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Abstract

Quantification of non-viable cells in bright-field microscope images allows for an in vitro
assessment of the viability of cultured cells. The identification and quantification of non-viable
cells in a cell culture is conventionally achieved with viability stains. A disadvantage of via-
bility stains is that they might be invasive and even toxic to a cell culture. For this purpose,
a non-invasive keypoint-based cell viability determination method without the use of viability
stains, has been developed. This method formulates unstained non-viable cell detection as a su-
pervised, binary pattern recognition problem and presents a set of features that are suitable for
distinguishing between unstained viable and non-viable cells in bright-field micrographs. Exper-
imental results for a representative sample of micrographs are compared with the ground truth
non-viable cell count obtained from fluorescent micrographs. Despite the low contrast and high
variability in appearance of cells in bright-field images, the method yield a classification rate
in excess of 88% for non-viable versus viable-suspended cells and of more than 65% for non-
viable versus viable-adherent cells . Thus, the developed method has been proven to be a feasible

alternative for cell viability determination in bright-field micrographs.
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Chapter 1

Introduction

1.1 Preamble

Cell culture studies have been instrumental in the advances made in the fields of biotechnology,
biology, medicine, tissue engineering and stem cell research. Studying cell cultures has the
advantage that it decreases the reliance on animals for experimental purposes and in addition
offers the possibility to study subtle mechanisms in vitro, which is not always possible in vivo
[vO94]). Possibilities exist to improve the methodology of cell culture studies. In this study,

such possibilities will be explored.

1.2 Problem statement

Cell viability and the rate of cell death are important parameters in many experiments involv-
ing cell cultures. The physiological and morphological state of a cell are directly related to its
viability.

Although an experienced observer may sometimes recognise the subtle differences between
viable and non-viable cells, viability stains are commonly used for the reliable determination of
viability [CodO1].

A disadvantage of viability stains is that the cells are exposed to chemical agents, which might
affect the natural life cycle of the cells being studied and ultimately compromise the validity of
the experimental results [Lup08].

Cell death kinetics can be quantified by counting the number of non-viable cells on a culture
dish at different intervals of the cell culture’s evolution. This procedure is laborious and demands

time in order to obtain reliable statistics from counting a large number of cells manually at regular

1



2 CHAPTER 1. INTRODUCTION

intervals.

The identification and localisation of non-viable cells in a cell culture is conventionally
achieved with the use of fluorescent probes. A drawback of fluorescent probes is that they might
be invasive and even toxic to the cell culture not to mention the possibility of causing cell culture
contamination [Fog71]. Furthermore, considering the fact that the number of fluorescent chan-
nels is limited, it is highly desirable to accomplish non-viable cell recognition with transmitted
light microscopy, for example bright-field illumination. Freeing up the fluorescence channels
allows for other cellular and sub-cellular analysis [WeiO8].

In summary, the problem identified in this study is that the current methodologies used for bi-
ological cell culture studies are not conductive towards the expected benefits that may be derived

from them.

1.3 Objective of the study

Manual counting, viability stains, estimates of cell statistics, limited fluorescent channels, and
cell culture contamination all prompt the development of non-invasive, high throughput robotic
systems that are able to automatically recognise and track viable cells in culture [Lon06]. This
may be done through effective algorithms.

The challenge of developing effective algorithms lies in finding mathematical discernible
features that are able to recognise the subtle differences in appearance that distinguish viable
from non-viable cells in bright-field and phase contrast micrographs. Selected apt features may
lead to an increase in system performance, because feature selection allows for the exclusion of
redundant or misleading information that may be contained in raw data.

The main objective of this study is therefore to develop efficient and effective algorithms
to replace outdated ineffective manual and stained based cell culture study methodology. More

detailed objectives of this study are also given in the latter part of the section on literature review.

1.4 Research methodology

The research methodology followed in this thesis includes a literature review of studies already
undertaken to address cell viability determination without the aid of viability assays, the logical
inductive design of a mathematical pipeline to solve viability determination of unstained cells in
bright-field micrographs, and the empirical testing of the effectiveness of the results produced by

the pipeline by means of a comparison with ground truth cell viability statistics.



1.5. OUTLINE OF THE STUDY 3

1.5 Outline of the study

The idea of the automatic detection of unstained cells in bright-field images has previously been
investigated, resulting in a number of techniques designed for that purpose [Mal03][Lon06]
[Wei07][Wei08]. These techniques are investigated in chapter two of this thesis. In chapter
three, the scope and context of the study is delineated.

Chapter four is devoted to the materials and experimental conditions required to prepare the
cell cultures for this study, the types of micrographs acquired, and to the technical requirements
of the hardware and software needed for implementing the cell viability determination pipeline.
The overall framework for automatic cell viability determination is outlined in chapter five.

The features considered to discern between viable and non-viable cells are introduced in
chapter six. The underlying structures in a multidimensional feature space is difficult to interpret
and even more so to visualise. Dimension reduction algorithms allows for multidimensional data
structures to be more efficiently described by searching for linear or non-linear mappings that
contain the most relevant information on underlying structures. Therefore, in chapter seven, the
use of linear and non-linear unsupervised dimensionality reduction methods, which are used to
investigate the underlying structures of the features, are described.

In chapter eight, various classifiers are proposed for the automatic classification of unstained
cells. These classifiers are compared with one another based on their mathematical foundation.

In chapter nine, the newly designed cell viability classification methodology is evaluated.
Finally, the conclusions and possible extended research possibilities are given in chapter ten.

1.6 Scope and limitations of the study

This proof-of-concept study focuses on automatic cell viability determination in bright-field and
phase contrast micrographs as an alternative to viability stains. The study is limited to animal
cells, more specifically Chinese hamster ovary (CHO) cells. Cell death is induced by a single
toxin to facilitate the study of the differences between viable and non-viable cells.

Bright-field and phase contrast micrographs are taken at a single instance in the cell culture
evolution. Hence, the study does not take into account that the physical and metabolic activity of
cells change over the course of the cell culture evolution.

The study neither addresses the effect which different toxins might have on cell viability, nor

does it investigate the characteristics associated with the different mechanisms of cell death.
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Chapter 2

Related Work

2.1 Literature review

Producing automated systems based on optical microscopy of cell cultures, requires the replace-
ment of the human observer with effective algorithms. Such algorithms should be able to identify
and localise individual cells and perform additional studies on these cells in relation to biochem-

ical parameters [HuaO3].

Limited depth of field, uneven illumination, optical aberrations, presence of “trash” (elec-
tronic noise and debris in the culture medium) and high variability in the cells’ appearance over
the cell’s cycle are a few of the aspects that make the automated identification of unstained viable
cells in bright-field images a challenging task [Lup08]. Even more difficult is the recognition of
the subtle differences in appearance that distinguish unstained viable from non-viable cells in
bright-field images [Lon06].

Existing approaches to the automatic analysis of cell viability without staining, are either
dominated by methods that use information from light microscopy other than bright-field or
which use fixed sized pixel patch extraction to generate feature vectors that are used to rep-
resent cells. Furthermore, these methods have formulated the determination of unstained cell
viability as a supervised pattern recognition problem by accommodating the variations in illu-
mination, cell size and morphology through training. Among the machine learning techniques,
discriminant analysis [Mal03] and support vector machine (SVM) [Lon06, Wei07, WeiO8] clas-
sifiers have been used to accomplish, with reasonable accuracy, the automated identification of
unstained viable and non-viable cells in light microscopy images captured, using low magnifica-

tion (10x) lenses. The related methods are summarised in Table2.1.
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Year Publication Light Microscopy Features Classifier

2002 Malpicaet al. Phase contrast Texture Discriminant analysis

2006 Longetal. Bright-field Pixel patch  SVM with an improved training procedure
2007 Weietal Dark-field Pixel patch SVM

2008 Weietal Dark-field Wavelets SVM

Table 2.1: Summary of related work

Malpica et al. [Mal03] were the first to perform automatic quantification of viability in un-
stained cell cultures by extracting texture features from phase contrast images and using discrim-
inant analysis for classification. Based on a texture analysis, the phase contrast images were
classified by means of a segmentation algorithm into three regions, namely viable cells, non-
viable cells and background. Three discriminant functions, built from parameters derived from
the histogram and the co-occurrence matrix of the regions of interest, were used for classification.
The authors observed that initially the growing cell colonies yield high contrast images where
the edges of the individual cell are rather conspicuous. In the later stages of the cell culture’s life
cycle, cell death leads to condensation and fragmentation of cell bodies, which produces regions
populated with unstructured smaller objects as non-viable cells loose their shape and size. Their
method was compared to the quantitative results obtained by an expert observer and achieved a

relative mean difference of 18.06% and a standard deviation of 19.11%.

Long et al. [LLon06] achieved automatic detection of unstained viable cells in bright-field im-
ages by using a SVM with an improved training procedure. The feature vectors used to represent
the cells were derived from fixed sized pixel patches that were extracted from the bright-field
images. The iterative training procedure selected the most representative of the aforementioned
feature vectors for calculating the decision boundary of the SVM. Thus, the focus of the Long
et al. research was not to investigate features that support the best classification of cell viability,
but rather that the classifier improvement focused on the imbalance dataset.

Fermentation industries have a great need for the on-line monitoring of important parameters
describing cell growth such as cell density and viability during fermentation processes. For
this purpose, Wei et al. 2007 [Wei07] developed an in situ probe which utilises a dark-field
illumination unit to obtain high contrast images of yeast cells with an integrated CCD camera.
Two SVM classifiers were trained, one to separate the cells from the background, and one to
distinguish viable from non-viable cells. Pixel patches around the cells were taken as feature
vectors to represent the cells and to train the classifiers. The evaluation of the in sifu experiments
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showed strong correlation between results obtained by the probe and those by widely accepted
standard methods [WeiO7]. Thus, the system proved feasible for the on-line monitoring of both

cell density and viability, with high accuracy and stability.

Wei et al. 2008 [Wei08], developed a machine vision system for the automated non-invasive
assessment of cell viability from dark-field microscope images . The system performs wavelet
decomposition on the dark-field microscope cell images and then computes the energy and en-
tropy for each wavelet sub-image as features. They found that wavelet features are very success-
ful in describing the discriminative properties of viable and non-viable cells. According to their
analysis, viable cells exhibit morphologically more detail and are intra-cellularly more organised
than non-viable cells, which display more homogeneous and diffuse gray values throughout the
cells. Furthermore, viable cells have a higher mean energy value which means that on average
viable cells look brighter and contain more details than dead ones. It is also clear from the study
that when considering any entropy feature, viable cells have a lower mean value which implies
that viable cells contain more inhomogeneous fine structures than dead cells. The authors con-
clude that the correlation between the results from their machine vision system and the stained

ground truth images became stronger if wavelet features are utilised.

Long et al. [Lon06] and Wei et al. 2007 [Wei07] did not actually investigate the various
types of features to distinguish between viable and non-viable cells but they rather extracted
fixed sized pixel patches from the images and used these as feature vectors to train SVMs. On
the other hand, Malpica et al. [Mal03] and Wei et al. [Wei08] addressed the question of which
features are best able to distinguish between viable and non-viable cells. However, the drawbacks
of these methods are the fixed sized masks used to extract features and the lack of a universal
feature subset that is able to distinguish between unstained viable and non-viable cells regardless
of the light microscopy technique, type of cells or size of cells. The latter is not as a result of
their methods but of the inherent difficulty of the problem at hand. A further disadvantage of the
aforementioned methods is that their systems need to be retrained each time it is exposed to new
data.

Resulting from the study of work already done on the automatic detection and classification
of unstained viable cells, the aim of this thesis is to improve on the methods described, by
replacing the fixed sized pixel patches with dynamically changing pixel patches that are able
to adjust their size. The second goal is to introduce and evaluate additional features which are
able to discern between unstained viable and non-viable cells in bright-field microscope images.
Besides exploiting image intensity information, the incorporation of colour information into the

system to discern between viable and non-viable cells is also investigated.
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2.2 Patent research

An extensive patent search on the topic of unstained cell viability determination from microscope
images produced no matching results. However, three patents related to viable cell counting were
found. One of the patents is a method and the other two are devices developed for counting viable
cells in cultivation.

The first patent pertains to a method developed by Long et al. [Lon10] who produced a
journal publication in which this method was used for multiclass cell detection in composite
images without staining. The method includes deriving vectors for objects belonging to one of
three or more classes and training binary classifiers with a CISS algorithm which uses an ECOC
technique. The methods calculates the probability that a vector associated with an object belongs
to a particular class, using an ECOC probability estimation technique. The method additionally
employs a non-linear dimensionality reduction technique, Kernel PCA, to extract features from
the multi-contrast composite images.

The second patent, invented by Straus, is for a device which enables the rapid counting of
living cells by detecting microscopic colonies derived from in situ cell division using large area
imaging. This invention addresses the problem of the long time that is needed in conventional
tests to quantify microbial enumeration. The invention is able to detect cellular micro-colonies
without the use of labelling probes. The fact that the invention is non-invasive allows for the
generation of pure cultures which can be used for microbial identification and determination of
antimicrobial resistance.

The third patent, invented by Haruyuki and Kouichi, is for a system that is able to quickly
calculate the number of viable cells in a culture by taking a photograph of a viable cell specimen
through an inverted phase contrast microscope with a TV camera. Whereafter, the image signal
is scanned and a viable cell count is calculated by means of an image analyser.

The patent documents with detailed abstracts can be found in appendix A.



Chapter 3

The Biological Cell

3.1 'Types of biological cells

Life exhibits varying degrees of organisation. Atoms are organised into molecules, molecules
into cells and cells into organisms. According to the cell theory, biological cells are the structural
units of life and the functioning of a multicellular organism is a consequence of the type of cells of
which it is made up. Biological cells may be classified as either being prokaryotic or eukaryotic
(see figure 3.1 for detail). All biological cells have certain structures and elements in common,
such as a cell membrane, cytoplasm, ribosomes and nucleic acids, the so called deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA) which contains the organism’s genetic code.

Cells

/\

Prokaryotic Eukaryotic

| Bacteria | |Archaebacteria| |Protista| |Fungi|

Figure 3.1: The phylogenetic tree of life showing that biological cells are divided into two fun-
damental classes: prokaryotic and eukaryotic.
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3.2 Prokaryotic cells

Prokaryotic cells neither have a membrane-bound nucleus nor any membrane bound organelles.
Hence, these cells” DNA is not confined to the nucleus but distributed throughout the cytoplasm
of the cell (Fig. 3.2). Prokaryotic cellular life is broken up into two kingdoms: bacteria and
archaebacteria (Fig. 3.1). Bacteria exist as single prokaryotic cells. Archaebacteria are multiple

prokaryotic cell organisms known as ancient life forms which live in extreme environments.

Capsula
Perete celular

Membrana plasmatica

Ribozomi
Plasmide

Nucleoid (ADN circular)

Figure 3.2: Structure of a prokaryotic cell [Pro].

3.3 Eukaryotic cells

3.3.1 Introduction

Eukaryotic cells are characterised by membrane-bound nuclei, which contains the DNA, and
multiple internal organelles that carry out specific tasks (Fig. 3.3). Eukaryotic cellular life is
broken up into four kingdoms: protista and fungi (the single cell organisms) and plants and
animals (the multiple cell organisms) (Fig. 3.1). Eukaryotic cells from the animal kingdom are
used in this thesis.

Cells are made-up of many specialised sub-structures as is evident in Figure 3.3. However,
in this thesis only three of these sub-structures and their functions are of importance, namely the

nucleus, the mitochondria and the plasma membrane.



3.3. EUKARYOTIC CELLS 11

Nucleus

Nuclear pore
Chromatin
Nuclear envelope
Nucleus
Nucleolus

Peroxisome
Microtubule
Lysosome

Free Ribosomes
Mitochondrion

Intermediate Filaments
Plasma membrane

Golgi vesicles

(golgi apparatus)

Ribosomes

Rough endoplasmic reticulum
Smooth endoplasmic reticulum
Actin filaments

Cytoplasm

Secretory vesicle

Centrosome
(with 2 centrioles)

Flagellum

Figure 3.3: Structure of an eukaryotic cell [Euk].

