
Continuous and Discrete Algorithms for
Modelling the Kessler Syndrome

Philip Soliman - 4945255

TU Delft
Faculty of Electrical Engineering, Mathematics and
Computer Science
BSc program Applied Physics and Mathematics

Delft, February 15,
2022

Supervisors:
dr. P.M. Visser
prof. dr. J. Thijssen



Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. The two-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Kepler orbits: an analytical solution to the two-body problem . . . . . . . . . . 4
2.2 Numerical integration of the two-body problem . . . . . . . . . . . . . . . . . 6

3. Collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Collision detection using Kepler orbits . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Colliding pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 First MOID passage time . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Collision time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 The continuous algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Collision detection for time-integrated system . . . . . . . . . . . . . . . . . . 15
3.2.1 K-d tree based algorithm for finding NN . . . . . . . . . . . . . . . . . 16
3.2.2 Time complexity of K-d tree and its algorithms . . . . . . . . . . . . . 18
3.2.3 Colliding pairs from NN . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Collision ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 The discrete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Comparison of the continuous discrete algorithms . . . . . . . . . . . . . . . . 24

4. Modelling collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Elastic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 NASA’s SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Analysis of SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. Kessler syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ii



Abstract
This thesis contains the development of continuous Kepler orbit- and a discrete numerical
integration-based collision detection algorithms in a system of LEO satellites, which in combi-
nation with collision algorithm form a simplified space debris evolution model. This model is
then used to study the Kessler syndrome.

The continuous and discrete algorithms get their names from the solutions of the Two Body
Problem (TBP) and the methods for collision detection that they are based on; the analytical
and continuous time solution of TBP resulting in the Kepler orbits and the numerical, discrete
time Velocity Verlet integration of the TBP. The collision model consists of an algorithm for
fragmentation collisions largely based on the NASA Standard Breakup Model and a method
for elastic, random scattering collisions.

Comparison between the continuous and discrete algorithms shows that on average both
predict the same time to the first collision in a system of homogeneously distributed satellites.
The algorithms differ in their efficiency depending on the number and the radius of the satellites
in and the geometry of the system. For relatively small satellite numbers in large systems, the
continuous algorithm is computationally more efficient. However, as more satellites or frag-
ments result from previous collision, the continuous algorithm is outperformed by the discrete
algorithm. Consequentially, its time complexity appears to be OpN2q.

Armed with this knowledge, the continuous algorithm is used to show that an initially small
system of satellites is able to evolve into a large population of debris particles within several
decades. Similarly, the discrete algorithm is used to show that an ordered collection of satellites
in an homogeneously distributed system of debris-like particles exhibits the effect that a colli-
sion early on in the simulation can cause a cascade of collisions at a later stage. Hence Both the
discrete and continuous algorithms predict a Kessler Syndrome and mimic predictions made
by more advanced models from leading space agencies like NASA’s LEGEND, ESA’s DELTA
and JAXA’s LEODEEM [Lio+13].

Future research could focus on including atmospheric drag and gravitational perturbations
to the continuous algorithm, thereby lengthening the time frame during which it can realistically
simulate a system of satellites in LEO. To achieve this it is suggested that one execute the
calculations inherent to the algorithm in parallel on a GPU, as these are independent of each
other.
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1. Introduction
"We have a full-on chain reaction it has been confirmed that the [the debris] is
an unintentional side-effect of the Russians striking one of their own satellites",
excerpt from the movie Gravity [15].

In the movie Gravity the explosion of a satellite in Low Earth Orbit (LEO) generates a debris
field that causes subsequent collisions with satellites and a "full-on chain reaction" of more
debris and collisions. This debris is travelling at an altitude similar to that of Hubble, where a
group of astronauts are performing a servicing mission. On the 15th of November of 2021, Rus-
sians actually blew up one of their satellites in an anti-satellite missile test, forcing astronauts
in the ISS to shelter in the Crew Dragon spacecraft [RA21].

Explosions of this scale act as seeder events, generating numerous small fragment and a few
large ones. The generation of large numbers of debris particles is not limited to anti-satellite
tests, as old rocket bodies have the potential to explode at any time and are essentially ticking
time bombs. Nor is it merely limited to explosions. Given a large enough population of debris
particles in LEO a cascade of subsequent collisions could follow, generating increasingly more
fragments. This idea was originally conceived of by Donald J. Kessler in 1978 and has since
become known as the ‘Kessler Syndrome’ [KC78]. The ultimate conclusion of a Kessler Syn-
drome is that certain space activities and the operation of satellites providing essential services
like communication and location become complicated for several decades.

The cascading effect that one seeder effect has may be seen in Figure 1, in which the col-
lision of the active commercial satellite Iridium 33 and the defunct Russian military satellite
Kosmos 2251 resulted in over a thousand debris fragments larger than 10 cm [Nic09]. After-
wards, the number of payload fragmentation debris can be seen to starkly increase for multiple
years after.

Figure 1: Bar chart showing the evolution of the number and types of objects in orbit around Earth.
[ESO]
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In modelling the Kessler syndrome several choices need to be made. One could opt for a
statistical approach, which assumes a particular distribution of satellites in Earth’s orbit and
tries to compute the average time to the first or next collision. Kessler himself did exactly this
in his original paper [KC78]. He observed that orbital perturbations, like the slightly oblate
shape of the Earth, the atmospheric drag induced on satellites in Low Earth Orbit (LEO) or
solar radiation pressure, caused the two orbital parameters to change considerably over short
spans of time. These orbital elements, argument of pericentre ω and longitude of ascending
node Ω, are constant in the idealised scenario of spherical gravitational potential. However,
Kessler assumed them to be randomly distributed as the result of the perturbations mentioned.
This allowed him to estimate the density of satellites at discrete volumes depending on the
altitude, as measured from Earth’s surface, ∆R and geocentric latitude β. This density, together
with an estimation for the average impact velocity and cross sectional area of satellites in a
certain altitude band then gives an average impact rate

A slightly more general approach involves the construction of a system dynamics model.
This kind of model uses non-linear, coupled differential equations to determine the amount
of debris and number of collisions. The strength of this approach lies in that it can easily
be expanded to include complex effects like solar radiation pressure, atmospheric drag and
de-orbiting of satellites, as it does not require the exact modelling of the orbit, mass, size or
collision of any satellites or debris. In [DH18] this method is used to study different sce-
narios of orbital debris evolution, which include among others a ‘conflict with a large-scale
deployment of anti-satellite weapons’, the instantaneous loss of control of satellites due to an
Electromagnetic Pulse (EMP) and the ‘cessation of LEO satellite launches’.

Another option is that of an entirely deterministic model. This approach aims to (approx-
imately) model every satellite and collision event and is thereby able to give the state of the
entire system at certain times. To achieve this, one usually makes several assumptions about
the system to simplify calculations. One may for example assume the Earth to act as the sole
source of gravitational attraction, hence leaving out the effect the satellites have on each other
or the moon on the satellites. Another possibility is to assume that the Earth is be perfectly
spherical, neglecting atmospheric drag and solar radiation pressure. Debris evolution models
are especially sensitive to which of these assumptions and other assumptions are made. As
concluded in [DRD15] for instance, the largest source of uncertainty in predicting the long
term evolution of LEO space debris, aside from solar radiation pressure and the parameters of
the breakup model, is ‘rate of compliance with post-mission disposal’.

No matter from what context the equations in the model arise, be it statistical or determin-
istic, there exist two major ways of solving them; numerically and analytically. The former
method approximates the equations in a model and solves them at discrete times with arbitrary
accuracy. Numerical methods are able to solve very complex systems of equations at the cost
long computation times. The latter, on the other hand, quickly gives the exact solution of the
system at any given time. Which of these methods is used in a model ultimately determines
what it is able to simulate. Numerical models can easily be adjusted to include orbital perturba-
tions, but can only do so with a certain accuracy and at specific times. Analytical methods offer
an exact solution at all times, though it needs to be completely re-derived when a new effect is
added to the model.

Lastly, a mix of all these kinds of models is also an option. One could model the orbits
exactly and use the orbital parameters to determine a collision probability for each satellite. A
setup for a model like this using Kepler orbits is given in [JM17]. This paper uses Kepler orbits
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as well, not to find the probability of a collisions, but to actually find the time and place of one.
The goal of this paper is to create a simplified space debris evolution model for a system

of colliding satellites in Kepler orbits in order to study the Kessler Syndrome. To do so, it
discusses the motivation for (Section 2), realisation of (Sections 3.1 and 3.2) and comparison
between (Section 3.3) two deterministic approaches to collision detection between satellites.
Section 4 describes the model that is used to perform collisions in the simulation, which in-
corporates scattering collisions (Section 4.1) and an implementation of the (statistical) NASA
Standard Breakup Model for fragmentation collisions (Section 4.2) [Joh+01]. Section 5 then
combines the two collision detection algorithms with the collision model to study the evolution
of various systems of satellites.
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2. The two-body problem
The dynamics of Earth’s satellites are described by the two-body problem (TBP), if the mutual
gravity of the satellites, the gravitational influence of other bodies (planets, the Moon, the Sun,
close encounters with asteroids, etc.) and the effect of other perturbing forces (drag induced
by Earth’s atmosphere, solar radiation pressure, Earth’s non-spherical shape) are neglected. In
addition, the centre of mass (COM) frame may be assumed to coincide with the (reference)
frame of the Earth, if the mass of the Earth is considerably larger than the total mass of the
satellites. Under these assumptions each satellite’s position must satisfy the equation of relative
motion

d2 #»r
dt2 ` µ

#»r
r3 “ 0, (2.1)

where #»r is the position vector of the satellite in Earth’s reference frame with norm r and
µ “ Gpm1 `m2q. In this report a solution to equation (2.1) is obtained in two ways. These will
be discussed below.

2.1. Kepler orbits: an analytical solution to the two-body problem
The first of the two solutions of the TBP problem posed in section 2 starts by reducing the
system of coupled, second order (homogeneous) differential equations defined by equation
(2.1) to one linear second order inhomogeneous differential equation.1 It does so through a
coordinate transformation; from the Cartesian coordinate system — in which the problem is
originally defined and the reference frame of the Earth — to a polar one pr, θq in the orbital
plane. By substituting u “ 1{r and using that the angular momentum (per unit mass) of the
satellite h “ r2 dθ

dt is constant under the influence of a central force, i.e. Earth’s gravity, gives

d2u
dθ2 ` u “

µ

h2 , (2.2)

which may be solved to get the general equation of an ellipse

rpθ ´$q “ rp f q “
h2{µ

1` e cos f
“

ap1´ e2q

1` e cos f
. (2.3)

Here, θ is the orbital angle of the body with respect to some reference direction, a is the semi-
major axis, e is the eccentricity and f is the true anomaly. The latter is defined as the angle
with respect to the longitude of periapsis $, which itself is the angle that minimizes r

rp$q “ ap1´ eq “ rp. (2.4)

Similarly, r attains its maximum at the apoapse

rp$` πq “ ap1` eq “ ra. (2.5)

Furthermore, let T be the period of a satellite’s orbit, then its average orbital frequency or mean
motion is given by n “ 2π

T and is related to µ and a through Kepler’s third law

n2
“

µ

a3 . (2.6)

1All the theory discussed is obtained from [MD00, pages 22-62]
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Note that using equation (2.6) we can rewrite

h “
b

µap1´ e2q “ na2
a

1´ e2 “ nab, (2.7)

where b “ a
?

1´ e2 is the semi-minor axis.
Time does not appear in equation (2.3), as all dependency on t is eliminated in the preceding

derivation. In order to locate a satellite on its elliptical orbit at a particular time we need to know
the eccentric anomaly E 2

Ma “ nt “ E ´ e sin E, (2.8)

where Ma is the mean anomaly. Seeing as equation (2.8) is transcendental in E, there exists
no closed form for E in terms of Ma. However, using fixed point iteration on the function
gpEq “ Ma ` e sin E and trigonometric, angle sum identities gives, after three iterations, the
following expression

E “ Ma ` pe´
1
8

e3
q sin Ma `

1
2

e2 sin 2Ma `
3
8

e3 sin 3Ma, (2.9)

which is valid for e ă 0.6627434. Using the Newton-Raphson method to find the root of the
function hpEq “ E ´ e sinpEq ´ Ma offers a solution as well, even if e ě 0.6627434. The
Cartesian coordinates in the reference frame of the Earth are obtained using

#»r “

¨

˝

x
y
z

˛

‚“ RpΩ, ω, Iq

¨

˝

apcos E ´ eq
a
?

1´ e2 sin E
0

˛

‚, (2.10)

where R is a transformation matrix defined in equation (A1) and depends on the longitude of
ascending node Ω, the argument of periapsis ω and the inclination I. Similarly the velocity is

#»v “ 9#»r “

¨

˝

vx

vy

vz

˛

‚“
na
|

#»r |
R

¨

˝

´a sin E
a
?

1´ e2 cos E
0

˛

‚, (2.11)

A property of a Kepler orbit is that it is completely determined by its angular momentum
#»
L and eccentricity vector #»e (REF). The former is purely perpendicular to its orbital plane and
given by

#»
L “

¨

˝

l1

l2

l3

˛

‚“ R

¨

˝

0
0

mh

˛

‚“ L

¨

˝

sinΩ sin I
´ cosΩ sin I

cos I

˛

‚, (2.12)

where m is the mass of a satellite and L “ mh “ mnab. The latter points from the center of the
ellipse to the central body and, therefore,

#»e “

¨

˝

e1

e2

e3

˛

‚“ R

¨

˝

e
0
0

˛

‚“ e

¨

˝

cosΩ cosω´ sinΩ sinω cos I
sinΩ cosω` cosΩ sinω cos I

sinω sin I

˛

‚. (2.13)

An orbit may be specified by first determining L “ |
#»
L | and e “ | #»e |, which give the value of

a through equations (2.7) and (2.12). Then, l3 gives I, e3 fixes ω, l1 yields Ω.
#»
L and #»e are

themselves given in terms of #»r and #»v through equations A2 and A3.
2for a geometric interpretation of E see
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2.2. Numerical integration of the two-body problem
From the equation of relative motion (2.1) we get that at any point in time the acceleration of a
satellite due to Earth’s gravity is completely determined by its position, d2 #»r

dt2 “
#»a p #»r q “ ´µ

#»r
r3 .

This makes the TBP well suited for the use of a numerical integration scheme. At this point,
there are numerous options with regards to which particular scheme can be used. Considering
that the aim of this report is to simulate the system of satellites for multiple periods and include
collisions and/or breakups in doing so, its integration scheme should meet certain requirements.
With regards to the former, it should at least i) preserve (angular) momentum, ii) be time-
invariant/-symmetric and iii) have a bounded energy and momentum error. Requirement i)
ensures that satellites in orbit around Earth remain in orbit, given they do not encounter any
other satellites and collide with them. In other words, satellites do not, by themselves and after
several orbits, escape from Earth’s gravitational influence or crash into Earth itself. For similar
reasons ii) is important; it should not matter for the position (velocity) of a satellite whether it
is propagated for- or backward in time, as the laws of physics are time-invariant. Also related is
iii), which allows the system to be simulated for multiple periods (long spans of time) without
an increasing deviation from the exact solution3. Aside from the mentioned requirements,
the scheme should provide the position and velocity of a satellite at the same time instant, in
order to conveniently simulate collisions. Though this is also necessary for the calculation of
(approximately) conserved quantities, like total energy and (angular) momentum.

All of the above are satisfied by the Velocity Verlet (VV) integration scheme, which is one
of the simplest schemes that does so [HLW03]. At any time t one performs the following two
operations to propagate the position and velocity a time-step ∆t forward

#»r pt ` ∆tq “ #»r ptq ` #»v ptq∆t `
#»a p #»r ptqq

2
∆t2,

#»v pt ` ∆tq “ #»v ptq `
#»a p #»r ptqq ` #»a p #»r pt ` ∆tqq

2
∆t.

VV is a second order integrator, meaning that its global error is proportional to ∆t2. If we
perform VV for all particles in the system we get Algorithm 1.

Algorithm 1 Velocity Verlet
1: procedure VELOCITYVERLET(Rt,Vt,∆t)
2: Rt`∆t “ H

3: Vt`∆t “ H

4: for ~ri in ~r and ~vi in ~v do
5: ~ript ` ∆tq “ ~riptq ` ~viptq∆t ` ~ap~riptqq

2 ∆t2

6: ~vipt ` ∆tq “ ~viptq `
~ap~riptqq`~ap~ript`∆tqq

2 ∆t
7: append ~ript ` ∆tq to Rt`∆t and ~vipt ` ∆tq to Vt`∆t

8: end for
9: return Rt`∆t and Vt`∆t

10: end procedure

3like the Kepler orbits described in 2.1
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3. Collision detection
No matter what type of modelling approach is used in order to determine the evolution of
debris in Earth’s orbit, the effect of collisions on the system must be included. They are the
main source of debris, generating several hundreds or thousands of fragments per event and
injecting those fragments into a range of lower and higher orbits.

The problem of modelling a collisional system of satellites is fourfold; we need to determine
i) which satellites collide, ii) where and iii) when they do so and, lastly, iv) we need to simulate
the collisions themselves. Problems i-iii) are the topic of this section, while iv) is addressed in
Section 4.

How collisions are detected depends on the approach of the TBP; in Section 3.1 Kepler
orbits are used while in Section 3.2 another method is described in the context of numerical
integration of the TBP.

3.1. Collision detection using Kepler orbits
Given a system of satellites in Kepler orbits we can determine what satellites will collide. We
denote the satellites as i and j, the collision time as tcol

i, j , their position and velocity as #»r i, #»r j,
#»v i and #»v j. The method described in this section was provided by dr. Visser in its entirety.

3.1.1. Colliding pairs

From Equations (2.4) and (2.5) we get that rp and ra define the lower and upper bound for
the radial coordinate of any satellite. As an initial crude search for possible colliding pairs of
satellites, we can therefore check whether the apoapse of i, ra,i, exceeds the periapse of j, rp, j.
In doing so, we have to take the radii of satelllites si and s j into account. Assuming without
loss of generality a, i ă a, j, this amounts to checking [Opi51]

ra,i ` si ě rp, j ´ s j,

aip1` eiq ` si ě a jp1` e jq ´ s j. (3.1)

If the above condition is satisfied for some pair pi, jq, then these satellites could possibly collide.
In any case, the orbits of these satellites will share some minimum distance, which is generally
denoted as the Minimum Orbit Intersection Distance (MOID). For two random orbits and given
si, j is sufficiently small compared to ai, j, the MOID will lie near the intersection of the two
orbital planes, the nodal line. The direction of the nodal line is given as [MMB98]

#»
K˘ “ KK̂˘ “ ˘

#»
L i ˆ

#»
L j,

where
#»
L i, j is the angular momentum of the satellites from Equation (2.12) and the plus and

minus signs refer to the two intersection points (FIG). The angle between K̂˘ and #»e i, j is the
true anomaly of the intersection point, because the former necessarily lies in the orbital plane
and the latter always points toward periapsis4. Taking the inner product with #»e i therefore gives

#»e i ¨
#»
K˘ “ Ke cos f˘,

4It must therefore lie along the argument of periapsis $. Thus if we denote the angle between #»e i and
#»
K˘ as

ν, then ν “ θ ´$ “ f , where θ is the angle between
#»
K and some reference direction.
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where f˘ is the true anomaly of the intersection points and a similar relationship holds for #»e j.
Substituting this into Equation (2.3) yields

#»r i,˘ “
aip1´ e2

i q

1` e cos f˘
K̂˘ “

aip1´ e2
i q

K ` #»e i ¨
#»
K˘

#»
K˘ “

aip1´ e2
i q

#»
L i ˆ

#»
L j

˘|
#»
L i ˆ

#»
L j| `

#»e i ¨ p
#»
L i ˆ

#»
L jq

. (3.2)

There is an equivalent relation for j. In order to obtain an approximate MOID we linearise the
motion of i and j around #»r i,˘ and #»r j,˘ as

#»ρ iptq “ #»r i `
#»v it and #»ρ jpsq “ #»r j `

#»v js,

where the velocities #»v i, j are obtained from Equation (A4) and s and t are independent param-
eters. All subscripts referring to the two intersection points are left out, since the following
analysis is the same for both. Taking the squared norm of the relative distance δ2pt, sq “
|ρ jpsq ´ ρiptq|2 and differentiating to t and s gives

dδ2

dt
“

#»v i ¨
#»v it ´ #»v i ¨

#»v js´ p #»r j ´
#»r iq ¨

#»v i,

dδ2

ds
“ ´

#»v i ¨
#»v jt ` #»v j ¨

#»v js` p #»r j ´
#»r iq ¨

#»v j.

Equating these to zero for t “ tMOID and s “ sMOID results in the following system of equations
ˆ

|
#»v i|

2 ´
#»v i ¨

#»v j

´
#»v i ¨

#»v j |
#»v j|

2

˙ˆ

tMOID

sMOID

˙

“

ˆ

p
#»r j ´

#»r iq ¨
#»v i

´p
#»r j ´

#»r iq ¨
#»v j

˙

,

which may be solved to yield5

tMOID “ p
#»r j ´

#»r iq ¨

#»v j ˆ p
#»v i ˆ

#»v jq

|
#»v i ˆ

#»v j|
2 ,

sMOID “ p
#»r j ´

#»r iq ¨

#»v i ˆ p
#»v i ˆ

#»v jq

|
#»v i ˆ

#»v j|
2 .

