirement to repair YC
and Lift-AGV sequences by each other. This reduces the computational time significantly. All results
shown do consider infinite buffer capacity between the YC and the Lift-AGV.
To indicate the scaleability of the algorithm, results obtained on larger sized terminals are presented in
Table 4.8. However, the comparison with B&B is not made since computational times of B&B solutions
are too excessive.

Problem size Branch and Bound Simulated annealing quick solution Simulated annealing better solution

QC AGV YC CNT
Objective
value

Makespan
(MS) [s]

Time
[s]

Objective
value

Makespan
(MS) [s]

Time
[s]

Opt
gap

MS
gap

Objective
value

Makespan
(MS) [s]

Time
[s]

Opt
gap

MS
gap

1 4 3 10 7299.8 1568 0.1 7313.4 1568 1.3 0% 0% 7313.4 1568 21.7 0% 0%
2 8 5 20 19316.8 1784 0.9 20619.7 1971 1.5 7% 11% 19429.4 1816 23.9 1% 2%
3 12 8 30 40856.5 2857 16.3 42015.3 2932 1.8 3% 3% 41006.8 2857 30.5 0% 0%
4 16 10 40 41764.1 1960 71.1 42332.2 2008 2.1 1% 2% 42310.9 2008 29.7 1% 2%
5 20 13 50 50791.1 1910 2928.4 52672.1 1969 3.1 4% 3% 51517.2 1917 48.7 1% 0%
6 24 15 60 63987.5 2093 3762.8 66139.6 2169 2.5 3% 4% 65900.6 2169 43.1 3% 4%
7 28 18 70 69608.4 2373 7206.1 77214.0 2600 2.8 11% 10% 73937.1 2373 52.2 6% 0%
8 32 20 80 90604.23 2340 7206.1 95052.6 2392 3.3 5% 2% 93617.7 2340 57.6 3% 0%
9 36 23 90 - - - 102894.6 3330 3.8 - - 101007 3330 64.3 - -
10 40 25 100 - - - 104969.8 2173 4.4 - - 103365.4 2141 69.6 - -
11 44 28 110 - - - 110268.7 2369 4.6 - - 109714.6 2369 78.0 - -
12 48 30 120 - - - 131096.5 2819 4.9 - - 128267.2 2634 84.3 - -
13 52 33 130 - - - 142717.3 2687 5.4 - - 140837.6 2468 100.5 - -
14 56 35 140 - - - 164543.3 3012 6.0 - - 163711.6 2787 108.7 - -
15 60 38 150 - - - 159654.5 2423 6.7 - - 157237.3 2397 117.0 - -
16 64 40 160 - - - 169312.9 2589 7.5 - - 164655.5 2550 135.8 - -
17 68 43 170 - - - 192067.5 2599 8.9 - - 190296.5 2599 148.6 - -
18 72 45 180 - - - 212399.7 2566 9.5 - - 206932.7 2420 169.3 - -
19 76 48 190 - - - 218903.8 2854 10.0 - - 213542.3 2816 178.4 - -
20 80 50 200 - - - 214730.0 2434 11.3 - - 209483.9 2404 194.2 - -
21 84 53 210 - - - 245257.8 3011 12.5 - - 239076 2995 216.6 - -
22 88 55 220 - - - 244952.5 2299 14.4 - - 237181.5 2163 254.0 - -
23 92 58 230 - - - 288390.8 2966 14.8 - - 278780.2 2930 282.4 - -
24 96 60 240 - - - 302116.9 2777 21.0 - - 297615 2609 398.9 - -

Table 4.8: Optimization results for 8 different sized instances. The SA results have a quick solution (1 replication 550 iterations)
and a better solution (10 replications 1000 iterations). The number of AGVs, YCs and Containers (CNT) is a function of the
number of QCs. A - indicates that no results are available. This is because B&B did not find solutions within reasonable time.

In many cases the SA annealing algorithm is able to find a solution with the shortest makespan.
However, this solution is not always considered as the best solution. This is because the objective
function does not consist of makespan alone. Furthermore, there is a considerable improvement for
the SA variants. However, also the time to arrive at the solution increased significantly. Therefore, for
operational terminals it is advised to use the quick solution.

4.4. Concluding remarks
Concluding, a model is developed that integrates the operations of three different types of equipment
operating on the waterside of a container terminal. These equipment types are YCs, Lift-AGVs and QCs.
The aim was to construct a coordinated schedule that approximates optimal handling of containers.
The model used to construct the coordinated schedule is an extended version of the HFS model. The
extension lies in the two added features: bidirectional and job pairs. The former enables jobs to move
through the HFS in both directions, the latter constrains certain jobs to be performed simultaneously by
a single machine. Since the mathematical model is too complex to be solved with exact methods within
a realistic time, an approximative solution technique is developed. This solution technique is based on
SA. The exact solution is approximated by splitting the problem in a discrete and a continuous part. The
discrete part uses a local search method to find better alternatives to the current solution by predicative
reassignment of jobs to machines. Where predictive means that, with hindsight of the problem, it is

68 4. Scheduling model applied to a container terminal

predicted which job reassignments are most likely to improve the current solution. The continuous part
can subsequently be solved quickly with LP. Computational results prove that the developed solution
technique is capable of finding solutions with relatively small optimality gaps within a fraction of the
time that B&B requires even for very large terminals.

To proceed with the developed model and solution technique several future research directions are
indicated:

1. The scheduling algorithm could be coupled to a real terminal to validate the schedule and to
enable comparison with the current scheduling techniques applied by container terminals.

2. A library of HFS test problems is desired that allow for comparison of different solution techniques
developed by multiple researchers.

3. The mathematical model could be extended with more features such as battery changes.

4. The mathematical model could be extended by integrating the landside of the terminal as well.

5. The solution technique could be updated by using dynamic settings for different parameters based
on the problem at hand.

6. A new objective function that truly represents the container terminal could be formulated. When
integrating this new objective function to the mathematical model, the solution technique should
be updated as well.

For the remaining part of this research the focus will be at future work number one: integrating
the scheduling algorithm with a real terminal. This is revolutionary with regards to container terminal
scheduling since most other published scheduling algorithms [2, 19, 35, 56, 59–66] remain purely
theoretical.

5
Simulation results

In this chapter we first describe how the mathematical model is integrated with the simulation model
of TBA. Subsequently, we will present the results obtained with the simulation program when the
coordinated schedule is integrated with TBA’s simulation software. Three types of experiments are
conducted. First, some small scale experiments are performed to analyze the performance of the co-
ordinated schedule. However, more importantly: expose the differences between the mathematical
model and the simulation model. Besides that, these small scale experiments helped to determine
proper settings for the mathematical model in combination with the simulation model. These small
scale experiments consist of small controllable instances that allow for exact logging. Second, control-
lable simulation experiments of 8 hours are performed to obtain statistical proof for claims based on
the small scale experiments. Finally, large scale experiments are performed to compare performance
of the uncoordinated scheduling heuristic and the coordinated schedule when applied to a random
realistic terminal. Once all these results are obtained, comments on the research are presented and a
preliminary conclusion is drawn.

5.1. Coupling between eM-Plant and MATLAB
The simulation model of TBA is built in a simulation program called eM-Plant. This program is unable
to perform linear programming or to perform quick calculations on large matrices. Therefore, MATLAB
is used to construct and solve the mathematical model. Besides that, there is personal preference for
using MATLAB since I was more familiar with that program. The disadvantage of using two different
programs is that communication needs to be established between the different programs. MATLAB
and eM-Plant do no support a direct communication between each other. Therefore, a third program
should be used to store data which both eM-Plant and MATLAB can access; to read and to write. A SQL
database is selected to do this since: it supports all required datatypes, is accessible by both eM-Plant
and MATLAB and allows quick access.

5.1.1. Communication between eM-Plant and MATLAB
The communication protocol is designed as follows: eM-Plant is ordered to generate a table that
contains all the required input data. Subsequently, eM-Plant writes this data to the SQL database. In
the mean time, MATLAB is waiting for updates to the SQL database. Whenever an update is registered,
MATLAB constructs a schedule based on the imported data. Once the construction of a schedule is
complete, a table is generated and stored in the SQL database with output data. This data is accessible
by eM-Plant whenever required. A summarized example of all input and output tables is presented in
Tables 5.1, 5.2 and 5.3. To keep track of the updates, a counter of the update is implemented. Each
time something is stored in the database, the counter is increased by one. To ensure that no data is
lost, eM-Plant is only allowed to access the database whenever the counter is even. MATLAB is granted
access to the database whenever the counter is odd. Because of this extra check, it is guaranteed that
the output of each program arrives at the other program.

69

70 5. Simulation results

order

container_id

YC AG
V

Q
C

order_type

sequence_no

sequence_key

processing_YC

processing_AG
V

processing_Q
C

tw
in_pair

current_position

current_progress

tim
e_rem

aining

QC1_1_37 CID_15271 Module11 AGVL05 QC1 loading 37 QC1_1 0.0 207.9 41.7 AGVL05 TRUE 186.51
QC1_1_38 CID_12933 Module13 AGVL20 QC1 loading 38 QC1_1 0.0 185.5 41.0 AGVL20 TRUE 87.53
QC1_1_39 CID_17120 Module07 AGVL09 QC1 loading 39 QC1_1 0.0 114.1 40.3 AGVL09 TRUE 124.13
QC1_1_44 CID_12928 Module13 QC1 loading 44 QC1_1 0.0 201.7 76.5 Module13 FALSE
QC1_1_45 CID_5703 Module06 QC1 loading 45 QC1_1 80.4 118.4 76.1 Module06 FALSE
QC1_2_1 CID_7909 Module07 QC1 loading 46 QC1_2 91.6 130.3 60.0 Module07 FALSE
QC2_1_37 QC2_1_D_15 Module13 AGVL10 QC2 unloading 37 QC2_1 131.5 168.8 0.0 AGVL10 TRUE 149.09
QC2_1_38 QC2_1_D_36 Module01 AGVL18 QC2 unloading 38 QC2_1 116.3 116.0 0.0 AGVL18 TRUE 123.75
QC2_1_39 QC2_1_D_31 Module10 AGVL03 QC2 unloading 39 QC2_1 113.1 215.0 54.3 QC2 TRUE 51.80
QC3_2_1 CID_6722 Module04 AGVL16 QC3 loading 26 QC3_2 0.0 30.0 50.9 QC3_2_2 AGVL16 TRUE 55.91
QC3_2_2 CID_10565 Module04 AGVL16 QC3 loading 26 QC3_2 0.0 30.0 50.9 QC3_2_1 AGVL16 TRUE 55.91
QC3_2_3 CID_14450 Module12 AGVL02 QC3 loading 27 QC3_2 0.0 30.0 51.5 QC3_2_4 AGVL02 TRUE 58.25
QC3_2_4 CID_11604 Module12 AGVL02 QC3 loading 27 QC3_2 0.0 30.0 51.5 QC3_2_3 AGVL02 TRUE 58.25

Table 5.1: A short example of the data exported by eM-Plant to the SQL database.

In Table 5.1 all the known order information is combined. The first two columns show the respective
order and the container-id. The next three columns state the planned vehicles. Subsequently, the order
type, the sequence number and the sequence key specify the order of operations along the different
machines and while processing the ship. The processing times define the times that a container should
spend at a given stage. In the column twin-pair, the twin pair of the respective container is mentioned.
Finally, the last three columns provide information concerning the current status of the container.

AGV order location time2grab idle
.Models.RMG_AGV_Lift.AGVL01 QC2_1_4 WS03 FALSE
.Models.RMG_AGV_Lift.AGVL02 QC2_1_2 QC2 FALSE
.Models.RMG_AGV_Lift.AGVL03 QC3_1_3 WS09 FALSE
.Models.RMG_AGV_Lift.AGVL04 QC5_1_9 QC5 30 FALSE
.Models.RMG_AGV_Lift.AGVL05 QC2_1_3 QC2 FALSE
.Models.RMG_AGV_Lift.AGVL06 QC1_1_5 QC1 FALSE
.Models.RMG_AGV_Lift.AGVL07 batterychange BatCharge1 103.63 TRUE
.Models.RMG_AGV_Lift.AGVL08 QC1_1_7 QC3 42.97 FALSE
.Models.RMG_AGV_Lift.AGVL09 QC5_1_7 QC5 FALSE
.Models.RMG_AGV_Lift.AGVL10 QC4_1_7 WS08 FALSE
.Models.RMG_AGV_Lift.AGVL11 QC4_1_8 WS04 FALSE

Table 5.2: The information of the different AGV statuses generated by eM-Plant.

In Table 5.2 the current status of the AGVs is presented. This information is required to determine
the time required to reach the pickup position of the first order. In the first column, the respective
AGV is listed. In the second column, the order that is currently claimed by that respective AGV is
stated. This could be while the container is loaded on the AGV or while the AGV is driving to the pickup
location of the container. The location signifies the location on the terminal of the current destination
of the AGV. In the column ’time2grab’ the time required for the AGV to finish grabbing a container is
presented. Therefore, this time is only communicated when the AGV carries no container at the time
of constructing the table. When the AGV is in the battery station, the time required to exit the battery
station is presented here. The last column indicates whether an AGV is assignable to any order or
whether it is currently reserved to complete another order first.

5.1. Coupling between eM-Plant and MATLAB 71

AGV Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Order 7
AGV1 QC1_2_11 QC1_2_12 QC1_2_13 QC1_2_14 QC1_2_23
AGV2 QC1_2_24 QC1_2_27 QC1_2_28
AGV3 QC2_1_36 QC2_1_37 QC2_1_38 QC2_1_39
AGV4 QC1_2_29 QC1_2_30 QC2_1_35
AGV5 QC2_1_40 QC2_2_1 QC2_2_2 QC2_2_3 QC2_2_4 QC3_1_34
AGV6 QC3_1_35 QC3_1_36 QC3_1_37 QC3_1_38 QC3_1_39
AGV7 QC3_1_40 QC3_2_1 QC3_2_2 QC3_2_3
AGV8 QC4_1_25 QC4_1_26 QC4_1_27 QC4_1_28 QC4_1_29
AGV9 QC4_1_30 QC4_1_31 QC4_1_32
AGV10 QC4_1_33 QC4_1_34 QC5_1_15 QC5_1_16 QC5_2_17 QC5_2_18
AGV11 QC5_2_19 QC5_2_20 QC5_2_21 QC5_2_22

Table 5.3: The produced output generated by MATLAB and exported to eM-Plant for the AGV stage.

In Table 5.3 a possible output of the MATLAB program is presented. In the first column, a specific
vehicle is mentioned. In the columns to the right, the sequence of orders for that vehicle is presented.
The orders correspond to the orders imported from eM-Plant as in Table 5.1. A similar table is generated
for the other stages.

5.1.2. Order assignment
To ensure that eM-Plant obeys the schedule generated with MATLAB; a job assignment process was
implemented. This process consists partly of TBA’s job assignment described in Figures 2.11 and 2.10.
The exclusion procedure remains intact, only the scoring mechanism is changed. An order, remaining
after the exclusion process, receives a huge bonus if it is the first order in the newly generated sequence
of operations received from the MATLAB program. This ensures that the first order scheduled for a
vehicle receives the highest bonus and is therefore selected. The exclusion process is maintained
because this offers robustness and a validated order selection. Therefore, some of the intelligence
currently available in the eM-Plant model is used.

5.1.3. Parameters introduced by coupling eM-Plant to MATLAB
By coupling eM-Plant and MATLAB, several parameters need to be specified. These parameters are:
the horizon length and the updating frequency. The horizon length determines the period for which
the schedule is generated. The longer this period, the more computational effort. However, further
horizons potentially offer a more optimal planning. The horizon length in itself is a bit fictitious since at
the start of the scheduling process; it is unknown how long an order takes. Therefore, the cumulative
sum of the processing times at the QC is used to determine which containers are contained within
the horizon. Regarding the updating frequency, the total computational time required to generate
schedules increases with increasing frequency. However, there will be a more accurate representation
of the current situation at the terminal once a higher updating frequency is used. The used horizon
length and updating frequency are indicated in Table 5.4.

Value
Horizon length [s] 800
Updating frequency [Hz] 0.1

Table 5.4: Values assigned to parameters required to couple eM-Plant with MATLAB.

5.1.4. AGV interference
As was introduced in Section 1.1, the coordinated planning of this thesis considers scheduling and
dispatching but, it ignores routing. It is expected that this will introduce a big difference between the
planned schedule and the realised schedule. This is because without considering routing, the terminal
is prone to congestions which drastically increase processing times of Lift-AGV jobs. Therefore, the
estimated drivetimes based on the distance between origin and destination are compared with the
realised drivetimes during simulation. The result of this experiment is presented in Figure 5.1. As can
be seen, for the majority of the samples, the estimated drivetime was too optimistic. Especially on

72 5. Simulation results

shorter paths the estimated drivetime is too short, whereas on longer paths the estimated drivetime
becomes pessimistic. The realised drivetime is obtained by using the average of over 100 samples for
each origin-destination pair. Unfortunately, due to memory issues and SQL limitations, only the average
could be obtained. Ideally, individual logs are desired such that standard deviations and distributions
could be estimated. However, since this data is not available; averages are the best estimates. After
obtaining Figure 5.1, the realised drivetime is used to estimate the processing time of the AGVs instead
of the estimate based on the distance. The disadvantage of this approach is that data needs to be
acquired of the specific terminal before the algorithm could be used. Therefore, to make the algorithm
more robust the algorithm would benefit from a more accurate prediction of the driving times without
using terminal specific information. Another option would be to dynamically update the estimated
drivetime along with the simulation.

Figure 5.1: The difference between estimated and realised drivetime.

5.2. Small scale experiments
In this section we clarify what is meant by a small scale experiment and why these are performed and
with what settings. Subsequently, results of these small scale experiments are presented. Finally, an
extensive analysis into these results is performed.

Small scale experiments are experiments that span a specific set of containers. This set of containers
spans all containers that are available within one horizon length. Small scale experiments allow users
to compare performance of different settings or strategies on the same controlled environment. This
is because, during these small scale experiments, data could be gathered and logged on a detailed
level. The set of containers within one horizon length is called an instance. Therefore, small scale
experiments are used to asses the performance during these instances. The process of generating an
instance is described with Figure 5.2.
First, the simulation is started and uses TBA’s uncoordinated scheduling heuristic. At a random point
in time (𝑃); the simulation is halted. Subsequently, data is exported to MATLAB and a schedule is
constructed. Thereafter, the simulation is performed twice for all containers in the current plan. The
first simulation applies TBA’s uncoordinated scheduling heuristic and the second simulation applies the
coordinated schedule. When desired, more duplicates of the same instance could be evaluated with
different settings/strategies. By the time that all containers are processed, the realised execution plans
can be compared to the theoretical plan made at 𝑃 and to each other. Figure 5.2 shows that when

5.2. Small scale experiments 73

applying the coordinated schedule, the schedule is generated repetitively. This is because input data
may change during simulation. With a control layer the schedule is able to anticipate to these input
changes by adjusting the schedule designed at 𝑃 .

Figure 5.2: Description of an instance with respect to time.