The nucleus contains genes, which are responsible for cell differentiation. The mitochondria
regulate cellular activity, and the plasma membrane consists of a fluid lipid bilayer which holds

together all organelles internal to the cell [Hic95].

3.3.2 The nucleus

The nucleus of an eukaryotic cell, shown in Figure 3.3, is the location of most of the nucleic
acids in a cell, such as DNA and RNA.

DNA is the physical carrier of inheritance and is restricted to the nucleus. The DNA contains
the information necessary for constructing the cell and directing the multitude of tasks performed
by the cell during the cell’s life cycle.

RNA is formed in the nucleus using the DNA base sequence as a template. RNA moves
outwards into the cytoplasm where it assists in the production of proteins.

The nucleus is enclosed by a nuclear envelope, which regulates the passage of macromolecules
like proteins and RNA. Macromolecules are inter alia responsible for the information flow in the
cell.

Histones are a family of basic proteins most commonly found in association with the DNA in
the nucleus of eukaryotes. These proteins help to condense the DNA into a smaller volume (see
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Fig. 3.4). Without histones, the unwound DNA in chromosomes would be very long.

Normal Plasma Membrane
(ﬁ Asymmetry

_Aminophospholipid

(PS or PE)

= Cholinephospholipid
(PC or Sphingomyelin)

“Extracellular Space”

AU
I

“Cytoplasm”

Nucleus 8 = Free H1 Histone

= DNA

Figure 3.4: Typical nucleus and plasma membrane of a viable cell [Tai08].

3.3.3 The mitochondria

Cytoplasm refers to the colloidal fluid portion of the cell in which numerous organelles of the eu-
karyotic cell are suspended. Arguably, the most important organelles found in the cytoplasm are
the mitochondria. Mitochondria are know as the power generators of the cell; they are respon-
sible for the production of adenosine triphosphate (ATP), the major source of cellular energy.
Other important roles of mitochondria include cell signalling, cellular differentiation as well as

the control of the cell life cycle and cell growth.

In a healthy mitochondria both the outer mitochondrial membrane and inner mitochondrial
membrane (IMM) are intact. The mitochondrial permeability transition pore (MPTP), in an open
state, transports ATP. Anti-apoptotic proteins from the B-cell lymphoma protein 2 (Bcl-2) bind
to Bc L-2-associated X protein (Bax), avoiding its oligomerisation and thus cell death (see Fig.
3.5).
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Inner membrane

Outer
membrane

ATP MPTP

® Cytochrome c ' Bcl-2 '
MPTP

' Bax ' Bcl-X,

Figure 3.5: Structure of a mitochondria in a viable cell.

3.3.4 The plasma membrane

The organelles internal to cells are ring fenced by a thin membrane referred to as the plasma
membrane or cell membrane. The plasma membrane, consists primarily of phospholipids and
proteins; functions as a semi-permeable barrier which allows essential nutrients as well as cellu-
lar waste to pass through, while fencing-in the majority of internally produced chemicals. The
proteins within the cell membrane function as gateways that will allow certain molecules to cross
into and out of the cell by moving through channels within the protein membrane molecules.
Cholesterol is another important element of cell membranes and aids in the flexibility of the cell
membrane.

In healthy cells, phospholipids are asymmetrically distributed. The anionic phospholipid,
phosphatidylserine (PS),is normally confined to the cytoplasmic face of the plasma membrane
and the cationic phospholipid, phosphatidylcholine (PC), to the external surface of the plasma
membrane (see Fig. 3.4) [TaiO8].

3.3.5 The effect of cytotoxic agents on biological cell structures

Upon cellular stress conditions that are induced by exposure to cytotoxic agents, damage to DNA
in the nucleus and changes to the mitochondrial membrane are common initial events [Ful10].
Furthermore, the permeability of the plasma membrane is an indication of cell viability [TaiO8]
[Fin05] [Maj95]. Knowledge of the functioning of these structures are of paramount importance
in order to understand the morphological changes associated with cell death and the specific
biochemical changes in providing potential targets for viability stains to assess cultured cells.
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3.4 The cell’s life cycle

The life cycle provides insight in cell division and thus tissue growth. The cell’s nucleus con-
tains genetic information in the form of chromatin, which consists of highly folded ribbon-like
complexes of DNA. During cell division, chromatin fibres are folded and become visible under
a light microscope as chromosomes. The cell’s life cycle is fundamentally the duplication of
the DNA in the chromosomes of a single cell such that the aforementioned cell can be divided
into two genetically identical daughter cells. The eukaryotic cell’s life cycle is divided into four
sequential phases: Gy, S, G, and M (Fig. 3.6).

The two major phases of the cell life cycle are the synthesis phase (S-phase) and the mitosis
phase (M-phase). DNA duplication occurs during the S-phase, which occupies about half of the
cell-cycle time in a typical mammalian cell . Chromosome segregation and cell division occur
in the M-phase, which requires less time than the S-phase. The M-phase involves a series of
dramatic events that begin with nuclear division and ends with two genetically identical daughter
cells each with a complete set of genes, a pair of centrioles and organelles [AB02].

Cells require much more time to grow and double their mass of proteins and organelles
than they require to replicate their DNA and divide. Therefore, two gap phases are present in
most cell cycles to afford cells time to grow and mature: a gap 1 phase (G;-phase) between
the M-phase and the S-phase, and a gap 2 phase (G,-phase) between the S-phase and mitosis.
Moreover, the two gap phases provide time for the cell to monitor the internal as well as the
external environment to ensure that conditions are favourable and preparations are complete
before the cell commits itself to the major upheavals of the S-phase and M-phase. The G-phase
is especially important in this regard. If the extracellular conditions are inauspicious, cells delay
progress through the G;-phase indefinitely. Under certain conditions a cell enters a hibernating
state known as Gy in which they may remain for days, weeks or even years before resuming
proliferation. Indeed, many cells remain in G, permanently until they die or the organism dies.
If the extracellular conditions are favourable and signals to grow and divide are present, cells in
early G; or Gy progress through a commitment point near the end of G; known as the restriction
point. After passing this point, cells are committed to DNA replication, even if the extracellular

signals that stimulate cell growth and division are removed [AB02].
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Figure 3.6: The phases constituting the cell cycle.

3.5 'Types of cell death

3.5.1 Introduction

It is appropriate to start this section by stating that the determination of whether a cell is viable is
not always straightforward [Sha05]. Cells can respond to stress in various ways ranging from the
activation of survival pathways to the initiation of cell death that eventually eliminates damaged
cells. Whether cells mount a protective or destructive stress response depends to a large extent
on the nature and duration of the stress as well as the cell type [Blal2]. Also, there is often
the interplay between these responses that ultimately determines the fate of the stressed cell.
The mechanism by which a cell dies (i.e., apoptosis, oncosis or autophagic cell death) depends
heavily on various exogenous factors as well as the cell’s ability to handle the stress to which it
is exposed. [Ful10].

The cell’s initial response to a stressful stimulus is geared towards a defence against and re-
covery from the insult. However, if the noxious stimulus is unresolved, the cells then activate
death signalling pathways. Cell death has many forms and shapes. Cell death research encom-
passes not only the study of programmed forms of cell death (both apoptosis and autophagic cell
death), necrosis and other modes of cellular demise, but also the role these phenomena play in
physiological and pathological processes including development, aging, and disease [Ful10].

The concept of cellular demise and terminology associated with that, has been evolving since
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the 19th century. The term programmed cell death refers to controlled or regulated forms of
death associated with a series of biochemical and morphological changes [Ful10].

Nowadays, programmed cell death is synonymous with apoptosis. The term apoptosis was
first used to describe a particular morphology of cell death ([Ker72]) common to the vast majority
of physiological cell deaths. The morphology of cells undergoing apoptosis appeared dissimilar
and distinct from the morphology associated with necrosis [Ker72].

It is important to note that the processes of cell death and necrosis are not the same. Quite

simply, necrosis is a final stage of cell injury that culminates in cell death.

3.5.2 Apoptosis

Apoptosis is the primary mechanism by which unneeded or senescent cells are physiologically
absorbed by healthy adjacent cells and tissues [Blal1]. Apoptosis is a series of genetically pre-
programmed biochemical and morphologic energy-requiring events that, after a specific external
stimuli or internal cellular signal, result in the physiologic disappearance of a cell via its self-
disintegration and packaging of its contents into membrane vesicles called apoptotic bodies.
Apoptotic bodies are subsequently ingested by adjacent cells and phagocytes without provoking
an inflammatory response or tissue damage [Blal2].

The series of morphologic energy-requiring events associated with apoptosis include: a
change in the refractive index of the cell, cytoplasmic shrinkage, overall decrease in cell vol-
ume, nuclear condensation and cleavage of DNA into regularly sized fragments and the exposure
of the protein H1 (see Fig. 3.7). The apoptotic cell divides into many parts by ‘blebbing’ and
‘budding’ to form what is known as ’apoptotic bodies’, containing cell organelles and nuclear
materials surrounded by an intact plasma membrane. Additionally, there is little to no mitochon-
drial or organelle swelling [Fin05].

It is important to note that apoptosis includes both cell death and necrosis. Necrosis is sim-
ply a common endpoint for cell destruction and clean-up after any specific form of cell death
[Lep03].

3.5.3 Oncosis

Oncosis is a form of cell death associated with cellular and organelle swelling, blebbing, and
increased cell membrane permeability . The critical factor in this sequence of cellular events
is ionic pump failure of the plasma membrane. The cause is primarily a decrease in cellular
ATP due to ischemia or toxic agents that block ATP generation or markedly increase the plasma
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Figure 3.7: Typical plasma membrane of a non-viable cell.

membrane permeability [Maj95]. This process demonstrates typical cellular necrosis over the
ensuing 24 hours. The breakdown of DNA is in a non-specific fashion, which is in contrast to

the process of apoptosis [Lep03].

The morphological and biochemical features associated with the two types of cell death,

apoptosis and oncosis are summarised in Table 3.1.

Apoptosis Oncosis
Cell shrinks Cell swells
Organelles remain intact Organelles render non-functional
Controlled DNA degradation Random DNA degradation
Chromatin condensation General chromatin precipitation
Plasma membrane remains intact Plasma membrane becomes permeable
Apoptotic body formation Cell ruptures
Phagocytosis Inflammatory response
Occurs in individual cells Occurs in large groups of cells

Table 3.1: A comparison of the morphological and biochemical changes associated with apopto-
sis and oncosis



18 CHAPTER 3. THE BIOLOGICAL CELL

3.5.4 Necrosis

Necrosis is an advanced stage of cell death and can easily be recognised by the human eye
without any need for microscopic detail. Necrosis is characterized by the primary loss of plasma
membrane integrity and the uncontrolled release of cellular contents into surrounding tissues,
triggering an inflammatory response, tissue damage, and scarring. Necrosis can occur either

after apoptosis or after oncosis.

3.5.5 Autophagy

Autophagy (‘self-eating’) has considerable overlap with apoptosis [Lev08]. However, as op-
posed to apoptosis, autophagy normally serves a housekeeping function by recycling senescent
or damaged cytoplasmic contents or organelles (as opposed to the cell itself). The hallmark
of autophagy is the formation of isolation membranes that engulf targeted cytoplasmic mate-
rial (or organelles), resulting in double-membraned vesicles called autophagosomes (autophagic
vacuoles). Autophagosomes then undergo maturation by fusion with lysosomes to create au-
tolysosomes. It is within the autolysosomes that auto-digestion occurs.

Autophagy permits a cell to survive periods of cellular famine through the auto-digestion and
reuse of intracellular DNA/RNA, proteins, and lipids into free nucleotides, amino acids, and fatty
acids, respectively. However, autophagy can be an alternative to apoptosis if the classic apoptotic
mechanisms are damaged or are inhibited.

3.6 Assessment of cell viability

3.6.1 Introduction

Viable cells refer to healthy cells in a cellular culture, which have the capability to live, grow and
develop [Pal78]. Cell viability is determined by the number of cells that are viable, based on a
total cell sample. Cell viability is assessed by cell viability assays [Fin05]. Assays are specialised
chemical stains used to indicate whether or not a cell population that has been exposed to an
experimental stimulus is healthy.

Cell viability measurements are used to assess the stage of cancerous cells, the rejection or not
of implanted organs as well as the effectiveness of a drug. Cell viability assays are also useful to
determine optimal growth conditions for cell populations maintained in culture [May10]. There
are various assays available to assess a variety of different markers that indicate the number
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of non-viable cells (cytotoxicity assays), the number of viable cells (viability assays), the total
number of cells or the mechanisms of cell death (e.g. apoptosis). Measurement of DNA content
and metabolic activity are correlates that can offer more information about the physical condition
of cells and cell cycle stage. Furthermore, the information derived from these assays can indicate
whether or not a cell population that has been exposed to an experimental stimulus, is healthy
or dying, actively dividing or in stasis, or has committed to an apoptotic pathway [May10]. It is
important to note that the biological nature of the phenomenon under investigation determines
which assay is appropriate, and at what stage in the life cycle of the cell culture it should be
applied.

Assessments of viability depend on one or both of two cellular properties: (1) the intactness
of the cell membrane, and (2) the physiological state of the cell [CodO1]. Most methods used
to monitor cell viability are based on physical rather than metabolic properties of the cell, since
the physical damage is less likely to be reversible. Measuring the metabolic processes of the
cell, such as the reduction of 2,3-5 triphenyltetrazolium chloride (TTC), are not reliable, since
enzymatic pathways may be temporarily non-functioning or some enzymes may still be present
after cell death [Bak94].

Dye exclusion methods are based on the fact that only intact membranes are impermeable
to large or charged molecules. Furthermore, intact membranes also maintain cytoplasmic gradi-
ents with the surrounding medium, thus retaining intracellular concentrations of ions and small
molecules. This fact also reflects the physiological state of the cells in that energy is required
to maintain gradients. Thus, methods that assay physiological properties of the cell are also
dependent upon and indicative of an intact membrane [Cod01].

Non-viable cells with compromised cell membranes are easily detected by their inability
to exclude dyes such as propidium iodide or trypan blue. These dyes leak through ruptured
membranes and stain the contents of non-viable cells.

Since cells treated with apoptosis-inducing agents (e.g., cytotoxic drugs) maintain plasma
membrane integrity until late in the process of cell destruction, the assays listed in this section
are not suitable for the detection of the early stage of apoptosis, or for distinguishing apoptosis

from necrosis. These assays are described in the paper by Vermes et al. [Ver00].

3.6.2 Methods based on membrane integrity

Assessing cell membrane integrity is one of the most common and straightforward ways to mea-
sure cell viability and asses cytotoxic consequences. Compounds that have cytotoxic effects
often compromise cell membrane integrity and induce cell death. The reagents most often used



20 CHAPTER 3. THE BIOLOGICAL CELL

for assessing membrane integrity are dyes such as trypan blue or a variety of fluorescent probes
that will penetrate only damaged, permeable membranes of non-viable cells. These are then eas-
ily identified visually by the presence of blue colour (with trypan blue) in a simple bright-field
microscope, or by bright fluorescence seen by fluorescence microscopy.

The most widely used group of fluorescent probes are those that label nucleic acids . The
most straightforward labelling methods use propidium iodide (PI) or 7-amino actinomycin D
(7-AAD) to identify non-viable cells. These fluorescent dyes are normally excluded from the
inside of viable cells. However, if the cell membrane has been compromised, they freely cross
the membrane and stain the exposed nucleic acid in the cytoplasm (see Fig. 3.7). This method
distinguishes viable cells with membranes that are still intact (not stained) from non-viable cells
(stained). Staining of non-viable cells with PI has been performed on most cell types [CodO1].
Its broad application is most likely due to ease of use: the procedure is very simple, and the
stained cells are bright red and easy to identify. 7-AAD is a useful alternative to PI. Like PI,
7-AAD penetrates only dead cells, but 7- AAD fluorescence is both less intense and at a longer
wavelength ( 670 nm, versus 610 nm for PI).

Normally, eukaryotic cells maintain a specific asymmetry of phospholipids in the inner and
outer leaflets of the cell membrane Figure 3.4. During cell death PS becomes abundant on the
outer leaflet (see Fig. 3.7). Detecting this change in phospholipid asymmetry is one way to
detect cell death. Alternatively, membrane integrity can be assessed by monitoring the passage
of substances that are normally sequestered inside cells to the extracellular environment. One
commonly measured molecule is lactate dehydrogenase (LDH), a soluble cytosolic enzyme that
is released into the culture medium following loss of membrane integrity.