This results in the following points at which the two satellite will have an approximate MOID

#»r 1
i “

#»ρ iptMOIDq “
#»r i `

„

p
#»r j ´

#»r iq ¨

#»v j ˆ p
#»v i ˆ

#»v jq

|
#»v i ˆ

#»v j|
2



#»v i, (3.3)

#»r 1
j “

#»ρ jpsMOIDq “
#»r j `

„

p
#»r j ´

#»r iq ¨

#»v i ˆ p
#»v i ˆ

#»v jq

|
#»v i ˆ

#»v j|
2



#»v j. (3.4)

To determine whether pi, jq indeed form a colliding pair, their MOID should be smaller than
the sum of their radii

δMOID “ |
#»ρ jpsMOIDq ´

#»ρ iptMOIDq| ă si ` s j. (3.5)
5Here it has been used that for vectors #»a ,

#»
b and #»c we always have | #»a |2|

#»
b |2 ´ p #»a ¨

#»
b q2 “ | #»a ˆ

#»
b |2 and

p #»a ¨ #»c q
#»
b ´ p #»a ¨

#»
b q #»c “ #»a ˆ p

#»
b ˆ #»c q (vector triple product).
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3.1.2. First MOID passage time

Let t1
i, j be the time that satellites i, j first pass the MOID points defined in Equations (3.3) and

(3.4). As is illustrated in Section 3.1.3, these times are needed to determine the collision time
tcol
i j . More specifically, t1

i, j denote the time it takes satellites i, j to move from their creation
points #»r 0

i, j to their collision points #»r 1
i, j. In order to obtain these passage times, we use Kepler’s

second law, which says that a body’s position vector sweeps out equal area in equal times. Put
differently, the difference in time between two points on an orbit is proportional to the period
T of the orbit

t1
´ t0

“
A
πab

T “
2A
nab

,

where t0 is the creation time6 and b “ a
?

1´ e2. The area A may be determined from figure
(FIG) as

A “
pE1 ´ E0qab

2
`

a #»e ˆ #»r 0

2
¨ L̂´

a #»e ˆ #»r 1

2
¨ L̂.

substituting this for A gives

t1
´ t0

“
∆E
n
´

#»e ˆ p #»r 1 ´
#»r 0q

nb
¨ L̂, (3.6)

with ∆E “ E1 ´ E0, the difference in eccentric anomalies. As derived by Dr. Visser

cos∆E “
#»r 1 ¨

#»r 0

b2 `
p

#»r 1 `
#»r 0q ¨

#»e
a

´
p

#»r 1 ¨
#»e qp #»e ¨ #»r 0q

b2 . (3.7)

Differentiating (3.7) with respect to t1 gives

sin∆E “ ´
|

#»r 1|

na

ˆ

#»v 1 ¨
#»r 0

b2 `

#»v 1 ¨
#»e

a
´
p

#»v 1 ¨
#»e qp #»e ¨ #»r 0q

b2

˙

. (3.8)

This may be combined with Equation (3.7) to determine ∆E.

3.1.3. Collision time

So far we have described methods to determine colliding pairs and their corresponding posi-
tions and velocities at collision. Note that if we define Ti “

2π
ni

and T j “
2π
n j

as the period of the
satellites, then this collision time may be decomposed as

tcol
i j “ kTi ` t1

i ` dti “ lT j ` t1
j ` dt j with k, l “ 0, 1, 2, ...., (3.9)

where dti, j is small shift in time accounting for the fact that satellites are not required to exactly
be at #»r 1

i, j for a collision to occur. We now linearise the motion of the satellites around tcol
i j as

#»ρ iptq “ #»r 1
i `

#»v it and #»ρ jptq “ #»r 1
j `

#»v jt.

If we let #»u “ #»v j´
#»v i and

#»
δ “ #»ρ jpdtiq´

#»ρ ipdt jq, then the satellites are at their actual collision
points and it must hold

|
#»u ˆ

#»
δ |

|
#»u |

ă si ` s j, (3.10)

6the subscripts referring to the satellites are neglected here, as the analysis is the same for both
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as derived in Section 3.2.3. In appendix B it is derived that Equation (3.10) implies

ˇ

ˇkTi ` t1
i ´ lT j ´ t1

j

ˇ

ˇ ă

b

psi ` s jq
2 ´ |

#»r 1
j ´

#»r 1
i |

2|
#»u |

|
#»v i ˆ

#»v j|
. (3.11)

The problem of finding the exact collision time is therefore equivalent to finding the smallest
integers k ě 0 and l ě 0 that satisfy inequality (3.11).

To this end, let

p “
Ti

|t1
i ´ t1

j |
, q “

T j

|t1
i ´ t1

j |
, δ “

a

psi ` s jq
2 ´ |

#»r j ´
#»r i|

2|
#»u |

|
#»v i ˆ

#»v j|
, (3.12)

then (3.11) is rewritten to
1´ δ ă kp´ lq ă 1` δ. (3.13)

Equation (3.13) implies that the points k, l are the smallest integers points that lie between the
lines

x “
ˆ

q
p

˙

y`
1´ δ

p
and x “

ˆ

q
p

˙

y`
1` δ

p
for x, y P R2 and y ě 0,

We assume without loss of generality that Ti ą T j, which implies that p ą q and p ą 17. Now
we describe an algorithm that finds integer points kn and ln such that their ratio ln

kn
converges to

p
q . It determines the successive remainders qn

q0 “ p, q1 “ q, qn`2 “ qn mod qn`1 “ qn ´ anqn´1, for n “ 0, 1, 2, ...., (3.14)

where an “ t
qn

qn`1
u. The corresponding sequence qn goes to zero for n going to infinity. If

qn “ kn p ´ lnq, then ln
kn

are the convergents of the continued fraction expansion (cfe) of p
q . In

addition an are the coefficients of the same cfe and it holds that

ln “ anln´1 ` ln´2 and kn “ ankn´1 ` kn´2. (3.15)

The algorithm will look for points that satisfy (3.13) in the basis t
#»
b n,

#»
b n`1u defined by

#»
b n “ p´1qn

ˆ

kn

ln

˙

,
#»
b n`2 “

#»
b n ` an

#»
b n`1,

where p´1qn term assures the basis vectors lie in the first quadrant and the recursion relation is
motivated by relations (3.15). Any coordinates in the nth basis pξ, ηq are related to the original
px, yq coordinates as

ˆ

x
y

˙

“ ξ
#»
b n ` η

#»
b n`1 “

ˆ

ξkn ´ ηkn`1

ξln ´ ηln`1

˙

.

Hence, the lines defined in (3.14) are described as

lower: ξ “
ˆ

qn`1

qn

˙

η`
1` δ

qn
, upper: ξ “

ˆ

qn`1

qn

˙

η`
1´ δ

qn

7Because |t1
i ´ t1

j | ă T j
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in the nth basis. Note that the width of the band between these lines wn “
2δ
qn

gains a factor
qn

qn`1
ą φ for each step of the algorithm, i.e.

wn`1 “
2δ

qn`1
“

qn

qn`1

2δ
qn
“

qn

qn`1
wn ě φwn, (3.16)

where φ is the golden ratio. The upper bound of the range within which points are searched for
in the nth basis is determined by the intersection of

#»
b n`2 with the lower line

A : pξ, ηq “
ˆ

1` δ

qn`2
,
p1` δqpqn ´ qn`2q

qn`1qn`2

˙

“

ˆ

1` δ

qn`2
,
p1` δqan

qn`2

˙

.

Thus the points that are checked, are all integer coordinates that lie below the η coordinate of
A and on the upper line8,

η “ 0, 1, 2, 3, ...,
R

p1` δqan

qn`2

V

and ξ “

R

qn`1η` 1´ δ

qn

V

(3.17)

If any of these satisfy

1´ δ ą ξqn ´ ηqn`1 “ ξpkn p´ lnqq ´ ηpkn`1 p´ ln`1qq
“ pξkn ´ ηkn`1qp` pξln ´ ηln`1qq “ xp´ yq,

then k “ x “ ξkn´ ηkn`1 and l “ y “ ξln´ ηln`1 are a solution and the collisions time is given
by Equation (3.9)

tcol
i j « kTi ` t1

i « lT j ` t1
j with k, l “ 0, 1, 2, ..., (3.18)

where there is an approximate sign, as the small9 shift in time dti, j is neglected. If there are no
such points, then the algorithm checks the next basis t

#»
b n`2,

#»
b n`3u. Algorithm 2 contains a full

description of all the steps

8The upper line is closer to the origin than the lower line.
9on the order of the radii of the satellite
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Algorithm 2 Collision time of two satellites

1: procedure TIMECOLLISION(t1
i , t

1
j ,Ti,T j, δ)

2: ∆t “ |t1
i ´ t1

j |

3: if ∆t “ 0 do
4: return t1

i Ź particles arrive at the collision point at exactly the same time
5: end if
6: d “ 2` δ
7: q0 “ p
8: q1 “ q
9: k0 “ 1

10: k1 “ 0
11: n “ 0
12: while d ą 1` δ do
13: a2n “ r

q2n
q2n`1

s

14: q2n`2 “ q2n ´ a2nq2n`1

15: if q2n`2 “ 0 do
16: ξ “ mintξ |ξ ą 1´δ

q2n
, ξ P Nu

17: if ξqsn`1 ă 1` δ do
18: return ξk2n

19: else
20: return8 Ź no solution exists
21: end else
22: end if
23: H “ tη | 0 ď η ď r

p1`δqa2n

q2n`2
s η P Nu

24: for η in H do
25: ξ “ r

q2n`1η`1`δ
q2n

s

26: d “ ξq2n ` ηq2n`1

27: if d ă 1` δ do
28: k “ ξk2n ` ηk2n`1

29: end if
30: end for
31: k2n`2 “ k2n ´ a2nk2n`1

32: a2n`1 “ r
q2n`1

q2n`2
s

33: q2n`3 “ q2n`1 ´ a2n`1q2n`3

34: if q2n`3 “ 0 do
35: ξ “ mintξ |ξ ą 1´δ

q2n`1
, ξ P Nu

36: if ξqsn`1 ă 1` δ do
37: return ξk2n`1

38: else
39: return8 Ź no solution exists
40: end else
41: end if
42: k2n`3 “ k2n`1 ´ a2n`1k2n`2

43: n “ n` 1
44: end while
45: return t1

i ` kTi

46: end procedure
12



3.1.4. The continuous algorithm

If we combine the methods from Sections 3.1.1, 3.1.2 and 3.1.3 and apply these to all the entire
collection of satellites, then we get Algorithm 3.
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Algorithm 3 Collision lists
1: procedure LISTCOLLISION(R,V,M, S ,T0, tmax)
2: Lcol “ pq Ź an empty, ordered list or tuple
3: Rcol “ pq

4: Vcol “ pq

5: Tcol “ pq

6: retrieve/calculate ~L, ~e, a, s, n, ω, Ω, I and E for all the satellites
7: for ~ri in R do Ź only fragment indices i, if this is not the initial collision list
8: J “ p j | j is not the index of a newly created fragmentq Ź J “ p j | @ j ą iq, in case

of the initial collision list
9: ~Li P ~L, ~ei P ~e, ai P a, si P S , ni P n, ωi P ω, Ωi P Ω, Ii P I and Ei P E

10: for j in J do
11: ~L j P ~L, ~e j P ~e, a j P a, si P S , n j P n, ω j P ω, Ω j P Ω, I j P I and E j P E
12: if ai ď a j and ra,i ` si ď rp, j ´ s j do
13: remove j from J
14: elif a j ă ai and ra, j ` s j ď rp,i ´ si do
15: remove j from J
16: end elif
17: if J is empty do
18: continue to next iteration
19: end if
20: end for
21: calculate ~ri,˘ from Equation (3.2)
22: calculate ~vi,˘ using ~ri,˘ and Equation (A4)
23: for j in J do
24: calculate ~r j,˘ and ~v j,˘ in the same way
25: calculate ~r1

i,˘ using Equation (3.3)
26: calculate ~r1

j,˘ using Equation (3.4)
27: d˘ “ |~r1

j,˘ ´ ~r
1
i,˘|

28: if d˘ ă si ` s j do Ź that is, do this for both d` and d´
29: append ti, ju to Lcol, p~r1

i,˘,~r
1
j,˘q to Rcol and p~vi,˘,~v j,˘q to Vcol

30: calculate ∆Ei,˘ and ∆E j,˘ using Equations (3.7) and (3.8)
31: t0

i,˘ P T0, t0
j,˘ P T0

32: calculate t1
i,˘ and t1

j,˘ using Equation (3.6)
33: Ti “

2π
ni

, T j “
2π
n j

34: calculate δ˘ using Equation (3.12)
35: tcol

i j,˘ “ TIMECOLLISIONpt1
i , t

1
j ,Ti,T j, δq

36: append tcol
i j,˘ to Tcol

37: end if
38: end for
39: end for
40: sort Tcol in increasing order and remove all tcolij P Tcol for which tcolij ą tmax

41: apply the same sorting to Lcol, Rcol and Vcol

42: return Lcol, Rcol, Vcol and Tcol

43: end procedure

14



Finally, we obtain Algorithm 4. This algorithm is deemed ‘The continuous collision algo-
rithm’, as it is based upon the analytical Kepler orbits of all the satellites.

Algorithm 4 Continuous collision algorithm
Require: position R, velocity V , mass M, size S of all the satellites and a maximum simulation

time tmax

1: t “ 0
2: Lcol,Rcol,Vcol,Tcol “ LISTCOLLISIONpR,V,M, S ,T0, tmaxq Ź create initial collision list
3: while t ă tmax do
4: ti, ju P Lcol, tcol

i j P Tcol, p~ri,~r jq P Rcol, p~vi,~v jq P Vcol

5: R f r,V f r,M f r, S f r “ SBMp~ri,~r j,~vi,~v j,mi,m j, si, s j, tcol
i j q Ź SBMp. . . q is defined in

Section 4.2
6: merge R f r with R, V f r with V , M f r with M and S f r with S
7: delete all the ith an jth entries of R, V , M and S
8: delete all entries that contain an index i or j or value corresponding to i or j from

Lcol,Rcol,Vcol,Tcol

9: Lcol,fr,Rcol,fr,Vcol,fr,Tcol,fr “ LISTCOLLISIONpR,V,M, S ,T0, tmaxq

10: merge Lcol,fr,Rcol,fr,Vcol,fr,Tcol,fr with the existing collision lists
11: t “ t ` tcol

ij
12: end while

In line 2 of Algorithm 4, Algorithm 3 is called as it is described on the previous page.
Fragments will be generated during the following iterations, which will have to be checked for
collisions with other satellites and fragments from previous collisions as well.10 Satellites that
have not (yet) collided do not have to be checked for collisions again, since the collision lists
for these satellites already exist. This will alter which indices should be checked for collisions,
which is indicated by the comment on lines 7 and 8 in Algorithm 3.

Depending on how we store R, V , M and S , we may need to be careful to correct all the
indices in the collision lists after line 7 in Algorithm 4. Deleting the ith entry in R for example,
causes all the entries that are stored at an index j ą i to shift down in their index by 1.

3.2. Collision detection for time-integrated system
This section describes how we can detect collisions without using the exact orbits of all the
satellites, as opposed to Section 3.1. To do this we need an efficient way of searching for
satellites that are close enough to each other such that a collision could occur within some
interval ∆t, the time step of the integration method. The information at hand is the position
and velocity of all satellites. Take a particular satellite, say i, this satellite could potentially
collide with any other satellite within a sphere of radius di “ |

#»v i|∆t. In the same way, any
satellite j could collide with i as long as the latter is within a sphere of radius d j “ |

#»v j|∆t
centered at j. Thus to find all possible collisions with i we need to check whether there is
a non-empty intersection of the sphere of i with the one of j for all j , i. This amounts to

10Due to the nature of the collision model described in Section 4.2, fragments generated in the same collision
are unlikely to collide.
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checking | #»r i ´
#»r j| ď di ` d j “ p|

#»v i| ` |
#»v j|q∆t, which may be simplified to

|
#»r i ´

#»r j| ď 2dmax “ 2vmax∆t, (3.19)

where dmax “ vmax∆t is the maximum radius, corresponding to the largest sphere, and vmax is
the largest velocity. Checking condition (3.19) for all combinations of i and j and creating a
list of potential collisions is certainly possible, but ultimately inefficient. Say our system has N
satellites, then this brute-force method would have to check all (N ´ 1 ´ i) values of j for the
(N) values of i. The total number of comparisons is

řN
i“1 N ´ i “ 1

2 NpN ´ 1q and therefore of
order N2

3.2.1. K-d tree based algorithm for finding NN

The problem of efficiently searching for k nearby points is known as a k-Nearest Neighbour
Search (kNNS), of which a variant is the Fixed Radius Nearest Neighbour Search (FRNNS).
Both of these are relevant to detect potential colliding pairs. Using a special data structure
known as a K-d tree it is not required to perform all distance comparisons [Ben75].

A K-d tree, or K-dimensional tree, organises data in a metric space along its K dimensions.
In this case, the data are the positions of satellites in 3-D space and the metric is the Euclidean
distance. Loosely stated, this data structure organises points that are close to each other by
placing them in (K-dimensional) cells. The construction of the tree (and its cells) is done along
each dimension in a binary way, as points are divided between two cells each time. Starting
with the first dimension (X); all points with a horizontal coordinate smaller than the median
point are grouped together in the left cell and all points greater than median point (and the
median point itself) are put in the right cell. Then, the same procedure is applied to both of
these cells in the second dimension (Y), splitting them up further into top and bottom cells.
Now, again each of these cells is split along the remaining dimension (Z) into front and back
ones. This results in 8 sub-cells that partition the entire domain of points. Repeatedly applying
this entire procedure to each of these cells generates a structure of nested cells. Moreover, the
dimension along which a cell is split is called its splitting dimension. Each of the cells is a node
in the K-d tree. If a cell contains two (sub-)cells (left and right, up and down or front and back),
it is called a parent node and its sub-cells daughter nodes. Cells that contain only points —
i.e., cells that do not contain any other sub-cells — are called leaf nodes. The tree construction
is complete, when each leaf node contains at most an integer m points, where m ě 1 can be of
our choosing.

We can now use the K-d tree structure to our advantage when performing a kNNS for
satellite i. Firstly, we search for i’s place in the tree. This is done by comparing its X coordinate
to the median of the top node, which will place it either in its left or right daughter node. After
the same comparison in the Y and Z coordinates for the next two layers of nodes, we again
compare its X coordinate and so on. We repeat this until we reach a leaf node to place i in. Now
we proceed to find the kNN. The idea is to keep track of a nearest neighbor list containing the
k points with current smallest distance and alter the list as we walk through the tree. If we do
this for all particles i in the system we get Algorithm 5.
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Algorithm 5 kNNS for all particles in the system
1: procedure NNS(tree,R, k)
2: NN “ H
3: D “ H
4: for ~ri in R do
5: NNi “ H

6: Di “ H

7: walk down tree to i’s leaf node, LNi

8: for r j in LNi do
9: calculate the relative distance di j “ |~r j ´ ~ri|

10: if di j ă max Di do
11: append di j to Di

12: end if
13: ensure D has no more than k elements, saving only the k smallest if necessary
14: end for
15: append all j that satisfy di j P D to NNi and remove any that do not

We need to check if adjacent cells contain points that are closer than those in the current
NN-list. Let d be the distance of the point in the current NN-list with the largest distance
to i.

16: d “ max Di

17: move up one level in the tree Ź to the parent of the current node
18: ddn “ distance between ~ri and the other daughter node along splitting dimension
19: if d ă ddn do
20: walk down this daughter node until a leaf node LN is reached
21: for ~r j in LN do
22: repeat lines 9 through 13
23: end for
24: go back to line 15
25: else Ź ’prune’ daughter node from the tree
26: if current node is the top node do
27: append NNi to NN and Di to D
28: continue to next iteration Ź all the NN of i are found
29: else
30: go back to line 15
31: end elif
32: end elif
33: end for
34: return NNs and D
35: end procedure

The algorithm for a FRNNS is simpler than for kNNS in the sense that the radius within
which we are looking for NN, i.e. 2dmax, is fixed. So only the nodes that have a non-empty

17



intersection with the sphere of this radius centered at i will have to be checked.11

3.2.2. Time complexity of K-d tree and its algorithms

In the paper where he originally introduced the K-d tree, Bentley showed that it could be
constructed in OpN log Nq time, assuming the median at each cell splitting can be found in
OpNq time. The algorithms that finds the median in this time are complicated. However, if
the data is presorted along the k dimensions, then a (balanced) K-d tree can in best case be
built in OpN log Nq and in worst case OpkN log Nq ([Bro15]). The time to find k NN is at most
Opk log Nq, which is simply the time of finding one nearest neighbor point multiplied by k. On
the other hand, the time complexity of the FRNNS algorithm is Op3kk log Nq ([BSW77]). Due
to this higher time complexity of the FRNNS, we will use the kNNS algorithm instead. As a
consequence, k becomes a parameter in the model, representing the expected number of NN
for each satellite at any given time. Given an approximately homogeneous distribution of N
satellites in relatively thin shell of height h around the Earth with radius R 12, we can expect

k̄ “
R

Np2vmax∆tq3

pR` hq3 ´ R3

V

«

R

Np2vmax∆tq3

R2pR` 3hq

V

“

R

N
8d3

max

R2pR` 3hq

V

. (3.20)

For ∆t “ 10s, N “ 105 and vmax “ 8km s´1, we have k̄ “ 2. It is better overestimate k̄, as we
can always delete NN whose relative distances do not satisfy requirement (3.19). This requires
only a few extra distance comparisons, because the kNNS algorithm computes all distances
anyway. Note that as more and more fragments enter the system, the value of k̄ will increase in
proportion to N.