It is stressed that the purpose of small scale experiments is: to see the effect of different settings
and strategies, to analyze the similarities and differences between the mathematical model and the
simulation model and to indicate which scenarios are likely to produce positive/negative results when
used in a larger experiment. The purpose of small scale experiments is not to accept/reject the hy-
pothesis that a coordinated schedule is better than TBA’s current uncoordinated scheduling heuristic.

Prior to generating an instance, a scenario should be selected. Since analysis is one of the purposes
of small scale experiments, it was decided to simplify the terminal such that the QCs all have the same
function (loading, unloading, twinlift loading and twinlift unloading). This ensures that during each
instance there is sufficient data regarding a QC function to analyze. Moreover, this enables users to
predict which of the QC functions is likely to benefit from a coordinated schedule. Besides that, the
size of the terminal is maintained constant and the terminal employs Lift-AGVs.

5.2.1. Results of small scale experiments
Results of the small scale tests are presented in this section. In the rightmost column of Tables 5.5 to
5.8 the balance in performance between the TBA realisation with the uncoordinated scheduling heuristic
and the realisation with the coordinated schedule is indicated. Whenever the balance is positive, the
coordinated schedule outperformed TBA’s uncoordinated scheduling heuristic and vice versa. Besides
that, all instances presented in Tables 5.5 to 5.8 are completely independent of each other.

74 5. Simulation results

Loading
Nr.
Lift-AGVs

TBA
realisation
[box/hr]

Planned
productivity
[box/hr]

Coordinated
realisation
[box/hr]

Balance
[box/hr]

Instance 1 3 23.2 21.9 24.1 0.9
Instance 2 3 32.4 32.6 31.5 -0.9
Instance 3 3 30.6 30.6 30.7 0.1
Instance 1 4 28.3 23.9 28.7 0.4
Instance 2 4 30.5 32.3 31.9 1.4
Instance 3 4 34.2 35.5 34.1 -0.1
Instance 1 5 25.0 24.6 25.4 0.4
Instance 2 5 27.5 21.0 27.3 -0.2
Instance 3 5 35.5 36.6 35.2 -0.4
Average 3,4,5 0.2
Average 4 0.6

Table 5.5: Results of small scale experiments on a terminal with 5 QCs and a variable number of Lift-AGVs. All instances consist
solely of loading operations.

Unloading
Nr.
Lift-AGVs

TBA
realisation
[box/hr]

Planned
productivity
[box/hr]

Coordinated
realisation
[box/hr]

Balance
[box/hr]

Instance 1 4 32.8 31.9 33.7 0.9
Instance 2 4 32.0 32.1 32.1 0.1
Instance 3 4 34.3 31.7 33.9 -0.3
Average 0.2

Table 5.6: Results of small scale experiments on a terminal with 5 QCs and a fixed number of Lift-AGVs. All instances consist
solely of unloading operations.

Twinlift
loading

Nr.
Lift-AGVs

TBA
realisation
[box/hr]

Planned
productivity
[box/hr]

Coordinated
realisation
[box/hr]

Balance
[box/hr]

Instance 1 4 35.7 34.4 37.9 2.2
Instance 2 4 26.0 28.6 27.1 1.1
Instance 3 4 42.1 39.5 45.9 3.8
Average 2.4

Table 5.7: Results of small scale experiments on a terminal with 5 QCs and a fixed number of Lift-AGVs. All instances consist
solely of twinlift loading operations.

Twinlift
unloading

Nr.
Lift-AGVs

TBA
realisation
[box/hr]

Planned
productivity
[box/hr]

Coordinated
realisation
[box/hr]

Balance
[box/hr]

Instance 1 4 35.3 56.5 36.1 0.8
Instance 2 4 41.2 56.7 40.6 -0.6
Instance 3 4 41.9 55.5 38.6 -3.3
Average -1.1

Table 5.8: Results of small scale experiments on a terminal with 5 QCs and a fixed number of Lift-AGVs. All instances consist
solely of twinlift unloading operations.

All of the results presented above in Tables 5.5 to 5.8, are also summarized and visualized with a
graph presented in Figure 5.3.

5.2. Small scale experiments 75

Figure 5.3: Difference in performance between the realisation using TBA’s uncoordinated scheduling heuristic and the realisation
using the coordinated schedule.

5.2.2. Analysis of results
Based on the results presented in Tables 5.5 to 5.8, it can be concluded that the coordinated scheduling
algorithm does not lead to the expected increase in performance for each QC function during every
instance. Nor does the realised productivity match the planned productivity. This is attributed to the
discrepancy between the mathematical model and the simulation model. This discrepancy manifests
itself in a mismatch between assumed and realised time for different actions and some simplifications
made within the mathematical model. The mismatches can be divided into two different categories. The
first category is related to the pure stochastic nature of certain operations. The second category is the
simplification of the mathematical model with respect to the simulation model. Since the mathematical
model is deterministic, both category problems are tried to be resolved by assuming a fixed time or
ignoring certain operations entirely. The differences between the two categories is that the effects
of the mismatches of the first category can only be reduced by using a stochastic model whereas
mismatches of the second category could be resolved by using a more complex deterministic model.
In Table 5.9 several mismatches between the mathematical and the simulation model are categorized.
These mismatches are sorted from largest to smallest effect on the performance of the coordinated
schedule.

Pure stochastic mismatches
Mathematical simplification
mismatches

Interchange time of containers AGV interference
Twistlock handling Availability of buffer positions
Arrival pattern of trucks Container weight

Dynamics of the equipment
Position of containers in the ship
Setup times of the YC
Battery changes
Interference with landside

Table 5.9: Differences between realised and estimated times subdivided into two categories and sorted in order of largest to
smallest effect on the difference in performance between the theoretical plan and the realised plan.

Within the simulation model, all pure stochastic mismatches occur because a random number is

76 5. Simulation results

drawn from a distribution. This is desired in the simulation model since in the real world there is some
variation to these values as well. When sticking to a deterministic model, there is no better estimate to
these values than assuming the average of the probability distribution. Therefore, mismatches related
to the simplification of the mathematical model with respect to the simulation model are far more
interesting to investigate.

Interference of AGVs
The most dominant of all mismatches between simulation model and mathematical model is the AGV
interference. Since multiple Lift-AGVs share the road between the stacking yard and the QCs, it is
unavoidable that these Lift-AGVs interfere with each other. This means that sometimes a Lift-AGV has
to wait for another Lift-AGV to avoid collisions. This waiting time introduces the mismatch between
the mathematical model and the simulation model. The severity of this mismatch is identified with
Figure 5.4. Figure 5.4 shows the probability distribution of the difference between the estimated and
the realised processing times at the Lift-AGV stage for different numbers of Lift-AGVs per QC. Figure
5.4 shows that even when the processing times obtained by the method described in Section 5.1.4
are used, the realised processing time is very variable. Furthermore, it shows that the more Lift-AGVs
operate on the terminal, the more interaction there is, the harder it becomes to predict the processing
times. Although this effect is small. This is because when there are more Lift-AGVs on the terminal,
there are not necessarily more Lift-AGVs on the road. This seems controversial but, with more Lift-
AGVs on the terminal, more Lift-AGVs are stationary in the buffer not causing interference. Moreover,
the probability distribution is a little skewed to the right since it is more likely that a Lift-AGV has to
wait very long instead of travelling much faster than expected.
A similar effect can be seen in Figure 5.5. This figure shows the probability distribution of the difference
between the estimated and the realised processing time for each QC function. Figure 5.5 shows that
loading operations can be predicted with the highest accuracy. This is because during loading there
is minimal activity on the Lift-AGV road. Furthermore, unloading operations can be predicted quite
accurately as well. This is because during the stack assignment, the crowdedness at a particular module
is considered as well. This results in an even distribution of workload over the different stack modules
which reduces the likeliness of interference. On the other hand, some unloading operations have an
unknown destination at the moment of obtaining the instance. These containers are scheduled to the
center of all modules until a destination is known. Therefore, some unloading operations cannot be
predicted with the same accuracy. On top of that, each unloading operation requires a doorturn. This
introduces more activity on the Lift-AGV highways increasing the chances of interference. Therefore,
some unloading operations show long delays. Twinlift operations are also harder to estimate compared
to their single variants since there is more traffic on the terminal. This seems controversial but, this is
due the requirement of doorturns whenever the two containers of the twin pair need to be picked up
at different locations. And because heavier loaded vehicles claim a larger space on the terminal while
driving slower, increasing the chance of interference with other vehicles.

To find out whether it is better to overestimate or underestimate the Lift-AGV drive time, small scale
experiments for loading containers were performed. The results of these experiments are shown in
Table 5.10. These experiments indicated that the used instances were not very sensitive to changes to
the Lift-AGV drivetime. However, the highest productivity was achieved when the drivetime is estimated
as accurately as possible. Therefore, all other experiments were performed without deliberately under
or overestimating the Lift-AGV drivetime.

Realised QC
productivity [box/hr]

Factor drivetime 0.85 1.00 1.15
Instance 1 33.3 33.0 32.9
Instance 2 32.9 33.5 32.9
Instance 3 34.9 35.0 34.5
Average 33.7 33.8 33.4

Table 5.10: The effect of under/overestimating the Lift-AGV drivetime for a terminal with 5 QCs and 20 Lift-AGVs in case of pure
loading.

5.2. Small scale experiments 77

Figure 5.4: The probability distribution of the mismatches between realised and estimated processing times of Lift-AGVs in case
of loading.

Figure 5.5: The probability distribution of the mismatches between realised and estimated processing times of Lift-AGVs on a
terminal with 5 QCs and 20 Lift-AGVs.

When a more complex model would be used, the routing of different Lift-AGVs could be considered
during the scheduling phase. This would eliminate the mismatch between the mathematical model and
the simulation model and therefore lead to a more accurate planning. Since this is such a common
scheduling problem, the routing problem is studied often [18, 45, 46]. These researches aim to resolve
the routing problem separate from the scheduling problem. This could be advantageous since it is far

78 5. Simulation results

less complex compared to a fully integrated routing module to the scheduling and dispatching model.
Nevertheless this has also been studied in for example [47, 48].

Availability of buffer positions
Another mismatch related to the simplification of the mathematical model with respect to the simulation
model is the availability of buffer positions. Currently, the mathematical model does not consider the
buffer positions. What is meant by buffer positions are areas where Lift-AGVs are allowed to stand still.
Either carrying a container or being idle. This means that within the mathematical model, Lift-AGVs
are assumed to be at the position of their last completed task while they are actually in the buffer.
Lift-AGVs should move to the buffer since otherwise other Lift-AGVs could not reach the location they
are currently at. Therefore, Lift-AGVs are directed to a buffer awaiting a travel order. Since there are
multiple buffer positions, the time to reach the buffer and to reach the next destination is no longer
accurate. Le et al. [131] recognize four different policies to handle this buffer problem. Furthermore,
references to previous developed models are given. These models could be integrated with the math-
ematical model developed in this research.
Besides that, in the mathematical model the rack stage between the YCs and the Lift-AGVs was re-
moved to increase the computational speed significantly. However, this is also a major simplification
to the model. This explains the large difference in performance between the current TBA realisation,
the coordinated scheduling plan and the realised performance with the coordinated schedule for twin-
lift unloading. When racks are fully occupied, the current scheduling algorithm incorporates this by
withholding the order from being assigned. Since the mathematical model does not incorporate this,
Lift-AGVs spend more time waiting for racks to free up. Moreover, the time of assigning an order
is important, the later, the better. This is because this leads to a more accurate representation of
the crowdedness and the occupancy of the rack. Unfortunately, the mathematical model experiences
difficulties with unknown grounding locations. Therefore, grounding locations are determined further
in advance. This also explains the difference between twinlift unloading and single unloading, with
regards to the Lift-AGV processing times (see Figure 5.5), the number of Lift-AGV moves that already
possess a destination is larger with single unloading. This is because the container location of 5 con-
tainers is planned in advance. This results in 5 single moves but only 2.5 twin moves. Additionally,
since YCs empty the racks one by one and the rack is filled with two containers at a time, the racks
get full more frequently with twinlift unloading compared to single unloading.
However, on a real terminal it is unlikely that all QCs are twinlift unloading. Therefore, there will be less
pressure on the YCs. Furthermore, Lift-AGVs will help with emptying racks if there are some loading
operations as well.

Dynamics of equipment
The third predictable mismatch, between simulation model and mathematical model, are the dynamics
of the equipment. Currently, the average speed of the equipment is used to calculate the time required
to reach another location. However, equipment does not work with average speed, there is constant
acceleration and deceleration. Furthermore, especially for Lift-AGVs, interference with other equipment
and extra curves lead to disturbances to the average speed. On top of that, sometimes Lift-AGVs
perform crab movement. This means that the Lift-AGV travels sideways, leading to totally different
dynamics.

Container weight
In order to incorporate dynamics of equipment, container weight should be considered as well. This
is because the weight of a container determines the acceleration of equipment. Furthermore, the
speed of equipment could be dependent on the weight. For instance, the spreader hoist speed of a
QC is reduced for heavy containers. With a more accurate prediction model, container weight could be
incorporated to determine processing speeds of equipment more accurately.

Position in the ship
Currently, the mathematical model does not consider the position on the ship of a container. This
means that the QC assumes an equal processing time for each container within a bay. However, when
the container position on the ship is further from the quay or at a lower tier in the hold, the trolley and
spreader need more time to reach this position.

5.2. Small scale experiments 79

In Figure 5.6 the probability distribution of the difference between estimated and realised processing
times at the QC stage is shown. When containers are placed on the deck of a ship, twistlocks need
to be attached to prevent the containers from falling off the ship. During discharge, these twistlocks
need to be removed as well. Therefore, containers above deck require more processing time at the QC
stage compared to containers in the hold. This possible extra processing time is disregarded within the
mathematical model. Therefore, a gap between the simulation and the mathematical model is formed.
The effect of the different processing times for containers in the hold and on the deck explains the
bumps to the right of the main peak in Figure 5.6. With more detailed input, with respect to container
position on the ship, the processing times at the QC stage can be estimated more accurately.

Figure 5.6: The probability distribution of the mismatches between realised and estimated processing times of QCs on a terminal
with 5 QCs and 20 Lift-AGVs.

Setup times of the yard crane
Within the mathematical model, the setup time of the YC is estimated based on the following rules. If
two moves of the same type succeed each other, the setup time is equal to the processing time of the
first move. This prediction is based on the the fact that succeeding containers are stored near each
other within the stack. Whenever a (twin)loading container succeeds an (twin)unloading container, a
fixed intermediate setup time is assumed since the YC requires to move within the stack. Whenever an
(twin)unloading container succeeds a (twin)loading container, a fixed short setup time is assumed since
the YC does not need to move because both containers are located on the rack. Within the simulation
model; these assumptions might not be valid. However, it would require too much communication
to communicate a complete setup table for every possible container combination. Therefore, the
mathematical model cannot access the more accurate predictions. Besides that, not every setup time
could be predicted in advance since the location of each container within the yard and the rack is not
known in advance. This mismatch explains why the planned productivity does not match the realised
productivity when the coordinated schedule is applied. Accompanying the inability to accurately predict
the setup time, it is also unknown to the mathematical model how long a YC will be busy with the setup
when the schedule is made somewhere halfway the setup time.

Battery changes
Within the simulation model, Lift-AGVs do not have infinite battery capacity which means that they
require to swap batteries from time to time. The mathematical model does not possess this information
and is only notified that a Lift-AGV is in the battery station whenever it arrives there. From the moment

80 5. Simulation results

that a Lift-AGV has a status related to a battery swap the time until the Lift-AGV becomes available
again is predicted and incorporated in the scheduling algorithm. When the battery status is transferred
to the mathematical model as well, a more accurate prediction of the Lift-AGV availability can be made.

Interference with the landside
Within the simulation model; both land- and waterside operations exist. Whereas within the mathe-
matical model only the waterside of the container terminal is considered. The landside of the container
terminal is served from the same stack as the waterside but, with another YC. This leads to disturbances
to the waterside YC since the landside YC could be occupying a certain area of the yard. Furthermore,
sometimes a container arriving by truck is required at the waterside. This requires arrival of this truck
before the container could be transshipped. The landside operations could be integrated with the cur-
rent mathematical model. Jung et al. [70] proposed a model where multiple cranes are working within
the same yard block. In Figure 5.7 the probability distribution of the difference between estimated and
realised processing times at the YC stage is shown. The things that introduce mismatches are landside
operations, availability of buffer positions, attaching the spreader to the container and the dynamics of
the crane. The unload operations are more variable compared to loading operations. This is because
when importing the instance not all positions of unloading containers in the stack are known. There-
fore, a rougher estimate is made for these containers. When time progresses, the location of these
containers becomes known exactly and by then the processing time can be predicted more accurately.

Figure 5.7: The probability distribution of the mismatches between realised and estimated processing times of YCs on a terminal
with 5 QCs and 20 Lift-AGVs.

Other reasons for lack of performance
What strikes first when observing the results presented in Tables 5.5 to 5.8 is that especially twinlift
unloading performs very badly. On top of the mismatches highlighted in Table 5.9 and in particular the
availability of buffer positions discussed in Section 5.2.2, there are two more related things that impair
the performance of the coordinated schedule with respect to twinlift unloading. These are the length of
the horizon with relation to the number of containers on the terminal and the used number of iterations
in the SA algorithm. During twinlift unloading, the most containers are present in the planning. This
is because the horizon length is based on the cumulative processing times of operations at the QC.
However, during unloading, containers are not removed from the planning whenever processed by the
QC. Instead they have a processing time of zero seconds. The containers are only removed when they
arrive in the stack. Therefore, the number of containers to be scheduled easily reaches four times

5.2. Small scale experiments 81

as many as for single loading. With more containers present, more iterations of the SA algorithm are
required as well. However, it was chosen not to increase the number of iterations for the small scale
experiments since they are only used to predict performance on the larger experiments, and to analyze
the performance. Ideally, the number of iterations in the SA algorithm is a function of the number of
containers.

Differences in performance per QC function
In the previous sections the differences between the mathematical and the simulation model were
indicated, categorized and explained. In this section we will clarify why certain QC functions perform
better compared to others. This is done based on Table 5.11. In this table several aspects that influence
the performance of the coordinated schedule are listed in the first column. In the second column the
severity of these aspects is reflected with a weight factor. In the subsequent columns a score is given
for each QC function. A high score means that the effect is the least negative/most positive for that
particular QC function. A low score means that the effect is the worst/least positive for that particular
QC function.

Weight
factor Loading Unloading

Twinlift
loading

Twinlift
unloading

Chance of full
racks between Lift-AGVs and YCs 0.20 3 2 4 1

Criticality of the YC stage vs
criticality of the Lift-AGV stage 0.18 1 2 4 3

Complexity of the function with TBA’s
uncoordinated scheduling heuristic 0.15 3 2 4 1

Vehicle weight 0.12 4 4 1 1
Number of required doorturns 0.10 4 2 3 1
Preference of the QC function in the
objective function 0.10 2 1 4 3

Number of containers that require
scheduling 0.10 4 2 3 1

Number of unknown grounding
locations 0.05 4 2 4 1

Weighted average 2.9 2.1 3.4 1.6

Table 5.11: Influence of different aspects on a specific QC function. A high score is positive.