Healthy, intact cells can also be fixed (can be made permeable by a detergent), and similarly
labelled as above to study cell cycle progression. Propidium iodide, used in cell cycle phase
determination assays, labels DNA in cells undergoing various phases of the cell cycle. The PI
dye directly intercalates with the base pairs on a DNA strand, its fluorescent intensity is directly
proportional to the DNA content of the cell. Based on chromosome distribution, it can reliably
indicate Go/G versus S versus Gy /M.

3.6.3 Methods based on physiological state
Introduction

Another property of viable cells is the maintenance of electrochemical gradients across the

plasma membrane. Functional subsets of this general phenomenon include the maintenance
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of pH and other ion gradients as well as the capacity for energy-yielding metabolism in mito-
chondria. These physiological processes can be exploited to distinguish viable from non-viable
cells. The physiological state of a cell is assayed by probes that require the presence of metabolic

processes in addition to an intact membrane.

Esterase activity

Cell viability can be assessed directly through the presence of cytoplasmic esterases that cleave
moieties from a lipid-soluble non-fluorescent probe to yield a fluorescent product. The product
is charged and thus retained within the cell, if membrane function is intact. Hence, viable cells
are bright and non-viable cells are dim or non-fluorescent. Typical probes include fluorescein
diacetate (FDA), carboxyfluorescein, and calcein [Cod01]. Variations in uptake or retention
of the dye among individual cells or under different conditions affect the efficacy of particular

probes.

Mitochondrial membrane potential

While the most prominent role for mitochondria is the production of ATP, the major source of
cellular energy, these power generators have been linked to a multitude of cellular activity. Other
important roles of mitochondria include cell signalling, cellular differentiation, cell death as
well as the control of the cell cycle and cell growth. Given these collective functions, assessing
mitochondrial activity gives a fair indication of cell viability [May10].

The permeabilisation of the mitochondrial membrane is the crucial irreversible event that
leads to cell death. In Figure 3.8, the MPTP is in a closed state, which favours a decrease in ATP
transport, parallel oligomerisation of Bax and a decrease in the mitochondrial transmembrane
potential (A¥m), which leads to the release of cytochrome ¢ (see Fig. 3.8) from the inter-
membrane into the cytoplasm, thereby triggering cell death[Maz11].

One of the most commonly used probes for identifying viable cells through mitochondrial
membrane potential assessment, is thodamine 123, a cationic lipophilic dye that partitions into
the low electrochemical potential of mitochondrial membranes. Active mitochondria in viable
cells are stained bright green, because a loss of gradients within non-viable cells, results in loss
of the dye [CodO1].

Another probe, JC-1, is a carbocyanine, a liquid crystal-forming dye used to analyse mito-
chondrial membrane potential. JC-1 Mitochondrial Membrane Potential Assay reliably probes
mitochondrial membrane potential changes, occurring specifically in the early stages of apopto-
sis. On the other hand, Caspase-3 Fluorescence Assay detects mitochondrial-triggered apoptosis
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Figure 3.8: Structure of a mitochondria in a dying cell.

by identifying activation of the specific apoptotic marker, caspase-3 [May10].

Metabolic activity

Metabolic activity is commonly accepted as an alternative for measuring viability. A classic
approach for assessing metabolic activity involves the use to tetrazolium salts that are cleaved in
the mitochondria of metabolically active cell to from coloured, water-insoluble (MTT) or water-
soluble (XTT, WST-1,WST-8) formazan salts that can be measured by absorbance. The MTT
(methods of transcriptional and translational) assay has a long-held reputation as the conventional
cell viability assay and carries with it a strong body of literature support. However, the very
nature of the tetrazolium dye interferes with cell metabolism and the changes that result, may
indicate whether or not the cell is viable and proliferating. Since the basis of this assay is the
inherent dehydrogenase activity of viable cells, treatments that affect dehydrogenase activity may
result in a discrepancy between actual viable cell number and that determined using formazan

dye.

3.7 Tools for studying cell biology

3.7.1 Introduction

The light microscope is one of the most basic tools of a cell biologist. It allows for the non-
invasive examination of viable cell cultures. Several different types of light microscopy are
routinely used to study various aspects of cell structure. Three types of microscope modalities
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are of specific interest in this study: bright-field, phase contrast and fluorescent microscopy. The

three types of transmitted light microscopy techniques are described in the subsequent sections.

3.7.2 Bright-field microscope

Bright-field microscopy, in other words the direct observation of illuminated objects through a
lens, is the most simplest and widely used method for cell observation. In bright-field microscopy
the light passes directly through the cell and the ability to distinguish different parts of the cell
depends on contrast resulting from the absorption of visible light by cell components (see Fig.
3.9a). It is usually available without any special devices, but the resulting contrast is rather low,
which necessitates more complex recognition techniques ([Lon06],[Tsc08], [AB02]). On the
other hand, bright-field microscopy is compatible with fluorescence microscopy, thus making it
a popular and frequently applied microscopy technique. Hence, the decision to use bright-field
images as a basis for cell recognition in this study.

In Figure 3.9, images of the same cell culture obtained by three kinds of light microscopy are
compared.

(c) Fluorescent

Figure 3.9: Different types of transmitted light microscopy.

3.7.3 Phase contrast microscope

Phase contrast microscopy visualises the phase shift induced by the interaction of rays of light
with objects varying in thickness or refractive index. When light passes through a living cell, the
phase of the light wave is changed according to the difference of the refractive index of the cell
and the refractive index of the surrounding medium. Thus, a relatively thick or dense part of the
cell, such as the nucleus, retards light passing through it. The phase of light, consequently, is
shifted relative to the light that has passed through an adjacent thinner region of the cytoplasm.
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The phase contrast microscope exploit the interference effects produced when these two sets of
waves recombine, thereby creating an image of the cell’s structure [ABO02].

Biologists and bioprocess engineers most often prefer phase contrast to bright-field micro-
graphs. They claim that phase contrast micrographs (see Fig. 3.9b) enables them so see more
cellular detail and that the visible contrast in phase contrast micrographs are much higher than in
bright-field micrographs.

A drawback of phase contrast microscopy is that it requires special objectives that reduce
the amplitude of incident light which also attenuated the light from fluorescent objects. Thus,

making it more difficult to see fluorescent objects in fluorescence micrographs.

3.7.4 Fluorescent microscope

Fluorescent molecules absorb light at one wavelength and emit it at another, longer wavelength.
If such a compound is illuminated at its absorption wavelength and then viewed through a filter
that allows only light of the emitted wavelength to pass, it will glow against a dark background.
Due to the dark background, even a minute amount of glowing fluorescent dye can be detected.

Fluorescent dyes used for staining cells are visible under a fluorescent microscope. This type
of microscope is similar to an ordinary light microscope except that illumination light, from a
very powerful source, is passed through two sets of filters: one to filter the light before it reaches
the specimen and another to filter the light obtained from the specimen. The first filter passes
only the wavelengths that excite the particular fluorescent dye, while the second filter blocks
out the light that passes only those wavelengths emitted when the dye fluoresces (see Fig. 3.9¢)
[ABO2].

Fluorescence microscopy is most often used to detect proteins or other molecules in cells
and tissues. A very powerful and widely used technique is to couple fluorescent dyes to antibody
molecules, which then serve as highly specific and versatile staining reagents that bind selectively

to the particular macromolecules they recognise in cells [AB02].

3.8 Summary

Cell viability is not easily defined in terms of a single physiological or morphological parame-
ter. Non-viable cells are characterised by permeable plasma membranes, the disruption of the
mitochondria, DNA fragmentation and chromatin condensation.

The diversity of biological cells and their environments make it impossible to devise a sin-

gle viability or enumeration assay applicable to all cell types. Each assay method has inherent
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advantages and limitations and may introduce specific biases into the experiment; thus, different
applications often call for different approaches.

Coupling viability assays to fluorescent probes enables the detection and visualisation of
viable as well as non-viable cells in the same image by switching between the bright-field or
phase contrast micrograph and the corresponding fluorescent micrograph.

The rapid progress in machine learning and pattern recognition makes it possible that more
and more biological research can be carried out via imaged-based techniques. These techniques,
if applied effectively, may enable the automatic non-invasive assessment of cell viability by

exploiting the limitations of conventional tools used for studying cell biology.
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Chapter 4

Materials And Experimental Conditions

4.1 Preparing a cell culture

There exist two basic ways for growing cells in culture namely as monolayers on an artificial
substrate, the so called adherent culture, or as free-floating cells in the culture medium, the so
called suspension culture. The adherent cell-line used for testing material in this work, were
CHO (Chinese Hamster Ovary) cells. The cells were grown at 37.0° C in a Gibco®@ DMEM
/ F-12 (1:1) medium supplemented with 10% fetal calf serum (FCS) and 2mMol glutamine to
produce an adherent culture. For microscope observation, the cells in the culture medium were

dispensed into a polystyrene 24-well microplate (Fig. 4.1).

Figure 4.1: 24-Well microplate used for preparing the cell cultures.

A toxicity test was performed on the cell culture to induce cell death. An amount of 0.1Mol
of the toxin called sodium azide (10-2M) was added to the culture of the CHO cells to enable
the measurement of cell death kinetics. To obtain an accurate and objective training and testing
standard, propidium iodide (PI) was added to the cell-lines to detect non-viable cells. PI emits

27
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a deep red fluorescence (emission: 590nm) when excited with a green-yellow laser light (Fig.
4.2).
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Figure 4.2: Excitation and emission spectra of propidium iodide [Tec].

Coupling an antibody to PI makes it possible to visualise non-viable and viable cells in the
same image by switching between the bright-field micrograph and a filter specific to red fluores-
cence. Therefore, the viability of the cell cultures can easily be determined by manual counting
of the cells in the micrographs. This viability value is taken as the gold standard for evaluating

the system’s performance.

4.2 Micrograph acquisition of cell cultures

Images of the 24-well microplate (Fig. 4.1) were captured with an inverted Nikon Eclipse TE
2000-U light microscope with fluorescence (Fig.4.3). A 10x Nikon phase contrast objective with
a numerical aperture of 0.3 together with a Nikon DS-5Mc camera was used to obtain digitised
images. For each microscope field, five micrographs were acquired: an in-focus bright-field (Fig.
4.4a), a phase contrast (Fig. 4.4a), a positive-defocus bright-field (Fig. 4.4¢), a negative-defocus
bright-field (Fig. 4.4d), and a fluorescence micrograph (Fig. 4.4¢).

To obtain the positive- and negative-focused bright-field micrograph, the region of interest of
the microscope field was imaged at two different focus planes f (perpendicular to the optical axis
of the cell culture). More specifically, the microscope field was optically sectioned by moving
the objective along the optical axis and imaging at ten microns above (f;) and below (f5) the
in-focus level fy. The incremental changes to the microscope focus was manually done.

Biologists and bioprocess engineers prefer phase contrast, positive- and negative-focused
bright-field micrographs, because according to them visually, these micrographs , have a greater
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Figure 4.3: Nikon Eclipse TE microscope used for the acquisition of micrographs.

depth of field, more contrast and allows them to see sub-cellular boundaries and organelles in
finer detail. Hence, these micrographs were acquired in addition to in-focus bright-field micro-
graphs, to serve as a comparison and to investigate if these claims made by the experts have any

mathematical significance.

4.3 Dataset description

In total, seven sets of micrographs of CHO cell cultures were acquired to be used in the cell
viability determination experiments. The micrographs were taken at a time stamp where approx-
imately a quarter of the cells were non-viable. The rationale behind this procedure is that cell
cultures with more than 25% non-viable cells are of no interest to biologists. Each set consist of
five micrographs captured by five different microscopy techniques as described in section 4.2.
The behaviour of an adherent cell-line depends on the natural environment. If the environ-
mental conditions are favourable, then healthy cells will adhere to the surface of a well and grow,
otherwise the cells will stay in suspension. All the cells that are clearly visible in the bright-field
micrograph at focus (see figure 4.5) are cells in suspension. Adherent cells exhibit very low
contrast and as a result are barely visible in the bright-field at focus micrograph. However, both
adherent and suspended cells are visible in the phase contrast (Fig. 4.5), the positive- , and the
negative-focused bright-field micrographs. In genera, a phase contrast micrograph (see Fig. 4.5)
has much better contrast as a result of phase information as opposed to intensity information.
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Figure 4.4: A typical sample image set.

Cells in culture exhibit a great diversity of shape and size, which is also visible from the
micrographs in Figure 4.5. In general, adherent cells have a more irregular appearance, whereas
cells in suspension appear smaller in size and more round in shape.

In the fluorescence micrograph, the non-viable cells appear bright red (see Fig.4.5), whereas
the surrounding viable cells are invisible.

The fluorescence micrographs were used to identify and label the non-viable cells, whereafter
the phase contrast micrographs were used to label the adherent and suspended cells.

After visual inspection of the acquired micrographs it is apparent why biologists and bio-
process engineers prefer phase contrast and defocused bright-field micrographs. In these micro-
graphs both adherent and suspended cells are clearly visible. Furthermore, micrographs acquired
by these microscopy techniques exhibit much more cellular detail, in other words the shape and
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Figure 4.5: Illustration of the appearance of adherent, suspended and non-viable cells.

size of the cells are more defined and cellular sub-structures like the nucleus of suspended cells

are clearly visible in the phase contrast micrograph.

4.4 Technical specifications

In this section the technical specifications of the hardware, software and programming languages
used to perform the experiments, are briefly summarised. The details pertaining to the imple-
mentation of individual units in the cell viability determination pipeline are thoroughly described

under the “Implementation” sections in subsequent chapters.

e Hardware:

— A laptop equipped with an Intel(R) Core(TM) 15-3317U/1.7GHz processor and 4-GB
RAM.

e Software:

— MATLAB version 7.11.0.584 (R2010b) supplemented with a Image Processing Tool-
box Version 4.0 [MAT10].
— LIBSVM ([Chall]) compiled as a dynamic link library for MATLAB.

— KNIME version 2.8.0 [Ber07].

¢ Programming languages:
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- MATLAB

- C++

4.5 Summary

In order to understand the eventual objectives of this study, it is important to first obtain sufficient
knowledge of the processes that precedes the study. In this chapter, it was described how cell
cultures are prepared in order to obtain micrographs from it for the sake of preparing data sets.

Moreover, the technical specifications of the equipment to perform the study were also stated.



Chapter 5

Keypoint-Based Viability Determination

Framework

In this chapter, a keypoint-based unstained cell viability determination framework is presented.
Micrographs are obtained from transmitted light microscopy of cultured cells. The main idea of
the framework is to train several classifiers with cell samples, the viability of which are known,
such that the classifiers learn from the example micrographs some criteria for distinguishing vi-
able from non-viable cells based merely on their visual appearance. In this learning process,
different types of features are extracted, investigated and evaluated based on how well they sup-

port classification.

The essential building blocks of this keypoint-based unstained cell viability determination
framework are illustrated in Figure 5.1. The framework is composed of three modules: an acqui-
sition (Figure 5.1 - (a)), a training (Figure 5.1 - (b)) and a test module (Fig. 5.1 - (¢)).

In the acquisition module, micrographs of cell cultures which have been exposed to a toxin
are captured with a laboratory microscope (Fig. 5.1 - (1)). More often than not, a cell is expressed
in a micrograph as one or more blobs in intensity. A blob is a maximum of the normalised
Laplacian in scale space ([Lin98]). It is also called an interest point or a keypoint. The cells in
the acquired micrographs are manually detected and labelled, whereafter scale invariant feature
transform (SIFT) keypoints [Low99] are extracted (Fig. 5.1 - (2)). Only the keypoints which
are arbitrarily close to the manually selected points in the micrographs are kept, the remainder
are discarded. Henceforth, the keypoints are classified into viable-adherent, viable-suspended,
and non-viable cell keypoints. It is important to realise that there may be multiple keypoints
associated with a single cell.