As for the actual implementation of the K-d tree data structure and its kNNS algorithm in
this model, the Python library scikit-learn was used ([Ped+11]).

3.2.3. Colliding pairs from NN

Once we have the NN of every satellite, we can determine which satellites will collide. To this
end, suppose that we have found that i and j are NN of each other, let #»v i, #»v j, #»r i and #»r j be
their respective positions and velocities. Then

#»
d “ #»r j ´

#»r i, and #»u “ #»v j ´
#»v i,

are relative position and velocity. First, we linearise the motion of the satellites in the current
time step. If

#»ρ iptq “ #»r i `
#»v it and #»ρ jptq “ #»r j `

#»v jt,

then
#»
δ ptq “ #»ρ jptq ´ #»ρ iptq “

#»
d ` #»u t, (3.21)

is their relative position. We know that at the current time t “ t˚ these satellites are close to
each other, but we still need to check if their minimum relative distance δ “ |

#»
δ | occurs within

the time step t “ t˚`∆t. This is the case, if δ is decreasing at t “ t˚ and increasing t “ t˚`∆t,
11There is ground to be gained here as well. Suppose an entire node is contained within the search sphere,

then then there is no need to walk down it. We can in that case simply add all points in that node to the NN-list
[BSC15].

12 h
R ! 1
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or equivalently, if the component of #»u along
#»
δ is positive at first and negative a time step later.

Hence we require

#»u ¨
#»
δ pt˚q ă 0 and #»u ¨

#»
δ pt˚ ` ∆tq “ #»u ¨ p

#»
δ pt˚q ` #»u∆tq ą 0, (3.22)

where the equality follows from the linear motion of the satellites. Henceforth, to ease calcula-
tions and without loss of generality, we assume t˚ “ 0. If the conditions of (3.22) are satisfied,
then we proceed to calculate the collision time tcol

i, j by minimising d2:

dδ2

dt

ˇ

ˇ

ˇ

ˇ

t“tcol
i, j

“
d
dt
t

#»
d ¨

#»
d ` 2 #»u ¨

#»
d t ` #»u ¨ #»u t2

u

ˇ

ˇ

ˇ

ˇ

t“tcol
i, j

,

“
#»u ¨

#»
d tcol

i, j `
#»u ¨ #»u ptcol

i, j q
2,

“ 0,

from which it follows that

tcol
i, j “ ´

#»u ¨
#»
d

#»u ¨ #»u
. (3.23)

Finally, we determine the minimum distance by substituting t “ tcol
i, j in Equation (3.21) and

require that it ought to be smaller than the sum of the radii of the satellites, si and s j

δ2
ptcol

i, j q “
p

#»
d ¨

#»
d q2p #»u ¨ #»u q2 ´ p #»u ¨

#»
d q2

#»u ¨ #»u
“
|

#»u ˆ
#»
d |2

#»u ¨ #»u
ă psi ` s jq

2,

giving the condition
|

#»u ˆ
#»
d |

|
#»u |

ă si ` s j. (3.24)

The procedure for checking these collision conditions for some satellite i with a set of other
satellites Φ may is illustrated in Algorithm 6.
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Algorithm 6 Checking collision conditions
1: procedure CHECKCOLLISION(R,V, i,Φ,∆t)
2: ~ri P R
3: ~vi P V
4: Tcol “ H

5: J “ H
6: For j in Φ do
7: ~r j P R
8: ~v j P V
9: ~d “ ~r j ´ ~ri

10: ~u “ ~v j ´ ~vi

11: if ~u ¨ ~d ă 0 and ~u ¨ p~d ` ~u∆tq ą 0 do
12: if |~uˆ ~d| ă |~u|psi ` s jq do
13: append j to J and tij “ ´p~u ¨ ~dq{p~u ¨ ~uq to Tcol

14: else
15: next Ź minimum distance is too large
16: end elif
17: else
18: next Ź satellites share no minimum distance.
19: end elif
20: end for
21: return J and Tcol

22: end procedure

3.2.4. Collision ambiguity

Consider the two dimensional box of particles illustrated in Figure 2 a) and b).

a) t “ t˚ b) t “ t˚ ` ∆t

1

2
3

4

5
6

7

8

9

10
t12

t13

t15

Figure 2: Collection of particles (satellites) situated in a two dimensional plane. The blue dots and
red arrows in a) indicate the location and velocity of the particles at the beginning of the current time
step t “ t˚. In b) the same particles are now labelled by numbers 1 through 10 and their locations at
t “ t˚ ` ∆t are depicted as red dots. The linearised trajectory of a particle is represented by a black
arrow. All the possible collision points of particle 1 are indicated with purple circles and labelled with
the respective collisions times t12, t13 and t15.
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Suppose these particles represent satellites and that each intersection between two trajec-
tories depicted in Figure 2 b) is a possible collision point between the two satellites, i.e. con-
ditions (3.22) and (3.24) are satisfied. For simplicity we assume that all these particles are all
NNs of each other. The collision points for particle 1 are indicated in Figure 2 b). If we actu-
ally perform all these collisions in the current time step, we would run into a constraint of our
model; a satellite can only collide once. After a collision, a satellite is deleted from the list of
all satellites and replaced by its fragments. Since it is nonphysical for satellites to pass through
each other, we must select only the earliest collision. To this end we produce following matrix

T col
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

t12 t13 t15

t23 t26 t27 t29

t35

t410

t57 t59

t68 t69 t610Sym.
t79 t710

t89 t810

t910

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Each row and column in T col correspond to particle from Figure 2. Moreover, the entry tij on the
ith row and jth column holds the time of the collision, should one occur between the respective
particles. Note that

tij “ tji @i, j. (3.25)

This particular configuration of T col allows us to find the earliest collisions. To do this, we
set all the empty entries in T col to a value T ě ∆t and look for the minimum collision time
along each of its rows and columns. In particular, if an entry tij satisfies

for n “ i @ j : tij ă T col
nm ^ for m “ j @i : tij ă T col

nm , (3.26)

it will remain unchanged, otherwise it will be set to equal to T . Applying this to the above
example of T col will result in a new matrix

T col,0
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

t23

t32

t89

t98

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where all the blank spaces represent the value T . Observe that we can now extract the indices
of two colliding pairs from this matrix

iteration 0: tp2, 3q, p8.9qu.
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These particles must collide as the collision times are the minimal collision times for each of
the involved particles, i.e. t98 and t89 satisfy condition (3.26), as do t23 and t32. The reason
the complementary pairs of collisions times are each the minimum of their respective row and
column stems from Equation (3.25) and the symmetry of condition (3.26). One could argue
this concludes the search for collisions in the current time step, as the earliest possible are now
found. If we assume, however, that the fragments of these collisions do not greatly affect the
trajectories of the remaining particles, then further collisions are possible after the first. In
order to find these remaining collisions, we remove the rows and columns corresponding to the
colliding pairs we have already found from the original T col matrix. If we then apply the same
procedure as above to this updated T col, i.e. finding the minima along all rows and columns,
we get

T col,1
“

¨

˚

˚

˚

˚

˚

˚

˝

t610

t106

˛

‹

‹

‹

‹

‹

‹

‚

.

This yields another colliding pair

iteration 1: tp6, 10qu.

In the same way one may again determine T col,2 and find the pair

iteration 2: tp5, 7qu,

after which T col,3 is empty. This is because the remaining particles 1 and 4 share no collision
point. In summary, we find the following set of colliding pairs

tp2, 3q, p5, 7q, p6, 10q, p8, 9qu.

The above discussion yields Algorithm 7 for finding the first collisions.
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Algorithm 7 Determining the first collision(s)
1: procedure FIRSTCOLLISION(P,Tcol,∆t)
2: for ti, ju in P do
3: T col

i j “ T col
ji “ tij P Tcol Ź construct T col matrix

4: end for
5: for ti, ju not in P do
6: T col

i j “ ∆t
7: end for
8: Ψ “ H

9: τ “ H
10: while T col ,H do
11: t “ ttij | tij satisfies condition p3.26qu
12: p “ tti, ju | tij P tu
13: merge p with Ψ and tij with τ
14: remove any row r “ i, j and column c “ i, j from T col for all ti, ju P P
15: end while
16: return Ψ and τ
17: end procedure

3.2.5. The discrete algorithm

Algorithm 8 outlines how the methods discussed in Sections 2.2, 3.2.1, 3.2.3 and 3.2.4 are
combined into a model that simulates a system of colliding satellites. The algorithm lends its
name to the discretisation of time that it is based on.
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Algorithm 8 Discrete collision algorithm
Require: position R, velocity V , mass M, size S of all the satellites, a time step ∆t, a maximum

simulation time tmax and the number of expected nearest neighbours k
1: t “ 0
2: N “ The total number of satellites
3: tree “ K-DTREEpRq Ź construct a K-d tree of initial positions
4: while t ă tmax do
5: NNs “ NNSptree, kq Ź determine NNs of each satellite
6: P “ H
7: Tcol “ H

8: for i:=0 to N do
9: J “ the ith list of NNs Ź indices of satellite i’s nearest neighbours

10: if J is empty then
11: continue to beginning of loop
12: end if
13: J,Tcol “ CHECKCOLLISIONpR,V, i, J,∆tq Ź check conditions (3.22) and (3.24)
14: if J “ H then
15: continue to beginning of loop
16: end if
17: append the set tti, ju|@ j P J} to P and Tcol to Tcol.
18: end for
19: P,Tcol “ FIRSTCOLLISIONpP,Tcol,∆tq Ź pick out only the first collisions
20: for ti, ju to P do
21: tij P Tcol

22: R f r,V f r,M f r, S f r “ SBMp~ri,~r j,~vi,~v j,mi,m j, si, s j, tijq Ź SBMp. . . q is defined in
Section 4.2

23: append R f r to R, V f r to V , M f r to M and S f r to S
24: end for
25: append fragment parameters to ~r,~v,m, s
26: delete ~ri,~vi,mi, si for all i P P
27: tree “ K-DTREEp~rq Ź construct new tree
28: t “ t ` ∆t
29: end while

3.3. Comparison of the continuous discrete algorithms
In order to compare Algorithms 4 and 8, we generate a homogeneous distribution of N satellites
within a spherical shell of inner radius rinner and height h. To this end, let for i “ 1, 2, . . . ,N

Ωi, ωi,Ma,i P Ur0, 2πq and Ii P Ur0, πq.

To ensure that the mean anomaly is zero in the periapsis, we redefine

Ma,i ÐÝ Ma,i ´ ωi.

Also, let
ri,1, ri,2 P Urrinner, rinner ` hs, (3.27)
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then the periapsis and apoapsis are given as

rp,i “ mintri,1, ri,2u, ra,i “ maxtri,1, ri,2u.

The semi-major axis and eccentricity are

ai “
ra,i ` rp,i

2
, ei “

ra,i ´ rp,i

ra,i ` rp,i
(3.28)

The mean motion ni may be obtained through Equation (2.6). The radius s and mass m is taken
to be the same for all the satellites. A useful way of characterising the various orbits is via a
Gabbard diagram, which plots the periapsis and apoapsis of a satellite against its orbital period.
Figure 3 shows the Gabbard diagram for this homogeneous distribution of satellites.
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Figure 3: Gabbard diagram for a homogeneous distribution of N “ 10000 satellites with rinner “

RC ` 100 km and h “ 100 km. The red and blue dots indicate the periapsis and apoapsis of each of
the satellites, respectively. Note that at any particular height, the density of satellites is approximately
constant. In addition, this distribution contains orbits with eccentricities ranging from e “ 1.06ˆ 10´7

to e “ 7.63 ˆ 10´3. This is because the relatively low value of h does not allow for highly eccentric
orbits.

Comparison of the continuous and discrete algorithms is done by analysing their predicted
time of the first collision for this distribution. As derived by Dr. Visser, the expected time for a
collision in this case is given by

t̄col “
āhT̄
πN2s2 , (3.29)

where ā is the average semi-major axis and T̄ is the average orbital period. Equation (3.29)
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defines the following three relations for t̄col

t̄col “ c1
1

N2 for constant s and h, (3.30)

t̄col “ c2
1
s2 for constant N and h, (3.31)

t̄col “ c3
1
h

for constant N and s. (3.32)

The constants c1, c2 and c3, are determined from Equation (3.29). For the case of the homoge-
neous distribution of Figure 3, we have ā “ 6.52ˆ 103km and T̄ “ 5.42ˆ 103s so that

c1 “ 1.12ˆ 1013 s, c2 “ 1.12ˆ 107 s m´2 and c3 “ 1.12 s m´2. (3.33)

In case of Algorithm 4, the time of the first collision is simply the first entry of the initial
collision list. In contrast, Algorithm 8 is executed until it finds a collision. The results of this
analysis are presented in Figures 4, 5 and 6.
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Figure 4: Error bar plot of the average time to the first collision against the particle number N over 10
runs, as predicted by Algorithm 4 in blue and Algorithm 8 in red and for s “ 10 m and h “ 100 km.
The red and blue lines are a linear-least squares fit applied to the data for the relation between tcol and N
given in Equation (3.30).
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Figure 5: Same as Figure 4, but now the average time to first collision versus the radius of the satellites
s is plotted. The linear-least squares fit is now applied for the relation between tcol and s given in (3.31).
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Figure 6: Same as Figure 4, but now the average time to first collision versus the height of the spherical
shell h is plotted. The linear-least squares fit is now applied for the relation between tcol and h given in
(3.32).

From the fits in Figures 4, 5 and 6 we find for the continuous algorithm

c1 “ p6.28˘0.55qˆ1013 s, c2 “ p6.06˘0.62qˆ107 s m´2 and c3 “ p6.31˘0.68q s m´2.
(3.34)

Similarly, for the discrete algorithm

c1 “ p5.98˘0.68qˆ1013 s, c2 “ p5.97˘0.61qˆ107 s m´2 and c3 “ p6.36˘0.56q s m´2.
(3.35)
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From Figures 4, 5 and 6 we find that the averages from the the algorithms agree with each other.
As a matter of fact, each separate data point in these figures was generated using 10 different
instances of the homogeneous distribution of satellites. This means that the algorithms generate
similar predictions for the averages.

Moreover, this verification is not limited to the algorithms themselves. Equation (3.29) is
verified by results of the linear least-squares fits given in (3.34) and (3.35), which agree with
(3.33) up to constant factor of about 6. In any case, the inverse-square relations between t̄col

and s, N given by (3.30) and (3.31) and the linear relation between t̄col and h appear to properly
represent the data.

Another point of investigation is the execution time of the both of the algorithms depending
on the parameters N, s and h. To compare the two algorithms, we will now look at the required
computation time until the first collision is found. This means that we will be comparing
the time Algorithm 4 spends on creating the initial collision list to the time Algorithm 8 is
executed until it finds a collision in a certain time step. However, instead of actually executing
the Algorithm 8 until the occurrence of the first the collision, we estimate its projected total
execution by determining the average execution time for a single time step and multiplying that
with the number of expected time steps,

t̄exec,discrete « t̄exec,∆t
t̄col

∆t
, (3.36)

where t̄exec,∆t is the average execution time of one time step of Algorithm 8. The results of this
analysis are presented in Figures 7, 8 and 9.13
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Figure 7: Semi-log plot of the average computation time until the first collision against the particle
number N over 5 runs for Algorithm 4 in blue and Algorithm 8 in red. The algorithms have been applied
to the same distribution with s “ 10 m and h “ 100 km.

13All execution times have been obtained using a HP ZBook Studio G5 with Intel Core i7 processor (6ˆ2.20
GHz) and 16 GB DDR4-SDRAM
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Figure 8: Same as Figure 7, but now the average computation time against the satellite radius s over
5 runs is shown. The algorithms have been applied to the same distribution with N “ 1000 and h “
100 km.
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Figure 9: The average computation time until the first collision against the height of the spherical shell
h over 5 runs. The algorithms have been applied to the same distribution with N “ 1000 and s “ 10 m.

From Figure 7 we see that the continuous algorithm is expected to perform better than the
discrete algorithm for systems with low particle numbers. This can be attributed to the fact
the creation of the initial collision list Algorithm 3 has a time-complexity of at least OpN2q.
Depending on the exact distribution of satellites, there will be some number of particles N above
which the discrete algorithm performs better. In the case of this homogeneous distribution
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of satellites with s “ 10 m and h “ 100 km this turning point in efficiency occurs around
N “ 20000.

We observe from Figure 8 that the continuous algorithm performs best for distributions
of smaller satellites, that is for s up to about 200 m for N “ 1000 and h “ 100 km. For
larger radii Algorithm 3 has to perform more computationally expensive calculations for each
pair of satellites, because the condition (3.1) is now satisfied more often. In other words,
more (possible) colliding pairs are formed for larger radii. Hence the continuous algorithm has
to spend more time on more satellites; calculating the (location of the) MOID, checking the
minimal distance and possibly calculating collision times.

Lastly, Figure 9 indicates that for a small shell the continuous algorithm faces the same
hurdle as it did for increased particle number and larger satellite radius; more possible colliding
pairs of satellites, which lead to more (expensive) calculations.

As for the average computation time of the discrete algorithm, it closely follows the relation
(3.29), that is inverse quadratic in N and s and linear in h. This is to be expected, as we have
used that relation to obtain these results. The reason for this correspondence of the discrete
algorithm between the average time to first collision t̄col and the average execution time thereof
t̄exec,discrete lies in that the average computation time of a time step t̄exec,∆t only grows linearly in
N. This can be seen from the single for-loop on line 8 in Algorithm 8, as opposed to the double
for-loops on lines 7 and 10 in Algorithm 3. In other words, for any particle that is added to
the system the continuous algorithm has to perform part of or all its collisions checks for that
particle against all other N particles. In contrast, the discrete algorithm merely needs to build
the K-d tree for N ` 1 particles and perform one extra numerical integration.

Another topic of similarity between the discrete and continuous is how they may be opti-
mised. Next to the K-d tree method discussed in Section 3.2.2, the implementation of the dis-
crete algorithm uses the C/C++ extension to Python, Numpy to outsource among other things
the for-loop in line 8 of Algorithm 8. Though this does not change the time-complexity of the
discrete algorithm, it does give it a relative advantage over the continuous algorithm, which
makes use of Numpy to a lesser extent. In any case, i) the construction of a K-d tree, ii)
the numerical integration of the satellites and iii) the creation of the collision list all perform
calculations that can be considered as independent of each other and are therefore able to be
executed in parallel on a GPU ([Bro15]). This would allow for higher particle numbers in both
the discrete and continuous algorithms.

Additionally, some of the assumptions made to model the system of satellites using ide-
alised Kepler orbits, could be dropped in favor of realism. For instance, both algorithms do not
incorporate atmospheric drag, even though this is one of the major sinks of debris in the LEO.
What is more, the assumption that the gravitational potential field of the Earth is spherically
symmetric, has as a consequence that the satellite orbits do not precess. This also has a major
effect on the spread of debris in LEO. All these and the other assumptions allow the continuous
algorithm to assume that the collisions found earlier in its execution to remain unaltered. Put
differently, the only time a collision is removed from the existing collision list is when one
or more of the satellites involved in that collision collide in the current iteration. This means
that a future version of the continuous algorithm will at most have to create a new collision list
after each collision to adjust for drag. In contrast, the discrete algorithm can easily be adjusted
to include atmospheric drag terms, a non-homogeneous gravitational field and the influence
of other perturbing bodies like the moon. Hence the most ground to be gained here is for the
continuous algorithm.
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4. Modelling collisions
As this report aims to simulate the exact dynamics of the entire satellite system, we require a
recipe for performing collisions between satellites. Fortunately, the NASA’s Standard Breakup
Model (SBM) is able to distinguish between types of collisions and give key parameters of frag-
ments, like the number produced, their characteristic length (scattering cross-section), masses
and ejection velocities.

Before describing how NASA’s SBM may be implemented in this context, let us first con-
sider a simpler kind of collision; one where no fragmentation takes place and satellites merely
’bounce’ off each other.