As was described in Section 5.2.2 the chance of full racks has a negative effect on the performance.
The chance of racks getting full is related to the filling rate with respect to the emptying rate (explains
the difference between twinlift vs single lift). Furthermore, the type of equipment that is kept waiting
is important (explains the difference between loading vs unloading).
The balance between the criticality between the YC stage and the Lift-AGV stage is important since YC
moves are easier to estimate and are less prone to disruptions compared to Lift-AGV moves. Therefore,
functions where the YC is the most critical and the Lift-AGV is the least critical perform best.
The complexity of a QC function is important to indicate the potential gain in performance compared to
TBA’s uncoordinated scheduling heuristic. Unloading and single moves are easier to predict compared
to loading and twin moves. Therefore, the harder the operation is to schedule with TBA’s uncoordinated
scheduling heuristic the more gain the coordinated schedule offers.
Vehicle weight influences the maximum speed and the claimed distance by vehicles. This in turn
influences the likelihood of AGV interference. Therefore, lighter single moves are better handled with
the coordinated schedule.
The more necessary doorturns, the more activity on the AGV highways, the more congestion occurs.
These congestions are not considered within the mathematical model. This means that the theoretical
plan does not match reality. Therefore, moves that require the minimal amount of doorturns perform
best.
The objective function slightly favors loading moves and twinlift moves over unloading and single
moves. This is because the objective function accumulates delays. Therefore, the penalty for delaying

82 5. Simulation results

one container increases with increasing number of containers per QC.
As was indicated in Section 5.2.2 during unloading there are more containers on the terminal that
require scheduling. This influences the ratio between iterations and number of containers. The higher
this ratio, the better the coordinated schedule performs.
Finally, the number of unknown grounding locations has an effect on the accuracy of the planning.
Unloading containers do not have a definitive stack module and location within the stack directly from
the start. Therefore, the processing time estimates are inaccurate for these moves. This problem is
partly solved with the control layer that updates all known information with a specified frequency.

5.2.3. Summary
Based on the limited number of experiments on different single function instances it can be concluded
that the coordinated planning does lead to a slightly better performance compared to TBA’s uncoordi-
nated scheduling heuristic.
Together with the results obtained with the small scale experiments the weighted average scores in
Table 5.11 indicate which QC function is most likely to perform better compared to TBA’s uncoordi-
nated scheduling heuristic. In particular twinlift loading moves are better handled with the coordinated
schedule. The rest of Table 5.11 provides information that lead to the weighted average score. An
explanation of how these scores were obtained is provided in Section 5.2.2.

5.3. Controllable simulation experiments
Now that the small scale experiments are completed, the experimental phase is moved to controllable
simulation experiments. These experiments are used to obtain statistical proof for claims based on the
small scale experiments. This is why these experiments are called controllable, all QCs have the same
function contrary to the more generic reality where each QC could have a different function.
The small scale experiments indicate that twinlift loading is most likely to produce positive results
in favour of the coordinated schedule. To confirm this, peak simulations of 8 hours are performed
repetitively. The repetition is required to mitigate effects of randomness. Totally, 56 simulation hours
were obtained where the simulation used the coordinated schedule. The results of these experiments
are subjected to statistical tests to support the conclusions statistically. A brief description of the
statistical tests that will be used are introduced in Section 5.3.1.

5.3.1. Statistical methods
Statistics is an important part of research since it allows researchers to support or reject theories on a
quantitative basis. To enable distinction, with sufficient statistical back-up, between QC performance
when using an uncoordinated and a coordinated schedule, the Welch’s t-test will be used [132]. Welch’s
t-test is a modification to the Student t-test. The modification enables users to compare datasets with
unequal standard deviations and an unequal number of samples. Therefore, the Welch’s t-test is more
generic compared to the ordinary Student’s t-test. The Welch’s t-test is valid when the following three
assumptions are satisfied [133, 134]:

1. Both populations follow a normal distribution. This is generally true once multiple independent
samples are used based on the central limit theorem [135]. If desired, this could be verified with
the Chi-Square Goodness-of-Fit Test [133];

2. The standard deviation should follow a Chi-Squared distribution;

3. Measurements should be independent of each other.

Once all the assumptions are valid; the statistic t-value is determined with Equation 5.1.

𝑡 = �̄� − �̄�

√ +
(5.1)

By the time that the statistic t-value is obtained, the Student t-distribution table could be used to find
the associated p-value. The p-value expresses the probability of observing the test statistic as extreme
or more extreme than the observed value assuming the null hypothesis is true [133, 134]. Besides

5.3. Controllable simulation experiments 83

the statistic t-value, the p-value is dependent on the degrees of freedom of the test. The degrees of
freedom for Welch’s t-test can be calculated with Equation 5.2 [132].

𝜈 =
(+)

() + ()

(5.2)

The p-value offers the ability to accept or reject a hypothesis on a quantitative basis. The null hypothesis
will be rejected whenever the p-value is smaller than the prespecified threshold variable 𝛼. A common
accepted value for 𝛼 is 0.05 which is also used in this research.

5.3.2. Hypotheses
The null hypothesis used in this experiment is that the average realised performance of the coordi-
nated schedule and the average realised performance when TBA’s uncoordinated scheduling heuristic
is applied are equal. The alternative hypothesis is that the average realised performance of the coordi-
nated schedule is higher than the average realised performance when TBA’s uncoordinated scheduling
heuristic is applied.

5.3.3. Assumptions
The average crane productivity per hour as a sample is independent of other samples since the average
is used over multiple cranes. The other two preconditions that should be satisfied in order to lawfully
use Welch’s t-test are valid based on the chi-square goodness-of-fit test. Therefore, the Welch t-test
can be used lawfully.

5.3.4. Results
The results of the experiments are digitally available to save paper. However, the summarized results
are presented in Table 5.12 and Figure 5.8. In Figure 5.8 the probability distribution of the results is
presented. In Table 5.12 it can be seen that there are more simulation hours with TBA’s uncoordinated
scheduling heuristic (94) compared to the number of simulation hours with the coordinated schedule
(56). Since more samples make it easier to reject the null hypothesis; many samples are desired.
However, obtaining more samples is a slow process especially with the coordinated schedule. There-
fore, after a while the simulation experiments with the coordinated schedule were ceased while the
simulation experiments with TBA’s uncoordinated scheduling heuristic continued. On top of that, the
standard deviation while applying TBA’s uncoordinated scheduling heuristic is larger so more samples
are required to reduce this.

Realisation with the
coordinated schedule

Realisation with TBA’s
uncoordinated
scheduling heuristic

Average productivity [box/hr] 37.55 35.81
Standard deviation [box/hr] 4.86 5.44
Samples 56 94
Confidence interval [box/hr] 1.30 1.11
p-value 0.0225

Table 5.12: Results of the realisation with the coordinated schedule and TBA’s uncoordinated schedule on a terminal with 5 QCs,
20 Lift-AGVs and pure twinloading.

84 5. Simulation results

Figure 5.8: Results of the realisation with the coordinated schedule and TBA’s uncoordinated schedule on a terminal with 5 QCs,
20 Lift-AGVs and pure twinloading.

5.3.5. Conclusion
Since the p-value (see Table 5.12) is below the threshold value of 0.05 the null hypothesis is rejected and
the alternative hypothesis is accepted. Therefore, it can be concluded, with sufficient statistical backup,
that the coordinated schedule outperforms TBA’s uncoordinated scheduling heuristic on terminals with
5 QCs, 20 Lift-AGVs and pure twinloading. With respect to Figure 5.8 it can be concluded that indeed
two different normal distributions are present where the blue one is located right of the red one.

5.4. Large scale experiments
Large scale experiments are experiments where all QCs can perform each function independent of each
other. These experiments are generally used by TBA and mimic operations on a real container terminal.
The same statistical test as was used during the analysis of the controllable simulation experiments
could be used for the analysis of the large scale experiments. On top that, the null hypothesis and the
alternative hypothesis remain unchanged as well.
Since the small scale experiments indicated that there is a possible gain in performance for three of
the four QC functions and since controllable simulation experiments verified this indication for one of
the three functions, a large scale experiment is started. In total this produced 70 usable hours with the
coordinated schedule and 63 with TBA’s uncoordinated scheduling heuristic. Based on the obtained
results all requirements to justify the use of Welch’s t-test are satisfied. Therefore, a valid p-value can
be calculated which is shown in Table 5.13. Unfortunately, positive results could not be maintained
during the large scale experiments as can be seen in Table 5.13 and Figure 5.9. The average QC
productivity did not increase by using the coordinated schedule with respect to TBA’s uncoordinated
scheduling heuristic. Figure 5.9 shows that the coordinated schedule performed worse for every QC
function. Therefore, the average QC productivity is lower as well, which explains the large p-value.
Therefore, the null hypothesis is accepted.

5.4. Large scale experiments 85

Realisation with the
coordinated schedule

Realisation with TBA’s
uncoordinated
scheduling heuristic

Average productivity [box/hr] 36.48 37.46
Standard deviation [box/hr] 3.63 3.14
Samples 70 63
Confidence interval [box/hr] 0.87 0.79
p-value 0.9511

Table 5.13: Results of the realisation with the coordinated schedule and TBA’s uncoordinated schedule on a terminal with 5 QCs,
20 Lift-AGVs and all QC functions simultaneously present.

Figure 5.9: The QC productivity on a terminal with 5 QCs and 20 Lift-AGVs while using the coordinated schedule and TBA’s
uncoordinated schedule.

5.4.1. Analysis of results
After examining the results of the large scale experiments it was found that the coordinated algorithm
especially performs worse on unloading moves. It could be that this has affected the performance on
loading moves as well. This is because Lift-AGVs spend much more time inside the buffer. This means
that the Lift-AGV is not available for other operations and productivity of all QC functions decreases.
However, it could also be that the coordinated schedule is too greedy with loading moves sending
more Lift-AGVs to the buffers with containers loaded. Both options result in long waiting times and
unavailability of Lift-AGVs. This claim is supported by Figure 5.10. In Figure 5.10 it can be seen that the
Lift-AGVs spend much more time waiting for a QC approach with the coordinated schedule compared
to TBA’s uncoordinated scheduling heuristic. On the other hand, waiting and interchanging at the QC is
slightly smaller with the coordinated schedule. However, summed up, the Lift-AGVs wait longer while
using the coordinated schedule.

86 5. Simulation results

Figure 5.10: The Lift-AGV status on a terminal with 5 QCs and 20 Lift-AGVs while using the coordinated schedule and TBA’s
uncoordinated schedule.

Moreover, Figure 5.10 confirms that Lift-AGVs carrying unloading containers do not need to wait
in the buffer awaiting a grounding location whenever a mixed situation is used instead of purely
(twin)unloading. Other mismatches that particularly affected (twin)unloading operations were that
there are more containers in the planning and that there is more AGV interference because of door-
turns. Both of these mismatches scale with the number of (twin)unloading containers so, with a mixed
situation these effects decreased.

5.5. Iteration two of the large scale experiment
Since large scale experiments showed that the QC performance could not be improved by using the
coordinated schedule as it is. The coordinated schedule is modified in order to investigate whether the
coordinated schedule, in the modified version, could lead to improvement of the QC performance.

5.5.1. Model improvement
Two things are changed before new results are acquired: a new constraint is added to decrease the
time that Lift-AGVs wait in the buffer and, the QC processing times are more accurately estimated
incorporating the position of containers on the ship.

Just in time constraint
The new constraint that is added is a Just in time (JIT) constraint. This constraint is used to ensure that
the Lift-AGVs only arrive at the QCs once they can be immediately served. This is called JIT delivery
and is one of the pillars of lean manufacturing [136, 137]. The idea is that by delivering products just
in time the waiting times decrease and the required buffer capacity reduces. These two things make
this concept attractive for the coordinated schedule. JIT is enforced by Constraint 5.3.

𝑡 + 𝑝 ≥ 𝑡𝑖2 + 𝑝 + 𝑝𝑖3 + 𝑠 ∀𝑖, 𝑘 ∈ 𝜙 ∩ 𝐴 ∩ 𝐿 (5.3)

Basically, this constraint specifies that operation 𝑘 can only finish once operation 𝑖 is finished on both
the Lift-AGV and the QC stage. This holds for all containers handled by the same QC, not assigned to
any other machine so far, are of the loading type and are not two containers of the same twin pair.

Quay crane processing time
Once the large scale experiments using the coordinated schedule did not produce better results com-
pared to TBA’s uncoordinated scheduling heuristic, one of the mathematical simplification mismatches
is selected from Table 5.9 to investigate whether this could be reduced. The position of containers on

5.5. Iteration two of the large scale experiment 87

the ship mismatch is selected to be reduced since this is easily changed without huge modifications
to the model. The position of containers on the ship has an effect on the estimated processing time
of the QC to handle a container. The mismatch manifests itself because of a difference in processing
times for containers in the hold and on the deck and the travel distance of the QC’s spreader. There is
a difference in processing time for containers on the deck and in the hold because twistlocks must be
attached/detached to containers on deck. This is the cause of the bumps right to the biggest peak for
every QC function in Figure 5.6. Furthermore, the row and tier position of a container on the ship also
effect the processing time since it is directly related to the travelled distance of the spreader. There-
fore, a study into the processing time with respect to the container position is performed for every QC
function. The results of this study for loading operations is shown in Figure 5.11.

(a) 3D viewpoint

(b) Processing time vs row position viewpoint (c) Processing time vs tier position viewpoint

Figure 5.11: The processing time of the QC for loading containers with respect to the position on the ship separated for containers
in the hold and on the deck.

From Figure 5.11 it can be concluded that moves on deck clearly take longer compared to moves
in the hold. Furthermore, the higher the row, the further the spreader should move, the longer the
processing time. Finally, for containers in the hold, the processing time increases with decreasing tier.
For containers on deck this relation is reversed. Both are logical since it increases the distance that
the spreader should travel to reach the desired tier. Two linear surfaces are fitted to the datapoints
shown in Figure 5.11, for hold and deck containers separately, to estimate the QC processing time more
accurately. Besides the predictable effects of the container position on the QC processing time, Figure
5.11 also indicates the likeliness of containers requiring processing times much longer than expected.
Similar scatterplots could be obtained for the other QC functions. Confirming expectations, the time
required to pass rows is independent of the QC function whereas the time to move tiers is. This is
because the time required to move along different tiers is weight dependent.

88 5. Simulation results

To prove that the new prediction of the QC processing time is indeed more accurate than the rough
estimate, the small scale experiments were repeated. The new distribution of the QC processing time
is shown in Figure 5.12. The distribution shown in Figure 5.12 became more narrow compared to
Figure 5.6. However, the distribution could not be reduced to a single spike because of other factors
disturbing the QC processing time remained present. These are: the attachment of twistlocks, the
container weight and the interchange time. Besides that, the more accurate estimate could not always
be used since the location of containers on the ship of another bay than the current bay that a QC is
handling is unknown. Therefore, for these containers the more general assumption is used.
With the aid of a more accurate prediction of the QC processing time, it was found that underestimating
the QC processing time slightly results in better productivity. This is because it is better to have an
Lift-AGV idling compared to a QC. By underestimating QC processing times, Lift-AGVs are stimulated
to arrive too early at the QC making sure that the QC never idles waiting for a Lift-AGV.

Figure 5.12: The probability distribution of the mismatches between realised and estimated processing times of QCs on a terminal
with 5 QCs and 20 Lift-AGVs once incorporating the position of containers on the ship within the prediction.

5.5.2. Results of iteration two
The large scale experiment performed in Section 5.4 is repeated. The null hypotheses is that the av-
erage realised performance of the coordinated schedule and the average realised performance when
TBA’s uncoordinated scheduling heuristic is applied are equal. The alternative hypothesis is that the
average realised performance of the coordinated schedule is higher than the average realised perfor-
mance when TBA’s uncoordinated scheduling heuristic is applied. This new large scale experiment
produced new results that are shown in Table 5.14. The number of samples for both experiments is
not equal for the same reasons as for the previous experiments. Based on the obtained results all re-
quirements to justify the use of Welch’s t-test are satisfied. Therefore, a valid p-value can be calculated
which is also shown in Table 5.14.

5.5. Iteration two of the large scale experiment 89

Realisation with the
coordinated schedule

Realisation with TBA’s
uncoordinated
scheduling heuristic

Average productivity [box/hr] 38.02 37.76
Standard deviation [box/hr] 2.80 3.41
Samples 105 98
Confidence interval [box/hr] 0.54 0.68
p-value 0.2731

Table 5.14: Results of the realisation with the coordinated schedule and TBA’s uncoordinated schedule on a terminal with 5 QCs,
20 Lift-AGVs and all QC functions simultaneously present.

5.5.3. Analysis of results
Based on Table 5.14 we conclude that results have improved with respect to the first iteration. However,
we are unable to reject the null hypothesis based on the obtained number of samples and achieved per-
formance. Therefore, we conclude that the coordinated schedule and TBA’s uncoordinated scheduling
heuristic have an equal performance.

The results presented in Table 5.14 are examined in more detail with the aid of Figures 5.13 and
5.14.

Figure 5.13: The QC productivity on a terminal with 5 QCs and 20 Lift-AGVs while using the coordinated schedule and TBA’s
uncoordinated schedule.

90 5. Simulation results

Figure 5.14: The Lift-AGV status on a terminal with 5 QCs and 20 Lift-AGVs while using the coordinated schedule and TBA’s
uncoordinated schedule.

From Figure 5.13 it becomes clear that the coordinated schedule performs well on loading moves
but, unloading moves are better performed with TBA’s uncoordinated scheduling heuristic. This is in
line with the observed performance during the small scale experiments. Furthermore, from Figure 5.14
it can be seen that with respect to Figure 5.10 the AGVs spend less time waiting for a QC. Compared to
TBA’s uncoordinated scheduling heuristic the AGVs spend more time in the buffer but, less time at the
QC. Summed up, the waiting time while using the coordinated schedule (33.4%) is not much different
from the waiting time while using TBA’s uncoordinated scheduling heuristic (33.8%). More charts that
could be used to analyze the performed experiments are presented in Appendix B.

5.5.4. Discussion of the results
It is expected that by reducing the mismatches indicated in Table 5.9 the performance of the coordi-
nated schedule could surpass the performance of TBA’s uncoordinated scheduling heuristic. Possibly,
acquiring more samples could lead to the same conclusion. However, the simulation time of the coor-
dinated schedule was much longer compared to the simulation time with the uncoordinated scheduling
heuristic. On top of that, the coordinated schedule requires resets of the scheduling computer to pre-
vent the memory from getting full. The result of the memory issue is that gradually the computational
time per optimization cycle increases. Therefore, the interval between the resets determines the total
required computational time of the coordinated schedule. Iteration 2 required 7 hours with the unco-
ordinated scheduling heuristic and approximately 72 hours with the coordinated schedule. Possibly an
experienced programmer could prevent the memory from getting full. However, the difference in time
will remain large.