After the keypoint detection stage, an image patch of each keypoint is collected within a
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Figure 5.1: Tllustration of the overall cell viability determination process from bright-field mi-
crographs.

square window W around the cell keypoint centre. The size of the patch is proportional to the
scale parameter of that particular SIFT cell keypoint (keypoints.q.). Thus, a different patch is
extracted for each cell keypoint in the micrograph [Mual3]. These scale dependent patches are
then used to compute various features (Fig. 5.1 - (3)).

In the training module, only the extracted feature vectors from one micrograph is considered
for the training set (Fig. 5.1 - (4)). This one micrograph is used for training various classifiers
(Fig. 5.1-(5)). Essentially, the classifiers are trained to classify the extracted feature vectors into
two different classes: viable or non-viable.

In the test module, the trained classifiers are used for classifying the extracted feature vec-
tors that belong to the micrographs in the test set (Fig. 5.1-(4)). To evaluate the framework’s
performance, the resulting classification label of each keypoint is compared to the known class
label associated with that particular keypoint. The classification step is repeated for each micro-
graph in the test set in order to get a cross-validation estimate of the classification performance
associated with each classifier/feature combination.

In this thesis, the framework described above is repeated for the four different transmitted
light microscope modalities. Thus, a cross-validated classification performance for each of the
microscope modalities are produced, which allows for a comparison between modalities, features

and classifiers.



Chapter 6

Features Considered For Cell Viability

Determination

6.1 Introduction

Selecting the most informative set of features, given a specific problem, to apply in training of any
classifier is crucial for obtaining proper classifications results. The field of machine learning has
produced a multitude of features to serve as inputs for learning algorithms. These features may
include simple local and non-local properties, including the pixel value, the mean, the gradient
magnitude, the standard deviation, and entropy ([Jur10]).

Training a classifier, with a large number of features, is challenging due to the “curse of
dimensionality” which, if not done carefully, can complicate the decision space and make it
difficult to find an optimal solution. Therefore, it is necessary to find the features that are most
descriptive of the problem at hand.

In this section the multitude of features that are considered to be the best to distinguish
between viable and non-viable cell keypoints are introduced and mathematically described.

6.2 Scale invariant feature transform

6.2.1 Introduction

The scale invariant feature transform (SIFT) is a method by which distinctive features can be
extracted from images to be used for image matching [Low99]. SIFT features associated with
SIFT keypoint have been successfully used for object recognition. These features are invariant
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to image scale and rotation, and are shown to provide robust object recognition despite change
in illumination. These are all attributes, which make these features ideal for the use in this
unstained cell viability determination framework. In the subsequent sections, the steps that need
to be followed to obtain these SIFT descriptors and other features associated with SIFT keypoints
are described.

6.2.2 SIFT descriptors

SIFT descriptors are the features associated with SIFT keypoints [Low99]. SIFT descriptors are
a class of local image features, which characterise the neighbourhood of each SIFT keypoint in
a scale- and orientation-independent way.

The SIFT descriptors are created by first computing the gradient magnitude and orientation
at each image sample point in a region around the cell keypoint, as shown on the left part of
Figure 6.1. These values are weighted by a Gaussian window, indicated by the overlaid blue
circle. Thus, the weight of a sample point depends on its distance from the keypoint; the farther
away from the cell keypoint, the smaller the weight of the sample magnitude. These samples are
then accumulated into orientation histograms summing the contents over 4 x 4 subregions, as
shown on the right part of Figure 6.1, with the length of each arrow corresponding to the sum of
the gradient magnitudes near that direction within the region. Figure 6.1 shows a 4 x 4 descriptor
array computed from a 16 x 16 set of samples. The total number of descriptor features describing
the region around a cell keypoint is 4 x 4 x 8 = 128. These 128 values form the feature vector,
which uniquely defines a cell keypoint.
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Figure 6.1: SIFT descriptors associated with a SIFT keypoint.
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6.2.3 Difference-of-Gaussian value and principal curvatures ratio

Two additional features for each cell keypoint were obtained from the SIFT algorithm: the
difference-of-Gaussian (DOG) value and the principle curvatures ratio (PCR). For information
regarding the computation of these values please refer to the original publication [Low99].

6.3 Ray features

6.3.1 Introduction

Ray features consider image characteristics at distant contour points, capturing information
which is difficult to represent with standard features [Smi09]. Ray features have been successful
in recognising irregular shapes, such as cells in micrographs [Smi09] [Mual3]. The ray features

adapted by [Mual3] was used in this thesis.

6.3.2 Mathematical description of ray features

In order to compute the Ray features at a cell keypoint r (see Fig. 6.2 for details) in an image
I, the closest edge point r’ along a direction #,, needs to be found. Ray features are four sets of
features [Smi09]. The first three are:

(i) the distance Ry(r, 6,,) between r and r’:

Rqy(r,0,) = || = r)]|, (6.1)
(ii) the gradient norm R, (r,#,,) atr’:

Ry (r,0,) = [ VI(')]], (6.2)

(iii) the gradient angle v = R, (r,0,,) atr’:

_ VI(r)
Ra(r, Qw) = m . Qw. (63)

Eight values for the angle 0,., k = 1, 2, 3, ...8 were used to obtain 24 features.
The fourth set of the Ray features is the distance difference Rqq4(r, 0.y, 0.) defined as follow:

Rdd(r,ﬁw,ﬁw/) = Rd(r,ew) — Rd(r,ﬁw/). (64)
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Figure 6.2: Ray feature adjusted to cell keypoints. This figure after [Mual3] is an adapted version
of the pixel-based ray features in [Smi09]

Ray features are sensitive to scale and orientation. In order to make them orientation-
invariant, all angles, i.e. the eight #,, angles and the gradient angle feature R,(r,6,,), were
defined with respect to the keypoint ,.;eniation(T)-

The Ray features were made scale-invariant by measuring the distances Ryy(r, 0., 0,) in
units of keypoint,,,.(r). Furthermore, the gradient was computed by using the following equa-

tion for its x component:

oI(r’)
ox

where 7 is a constant that was set equal to 1. A similar equation was used for the y com-

= I(r,/ + 7 - keypointyeqe (r), 7,') — I(r./, 7)) (6.5)

ponent. Before applying equation 6.5, the micrograph was smoothed by a Gaussian filter with
a standard deviation of 1 [Mual3] and the edges were obtained by applying the Canny edge
detection algorithm [Can86].

6.4 Intensity stencil

6.4.1 Introduction

Direct sampling of intensity values in an image neighbourhood is actually a simple approach
that allows a classifier to learn directly from the input data [JurlO][Lon06][Wei07]. Two image
neighbourhood sampling techniques are available: one approach samples the image pixels using
a patch and the other approach using a stencil. In the subsequent sections these two sampling

techniques will be described.
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6.4.2 Intensity stencil

An intensity stencil contains the same number of samples as a patch, yet covers a larger area
of the data. Therefore, an intensity stencil is a more efficient representation for sampling the
intensity values in a neighbourhood around a cell keypoint.

The idea of sampling an image by means of a stencil instead of a patch has been used for neu-
ron detection in electron microscopy [Jurl0], for sampling 3D vessels [Mit10] and for detecting
cells in bright-field micrographs [Mual3].

In this thesis, the approach by Mualla et al. [Mual3] was followed to sample the intensities
surrounding a cell keypoint. The keypointscq. and keypoint, ientation associated with a SIFT
keypoint were used respectively, to align a radial stencil and to sample the neighbourhood sur-
rounding a cell keypoint in units of keypoint.,. as demonstrated in Figure 6.3. The result is a
scale and orientation-invariant approach to sampling the intensity values surrounding a cell key-
point. In order to make it invariant to the linear shift of intensity, the mean intensity of the stencil

was subtracted from all stencil nodes.

Figure 6.3: Radial intensity stencil. The stencil is aligned with the keypoint orientation. The
distance between two successive nodes is 0.3 X keypoints.qae. This figure is extracted from
[Mual3].

6.4.3 Pixel patch

The idea of sampling an image by means of a pixel patch has been used for automatic detection
of unstained viable cells in bright-field images [LLon06] and multi-class detection of cells in

multi-contrast composite images [Lon10].



40 CHAPTER 6. FEATURES CONSIDERED FOR CELL VIABILITY DETERMINATION

In this thesis the intensity values surrounding a cell keypoint, were sampled by means of a
static square pixel patch as demonstrated in Figure 6.4. The size of the square pixel patch was

set equal to twice the average keypoints.q. of all the cell keypoints in the micrograph.

_|_|_ —=— Static patch

| ||
|_|@:‘:‘—cell keypoint
BN
]

Figure 6.4: Static square pixel patch used for sampling the raw intensity values surrounding a
cell keypoint. The side length of the patch is equal to twice the mean keypoint,.,. value.

6.5 Variance map features

The local variation of intensity in an image, the so called variance map, has been successfully
used for identifying regions of an image that contain cells [Wu95]. The variance map value at a
pixel is simply the variance of intensities in a neighbourhood centred at this pixel.

In this thesis, the variance map for a cell keypoint was computed, after [Mual3], over a
square neighbourhood centred at the given cell keypoint. The size of the square neighbourhood
was proportional to the keypoint,.,.. For each cell keypoint r, three variance map features were
computed:

1 re+M ry+M

e > ZM[I(g,h)—u(rx,ry,G(r,c))]Q (6.6)

g=rz—M h=ry—

Vmap(r,,ry,, G(r,c)) =

where I(g, h) is the grey level intensity of a cell keypoint r in an image I centred at (g, h),
G(r,c) = ¢ X keypointseae(r),c € {2,4,6} is a value denoting the width of the considered
square neighbourhood, M = (G(r,c) — 1)/2 and p(r,, r,, G(r,c)) is the mean intensity within

the square neighbourhood, computed by

ro+M ry+M

W, G0) = s > 3 Hah (©7)

g=rz—M h=ry—
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6.6 Texture features

6.6.1 Introduction

Everyday texture terms like rough, silky and bumpy refer to the touch sensation. A texture that
is rough to touch has a large difference between high and low points and the space between the
highs and lows is approximately the size of a finger. A texture that is silky has little difference
between the low and high points, and the spacing between points is close together relative to
the size of a finger. Image texture can be described in the same way, except that the highs and
lows are brightness values (also called grey levels) instead of elevation changes. A window of
a specific V' x V size is used for probing the image to determine the spacing between these
high and low brightness values [HBO7]. It has been demonstrated that spatial statistics computed
on the grey levels of an image, are able to provide proper descriptors of the perceptual feeling
of texture [Har79]. Methods based on texture analysis have been used successfully to identify
neoplastic nuclei by characterising chromatin structures in breasts ([Wey98][DWO00]) as well as
in prostate tumours ([Yog96]) and to segment chromatin regions ([Bei95]).

The texture features used in this thesis are classified as second-order statistics, computed
using the Grey Level Co-occurrence Matrix (GLCM) [Har73].

A GLCM considers the relation between two pixels in a patch, called the reference and the
neighbour pixel. The neighbour pixel can be horizontally (# = 0°), vertically (¢ = 90°) or
diagonally (# = 45° or f# = 135°) relative to the reference pixel (see Fig. 6.5 for details). A
GLCM is created by calculating how often a reference pixel with grey-level intensity value i*
occurs relative to a neighbouring pixel with the intensity value j*, where the neighbouring and
reference pixels are separated by the distance dist. Each element at position (i*j*) in the co-
occurrence matrix specifies the number of times that a reference pixel with value i* occurred
relative to a neighbouring pixel with value j* in a patch, separated by the distance dist. The final
step for constructing a GLCM is to normalisation, such that the sum of its elements is equal to
1. Each element at position (i*,j*) in the normalised GLCM is the joint probability occurrence
of pixel pairs having grey level values i* and j* in the patch. Therefore, any GLCM element
Puisip(i*,7*) reflects the distribution of the probability of occurrence of a pair of grey levels
(1%, %) separated by a given distance dist in the angular direction 6.

An example of how a horizontal co-occurrence matrix is calculated from an image is shown
in Figure 6.6. In this illustration the horizontal relationship between pixels were used to construct
the GLCM, where dist = 1. Element (1,1) in the GLCM contains the value 2, because there are
two instances in the image where two horizontally adjacent pixels have the respective values of 1
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8=135" 6=90" 0=45°
A /
>-0=0

Neighbouring-pixels

Reference-pixel

Figure 6.5: Example of relationship between reference pixel and neighbouring pixels.

and 1 (one to the right and one is to the left of the reference pixel). Elements (1,2) and (2,1) in the
GLCM contain the value 2, because there are two instances in the image where two horizontally
adjacent pixels have the values 1 and 2 considering the neighbour to the right and then again

considering the neighbour to the left. A GLCM matrix is typically symmetric [Har73][Har79].

Image GLCM
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Figure 6.6: Example of how a co-occurrence matrix for an image is constructed.

In this thesis, the patches extracted around each cell keypoint were quantised to 16, 32,
64, 128 and 256 grey-levels/pixel before a GLCM was calculated for each quantisation level.
Henceforth, five symmetric GLCMs were calculated for each cell keypoint, by tabulating the
grey-level co-occurrence probabilities based on the spatial relations of pixels, separated by a
distance dist = 1 in all four of the angular directions (f = 0°,45°,90°, 135°). The summation
of the four symmetric GLCMs’ results in a rotation-invariant matrix [Arv04], defining a cell
keypoint. The relative position vector was selected in the same manner as was done by Haralick
[Har73].
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6.6.2 Mathematical description of grey texture features

The grey texture features, computed for each cell keypoint, are based on the GLCM and Haralick
features [Har73]. Haralick assumed that the texture information is contained in the GLCM, thus
calculating the texture features from it. Although he extracted fourteen features from the GLCM,
only five are commonly used because it was demonstrated that the fourteen features are highly
correlated and that only five of them are more than sufficient to obtain satisfactory classification
rates [Con80]. The five features commonly used are energy, homogeneity, contrast, correlation
and entropy.
From the GLCM, the five features were calculated as follows[Mal03]:

F F
Energy =7 > Piuoli",J") (6.8)
=1 =1
F F
Contrast = Z Z (i* — %) Paisro (i*, 5%) (6.9)
i*=1j*=1

- M - st )

Correlation = ZZ (" = )" = ) Paisto (", 57) (6.10)
Pt 00
Homogeneity = Z Z Paisto (", 57) (6.11)
S i
F F

Entropy ==Y > Puisto(i*, j*)10g Puit(i*, j*) (6.12)

ir=1j*=1

In these formulas, F' € (16, 32,64, 128, 256) is the number of grey levels, i* and j* are the
different grey levels and Py (7", j*) is the value of the GLCM at grey level pair (i*, j*).

6.6.3 Mathematical description of colour texture features

In the last two decades, the study of texture has been extended to the study of texture in colour
images [Arv04]. These novel colour texture study approaches are based on existing grey level
methods that are adapted to take into account the colour information.

In the literature, three different families of approaches to colour texture analysis can be found.
The first approach is a multispectral extension of the co-occurrence method since co-occurrence
matrices are computed both between and within the colour bands. The second approach uses
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joint colour-texture features: colour features are added to grey scale texture features as inputs for
a classifier. The third approach uses grey scale texture features computed on a quantised colour
image. A comparison study [Arv04] concluded that the multispectral colour texture approach
outperformed the other two approaches by having the highest classification rate. Therefore, the
multispectral colour texture approach was used in this thesis to exploit the colour information
embedded in the micrographs.

The multispectral colour texture approach takes into account the correlations between the
colour bands while computing the texture features as illustrated in Figure 6.7. Statistical descrip-
tors are computed both within and between channels to give information on the whole colour
texture [Ros80],[Arv04]. This method is an extension of the method based on the co-occurrence
matrix of an image [Har73].

5 Haralick 5 Haralick 5 Haralick
features features features

5 Haralick 5 Haralick
features features

5 Haralick
features

Figure 6.7: Construction of a six co-occurrence matrices to capture colour texture information
and calculate texture features. This figure is extracted from [Arv(04]

In this thesis, colour micrographs are coded on three channels, leading to six different co-
occurrence matrices:(R,R), (G,G), (B,B) that are the same as the GLCMs computed on one
channel and (R,G), (R,B), (G,B) that take into account the correlations between the channels.
For each of the six co-occurrence matrices, the five Haralick features described above were cal-
culated, which resulted in a total of 30 colour texture features per cell keypoint (see Fig. 6.7 for
details).