4.1. Elastic collisions
If the exact geometry of two masses involved in a collision as well as the fraction of con-
served kinetic energy ε “ Ek, f

Ek,i

14 are known, then the pre- and post-collision velocities are fully
determined by the conservation of mass and momentum. Moreover, a fully elastic collision
conserves all kinetic energy, which implies ε “ 1. However, to prevent modelling not only
the exact shape and dimensions of all the satellites in Earth’s orbit, but also those of all the
fragments resulting from collisions, we instead choose to keep track of only one value, for
satellite and fragment alike. This value is the characteristic length, which is related to the
(radio) cross-section in the NASA SBM, as is discussed in Section 4.2. As a consequence,
we wish to simulate an elastic collision of two bodies without assuming their exact geometry.
We do this by introducing a small, random deflection to one of the velocity vectors and using
conservation of momentum and kinetic energy to determine the other velocity vector.

More concretely, let #»v1, #»v2, m1 and m2 be the velocities and masses of two bodies on a
collision trajectory. Also let #»v1

1 and #»v2
1 be the velocities after the collision. The collision may

alter the magnitude. Conservation of momentum and kinetic energy give

#»v 12 “
#»v 2 `

m1

m2
p

#»v 1 ´ |
#»v 11|v̂

1
1q (4.1)

|
#»v 12|

2
“ |

#»v 2|
2
`

m1

m2

`

|
#»v 1|

2
´ |

#»v 11|
2
˘

, (4.2)

where the post-collision velocity of the first particle is written as its magnitude times its direc-
tion #»v 11 “ |

#»v 11|v̂
1
1. Taking the inner product of the first equation with itself and equating with

the second gives, after some manipulation

m1

m2

`

|
#»v1|

2
´ 2| #»v 11|v̂

1
1 ¨

#»v 1 ` |
#»v 11|

2
˘

` 2 p #»v 1 ¨
#»v 2 ´ |

#»v 11|v̂
1
1 ¨

#»v 2q “ |
#»v 1|

2
´ |

#»v 11|
2

Rewriting further gives

|
#»v 11|

2

ˆ

m1

m2
` 1

˙

´ 2| #»v 11|
ˆ

m1

m2
v̂11 ¨

#»v 1 ` v̂11 ¨
#»v 2

˙

` |
#»v 1|

2

ˆ

m1

m2
´ 1

˙

` 2 #»v 1 ¨
#»v 2 “ 0,

14Here, Ek,i and Ek, f are the total pre- and post-collision kinetic energy, respectively.
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which is a quadratic equation in | #»v 11| and may be solved using the quadratic formula. Setting

A “
m1

m2
` 1 “

m1 ` m2

m2

B “ ´2
ˆ

m1

m2
v̂11 ¨

#»v 1 ` v̂11 ¨
#»v 2

˙

“ ´2v̂11 ¨
ˆ

m1

m2

#»v 1 `
#»v 2

˙

C “ | #»v 1|
2

ˆ

m1

m2
´ 1

˙

` 2 #»v 1 ¨
#»v 2 “

#»v 1 ¨

ˆ

m1 ´ m2

m2

#»v 1 ` 2 #»v 2

˙

,

then gives the solution as

|
#»v 11| “

´B˘
?
B2 ´ 4AC

2A

If µ1 “
m1

m1`m2
and µ2 “

m2
m1`m2

, then

|
#»v 11| “ v̂11 ¨ pµ1

#»v 1 ` µ2
#»v 2q ˘

b

“

v̂11 ¨ pµ1
#»v 1 ` µ2

#»v 2q
‰2
´

#»v 1 ¨ ppµ1 ´ µ2q
#»v 1 ` 2µ2

#»v 2q (4.3)

In order to simplify equation (4.3), a transformation to the centre of mass (COM) frame is
performed

#»v i ÝÑ
#»u i “

#»v i ´
#»
V com i “ 1, 2 ,

where
#»
V com “

m1
#»v 1`m2

#»v 2
m1`m2

, which will remain unchanged, because of conservation of momen-
tum and mass. We have the following identity,

µ1
#»u 1 ` µ2

#»u 2 “
m1

#»u 1 ` m2
#»u 2

m1 ` m2

“
#»
V ´

#»
V

“ 0

which cancels several terms in equation (4.3), leaving

|
#»u 11|

2
“ µ2

#»u 1 ¨ p
#»u 1 ´

#»u 2q “ µ2
2|

#»u |2 “ | #»u 1|
2, (4.4)

where #»u “ #»v 2 ´
#»v 1. The last identity follows by working out the inner products #»u 1 ¨

#»u 1 and
#»u 1 ¨

#»u 2. By symmetry or by equation (4.2) it must also hold that

|
#»u 12|

2
“ µ2

1|
#»u |2 “ | #»u 2|

2 (4.5)

Note in addition that the total kinetic energy may be partitioned into

Ek “
M|

#»
V com|

2

2
`

m1m2|
#»u |2

2M
“ Ek,com ` Ek,int, (4.6)

in which M “ m1`m2. The former of the two contributions comes from the kinetic energy due
to movement of the COM frame itself, Ek,com, and the latter stems from the inherent or internal
kinetic energy of the particles in the COM frame, Ek,int. For the same reasons that Vcom does
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not change, Ek,com does not either. Additionally, in an elastic collision Ek,int does not change;
calculating Ek,int directly, using the just derived expressions for the scattered magnitudes, gives

Ek,int “
m1µ

2
2|

#»u |2

2
`

m2µ
2
1|

#»u |2

2
“

m1m2|
#»u |2

2M

So we recover the internal kinetic energy, as expected.
Equations (4.4) and (4.5) give expressions for the magnitude of the scattered velocities in

the COM frame. It therefore remains to find expressions for the direction of those velocities. To
that end, another conversion is used. This time to a more suited (spherical) coordinate system

#»u1
1
ÝÑ |

#»u 11|û
1
1pθ1, φ1q

where, as before, | #»u 11| is the magnitude and û1pθ1, φ1q or û1 the direction of the velocity vector.
θ1 and φ1 are the polar and azimuthal angle, respectively. The direction of the first particle
before collision is then given by,

û1 “

¨

˝

sin θ1 cos φ1

sin θ1 sin φ1

cos θ1

˛

‚

such that the change in direction may modelled by adjusting the polar and azimuthal angles,

θ11 “ θ1 ` ∆θ1 φ11 “ φ1 ` ∆φ1,

in which θ11 and φ11 are the angles after the collision. ∆θ1 and ∆φ1 are two free parameters of this
problem. In fact, these are the only two such free parameters. In total there are six parameters
to be determined; all three velocity components of each of the two particles. Conservation of
momentum and kinetic energy fix four of these, which leaves two.

To slightly limit this freedom of choice and make this problem more relevant to modelling
the collision (and possible fragmentation) of two satellites, we introduce a maximum scattering
angle α. This, in combination with properly chosen ∆θ1 and ∆φ1, gives the adjusted direction
of the first particle, û11pθ

1
1, φ

1
1q “ û11.

To prevent making any other assumptions about the direction of the particle’s velocity after
the collision, ∆θ1 and ∆φ1 should be chosen in such a way that the resulting v̂11 is randomly
picked from a spherical cap centered on û1, see figure 10.
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Figure 10: Depiction of how the adjusted direction û11 may differ from the original direction û1. The
blue shaded cone with spherical cap includes all the possibilities for û11. The particular û11 in the figure is
one instance of these possibilities. The radius of the cone is related to the maximum scattering angle α.

Now, let ∆ξ “ sin∆φ1 and ∆η “ sin∆θ1, then we must have ∆ξ2 ` ∆η2 ď sin2 α, as can
be seen from figure 11. In addition, let ρ “

a

∆ξ2 ` ∆η2 and ν “ arctan∆η{∆ξ. In order to
obtain an uniform distribution of vectors on the spherical cap we take,

ρ „

b

Ur0, sin2 αs

ν „ Ur0, 2πq,

in which sin2 α represents the square of the (maximum) radius of the cone. Consequently the
adjustment angles are determined as,

∆φ1 “ ˘ arcsin rρ cos νs
∆θ1 “ arcsin rsin∆φ tanpνqs ,

where the sign of ∆φ1 is chosen randomly.
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Figure 11: left: section of the cone in the polar plane. The relation of ∆θ1 to its projected distance to the
center of the cone is depicted here. A similar relationship holds in the azimuthal plane for ∆φ1 and its
projected distance to the center of the cone. right: a top down view of the cone showing that coordinates
∆ξ and ∆η must lie on a disk.

Finally, combining the magnitude and direction of the first scattered particle gives

#»v 11 “ |
#»u 11|û

1
1 `

#»
V com

#»v 12 is then given by equation (4.1).

4.2. NASA’s SBM
In a fragmentation or breakup collision of two bodies the relative kinetic energy defined in
equation (4.6) is not fully recovered in the sum of the kinetic energy of the fragments. Some
of this kinetic energy is used in deformation or is dissipated as heat, as satellites are broken
apart and deformed. In addition, the number of fragments, their mass, speed and direction
depend on, among other things, the impact velocity (both magnitude and angle), mass, shape
and composition of the satellites. This all greatly complicates the exact modelling of a breakup.
Especially in the case of the Kessler syndrome; where any exact model aiming to describe it
is then required to include the exact shape of each of the roughly 30,000 satellites in LEO and
any fragments resulting from a collision.

However, NASA’s Standard Breakup Model (SBM) is able to provide all the necessary
information to describe a breakup, as stated at the beginning of this section [Joh+01]. The
caveat lies in that the SBM is based on several probability distributions, which in turn are based
on numerous observations of real breakup events and ground tests performed by NASA. Hence
the SBM introduces a statistical component to the full model of this report.

The model requires only the masses of the satellites, which are discerned as the mass of the
lighter projectile mp and the heavier target satellite mt, and the impact velocity #»u “ #»v t ´

#»v p.
Collisions are then subdivided into two categories; non-catastrophic and catastrophic. These
are distinguished as

eimp “

1
2mprkgs| #»u |2rm2

s2 s

mtrgs
ą 40 rJ{gs, (4.7)
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where eimp is the kinetic energy of the projectile divided by the mass of the target. The greater-
than sign holds for catastrophic collisions. For non-catastrophic collisions it is a less-than-or-
equal-to sign. The fragmented mass of each breakup is given either as

mfrag “ mp

˜

|
#»u |

1
“

km
s

‰

¸2

, (4.8)

in the case of non-catastrophic collisions or as

mfrag “ mt ` mp, (4.9)

for catastrophic collisions. This fragmented mass fixes the number of fragments of a certain
size and larger.

NěLc “ 0.1
ˆ

mfrag

1rkgs

˙0.75 ˆ Lc

1rms

˙´1.71

, (4.10)

in which Lc is the characteristic length of a fragment in meters. The distribution of Lc is given
by

Lc “
`

pr´1.71
min ´ r´1.71

max qx` r´1.71
max

˘
1

´1.71 where x „ Ur0, 1s. (4.11)

Here, rmin and rmax are the minimum and maximum fragment radii. It remains to be determined
what the mass and velocity of each individual fragment are. Both of these are given by (super-
posed) normal distributions. Firstly, the area-to-mass ratio of a fragment A{M for Lc ě 0.11 is
described by

DLcě0.11
A{M “ αpλcqNpµ1pλcq, σ1pλcq, χq ` p1´ αpλcqqNpµ2pλcq, σ2pλcq, χq, (4.12)

and for Lc ă 0.11
DLcă0.11

A{M “ Npµ3pλcq, σ3pλcq, χq (4.13)

in which λc “ log10pLcq, N is the normal distribution with independent variable

χ “ log10pA{Mq.

α, µi and σi for i “ 1, 2, 3 are all functions of λc, which may be found in the appendix equations
(C2) and (C1). After obtaining the area-to-mass ratio form either equation (4.13) or (4.12) the
mass of the fragment is obtained using the following relation between (cross-sectional) area A
and Lc

A “ 0.556945L2.0047077
c (4.14)

Secondly, the difference in speed of the fragments as compared to the speed of their parent
satellites, the ∆v distribution, is

D∆v “ Npµpχq, σ, νq. (4.15)

Note that in this distribution the independent variable is ν “ log10p∆vq and that µ and σ are
now functions of χ (appendix equation (C3)).

The SBM does not specify the direction of the resulting fragments. This can be done using
the same method as in Section 4.1 to randomly generate vectors on a spherical cap and assigning
these to all fragments. In doing so, conservation of momentum must be guaranteed. A relatively
easy way to achieve this, is to apply the SBM to half the number of generated fragments;
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assign mass, speed and direction to this first half and, finally, create an identical second half
with reversed directions. Then, each pair of identical fragments will contribute nothing to the
total momentum sum. A random factor in the fragments’ point of origin should be added, as
it is highly unrealistic for a breakup between two satellites to be symmetric. This does not
affect momentum conservation, but does introduce a small error in the angular momentum of
the system. Over multiple fragments or collisions, however, these errors can be expected to
average out to zero.

A closer inspection of equation 4.10 reveals that for small enough fragmentation masses
mfrag the number of fragments may drop below 1. This is of course, physically impossible. We
therefore invoke a minimum number of fragments Nmin, which implies a minimum of amount
of fragmented mass in any collision

mfrag,min “

˜

Nmin

0.1L´1.71
c,min

¸1.25

, (4.16)

where Lc,min is the minimum characteristic length of the fragments that are generated by the
SBM. If the fragmented mass mfrag calculated using either Equation (4.9) or (4.8) is lower than
mfrag.min, then then a scattering is performed instead of a fragmentation15. Nmin and Lc,min thus
become two parameters in the model, which together define the border between fragmentation
and scattering collision. The minimum amount fragmented mass is

mfrag,min “ 2.98ˆ 10´1 kg for Nmin “ 4 and Lc,min “ 0.05 m,

mfrag,min “ 5.34ˆ 10´3 kg for Nmin “ 4 and Lc,min “ 0.01 m.

Note that for a lower Lc, the minimum mass is smaller as well. This means that the inclusion
of smaller fragments into the model relaxes the minimum mass constraint and allows for more
fragmentation collisions to take place. This topic is further discussed in Section 5.

Algorithm 9 defines the procedure SBM(. . . ), which is used in Algorithms 4 and 8 to gen-
erate fragments.

15See line 18 in Algorithm 9
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Algorithm 9 Collision model

1: procedure SBM(~ri,~r j,~vi,~v j,mi,m j, si, s j, tij,∆t)
2: p~ri,~r jq, p~vi,~v jq “ VELOCITYVERLETpp~ri,~r jq, p~vi,~v jq, tijq Ź propagate to collision point
3: trest “ ∆t ´ tij Ź time to next time step, in case of discrete algorithm
4: ~u “ ~r j ´ ~ri

5: u “ |~u|
6: ~Vcom “

mi~vi`m j~v j

mi`m j

7: ~ui “ ~vi ´ ~Vcom

8: ~u j “ ~v j ´ ~Vcom

9: mp “ mintmi,m ju Ź projectile mass
10: mt “ maxtmi,m ju Ź target mass
11: ~rp is the projectile position corresponding to mp

12: ~rt is the target position corresponding to mt

13: ~up is the relative projectile velocity corresponding to mp

14: ~ut is the relative target velocity corresponding to mt

15: determine the type ctype of collision using Equation (4.7)
16: mfrag from either Equation (4.9) or (4.8)
17: calculate mfrag,min using Equation (4.16)
18: if mfrag ă mfrag,min do Ź fragmented mass is too small for a fragmentation
19: use the methods described in Section 4.1 to obtain ~v1i and~v1 j
20: p~r1i, ~r1 jq, p~v1i, ~v1 jq “ VELOCITYVERLETpp~ri,~r jq, p~v1i, ~v1 jq, trestq Ź propagate to next

time step
21: return ~r1i, ~r1 j, ~v1i, ~v1 j,mi,m j, si, s j

22: end if
23: determine NěLc from Equation (4.10)
24: Nfrags “ NěLc{2 Ź the other half is added later, round off to integer value if necessary
25: rmin “ Lc,min

26: rmax “ maxtsi, s j, 1u Ź NASA SBM is only valid for fragment sizes of up to 1 m
27: sample Nfrags number of Lc values from the distribution given in (4.11)
28: calculate λc “ log Lc for all values of Lc

29: sample the corresponding A{M values using either distribution (4.13) or (4.12) and λc

values
30: obtain the mass of each fragment Mfrag using Equation (4.14)
31: if ctype “ catastrophic do
32: ensure mass conservation by dividing Mfrags by

ř

Mfrags

mfrag

33: elif ctype “ non-catastrophic do
34: ensure mass conservation by creating two fragments that have a similar mass mp,frag

and mt,frag and size Lc,p,frag and Lc,t,frag as the projectile and target
35: end elif
36: calculate χ “ log A{M for all values of A{M
37: sample the corresponding ∆v values using distribution (4.15) and χ
38: generate Nfrags scattered fragment directions using ~up and the methods described in

Section 4.1
39: generate Nfrags scattered fragment speeds by randomly adding ∆v to or subtracting ∆v

from u.
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40: multiply direction vectors and speeds to obtain the first half of relative fragment veloc-
ities Ufrag,1

41: generate the other half of relative fragment velocities as Ufrag,2 “ ´Ufrag,1

42: if ctype “ non-catastrophic do
43: calculate Ap, f rag and At, f rag from Equation (4.14)
44: calculate χp,frag “ log Ap, f rag{mp,frag and Ξt,frag “ log At, f rag{mt,frag

45: sample ∆vp,frag and ∆vt,frag from distribution (4.15)
46: generate ~vp,frag and ~vt,frag using the original directions ~ui and ~u j and alter magnitudes

by adding or subtracting ∆vp,frag and ∆vt,frag

47: append mp,frag, mt,frag, Lc,p,frag, Lc,t,frag, ~vp,frag and ~vt,frag to the fragment lists Mfrag, Lc,
Ufrag,1 and Ufrag,2 Ź being careful to add the velocities in the proper direction

48: end if
49: Vfrags,1 “ Ufrags,1 ` ~Vcom Ź that is, add ~Vcom for each ~ufrag,1 P Ufrags,1

50: Vfrags,2 “ Ufrags,2 ` ~Vcom

51: Efrags “
1
2 Mfrag

ř

´

V2
frags,1 ` V2

frags,2

¯

Ź shorthand for total kinetic energy of fragments

52: Einitial “
mi|~vi|

2

2 `
m j|~v j|

2

2

53: ε “
Efrags

Einitial

54: if ε ą 1 do Ź ensure kinetic energy conservation
55: Vfrags,1 “

Vfrags,1
?
ε

56: Vfrags,2 “
Vfrags,2
?
ε

57: end if
58: VELOCITYVERLETpRfrags,1,Vfrags,1, tijq Ź propogate to collision point
59: Rfrags,1 “ t~rp,~rp, . . . ,~rpu Ź with length Nfrags

60: Rfrags,2 “ t~rt,~rt, . . . ,~rtu Ź idem
61: Rrandom,1 “ t~rrandom,1| ~rrandom,1 is random vector on the order of the radius of satellitesu
62: Rrandom,2 “ idem
63: Rfrags,1 “ Rfrags,1 ` Rrandom,1 Ź that is, add a random vector ~rrandom to each fragment

position vector ~r f rag,1 P Rfrags,1

64: Rfrags,2 “ Rfrags,2 ` Rrandom,2

65: Rfrags,1,Vfrags,1 “ VELOCITYVERLETpRfrags,1,Vfrags,1, trestq Ź propagate to next time step
66: Rfrags,2,Vfrags,2 “ VELOCITYVERLETpRfrags,2,Vfrags,2, trestq

67: append Rfrags,1 to Rfrags,2 to get Rfrags , Vfrags,1 to Vfrags,2 to get vfrags, Mfrag to itself to get
Mfrags, Lc to itself to get Lc,frags Ź we have identical halves of particles

68: return Rfrags, Vfrags, Mfrags, Lc,frags

69: end procedure

4.3. Analysis of SBM
In order to investigate the behaviour of Algorithm 9, we force a collisions between a prograde
satellite i “ 1 and retrograde satellite j “ 2. We have

a1 “ a2, e1 “ e2, I1 “ 60˝ and I2 “ 120˝,
Ω1 “0˝ and Ω2 “ 10˝, Ma,1 “ Ma,2 “ ω1 “ ω2 “ 0.
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These satellites have an impact velocity | #»u | “ 7.976km s´1. Using Equation (4.7) we derive
that the ratio of projectile mass to target mass above which the collision is considered catas-
trophic is

µcritical “ 1.26ˆ 10´6. (4.17)

We now vary the mass m1,2 and radius of the satellites s1,2 and plot the collision fragment
characteristic length, mass, area-to-mass and ∆ ´ v distributions. The results for several of
these collision scenarios are shown in Figures 12, 13 and 14.
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Figure 12: Fragment distributions for a catastrophic collision between two large satellites with
m1 “ m2 “ 200 kg and s1 “ s2 “ 2 m as a function of Lc, m, A{M and ∆v.

From Figure 12 we see that for a (catastrophic) collision between similarly large and mas-
sive satellites fragments form on the order of a few centimeters up to about a meter. This is
because distribution (4.12) is limited to generating fragments of up to a meter. Additionally,
most of the fragments are smaller than 10cm, which reflects the power law given in Equation
(4.10).
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Figure 13: Fragment distributions for a catastrophic collision between a large m1 “ 200 kg,
s1 “ 2 m and small satellite m2 “ 2 kg, s2 “ 0.05 m versus Lc, m, A{M and ∆v as in Figure 12.