5.6. Model improvement directions
In this section we present different options to improve the performance of the coordinated schedule.
These options are indicated in Figure 5.15. The first option is to disregard the current deterministic
model and to develop a new stochastic model. This is because stochastic models are able to cope
with uncertainties. Therefore, they deliver a better representation of reality. One possible outcome
of a stochastic model is that operations associated with possible long delays are not scheduled on
the same equipment to reduce the risk of disruptions at other machines. Developing an entire new
stochastic model would require a lot of effort and is therefore not desired. Another option to increase
the performance of the coordinated schedule, is to improve the current deterministic model. Three
different directions to do this have been identified.

The first direction is to add a control layer. By adding a control layer the schedule is constantly

5.6. Model improvement directions 91

updated based on current information. This could be done in a receding horizon approach. The
length of the horizon and the frequency of updating the schedule will influence the performance [20].
Longer horizons lead to a more optimal schedule but, also require longer computational times. A
higher updating frequency leads to a more accurate representation of the current situation but, also
increases the total time required for scheduling. Moreover, not only the containers currently in progress
should be updated, also the estimated end times of the current operations should be recalculated. This
also requires more computational power. Another disadvantage is that control only offers improvement
once the model is stable enough. Once the model is inaccurate, it can still produce meaningless output.
What greatly reduces the benefits of control is that Lift-AGVs are assigned to a move rather early and
are not allowed to preempt their operation. Therefore, once it turns out that it was a bad choice to
assign a particular Lift-AGV to a particular move; control cannot stop this. The basic control strategy of
rescheduling containers within a receding horizon is already performed within the current coordinated
schedule. However, the control layer could be extended with dynamically updating parameters based
on the current stage of the terminal. Furthermore, a study into the balance between horizon length,
re-planning frequency and the number of iterations per optimization cycle could be performed to better
set these parameters.

The second direction is to extend the current mathematical model by removing the different mis-
matches introduced in Table 5.9 as mismatches related to the simplification of the mathematical model
with respect to the simulation model. The major advantage is that this will lead to a far more accu-
rate representation of reality. This enables the mathematical model to create an achievable schedule.
However, by integrating more functions, the model also becomes more complex. This leads to longer
computational times which is undesired. This could be mitigated by introducing multiple layers to the
scheduling algorithm. First, on a higher layer a schedule is made. Second, given the created schedule
optimal choices should be selected to execute this schedule. For instance, with regards to routing. By
separating these decisions, the model becomes far less complex since there is only a one-way depen-
dency. However, during scheduling; it is still inconclusive whether the created schedule is executable
as scheduled. This means that an optimal schedule cannot be guaranteed. Therefore, research is re-
quired to determine which modules should be placed at what levels to ensure a good balance between
performance and computational time.

The final identified future research direction to improve the deterministic model is to better predict
the times required for certain operations. A suggested technique is machine learning. The advantage
of machine learning is that patterns could be recognized which are invisible to the human eye. This
can only be done by supplying lots of data to a machine to establish patterns. This directly introduces
the disadvantage of machine learning; lots of data is required and it is unknown which data specifically
is required. This means that a research is required aimed at studying patterns and relations between
times required to perform certain actions and the nature of these actions. Another complicating factor
is that more insight in the times required to perform certain actions could also lead to longer compu-
tational times. This is because first a prediction should be performed before the scheduling may start.
Furthermore, better predictions will most likely also reduce the robustness of the coordinated schedul-
ing algorithm. This is because each terminal has its own characteristics that influence the processing
times. This claim is supported by Figure 5.4. Each different number of Lift-AGVs has different process-
ing times. Second, it could be that some times are dependent on the sequence of operations. Since
this sequence is unknown before scheduling, the prediction should be integrated within the scheduling
algorithm. This complicates the mathematical model, increasing the computational time.

92 5. Simulation results

Figure 5.15: Suggested model improvements to the current deterministic model.

All of the four options to improve the current deterministic model do not exclude another. Therefore,
it is also possible to improve the model by combining different options. Furthermore, all options can be
performed to a variable extend. This means that any possible mix of these four options could be selected
to improve the current deterministic model. It is expected that the model will improve asymptotically
by adding any of these four options to various extend. Therefore, it is advised to first investigate which
improvement is likely to produce a maximum gain with minimum effort. By repeating this procedure
it is expected that the model will improve most quickly without making it far too complex to solve.
Probably, this would produce a mixture of all four options introduced in Figure 5.15. On the other hand
each option increases the complexity of the problem. Therefore, it is advised to question whether the
current solution technique remains sufficient. In [59, 67] constraint programming is suggested as an
alternative to MIP.

5.7. Discussion on the results
During the gathering of results it was found that the coordinated schedule is very sensitive to small
changes. Therefore, it is hard to determine, based on a small number of samples, which settings result
in the optimal realisation. For each instance a set of settings resulting in a positive and a negative
outcome could be found. However, it remains inconclusive which set of parameters results in the best
overall performance. Nevertheless, this is a valuable conclusion; the scheduling algorithm used by TBA
is not perfect but, it is a very good alternative since it is robust and delivers proper results in most
cases. On top of that, it is very quick compared to the coordinated schedule used in this research.
Furthermore, as was already indicated in Section 5.5.4, the simulation time of the coordinated schedule
is much longer compared to the simulation time of the uncoordinated schedule. This is because of the
long computational time associated with the creation of coordinated schedules. Further efforts to
improve the quality of the coordinated schedule are likely to increase the computational time even
further.

6
Conclusion and future research

In this chapter we answer the research questions presented in section 1.3. The main research question
of this report is:

Can Quay crane productivity be increased compared to an uncoordinated schedule by developing a
coordinated schedule considering Quay cranes, Yard Cranes and Horizontal Transport Vehicles?

Based on the results obtained during this research, the QC productivity whilst using TBA’s uncoordi-
nated scheduling heuristic cannot be increased with a coordinated schedule that uses a HFS to model
the container terminal and a SA algorithm to solve that model (p-value 0.2731). On the other hand, it
can neither be concluded that TBA’s uncoordinated scheduling heuristic results in higher productivity
compared to the coordinated schedule. Therefore, the coordinated schedule is a solid alternative to
TBA’s uncoordinated scheduling heuristic. However, it is expected that with certain changes to the
coordinated schedule the QC productivity could be increased.

The main research question could not have been answered without answering the underlying sub
questions:

1. The current uncoordinated scheduling algorithm that is used to schedule operations considers all
equipment types operating on the terminal separately. The scheduling and dispatching strategy
applied at the YC is as follows: all orders known to the central planning for a specific YC are
gathered. Subsequently, orders outside a time window of 30 minutes are excluded. Thereafter,
orders that could lead to sequence conflicts at the QC are excluded. Subsequently, a scoring
algorithm is initiated that consists of an urgency score, a sequence score and a transferpoint
penalty. Where the urgency score and the sequence score are influenced by QC operations.
Finally, the order with the best score is selected.
At the HTV stage orders are selected following a similar technique. Orders outside a time window
of 30 minutes are excluded. Similar to orders that have an origin or destination that is already
the origin/destination of N other vehicles. Finally, orders that could lead to sequence conflicts are
excluded. Now, the scoring mechanism is initiated again; consisting of penalties for containers
that have not yet started or are underway. Furthermore, a sequence and urgency score is granted
similar to the one for YCs. Additionally, a traffic and a distance score is used to score orders.
The traffic score promotes orders in quiet places of the terminal and the distance score promotes
orders that are close to the current location of the HTV. This procedure is repeated for every HTV
and container combination. Subsequently, the combination of HTV and container with the best
score is selected.
There is no scheduling algorithm at the QC stage since orders should be processed in a pre-
specified sequence. This is because QCs should obey a loadplan.

2. The current productivity of the QCs with the uncoordinated schedule cannot be defined with a
single number. This is because there is great variation in productivity with different scenarios.
Throughout the report different scenarios are used and each time the current productivity for that

93

94 6. Conclusion and future research

specific scenario is compared with the achieved productivity of the realisation with the coordinated
schedule.

3. In literature, three promising coordinated scheduling approaches are available for operations
involving multiple stages. These are HFS models, MPS and Markov chains. Of these three ap-
proaches, HFS models are selected as most applicable to container terminals using a coordinated
schedule. This is because the relation with other research is strong. Therefore, the likelihood
that this research will be used by other researchers and industry increases. Furthermore, HFS
problems can be solved optimally given sufficient computational time. When computational time
is limited, many alternative heuristic solutions exist that speed-up the calculation process. More-
over, the HFS problem allows many additional features which can easily be turned on and off
dependent on the user’s wishes. Besides that, HFS problems appear better structured and or-
ganized compared to MPS and Markov chains. Finally, HFS problems can easily be scaled to the
requirements of the user.

4. To apply coordinated scheduling to real container terminals the computational time should be
short. This is because the planning has to be adjusted frequently since operations vary quickly and
predictions with regards to processing times are unreliable. Therefore, exact solution techniques
are not feasible and heuristic solutions should be used. A tailored SA algorithm proved to work
very efficiently (balance between performance and computational time) to solve the HFS model
formulated in this research. The exact solution is approximated with the tailored SA algorithm by
splitting the problem in a discrete and a continuous part. The discrete part uses a local search
method to find better alternatives to the current solution by predictive reassignment of jobs to
machines. The continuous part can subsequently be solved quickly with LP.

5. The theoretical performance of the coordinated schedule consisting of a HFS model and a tailored
SA algorithm to solve it is shown in Table 4.8. The optimality gap between the exact solution
and the approximated solution never exceeds 11% for terminals with sizes of up to 8 QCs, 32
Lift-AGVs, 20 YCs and 80 containers when using a quick solution (maximum computational time
3.3 seconds). When the SA is granted more time (57.6 seconds) the optimality gap never exceeds
6% for terminals with sizes of up to 8 QCs, 32 Lift-AGVs, 20 YCs and 80 containers. The balance
between quality and computational time can be controlled by adjusting the number of iterations
used to solve the HFS problem.

6. The realised performance of the coordinated schedule is 38.02 boxes/hour on a terminal with 5
QCs, 20 Lift-AGVs, 13 YCs. The realised performance of TBA’s uncoordinated scheduling heuristic
on the same terminal is 37.76 boxes/hour. The difference between these two is too small with 105
and 98 samples respectively to conclude that the coordinated schedule has a higher productivity
compared to TBA’s uncoordinated scheduling heuristic.

6.1. Recommendations to TBA
In this section we present our advise to TBA. Based on the results obtained during this research, it
cannot be concluded that a coordinated schedule performs better compared to their current uncoordi-
nated scheduling technique. However, with certain changes it is expected that a coordinated schedule
could achieve higher QC productivity. But, TBA should determine if this is worth the investment. The
disadvantages of the coordinated schedule are that it requires long computational times. This makes
a coordinated schedule not feasible for use in the simulation department where results are required
rapidly. Furthermore, the coordinated schedule requires detailed data of the terminal where it is ap-
plied. This costs extra time and is especially expensive once multiple layouts of the same terminal
should be investigated. Moreover, in its current form, a lot of input data should be supplied manually
to the coordinated schedule making it expensive in terms of labor costs. Additionally, manual resets are
required to prevent the memory from getting full. Finally, the coordinated schedule, in its current form,
is programmed in MATLAB and Gurobi, both are software programs that are not owned by TBA. This
means that either licenses should be bought or the code should be transferred to software programs
owned by TBA.
As far as I could see the potential gain and costs associated with a coordinated schedule, I discourage
TBA to continue development of the coordinated schedule aiming for optimal productivity. However,

6.2. Future research 95

this research exposed that the current scheduling heuristic is not flawless. Therefore, I suggest that
TBA tries to improve their current scheduling heuristic. Maybe new scoring attributes could be added
to their current dispatching strategy that promote coordination.

6.2. Future research
In this section several suggested further research directions are indicated to improve the results that
were obtained during this research.

• It would be interesting to see the effects of using a stochastic mathematical model instead of
a deterministic one. Currently, all setup and processing times are assumed to be deterministic.
However, the reality is that everything is stochastic as disruptions occur. It could be that a
stochastic model is better at predicting the time required to perform certain operations. But,
more importantly a stochastic model is expected to better distribute operations with uncertain
processing times over multiple machines.

• Besides that, the mathematical model could also be improved by adding more functions. Cur-
rently, certain operations and actions on the terminal are ignored within the coordinated sched-
ule. A more extensive but, at the same time more complex model could be used that integrates
more functions on the container terminal. Operations and actions that could be added to the
mathematical model are: routing of equipment, slot assignment, equipment dynamics, landside
operations, buffer positions and battery changes.

• Another approach to improve the quality of the model is to get a more accurate insight in the
deterministic time values. This could be done by a better prediction of these values by considering
multiple factors. A promising technique would be to use machine learning. With more accurate
predictions the coordinated schedule approaches reality more closely. This results in equipment
that is more likely to be able to follow the coordinated schedule as planned.

• Moreover, the performance of the coordinated schedule could be increased by adding a more
sophisticated control layer. Currently, the only applied control strategy is that after a fixed time
the entire schedule is updated to ensure that data remains accurate. However, with a more
sophisticated control layer errors in the coordinated schedule could be resolved dynamically.
Furthermore, an investigation into the balance between computational time and performance
could be performed. By lengthening the planning horizon and increasing the update frequency
the coordinated schedule is expected to perform better at the cost of a longer computational
time.

• To increase the effect of the control layer it is advised that equipment is allowed to switch orders
until the moment that a container is grabbed. The advantage is that operations can be resched-
uled for a longer period. This decreases the likeliness that jobs are wrongfully assigned to specific
machines. Currently the model offers no possibility to recover from bad choices. It is expected
that both the coordinated schedule and TBA’s scheduling heuristic will benefit from this added
freedom.

• Other scheduling techniques could be applied to investigate whether they are able to outperform
the current scheduling heuristic of TBA. It is suggested to start looking at scoring attributes that
could be added to TBA’s scheduling heuristic that promote coordination of the different equipment
types.

• Furthermore, it is recommend to set parameters used during optimization to their optimal values.
This was not performed during this research since this would have required much more time and
computational power which was not available. It is expected that results will improve by a few
percentages when parameters are set optimally.

• More advanced would be not to pre-specify parameters but, to let them update dynamically. This
to ensure that throughout every instance the optimal set of parameters is used instead of the
optimal average set of parameters.

96 6. Conclusion and future research

• Since many of the above future research directions increase the complexity of the problem it
might be wise to review the current solution technique. Constraint programming might be a
suitable alternative to MIP combined with SA.

• Additionally, it could be considered to update the objective function for instance to balance perfor-
mance between the four different QC functions. Currently, it was observed that the coordinated
schedule showed a different increase in performance with regards to all four QC functions. With
another objective function the performance could possibly be balanced more evenly. Further-
more, another objective function could be used to emphasize either QC productivity or the total
makespan of operations. Currently, TBA is inconclusive which of the two is their objective.

• From an academic perspective it is desired that there are better options that isolate situations
in the simulation model and allow for exact logging of operations. This is because currently
the simulation model is very centered around doing all sorts of operations simultaneously. To
gain more insight into the effects of certain changes to the mathematical model it is desired to
replicate scenarios exactly or to isolate a certain part of the terminal or to turn off stochastic
effects. Currently, this is not always possible or requires a lot of programming work.

• Research could be extended towards different terminals with another layout. Furthermore, it
would be interesting whether the coordinated schedule works for other equipment types. In
case the coordinated schedule is not directly applicable, it could be investigated what needs to
change and what is shared between the different terminals. Besides that, research performed on
different terminals could be used to investigate the scaleability of the algorithm.

• Research would benefit from a library with HFS problems that enables fair comparison between
different algorithms used by different researchers. Currently, new algorithms can only be com-
pared with itself since there is no general test scenario defined.

Many of the future research directions indicate some form of desired additional robustness. This is
because with the current coordinated schedule quite some time is required to make the model ready
for tests with a different terminal.

Bibliography

[1] R. Stahlbock and S. Voß, Operations research at container terminals: a literature update, OR
spectrum 30, 1 (2008).

[2] E. K. Bish, A multiple-crane-constrained scheduling problem in a container terminal, European
Journal of Operational Research 144, 83 (2003).

[3] H. Schim van der Loeff, Quay crane productivity at the ECT Delta Terminal, Master’s thesis, TU
Delft (2008).

[4] B. K. Lee and K. H. Kim, Optimizing the block size in container yards, Transportation Research
Part E: Logistics and Transportation Review 46, 120 (2010).

[5] Liebherr, Container gantry crane, http://www.nauticexpo.com/prod/
liebherr-international-deutschland/product-30468-189567.html (2017),
[Online; accessed 2018-1-11].

[6] T. online, Automatische smeersystemen en oilmaster populair in con-
tainer handling, https://www.transport-online.nl/site/15145/
automatische-smeersystemen-en-oilmaster-populair-in-containerhandling/
(2013), [Online; accessed 2018-1-11].

[7] Paceco, Quay cranes, http://www.paceco.es/en/quay-cranes (2017), [Online; accessed
2018-1-11].

[8] Y. Saanen, Agv versus lift agv versus alv, Port Technology International , 63 (2016).

[9] A. Verbraeck, M. Seck, and M. Fumarola, Validation Simulation Models Maasvlakte 2, Tech. Rep.
1.0 (TU Delft, 2009).

[10] K. Lewandowski, Growth in the size of unit loads and shipping containers from antique to wwi,
Packaging Technology and Science 29, 451 (2016).

[11] J.-P. Rodrigue, C. Comtois, and B. Slack, The geography of transport systems (Routledge, 2009).

[12] J.-P. Rodrigue, Composition of the global fleet of containers, 2008, https://web.archive.
org/web/20141121102626/http://people.hofstra.edu/geotrans/eng/ch3en/
conc3en/containerfleet.html (2008), [Online; accessed 2018-1-12].

[13] A. De Waal, Container terminal & performance, TBA internal documents (2012), [Online; ac-
cessed 2018-1-11].

[14] A. De Waal and P. Bierhuizen, Timesquare functional description, TBA internal documents (2017),
[Online; accessed 2018-1-11].

[15] D. Steenken, S. Voß, and R. Stahlbock, Container terminal operation and operations research-a
classification and literature review, OR spectrum 26, 3 (2004).

[16] L. Zhen, X. Jiang, L. H. Lee, and E. P. Chew, A review on yard management in container terminals,
Industrial Engineering and Management Systems 12, 289 (2013).

[17] M. E. Petering, Effect of block width and storage yard layout on marine container terminal per-
formance, Transportation Research Part E: Logistics and Transportation Review 45, 591 (2009).

[18] B. Vuuren, Route plan scheduling for automated guided vehicles at container terminals, Master’s
thesis, TU Delft (2017).