Chapter 7

Multidimensional Scaling

7.1 Introduction

High-dimensional datasets can be very difficult to visualise. While data in two dimensions can be
plotted to show the inherent structure, equivalent high-dimensional plots are much less intuitive.

To aid visualisation of the structure of a dataset, the dimension needs to be reduced in some way.

The simplest why to accomplish dimension reduction is by taking a random mapping of
the data [Kas98]. Though this allows some degree of visualisation of the data structure, the
randomness of the choice leaves much to be desired. In a random mapping the more interesting

structures within the data may be lost.

To address this concern, a number of supervised and unsupervised linear and non-linear di-
mensionality reduction algorithms have been developed. Examples of algorithms developed are
isometric mapping [Ten00], locally linear embedding [Row00], [Kru64] to name but a few. The
linear dimensionality reduction algorithms often miss important non-linear structures in the data.
Non-linear projection algorithms can be thought of as an attempt to generalise linear algorithms
to be sensitive to the non-linear structures in the data [HasO1]. Typical non-linear projection
problems are unsupervised i.e., it learns the high-dimensional structure of the data from the data

itself, without the use of predetermined classification [Dud12].

One such non-linear projection algorithm is called multidimensional scaling (MDS). MDS
seeks a low-dimensional representation of the data in which the distances respect well the dis-
tances in the original high-dimensional space [Bor(05].
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7.2 Description of multidimensional scaling

Beginning with observations X, X, ..., xy € IR”, and let d,, be the distance between two ob-
servations a and a’. Most often the Euclidean distance d,, = ||x, — X.||, is selected, but other
metrics may also be considered. MDS algorithms only require the dissimilarities d,,, between
the observations and not the original data points x,,a = 1,2, ..., N.

Multidimensional scaling seeks values z;, z, ..., zy € IR" (n < p) to minimize the so-called

stress function [HasO1]:

St (21,22, ,23) = Y (daw — 120 — 2 1,)°. (7.1)
aF#a’

Equation 7.1 is known as Kruskal-Shepard scaling. A mapping of the data to a low-dimensional
subspace is achieved by minimising S),;. A gradient descent algorithm minimizes S); in a
manner that preserves the pairwise distances of the high-dimensional space as best as possible
[HasO1].

A variation on least squares scaling is the so-called Sammon mapping which minimizes:

(daa/ — |24 — Za/HQ)Q

7.2
0 (7.2)

ng (Zl,ZQ, ...,ZN) = Z

a#a’

In this instance more emphasis is placed on preserving smaller pairwise distances. A gradient
descent algorithm is also used to minimize Sg,,. Least squares and Sammon mapping are referred
to as metric scaling methods, in that the actual dissimilarities are approximated.

As described above, various methods exist that represent high-dimensional data in a low-
dimensional coordinate system. However, MDS is one such method that explicitly tries to pre-
serve all pairwise distances [HasO1]. Hence, the reason for selecting Sammon mapping to visu-
alise the low-dimensional mapping of the high-dimensional feature vectors.

7.3 Software implementation methodology

The professional open-source software platform called KNIME ([Ber07]) was used to inspect
the various features extracted. The pipeline which was constructed in KNIME to perform the
mapping and visualisation is depicted in Figure 7.1.

The MDS node in Figure 7.1 employs the Sammon mapping algorithm. This procedure is

repeated a specified number of epochs. The scatter plot node is used to visualise the projected
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Figure 7.1: MDS pipeline build in KNIME

data points and the interactive table node displays the data in a table view.
The configuration of the MDS node is summarised in Table 7.1.

Property

MDS node

Epochs:
Output dimensions:
Learning rate:

Distance metric:

50 (default)
2

1 (default)
Euclidean

Table 7.1: Configuration of MDS the node
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Chapter 8

Classifiers Used For Viability

Determination

8.1 Support vector machine

8.1.1 Introduction

The fundamental idea with SVMs is to calculate the optimal separating hyperplane which sepa-
rates two classes and maximizes the distance to the closest point from either class [Vap98]. Not
only does this provide a unique solution to the separating hyperplane problem, but by maximizing
the margin between the two classes on the training data leads to better classification performance
on test data.

This section only briefly describes some of the fundamental aspects of SVMs. SVMs were
first introduced by Vapnik et al. to solve pattern recognition and regression estimation problems
[Vap98]. A detailed introduction to SVMs can be found in [Vap98].

8.1.2 Mathematical description of support vector machines

In what follows, we denote the N training samples as

Set = {(x1,y1 = f(x1)), (X2, 92 = f(x2)) , ..., (X, yn = f(xn))} (8.1)

where x; € R?,i = 1,2, ..., N denotes the p—dim feature vector and y; € {—1,+1},i =
1,2, ..., N denotes the class number.

In the linearly separable case shown in Figure 8.1a (hard margin case), the SVM classifier
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follows the intuitive choice and selects the hyperplane (among many that can separate the two
classes) that maximizes the margin, where the margin is defined as the sum of the distances of

the hyperplane to the closest points of the two classes.

X2
°

X, X
(a) Hard Margin Case (b) Soft Margin Case

Figure 8.1: Mlustration of SVM classification. The support vectors are encircled.

In the case where the two classes are non-separable shown in Figure 8.1b (soft margin case),
positive slack variables are introduced to allow some training samples to fall on the wrong side
of the separating hyperplane. The SVM then finds the hyperplane that maximizes the margin
and, at the same time, minimizes a quantity proportional to the number of classification er-
rors. The trade-off between maximizing the margin and minimizing the error is controlled by
a user-adjusted regularization parameter C' > 0. A large C' corresponds to a high penalty for
classification errors.

Linear decision boundaries, like the ones in Figure 8.1 in its most basic form have serious
limitations: non-linearly separable data cannot be classified and noisy data causes problems in
finding unique hyperplanes. However, in many practical cases, non-linear decision surfaces are
needed. Non-linear SVMs can be generalised from linear SVMs by selecting a feature trans-
form ¢ : IR? — IR” to map the original feature vector x; into a higher dimensional Euclidean
space such that the resulting features ¢(x;),7 = 1,2, ..., N are linearly separable. These feature
transforms can be easily incorporated into SVMs and the decision boundary has the form:

f(x) = alp(x) + ap. (8.2)

Mathematically it can be shown that the solution of the decision boundary in the non-linear

case is:
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ZAzyz x:), (X)) + ag = Z&yz ker(xi,x) + aq, (8.3)

where the coefficients \; are the solution of the following convex QP problem:

maximize — % Z Z AiNiviy; - (p(xi) )+ Z A (8.4)
T g

subject to 0< N <0, and Z Ay =0, (8.5)

where the function ker(-, -) is called a kernel function and defined as:

ker(x,X') = (p(x), p(x')) (8.6)

for any feature mapping . Usually the evaluation of the kernel function is much simpler than

the computation of transformed features followed by the inner product.

Typical kernel functions are:

Linear  ker(x,x') = (x,x') (8.7)

Polynimial ker(x,x') = ((x,x') + 1) (8.8)

Radial basis function ker(x,x’) = eVl (8.9)
Sigmoid kernel  ker(x,x’) = tanh (a (x,x’) + ) (8.10)

In a typical problem, the \; coefficients of only a few training samples will be non-zero.
Thus, all x;’s with A; > 0 are elements on the boundary of the margin. These samples are
referred to as the support vectors. Let vj denote the aforementioned support vectors and A7,
j=1,2,...,1 (I < N) their corresponding non-zero coefficients. The decision function in (8.3)

can be rewritten in the §parseform of the support vectors as:
= Z)\jyj {p(vj),o(x)) + ap = Z ANyj - ker(vj,x) + ag. (8.11)
J

This equation shows that the decision boundary is a linear combination of the support vectors,
which is typically a small fraction of the whole training set.
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8.1.3 Software implementation

Two SVM classifiers were trained with the freely available library for SVMs called LIBSVM
[Chall], which was compiled as a dynamic link library for MATLAB.

The two SVM classifiers were configures as follow:

Property SVM 1 SVM 2
Type of SVM: C-SVC C-SVC
Kernel type: Linear Radial basis function
Cost (C): weight; x 50 weighty X 50
Other: — v = 1/Total number of features (default)

Table 8.1: Configuration of the SVM classifiers in LIBSVM

The variables weight, and weight, in Table 8.1 are the weights associated with each class of
the data. These variables are used to set the cost parameter C; of class ¢ to weight; x C. Thus,
the cost associated with a misclassification is adjusted to take into account unbalanced classes,
that is in the case where class; and classs have an uneven number of observations. The weights

are calculated as follow:

) Total number of observations
weight; = - . : (8.12)
Number of observations in class ¢

By calculating and applying weight, and weight,, means that the cost parameters C; and C,
of the SVM are chosen such that the ratio in Equation 8.13 is obeyed [Mor99].

C1  Number of observations that belong to class 2 (8.13)
C,  Number of observations that belong to class 1 '

A small value for the penalty parameter C' leads to an increase in the number of training
errors, while a large value for C C' lead to a behaviour similar to that of a hard-margin SVM.
There exist various approaches and optimisation algorithms dedicated to finding the optimal
value for the penalty parameter C' [Hsu03] [Lon06] [HasO1]. However, in this implementation
the value for the penalty parameter C' was determined by experimenting with several values and
choosing the one that yielded the best classification performance for the training set.
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8.2 Tree-based classifier

8.2.1 Introduction

Tree-based methods partition the feature space into a set of rectangles, and then models each
region by a constant outcome. In this section a popular tree-based method called classification

and regression tree (CART) by Breiman et al. [Bre83] is described.

Assume the outcome is y € {1,2,..., K}. A classification tree repeatedly partitions the
feature space into a set of rectangles by recursive binary splitting. First, the original feature
space is split into two regions and the response is modelled by the majority vote of y in each
region. Subsequently, one or both of these regions are split into two more regions. This process
is continued until some stopping criteria is reached. At each step, the variable and split-point
that achieves the best fit need to be determined. The aforementioned process is illustrated by the
following example: four splits x1 = t1, x5 = t9, x1 = t3, x5 = t4 to partition the features space

into five regions Regiony, Regionsy, Regions, Regiony, Regions shown in Figure 8.2a.

X, st
Region; Regions :
o t
< . ¢
t2 egions X25 t2 X1 < t3
Region, Region, ‘ XZS t4
R R, R,
t; t,
X4 R, Rs
(a) An example partitioning of a (b) The tree corresponding to
two-dimensional feature space the two-dimensional partition-
by recursive binary splitting. ing.

Figure 8.2: Illustration of a feature space partitioned by a single tree.

The full dataset sits at the top node of the tree. Observations satisfying the conditions at each
junction are assigned to the left branch, and the others to the right branch. The terminal nodes
of the tree correspond to the regions Region,, Regions, Regions, Regiony, Regions (see Fig.
8.2b).

A key advantage of the recursive binary tree is its interpretability. The feature space partition

is fully described by a single tree as seen in Figure 8.2b.
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8.2.2 Mathematical description

We define a tree T as a collection of nodes (t) and splits (s). Let |T'| denote the number of
terminal nodes in 7. In what follows, we denote the /N observations as

Set ={(x1, 5 = f(x1)), (X2, 92 = f(x2)) oo, (v, v = f(xw))} (8.14)

where x; € IR? denotes the p—dim feature vector and y; € {1,2,..., K} denotes the class
number.

The tree-based algorithm needs to automatically decide on the splitting variables and split
points, and also what topology the tree should have. Three processes are necessary to grow a
tree, namely a splitting, a partitioning, and a pruning process.

The split process involves choosing split variables and split points and then applying the
goodness of split criterion (s, t) to evaluate any split s of any node ¢. Each split depends on the
values of only one unique variable x,. For the splitting variable « and split point s, define the
pair of half-planes

Regiony (u, s) = {x|z, < s}, and Regions(u, s) = {x|z, > s}. (8.15)

Each split produces two sub-nodes. The tree-based algorithm scans through all the inputs
and all the possible splits to determine the best pair (u, s) yielding the most “pure” nodes, i.e.,
finding the splitting variable v and split point s that solve

Izlisn[ﬁRegion1 + ﬁRegiong]a (816)

where Urcgion,, 15 some purity measure of node Region,, for m = 1,2. A node is more pure if
one class dominates the node than if multiple classes equally present in the node.

In a node m, representing a region Region,, with NV, observations, let

1
P = Pr(k|m) = > Iyi=k), (8.17)

N,
m x;ERegionm

which is the proportion of class £ observations in node m. An observation in node m is assigned
to class

k(m) = arg max p,x, (8.18)
k

by the majority class in node m. Different measures v,,(7") of node impurity include the follow-
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ing:

Misclassification error: ¢ = NL Z I(y; # k(m)), = 1 — Drak(m)- (8.19)
m i€ Regionm,
K
Giniindex: ¥ = Prur(1 = Pout)- (8.20)
k=1
K
Cross - entropy: 0 = — Zﬁmk log Prk - (8.21)

k=1

All three impurity measures are similar, but cross-entropy and the Gini index are differen-

tiable, and hence more amenable to numerical optimization.

The binary partitioning process of the feature space is recursively repeated until the tree is
large enough. A very large tree might overfit the data and a small tree might not capture the
important structure. Hence, the optimal tree size should be adaptively chosen from the data. The
preferred approach is to grow a large tree 7, stopping the splitting process only when some

minimum node size (say 5) is reached.

The weakest link pruning procedure successively collapse the internal node that produces the
smallest per-node increase in »  N,,9,,(T"), and continue until a single node tree is produced.

m
This gives a finite sequence of sub-trees. The cost-complexity for each sub-tree 7' is measured by

||

CCW(T) = Nyt +alT|, (8.22)
m=1

where m’s run over all the terminal nodes in 7', and « governs a trade-off between the tree size
|T| and its goodness of fit to the data. A large « results in smaller trees; a small « results in
large trees. Breiman et al. ([Bre]) have shown that for each «, there is a unique smallest sub-tree
T, that minimizes C'C,,(T'). Furthermore, the sequence of sub-trees obtained by pruning under
the weakest link pruning procedure, must contain 7,. Though, in practice five- to ten-fold cross

validation is used to estimate «.

CART classification uses the Gini index as node impurity criterion. Instead of employing
stopping rules, CART generates a sequence of sub-trees by growing a large tree and pruning it
back until only the root node is left. Then it uses cross-validation to estimate the misclassification
cost of each sub-tree and chooses the one with the lowest estimated cost.
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8.2.3 Software implementation

The tree-based classifier was trained by means of the Classregtree function in the Statistics Tool-

box of Matlab. The Classregtree function was configured as follow:

e Number of features per split: all features
e Pruning: “on” (default)
¢ Node impurity criteria for choosing split: Gini index

8.3 Random forests

8.3.1 Introduction

The random forest (RF) algorithm was introduced by Breinman ([Bre0O1]) as a modification of
bagging that builds a large ensemble of de-correlated trees, and then classifies using a majority
vote. RF are very popular, because they can cope with high-dimensional data, their performance
on a variety of problems are better than boosting, they are simple to train, and requires very little
tuning [Has01] [HasO1]. Furthermore, RFs can cope with complex interaction structures as well
as highly correlated variables [Boul2]. The aforementioned properties make RFs an ideal choice
as a classifier in this thesis.

This section briefly describes the basic functioning of RE. Theoretical details and reviews
covering other aspects of RFs can be found in [Bre01], [Has01],[Dud12],[Boul2].

8.3.2 Mathematical description of random forests

The general functioning of the RF algorithm is depicted in Figure 8.3. In RFs, each CART tree
in the ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the
original data set. In addition, when splitting a node during the construction of the tree, the split
that is chosen is no longer the best split among all features. Instead, at each tree split a random
sample of ¢ features is drawn and only those ¢ features are considered for splitting. Typically
q = /p or log,p, where p is the number of features [HasO1]. The predictions of all trees are
finally aggregated through majority voting.

The random sampling of the features usually leads to an increase in the bias of the forest with
respect to the bias of a single non-random tree. However, due to the averaging of the predictions,
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the RF’s variance decreases. Thus, the decrease in the variance compensates for the increase in

bias, hence yielding an overall better model.