Figure 13 indicates another catastrophic collision. In this case satellite 2 is reduced in size
and mass. We have mp

mt
“ 0.01 ą µcritical.

The reduced size of s1 has as a consequence that only fragments with characteristic lengths
smaller than s2 “ 0.05m are generated. This constraint on fragment size stems from line 26
in Algorithm 9 and is necessary in order to maintain the symmetry of the fragmentation. In
particular, one half of the generated fragments velocities are scattered around the direction of
the target velocity #»v t and other half around the projectile velocity #»v p. The former group of
fragments may thus be considered as originating from the target satellite and the latter from the
projectile. The fragment size must be limited to the size of the smallest satellite, because both
halves of fragments are identical in size and fragments can not be larger than the satellites they
originate from. Additionally, the small mass of satellite 2 results in less fragments compared to
the previous scenario in Figure 13.
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Figure 14: Fragment distributions for a non-catastrophic collision between a large m1 “ 200 kg,
s1 “ 2 m and small satellite m2 “ 2 ˆ 10´4 kg, s2 “ 0.05 m versus Lc, m, A{M and ∆v as in
Figure 12.

In contrast to Figures 12 and 13, Figure 14 shows the output of the SBM for a non-
catastrophic collision. In this case we have

mp

mt
“ 1ˆ 10´6

ă µcritical.

Several small and light particles are generated, which resemble the projectile and the fragments
originating from the target. One large fragment with a size and mass similar to the original
target is generated as well. The velocities of the fragments after a non-catastrophic collision
are therefore not symmetric for target and projectile, which stands in contrast to the case of
catastrophic collisions.

To observe the effect of the random scattering of the fragment velocity in line 36 of Al-
gorithm 9 and the random addition or subtraction of ∆v in line 37, Figure 15 shows Gabbard
diagrams for collisions at several altitudes.
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Figure 15: Gabbard diagrams of catastrophic collisions with α “ 3˝ and Lc,min “ 0.05 m at altitudes
(a) 381km, (b) 485km and (c) 557km. The total number of fragments in each case was about 1500, of
which 406, 275 and 212 collided with the Earth, respectively. The spread of fragments after all three
collisions ranges over altitudes from 0 up to 1000km.
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Moreover, Figure 16 shows that the maximum scattering angle is a major factor in deter-
mining how many fragment stay in orbit following a collision. This shows that the entire of
this paper model is very sensitive to the parameters in the SBM((. . . )).
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Figure 16: Gabbard diagrams of the same catastrophic collision with Lc,min “ 0.05 m, (a) α “ 3˝, (b)
α “ 6˝, (c) α “ 10˝ and (d) α “ 15˝. The total number of fragments is approximately 1500, of which
616, 977, 1121 and 1203 collided with Earth, respectively.
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5. Kessler syndrome
Using the discrete and continuous algorithms to detect collisions and the SBM to perform
them, we can simulate the evolution of a system of satellites. Firstly, let us apply the models
to the homogeneous system introduced in Section 3.3. In the same section we saw that for low
particle numbers and small satellite radii, the continuous algorithm performs best. Figures 17
and 18 shows the evolution of the number of satellites over time as predicted by Algorithm 4,
from an initial configuration of N “ 100 and N “ 500 satellites, chosen independently from a
homogeneous distribution in the spherical shell.
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Figure 17: 500 year evolution of N “ 100 homogeneous satellites with s “ 5 m, rinner “ 300 km,
h “ 50 km Lc,min “ 0.05 m and α “ 3. a) shows the total number of particles Ntot in blue, the number
of remaining original satellites Nsats in red, the number of escaped particles Npe in magenta and the
number of particles collided with the central body Npccb in black durinh the first 200 years. b) plots the
total number of collisions Ncols, which is composed of the number of scatterings Nsc in blue, the number
of non- and catastrophic collisions Nncc and Ncc in red and magenta. c) is a plot of the time between
successive collisions in blue with a 20-term moving average in red.

We see from Figure 17 that an initially small number of random medium sized satellites
evolves into a large number of debris particles in just a few decades. Moreover, by the end of
the first decade all the original satellites have collided and are either fully or partly fragmented.
This is followed by a period where the total particle number does not increase significantly, but
the number of collisions does.

The composition of the collisions in 17.b) changes in the same period as well. From being
mostly catastrophic collisions to all scatterings. This is because at this stage there is only
debris present in the system, which is either too small or too light for Algorithm 9 to classify
a collision as catastrophic. As is discussed in Section 4.3, most of the generated debris’ size is
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equal to or slightly larger than the minimum characteristic length Lc,min, which means that any
collision between two debris particles can not produce more, smaller particles. Moreover, the
low mass of the fragments causes mfrag ă mfrag,min for most collisions.

Lastly, the time between ∆tcol collisions in Figure 18.c) is high at first, due to initially
small number of satellites. However, after the fragmentation of these original satellites, ∆tcol

decreases two orders of magnitude. This means that even though the debris particles have small
radii, the number of debris is large enough so that the time between collisions is decreased.
Taking Equation (3.29) into consideration, we see that this must mean that the product of the
number of satellites and the satellite radius Ns, becomes larger as time progresses. Due to the
numerous fragments present in the system at later times, the radii of the satellites is no longer
constant. Therefore we take the average radius s̄, which gives

pNsqinitial “ 500 m pNs̄qfinal “

Nfinal
ÿ

i“1

si « 572 m,

where Nfinal is the number of particles at the end of the simulation.
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Figure 18: Same as Figure 17, but now for approximately 35 years of N “ 500 homogeneously dis-
tributed satellites.

In Figure 18.a) we see that if the number of satellites in the beginning is increased by a
factor of 5 with respect to the example of Figure 18, the number of resulting debris particles
is about 10 to 20 times larger. Also, the number of original satellites present in the system
vanishes more quickly, within 5 years to be precise. Both of these differences can be attributed
to the increased likelihood that two original satellites collide with each other, which generates
more fragments and causes these satellites to decrease in number more quickly. This also
happened in the simulation for N “ 100, but to a lesser extent; most of the original satellites
collided with a fragment resulting from an earlier collision.

In comparison to the case of N “ 100, we see in 18.b) that within a tenth of the simulated
time the same total number of collisions occur, Ncols « 10000. Also, these collisions are mostly
(non-)catastrophic, which means fragments are still being generated from collisions of larger
sized debris. Frankly, only the first 35 years of this system could be simulated within the time
frame of the writing of this paper. The reason for this was the high total particle number at the
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end of the simulation, for which the continuous algorithm is not well suited in its current state.
It would be interesting to simulate at least a hundred more years to investigate whether or not
the average collision time stabilises like it did for N “ 100 satellites.

In both Figures 17.a) and 18.a) one can also observe that in the first few year of the simula-
tions a reasonable proportion of all the fragments generated in collisions collide with the Earth
(central body) Npccb and a smaller fraction escape from the system entirely Npe. After about a
decade these numbers remain approximately constant. In particular,

ˆ

Npe

Nfinal

˙

N“100
“ 9.33% and

ˆ

Npccb

Nfinal

˙

N“100
“ 77.35%,

ˆ

Npe

Nfinal

˙

N“500
“ 3.66% and

ˆ

Npccb

Nfinal

˙

N“500
“ 83.92%.

This can again be attributed to the decrease in large fragments and, thereby, the decrease in
the number of generated fragments in any collision. In the beginning the original medium
sized satellites collide forming large numbers of fragments, of which many will collide with
the central body or escape.

Now that we understand how a system with a small number of randomly distributed satel-
lites can evolve into one with many fragments, we investigate how a system of ordered satellites
in combination with a high number of debris-like particles behaves over time. The motivation
for this lies in the definition of the Kessler syndrome. That is, we want to see if usually stable
configuration of satellites, can become destabilised due to a collision cascade. To generate a
system of N ordered, non-colliding satellites we will divide the satellites over closely spaced
non-intersecting layers. Now let

Nlayer “
N

#layers
,

be the number of satellites in any layer, then choose for each satellite i

Ωi “ i
360˝

N
, ωi “ 0, Ma,i “ γ1 `

i mod Nlayer

Nlayer
pγ2 ´ γ1q and Ii “ 60˝,

where γ1 and γ2 are the minimum and maximum mean anomaly between which the satellites in
any given layer are situated. Also, the mean anomaly is now automatically zero in the periapsis.
Furthermore, the semi-major axes and eccentricities are given as

ai “ h1 `
i mod Nlayer

Nlayer
ph2 ´ h1q, ei “ 1.00ˆ 10´5. (5.1)

This configuration ensures that the layers are spaced evenly over a minimum and maximum
height h1 and h2 and remain separated due to the low eccentricity of the satellites. Figure
19 shows the evolution of this ordered system of satellites combined with an instance of the
homogeneous distribution of satellites.
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Figure 19: One day evolution of a system of large ordered satellites within a homogeneous distribution
of relatively small debris-like satellites. The ordered distribution consists of Nord “ 5000 satellites with
radius sord “ 20 m of mass mord “ 500 kg. The layers are spaced within the spherical shell starting at
an altitude of h1 “ 100 km up to h2 “ 130 km. The Nhom “ 105 homogeneously distributed satellites
have a radius shom “ 1 m and a mass of mhom “ 20 kg. These were situated in the same shell with
rinner “ RC ` 100 km and h “ 30 km. Moreover, the minimum characteristic length is lowered to
Lc,min “ 0.01 m to incorporate the effect of smaller collisions. The plots a), b) and c) display the same
information as Figures 17 and 18.

The discrete algorithm was used to generate the results in Figure 19, as this system involves
many particles with relatively large radii situated within a spherical shell of a small height.
Within a day 5 ordered satellites in this system have collided. These satellites must have col-
lided with one of the debris-like particles from the homogeneous distribution, since the ordered
satellites do not collide with each other. Ncols “ 758 collisions generated a total of 535619
fragments. From equation (4.10) and using the values of given for the mass of the debris-like
particles we find that the number fragments that can possibly be generated by the collision be-
tween these particles is 442. In the same way we can determine that the number of fragments

50



from a collision between a debris-like particle and a larger ordered satellite is 27895. Multi-
plying the former by Ncols ´ 5 gives 317766 and multiplying the latter with 5 gives 139475.
Adding these fragment numbers up gives Nfrags,max “ 457241 which is the number of fragments
generated in the first five satellite-debris collisions added to the maximum number of fragments
that could have been generated by debris-debris collisions alone. However, The total number
of fragments generated is over a million, because 812858 fragments have collided with the
Earth. Since this number is larger than Nfrags,max, this must mean that the fragments generated
in the first five satellite-debris collisions have collided with more debris particles, which would
generate more fragments than debris-debris collisions alone.

If anything, all the figures in this section show the tendency of one or a few fragmentation
events early on in the evolution of a debris model to cause a cascade of collisions and debris
generation right after. In this sense, both the discrete and continuous algorithms predict a
Kessler Syndrome. Therefore, this thesis’ simple collision model slightly mirrors predictions
made by more advanced models from leading space agencies like NASA’s LEGEND, ESA’s
DELTA and JAXA’s LEODEEM [Lio+13].
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6. Conclusion
The aim of this paper was to create a simplified space debris evolution model for a system of
colliding satellites in Kepler orbits in order to study the Kessler Syndrome. To enable the use
of Kepler orbits we neglected i) the mutual gravity between any two satellites, ii) the oblate
shape of the Earth (J2 perturbation), iii) disturbing gravity of the moon and planets, iv) the
atmosphere and v) solar radiation pressure. This allowed for a simple Two Body Problem
(TBP) formulation for the equations of motion of the satellites. To check and compare this
Kepler orbit-based collision detection method, another method was developed based on the
numerical integration of the TBP. As the former is an analytical solution of the TBP valid at all
times and the latter only at multiples of the time step ∆t, these algorithms were aptly named
The continuous algorithm and The discrete algorithm, respectively.

The comparison between the discrete and continuous algorithms focused on the average
time to the first collision t̄col in a system of N homogeneously distributed satellites with radius
s and within a spherical shell of height h (in LEO). t̄col was computed for several values of
N, s and h, keeping the other two constant. The predictions of both algorithms were then
successfully fitted to a theoretically determined relation for the value of t̄col based on the same
parameters. Further analysis of the computation time suggested that the continuous algorithm
has a time-complexity of OpN2q, as it was outperformed by the discrete algorithm for systems
with high satellite numbers and densely populated with orbits. However, for systems with
a relatively low number of small satellites in non-crossing orbits, the continuous algorithm
performed better. This was because it calculates the time of the next collision, which was large
for systems of this kind. As a consequence, it only needed to propagate the two colliding
satellites to this time and it could do so instantly using the equation of a Kepler orbit. In
contrast, the discrete algorithm had to propagate the entire system of satellites and could only
perform collisions in the current time step. This advantage of the continuous algorithm is
presumed to be entirely lost however, once one or more of the assumptions i-v) are removed
from the model. Though both algorithms amenable to and could greatly benefit from parallel
execution of their inherent calculations, it is for this reason that the continuous algorithm could
be improved the most.

An implementation of the NASA Standard Breakup Model was used to perform general
two-body collisions, which in combination with the continuous algorithm was used to predict
long term LEO debris evolution of a small number of homogeneously distributed satellites. Two
simulations were discussed, one with N “ 100 and other with N “ 500 satellites initially. Both
predicted that all the original satellites collide and break apart within the first decade, causing
further collision and fragmentation later on. In at least the first simulation, the average time be-
tween collisions was shown to decrease approximately two orders of magnitude over a period
of 500 years. A third simulation of the short term evolution of 5000 ordered satellites in com-
bination with 105 homogeneously distributed debris-like particles using the discrete algorithm
showed a similar decrease in average collision time. Both algorithms showed the cascading
effect a fragmentation collision early on in the simulation has on the the number of fragments
and collisions after it. It was therefore concluded that this thesis’ simple space debris evolu-
tion model already encompasses the Kessler Syndrome similar to more advanced from leading
space agencies.

Future research could focus on expanding the continuous algorithm to include basic effects
like ii) and iii) so that it can be applied more realistically to larger time frames. Especially, to
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investigate if it is still able to bridge large time gaps more efficiently than the discrete algorithm
or any other time integration based methods can.
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Appendix

A: Additional equations for orbital elements
The coordinate transformation from the orbital to the reference plane is mediated by the fol-
lowing rotation matrix

R “

¨

˝

cosΩ cosω´ sinΩ sinω cos I ´ cosΩ sinω´ sinΩ cosω cos I sinΩ sin I
sinΩ cosω` cosΩ sinω cos I ´ sinΩ sinω` cosΩ cosω cos I ´ cosΩ sin I

sinω sin I cosω sin I cos I

˛

‚,

(A1)

with the longitude of ascending node Ω, argument of periapsis ω and inclination I.
The angular momentum of a satellite is given by

#»
L “ m #»r ˆ #»v . (A2)

The eccentricity vector of an orbit is related to the Laplace-Runge-Lenz vector
#     »
LRL as

#»e “
#     »
LRL

GMm2 “

#»v ˆ
#»
L

GMm
´

#»r
|

#»r |
, (A3)

where M is the mass of the central body and m and #»r are the mass and position vector of the
satellite.

The velocity of a satellite can be determined from
#»
L and #»e through

#»v “
GMm

|
#»
L |

#»
L ˆ

ˆ

#»e `
#»r
|

#»r |

˙

. (A4)

B: Derivations for Kepler orbit collision methods
Here follows the full derivation of equation 3.11 Squaring and expanding equation 3.10 gives

|
#»
δ | ă psi ` s jq|

#»u |

|p
#»r j ´

#»r i `
#»v jdt j ´

#»v idtiq ˆ
#»u |2 ă psi ` s jq

2
|

#»u |2,

|p
#»r j ´

#»r iq ˆ
#»u |2 ` 2p #»r j ´

#»r jq ˆ
#»u ¨ p #»v jdt j ´

#»v idtiq ˆ
#»u ` |p #»v jdt j ´

#»v idtiq ˆ
#»u |2 ă psi ` s jq

2
|

#»u |2.

The second term on the l.h.s. of the inequality can be shown to be zero. Where it can be used
that for

#»
d “

#»r j ´
#»r i,

#»
d ¨ #»v i “ 0 and

#»
d ¨ #»v j “ 0, since

#»
d is the minimum distance vector.

This in combination with the vector identity

p
#»a ˆ

#»
b q ¨ p #»c ˆ

#»
b q “ p #»a ¨ #»c q|

#»
b |2 ´ p #»a ¨

#»
b qp #»c ¨

#»
b q.

As for the first term, we have

|p
#»r j ´

#»r iq ˆ
#»u |2 “ |

#»
d ˆ #»u |2 “ |

#»
d |2| #»u |2 ´ p

#»
d ¨ #»u q2 “ |

#»
d |2| #»u |2,

using that
#»
d ¨ #»u “ 0. Hence this simplifies to

|p
#»v jptcol

i j ´ kT j ´ t1
jq ´

#»v iptcol
i j ´ kTi ´ t1

i qq ˆ
#»u | ă

b

psi ` s jq
2 ´ |

#»
d |2| #»u |,

56



where dti, j is expanded using equation 3.9. Now, using that #»u “ #»v j ´
#»v i, we get

ˇ

ˇkTi ` t1
i ´ lT j ´ t1

j

ˇ

ˇ ă

b

psi ` s jq
2 ´ |

#»
d |2| #»u |

|
#»v i ˆ

#»v j|
,

as required.

C: NASA SBM distributions
Area-to-mass ratio of fragments with Lc ě11 cm satisfies the following distribution

DLcě0.11
A{M “ αpλcqNpµ1pλcq, σ1pλcq, χq ` p1´ αpλcqqNpµ2pλcq, σ2pλcq, χq, (C1)

where

- λc “ log10pLcq

- χ “ log10pA{Mq

- N is the normal distribution function with pre-factor α, mean µ1,2 and standard deviation
σ1,2. These are in turn given by

α “

$

’

&

’

%

0 λc ď ´0.95
0.3` 0.4pλc ` 1.2q ´0.95 ă λc ă 0.55
1 λc ě 0.55

µ1 “

$

’

&

’

%

´0.6 λc ď ´1.1
´0.6` 0.318pλc ` 1.1q ´1.1 ă λc ă 0
´0.95 λc ě 0

σ1 “

$

’

&

’

%

0.1 λc ď ´1.3
0.1` 0.2pλc ` 1.3q ´1.3 ă λc ă ´0.3
0.3 λc ě ´0.3

µ2 “

$

’

&

’

%

´1.2 λc ď ´0.7
´1.2` 1.333pλc ` 0.7q ´0.7 ă λc ă ´0.1
´2.0 λc ě ´0.1

σ2 “

$

’

&

’

%

0.5 λc ď ´0.5
´λc ´0.5 ă λc ă ´0.3
0.3 λc ě ´0.3

Area-to-mass ratio of fragments with Lc ă11 cm satisfies

DLcă0.11
A{M “ Npµpλcq, σpλcq, χq, (C2)
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where

µ “

$

’

&

’

%

´0.3 λc ď ´1.75
´0.3` 1.4pλc ` 1.75q ´1.75 ă λc ă ´1.25
´1.0 λc ě ´1.25

σ “

#

0.2 λc ď ´3.5
0.2` 0.1333pλc ` 3.5q λc ą ´3.5

The delta-velocity distribution for fragments is distributed as

D∆v “ Npµpχq, σ, νq. (C3)

where

- ν “ log10p∆vq

- µ “ 0.6χ` 2.9

- σ “ 0.4

Code for the simulation

1 #from dataclass import datasets
2 import numpy as np
3 from scipy import special
4 import os
5

6 #%% datasets class
7 class datasets():
8 """Contains a collection of datasets to experiment with the Kepler and

k-d tree SCM’s."""
9 ############# constants ############

10 # mass & radius of the earth
11 earthM = 5.972e24 #kg
12 earthR = 6371e3 #m
13 # The gravitational constant
14 G = 6.67428e-11
15 mu = G*earthM
16 # Astronomical unit
17 AU = (149.6e6 * 1000) #149.6 million km, in meters.
18 #time steps
19 minute = 60
20 hour = 60*minute
21 day = 24*hour
22 year = 365*day
23 century = 100*year
24

25 def __init__(self,data_type,args=None):
26 if args != None:
27 datasets.__dict__[data_type](self,args)
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28 else:
29 datasets.__dict__[data_type](self)
30

31 def kep(self):
32 """load parameters for satellites (100 starlink satellites) at

approximately same epoch"""
33 import openpyxl
34 filepath = r"C:\\Users\\TUDelftSID\\OneDrive - Delft University of

Technology\\Documenten\\TUD\\BEP\\realsatdata\\"
35 filename = ’starlink-track(1 meting 100 sats)’
36 wb_obj = openpyxl.load_workbook(filepath+filename+’.xlsx’)
37 sheet = wb_obj.active
38 col_names = []
39 for column in sheet.iter_cols(1, sheet.max_column):
40 col_names.append(column[0].value)
41 data = {}
42 for i, row in enumerate(sheet.iter_rows(values_only=True)):
43 for j in range(16):
44 if i == 0:
45 data[col_names[j]] = []
46 else:
47 data[col_names[j]].append(row[j])
48 for key in list(data.keys()):
49 data[key] = np.array(data[key])
50