97

http://www.nauticexpo.com/prod/liebherr-international-deutschland/product-30468-189567.html
http://www.nauticexpo.com/prod/liebherr-international-deutschland/product-30468-189567.html
https://www.transport-online.nl/site/15145/automatische-smeersystemen-en-oilmaster-populair-in-containerhandling/
https://www.transport-online.nl/site/15145/automatische-smeersystemen-en-oilmaster-populair-in-containerhandling/
http://www.paceco.es/en/quay-cranes
https://web.archive.org/web/20141121102626/http://people.hofstra.edu/geotrans/eng/ch3en/conc3en/containerfleet.html
https://web.archive.org/web/20141121102626/http://people.hofstra.edu/geotrans/eng/ch3en/conc3en/containerfleet.html
https://web.archive.org/web/20141121102626/http://people.hofstra.edu/geotrans/eng/ch3en/conc3en/containerfleet.html

98 Bibliography

[19] L. Chen, N. Bostel, P. Dejax, J. Cai, and L. Xi, A tabu search algorithm for the integrated
scheduling problem of container handling systems in a maritime terminal, European Journal of
Operational Research 181, 40 (2007).

[20] P. J. Meersmans and A. P. Wagelmans, Effective algorithms for integrated scheduling of handling
equipment at automated container terminals, ERIM Report series (2001).

[21] J. Rijsenbrij, Container handling in mainports: a dilemma about future scales, The future of
intermodal freight transport , 109 (2008).

[22] A. Staff, Top 5: Ways container ships have evolved in size, www.arabiansupplychain.com/
article-11234-top-5-ways-container-ships-have-evolved-in-size/ (2015),
[Online; accessed 2018-1-11].

[23] N. Al-Dhaheri and A. Diabat, The quay crane scheduling problem, Journal of Manufacturing
Systems 36, 87 (2015).

[24] C. Bierwirth and F. Meisel, A survey of berth allocation and quay crane scheduling problems in
container terminals, European Journal of Operational Research 202, 615 (2010).

[25] R. Tavakkoli-Moghaddam, A. Makui, S. Salahi, M. Bazzazi, and F. Taheri, An efficient algorithm
for solving a new mathematical model for a quay crane scheduling problem in container ports,
Computers & Industrial Engineering 56, 241 (2009).

[26] K. H. Kim and Y.-M. Park, A crane scheduling method for port container terminals, European
Journal of operational research 156, 752 (2004).

[27] J. Wiese, N. Kliewer, and L. Suhl, A survey of container terminal characteristics and equipment
types, Decision Support & Operations Research Lab. University of Paderborn (2009).

[28] J. Wiese, L. Suhl, and N. Kliewer, Planning container terminal layouts considering equipment
types and storage block design, Handbook of terminal planning , 219 (2011).

[29] T. Boontjes, The vertical container terminal: stacking strategies and job dispatching, Master’s
thesis, TU Delft (2014).

[30] R. E. Shannon, Introduction to the art and science of simulation, in Proceedings of the 30th
conference on Winter simulation (IEEE Computer Society Press, 1998) pp. 7–14.

[31] O. Balci, Verification, validation, and testing, Handbook of simulation 10, 335 (1998).

[32] M. J. Sharma and S. J. Yu, Benchmark optimization and attribute identification for improvement
of container terminals, European Journal of Operational Research 201, 568 (2010).

[33] R. J. van Zijverden and R. R. Negenborn, Survey of approaches for integrated control of inter-
modal container terminals, in Networking, Sensing and Control (ICNSC), 2012 9th IEEE Interna-
tional Conference on (IEEE, 2012) pp. 67–72.

[34] M. De Koster, B. Balk, and W. Van Nus, On using dea for benchmarking container terminals,
International Journal of Operations & Production Management 29, 1140 (2009).

[35] J. X. Cao, D.-H. Lee, J. H. Chen, and Q. Shi, The integrated yard truck and yard crane scheduling
problem: Benders’ decomposition-based methods, Transportation Research Part E: Logistics and
Transportation Review 46, 344 (2010).

[36] J. C. Rijsenbrij and A. Wieschemann, Sustainable container terminals: a design approach, in
Handbook of terminal planning (Springer, 2011) pp. 61–82.

[37] J. Van Duin and H. Geerlings, Estimating co 2 footprints of container terminal port-operations,
International Journal of Sustainable Development and Planning 6, 459 (2011).

[38] M. B. Duinkerken, J. A. Ottjes, and G. Lodewijks, Comparison of routing strategies for agv
systems using simulation, in Proceedings of the 38th conference on Winter simulation (Winter
Simulation Conference, 2006) pp. 1523–1530.

www.arabiansupplychain.com/article-11234-top-5-ways-container-ships-have-evolved-in-size/
www.arabiansupplychain.com/article-11234-top-5-ways-container-ships-have-evolved-in-size/

Bibliography 99

[39] B. Cao and G. Uebe, Solving transportation problems with nonlinear side constraints with tabu
search, Computers & Operations Research 22, 593 (1995).

[40] K. H. Kim, Y. M. Park, and K.-R. Ryu, Deriving decision rules to locate export containers in
container yards, European Journal of Operational Research 124, 89 (2000).

[41] C. Zhang, J. Liu, Y.-w. Wan, K. G. Murty, and R. J. Linn, Storage space allocation in container
terminals, Transportation Research Part B: Methodological 37, 883 (2003).

[42] K. H. Kim and J. W. Bae, Re-marshaling export containers in port container terminals, Computers
& Industrial Engineering 35, 655 (1998).

[43] M. Bielli, A. Boulmakoul, and M. Rida, Object oriented model for container terminal distributed
simulation, European Journal of Operational Research 175, 1731 (2006).

[44] M. B. Duinkerken and J. A. Ottjes, A simulation model for automated container terminals, in
Proceedings of the Business and Industry Simulation Symposium, Vol. 10 (2000) pp. 134–139.

[45] S. A. Reveliotis, Conflict resolution in agv systems, Iie Transactions 32, 647 (2000).

[46] L. Qiu and W.-J. Hsu, Conflict-free agv routing in a bi-directional path layout, in Proceedings
of the 5th International Conference on Computer Integrated Manufacturing, Vol. 1 (2000) pp.
392–403.

[47] M. Grunow, H.-O. Günther, and M. Lehmann, Dispatching multi-load agvs in highly automated
seaport container terminals, Container Terminals and Automated Transport Systems Part I , 231
(2005).

[48] G. Ulusoy, F. Sivrikaya-Şerifoǧlu, and Ü. Bilge, A genetic algorithm approach to the simultaneous
scheduling of machines and automated guided vehicles, Computers & Operations Research 24,
335 (1997).

[49] I. Ribas, R. Leisten, and J. M. Framiñan, Review and classification of hybrid flow shop schedul-
ing problems from a production system and a solutions procedure perspective, Computers &
Operations Research 37, 1439 (2010).

[50] R. Ruiz and J. A. Vázquez-Rodríguez, The hybrid flow shop scheduling problem, European Journal
of Operational Research 205, 1 (2010).

[51] P. Fattahi, S. M. H. Hosseini, F. Jolai, and R. Tavakkoli-Moghaddam, A branch and bound algo-
rithm for hybrid flow shop scheduling problem with setup time and assembly operations, Applied
Mathematical Modelling 38, 119 (2014).

[52] A. Vignier, J.-C. Billaut, and C. Proust, Les probl mes d’ordonnancement de type flow-shop
hybride: état de l’art, RAIRO-Operations Research 33, 117 (1999).

[53] M. Pinedo, Scheduling (Springer, 2012).

[54] E. González-Neira, J. Montoya-Torres, and D. Barrera, Flow-shop scheduling problem under
uncertainties: Review and trends, International Journal of Industrial Engineering Computations
8, 399 (2017).

[55] E. M. González-Neira, R. G. García-Cáceres, J. P. Caballero-Villalobos, L. P. Molina-Sánchez, and
J. R. Montoya-Torres, Stochastic flexible flow shop scheduling problem under quantitative and
qualitative decision criteria, Computers & Industrial Engineering 101, 128 (2016).

[56] Y. Lu and M. Le, The integrated optimization of container terminal scheduling with uncertain
factors, Computers & Industrial Engineering 75, 209 (2014).

[57] A. Elyasi and N. Salmasi, Stochastic flow-shop scheduling with minimizing the expected number
of tardy jobs, The International Journal of Advanced Manufacturing Technology , 1 (2013).

100 Bibliography

[58] A. A. Juan, B. B. Barrios, E. Vallada, D. Riera, and J. Jorba, A simheuristic algorithm for solving the
permutation flow shop problem with stochastic processing times, Simulation Modelling Practice
and Theory 46, 101 (2014).

[59] L. Chen, A. Langevin, and Z. Lu, Integrated scheduling of crane handling and truck transportation
in a maritime container terminal, European Journal of Operational Research 225, 142 (2013).

[60] H. Y. Lau and Y. Zhao, Integrated scheduling of handling equipment at automated container
terminals, International journal of production economics 112, 665 (2008).

[61] J. Xin, Control and Coordination for Automated Container Terminals (Citeseer, 2015).

[62] J. Xin, R. R. Negenborn, F. Corman, and G. Lodewijks, Control of interacting machines in
automated container terminals using a sequential planning approach for collision avoidance,
Transportation Research Part C: Emerging Technologies 60, 377 (2015).

[63] K. H. Kim and J. W. Bae, A look-ahead dispatching method for automated guided vehicles in
automated port container terminals, Transportation science 38, 224 (2004).

[64] J. He, Y. Huang, W. Yan, and S. Wang, Integrated internal truck, yard crane and quay crane
scheduling in a container terminal considering energy consumption, Expert Systems with Appli-
cations 42, 2464 (2015).

[65] N. Kaveshgar and N. Huynh, Integrated quay crane and yard truck scheduling for unloading
inbound containers, International Journal of Production Economics 159, 168 (2015).

[66] J. Cao, Q. Shi, and D.-H. Lee, Integrated quay crane and yard truck schedule problem in container
terminals, Tsinghua Science & Technology 15, 467 (2010).

[67] D. Kizilay, D. T. Eliiyi, and P. Van Hentenryck, Constraint and mathematical programming models
for integrated port container terminal operations, in International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Operations Research (Springer, 2018) pp.
344–360.

[68] J. Xin, R. R. Negenborn, and G. Lodewijks, Energy-aware control for automated container ter-
minals using integrated flow shop scheduling and optimal control, Transportation Research Part
C: Emerging Technologies 44, 214 (2014).

[69] J. Xin, R. R. Negenborn, and G. Lodewijks, Event-driven receding horizon control for energy-
efficient container handling, Control Engineering Practice 39, 45 (2015).

[70] S. H. Jung and K. H. Kim, Load scheduling for multiple quay cranes in port container terminals,
Journal of Intelligent manufacturing 17, 479 (2006).

[71] V. D. Nguyen and K. H. Kim, A dispatching method for automated lifting vehicles in automated
port container terminals, Computers & Industrial Engineering 56, 1002 (2009).

[72] F. Van Boetzelaer, T. J. van den Boom, and R. Negenborn, Model predictive scheduling for
container terminals, IFAC Proceedings Volumes 47, 5091 (2014).

[73] T. Van Den Boom and B. De Schutter, Modelling and control of discrete event systems using
switching max-plus-linear systems, Control engineering practice 14, 1199 (2006).

[74] Y.-L. Cheng, H.-C. Sen, K. Natarajan, C.-P. Teo, and K.-C. Tan, Dispatching automated guided
vehicles in a container terminal, Supply chain optimization , 355 (2005).

[75] A. Alessandri, S. Sacone, and S. Siri, Modelling and optimal receding-horizon control of maritime
container terminals, Journal of Mathematical Modelling and Algorithms 6, 109 (2007).

[76] A. Alessandri, C. Cervellera, M. Cuneo, M. Gaggero, and G. Soncin, Modeling and feedback
control for resource allocation and performance analysis in container terminals, IEEE Transactions
on Intelligent Transportation Systems 9, 601 (2008).

Bibliography 101

[77] J. Pearl, Heuristics: intelligent search strategies for computer problem solving, (1984).

[78] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, 10th Ed. (McGraw-Hill,
New York USA, 2015).

[79] J. N. Gupta, Two-stage, hybrid flowshop scheduling problem, Journal of the Operational Research
Society , 359 (1988).

[80] Anonymous, P versus np, https://en.wikipedia.org/wiki/P_versus_NP_problem
(2018), [Online; accessed 2018-1-26].

[81] B. Esfahbod, Np- hardness, https://commons.wikimedia.org/w/index.php?curid=
3532181 (2017), [Online; accessed 2018-1-26].

[82] J. Leeuwen, Handbook of theoretical computer science, Vol. 1 (Elsevier, 1990).

[83] A. Cobham, The intrinsic computational difficulty of functions, (1965).

[84] A. Guinet and M. Solomon, Scheduling hybrid flowshops to minimize maximum tardiness or
maximum completion time, International Journal of Production Research 34, 1643 (1996).

[85] J. Cheng, Y. Karuno, and H. Kise, A shifting bottleneck approach for a parallel-machine flowshop
scheduling problem, Journal of the operations research society of Japan 44, 140 (2001).

[86] X. Wang and L. Tang, A tabu search heuristic for the hybrid flowshop scheduling with finite
intermediate buffers, Computers & Operations Research 36, 907 (2009).

[87] B. Wardono and Y. Fathi, A tabu search algorithm for the multi-stage parallel machine problem
with limited buffer capacities, European Journal of Operational Research 155, 380 (2004).

[88] C. Low, Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel
machines, Computers & Operations Research 32, 2013 (2005).

[89] B. Naderi, M. Zandieh, A. K. G. Balagh, and V. Roshanaei, An improved simulated annealing
for hybrid flowshops with sequence-dependent setup and transportation times to minimize total
completion time and total tardiness, Expert systems with Applications 36, 9625 (2009).

[90] B. Naderi, M. Zandieh, and V. Roshanaei, Scheduling hybrid flowshops with sequence depen-
dent setup times to minimize makespan and maximum tardiness, The International Journal of
Advanced Manufacturing Technology 41, 1186 (2009).

[91] M. E. Kurz and R. G. Askin, Scheduling flexible flow lines with sequence-dependent setup times,
European Journal of Operational Research 159, 66 (2004).

[92] R. Ruiz and C. Maroto, A genetic algorithm for hybrid flowshops with sequence dependent setup
times and machine eligibility, European Journal of Operational Research 169, 781 (2006).

[93] V. Yaurima, L. Burtseva, and A. Tchernykh, Hybrid flowshop with unrelated machines, sequence-
dependent setup time, availability constraints and limited buffers, Computers & Industrial Engi-
neering 56, 1452 (2009).

[94] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner, Algorithms for flexible flow
shop problems with unrelated parallel machines, setup times, and dual criteria, The International
Journal of Advanced Manufacturing Technology 37, 354 (2008).

[95] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner, A comparison of scheduling
algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and
dual criteria, Computers & Operations Research 36, 358 (2009).

[96] D. Abramson and M. Randall, A simulated annealing code for general integer linear programs,
Annals of Operations Research 86, 3 (1999).

[97] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems, Vol. 39 (Springer Science & Business Media, 2012).

https://en.wikipedia.org/wiki/P_versus_NP_problem
https://commons.wikimedia.org/w/index.php?curid=3532181
https://commons.wikimedia.org/w/index.php?curid=3532181

102 Bibliography

[98] F. Rossi, P. Van Beek, and T. Walsh, Constraint programming, Foundations of Artificial Intelligence
3, 181 (2008).

[99] D. Riera and N. Yorke-Smith, An improved hybrid model for the generic hoist scheduling problem,
Annals of Operations Research 115, 173 (2002).

[100] A. H. Land and A. G. Doig, An automatic method of solving discrete programming problems,
Econometrica: Journal of the Econometric Society , 497 (1960).

[101] J. Clausen, Branch and bound algorithms-principles and examples, Department of Computer
Science, University of Copenhagen , 1 (1999).

[102] Gurobi,Mixed integer programming basics, MixedIntegerProgrammingBasics (2017), [On-
line; accessed 2018-1-27].

[103] M. Pinedo, Planning and scheduling in manufacturing and services (Springer, 2005).

[104] Y. Mati, N. Rezg, and X. Xie, A taboo search approach for deadlock-free scheduling of automated
manufacturing systems, Journal of Intelligent Manufacturing 12, 535 (2001).

[105] F. Glover, Future paths for integer programming and links to artificial intelligence, Computers &
operations research 13, 533 (1986).

[106] F. Glover, Tabu search part i, ORSA Journal on computing 1, 190 (1989).

[107] F. Glover, Tabu search part ii, ORSA Journal on computing 2, 4 (1990).

[108] F. Glover, Tabu search: A tutorial, Interfaces 20, 74 (1990).

[109] M. Malek, M. Guruswamy, M. Pandya, and H. Owens, Serial and parallel simulated annealing
and tabu search algorithms for the traveling salesman problem, Annals of Operations Research
21, 59 (1989).

[110] M. Langelaar, Me46060(2016-2017) blackboard slides, (2017), [Online; accessed 2018-1-29].

[111] V. Granville, M. Krivánek, and J.-P. Rasson, Simulated annealing: A proof of convergence, IEEE
transactions on pattern analysis and machine intelligence 16, 652 (1994).

[112] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, science 220,
671 (1983).

[113] D. Connolly, General purpose simulated annealing, Journal of the Operational Research Society
43, 495 (1992).

[114] J. Teghem, M. Pirlot, and C. Antoniadis, Embedding of linear programming in a simulated anneal-
ing algorithm for solving a mixed integer production planning problem, Journal of Computational
and Applied Mathematics 64, 91 (1995).

[115] C. Darwin and W. F. Bynum, The origin of species by means of natural selection: or, the preser-
vation of favored races in the struggle for life (Penguin, 2009).

[116] M. Mitchell, An introduction to genetic algorithms (MIT press, 1998).

[117] Anonymous, Selection (genetic algorithm), https://en.wikipedia.org/wiki/
Selection_(genetic_algorithm) (2018), [Online; accessed 2018-1-29].

[118] Anonymous, Crossover (genetic algorithm), https://en.wikipedia.org/wiki/
Crossover_(genetic_algorithm) (2018), [Online; accessed 2018-1-29].

[119] P. Larranaga, C. M. Kuijpers, R. H. Murga, and Y. Yurramendi, Learning bayesian network struc-
tures by searching for the best ordering with genetic algorithms, IEEE transactions on systems,
man, and cybernetics-part A: systems and humans 26, 487 (1996).

Mixed Integer Programming Basics
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

Bibliography 103

[120] Anonymous, Mutation (genetic algorithm), https://en.wikipedia.org/wiki/
Mutation_(genetic_algorithm) (2018), [Online; accessed 2018-1-29].

[121] Y. Zhang, S. Wang, and G. Ji, A comprehensive survey on particle swarm optimization algorithm
and its applications, Mathematical Problems in Engineering 2015 (2015).

[122] J. Kennedy and R. Mendes, Population structure and particle swarm performance, in Evolutionary
Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, Vol. 2 (IEEE, 2002) pp. 1671–
1676.

[123] D. Bratton and J. Kennedy, Defining a standard for particle swarm optimization, in Swarm Intel-
ligence Symposium, 2007. SIS 2007. IEEE (IEEE, 2007) pp. 120–127.

[124] Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization, in International
conference on evolutionary programming (Springer, 1998) pp. 591–600.