An important feature of a RF is its out-of-bag (OOB) error. For each tree grown on a bootstrap
sample, the error rate for observations left out of the bootstrap sample is monitored. This is called
the OOB error rate. An OOB error estimate is almost identical to that obtained by N-fold cross
validation. Through this internal validation, the error estimation is less optimistic and usually
considered as a good estimator of the error expected for independent data. Once the OOB error

stabilises, the training can be terminated [HasO1].

repeat until
specified
number
of trees are|
grown

repeat until
criteria for

are fulfilled

Figure 8.3: Random forest algorithm

8.3.3 Software implementation

The RF classifier was trained by means of the Treebagger function in the Statistics Toolbox of
Matlab. The Treebagger function was configured as follows:
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e Number of Trees: 80

e Number of features per split: Vvnumber of features
e Pruning: “on” (default)

¢ Node impurity criteria for choosing split: Gini index

The OOB classification error versus the number of trees in the RF is illustrated in Figure 8.4.
The larger the number of trees in the RF, the smaller the OOB classification error. However, to
grow a large number of trees is computationally expensive. Thus, the number of trees grown
for each RF classifier were chosen to be 80, this is the number of trees that yield acceptable

classification performance while limiting the time necessary to train the RE.

0.42 T T T T T T T T T

out-of-bag classification error

10 20 30 40 50 60 70 80 90 100
number of grown trees

Figure 8.4: OOB classification error curve used to determine the appropriate number of trees to
be grown in the RE.



Chapter 9

Results Of The Study

9.1 Introduction

In this chapter the classification rate, under practical conditions, of the cell viability determi-
nation method is presented. Only one micrograph was used for the training of the classifiers.
The remaining six micrographs were used for testing the cell viability determination method.
Hence, 7-fold cross-validation was used to produce the results for this thesis (see Appendix B
for details).

The tree-based classifier produced inferior classification rates compared to both the SVM
classifiers and the RF classifier. Therefore, the classification rate tabulated in the subsequent
sections for each feature set was obtained by calculating the average classification rate for the
SVM with a linear kernel, the SVM with a radial basis function kernel and the RF classifier.

9.2 Method for keypoint detection and labelling

The steps followed for detecting and labelling keypoints associated with the cells in the acquired

micrographs are summarised as follows:

e Step 1: The cells in the acquired micrographs were manually detected and labelled as
viable-adherent, viable-suspended, or non-viable as illustrated in Figure 9.1. Multiple
points within each cell were manually selected, in order to ensure that every manually
labelled cell has a keypoint associated with it. The number of manually selected points for
each cell class in the seven micrographs are summarised in Table 9.1.

59
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*  Non-viable cells
O Viable-suspended cells
V  Viable-adherent cells

Figure 9.1: Manual selection of multiple points within the cells in a bright-field micrograph.

e Step 2: The SIFT algorithm was used to detect points-of-interest in the micrographs as
shown in Figure 9.2. These points-of-interest are referred to as SIFT keypoints.

SIFT keypoints
Non-viable cells
Viable-suspended cells
Viable-adherent cells

Figure 9.2: Calculated SIFT keypoints for a bright-field micrograph.

e Step 3: Only the SIFT keypoints that occur in a 11 x 11 neighbourhood of a manually
selected point are kept. The label of the manually selected point is then assigned to the
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keypoints that fall within the 11 x 11 neighbourhood. The size of the neighbourhood
was chosen by visual inspection of the micrographs to make sure that the keypoints fell
either within a cell or on the border of the cell thus preventing the inclusion of keypoints
associated with the background. The number of keypoints for each microscope modality

in each of the seven micrographs are summarised in Table 9.2, 9.3, 9.4 and 9.5.

*+  Non-viable cells
“+  Viable-suspended cells
V  Viable-adherent cells

Figure 9.3: Illustration of the labelled cell keypoints after consolidating the manually selected
points and the SIFT keypoints.

Non-viable Viable suspension Viable adherent

Micrograph 1 887 844 757
Micrograph 2 466 449 524
Micrograph 3 496 417 585
Micrograph 4 786 563 450
Micrograph 5 531 516 576
Micrograph 6 435 340 523
Micrograph 7 498 418 574

Table 9.1: The number of manually selected cell in each micrograph.
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Non-viable Viable suspension Viable adherent

Bright-field 1 786 1200 521
Bright-field 2 517 554 500
Bright-field 3 581 598 519
Bright-field 4 774 848 264
Bright-field 5 820 771 625
Bright-field 6 687 538 660
Bright-field 7 549 594 471

Table 9.2: The number of keypoints per cell type in each bright-field micrograph.

Non-viable Viable suspension Viable adherent

Phase contrast 1 1492 1202 854
Phase contrast 2 731 817 497
Phase contrast 3 1026 881 834
Phase contrast 4 2021 891 536
Phase contrast 5 1517 788 664
Phase contrast 6 1167 585 527
Phase contrast 7 1344 577 638

Table 9.3: The number of keypoints per cell type in each phase contrast micrograph.

Non-viable Viable suspension Viable adherent

Negative-focused bright-field 1 1028 1077 581
Negative-focused bright-field 2 820 745 603
Negative-focused bright-field 3 682 612 460
Negative-focused bright-field 4 1018 732 469
Negative-focused bright-field 5 892 725 507
Negative-focused bright-field 6 946 589 645
Negative-focused bright-field 7 712 607 500

Table 9.4: The number of keypoints per cell type in each negatively-defocused bright-field mi-
crograph.
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Non-viable Viable suspension Viable adherent

Positive-focused bright-field 1
Positive-focused bright-field 2
Positive-focused bright-field 3
Positive-focused bright-field 4
Positive-focused bright-field 5
Positive-focused bright-field 6
Positive-focused bright-field 7

632
344
407
1103
616
453
461

1388
677
762
1053
944
561
773

624
267
516
530
481
301
559

63

Table 9.5: The number of keypoints per cell type in each positively-defocused bright-field mi-

crograph.
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9.3 Feature visualisation by means of MDS

The two dimensional projection of the features extracted from a bright-field micrograph are dis-
played in Table 9.6. The first hundred samples from each class were used for the projection and

visualisation of the extracted features.

The SIFT descriptors are distributed across 2D plane and the different cell classes do overlap.
It is particularly evident that the SIFT features are not able to discriminate well between non-
viable and viable-adherent cells. The phenomenon of the two global clusters that are visible
in the image was investigated and it turns out that the two global clusters are associated with
keypoints that are either located in an area with generally high intensity values or in an area

where the average intensity values are low.

From the projected images it is clear that the ray features, the variance map and the DOG as
well as PCR features do not offer any discriminative information that might aid in cell viability
determination. All the samples from the three different classes are projected on top of each other.

The static pixel patch and the intensity stencil do provide discriminative information for
distinguishing between viable-suspended and both non-viable and viable-adherent. However,
both sets of features has a hard time in separating the non-viable class from the viable-adherent

class.

The projections of the grey-scale texture features all look alike. Once more these features
have a hard time in separating the non-viable cell class from the viable-adherent cell class. How-
ever, it can be noted that a lower number of quantisation levels actually have more discriminative
power than grey-scale texture features calculated from a co-occurrence matrix that was con-

structed using the same number of quantisation bits as the image itself.

Lastly, the features that are best able to separate the three classes of cells are the colour texture
features. From their projection images it is evident that these features are able to distinguish
between non-viable, viable-suspended and viable-adherent. Once again, the lower the number of

quantisation levels the more separable the cells classes appear in the projection images.

Based on this preliminary screening of the features, it can be predicted that the highest clas-
sification rate will be achieved by the colour texture features.
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Features MDS 2D-projection
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Features MDS 2D-projection
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Table 9.6: The 2D visualisation of the extracted features after MDS was applied.

9.4 Feature ranking according to classification rate

The features that had the highest classification rate are ranked for each microscope modality in
Table 9.7, Table 9.8, Table 9.9, Table 9.10.

From the investigation it is evident that in general the features which ranked most frequently
in the top 5 were calculated from a patch with a dynamically changing size. The most discrim-
inative features are the intensity stencil, the variance map, the colour texture features quantised

with 32 levels, the static pixel patch and the SIFT descriptors.

This section can be concluded by stating that there is no one feature that is superior in distin-
guishing non-viable from either viable-suspended or viable-adherent cells. Even more so, there
is no guarantee that the features ranked here are able to perform cell viability determination when
different cell-line/toxin combinations are considered. It might happen that a completely different

set of features rank in the top 5 for discrimination power.
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Non-viable vs. viable-suspended Non-viable vs. viable-adherent

Rank | Classification rate (%) Feature Classification rate (%) Feature

1 86, 8242, 52 Dynamic Stencil 66, 30+0, 87 Static CTex32

2 85,35+1,45 Dynamic Vmap 66, 22+1, 51 Static CTex16

3 83,51%1,41 Dynamic CTex32 65, 38+0, 75 Dynamic CTex32

4 82,99+2, 86 Dynamic CTex64 65,17+1,24 Dynamic SIFT

5 82,924+1,92 Static Pixel patch 64,04+1,94 Static CTex64

Table 9.7: Ranked features according to classification rate for viability determination in bright-
field micrographs.

Non-viable vs. viable-suspended

Non-viable vs. viable-adherent

Rank | Classification rate (%) Feature Classification rate (%) Feature

1 85,53+1, 56 Static CTex32 66, 81+£3, 06 Dynamic SIFT

2 84,7540, 25 Static CTex16 65,2944, 44 Dynamic Stencil

3 84,30+£1, 25 Dynamic CTex32 62, 15+1,40 Dynamic Vmap

4 84,08+2, 30 Static Pixel patch 61,207, 37 Dynamic CTex128
5 82,80+0, 51 Dynamic CTex16 60,94+4,17 Static CTex32

Table 9.8: Ranked features according to classification rate for viability determination in phase
contrast micrographs.

Non-viable vs. viable-suspended

Non-viable vs. viable-adherent

Rank | Classification rate (%) Feature Classification rate (%) Feature

1 87,07£2,11 Dynamic Stencil 66, 732,75 Dynamic SIFT

2 84,77£1,25 Dynamic Vmap 64,78+1,84 Dynamic CTex32
3 84,2141,24 Dynamic CTex32 64,67+2,16 Static CTex32

4 83,12+3,72 Dynamic CTex64 63,84+1,96 Static CTex16

5 82,5841, 22 Dynamic SIFT descriptors 63,78+2,94 Static CTex128

Table 9.9: Ranked features according to classification rate for viability determination in
negatively-defocused bright-field micrographs.
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Non-viable vs. viable-suspended Non-viable vs. viable-adherent
Rank | Classification rate (%) Feature Classification rate (%) Feature
1 87,06%1, 48 Dynamic Stencil 66,87+1,18 Static CTex32
2 85,5240, 25 Dynamic Vmap 65,23%1, 59 Static CTex16
3 81,2740, 79 Dynamic SIFT descriptors 65,1843, 41 Static CTex64
4 79,5610, 58 Dynamic CTex32 64, 80+0, 66 Dynamic CTex32
5 79,07£1, 46 Dynamic CTex16 64,231, 20 Dynamic CTex16

Table 9.10: Ranked features according to classification rate for viability determination in
positively-defocused bright-field micrographs.

9.5 Classification rate comparison between microscope modal-

ities for dynamic and static sized patches

The best average classification rate achieved for each modality in this 7-fold cross-validation
experiment 18 summarised in Table 9.11. Thus, the classification rates listed may be associated
with different features.

From Table 9.11 it is evident that there is no microscope modality that is superior across all
of the categories. For each category there is a different modality that yields the highest classi-
fication rate. Another observation that can be made from Table 9.11 is that phase contrast and
defocused bright-field micrographs do not offer more discriminative power than standard bright-
field micrographs. Thus contradicting the claims made by biologists and bioprocess engineers
that these latter modalities are better suitable for unstained cell viability determination.

The classification rate for the four microscope modalities are almost identical for the case
where a dynamic sized patch was used for calculating the features. However, the classification
rate varies significantly across the modalities for the case where a static sized patch was used for

calculating the features. Therefore, a dynamic patch yield more stable classification rates.

It can be concluded from Table 9.11 that a dynamically changing patch offer a bit more dis-
criminative power than a static patch. However, the computational cost and time associated with
using a dynamically changing patch size relative to the increase in classification rate, suggests
that it might be more sensible to just use a static patch instead.
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Modality Dynamic Patch Size Static Patch Size

Non-viable vs. | Non-viable vs. Non-viable vs. | Non-viable vs.
viable-suspended | viable-adherent | viable-suspended | viable-adherent
Classification Classification Classification Classification
rate (%) rate (%) rate (%) rate (%)

BF 86, 82+2, 52 65, 38+0,75 82,92+1,92 66, 300, 87

PC 84,30+£1,25 66, 81+£3, 06 85,53+1, 56 61,136, 04

BFN 87,07%2,11 66, 73+2,75 79,5610, 54 64,67+£2, 16

BFP 87,06+1,48 64, 80+0, 66 78,27+0,43 66,87+1,18

Table 9.11: A summary of the classification rates achieved by using different microscope modal-
ities for dynamic and static sized patches.

9.6 Classification rate comparison between grey and colour

features

Grey-scale texture features as well as colour texture features were calculated for each keypoint.
The classification rate associated with the two feature sets for 5 different quantisation levels are
summarised in Table 9.12.

The results in Table 9.12 confirms that there is definitely discriminative information embed-
ded across the red, the green and the blue channel in colour micrographs. The colour texture

features had on average a 5% higher classification rate than the grey-scale texture features.

Malpica et al. [Mal03] claim that texture features have shown to be reasonably invariant
to grey-level quantisation. From the results in Table 9.12 the claim made by Malpica et al. is
contradicted. Moreover, it is evident that both the grey-scale as well as the colour texture features
are extremely sensitive to the number of quantisation levels. The colour texture features across
all the quantisation levels outperform the grey-scale texture features based on classification rate
when a static patch size is used. However, for the quantisation levels 128 and 256 in the dynamic
patch size case, the grey-scale texture features actually yield better classification rates when
distinguishing between non-viable and viable-suspended cells.
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Texture Dynamic Patch Size Static Patch Size
feature Non-viable vs. | Non-viable vs. Non-viable vs. | Non-viable vs.
viable-suspended | viable-adherent | viable-suspended | viable-adherent
Classification Classification Classification Classification
rate (%) rate (%) rate (%) rate (%)
GTex16 73,13+4, 95 55,57+2,17 63,301, 57 54, 32+2, 05
CTex16 81,26+1, 68 62,68+2, 34 80,22+3,12 63, 86+2,67
GTex32 74,83+5,45 56,79+3, 14 64,89+1, 88 55,2442, 35
CTex32 82,90+£2, 25 63, 88+2,23 81,19+3,17 64, 70£2, 67
GTex64 75,02+£5,79 57,81+£2,43 64,72+1,74 55,71+£2, 16
CTex64 81,56+2, 37 62,65+2, 59 79,4842, 79 63, 33+£2, 09
GTex128 74,08+5, 90 57,42+2,23 63,56+1, 30 55,11£2,07
CTex128 74,85+2, 40 62,18+1, 38 73,81%+1,70 62,65+1, 30
GTex256 72,63+£5,92 56,59+2,12 62,83+2, 62 55,16+£1, 57
CTex256 70,47+£2, 20 59,32+1, 40 67,78+2, 00 60, 40+0, 85

Table 9.12: A summary of the classification rates achieved for different quantisation levels of
grey-scale and colour texture features.

9.7 Summary

The best feature/classifier combination for each modality and the associated classification rate is
summarised in Table 9.13 for a dynamically changing patch and in Table 9.14 for a static patch.
Thus, the classification rates listed are the true values achieved for each modality after 7-fold
cross-validation.

For a dynamic patch size the intensity stencil feature set/SVM:RBF classifier combination
resulted on average in the highest classification rate for distinguishing non-viable from viable-
suspended cells. The fact that the SVM with a RBF kernel performed so well is an indication
that the cell classes are well separable for the intensity stencil feature set in the suspended case.
The SIFT descriptors/RF classifier combination proved on average superior for distinguishing
non-viable from viable-adherent cells. The fact that the RF classifier yielded the best results is
an indication that the cell classes defined by the SIFT descriptors are not well separated for the
adherent case.