51 #preparing data
52 Nsats_k = len(data[’NORAD_CAT_ID’])
53 self.Epoch = data[’EPOCH’]
54 Inc = data[’Inc’] #degrees
55 self.Ecc = data[’Ecc’]
56 MnM = data[’MnM’] #revolutions per day
57 LAN = data[’LAN’] #degrees
58 AgP = data[’AgP’] #degrees
59 MnA = data[’MnA’] #degrees
60 SMA = data[’SMa’]
61 #typical mass and size of starlink sats
62 self.Nsats = Nsats_k
63 self.S = np.array([1]*Nsats_k) #’roughly the size of a table’:

https://skyandtelescope.org/astronomy-news/spacex-launches-latest-
starlink-satellite-batch/’

64 self.M = np.array([280]*Nsats_k)
65 #converting units
66 self.MnM = 2*np.pi/(self.day/MnM) #rads per second
67 self.Inc = 2*np.pi*(Inc/360)
68 self.LAN = 2*np.pi*(LAN/360)
69 self.AgP = 2*np.pi*(AgP/360)
70 self.MnA = 2*np.pi*(MnA/360)
71 self.SMA = SMA*1e3
72

73 def eph(self):
74 """load ephemeris of all current starlink satellites (as of 27

September 2021).
75 The correspoding ephemeris file should be placed in the same

directory as this one."""
76 #set file location
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77 filepath = r"C:\Users\TUDelftSID\OneDrive - Delft University of
Technology\Documenten\TUD\BEP\ephemeris starlink 2021270"

78 files = os.listdir(filepath)
79 Epoch = []
80 Nsats_e = len(files)
81 R = np.zeros((Nsats_e,3))
82 V = np.zeros((Nsats_e,3))
83 for i,file in enumerate(files):
84 n = os.path.join(filepath,file)
85 with open(n) as fi:
86 eph = fi.readlines()[4].split(" ")
87 eph[-1] = eph[-1][:-2]
88 params = np.array(eph[1:]).astype(np.float64) #Epoch, XYZ,

VxVyVz
89 #time of measurement given in seconds starting from the

beginning of 2021
90 day = float(eph[0][4:7])
91 hour = float(eph[0][7:9])
92 minute = float(eph[0][9:11])
93 sec = float(eph[0][11:])
94 Epoch.append(day*24*3600+hour*3600+minute*60+sec)
95 R[i,:] = params[0:3]*1e3
96 V[i,:] = params[3:]*1e3
97 #typical mass and size of starlink sats
98 self.Nsats = Nsats_e
99 self.R = R

100 self.V = V
101 self.S = np.array([1]*Nsats_e) #’roughly the size of a table’:

https://skyandtelescope.org/astronomy-news/spacex-launches-latest-
starlink-satellite-batch/’

102 self.M = np.array([280]*Nsats_e)
103 #correct unsimultaneous measurement of parameters
104 #(still needs to be done...)
105

106

107 def col(self,N):
108 """ take one starlink sat and randomly change its LAN, Inc and AgP
109 thereby generating multiple sats that will likely collide"""
110 N = int(N)
111 self.Inc = np.random.random(N)*np.pi
112 self.Ecc = np.array([0]*N)
113 self.LAN = np.random.random(N)*2*np.pi
114 self.AgP = np.random.random(N)*2*np.pi
115 self.MnA = np.random.random(N)*2*np.pi-self.AgP #mean anomaly is

zero at periapsis
116 self.SMA = np.array([6.5258*1e6]*N)
117 self.MnM = np.sqrt(self.mu/self.SMA**3)
118 self.S = np.array([3]*N) #increase chance of collisions
119 self.M = np.array([400]*N)
120 self.Nsats = N
121

122 def sim(self,args):
123 """a random system of satellites used to study/look for the Kessler

syndrome"""
124 N = args[0]
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125 s = args[1]
126 m = args[2]
127 h = args[3]
128 self.Nsats = N
129 self.Inc = np.random.random(N)*np.pi
130 self.LAN = np.random.random(N)*2*np.pi
131 self.AgP = np.random.random(N)*2*np.pi
132 self.MnA = np.random.random(N)*2*np.pi-self.AgP #mean anomaly is

zero at periapsis
133 R_i = self.earthR+h[0]*1e3 #minimum of ... km height
134 R_o = self.earthR+h[1]*1e3 #maximum of ... km height: #LEO: 0<a

<2000
135

136 #completely homogeneous (no lower bound for eccentricity)
137 a1 = np.random.uniform(low=R_i,high=R_o,size=N)
138 a2 = np.random.uniform(low=R_i,high=R_o,size=N)
139 A = np.array([a1,a2])
140 per = np.min(A,axis=0)
141 aper = np.max(A,axis=0)
142

143 # #minimum eccentricity (favors higher orbits)
144 # l = 2*R_o*e_min/(1+e_min)
145 # per = np.random.uniform(low=R_i,high=R_o-l,size=N)
146 # aper = np.random.uniform(low=per+l,high=R_o,size=(1,N))[0]
147 self.SMA = (1/2)*(aper+per)
148 self.Ecc = (aper-per)/(aper+per)
149 self.MnM = np.sqrt(self.mu/self.SMA**3)
150 self.S = np.array([s]*N)
151 self.M = np.array([m]*N)
152

153 def ordd(self,args):
154 """system of sats that do not collide"""
155 Nsats_o = args[0]
156 self.Nsats = Nsats_o
157 layers = 5
158 s = args[1]
159 m = args[2]
160 h = args[3]
161 band = (h[1]-h[0])*1e3
162 lb = datasets.earthR + h[0]*1e3
163 ub = datasets.earthR + h[1]*1e3
164 self.Inc = np.array([(53/360)*2*np.pi]*Nsats_o)
165 self.Ecc = np.array([0.00001]*Nsats_o)#0.001*(1 + np.random.random(

Nsats_o))
166 self.SMA = np.tile(np.arange(lb,ub,band/layers),(int(Nsats_o/layers

,)))
167 self.MnM = np.sqrt(self.mu/self.SMA**3)
168 self.LAN = np.linspace(0,2*np.pi,Nsats_o)
169 self.AgP = np.array([(80/360)*2*np.pi]*Nsats_o)
170 self.MnA = np.tile(np.arange(-70,70,140/layers),(int(Nsats_o/layers

,)))-self.AgP #mean anomaly is zero at periapsis
171 self.S = np.array([s]*Nsats_o)
172 self.M = np.array([m]*Nsats_o)
173

174 def rog(self,args):
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175 """same as above, but with one rogue satellite"""
176 self.ordd(args)
177 Nsats_r= self.Nsats+1
178 self.Nsats = Nsats_r
179 self.Inc = np.append(self.Inc,np.array([((180-53)/360)*2*np.pi])) #

retrograde sat
180 self.Ecc = np.append(self.Ecc,self.Ecc[-1])
181 self.SMA = np.append(self.SMA,self.SMA[8]) #same as 9th layer
182 self.MnM = np.sqrt(self.mu/self.SMA**3)
183 self.LAN = np.append(self.LAN,self.LAN[8]+(2/360)*2*np.pi) #aprox

same as 9th layer.
184 self.AgP = np.append(self.AgP,np.array([(80/360)*2*np.pi])) # same

as before
185 self.MnA = np.append(self.MnA,self.MnA[8])-self.AgP #mean anomaly

is zero at periapsis
186 self.S = np.append(self.S,np.array([2]))
187 self.M = np.append(self.M,np.array([200]))
188

189 def mist(self,args):
190 """combination of ordered and homogeneously distributed satellites

"""
191 ordd = datasets(’ordd’,args[0])
192 mist = datasets(’sim’,args[1])
193 self.Nsats = mist.Nsats + ordd.Nsats
194 self.Inc = np.append(ordd.Inc,mist.Inc)
195 self.LAN = np.append(ordd.LAN,mist.LAN)
196 self.AgP = np.append(ordd.AgP,mist.AgP)
197 self.MnA = np.append(ordd.MnA,mist.MnA)
198 self.Ecc = np.append(ordd.Ecc,mist.Ecc)
199 self.SMA = np.append(ordd.SMA,mist.SMA)
200 self.MnM = np.append(ordd.MnM,mist.MnM)
201 self.S = np.append(ordd.S,mist.S)
202 self.M = np.append(ordd.M,mist.M)
203

204 def sc(self,args):
205 """one pair of colliding satellites"""
206 Nsats = 2
207 m0 = args[0]
208 m1 = args[1]
209 s0 = args[2]
210 s1 = args[3]
211 self.Nsats = Nsats
212 self.Inc = np.array([60.0,120.0])*2*np.pi/360
213 self.Ecc = np.array([0.005]*Nsats)
214 self.SMA = np.array([100e3+self.earthR]*2)
215 self.MnM = np.sqrt(self.mu/self.SMA**3)
216 self.LAN = np.array([0,10.0])*2*np.pi/360
217 self.AgP = np.array([0.0]*Nsats)
218 self.MnA = np.array([0.0]*Nsats)-self.AgP #mean anomaly is zero at

periapsis
219 self.S = np.array([s0,s1])
220 self.M = np.array([m0,m1])
221

222 def ze(self,N):
223 """random system of satellites in circular orbits"""
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224 self.Nsats = N
225 h_l = 100
226 h_u = 200
227 self.Inc = np.random.random(N)*2*np.pi
228 self.LAN = np.random.random(N)*2*np.pi
229 self.AgP = np.random.random(N)*2*np.pi
230 self.MnA = np.random.random(N)*2*np.pi-self.AgP #mean anomaly is

zero at periapsis
231 self.Ecc = np.zeros(N)
232 R_i = self.earthR+h_l*1e3 #minimum of ... km height
233 R_o = self.earthR+h_u*1e3 #maximum of ... km height: #LEO: 0<a<2000
234 self.SMA = (np.random.random(N)*(R_o-R_i)+R_i)
235 self.MnM = np.sqrt(self.mu/self.SMA**3)
236 self.S = np.array([10.0]*N)
237 self.M = np.array([200.0]*N)
238

239 def fc(self):
240 """OMM of all satellites (active and debris) in LEO (yet to be

implemented)"""
241 pass
242

243

244 #%% Main Kessler class
245 class Kessler(datasets):
246 """Main Kessler class. Imports data from the datasets clas, contains an

implementation
247 of NASA’s SBM and key methods (coordinate transformation from orbital

plane to reference
248 plane, angular momentum-, eccentricity vector, the Verlet algorithm and

more)."""
249

250 def __init__(self,Lcmin=None,alfa=None,Nbins=None):
251 """Some NASA SBM parameters: Lcmin is the minimum characteristic

length,
252 alfa is the maxmimum scattering angle, ’nu’ contains the to be

sampled
253 values of the log of delta velocities (nu = log(dV)) and minNF is

lower
254 bound for the number of fragments generated in a collision.
255 """
256 ### NASA SBM parameters
257 if Lcmin == None:
258 self.Lcmin = 0.05 #m
259 else:
260 self.Lcmin = Lcmin
261 if alfa == None:
262 self.alfa = 3 #degrees
263 else:
264 self.alfa = alfa
265 if Nbins==None: #resolution of Lc and nu arrays
266 self.Nbins = 50
267 else:
268 self.Nbins = int(Nbins)
269 self.nu = np.linspace(0,2.5,self.Nbins) #10^0 = 1 to 10^(2.7) = 500

m/s
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270 self.alfa = 3 #maximum scattering and breakup angle
271 self.minNF = 4 #minimum number of fragments
272 #total number of collisions
273 self.Ncols = np.array([0],dtype=np.int32)
274 #arrays keeping track of number of collisions per type
275 self.Ncc,self.Nncc,self.Nsc = np.array([],dtype=np.int32),\
276 np.array([],dtype=np.int32),np.array([],dtype=np.int32)
277 self.Ncct,self.Nncct,self.Nsct =np.array([],dtype=np.int32),\
278 np.array([],dtype=np.int32),np.array([],dtype=np.int32)
279 #arrays keeping track of number of escaped or decayed fragments
280 self.Npe,self.Npccb = np.array([0],dtype=np.int32),\
281 np.array([0],dtype=np.int32)
282

283 def load_data(self,dtype,max_t,args=None):
284 datasets.__init__(self,dtype,args=args)
285 self.max_t = max_t
286

287 #####################################################
288 ############# NASA BREAKUP MODEL ####################
289 #####################################################
290 def collision(self,other,tcol,dt,alg=None):
291 """Root collision function. Determines what kind of collision

should take place
292 (elastic/scatter, breakup) and calls the appropriate collision

function. t_col
293 is an np array of shape (n,) or list containing the time of all the

n collisions
294 (in case of kepler algorithm tcol = [0]).
295 alfa is the maximum scattering angle in degrees.
296 """
297 #initialise fragment arrays
298 other.R = np.zeros((0,3))
299 other.V = np.zeros((0,3))
300 other.M = np.zeros(0)
301 other.S = np.zeros(0)
302 #determine which particles scatter and which breakup
303 if alg == ’kep’:
304 pi = np.array([self.si[0]])
305 pj = np.array([self.sj[0]])
306 else:
307 pi = self.si
308 pj = self.sj
309 rad_i = self.S[pi]
310 rad_j = self.S[pj]
311 a1 = rad_i<=self.Lcmin#below Lcmin only scattering will take place
312 a2 = rad_j<=self.Lcmin
313 a = a1|a2
314 scat_idx = np.arange(len(pi))[a]
315 break_idx = np.arange(len(pj))[np.logical_not(a)]
316

317 U = self.V[pi[break_idx]] - self.V[pj[break_idx]]
318 M_i = self.M[pi[break_idx]]
319 M_j = self.M[pj[break_idx]]
320 Mp_idx = (M_i<M_j).astype(int)
321 Mp = np.array([M_j,M_i])[Mp_idx,np.arange(len(break_idx))]
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322 U_normsq = np.sum(U**2,axis=1)
323 limit = (self.minNF/(0.1*self.Lcmin**(-1.71)))**(4/3)
324 b1 = Mp*U_normsq/1e6<=limit
325 Mtot = M_i+M_j
326 b2 = Mtot<=limit
327 b = b1&b2
328 scat_idx = np.append(scat_idx,break_idx[b])
329 break_idx = break_idx[np.logical_not(b)]
330 pi_br = pi[break_idx]
331 pj_br = pj[break_idx]
332 pi_sc = pi[scat_idx]
333 pj_sc = pj[scat_idx]
334

335 tcol_br = tcol[break_idx]
336 tcol_sc = tcol[scat_idx]
337

338 ncc,cc = self.colkind(pi_br,pj_br,tcol_br)
339 U = self.V[ncc[0]] - self.V[ncc[1]]
340 U_normsq = np.sum(U**2,axis=1)
341 M_i_ncc = self.M[ncc[0]]
342 M_j_ncc = self.M[ncc[1]]
343 M_i_cc = self.M[cc[0]]
344 M_j_cc = self.M[cc[1]]
345 Mp_idx = (M_i_ncc<M_j_ncc).astype(int)
346 Mp = np.array([M_j_ncc,M_i_ncc])[Mp_idx,np.arange(len(ncc[0]))]
347 c1 = Mp*U_normsq/1e6<=limit
348 c2 = M_i_cc+M_j_cc<=limit
349 idxi = np.append(ncc[0][c1], cc[0][c2])
350 idxj = np.append(ncc[1][c1], cc[1][c2])
351 c1 = np.logical_not(c1)
352 c2 = np.logical_not(c2)
353 pi_br_ncc = ncc[0][c1]
354 pj_br_ncc = ncc[1][c1]
355 N_ncc = ncc[2][c1]
356 ncc = (pi_br_ncc,pj_br_ncc,N_ncc,ncc[3])
357 pi_br_cc = cc[0][c2]
358 pj_br_cc = cc[1][c2]
359 N_cc = cc[2][c2]
360 cc = (pi_br_cc,pj_br_cc,N_cc,cc[3])
361

362 sorter = np.argsort(pi)
363 tcoldiff = tcol[sorter[np.searchsorted(pi, idxi, sorter=sorter)]]
364 tcol_br = np.delete(tcol_br,np.where(tcol_br==tcoldiff)[0])
365 tcol_sc = np.append(tcol_sc,tcoldiff)
366

367 pi_sc = np.append(pi_sc,idxi)
368 pj_sc = np.append(pj_sc,idxj)
369 p_sc = (pi_sc,pj_sc)
370

371 N_sc = len(pi_sc)
372 N_ncc = len(pi_br_ncc)
373 N_cc = len(pi_br_cc)
374 self.N_l = [N_sc,N_ncc,N_cc]
375

376 if len(pi_br)>0:
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377 self.breakup(other,tcol_br,ncc,cc,dt)
378 if len(pi_sc)>0:
379 self.scatter(other,tcol_sc,p_sc,dt)
380

381 self.delarr = np.concatenate(cc[:2]+ncc[:2]+p_sc,axis=0)
382

383 def colkind(self,pi,pj,tcol):
384 """Determines what kind of collision occurs between two satellites.
385 Returns indices of (non-)catastrophic collisions and gives the

total
386 number of fragments.
387 """
388 proj_i = np.where(self.M[pi]<=self.M[pj])[0] #i is projectile if

its mass is less massive
389 proj_j = np.where(self.M[pj]<self.M[pi])[0] #idem
390 #relative kinetic energy of projectile divided by mass of larger

sat
391 #[J/g]
392 U = self.V[pi] - self.V[pj]
393 U_normsq = np.sum(U**2,axis=1)
394 Er_i = (1/2)*self.M[pi][proj_i]*U_normsq[proj_i]/(1e3*self.M[pj][

proj_i])
395 Er_j = (1/2)*self.M[pj][proj_j]*U_normsq[proj_j]/(1e3*self.M[pi][

proj_j])
396 #determine indices of catastrophic collisions (Er>40J/g)
397 cat_i = proj_i[np.where(Er_i>40)]
398 ncat_i = proj_i[np.where(Er_i<=40)]
399 cat_j = proj_j[np.where(Er_j>40)]
400 ncat_j = proj_j[np.where(Er_j<=40)]
401 cat = np.append(cat_i,cat_j)
402 pi_c = pi[cat]
403 pj_c = pj[cat]
404 M_ncat = np.append(self.M[pi][ncat_i]*(U_normsq[ncat_i]/1e6),
405 self.M[pj][ncat_j]*(U_normsq[ncat_j]/1e6))
406 ncat = np.append(ncat_i,ncat_j)
407 pi = pi[ncat]
408 pj = pj[ncat]
409 # M_cat = (self.M[pi_c]+self.M[pj_c])[:,None]
410 M_cat = (self.M[pi_c]+self.M[pj_c])
411 N_ncat = 0.1*M_ncat**(0.75)*self.Lcmin**(-1.71)/2 #other half is

added later
412 N_cat = 0.1*M_cat**(0.75)*self.Lcmin**(-1.71)/2 #idem
413 ncc = (pi,pj,N_ncat.astype(int),tcol[ncat])
414 cc = (pi_c,pj_c,N_cat.astype(int),tcol[cat])
415 return ncc,cc
416

417 def breakup(self,other,tcol,ncc,cc,dt):
418 """calls the appropriate version of the ’Kessler.fragment’ method

"""
419 #assign masses, sizes and velocities to fragments
420 if len(ncc[2])>0:
421 self.fragment(other,ncc[0],ncc[1],ncc[2],tcol,’ncat’,dt)
422 if len(cc[2])>0:
423 self.fragment(other,cc[0],cc[1],cc[2],tcol,’cat’,dt)
424
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425 def fragment(self,other,pi,pj,N,tcol,kind,dt):
426 """calculates size, mass position and velocity of fragments and

appends
427 these to the fragment arrays. Distinguishes between catastrophic (

cc) and
428 non-catastrophic collisions (ncc). In the case of cc, both

satellites are
429 fragmented entirely. As for ncc, the fragmented mass is calculated

as the
430 product of the mass of the lighter projectile and the square of the
431 relative velocity (km/s). The remaining mass is deposited into to

two
432 additional parent fragments (a small and big one reminiscent of the

projectile
433 and target), both of which are given a velocity sampled from the

same delta V
434 distributions as the fragments (using their AM-ratios). Both mass

and
435 kinetic energy (kE) conservation are ensured using a simple scaling

, where
436 the velocities are scaled only if the kE_final is greater than

kE_initial
437 and left as they are otherwise.
438 """
439 Ncols=len(pi)
440 for i in range(Ncols):
441 Nfrags_tot = N[i] #total number of frags
442 min_r = self.Lcmin
443 max_r = min([self.S[pi[i]],self.S[pj[i]]])
444 if max_r>1.0:
445 max_r = 1.0
446 unif = np.random.uniform(0,1,size=Nfrags_tot)
447 a = -1.71
448 n = self.Nbins
449 Lc = ((min_r**a-max_r**a)*unif+max_r**a)**(1/a)
450 Nfrags,Lc = np.histogram(Lc,bins=n)
451 chi = np.linspace(-2.5,0.3,n)
452 D = self.D_AM(Lc[:-1],chi)
453 AMarr = np.zeros((n,np.max(Nfrags)))
454 for j in range(n):
455 samples = np.random.random((Nfrags[j],n))
456 D_tiled = np.tile(D[j],(Nfrags[j],1))
457 chi_idx = self.find_nearest(D_tiled,samples)
458 AMarr[j,:Nfrags[j]] = 10**(chi[chi_idx])
459 #obtain mass of each fragment
460 Lcarr = np.transpose(np.tile(Lc[:-1],(np.max(Nfrags),1)))
461 A = 0.556945*Lcarr**2
462 zero_id = np.where(np.ndarray.flatten(AMarr)==0)
463 AMarr[np.where(AMarr==0)]=1 #to prevent division by zero
464 Marr = np.ndarray.flatten(A/AMarr)
465 Marr = np.delete(Marr,zero_id)
466 Lcarr = np.delete(np.ndarray.flatten(Lcarr),zero_id)
467 AMarr = np.delete(np.ndarray.flatten(AMarr),zero_id)
468 #assure mass conservation adding parent sats
469 if kind == ’ncat’:

67



470 Ml = np.array([self.M[pi[i]],self.M[pj[i]]])
471 Sl = np.array([self.S[pi[i]],self.S[pj[i]]])
472 pidx = np.where(Ml==min(Ml))[0]
473 tidx = np.where(Ml==max(Ml))[0]
474 if np.all(pidx==tidx):
475 pidx = pidx[0]
476 tidx = tidx[1]
477 Mp = Ml[pidx]
478 Mt = Ml[tidx]
479 Sp = Sl[pidx]
480 St = Sl[tidx]
481 Ui = np.array(self.V[pj[i]]-self.V[pi[i]])
482 consM = Mp*np.sum(Ui**2,axis=0)/1e6
483 if consM<Mp:
484 dmt = dmp = (1/2)*consM
485 else:
486 dm = (consM-Mp)/Mp
487 dmp = (dm%1)*Mp
488 dmt = dm*Mp-dmp
489 Mt_n = Mt-dmt
490 Mp_n = Mp-dmp
491 Marr_par = np.append(Mt_n,Mp_n) #parent array
492 Lc_t = St*(1-dmt/Mt)**(1/3)
493 Lc_p = Sp*(1-dmp/Mp)**(1/3)
494 Lcarr_par = np.append(Lc_t,Lc_p)
495 AMt = 0.556945*St**2/Mt_n
496 AMp = 0.556945*Sp**2/Mp_n
497 AMarr_par = np.append(AMt,AMp)
498 print(’\nncc between {0} and {1}’.format(pi[i],pj[i]))
499 print(’Mtot = {0}, Mfrag {1}’.format(Mp+Mt,consM))
500 elif kind==’cat’:
501 fragM = np.sum(Marr)
502 consM = self.M[pi[i]]+self.M[pj[i]]
503 #check mass conservation, remove/add particles if necessary
504 effconsM = 0.5*consM # we double everything later
505 Mdiff = fragM/effconsM
506 print(’\ncc between {0} and {1}’.format(pi[i],pj[i]))
507 print(’Mfrag {0}’.format(consM))
508 Marr = Marr/Mdiff
509 else:
510 raise ValueError(’invalid collision kind in assignAM. kind

is’+
511 ’"cat" or "ncat"’)
512 other.S = np.append(other.S,Lcarr)
513 other.S = np.append(other.S,Lcarr)
514 other.M = np.append(other.M,Marr)
515 other.M = np.append(other.M,Marr)
516 AMarr = 0.556945*Lcarr**2/Marr
517 other.AM = AMarr
518 #assign velocities (magnitude and direction)
519 dV = self.DeltaV(AMarr)
520 Vcom = (self.M[pi[i]]*self.V[pi[i]]+self.M[pj[i]]*self.V[pj[i

]])/\
521 (self.M[pi[i]]+self.M[pj[i]])
522 U_i = self.V[pi[i]]-Vcom
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523 U_i_norm = np.sqrt(np.sum(U_i**2))
524 U_j = self.V[pj[i]]-Vcom
525 U_j_norm = np.sqrt(np.sum(U_j**2))
526 #calculate internal kinetic energy
527 U = self.V[pj[i]]-self.V[pi[i]]
528 U_norm = np.linalg.norm(U)
529 other.u = U_norm
530 U_sq = U_norm**2
531 Mtot = self.M[pi[i]]+self.M[pj[i]]
532 E_1_int = (1/2)*self.M[pi[i]]*self.M[pj[i]]*U_sq/Mtot
533 i_auvec = self.avec(np.tile(U,(len(dV),1))/U_i_norm)
534 #n = np.random.randint(2,size=len(dV))
535 U_i_new = np.transpose(np.tile(-dV+U_i_norm,(3,1)))*i_auvec
536 U_j_new = -np.copy(U_i_new)
537 if kind == ’ncat’:
538 dV_par = self.DeltaV(AMarr_par)
539 other.dV = np.append(other.dV,dV_par)
540 i_auvec = self.avec(np.array([U_i/U_i_norm]))
541 j_auvec = self.avec(np.array([U_j/U_j_norm]))
542 U_par_new_i = (dV_par[0]+U_i_norm)*i_auvec
543 U_par_new_j = (dV_par[1]+U_j_norm)*j_auvec
544 Ei_2_tot = np.sum(Marr*(1/2)*
545 np.sum((U_i_new+np.tile(Vcom,(Nfrags_tot

,1)))**2,axis=1))
546 Ej_2_tot = np.sum(Marr*(1/2)*
547 np.sum((U_j_new+np.tile(Vcom,(Nfrags_tot

,1)))**2,axis=1))
548 Epar_2_tot = (1/2)*(Marr_par[0]*np.sum((U_par_new_i+Vcom)

**2)
549 +Marr_par[1]*np.sum((U_par_new_j+Vcom)

**2))
550 E_2_tot = Ei_2_tot + Ej_2_tot + Epar_2_tot #- (1/2)*Mtot*np

.sum(Vcom**2)
551 E_1_tot = (1/2)*self.M[pi[i]]*np.sum(self.V[pi[i]]**2)+\
552 (1/2)*self.M[pj[i]]*np.sum(self.V[pj[i]]**2)
553 E_frac = E_2_tot/E_1_tot
554 #assign parent velocity, mass and size
555 U_i_new = np.append(U_i_new,U_par_new_i,axis=0)
556 U_j_new = np.append(U_j_new,U_par_new_j,axis=0)
557 other.M = np.append(other.M,Marr_par,axis=0)
558 other.S = np.append(other.S,Lcarr_par,axis=0)
559 Nfrags_tot += 1 #add parent count
560 print(’fraction of conserved kinetic energy in ncc = ’,

E_frac,end=’\n’)
561 elif kind == ’cat’:
562 Ei_2_tot = (1/2)*np.sum(Marr*np.sum((U_i_new+np.tile(Vcom,(

len(Marr),1)))**2,axis=1))
563 Ej_2_tot = (1/2)*np.sum(Marr*np.sum((U_j_new+np.tile(Vcom,(

len(Marr),1)))**2,axis=1))
564 E_2_tot = Ei_2_tot + Ej_2_tot
565 E_1_tot = E_1_int + Mtot*np.sum(Vcom**2)/2
566 E_frac = E_2_tot/E_1_tot
567 print(’fraction of conserved kinetic energy in cc = {0:e}’
568 .format(E_frac),’\n’)
569 if E_frac<=1.0:
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570 E_scaling = 1
571 else:
572 E_scaling = E_frac
573 #append fragment data
574 U_i_norm = np.sqrt(np.sum(U_i_new**2,axis=1))
575 Vfrags_i = (U_i_new + np.tile(Vcom,(Nfrags_tot,1)))/np.sqrt(

E_scaling)
576 Vfrags_j = (U_j_new + np.tile(Vcom,(Nfrags_tot,1)))/np.sqrt(

E_scaling)
577 Vfrags = np.append(Vfrags_i,Vfrags_j,axis=0)
578 Vp_i = np.tile(self.V[pi[i]],(Nfrags_tot,1)) #’p’ = parent

satellite
579 Vp_j = np.tile(self.V[pj[i]],(Nfrags_tot,1))
580 Rp_i = np.tile(self.R[pi[i]],(Nfrags_tot,1))
581 Rp_j = np.tile(self.R[pj[i]],(Nfrags_tot,1))
582 Vp = np.append(Vp_i,Vp_j,axis=0)
583 Rp = np.append(Rp_i,Rp_j,axis=0)
584 phi = 2*np.pi*np.random.random(2*Nfrags_tot)
585 theta = np.arccos(1-2*np.random.random(2*Nfrags_tot))
586 offset = (self.S[pi[i]]+self.S[pj[i]])/2 #average of the sats’

radii
587 rand_vec = offset*self.spher_uvec(theta,phi)
588 #in case of discrete alg: propagate particles to collision

point and add random starting position
589 Rcp = Rp+Vp*tcol[i]+(1/2)*self.grav(Rp)*tcol[i]**2+rand_vec
590 Vcp = Vfrags
591 #in case of discrete alg: propagate to beginning of next

timestep
592 time_iv = dt-tcol[i]
593 Rdt,Vdt = self.Verlet(time_iv,R=Rcp,V=Vcp)
594 other.R = np.append(other.R,Rdt,axis=0)
595 other.V = np.append(other.V,Vdt,axis=0)
596

597

598 def scatter(self,other,tcol,p_index,dt):
599 """Models an elastic collision. Appends the parameters of particles

involved
600 in the collision to the corresponding (position, velocity, radius,

mass)
601 fragment arrays. Typically used on relatively small (~Lcmin) and

light
602 colliding particles.
603 """
604 pi = p_index[0].astype(int)
605 pj = p_index[1].astype(int)
606 n = len(pi)
607 print(’scattering occurs between {0} and {1}’.format(pi,pj),end=’\n

’)
608 #transforming to center of mass frame
609 M_i = np.transpose(np.tile(self.M[pi],(3,1)))
610 M_j = np.transpose(np.tile(self.M[pj],(3,1)))
611 Vcom = (M_i*self.V[pi]+M_j*self.V[pj])/(M_i+M_j)
612 U_i = self.V[pi]-Vcom
613 U_j = self.V[pj]-Vcom
614 U_i_norm = np.transpose(np.tile(np.sqrt(np.sum(U_i**2,axis=1))
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,(3,1)))
615 i_auvec = self.avec(U_i/U_i_norm)
616 #determine scattered particle vector
617 U_i_new = U_i_norm*i_auvec
618 U_j_new = U_j+(M_i/M_j)*(U_i - U_i_new) #momentum conservation
619 #calculate new params
620 Vfrags_i = U_i_new + Vcom
621 Vfrags_j = U_j_new + Vcom
622 Vfrags = np.append(Vfrags_i,Vfrags_j,axis=0)
623 #other.V = np.append(other.V,Vfrags,axis=0)
624 tcol = np.tile(tcol,(2)).T.reshape(2*n,1)
625 Vp = np.append(self.V[pi],self.V[pj],axis=0) #’p’ for parent

satellite
626 Rp = np.append(self.R[pi],self.R[pj],axis=0)
627 tstep = dt-tcol
628 Rcp = Rp + Vp*tcol + self.grav(Rp)*tcol**2 #to collision point
629 Rdt = Rcp + Vfrags*tstep + self.grav(Rcp)*tstep**2 #to next

timestep
630 other.R = np.append(other.R, Rdt,axis=0)
631 Vdt = Vfrags + (self.grav(Rcp)+self.grav(Rdt))*tstep/2
632 other.V = np.append(other.V, Vdt,axis=0)
633 other.M = np.append(other.M,np.append(self.M[pi],self.M[pj]))
634 other.S = np.append(other.S,np.append(self.S[pi],self.S[pj]))
635

636 ####### supporting functions ########
637 def D_AM(self,Lc,chi):
638 """AM distribution for fragments with the characteristic lentgth as
639 independent variable. It must be noted that this distribution is

only
640 valid for Lc-values from 0.01m to 0.08m and from 0.11 to 1m. Hence
641 a linear briding function remains to be implemented for the gap
642 0.08-0.11m. """
643 lc = np.log10(Lc)
644 n = len(lc)
645 d = len(chi)
646 lc0 = lc[lc<-0.959] #<11cm
647 n0 = len(lc0)
648 lc1 = lc[lc>=-0.959] #>11cm
649 n1 = len(lc1)
650

651 #mu0
652 mu0 = np.zeros(n0)
653 mu0[np.where(lc0<=-1.75)] = -0.3
654 mu0[np.where(lc0>-1.25)] = -1.0
655 mask1 = np.zeros(n0,np.bool)
656 mask2 = np.ones(n0,np.bool)
657 mask1[np.where(lc0<-1.0)] = 1
658 mask2[np.where(lc0>-1.75)] = 1
659 mask= mask1==mask2
660 mu0[mask] = -0.3-1.4*(lc0[mask]+1.75)
661

662 #sig0
663 sig0 = np.zeros(n0)
664 sig0[np.where(lc0<=-3.5)] = 0.2
665 sig0[np.where(lc0>=-3.5)] = 0.2+0.1333*(lc0[lc0>-3.5]+3.5)
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666

667 #alfa
668 alfa = np.zeros(n1)
669 alfa[np.where(lc1<=-0.95)] = 0
670 alfa[np.where(lc1>=0.55)] = 1
671 mask1 = np.zeros(n1,np.bool)
672 mask2 = np.ones(n1,np.bool)
673 mask1[np.where(lc1<0.55)] = 1
674 mask2[np.where(lc1>-0.95)] = 1
675 mask = mask1==mask2
676 alfa[mask] = 0.3+0.4*(lc1[mask]+1.2)
677

678 #mu1
679 mu1 = np.zeros(n1)
680 mu1[np.where(lc1<=-1.1)] = -0.6
681 mu1[np.where(lc1>=0)] = -0.95
682 mask1 = np.zeros(n1,np.bool)
683 mask2 = np.ones(n1,np.bool)
684 mask1[np.where(lc1<0)] = 1
685 mask2[np.where(lc1>-1.1)] = 1
686 mask=mask1==mask2
687 mu1[mask] = -0.6-0.318*(lc1[mask]+1.1)
688

689 #sig1
690 sig1 = np.zeros(n1)
691 sig1[np.where(lc1<=-1.3)] = 0.1
692 sig1[np.where(lc1>=-0.3)] = 0.3
693 mask1 = np.zeros(n1,np.bool)
694 mask2 = np.ones(n1,np.bool)
695 mask1[np.where(lc1<-0.3)] = 1
696 mask2[np.where(lc1>-1.3)] = 1
697 mask=mask1==mask2
698 sig1[mask] = 0.1+0.2*(lc1[mask]+1.3)
699

700 #mu2
701 mu2 = np.zeros(n1)
702 mu2[np.where(lc1<=-0.7)] = -1.2
703 mu2[np.where(lc1>=-0.1)] = -2.0
704 mask1 = np.zeros(n1,np.bool)
705 mask2 = np.ones(n1,np.bool)
706 mask1[np.where(lc1<-0.1)] = 1
707 mask2[np.where(lc1>-0.7)] = 1
708 mask=mask1==mask2
709 mu2[mask] = -1.2-1.333*(lc1[mask]+0.7)
710

711 #sig2
712 sig2 = np.zeros(n1)
713 sig2[np.where(lc1<=-0.5)] = 0.5
714 sig2[np.where(lc1>=-0.3)] = 0.3
715 mask1 = np.zeros(n1,np.bool)
716 mask2 = np.ones(n1,np.bool)
717 mask1[np.where(lc1<-0.3)] = 1
718 mask2[np.where(lc1>-0.5)] = 1
719 mask=mask1==mask2
720 sig2[mask] = 0.5-0.2*(lc1[mask]+0.5)
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721

722 #distribution
723 D = np.zeros((n,d))
724 for i in range(n):
725 if i<n0:
726 D[i,:] = self.normalcum(mu0[i],sig0[i],chi)
727 else:
728 k = i-n0
729 D[k,:]=alfa[k]*self.normalcum(mu1[k],sig1[k],chi)+\
730 (1-alfa[k])*self.normalcum(mu2[k],sig2[k],chi)
731 return D
732

733 def DeltaV(self,AM):
734 """Delta V distribution for fragments with the log(AM) as the

independent
735 variable."""
736 n = len(AM)
737 nu = self.nu
738 d = len(nu)
739 nu_t = np.tile(nu,(n,1))
740 mu = 0.9*np.log(AM)+2.9
741 mu = np.transpose(np.tile(mu,(d,1)))
742 sig = 0.4
743 D = self.normalcum(mu,sig,nu_t)
744 samples = np.random.random((n,d))
745 idx = self.find_nearest(D,samples)
746 dV = 10**nu[idx]
747 return dV
748

749 def normalcum(self,mu,sig,x):
750 """Normal cumulative distribution function"""
751 #N = (1/(sig*(2*np.pi)**0.5))*np.exp(-(1/2)*((x-mu)/sig)**2)
752 Ncum = (1/2)*(1+special.erf((x-mu)/(sig*np.sqrt(2))))
753 return Ncum
754

755 def find_nearest(self,array, value):
756 """finds the values that are closest together in two arrays
757 of the same shape (along their second dimension). Used to
758 sample AM and Delta-V distributions"""
759 idx = np.argmin(np.abs(array - value),axis=1)
760 return idx
761

762 def spher_co(self,V):
763 """gives the polar and azimuthal angles of a (unit) vector"""
764 r = np.sqrt(np.sum(V**2,axis=1))
765 phi = np.zeros(len(V[:,0]))
766 xg0 = np.where(V[:,0]>0)
767 xs0 = np.where(V[:,0]<0)
768 xeq0 = np.where(V[:,0]==0)
769 phi[xg0] = np.arctan(V[xg0,1]/V[xg0,0])
770 phi[xs0] = np.arctan(V[xs0,1]/V[xs0,0])+np.pi
771 phi[xeq0] = np.arctan(np.inf)
772 theta = np.arccos(V[:,2]/r)
773 spherical_params = np.transpose(np.array([theta,phi])) # sats x (r,

theta,phi)
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774 return spherical_params
775

776 def avec(self,v):
777 """adjusts a unit vector’s direction randomly over a spherical cap

with a
778 maximum (scattering) angle given by alfa"""
779 #convert velocity i particle to spherical coordinates
780 i_spher = self.spher_co(v)
781 #introduce small adjustment to polar and azimuthal angles to model

scattering
782 rho = np.sqrt(np.random.random(len(i_spher[:,0]))*np.sin(self.alfa

*2*np.pi/360)**2)
783 nu = np.random.random(len(i_spher[:,0]))*2*np.pi
784 n = np.random.randint(2,size=len(i_spher[:,0]))
785 Dphi = (-1)**(1-n)*np.arcsin(rho*np.cos(nu)) #’randomly’ chooses

sign for phi
786 Dtheta = np.arcsin(np.tan(nu)*np.sin(Dphi))
787 i_auvec = self.spher_uvec(i_spher[:,0]+Dtheta,i_spher[:,1]+Dphi)
788 return i_auvec
789

790 def spher_uvec(self,theta,phi):
791 """calculates a cartesion unit vector from the polar and azimuthal

angle"""
792 spherical_vec = np.transpose(np.array([np.sin(theta)*np.cos(phi),
793 np.sin(theta)*np.sin(phi),
794 np.cos(theta)]))
795 return spherical_vec
796

797 #####################################################
798 #################### key methods ####################
799 #####################################################
800

801 @staticmethod
802 def cotrans(Omega,omega,I):
803 """orbital to reference plane coordinate transformation matrix.