[125] R. Roy, S. Dehuri, and S. B. Cho, A novel particle swarm optimization algorithm for multi-objective
combinatorial optimization problem, in Trends in Developing Metaheuristics, Algorithms, and
Optimization Approaches (IGI Global, 2013) pp. 1–16.

[126] W.-N. Chen, J. Zhang, H. S. Chung, W.-L. Zhong, W.-G. Wu, and Y.-H. Shi, A novel set-based
particle swarm optimization method for discrete optimization problems, IEEE Transactions on
evolutionary computation 14, 278 (2010).

[127] M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of cooperating
agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26, 29 (1996).

[128] K. Alaykỳran, O. Engin, and A. Döyen, Using ant colony optimization to solve hybrid flow shop
scheduling problems, The international journal of advanced manufacturing technology 35, 541
(2007).

[129] H. Izakian, A. Abraham, and V. Snasel, Comparison of heuristics for scheduling independent
tasks on heterogeneous distributed environments, in Computational Sciences and Optimization,
2009. CSO 2009. International Joint Conference on, Vol. 1 (IEEE, 2009) pp. 8–12.

[130] E. D. Andersen and K. D. Andersen, Presolving in linear programming, Mathematical Program-
ming 71, 221 (1995).

[131] T. Le-Anh and M. De Koster, A review of design and control of automated guided vehicle systems,
European Journal of Operational Research 171, 1 (2006).

[132] B. L. Welch, The generalization of student’s’ problem when several different population variances
are involved, Biometrika 34, 28 (1947).

[133] F. M. Dekking, A Modern Introduction to Probability and Statistics: Understanding why and how
(Springer Science & Business Media, 2005).

[134] T. Jonker, Predictive control for model AGVs on trajectories with unreliable measurements and
communication, Research assignment, TU Delft (2017).

[135] G. E. Box, W. G. Hunter, and J. S. Hunter, Statistics for experimenters: an introduction to design,
data analysis, and model building, Vol. 1 (JSTOR, 1978).

[136] Y. Monden, Toyota production system: an integrated approach to just-in-time (CRC Press, 2011).

[137] J. P. Womack, J. P. Womack, D. T. Jones, and D. Roos, Machine that changed the world (Simon
and Schuster, 1990).

https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 1

Coordinated optimization of equipment operations on
a container terminal

Tim Jonker, 4281004
Supervisors: M.B. Duinkerken, R.R. Negenborn, N. Yorke-Smith, A. de Waal

Abstract—Increased international marine transport has increased
the use of containers. This goes hand in hand with the increased
demand for well-functioning container terminals. The speed at
which containers can be handled on the container terminal is an
important performance indicator. In particular, the productivity
of the Quay crane (QC)s is used to determine the performance
of a container terminal. To achieve a high performance, a well
designed schedule of operations is required. This research inves-
tigates whether an all-encompassing model can be constructed
that represents the waterside of a container terminal with the
aim to promote coordination of multiple machines. Currently,
an uncoordinated scheduling heuristic is used to dispatch the
equipment operating on a container terminal. With a coordinated
schedule, operations of all equipment working on the terminal can
be considered at once to achieve optimal QC productivity. A Hybrid
Flow Shop (HFS) model with revolutionary features is used to model
the waterside of a container terminal. The revolutionary features
are called bi-directional and job-pairs. The former enables jobs
to move through the HFS in both directions, the latter constrains
certain jobs to be performed simultaneously by a single machine.
Subsequently, a tailored Simulated Annealing (SA) algorithm is
used to obtain a heuristic solution to this mathematical model. To
enable the coordinated schedule to be applicable to operational
container terminals the SA algorithm should balance between both
quality and computational time. Computational time should remain
short since operations on a container terminal vary quickly and
predictions with regards to processing times are unreliable.

Keywords—Scheduling, Hybrid flowshop, coordination, Simulated
Annealing

I. INTRODUCTION

Today, 60% of the total transport volume is transported in stan-
dardized boxes called containers [1]. Therefore, the demand for
well-functioning container terminals to process these containers
increases. The function of a container terminal is to transship
containers. Deep-sea vessels, barges, trains and trucks all arrive
to deliver and pick up containers. The container terminal ensures
that the correct containers are loaded and unloaded to and from
their respective carriers. The speed at which this is achieved is
an important benchmark for container terminals. In particular,
the turnaround time of deep-sea vessels is used to determine the
performance of a container terminal [2], [3]. This is because
the berthtime of deep-sea vessels is expensive. Furthermore,
container terminals wish to decrease the turnaround time of deep-
sea vessels since the container terminal becomes more attractive
for shipping lines to move their wares through. Moreover, the
shorter the turnaround time of deep-sea vessels, the higher the
container terminal capacity.

To achieve low turnaround times of deep-sea vessels, con-
tainers should be handled as fast as possible on the container
terminal. An existing terminal can do three things to increase the
handling speed of containers: 1) using state-of-the-art equipment
or 2) buying more equipment or 3) using the current equip-
ment more efficiently. The latter option is investigated within
this research. By coordinating the operations of the equipment

Master thesis, Transport Engineering and Logistics

operating on the terminal, the equipment could be used more
efficiently. Currently, the available scheduling models do not
match with the operations on a container terminal. Furthermore,
the available models cannot be used in real-time since the time
to solve them is too long. Computational times should remain
low since re-planning is often required at a container terminal
because the current situation can change rapidly.

Our main contribution is the development of (i) a HFS model
that contains two revolutionary features called, bi-directional
and job-pairs to represent the container terminal mathematically.
(ii) a new solution technique that efficiently approximates exact
solutions to the developed mathematical model which allows for
real time usage.

II. CONTAINER TERMINAL LAYOUT AND PROBLEM
FORMULATION

In this section we briefly introduce the layout of a container
terminal and their known scheduling problems. A container
terminal is primarily a material handling system; it is a link
in the intercontinental transportation chain. Within this chain,
the container terminal fulfills a buffer function between sea and
land transportation. Furthermore, the container terminal provides
secondary services like inspection, washing, repairs and cargo
consolidation [4]. This research focuses on the waterside opera-
tions on a container terminal: transporting containers between
the yard and the deep sea vessels. Three different types of
equipment are used to perform waterside operations. These are
Yard Crane (YC)s, Automated Guided Vehicle (AGV)s and Quay
crane (QC)s. A schematic drawing of a typical container terminal
is given in Figure 1. From this figure the tasks of the different
equipment types becomes clear; QCs move containers between
the ship and the quay, the AGVs move containers between the
quay and the transfer point and YCs move containers within the
stack.

Fig. 1. Schematic drawing of a container terminal [5].

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 2

Our main research topic is to investigate how a coordinated
schedule could lead to increased productivity of Quay cranes on
a container terminal.

A coordinated schedule applied to container terminals is a
schedule that considers the operations of all equipment operating
on the container terminal simultaneously to achieve overall
optimal performance. Contrary to an uncoordinated schedule
that considers operations of all equipment separately and tries
to find optimal solutions for all equipment individually. Since
different equipment operating on a container terminal could have
conflicting objectives an uncoordinated planning does not lead
to the optimal holistic solution. Therefore, a richer coordinated
scheduling model than currently exists is desired to find the
optimal holistic solution.
In general, schedules could be subdivided into three different
categories which are strongly connected. These categories are:
scheduling, dispatching and routing. Scheduling signifies the
process of assigning operating times to the individual containers.
Subsequently, dispatching is a process during which equipment
is assigned to handle individual containers. Thereafter, routing
describes the process of determining the routes of equipment
required to handle the containers. Coordinated schedules are
schedules that recognize the connection between the different
categories and adapt their schedule accordingly.

Different scheduling problems on a container terminal are
identified in Figure 2. The first two scheduling problems en-
countered on a container terminal upon arrival of a deep-sea
vessel are berth allocation and bay scheduling [6]–[9]. Another
problem which should be solved prior to the individual container
scheduling problem is the problem of determining the yard
location of containers [10]. This problem is addressed in [11]–
[13]. The solutions to these scheduling problems define the
starting point of the scheduling problem considered within this
research. Individual container schedules and yard allocation are
closely related. Therefore, the quality of the yard allocation
solution partially determines the performance of the individual
container handling schedule. This is why certain researchers
integrated yard allocation with individual container scheduling
[14].
This research focuses on the scheduling and dispatching problem
on a container terminal. This problem consists of assigning
equipment to handle operations and to determine the start-
ing times of these operations. Scheduling and dispatching are
strongly intertwined; operations cannot be performed simultane-
ously on the same machine and a machine requires a sequence
dependent setup time to start a new operation. Good scheduling
and dispatching increases the productivity of a container terminal
[15]. Therefore, the investigation of optimal scheduling and
dispatching receives great interest. Another problem present
on container terminals is routing [10]. Routing considers the
problem of determining the route of Lift Automated Guided
Vehicle (Lift-AGV)s on the container terminal. Routing is of-
ten used to avoid congestions and collisions between different
automated Lift-AGVs while guaranteeing short driving times.
Routing involves path planning, area claiming, energy consump-
tion and prioritization. Typically, routing problems are solved
after scheduling and dispatching problems are solved. Since
this research considers both scheduling and dispatching, routing
is the first encountered problem after the individual container
schedule is constructed. Routing problems are frequently studied
and interested readers are referred to [16]–[18].

Fig. 2. Relation of the research problem with other logistic problems encoun-
tered on container terminals.

III. LITERATURE OVERVIEW

In this section we introduce the modelling strategy that is used
to mathematically model the container terminal which is used
to find optimal solutions. Furthermore, we place the research
into perspective by comparing previous developed mathematical
models.

A. Hybrid Flowshop Problem
The container terminal is formulated mathematically as a

Hybrid Flow Shop (HFS) problem. HFS problems are problems
where n different jobs should be processed in a series of m
stages while optimizing an objective function [30], [31]. A job
consists of multiple operations which should be performed on
the different stages. Problems classify as HFS problems once
the following characteristics apply [19], [30]:

1) The number of processing stages m is at least 2.
2) Each stage k has Mk ≥ 1 machines in parallel and at least

one stage has Mk > 1.
3) All jobs follow the same production flow through the stages.

However, a job is allowed to skip one or more stages.
4) Each job j requires a processing time p jk on stage k.

Within the standard form of the HFS problem, each job is
available from the start and can be processed on any of the
different parallel machines within a stage. Furthermore, each
machine is equal and has the same deterministic processing
time which is known in advance. Moreover, machines can only
serve one job simultaneously. Additionally, sequence dependent
setup times are negligible, buffers between stages are unlimited
and preemption of operations is not allowed. However, the
standard form of the HFS problem is not directly applicable to
the container terminal at hand. Only a few aspects need to be
modified.

At a container terminal, a job signifies an order since it
requires operations in a specified order by different types of ma-
chines. All machines of equal type compose a stage. Therefore,
the waterside of a container terminal can be represented by a
three-stage HFS problem that operates in both directions.

Modelling a container terminal as a HFS problem is not new.
Therefore, most research is dedicated either to additional features
[20]–[22], [25], [32], [33] or to the solution technique [2], [15],
[19], [20], [23]–[28]. The aim of our research is to reduce
the computational time required to solve the HFS problem.
Reduction of the computational time is a major hurdle before
a scheduling algorithm can be used on an operational terminal.
This is because schedules should be created and adapted in real
time. HFS problems are complex NP-hard problems [34]. NP-
hard problems are problems which cannot be solved in polyno-
mial time as a function of the problem size [35]. Furthermore,
NP-hard problems do not necessarily need to be verifiable in
polynomial time either [36]. However, NP or NP-hard problems
are not necessarily "hard problems" [37]. This is also the case
for the HFS problem [35]. Therefore, many larger HFS problems

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 3

TABLE I. CLASSIFICATION SCHEME OF OTHER PAPERS CONSIDERING INTEGRATED CONTAINER TERMINAL SCHEDULING. EXTENDED WITH THE MAXIMUM
MANAGED PROBLEM SIZE (# OF CONTAINERS, QCS, AGVS AND YCS) AND THE APPLIED SOLUTION TECHNIQUE.

Article α β γ Cont QC HTV YC Solution technique
Chen [19], [20] FH3,((RM)k)3

k=1 M j ,Ssd ,block Cmax 500 5 30 20 Tabu Search, Constraint programming
Lau [15] FH3,((RM)k)3

k=1 prec,Ssd ,M j C̄w 16 2 4 2 Multi Layer Genetic Algorithm
Bish [2] FH2,((PM)k)2

k=1 M j ,Ssd ,block C̄w 2500 4 40 - Transshipment Based Heuristic
Xin [21], [22] FH3,((RM)k)3

k=1 block Cmax 40 5 10 8 Exact, Variable Neighbourhood Search
Lu [23] FH2,((PM)k)2

k=1 pi j ∼ N(µ,σ),Ssd ,block Tmax 30 - 4 1 Particle Swarm Optimization
Kim [24] FH2,((PM)1,(RM)k)3

k=2 Ssd L̄+C̄ 100 2 7 5 Dispatching method
He [25] FH3,((RM)k)k=1,3,(PM)2 prec,Ssd L̄w + energy 500 10 50 20 Genetic Algorithm
Kaveshgar [26] FH2,((RM)k)2

k=1 block, prec Cmax 1050 2 15 - Genetic Algorithm
Cao [27] FH2,((PM)k)3

k=2 Ssd ,M j ,block Cmax 500 - 60 40 MIP+Benders Cut
Cao [28] FH2,((PM)k)3

k=2 Ssd ,M j ,block Cmax 15 1 4 - Genetic Algorithm + Heuristic
Kizilay [29] FH2,((PM)k)k=1,3 prec,Ssd ,M j Cmax 550 4 ∞ 6 MIP, Constraint programming

use (meta)heuristics to approximate the exact solution within
reasonable time. However, if the problem is small enough, a
branch and bound technique is typically used to arrive at an exact
solution. Popular metaheuristics are Genetic Algorithm (GA),
tabu search and Simulated Annealing (SA). Jungwattanakit et al.
[38] found that SA is superior to GA and Tabu Search for large
scale HFS problems. Therefore, we will use SA in this research.

B. Simulated annealing
Simulated Annealing (SA) is a stochastic metaheuristic involv-

ing randomness. The metaheuristic is based on the annealing
process of metals. It is particularly effective to locate the global
minimum of large problems. The core thought is that the solution
iteratively progresses towards the global optimum. Initially, the
algorithm quickly explores the search space by accepting a large
portion of moves, both improving and worsening. This allows
the algorithm to escape local minimums. As time progresses, the
algorithm becomes more selective and starts favouring improving
moves only [39], [40].

The basic working principle of SA is as follows [39]:
1) Select an initial temperature T and solution x;
2) Randomly generate a new solution y in the neighbourhood

of x and subsequently evaluate f (y);
3) If f (y)< f (x), accept f (y). Otherwise, compute the proba-

bility Paccept(T) (Equation 1) of accepting the new solution
f (y). Use a random number generator to decide whether or
not to accept f (y);

4) Reduce the temperature and return to step 2.
The probability to accept a worsening move is expressed with

Equation 1. This chance gradually decreases towards zero with
decreasing temperature, meaning that only improving moves are
selected [41]. In other words, in the beginning SA is exploratory,
whereas later SA becomes more investigative.

Paccept(T) = e
f (x)− f (y)

T (1)

C. Hybrid flow shops applied to integrated container terminal
scheduling

To compare different HFS problems with each other a classifi-
cation scheme is introduced in [30], [31], [42]. The classification
scheme consists of three categories: α,β ,γ . These categories
respectively identify the structure of the shop, the additional
features and the objective function. We use this classification to
classify previous efforts to construct integrated container terminal
schedules applying HFS models. The collection of previous
efforts is shown in Table I. This table also indicates the problem
size and the applied solution technique.

IV. MATHEMATICAL MODEL FORMULATION

In this section we present the mathematical model and the
applied solution technique to solve this mathematical model.

A. Model description
Since a HFS is used to describe the coordinated container

scheduling problem, the problem can be classified with the α|β |γ
classification scheme introduced in [30], [31], [42]. First, the
problem will be described in detail to highlight all facets of the
HFS. Subsequently, the α|β |γ classification will be provided.
• Within the HFS model that we used there are three stages

with unrelated parallel machines.
• Precedence relations exist at the QC stage to ensure that

containers can only be (un)loaded in a specific sequence.
• Sequence dependent setup times are used to describe the

back route of equipment. A back route is a route that
equipment should travel to pickup their next container after
delivering a container.

• Machine eligibility is applied at the YC and QC stage
to ensure that certain containers can only be handled by
specific machines.

• Blocking is used to constrain the available buffer space
between different stages. Blocking signifies that equipment
can only proceed with its next operation once the next
equipment type becomes available. This means that certain
containers block a machine for as long as the next machine
is not available. In our case blocking applies on all stages.

• Bi-directional flow shop is a new feature of the HFS model
developed during this research. It enables containers to
move in both directions through the shop. This is required
since both loading and unloading containers are simultane-
ously present on the container terminal.

• Release dates signify that machines and containers become
available not directly from the start. This enables the math-
ematical model to be constructed at an arbitrary time during
operation of the container terminal.

• Job pairs is a revolutionary feature that is used to en-
able machines to simultaneously handle two jobs. More
specifically, job pairs should finish at the same time but,
could be started at different times. Job pairs are used to
enable the HFS model to handle twin lift moves. Twin lift
moves are moves consisting of two containers that require
simultaneous handling at the QC stage and the Lift-AGV
stage. Job pairs could be formed differently on different
stages and could have a different processing time dependent
on their pick-up sequence.

• The objective of the HFS is to minimize the makespan of the
entire container plan. Primarily, the QC should be finished
as early as possible.

All together the HFS problem can be classified with the α|β |γ
classification as:

FH4,((RM)k)4
k=1|r j,M j,Ssd ,block, prec,Bidirec,Jobpairs|C̄

The features Bi-direc and Job-pairs are newly introduced
in this research. Bi-direc is used to describe the relaxation

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 4

TABLE II. A TABLE TO COMPARE THE MODEL DEVELOPED IN THIS RESEARCH WITH PREVIOUS EFFORTS, INDICATING THE STRUCTURE, FEATURES AND
OBJECTIVE VALUE ACCORDING TO THE CLASSIFICATION SCHEME OF [30], [31], [42]

Article Stages Machine
type M j Ssd block prec pi j ∼

N(µ,σ)
Bidirec Jobpairs Objective

Chen [19], [20] 3 R x x x Cmax

Lau [15] 3 R x x x C̄w

Bish [2] 3 P x x x C̄w

Xin [21], [22] 3 R x Cmax
Lu [23] 2 P x x x Tmax

Kim [24] 2 P x L̄+C̄
He [25] 3 P,R x x L̄w + energy
Kaveshgar [26] 2 R x x Cmax
Cao [27] 2 P x x x Cmax
Cao [28] 2 P x x x Cmax
Kizilay [29] 2 R x x x Cmax

This research 3 R x x x x x x C̄w

of unidirectional flow in the flow shop. Job-pairs is a feature
introduced to specify that some containers require simultaneous
handling on a stage by one machine. All together the HFS model
developed within this research is the most extensive HFS model
that was ever used to model a container terminal. Table II can be
used to compare different efforts to model container terminals.
Figure 3 shows a schematic overview of the container terminal
considered in this research. Each container can only be handled
by one specific Yard Crane (YC) but the sequence of operations
is variable. Each YC has access to its own transfer point modelled
as a buffer. This means that the buffer stage contains multiple
spots to place containers. The buffer is not shared between
different YCs. At the QC stage, not only the specific machine
but, also the sequence of operations is known in advance.