The static pixel patch feature set proved to be highly successful at distinguishing between
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non-viable and viable-suspended cells. Moreover, the fact that SVM classifiers achieved on aver-
age the best classification rates confirm the discriminative power of pixel patches. Colour texture
features calculated from a static sized patch was the dominating feature set able to distinguish-
ing between non-viable and viable-adherent cells. Once again the SVM classifiers produced the
highest classification rates in the latter case.

Concluding, there is no feature/classifier combination that dominates across all the scenarios.
However, the intensity stencil and the static pixel patch feature sets are the two most suitable
features to distinguish between non-viable and viable-suspended cells. The SIFT and the colour

texture feature sets are best able to discriminate between non-viable and viable-adherent cells.

Dynamic Patch Size
Non-viable and Viable Adherent

Non-viable and Viable Suspension

Classification | Feature Classifier | Classification | Feature Classifier
rate (%) type rate (%) type
BF 88,28+1.34  Stencil SVM: RBF 67,68+2,37 CTex128 SVM: Linear
PC 85,77+1,68 CTex128 RF 70,33+1,29 SIFT RF
BFN 88,40+0,65 Stencil SVM: RBF 69,90+1,07 SIFT RF
BFP 88,11+0,40 Stencil SVM: RBF 65,21£2,62 CTex128 RF

Table 9.13: A summary of the feature/classifier combinations for a dynamic patch size that
resulted in the best classification rate for viability determination in the different micrographs.

Static Patch Size
Non-viable and Viable Adherent

Non-viable and Viable Suspension

Classification | Feature Classifier Classification | Feature Classifier
rate (%) type rate (%) type
BF 84,86+5.97 Patch SVM: RBF 67,94+2,44 CTexl6 SVM: RBF
PC 86,48+1,47 CTex32 SVM: Linear 66,22+1,28 CTex256 SVM: RBF
BFN 84,03%+3,02 Patch SVM: RBF 67,55+1,98 CTex64 RF
BFP 79,82+4,74 Patch RF 67,80+2,42 CTex64 SVM: Linear

Table 9.14: A summary of the feature/classifier combinations for a static patch size that resulted
in the best classification rate for viability determination in the different micrographs.
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Chapter 10

Summary And Outlook

10.1 Summary

A method for the automatic detection of unstained cells in light microscopy images has been
described. The evaluation of the viability determination method is based on micrographs ac-
quired from four different microscope settings. This evaluation enables the comparison between
the modalities to determine which one of them is best suited for viability determination without
viability stains.

According to the investigation, both viable-adherent and viable-suspended cells exhibit great
morphological details and are intra-cellularly well organised. Furthermore, viable-adherent cells
in culture exhibit a great diversity of shape and size, whereas viable-suspended cells appear
smaller in size and more round in shape. In contrast, non-viable cells are not intra-cellularly
organised and almost no morphological details can be observed in these cells. Furthermore,
non-viable cells are round in appearance, barely visible in standard bright-field micrographs
and display more homogeneous values throughout the cells. The fact that non-viable cells are
barely visible in bright-field micrographs makes it very difficult to distinguish them from viable-
adherent cells.

In this thesis various features were extracted to distinguish between viable and non-viable
cells. The features that offered the most discriminative power were the intensity stencil, the
SIFT descriptors, the static pixel patch and the colour texture features. Sadly, there was not
feature set that was able to distinguish between non-viable and viable cells across all the scenarios
investigated.

Focusing and micrograph acquisition were performed manually in the present study. Positively-

defocused and negatively-defocused bright-field micrographs were acquired to study the influ-
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ence of defocusing on the discriminative power of the keypoint-based cell viability determination
method. The investigation found that the defocused micrographs on average do not offer more
discriminative power than focused bright-field micrographs. The latter result is also true for
phase contrast micrographs.

The discriminative power of grey-scale and colour texture features for cell viability determi-
nation were also investigated. The colour texture features proved to be the most successful of
all the features at distinguishing non-viable from viable-adherent cells across all the microscope
modalities. Thus, it can be concluded that there is indeed discriminative information embedded
in colour micrographs. Additionally, the effect of using different quantisation levels for calcu-
lating the texture features were also investigated. The investigation found that the classification
performance is indeed sensitive to the number of quantisation levels used for calculating the tex-
ture feature. However, there is no one quantisation level that proved superior amongst all the
possible quantisation levels.

In this thesis two pixel patches with different patch sizes were extracted from each keypoint.
The one pixel patch had a size equal to the average keypoint scale in the micrograph and the other
patch had a size equal to the keypoint scale of that particular keypoint. The effect of a dynamic
patch size as opposed to a static patch size on the discriminative power of the features extracted
for cell viability determination was investigated. The investigation found that using the average
keypoint scale as pixel patch size actually yields classification rates similar to dynamic patches
and is computationally less expensive.

To conclude, an effective method for cell viability determination has been proposed and
successfully applied to identify unstained viable and non-viable cells in bright-field micrographs
of CHO cell cultures in which cell death was induced by the toxin sodium azide.

10.2 Outlook

In the developed keypoint-based cell viability determination framework the discriminative power
of the individual features were explored. However, a benchmark for the classification rate was
not established. Therefore, all the features should be used simultaneously in the keypoint-based
cell viability framework to establish the best possible classification rate achievable. Henceforth,
the discriminative power of all the features can be compared against this benchmark classification
rate.

The cell viability determination method has proven successful for keypoint-based cell detec-
tion. However, the SIFT algorithm is patented. Therefore, the method should be adapted to a
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cell-based viability determination method. Thus, classifying a cell based on one hit-point in the
cell and not multiple SIFT keypoints.

Biological cells exhibit different morphological changes when exposed to different toxins.
Therefore, the developed viability determination method could be used to investigate which fea-
tures are best suited to distinguish between viable and non-viable cells for different cell-line/toxin
combinations.

Cell sizes and appearances may differ significantly over the course of a cell culture’s evolu-
tion. The changes in appearance over time prompt the development of a method that is able to
successfully detect, monitor and quantify non-viable cells in culture from a time-series of micro-
graphs. Thus, it should be investigated if the features that are able to distinguish between viable
and non-viable cells at an early stage of the cell culture’s evolution have the same discriminative
power at a later stage of the cell culture’s evolution.

Colour texture features have proven to be the most successful, compared to the other features
extracted, at distinguishing between non-viable and viable-adherent cells. It would be worth-
while to investigate what effect it would have on their discriminative power if the co-occurrence
matrix were to be calculated in a different manner. Thus, not only considering the occurrence of
pixel values that are separated by one pixel, but by two, three or even more pixels.

Another possibility emanating form this study, is the development of a method that is able to
distinguish between viable, non-viable and apoptotic cells. Thus, a method that is able to detect

and classify healthy, dying and dead cells in a cell culture.
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Appendix A

Patent Documents

The patents pertaining to viable cell counting are summarised in Table A.1 and the original patent

documents are attached below.

Publication number Publication date Inventors
1 US 7,958,063 B2 7 June 2011 Xi Long
W. Louis Cleveland
Y. Lawrence Yao
2 US 7,582,415 B2 1 September 2009 Don Straus
3 JPS5978681 (A) 7 May 1984 Kawahara Haruyuki
Imai Kouichi

Table A.1: Summary of patents pertaining to the topic of viable cell counting in cultivation.
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a2 United States Patent

Long et al.

US0079580

APPENDIX A. PATENT DOCUMENTS

63B2

(10) Patent No.:
45) Date of Patent:

LS 7,958,063 B2
Jun. 7,2011

(54) METHOODS AND SYSTEMS FOR
IDENTIFYING AND LOCALIZING OBJECTS
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(75) Inventors: XiLong, Seattle, WA (US); W. Lonis
Cleveland, New York, NY (US); Y.
Lawrenee Yao, New York, NY (US)

(73) Assignee: Trustees of Columbia University in the

City of New York, New York, NY (US)
(*) Notice:  Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 796 days.

(21)  Appl. No.: 11/789,571

(22) Filed: Apr. 25, 2007
(63) Prior Publication Data
US 2008/0082468 A1~ Apr. 3,2008

Related U.S. Application Data

(63)  Conlinuation of application No.
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25, 2006, provisional application No. 60/627,465,
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WO WO-99/08091 Al 2/1999
OTHER PUBLICATIONS

Long, ct al, Effective Automatic Recognition of Cultured Cells in
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ing, Image and Vision Computing 23 (2005}, pp. 1203-1213.*
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Primary Examiner — Wilbert L Starks, Jr.
(74) Atiorney, Agent. or Firm  Wilmer Cutler Pickering
Hale and Dorr LLP

37) ABSTRACT

A method of identifying and localizing objects belonging to
one of three or more classes, includes deriving vectors, each
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i3 an element of an N-dimensional space. The method
includes training an ensemble of binary classifiers with a
CISS technique, vsing an ECOC technique. For each object
corresponding to a class, the method includes calculating a
probabilily that the associated vector belongs Lo a particular
class, using an 1{COC probability estimation technique. In
another cmbodiment, incrcased detection accuracy is
achieved by using images obtained with different contrast
methods. A nonlinear dimensional reduction lechnigue, Ker-
nel PCA, was employed to extract features from the mulri-
contrast composite image. The Kernel PCA preprocessing
shows improvements over traditional linear PCA preprocess-
ing possibly ducto its ability to capture high-order, nonlincar
correlations in the high dimensional image space.
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7 ABSTRACT

The invention enables ellicient, rapid, and sensitive enumera-
tion of living cells by detecting microscopic colonies derived
from in situ cell division using large area imaging. Microbial
enumeration tests based on the invention address an impor-
tant problem in clinical and industrial microbiology the
long time needed for detection in traditional tests—while
relaining key advantages o[ the Iraditional methods based on
microbial culture. Embodiments ol the invention include
non-destructive aseptic methods for detecting cellular micro-
colonics without labeling reagents. These methods allow for
the generation ol pure cultures which can be used Lor micro-
bial identification and determination of antimicrobial resis-
tance.
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Bibliographic data: JPS5978681 (A) — 1984-05-07

Xin my paterts list * EP -+ Report data error

AUTOMATIC CALCULATOR OF VIABLE CELL COUNT IN CULTIVATION

=4 Prirt

Page bookmark JPE5S78681 (&) - AUTOMATIC CALCULATOR OF VIABLE CELL COUNT IN CULTIVATION

Inventor(s): KAWAHARA HARUY UKL IMAI KOUICH! +

Applicant(s): KAWAHARA HARUYLUKI +

Classification: - international: CT201.34; (IPC1-7): C12M1/34
- cooperative:

Application number: JP19820183340 19521026

Priority number(s): JP19820188340 19821026

Also published as: -+ JPSE25311 (B2)

Abstract of JPS5978681 (A)

Translate this text into 3]
[ Bulgarian v! E patenttransiate e Erl- e

PURPOSE: To simplify an experiment system and to calculate quickly a viable cell
court, by taking a photograph of viable cell specimen through a inverted phase
cortrast microscope by a TV camera, scanning the image signal, calculating a
viable cell count by an image analyzer, treating the information. = ®
CONSTITUTION: The viable cell specimen 1 of cultivation is prepared, the -

photograph of it is taken by the inverted phase contrast microscope 2, the image \\.
of the viable specimen iz magnified by 4 times by the TV camera 3, the r
photograph of i is taken, the cell is read and the cell count is calculated while the
image signal is scanned by the image analyzer 4. The analyzed signal is inputted
through the AD converter 5 to the computer 6, trested, shown by CRT, subjected
to quartity conversion, displayed by a graph, the image data of the viable cell are
stored in the memory means 9, the data and various kinds of analyzed date are
culculsted to effect many displays. The image of the viable cell is with a
magnifaction of X120 shown by the TV moniters 7 and 8, respectively.
Consequertly, simplification of expeiment system, speediness of calculation,
elimination of facttious error, needlessness of specific skill, etc. are achieved.
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Appendix B

Viability results

B.1 Viability determination in bright-field micrographs

B.1.1 Dynamic patch size

Non-viable versus viable-suspension

Classifier SIFT Ray Stencil Vmap Val and Score
SVM: Linear 83,06+1,32 77,45+3,32 &83,91+1,61 85,95+1,95 76,97+1,40
SVM: RBF  81,944+1,87 77,89+2,13 &88,28+1,34 86,41+1,24 80,99+1,34
RF 83,25+1,98 78,17+5,28 88,26+0,93 83,69+2,21 77,14+2,80
Tree 75,90+£2,48 70,98+3,13 82,524+1,65 80,38+4,08 75,5844, 67

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 73,884+2,32 76,64+1,60 77,67+1,72 77,09+£1,87 75,4944, 45
SVM: RBF  75,014+1,60 76,20+1,90 76,60+1,80 74,66+1,89 71,86+1,04
RF 71,80+£1,60 74,844+2,00 76,124+1,97 76,38+1,94 77,3341,98
Tree 68,094+2,03 70,71+2,4  71,5942,24 71,52+2,85 73,44+2,26

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 80,5042,07 84,85+1,74 84,75+1,46 82,99+2,90 75,68+10,42
SVM: RBF  81,734+2,34 82,05+1,99 79,69+1,53 66,63+£5,91 51,50+2,83
RF 80,3642,93 83,63+2,55 84,524+2,59 84,43+2,94 84,444+2,95
Tree 73,83£3,34 76,75+2,82 80,05+2,61 78,77+2,63 78,63%3,52
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Non-viable versus viable-adherent

APPENDIX B. VIABILITY RESULTS

Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 63,984+1,25 53,73+0,75 53,90+1,93 49,1242, 57 51,443,73
SVM: RBF 65,08+1,46 53,36+1,05 54,414+2,52 50,01+£1,04 49,78+4,51
RF 66,45+1,66 57,82+1,37 61,55+1,23 55,01£2,1 51,91+3,13
Tree 59,584+1,20 53,66+1,65 55,13+1,43 53,78+2,23 51,09+3,73

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 52,3942,89 53,66+2,63 55,324+2,08 54,55+3,02 55,75+3,18
SVM: RBF 53,3642,42 54,39+1,46 56,34+2,35 55,71+£1,75 54,51+1,88
RF 53,53+1,87 55,03+1,43 55,8+£2,31  56,04+2,32 56,24+1,86
Tree 52,6941,47 53,84+1,06 53,78+1,30 54,35+1,75 54,3+1,14

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 63,7443,09 66,14+2,74 65,91+5,68 67,68+2,37 59,86+8,58
SVM: RBF 65,3143,37 65,37£2,80 63,21+2,93 60,24+2,14 54,945,50
RF 64,374+2,96 64,64+3,76 65,23+4,14 64,2+3,98  64,23+3,9
Tree 59,2642,21 58,98+2,32 60,08+3,39 59,39+3,24 58,643,13

B.1.2 Static patch size
Non-viable versus viable-suspension

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 64,274+4,20 65,61+£4,35 66,14+4,54 65,124+4,78 66,01+3,01
SVM: RBF 63,8245,93 65,54+3,78 65,22+4,48 64,01+4,26 62,78+2,54
RF 62,494+4,49 64,79+3,59 65,284+3,95 65,2+4,34 71,13+7,52
Tree 60,1243,59 61,53+2,88 62,38+3,48 61,76+4,40 61,643,80

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 79,1442,05 82,14+2,32 82,01+1,83 80,2+4,31 74,2446, 88
SVM: RBF 80,784+2,15 80,243,01  76,93+2,43 65,77+£5,35 51,13+2,5
RF 79,5+2,71  81,843,23 82,374£3,06 82,22+3,54 &82,3643,15
Tree 72,51+£4,23 76,39+2,62 78,09+2,14 75,544,776 77,0543, 22

Classifier Patch
SVM: Linear 82,8643, 20
SVM: RBF 84,8645,97
RF 81,0349, 16
Tree 75,46+7,00



B.2. VIABILITY DETERMINATION IN PHASE CONTRAST MICROGRAPHS

Non-viable versus viable-adherent

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 51,6443,03 52,54+2,58 53,32+1,6 53,49+1,92 53,67+2,74
SVM: RBF 51,614+2,52 52,64+1,9 54,07+2,12 53,64+1,77 53,21+1,63
RF 53,284+1,26 53,77+0,73 55,27+1,52 54,55+1,15 54,60+1,43
Tree 52,374+1,32 53,32+0,57 53,78+1,64 54,00+£1,13 53,61+1,23