Fig. 3. Illustration of the HFS applied to a container terminal. The YC and QC
stages are represented by multiple small blocks since the machine assignment
is fixed. The Lift-AGV stage is represented by a large block since the machine
selection is an element of the to be developed schedule. Arrows are used to
indicate how the different blocks are connected. Containers can only move along
the arrows.

All together the HFS model used in this research is the most
extensive HFS that has ever been used to model a container
terminal. In Table II the HFS model used within this research is
compared with the HFS models used by other researchers.

B. Mathematical model
In this section our HFS model is translated into a mathematical

formulation. Since the problem size is often a bottleneck for
HFS problems it is of paramount importance to keep the number
of variables to a minimum. Nevertheless, two artificial jobs are
created which define the first and the last job of a sequence [27].

The first step towards creating a model is to declare certain
parameters.

i,k job index i,k ∈ φ1∩φ2
j stage index j ∈ 1,2,3,4

m machine index m ∈ 1,2, ...n j
n j number of machines on stage j
N total number of containers
φ set of all jobs excluding i = 0, i = N +1
φ1 set of all jobs including the first dummy job i = 0
φ2 set of all jobs including the last dummy job i = N +1
P set of job pairs with precedence relations
Oi j operation i at stage j
Mi j set of machines which can process Oi j
Em set of jobs that can be performed on machine m, includes
jobs i = 0 and i = N +1.
Ki j set of jobs that can form a pair with job i on stage j,
includes jobs k = 0 and k = N +1.
T set of twinlift operations.
Ti the twin pair of container i.
A set of containers that is already assigned to equipment.
Pr set of containers that is already assigned to equipment
but not in current progress.
Ji set of stages that a container i already past or is being
currently processes job i.
Q jm number of jobs that must be performed on machine m
ri j release date of job i on stage j.
pi j processing time of operation Oi j
pik

i j processing time of operation Oi j whenever operation i
directly precedes operation k.
pki

i j processing time of operation Oi j whenever operation k
directly precedes operation i.
sik j setup time between job i and job k at stage j
s0k jm setup time between the dummy job and job k on stage
j for machine m.
H a sufficiently large constant.
β a constant indicating the weight of completion time of
operations on the YC stage, β � 1.

The stage indices 1 to 4 respectively represent: the YC stage,
the rack stage, the Lift-AGV stage and the QC stage.

Next, the decision variables are declared:
• ti j The start time of job i on stage j
• zik j 1, if Oi j immediately precedes Ok j; 0, otherwise ∀i ∈

φ ,∀k ∈ φ2,∀ j ∈ {1,2,3,4}.
• z0k jm 1, if O0 jm immediately precedes Ok j; 0, otherwise
∀k ∈ φ2,∀ j ∈ {1,2,3,4},∀m ∈Mi j.

The parameters pik
i j and pki

i j are only required for twin moves
(∀i,k ∈ T) since twin moves are represented by two sequential
single moves with different processing times. Whenever i,k are
pairs of a twin move pi j is replaced by pik

i jzik j + pki
i jzki j.

The integrated scheduling problem can be formulated in a HFS
style.

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 5

Minimize Z = β

N

∑
i=1

ti1 +
N

∑
i=1

ti4−β

m

∑
i=1

N+1

∑
k=1

z0k jm (2)

Subject to ti j ≥ ri j ∀i ∈ φ ,∀ j ∈ {1,4} (3)
H(1− z0k jm)+ tk j ≥ s0k jm ∀k ∈ φ ∩AC, j ∈ {3},∀m ∈ n j (4)
ti j + pi j ≤ ti(j+1) ∀i ∈ φ ∩TC,∀ j ∈ {3,4} (5)
ti j + pi j ≤ ti(j+1) ∀i ∈ φ ,∀ j ∈ {1,2} (6)
ti j + pik

i jzik j + pki
i jzki j ≤ ti(j+1) ∀i ∈ T,∀ j ∈ {3,4} (7)

N

∑
i=1

N

∑
k=1

zik j = Q jm +1 ∀i,k ∈ Em,∀ j ∈ {1,2,3,4},∀m ∈Mi j (8)

N

∑
k=1

z0k j = n j ∀k ∈ Em,∀ j ∈ {1,2,3,4} (9)

N

∑
i=1

zi(N+1) j = n j ∀i ∈ Em,∀ j ∈ {1,2,3,4} (10)

N+1

∑
k=1

zik j = 1 ∀i ∈ φ ,∀k ∈ φ2∩Ki j,∀ j ∈ {1,2,3,4} (11)

N

∑
i=0

zik j = 1 ∀i ∈ φ1∩Kk j,∀k ∈ φ ,∀ j ∈ {1,2,3,4} (12)

zik j + zki j = 1 ∀i,k ∈ T, j ∈ {3,4} (13)
ti(j+1)+ sik j ≤ tk j +H(1− zik j) ∀i,k ∈ φ ∩TC,∀ j ∈ {1,2,3,4} (14)
ti j + pi j + sik j ≤ tk j +H(1− zik j) ∀i,k ∈ φ ∩TC,∀ j ∈ {4} (15)
ti j + pi j + sik j ≤ tk j +H(1− zik j) ∀i,k ∈ φ ,∀ j ∈ {1,2} (16)
ti j + pik

i jzik j + pki
i jzki j + sik j ≤ tk j +H(1− zik j) ∀i,k ∈ T,∀ j ∈ {3,4} (17)

N

∑
i=1

ti j ≤ 0 ∀i ∈ A,∀ j ∈ Ji (18)

N

∑
i=1

ti j ≤ H(1− zik3) ∀i,k ∈ A∩T,∀ j ∈ Ji (19)

N

∑
i=1

z0k jm + zik j = 1 ∀i ∈ A∪Tk,∀k ∈ Pr,∀ j ∈ {1,2,3} (20)

zik j,zik jm = 0 or 1 ∀i,k ∈ φ1∪φ2,∀ j ∈ {1,2,3,4} (21)

C. Mathematical model description

This section will be used to give a textual description to all
constraints presented in the previous section. In the objective
function (Equation 2) the makespan is minimized adding the
most weight to the completion time of operations at the QC stage.
Since each operation is considered in the objective function, most
weight is indirectly added to the first few operations on each
QC. This is because delays in the beginning propagate to other
operations. This is a desired feature of the objective function
since the first few operations are most accurately predicted
and are most important to be finished on time. Besides that,
distribution of jobs to different machines is stimulated by the
small negative factor β . Whenever the makespan is equal, the
jobs should be evenly distributed over all machines.
Constraint 3 enforces that jobs can only start after they are being
released. This is only required at the starting stage and the first
job of the sequence since other operations and jobs are forced
to start later. Constraint 4 has a similar function as Constraint
3 but, focuses on the Lift-AGV stage. This is required since it
is unknown which container is handled by which Lift-AGV and
each Lift-AGV can become available independently.
Constraint 5 ensures that a job can only start at the next stage
once the current stage is completed. Constraint 7 is required to

make use of the sequence dependent processing times of twin
moves. However, at the YC stage containers cannot be twin
containers. Therefore, the processing time remains unchanged
and thus Constraint 5 applies for all containers in φ . This is
expressed by Constraint 6.
Constraint 8 describes machine eligibility at the YC stage. It
ensures that a sequence of zik j is only selected from a subset of
φ . Furthermore, the number of sequence variables is constraint
to the number of jobs that should be handled on the machine
plus one. This is because each sequence starts and ends with a
dummy job.
Constraint 9 ensures that the number of started sequences is
equal to the number of machines. However, once a sequence
cannot start at an arbitrary job, that machine receives its personal
constraint. The personal constraint enforces that a sequence
should start at one of the available jobs. Constraint 10 is similar
to Constraint 9 but, now to ensure that each sequence is ended.
Similarly to Constraint 9, if a machine cannot process every job;
that machine is given its personal variant of Constraint 10.
Constraint 11 ensures that each operation is proceeded by another
operation or is the end of the sequence. Similar is Constraint
12, which ensures that each operation is preceded by another
operation or is the start of the sequence. Both of these constraints
exclude infeasible job pairs whenever they are obliged to be

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 6

performed on different machines.
Constraint 13 ensures that a pair of twin moves is handled by the
same machine. This is not required at stage 1 or 2 since different
YCs might work on the same twin pair.
Constraint 14 is the blocking constraint; it states that whenever
job i immediately precedes job k on stage j, job k cannot start
earlier than the start time of job i on the next stage plus the setup
time between job i and job k. This is because the start of job i
on the next stage marks the point where the container is released
from the current stage.
Constraint 15 is used to separate operations by their processing
times and setup times. Practically, this constraint is only required
at the first and last stage since intermediate stages automatically
satisfy this constraint by a combination of Constraint 5 and
Constraint 14. Constraint 17 is the same as Constraint 15 only for
twin moves which have their processing time dependent on the
sequence of operations. For the same reason as for Constraint
6, Constraint 16 is added specifically for the first stage since
the twin moves are separated here and thus processing times are
sequence independent.
Constraint 18 ensures that containers that have already passed
a stage or that are currently processed on a stage start their
operation at time zero. However, this constraint is not valid
whenever an unloading twin container is currently assigned to
a QC or to a Lift-AGV. This is because twin containers are
modelled as sequential single moves with different processing
times. Therefore, Constraint 19 is introduced which specifies that
at least one of the twin containers starts at zero. Constraint 13
subsequently ensures that the other container of the twin pair is
processed directly after its twin pair.
Constraint 20 ensures that operations that are assigned to equip-
ment but, that have not currently started can only proceed:
containers that are in current progress or containers that have
passed that stage already or their twin pair or the dummy start
container.
Finally, Constraint 21 is used to enforce binary solutions to the
decision variables zik j and z0k jm.

Note that whenever j + 1 is listed the next stage is meant,
not necessarily being stage j+1. This is because for unloading
the next stage is stage j− 1. Furthermore, since 1 ≤ j ≤ 4,
j ∈ {1,2,3} whenever j+ 1 is required and loading containers
are considered. Whenever unloading is considered and j− 1 is
required; j ∈ {2,3,4}.
Since the sequence of operations on stage 4 is already known
entirely, all the associated z variables become superfluous as
decision variables.
Additionally, variable zii j does not exist; a job can never imme-
diately proceed or precede itself. Therefore, these variables are
excluded.

The total number of decision variables is dependent on the
number of stages, the number of containers and the number
of Lift-AGVs. The number of variables can be expressed with
Equation 3.

(3)# o f variables = N · (# o f stages) + (N + 1)
· (n2 + n3) + (N + 1)2 + 2(N2 + N)

Equation 3 is based on the situation at TBA where the
containers can only be planned on one YC and one QC. The
Lift-AGVs are allowed to handle any container except that they
cannot preempt a container handling. Furthermore, the sequence
of operations at the QC is known in advance and thus requires
no decision variables.

V. SOLUTION TECHNIQUE

In this section we describe how the mathematical model can
be solved efficiently. The efficiency is defined as the balance
between the performance and the computational time of the
algorithm. First, a general overview of the solution technique
is presented in Figure 4 followed by a brief description of each
block. Subsequently, the different blocks will be discussed in
more detail.
The algorithm used to solve the HFS model is a tailored SA
algorithm. The algorithm uses local search and a temperature
based accepting/rejection criterion to arrive at new solutions.
The first step is to generate an initial solution. Two different
approaches are used for this and the best solution is selected
as initial solution. Subsequently, the initial solution is modified
locally to investigate better alternatives. The local modification
is performed by altering the sequence of operations on the
different machines. To do this, 2 containers are selected to
be either inserted or swapped. This creates a neighbouring
sequence. The neighbouring sequence might require a repair to
remain feasible. Thereafter, the quality of the newly obtained
neighbouring sequence can be evaluated with LP. The quality
of the neighbouring sequence and the temperature schedule
are used to decide whether the new solution is accepted or
rejected. Whenever all these steps are completed everything will
be updated to be ready for the next cycle. Once a stopping
criterion is satisfied, the incumbent solution is returned as the
final solution.

Fig. 4. The SA algorithm visualized by breaking it up in successive blocks.

A. The initial solution
To find an initial solution, two different solutions are generated

from two different perspectives. The first solution is created from
a container perspective and the other from a machine perspective.

For the container perspective, all containers are sorted based
on their desired starting times at the first stage. Subsequently,
the containers are scheduled in that order on all stages. This
initial solution exploits the fact that the sequence of operations
is known at the QC stage. Another name for this initial schedule
is a non-delay schedule since containers are never deliberately
delayed.

When scheduling from a machine perspective, all machines
and all containers are sorted based on their availability. Machine
availability does also consider the setup time to a particular
container. Subsequently, the machine which comes first available
is paired with the container that becomes first available. This is
different from the container perspective since containers are not
scheduled through the entire shop immediately.

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 7

B. The selection algorithm
After obtaining an initial solution the solution could be mod-

ified locally to investigate whether there is a better adjacent
solution. The modification consists of a swap or insert of two
containers to update the sequence of operations. A prerequisite is
to select two containers that will be used to modify the original
sequence. Since the loadplan is fixed, the sequence of operations
at the QC cannot be changed. Therefore, containers are selected
from the YC stage and from the Lift-AGV stage. At the YC stage;
containers are selected randomly. This is because the possible
variation of the schedule is small since containers cannot switch
machines.
At the Lift-AGV stage; containers are selected in a predictive
way. The aim is to predict which combination of two containers
is most likely to improve the schedule the most. This means one
container that is associated with delays and one container that
precedes an idle period of the Lift-AGV. This selection process
involves two steps. First, containers are sorted based on the delay
that they cause in the QC schedule. These containers are marked
yellow in Figure 5. The longer the delay, the more likely it
becomes to select that container. Randomness is important to
promote diversity and to prevent the algorithm from getting
stuck in a local minimum. Let us assume that the container
marked pink in Figure 5 is selected. This becomes the first of
two containers. The second step is to select another container
with some slack. This is done by selecting the containers with
slack within the black box in Figure 5. The black box is drawn
surrounding the first selected container. Thereafter, the more
slack a container has, within the black box, the more likely
it is to be selected. This selection ensures that two containers
are selected which are likely to reduce the objective value the
most. During the selection process, machine eligibility is taken
into account. Furthermore, containers that are already in progress
cannot be reassigned to another machine since preemption is not
allowed.

Fig. 5. A schedule of the YC, Lift-AGV and QC, the yellow boxes represent
containers that cause delay in the QC schedule. The pink box represents the
container that causes the most delay in the QC schedule. Processing time is
the productive working time of a machine on a container. Setup represents the
driving empty time between two containers. Hold time is the time that a machine
cannot proceed with its next operation since there are no discharge opportunities
for the current operation. Within white areas a machine is idle.

C. Generate the neighbour sequence
To obtain a new solution that reassigns the previously selected

containers. The initial solution is first split into two parts.
Namely, the sequence of operations (the discrete variables) and
the associated starting times (the continuous variables). Subse-
quently, the sequence of operations is altered by swapping or
inserting one container after another. The containers used for this
are obtained with the selection algorithm. Generally, inserts are

more productive than swaps. However, it was found that allowing
a small portion of swaps does lead to a better performance
compared to inserts alone. Presumably this is because diversity
is maintained. Important is that upon each iteration, only one
swap/insert can be performed on either the YC or Lift-AGV
stage. Randomness determines which of the four options is
performed.

D. Repair algorithm
The downside of performing a swap or insert in the sequence

of operations is that it could produce an infeasible sequence of
operations. This is because precedence or blocking constraints
could be violated. Whenever this happens, the sequence of
operations should be repaired. An example of this phenomenon
is presented in Table III. These types of errors are easily repaired
by sorting the containers on the machine to be repaired in the
same order as they are on the sequence that is used to fix the
faulty sequence. This type of fix is also indicated in Table III.

TABLE III. LEFT: A FAULTY SEQUENCE. RIGHT: A REPAIRED
SEQUENCE. THE SEQUENCE IN THE LEFT IS FAULTY SINCE THE ORDER OF

CONTAINERS HANDLED ON AGV1 IS DIFFERENT FROM THE ORDER OF
HANDLED CONTAINERS ON QC1

AGV1 2 7 1 9 5 AGV1 1 7 2 9 5
AGV2 6 3 4 8 10 AGV2 6 3 4 8 10

QC1 1 2 3 4 5 QC1 1 2 3 4 5
QC2 6 7 8 9 10 QC2 6 7 8 9 10

E. Quality of the solution
With all sequence variables feasibly assigned, the starting time

of each operation should be determined. These starting times also
determine the quality of the new solution. The starting times can
be determined optimally with Linear Programming (LP). LP is
fast since there are only continuous variables left. Gurobi’s LP
solver is used to obtain optimal solutions quickly.

F. Accepting criterion
Once the neighbour solution is an improvement with respect to

the original solution the neighbour solution is automatically ac-
cepted. Otherwise, the probability of accepting the new solution
is dependent on its quality and the temperature (see Equation
1). The temperature is dependent on a temperature schedule that
progresses along with the iterations. The temperature schedule
allows users of the algorithm to balance between exploratory and
investigative behaviour. The temperature schedule that was used
is presented in Figure 6. All constants that are used to specify the
temperature schedule are based on the performance on a limited
number of samples. Therefore, it is not excluded that there are
better temperature schedules.

Fig. 6. The temperature schedule used by the SA algorithm.

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 8

G. Stopping criterion
The optimization cycle is terminated whenever one of the

three stopping criteria is encountered. The first stopping criterion
is a maximum number of iterations. This maximum number
of iterations is determined based on experiments indicating the
performance of the algorithm with respect to the number of
iterations. The results of these experiments are shown in Figure
7. It is chosen to select 550 iterations as the maximum since the
possible further gain in performance is low with respect to the
required number of iterations.
The second stopping criterion specifies that whenever the incum-
bent solution does not update for 350 consecutive iterations, the
optimization is terminated.
Finally, whenever there are no delays in the QC schedule
anymore, the optimization cycle is terminated.

Fig. 7. Averaged, normalized progress of the objective value of 40 different
instances with 5 QCs obtained from eM-Plant.

VI. COMPUTATIONAL RESULTS

The performance of the algorithm is assessed theoretically by
comparing the obtained objective values with those obtained with
the exact solution technique Branch and Bound (B&B). Further-
more, the time required to arrive at these solutions is recorded
as well. These experiments are repeated for eight different sized
terminals. In case of SA, the average result over 5 different
attempts is published to mitigate the effects of randomness.
Besides that, the SA algorithm is also evaluated when more
time is available. This obtained solution is called the better
solution. To obtain the better solution the maximum number
of iterations is increased to 1000 and the SA is repeated 10
times with different initial solutions. Subsequently, the best found
solution is selected. The results of these theoretical experiments
are published in Table IV. The computational times shown are
obtained with an Intel i7-7700HQ CPU @ 2.8 GHz processor.
To indicate the scaleability of the algorithm, results obtained on
larger sized terminals are also shown in Table IV. However, the
comparison with B&B is not made since computational times of
B&B solutions are too excessive.

Based on the results shown in Table IV it can be concluded
that the computational times realised by B&B are too long to
be feasible for use on an operating terminal. The computational
times obtained with the quick SA algorithm are much shorter and
do allow for repetitive continuous re-planning on an operating
container terminal. Furthermore, the optimality gap is relatively
low. There is a considerable improvement between the different
SA variants in terms of quality. However, also the time to arrive
at the solution increased significantly. Therefore, for operational
terminals it is advised to use the quick solution. On the other
hand, the better solution verifies that the SA algorithm is able to
find a solution with the shortest makespan in most cases.

When comparing the obtained results with results published
in other papers [15], [19]–[22], [25] the new developed SA
algorithm proves to be well balanced between performance and
computational time.

TABLE IV. OPTIMIZATION RESULTS FOR 8 DIFFERENT SIZED INSTANCES. THE SA RESULTS HAVE A QUICK SOLUTION (1 REPLICATION 550 ITERATIONS)
AND A BETTER SOLUTION (10 REPLICATIONS 1000 ITERATIONS). THE NUMBER OF AGVS, YCS AND CONTAINERS (CNT) IS A FUNCTION OF THE NUMBER OF

QCS. A - INDICATES THAT NO RESULTS ARE AVAILABLE. THIS IS BECAUSE B&B DID NOT FIND SOLUTIONS WITHIN REASONABLE TIME.

Problem size Branch and Bound Simulated annealing quick solution Simulated annealing better solution

QC AGV YC CNT Objective
value

Makespan
(MS) [s]

Time
[s]

Objective
value

Makespan
(MS) [s]

Time
[s]

Opt
gap

MS
gap

Objective
value

Makespan
(MS) [s]

Time
[s]

Opt
gap

MS
gap

1 4 3 10 7299.8 1568 0.1 7313.4 1568 1.3 0% 0% 7313.4 1568 21.7 0% 0%
2 8 5 20 19316.8 1784 0.9 20619.7 1971 1.5 7% 11% 19429.4 1816 23.9 1% 2%
3 12 8 30 40856.5 2857 16.3 42015.3 2932 1.8 3% 3% 41006.8 2857 30.5 0% 0%
4 16 10 40 41764.1 1960 71.1 42332.2 2008 2.1 1% 2% 42310.9 2008 29.7 1% 2%
5 20 13 50 50791.1 1910 2928.4 52672.1 1969 3.1 4% 3% 51517.2 1917 48.7 1% 0%
6 24 15 60 63987.5 2093 3762.8 66139.6 2169 2.5 3% 4% 65900.6 2169 43.1 3% 4%
7 28 18 70 69608.4 2373 7206.1 77214.0 2600 2.8 11% 10% 73937.1 2373 52.2 6% 0%
8 32 20 80 90604.23 2340 7206.1 95052.6 2392 3.3 5% 2% 93617.7 2340 57.6 3% 0%
9 36 23 90 - - - 102894.6 3330 3.8 - - 101007 3330 64.3 - -
10 40 25 100 - - - 104969.8 2173 4.4 - - 103365.4 2141 69.6 - -
11 44 28 110 - - - 110268.7 2369 4.6 - - 109714.6 2369 78.0 - -
12 48 30 120 - - - 131096.5 2819 4.9 - - 128267.2 2634 84.3 - -
13 52 33 130 - - - 142717.3 2687 5.4 - - 140837.6 2468 100.5 - -
14 56 35 140 - - - 164543.3 3012 6.0 - - 163711.6 2787 108.7 - -
15 60 38 150 - - - 159654.5 2423 6.7 - - 157237.3 2397 117.0 - -
16 64 40 160 - - - 169312.9 2589 7.5 - - 164655.5 2550 135.8 - -
17 68 43 170 - - - 192067.5 2599 8.9 - - 190296.5 2599 148.6 - -
18 72 45 180 - - - 212399.7 2566 9.5 - - 206932.7 2420 169.3 - -
19 76 48 190 - - - 218903.8 2854 10.0 - - 213542.3 2816 178.4 - -
20 80 50 200 - - - 214730.0 2434 11.3 - - 209483.9 2404 194.2 - -
21 84 53 210 - - - 245257.8 3011 12.5 - - 239076 2995 216.6 - -
22 88 55 220 - - - 244952.5 2299 14.4 - - 237181.5 2163 254.0 - -
23 92 58 230 - - - 288390.8 2966 14.8 - - 278780.2 2930 282.4 - -
24 96 60 240 - - - 302116.9 2777 21.0 - - 297615 2609 398.9 - -

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 9

VII. CONCLUSION AND FURTHER RESEARCH

In this paper, a model is developed that integrates the op-
erations of three different types of equipment operating on
the waterside of a container terminal. These equipment types
are YCs, Lift-AGVs and QCs. We constructed a coordinated
schedule that approximates optimal handling of containers. The
model used to construct the coordinated schedule is an extended
version of the HFS model. We added two new features called:
bi-directional and job pairs. The former enables jobs to move
through the HFS in both directions, the latter constrains certain
jobs to be performed simultaneously by a single machine. All
together the HFS model used within this research is the most
extensive HFS that was ever used to model a container terminal
(see Table II). Since the mathematical model is too complex to be
solved with exact methods an approximative solution technique
is developed. This solution technique is based on SA. The exact
solution is approximated by splitting the problem in a discrete
and a continuous part. The discrete part uses a local search
method to find better alternatives to the current solution by
predictive reassignment of jobs to machines. The continuous
part can subsequently be solved quickly with LP. Computational
results prove that the developed solution technique is capable
of finding solutions with relatively small optimality gaps within
a fraction of the time that B&B requires even for very large
terminals.

Future work contains several parts. 1) The scheduling algo-
rithm should be coupled to a real terminal to validate the schedule
and to enable comparison with the current scheduling techniques
applied on container terminals. 2) A library of HFS test problems
is desired that allow for comparison of different solution tech-
niques developed by multiple researchers. 3) The mathematical
model could be extended with more features such as battery
changes. This is because AGVs are battery powered. These
batteries need to be changed whenever they are nearly empty.
4) The mathematical model could be extended by integrating the
landside of the terminal as well. 5) The solution technique could
be updated by using dynamic settings for different parameters
based on the problem at hand. Parameters that are susceptible
to different problems are for instance: the parameters used to
construct the temperature schedule.

ACKNOWLEDGMENT

The author gratefully acknowledges and thanks the Delft
University of Technology and TBA for providing support for
this research. Special thanks goes to my supervisors, Arjen de
Waal, Rudy Negenborn, Mark Duinkerken and Neil Yorke-Smith
for their constructive support.

REFERENCES

[1] R. Stahlbock and S. Voß, “Operations research at container terminals: a
literature update,” OR spectrum, vol. 30, no. 1, pp. 1–52, 2008.

[2] E. K. Bish, “A multiple-crane-constrained scheduling problem in a con-
tainer terminal,” European Journal of Operational Research, vol. 144,
no. 1, pp. 83–107, 2003.

[3] M. De Koster, B. Balk, and W. Van Nus, “On using dea for benchmarking
container terminals,” International Journal of Operations & Production
Management, vol. 29, no. 11, pp. 1140–1155, 2009.

[4] A. De Waal, “Container terminal & performance.” TBA internal docu-
ments, 2012. [Online; accessed 2018-1-11].

[5] B. K. Lee and K. H. Kim, “Optimizing the block size in container yards,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 46, no. 1, pp. 120–135, 2010.

[6] N. Al-Dhaheri and A. Diabat, “The quay crane scheduling problem,”
Journal of Manufacturing Systems, vol. 36, pp. 87–94, 2015.

[7] C. Bierwirth and F. Meisel, “A survey of berth allocation and quay
crane scheduling problems in container terminals,” European Journal of
Operational Research, vol. 202, no. 3, pp. 615–627, 2010.

[8] R. Tavakkoli-Moghaddam, A. Makui, S. Salahi, M. Bazzazi, and F. Taheri,
“An efficient algorithm for solving a new mathematical model for a quay
crane scheduling problem in container ports,” Computers & Industrial
Engineering, vol. 56, no. 1, pp. 241–248, 2009.

[9] K. H. Kim and Y.-M. Park, “A crane scheduling method for port container
terminals,” European Journal of operational research, vol. 156, no. 3,
pp. 752–768, 2004.

[10] D. Steenken, S. Voß, and R. Stahlbock, “Container terminal operation and
operations research-a classification and literature review,” OR spectrum,
vol. 26, no. 1, pp. 3–49, 2004.

[11] B. Cao and G. Uebe, “Solving transportation problems with nonlinear side
constraints with tabu search,” Computers & Operations Research, vol. 22,
no. 6, pp. 593–603, 1995.

[12] K. H. Kim, Y. M. Park, and K.-R. Ryu, “Deriving decision rules to locate
export containers in container yards,” European Journal of Operational
Research, vol. 124, no. 1, pp. 89–101, 2000.

[13] C. Zhang, J. Liu, Y.-w. Wan, K. G. Murty, and R. J. Linn, “Storage
space allocation in container terminals,” Transportation Research Part B:
Methodological, vol. 37, no. 10, pp. 883–903, 2003.

[14] K. H. Kim and J. W. Bae, “Re-marshaling export containers in port
container terminals,” Computers & Industrial Engineering, vol. 35, no. 3-
4, pp. 655–658, 1998.

[15] H. Y. Lau and Y. Zhao, “Integrated scheduling of handling equipment
at automated container terminals,” International journal of production
economics, vol. 112, no. 2, pp. 665–682, 2008.

[16] S. A. Reveliotis, “Conflict resolution in agv systems,” Iie Transactions,
vol. 32, no. 7, pp. 647–659, 2000.

[17] B. Vuuren, “Route plan scheduling for automated guided vehicles at
container terminals,” Master’s thesis, TU Delft, September 2017.

[18] L. Qiu and W.-J. Hsu, “Conflict-free agv routing in a bi-directional path
layout,” in Proceedings of the 5th International Conference on Computer
Integrated Manufacturing, vol. 1, pp. 392–403, 2000.

[19] L. Chen, N. Bostel, P. Dejax, J. Cai, and L. Xi, “A tabu search algorithm
for the integrated scheduling problem of container handling systems in a
maritime terminal,” European Journal of Operational Research, vol. 181,
no. 1, pp. 40–58, 2007.

[20] L. Chen, A. Langevin, and Z. Lu, “Integrated scheduling of crane handling
and truck transportation in a maritime container terminal,” European
Journal of Operational Research, vol. 225, no. 1, pp. 142–152, 2013.

[21] J. Xin, Control and Coordination for Automated Container Terminals.
Citeseer, 2015.

[22] J. Xin, R. R. Negenborn, F. Corman, and G. Lodewijks, “Control of
interacting machines in automated container terminals using a sequential
planning approach for collision avoidance,” Transportation Research Part
C: Emerging Technologies, vol. 60, pp. 377–396, 2015.

[23] Y. Lu and M. Le, “The integrated optimization of container terminal
scheduling with uncertain factors,” Computers & Industrial Engineering,
vol. 75, pp. 209–216, 2014.

[24] K. H. Kim and J. W. Bae, “A look-ahead dispatching method for automated
guided vehicles in automated port container terminals,” Transportation
science, vol. 38, no. 2, pp. 224–234, 2004.

[25] J. He, Y. Huang, W. Yan, and S. Wang, “Integrated internal truck, yard
crane and quay crane scheduling in a container terminal considering energy
consumption,” Expert Systems with Applications, vol. 42, no. 5, pp. 2464–
2487, 2015.

[26] N. Kaveshgar and N. Huynh, “Integrated quay crane and yard truck
scheduling for unloading inbound containers,” International Journal of
Production Economics, vol. 159, pp. 168–177, 2015.

[27] J. X. Cao, D.-H. Lee, J. H. Chen, and Q. Shi, “The integrated yard
truck and yard crane scheduling problem: Benders’ decomposition-based
methods,” Transportation Research Part E: Logistics and Transportation
Review, vol. 46, no. 3, pp. 344–353, 2010.

[28] J. Cao, Q. Shi, and D.-H. Lee, “Integrated quay crane and yard truck
schedule problem in container terminals,” Tsinghua Science & Technology,
vol. 15, no. 4, pp. 467–474, 2010.

[29] D. Kizilay, D. T. Eliiyi, and P. Van Hentenryck, “Constraint and mathemati-
cal programming models for integrated port container terminal operations,”
in International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pp. 344–360, Springer,
2018.

MASTER THESIS CLASS ARTICLE, VOL. 1, NO. 1, JUNE 2018 10

[30] R. Ruiz and J. A. Vázquez-Rodríguez, “The hybrid flow shop scheduling
problem,” European Journal of Operational Research, vol. 205, no. 1,
pp. 1–18, 2010.

[31] I. Ribas, R. Leisten, and J. M. Framiñan, “Review and classification of
hybrid flow shop scheduling problems from a production system and
a solutions procedure perspective,” Computers & Operations Research,
vol. 37, no. 8, pp. 1439–1454, 2010.

[32] J. Xin, R. R. Negenborn, and G. Lodewijks, “Energy-aware control for
automated container terminals using integrated flow shop scheduling and
optimal control,” Transportation Research Part C: Emerging Technologies,
vol. 44, pp. 214–230, 2014.

[33] J. Xin, R. R. Negenborn, and G. Lodewijks, “Event-driven receding hori-
zon control for energy-efficient container handling,” Control Engineering
Practice, vol. 39, pp. 45–55, 2015.

[34] J. N. Gupta, “Two-stage, hybrid flowshop scheduling problem,” Journal
of the Operational Research Society, pp. 359–364, 1988.

[35] M. Pinedo, Scheduling. Springer, 2012.
[36] Anonymous, “P versus np.” https://en.wikipedia.org/wiki/P_versus_NP_

problem, 2018. [Online; accessed 2018-1-26].
[37] A. Cobham, “The intrinsic computational difficulty of functions,” 1965.
[38] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner, “A

comparison of scheduling algorithms for flexible flow shop problems with
unrelated parallel machines, setup times, and dual criteria,” Computers &
Operations Research, vol. 36, no. 2, pp. 358–378, 2009.

[39] M. Langelaar, “Me46060(2016-2017) blackboard slides,” 2017. [Online;
accessed 2018-1-29].

[40] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research,
10th Ed. New York USA: McGraw-Hill, 2015.

[41] V. Granville, M. Krivánek, and J.-P. Rasson, “Simulated annealing: A
proof of convergence,” IEEE transactions on pattern analysis and machine
intelligence, vol. 16, no. 6, pp. 652–656, 1994.

[42] A. Vignier, J.-C. Billaut, and C. Proust, “Les problèmes d’ordonnancement
de type flow-shop hybride: état de l’art,” RAIRO-Operations Research,
vol. 33, no. 2, pp. 117–183, 1999.

A
Simulation results

115

116 A. Simulation results

117

118 A. Simulation results

119

B
Simulation results coordinated

schedule vs uncoordinated heuristic

121

122 B. Simulation results coordinated schedule vs uncoordinated heuristic

123

124 B. Simulation results coordinated schedule vs uncoordinated heuristic

125

	1 Introduction
	1.1 Problem statement
	1.2 Research goal and scope
	1.3 Research questions
	1.4 Approach
	1.5 Structure of the report

	2 Introduction to container terminals and analysis of the current scheduling and dispatching strategy
	2.1 Introduction to container terminals
	2.1.1 Container
	2.1.2 Container terminal layout
	2.1.3 Deep-sea vessels
	2.1.4 Yard crane
	2.1.5 Horizontal transport vehicle
	2.1.6 Quay crane

	2.2 Analysis of the current scheduling and dispatching strategy
	2.2.1 Planning and scheduling
	2.2.2 Stack crane scheduling
	2.2.3 Stack crane dispatching
	2.2.4 Horizontal transport vehicle dispatching
	2.2.5 Quay crane bay plans
	2.2.6 Grounding

	2.3 Current performance of the scheduling & dispatching strategy
	2.3.1 Simulation model validation
	2.3.2 Benchmark terminal
	2.3.3 Key performance indicators
	2.3.4 Benchmark results

	2.4 Concluding remarks

	3 Literature study
	3.1 Literature review
	3.2 Hybrid Flow Shop Problems
	3.2.1 Hybrid flow shops with uncertainties
	3.2.2 Hybrid flow shops applied to integrated container terminal scheduling
	3.2.3 Reflection on the problem

	3.3 Model Predictive Scheduling
	3.3.1 Greedy scheduling algorithm
	3.3.2 Reflection on the problem

	3.4 Markov chains
	3.4.1 Reflection on the problem

	3.5 Solution techniques
	3.5.1 Problem complexity
	3.5.2 Mixed Integer Programming
	3.5.3 Constraint programming
	3.5.4 Branch and bound
	3.5.5 Shifting bottleneck
	3.5.6 Tabu search
	3.5.7 Simulated annealing
	3.5.8 Genetic algorithms
	3.5.9 Particle Swarm Optimization
	3.5.10 Ant colony optimization
	3.5.11 Comparison of different algorithms

	3.6 Concluding remarks

	4 Scheduling model applied to a container terminal
	4.1 Hybrid Flow Shop Problem
	4.1.1 Basic notation and assumptions
	4.1.2 Problem classification
	4.1.3 Conceptual model
	4.1.4 Mathematical formulation

	4.2 Initial solution heuristic
	4.2.1 Minimum Extra Time heuristic
	4.2.2 Minimum Completion Time heuristic
	4.2.3 Non-Delay heuristic
	4.2.4 TBA's uncoordinated scheduling heuristic

	4.3 Solution method
	4.3.1 Mixed integer programming
	4.3.2 Simulated Annealing
	4.3.3 Summary of the simulated annealing algorithm
	4.3.4 Algorithm performance

	4.4 Concluding remarks

	5 Simulation results
	5.1 Coupling between eM-Plant and MATLAB
	5.1.1 Communication between eM-Plant and MATLAB
	5.1.2 Order assignment
	5.1.3 Parameters introduced by coupling eM-Plant to MATLAB
	5.1.4 AGV interference

	5.2 Small scale experiments
	5.2.1 Results of small scale experiments
	5.2.2 Analysis of results
	5.2.3 Summary

	5.3 Controllable simulation experiments
	5.3.1 Statistical methods
	5.3.2 Hypotheses
	5.3.3 Assumptions
	5.3.4 Results
	5.3.5 Conclusion

	5.4 Large scale experiments
	5.4.1 Analysis of results

	5.5 Iteration two of the large scale experiment
	5.5.1 Model improvement
	5.5.2 Results of iteration two
	5.5.3 Analysis of results
	5.5.4 Discussion of the results

	5.6 Model improvement directions
	5.7 Discussion on the results

	6 Conclusion and future research
	6.1 Recommendations to TBA
	6.2 Future research

	Bibliography
	A Simulation results
	B Simulation results coordinated schedule vs uncoordinated heuristic