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 65,1343,65 66,62+4,36 63,06+5,87 63,93£8,25 63,39+10,25
SVM: RBF 67,944+2,44 66,98+3,97 64,56+3,04 60,68+2,25 54,85+5,62
RF 65,5943,42 65,32+3,97 66,9+3,89  66,44+3,64 66,11+3,84
Tree 60,184+2,30 60,84+2,7 60,86+1,90 61,54+1,40 60,78+2,48

Classifier Patch
SVM: Linear 63,2949, 20
SVM: RBF 62,2248, 10
RF 60, 5545, 71
Tree 55,1442,83

87

B.2 Viability determination in phase contrast micrographs

B.2.1 Dynamic patch size

Non-viable versus viable-suspension

Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 74,714+1,23 64,34+3,11 69,62+3,84 68,68+1,97 55,49+6,91
SVM: RBF 75,28+1,48 61,81+2,58 76,26+1,13 68,04+1,35 68,7642,05
RF 77,16£0,88 69,99+1,55 75,93+1,45 64,84+1,97 60,28+3,84
Tree 70,74+1,66 61,77+1,76 68,484+1,77 61,04+1,64 58,74+1,67

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 68,744+1,72 69,27+2,42 69,00+2,49 67,66+2,51 63,43+9,26
SVM: RBF 70,5+1,68  70,584+2,28 69,75+2,23 67,51+£2,47 65,5242, 57
RF 67,4443,03 69,77+£2,53 70,05+2,39 70,36+2,46 70,44+2,51
Tree 64,344+2,65 65,97+2,30 65,87+2,23 66,38+2,09 66,64+1,99

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 82,2140,90 84,88+0,96 &83,54+3,11 72,42+9,04 69,59+10,15
SVM: RBF 83,14+1,14 82,87+1,84 77,09+3,71 58,63£5,06 57,341+9,16
RF 83,04+1,83 85,16+1,93 &85,53+1,84 85,77+1,86 85,73+1,87
Tree 76,95+2,04 79,27+1,81 79,06+1,36 79,54+1,71 79,424+1,15
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Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 64,79+1,20 53,28+2,35 61,29+£2,42 63,77£4,53 55,09£2,53
SVM: RBF  65,31+1,87 53,87+1,58 64,53+3,51 61,41+£7,57 58,78+£5,66
RF 70,33£1,29 65,05£2,10 70,06+£2,57 61,27+2,89 59,0942, 71
Tree 62,98+1,31 56,60%2,49 60,914+1,58 58,07+1,72 57,96+3,47

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 53,96+3,36 53,76+4,65 53,9+4,74  53,44+4,58 53,33+£5,83
SVM: RBF  56,43+7,62 58,47+5,01 58,24+4,65 55,80+£3,6  53,87£2,06
RF 60,48+3,3  62,27+£3,05 63,054+2,39 63,5%2,22  63,77+2,46
Tree 57,32£2,76  57,55+2,57 58,104+2,31 58,33+2,24 58,5242, 31

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 55, 76+4,48 56,92+3,93 51,39+£7,36 52,73£7,58 49,73+9,98
SVM: RBF  57,79+4,30 59,13+2,78 59,42+2.3 64,7+1,07 66,23+£1,30
RF 64,62+3,17 65,66+2,49 65,80+2,49 66,18+2,38 66,2842, 29
Tree 58,21£3,07 58,394+2,04 59,33+1,78 59,50+1,96 59,40+1,94

B.2.2 Static patch size
Non-viable versus viable-suspension

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 62,74+1,39 63,04+2,05 62,99+£2,85 62,85+3,66 63,63£3,70
SVM: RBF  63,00+2,38 63,45+2,44 62,92+2,48 61,14£1,99 59,49+1,67
RF 62,54+1,87 63,48+2,38 63,1842,08 63,29+1,81 61,37+2,57
Tree 59,32£1,39 60,05+1,84 60,184+1,65 58,43+2,09 58,33+2,40

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 84,69+1,32 86,48+1,47 84,97+4,85 78,29+6,82 66,37£15,21
SVM: RBF  85,02+1,69 83,73£2,11 76,13£5,44 58,27£5,49 57,34+9,17
RF 84,54+1,56 86,37+1,58 86,23+1,71 86,04+1,15 85,57+1,68
Tree 77,31£1,49 79,42+£2,43 79,59+1,65 76,57+0,8 76,2842 34

Classifier Patch
SVM: Linear 81,65+4,55
SVM: RBF  84,37+3,86
RF 86,23£2,34
Tree 77,6+£3,07



B.3. VIABILITY DETERMINATION IN NEGATIVELY-DEFOCUSED BRIGHT-FIELD MICROGRAPHS:

Non-viable versus viable-adherent

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 52,86+5,57 51,71+4,97 50,45+7,94 50,55+6,55 54,11+5,46
SVM: RBF 52,6446,35 52,33+3,35 54,194+4,38 53,89+3,13 52,55+1,74
RF 60,724+2,83 61,35+2,67 60,814+3,78 60,64+3,21 60,16+2,92
Tree 57,0442,21 56,61+£2,00 56,86+2,63 56,66+2,17 55,89+2

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 56, 774+4,67 58,32+4,22 56,58+5,9  54,19£7,8 51,65+8,79
SVM: RBF 58,56+4,41 58,75+3,31 59,90+2,42 65,13£0,97 66,22+1,28
RF 65,05+2,46 65,75+1,77 65,67+1,94 64,08+2,18 64,31+1,33
Tree 57,904+1,79 59,15+1,72 58,13+2,72 57,7243,15 58,03+2, 10

Classifier Patch
SVM: Linear 50,49+7,34
SVM: RBF 55,1347,47
RF 63,4643, 54
Tree 57,2042,14

B.3 Viability determination in negatively-defocused bright-field

micrographs

B.3.1 Dynamic patch size

Non-viable versus viable-suspension

Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 81,9040,83 75,23+4,89 84,63+1,02 85,31+1,95 77,82+1,62
SVM: RBF 81,85+1,36 69,97+3,16 &88,404+0,65 85,65+1,46 79,984+0,60
RF 83,98+1,56 77,01+3,27 &88,18+1,14 83,34+2,25 74,72+3,53
Tree 76,05+£0,98 68,32+3,21 81,83+1,41 79,35+2,23 72,66+3,97

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 80,784+1,13 82,88+0,8 83,56+0,96 82,81+1,27 80,77+1,90
SVM: RBF 80,7041,22 82,42+1,17 82,43+1,13 80,00£1,23 76,1940, 82
RF 78,35+0,80 80,838+1,09 &81,12+1,13 81,69+0,83 &82,4140,85
Tree 73,91£1,58 75,85+1,34 76,8940,86 77,48+1,50 78,93+1,31

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 81,5240,85 85,09+0,80 85,37+0,48 77,51+7,41 79,79+3,11
SVM: RBF 82,9440,83 82,840,89  78,83+1,40 62,32+4,55 53,47+2,99
RF 82,48+1,14 84,75+1,2 85,17+1,01 85,24+0,99 85,4140, 86
Tree 75,06£2,14 79,08+2,36 79,88+1,63 79,96+1,31 80,0941, 39
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Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 64,96+2,41 55,12+1,53 58,88+2,32 49,00+£4,13 51,09+5, 36
SVM: RBF  65,344+2,32 54,82+1,44 59,66+3,75 47,72+4,35 47,97+4,52
RF 69,90+£1,07 63,09+3,38 65,2£1,65  56,241,28  54,77+3,92
Tree 61,80+£1,04 55,64+2,52 58,094+2,20 53,7+1,48 53,64+2,25

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 56,72+3,49 60,24+1,36 60,85+1,24 62,21£1,54 60,63+£3,80
SVM: RBF  58,10+2,65 61,38+2,08 60,93£3,66 58,27£1,31 56,49+1,61
RF 58,46+1,44 60,12+1,07 61,254+1,47 60,94+1,31 61,10+1,56
Tree 55,79£1,43 56,31+0,92 57,47+1,94 56,11+1,43 55,944+1,75

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 60,41+3,06 62,94+3,21 63,15+4,58 59,09+6,17 50, 73+£5,59
SVM: RBF  63,29+3,68 64,79+£2,97 61,16£2,08 61,97£1,11 61,60+0,67
RF 64,13£2,94 66,62+1,92 66,484+2,46 66,09+2,33 66,1112, 08
Tree 58,11£2,70 58,93+1,53 59,324+2,58 59,1£2,53  59,96+2, 81

B.3.2 Static patch size
Non-viable versus viable-suspension

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 60,81+1,67 62,42+2, 52 62,45+3,22 60,93£4,14 58,35£6,74
SVM: RBF  61,51+1,52 63,85+1,40 63,83+1,37 61,98+1,77 60,17£1,59
RF 62,42+0,63 64,424+0,83 64,36+1,10 64,45+1,11 63,87+1,44
Tree 59,78+0,91 61,18+1,38 60,824+2,06 60,7+1,8 60,93£2, 01

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 77,55+1,69 79,76+2,42 79,78+2,38 75,84+4,71 64,42+9,53
SVM: RBF  78,78%+1,57 178,96+2,92 77,21£2,73 61,72+4,21 53,44+3,15
RF 78,79£1,20 79,98+3,87 80,72£3,72 80,10%4,30 79,7845,12
Tree 72,40+£3,56 74,24+4,97 74,24+4,47 75,31£1,80 73,0745,02

Classifier Patch
SVM: Linear 75,60+3,60
SVM: RBF  84,03+3,02
RF 80, 86+6, 37
Tree 74,24+5,02



B.4. VIABILITY DETERMINATION IN POSITIVELY-DEFOCUSED BRIGHT-FIELD MICROGRAPHS9

Non-viable versus viable-adherent

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 50,654+4,35 51,71+£3,86 51,63+4,11 51,03%4,07 53,64+4,08
SVM: RBF 52,1842,89 53,96+2,58 54,47+2,37 52,3242,27 52,46+1,58
RF 56,37+1,19 57,33+1,47 57,57+1,03 57,09+£1,07 56,62+1,21
Tree 54,5941,07 54,81+1,45 54,73+0,78 55,05+£0,99 54,68+1,38

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 61,60+3,54 62,26+5,22 57,384+6,34 61,31+6,12 50,61+£8,21
SVM: RBF 64,694+2,94 65,31+£2,52 62,77+2,19 63,00£0,74 61,5940, 65
RF 65,244+2,34 66,44+2,40 67,55+1,98 67,04+2,33 66,87+2,02
Tree 58,93+1,30 59,75+1,85 60,244+2,79 60,65+2,28 59,81+1,67

Classifier Patch
SVM: Linear 63,3941, 96
SVM: RBF 62, 71+7,06
RF 63,6845, 52
Tree 54,8043, 61

B.4 Viability determination in positively-defocused bright-field

micrographs

B.4.1 Dynamic patch size

Non-viable versus viable-suspension

Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 80,5941,65 73,52+2,24 85,37+0,94 85,46+2,49 67,74+4,43
SVM: RBF 81,084+1,92 74,87+0,83 &88,114+0,49 85,80+2,16 75,61+0,81
RF 82,1441,17 75,91+£2,47 &87,70+2,75 85,31+1,35 74,224+2,71
Tree 74,53+£1,71 67,83+1,81 81,5042,40 82,13+2,23 73,2242,75

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 70,2141,55 71,32+1,50 71,454+2,18 69,55+1,59 70,42+2,55
SVM: RBF 70,60+£1,45 72,52+1,70 71,31+1,94 69,93+1,65 66,624+1,93
RF 69,55+1,64 70,63+2,47 71,13+1,84 71,31£2,16 71,09+2,15
Tree 65,68+2,03 66,40+2,48 67,294+2,43 67,78+t1,63 68,21+1,57

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 78,284+1,62 80,23+1,65 79,66+2,73 73,36+£6,54 65,48+11,29
SVM: RBF 80,76+1,61 79,26+2,49 74,77+2,80 69,34+4,27 57,554+9,12
RF 78,17£2,49 79,194+3,04 79,77+2,58 79,63+2,97 79,65+2,72
Tree 72,79+£2,37 72,95+4,23 75,01£1,45 73,66+3,48 73,1344,38
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Classifier SIFT Ray Stencil Vmap Value and Score
SVM: Linear 61,53+1,40 52,12+1,06 51,71£1,20 51,58+1,21 49,71+£1,66
SVM: RBF  62,57+1,89 51,66+1,22 53,57+0,78 50,88+1,80 50,29+1,85
RF 62,26+1,90 57,81+1,39 62,234+3,13 54,43+1,15 54,884+3,08
Tree 57,25+1,56 54,03+0,94 56,20+2,18 53,284+1,89 52,6043, 21

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 53,99+1,92 53,50+1,46 55,49+1,36 57,55+2,58 53,32+3,70
SVM: RBF  54,784+1,46 54,57£2,24 56,71£1,89 54,79£1,27 54,56%1,11
RF 54,63+£1,10 54,09+1,62 55,87+1,11 56,25+0,83 56,36+1, 16
Tree 53,34+£1,05 52,4440,79 53,03+0,54 53,91+0,90 54,27+1,50

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 63,79+2,21 65,14+2,00 65,73£3,80 63,64+4,88 56,36E5,44
SVM: RBF  65,58%+1,23 65,22+1,98 59,20+3,10 54,37£3,68 51,02+4,40
RF 63,30£2,21 64,03+£2,79 65,07+3,25 65,21+2,62 64,8242, 72
Tree 58,36+£0,78 58,15+2,52 59,314+1,72 59,16+1,27 58,5442, 03

B.4.2 Static patch size
Non-viable versus viable-suspension

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 64,75+3,95 67,51+2,81 67,33+£3,24 63,21+£3,25 59,61+£5,99
SVM: RBF  65,78+3,19 67,84+2,91 66,37£3,13 65,22+£2,66 62,16%£2,04
RF 65,46+1,48 66,79£2,12 66,58+1,93 65,35+2,82 65,4013, 27
Tree 61,57+£1,25 62,02+2,20 62,67+1,57 60,78+2,36 61,63+1,82

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 77,86+1,72 78,66+3,71 75,63£5,15 72,02+4,57 65,66+£8,70
SVM: RBF  78,83+2,60 78,33+£2,83 74,28+3,56 69,29+4,24 57,57£9,14
RF 77,19£2,46  77,81£3,11 77,48+3,25 75,994+4,16 75,4944, 34
Tree 69,58+4,48 71,23+4,16 71,96+2,85 69,27+4,08 68,77+4,39

Classifier Patch
SVM: Linear 73, 31%3,58
SVM: RBF  77,38%+3,55
RF 79,82+4,74
Tree 71,21+£5,34



B.4. VIABILITY DETERMINATION IN POSITIVELY-DEFOCUSED BRIGHT-FIELD MICROGRAPHS?9:!

Non-viable versus viable-adherent

Classifier GTex16 GTex32 GTex64 GTex128 GTex256
SVM: Linear 56,434+2,40 58,75+2,18 59,46+2,60 59,59+2,29 58,62+3,76
SVM: RBF 57,58+1,55 59,54+1,55 59,594+1,72 57,45+2,26 55,87+1,47
RF 55,86+1,93 57,21+2,25 57,66+2,37 57,11£3,53 57,00+3,00
Tree 54,714+1,45 54,88+2,43 54,63+1,85 55,32+2,3 56,1440, 83

Classifier CTex16 CTex32 CTex64 CTex128 CTex256
SVM: Linear 65,014+2,71 68,18+t1,88 67,80+2,42 65,79+4,15 62,19+5,58
SVM: RBF 66,924+2,26 66,50+1,96 61,324+2,42 53,97+2,73 51,03+4,37
RF 63,75+2,93 65,92+2,09 66,41+2,88 66,26+2,62 66,0012, 62
Tree 57,5042,75 58,40+2,06 59,25+1,39 58,42+1,73 57,52+2,69

Classifier Patch
SVM: Linear 63,47+4,74
SVM: RBF 66,06+1,44
RF 60, 5444, 77
Tree 55, 7142,47
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