Produces
804 stacked matrices if the arguments are arrays of values."""
805 cO,co,cI = np.cos(Omega),np.cos(omega),np.cos(I)
806 sO,so,sI = np.sin(Omega),np.sin(omega),np.sin(I)
807 if type(Omega) == np.ndarray:
808 n = len(Omega)
809 P = np.zeros((n,3,3))
810 P[:,0,0],P[:,0,1],P[:,0,2] = cO*co-sO*so*cI,-cO*so-sO*co*cI,sO*

sI
811 P[:,1,0],P[:,1,1],P[:,1,2] = sO*co+cO*so*cI,-sO*so+cO*co*cI,-cO

*sI
812 P[:,2,0],P[:,2,1],P[:,2,2] = so*sI,co*sI,cI
813 else:
814 P = np.zeros((3,3))
815 P[0,0],P[0,1],P[0,2] = cO*co-sO*so*cI,-cO*so-sO*co*cI,sO*sI
816 P[1,0],P[1,1],P[1,2] = sO*co+cO*so*cI,-sO*so+cO*co*cI,-cO*sI
817 P[2,0],P[2,1],P[2,2] = so*sI,co*sI,cI
818 return P
819

820 def L_vec(self,valtype):
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821 """valtype is ’rvm’ for cartesian and ’kep’ for keplerian."""
822 if valtype==’rvm’:
823 return np.cross(self.R,self.M[:,None]*self.V,axis=1)
824 elif valtype==’kep’:
825 return (self.SMA**2*np.sqrt(1-self.Ecc**2)*self.M*self.MnM)[:,

None]*\
826 np.transpose(np.array([np.sin(self.LAN)*np.sin(self.Inc),
827 -np.cos(self.LAN)*np.sin(self.Inc),
828 np.cos(self.Inc)]))
829

830 def RfromE(self,idx=None):
831 """returns the reference position vector from the eccentric anomaly

."""
832 if np.any(idx)==None:
833 E = self.E
834 a = self.SMA
835 e = self.Ecc
836 Omega = self.LAN
837 omega = self.AgP
838 I = self.Inc
839 else:
840 E = self.E[idx]
841 a = self.SMA[idx]
842 e = self.Ecc[idx]
843 Omega = self.LAN[idx]
844 omega = self.AgP[idx]
845 I = self.Inc[idx]
846 try:
847 n = np.shape(E)[0]
848 coM = Kessler.cotrans(Omega,omega,I)
849 r_orb = np.array([a*(np.cos(E)-e),a*np.sqrt(1-e**2)*np.sin(E),

np.zeros(n)]).T
850 R = np.matmul(coM,r_orb.reshape(n,3,1)).reshape((n,3))
851 except IndexError:
852 coM = Kessler.cotrans(Omega,omega,I)
853 r_orb = np.array([a*(np.cos(E)-e),a*np.sqrt(1-e**2)*np.sin(E)

,0]).T
854 R = np.matmul(coM,r_orb)
855 return R
856

857 def VfromE(self,idx=None):
858 """returns the reference velocity vector from the eccentric anomaly

."""
859 if np.any(idx)==None:
860 E = self.E
861 a = self.SMA
862 e = self.Ecc
863 mnm = self.MnM
864 Omega = self.LAN
865 omega = self.AgP
866 I = self.Inc
867 else:
868 E = self.E[idx]
869 a = self.SMA[idx]
870 e = self.Ecc[idx]
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871 mnm = self.MnM[idx]
872 Omega = self.LAN[idx]
873 omega = self.AgP[idx]
874 I = self.Inc[idx]
875 try:
876 n = np.shape(E)[0]
877 pf = (mnm/(1-e*np.cos(E))).reshape((n,1))
878 coM = Kessler.cotrans(Omega,omega,I)
879 v_orb = np.array([-a*np.sin(E),a*np.sqrt(1-e**2)*np.cos(E),np.

zeros(n)]).T
880 V = np.matmul(coM,(v_orb*pf).reshape(n,3,1)).reshape((n,3))
881 except IndexError:
882 pf = (mnm/(1-e*np.cos(E)))
883 coM = Kessler.cotrans(Omega,omega,I)
884 v_orb = np.array([-a*np.sin(E),a*np.sqrt(1-e**2)*np.cos(E),0]).

T
885 V = np.matmul(coM,v_orb*pf)
886 return V
887

888 def E_series(self):
889 """returns (an approximation of) the eccentric anomaly from the

mean anomaly
890 and eccentricity."""
891 M = self.MnA
892 e = self.Ecc
893 return M + e*np.sin(M) + (e**2)*(1/2)*np.sin(2*M) +\
894 (e**3)*((3/8)*np.sin(3*M)-(1/8)*np.sin(M)) +\
895 (e**4)*((1/3)*np.sin(4*M)-(1/6)*np.sin(2*M))
896

897 def e_vec(self,valtype):
898 """returns the eccentricity vector. valtype is ’rvm’ for cartesian

and
899 ’kep’ for keplerian."""
900 if valtype==’rvm’:
901 L = self.L_vec(valtype)
902 r = np.linalg.norm(self.R,axis=1)
903 return np.cross(self.V,L,axis=1)/(self.mu*self.M[:,None])- self

.R/r[:,None]
904 elif valtype==’kep’:
905 return self.Ecc[:,None]*Kessler.cotrans(self.LAN, self.AgP,self

.Inc)[:,:,0]
906

907 def excludeFrags(self):
908 """returns boolean indices specifing which fragments will stay in

orbit,
909 escape or collide with the central mass. Additionally returns the

norm
910 of the angular momentum and the eccentricity (vector). This was

done
911 to prevent unnecessary calls to Kessler.e_vec and Kessler.L_vec

methods."""
912 L = self.L_vec(’rvm’)
913 L_norm = np.linalg.norm(L,axis=1)
914 l = L_norm**2/(self.mu*self.M**2)
915 Ecc_vec = self.e_vec(’rvm’)
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916 Ecc = np.linalg.norm(Ecc_vec,axis=1)
917 pncb = l>(1+Ecc)*self.earthR #frags’ orbit does not cross central

body
918 peo = Ecc<1 #frag is in an elliptical orbit
919 pma = np.sum(self.R*self.V,axis=1)>0 #frag is moving awayfrom

central body
920 ps = peo&pncb
921 pe = np.logical_not(peo)&(pncb|(np.logical_not(pncb)&pma))
922 pccb = np.logical_not(pncb)&(peo|(np.logical_not(peo)&np.

logical_not(pma)))
923 L_norm = L_norm[ps]
924 self.Ecc_vec = Ecc_vec[ps]
925 self.Ecc = Ecc[ps]
926 self.L = L[ps]
927 self.R = self.R[ps]
928 self.V = self.V[ps]
929 self.M = self.M[ps]
930 self.S = self.S[ps]
931 Npe = len(np.where(pe==True)[0])
932 Npccb = len(np.where(pccb==True)[0])
933 return Npe,Npccb
934

935 def grav(self,R=None):
936 if isinstance(R,type(None)):
937 R = self.R
938 r = np.sum(R**2,axis=1)
939 accel = -self.mu*R/(r[:,None])**(3/2)
940

941 return accel
942

943 def Verlet(self,dt=0,R=None,V=None):
944 """propagates R and V dt seconds forward. If dt is a single value
945 the entire system is propagated using this value. If dt is a list/
946 array of values with the same size as R and V along their first
947 dimension, then each individual pair R_i and V_i is propagated with
948 dt_i."""
949 if isinstance(R,type(None)):
950 R = self.R
951 V = self.V
952 accel_i = self.grav()
953 else:
954 accel_i = self.grav(R=R)
955 if isinstance(dt,np.ndarray) or isinstance(dt,list):
956 dt = dt[:,None]
957 R = R + V*dt + (1/2)*accel_i*dt**2
958 accel_iplus1 = self.grav(R)
959 V = V + (1/2)*(accel_i + accel_iplus1)*dt
960 return R,V
961

962 def physQuant(self):
963 """calculates conserved quantities"""
964 #net angular momentum
965 L_net = np.sum(np.cross(self.R,self.M[:,None]*self.V,axis=1),axis

=0)
966 #total energy: kinetic + grav.pot.
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967 r = np.linalg.norm(self.R,axis=1)
968 v2 = np.sum(self.V**2,axis=1)
969 E_tot = (1/2)*np.sum(self.M*v2) - self.mu*np.sum(self.M/r)
970 return L_net,E_tot
971

972 def updateColCnt(self,Npe,Npccb):
973 """keeps track of what collisions happen at what time"""
974 try:
975 Nsc = self.N_l[0]
976 Nncc = self.N_l[1]
977 Ncc = self.N_l[2]
978 self.N_l = [0,0,0]
979 except AttributeError:
980 Nsc = Nncc = Ncc = 0
981 if Nsc>0:
982 self.Nsc = np.append(self.Nsc,Nsc)
983 self.Nsct = np.append(self.Nsct,self.t)
984 if Nncc>0:
985 self.Nncc = np.append(self.Nncc,Nncc)
986 self.Nncct = np.append(self.Nncct,self.t)
987 if Ncc>0:
988 self.Ncc = np.append(self.Ncc,Ncc)
989 self.Ncct = np.append(self.Ncct,self.t)
990 self.Npe = np.append(self.Npe,Npe)
991 self.Npccb = np.append(self.Npccb,Npccb)
992 self.Ncols = np.append(self.Ncols,Nsc+Nncc+Ncc)
993

994 #%% KEP subclass
995 from math import floor,ceil
996 class kepSCM(Kessler):
997 """subclass of the Kessler class. Contains the method for collision

detection
998 based on kepler orbits of the satellites."""
999 #parameter used to in the method to find the exact collision time of

two sats
1000 batchsize = int(1e4)#np.iinfo(np.int32).max
1001

1002 def __init__(self,dtype=None,args=None,max_t=None,
1003 Lcmin=None,alfa=None,col=False,newdata=False,
1004 data=None,inclFragCols=True):
1005 """Either initiliases a satellite class instance (col=False) or a
1006 fragment instance (col=True)."""
1007 Kessler.__init__(self,Lcmin,alfa)
1008 if not col: #initialising sats (col==False) or fragments (True)
1009 if newdata: #data specifies whether or not data should be

generated
1010 if dtype==None: #if sats are initialised, a data type must

be given
1011 raise TypeError("specify data type: [’eph’,’kep’,’col

’,’sim’,’ord’,’rog’,’sc’,’ze’]")
1012 self.load_data(dtype,max_t,args)
1013 if max_t==None:
1014 raise TypeError("specify maximum simulation time: max_t

")
1015 else:
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1016 if data==None: #if data is already generated it should be
passed as an argument

1017 raise TypeError("no data provided")
1018 latr = [’Nsats’, ’Inc’, ’LAN’, ’AgP’, ’MnA’, ’SMA’,
1019 ’Ecc’, ’MnM’, ’S’, ’M’, ’max_t’]
1020 for atr in latr:
1021 data_atr = getattr(data,atr)
1022 setattr(self,atr,data_atr)
1023 self.t = 0 #current time
1024 self.t0 = np.zeros(self.Nsats)#creation time
1025 self.E = self.E_series()
1026 self.L = self.L_vec(’kep’)
1027 self.R = self.RfromE()
1028 self.V = self.VfromE()
1029 self.Ecc_vec = self.e_vec(’kep’)
1030 self.Nfrags = 0 #number of fragments present in the system
1031 self.N = self.Nsats
1032 kepSCM.inclFragCols = inclFragCols
1033 self.Nfragstot = np.array([0]).astype(np.int32)
1034

1035 @classmethod
1036 def fromDataSet(cls,data):
1037 sats = cls(Lcmin=data.Lcmin,alfa=data.alfa,max_t=data.max_t,data=

data)
1038 return sats
1039

1040 def colList(self,other=None):
1041 """produces collision list. If other=None, then the collision list
1042 is made for the entire set of satellites contained within the ’self

’
1043 kepSCM class instance. Otherwise, only collisions between the ’

other’
1044 and ’self’ instances are checked, i.e. between frags and satellites

"""
1045 sat_i = []
1046 sat_j = []
1047 R_i = np.zeros((0,3))
1048 R_j = np.zeros((0,3))
1049 V_i = np.zeros((0,3))
1050 V_j = np.zeros((0,3))
1051 DE_i = np.zeros((0,3))
1052 DE_j = np.zeros((0,3))
1053 tcol_ij = []
1054 if other==None:
1055 satidx = np.arange(self.Nsats)
1056 t0i = t0j = self.t0
1057 Li = Lj = self.L_vec(’kep’)
1058 Ecc_veci = Ecc_vecj = self.Ecc_vec
1059 inst = self
1060 max_index = self.Nsats-1
1061 else:#other=sats
1062 satidx = np.arange(other.Nsats)
1063 t0i, t0j = self.t0, other.t0
1064 Li, Lj = self.L, other.L
1065 Ecc_veci, Ecc_vecj = self.Ecc_vec, other.Ecc_vec
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1066 inst = other
1067 max_index = self.Nfrags #only loop over generated frags
1068 print(’\ncreating collision list’)
1069 for i in range(max_index):
1070 e_i = self.Ecc[i]
1071 s_i = self.S[i]
1072 a_i = self.SMA[i]
1073 if other==None:
1074 idx = satidx[i+1:]
1075 else:
1076 idx = satidx
1077 e_j = inst.Ecc[idx]
1078 s_j = inst.S[idx]
1079 a_j = inst.SMA[idx]
1080 idx_aj_ge = a_j>=a_i
1081 idx_aj_s = a_j<a_i
1082 a_j_ge = a_j[idx_aj_ge]
1083 a_j_s = a_j[idx_aj_s]
1084 idx1 = idx[idx_aj_ge]
1085 idx2 = idx[idx_aj_s]
1086 per_i = (1-e_i)*a_i
1087 apo_i = (1+e_i)*a_i
1088 per_j = (1-e_j[idx_aj_ge])*a_j_ge
1089 apo_j = (1+e_j[idx_aj_s])*a_j_s
1090 c_aj_ge = apo_i-per_j+s_i+s_j[idx_aj_ge]>=0
1091 c_aj_s = apo_j-per_i+s_i+s_j[idx_aj_s]>=0
1092 idx = np.append(idx1[c_aj_ge],idx2[c_aj_s])
1093 if len(idx)==0:
1094 continue
1095

1096 #MOID
1097 rest = len(idx)
1098 ei_vec = np.tile(Ecc_veci[i],(rest,1))
1099 ej_vec = Ecc_vecj[idx]
1100 Kvec = np.cross(np.tile(Li[i],(rest,1)),Lj[idx])
1101 K = np.linalg.norm(Kvec,axis=1)
1102 li = np.sum(Li[i]**2)/(self.mu*self.M[i]**2)
1103 ri_1 = Kvec*li/((K+np.sum(Kvec*ei_vec,axis=1))[:,None])
1104 ri_2 = Kvec*li/((-K+np.sum(Kvec*ei_vec,axis=1))[:,None])
1105 vi_1 = self.MOID_vel(Li[i],self.M[i],ei_vec,li,ri_1)
1106 vi_2 = self.MOID_vel(Li[i],self.M[i],ei_vec,li,ri_2)
1107

1108 lj = np.sum(Lj[idx]**2,axis=1)/(inst.mu*inst.M[idx]**2)
1109 rj_1 = Kvec*lj[:,None]/((K+np.sum(Kvec*ej_vec,axis=1))[:,None])
1110 rj_2 = Kvec*lj[:,None]/((-K+np.sum(Kvec*ej_vec,axis=1))[:,None

])
1111 vj_1 = inst.MOID_vel(Lj[idx],inst.M[idx,None],ej_vec,lj[:,None

],rj_1)
1112 vj_2 = inst.MOID_vel(Lj[idx],inst.M[idx,None],ej_vec,lj[:,None

],rj_2)
1113

1114 #approximate minimal distance
1115 d1 = rj_1-ri_1
1116 d2 = rj_2-ri_2
1117 w1 = np.cross(vi_1,vj_1)
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1118 w2 = np.cross(vi_2,vj_2)
1119 w1_norm = np.sum(w1**2,axis=1)
1120 w2_norm = np.sum(w2**2,axis=1)
1121 ri_1 = ri_1 + np.sum(d1*np.cross(vj_1,w1)/w1_norm[:,None],axis

=1)[:,None]*vi_1
1122 ri_2 = ri_2 + np.sum(d2*np.cross(vj_2,w2)/w2_norm[:,None],axis

=1)[:,None]*vi_2
1123 rj_1 = rj_1 + np.sum(d1*np.cross(vi_1,w1)/w1_norm[:,None],axis

=1)[:,None]*vj_1
1124 rj_2 = rj_2 + np.sum(d2*np.cross(vi_2,w2)/w2_norm[:,None],axis

=1)[:,None]*vj_2
1125 d1 = np.linalg.norm(rj_1-ri_1,axis=1)
1126 d2 = np.linalg.norm(rj_2-ri_2,axis=1)
1127 s_j = inst.S[idx]
1128 idxidx1 = d1<s_i+s_j
1129 idxidx2 = d2<s_i+s_j
1130 idx1 = idx[idxidx1]
1131 idx2 = idx[idxidx2]
1132 idx = np.append(idx1,idx2)
1133 numcols = len(idx)
1134 if numcols==0:
1135 continue
1136

1137 #organising data
1138 ri_1f = np.ndarray.flatten(ri_1[idxidx1])
1139 ri_2f = np.ndarray.flatten(ri_2[idxidx2])
1140 rj_1f = np.ndarray.flatten(rj_1[idxidx1])
1141 rj_2f = np.ndarray.flatten(rj_2[idxidx2])
1142 vi_1f = np.ndarray.flatten(vi_1[idxidx1])
1143 vi_2f = np.ndarray.flatten(vi_2[idxidx2])
1144 vj_1f = np.ndarray.flatten(vj_1[idxidx1])
1145 vj_2f = np.ndarray.flatten(vj_2[idxidx2])
1146 w1f = np.ndarray.flatten(w1[idxidx1])
1147 w2f = np.ndarray.flatten(w2[idxidx2])
1148 ri = np.append(ri_1f,ri_2f)
1149 rj = np.append(rj_1f,rj_2f)
1150 vi = np.append(vi_1f,vi_2f)
1151 vj = np.append(vj_1f,vj_2f)
1152 w = np.append(w1f,w2f)
1153 ri = ri.reshape(numcols,3)
1154 rj = rj.reshape(numcols,3)
1155 vi = vi.reshape(numcols,3)
1156 vj = vj.reshape(numcols,3)
1157 w = w.reshape(numcols,3)
1158 d = np.append(d1[idxidx1],d2[idxidx2])
1159

1160 #time of first crossing
1161 rest = len(idx)
1162 ei_vec = np.tile(Ecc_veci[i],(rest,1))
1163 ej_vec = Ecc_vecj[idx]
1164 a_j = inst.SMA[idx]
1165 e_j = inst.Ecc[idx]
1166 b_i = a_i*np.sqrt(1-e_i**2)
1167 b_j = a_j*np.sqrt(1-e_j**2)
1168 omega_i = self.MnM[i]
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1169 omega_j = inst.MnM[idx]
1170 ri0 = np.tile(self.RfromE(i),(rest,1))
1171 rj0 = inst.RfromE(idx)
1172 ri_norm = np.linalg.norm(ri,axis=1)
1173 rj_norm = np.linalg.norm(rj,axis=1)
1174 ri_dot_ri0 = np.sum(ri*ri0,axis=1)
1175 rj_dot_rj0 = np.sum(rj*rj0,axis=1)
1176 ri0_dot_ei = np.sum(ri0*ei_vec,axis=1)
1177 rj0_dot_ej = np.sum(rj0*ej_vec,axis=1)
1178 ri_dot_ei = np.sum(ri*ei_vec,axis=1)
1179 rj_dot_ej = np.sum(rj*ej_vec,axis=1)
1180 ripri0_dot_ei = np.sum((ri+ri0)*ei_vec,axis=1)
1181 rjprj0_dot_ej = np.sum((rj+rj0)*ej_vec,axis=1)
1182 vi_dot_ri0 = np.sum(vi*ri0,axis=1)
1183 vj_dot_rj0 = np.sum(vj*rj0,axis=1)
1184 vi_dot_ei = np.sum(vi*ei_vec,axis=1)
1185 vj_dot_ej = np.sum(vj*ej_vec,axis=1)
1186 x_i = ri_dot_ri0/b_i**2+ripri0_dot_ei/a_i-ri_dot_ei*ri0_dot_ei/

b_i**2+e_i**2
1187 y_i = -(ri_norm/(a_i*omega_i))*(vi_dot_ri0/b_i**2+vi_dot_ei/a_i

-vi_dot_ei*ri0_dot_ei/b_i**2)
1188 x_j = rj_dot_rj0/b_j**2+rjprj0_dot_ej/a_j-rj_dot_ej*rj0_dot_ej/

b_j**2+e_j**2
1189 y_j = -(rj_norm/(a_j*omega_j))*(vj_dot_rj0/b_j**2+vj_dot_ej/a_j

-vj_dot_ej*rj0_dot_ej/b_j**2)
1190 dE_i = kepSCM.arctan2(y_i,x_i)
1191 dE_j = kepSCM.arctan2(y_j,x_j)
1192 L_i = np.tile(Li[i],(rest,1))
1193 tcross_i = t0i[i] + dE_i/omega_i - np.sum((np.cross(ei_vec,ri-

ri0,axis=1)/\
1194 (1-e_i**2))*L_i/(self.

mu*self.M[i]),axis=1)
1195 tcross_j = t0j[idx] + dE_j/omega_j - np.sum((np.cross(ej_vec,rj

-rj0,axis=1)/\
1196 (1-e_j[:,None]**2))*

Lj[idx]/\
1197 (inst.mu*inst.M[idx,

None]),axis=1)
1198

1199 #deterministic collision time
1200 N = len(idx)
1201 s_j = inst.S[idx]
1202 T_i = 2*np.pi/self.MnM[i]
1203 T_j = 2*np.pi/inst.MnM[idx]
1204 R_i = np.append(R_i,ri,axis=0)
1205 R_j = np.append(R_j,rj,axis=0)
1206 V_i = np.append(V_i,vi,axis=0)
1207 V_j = np.append(V_j,vj,axis=0)
1208 DE_i = np.append(DE_i,dE_i)
1209 DE_j = np.append(DE_j,dE_j)
1210 usq = np.sum((vj-vi)**2,axis=1)
1211 wsq = np.sum(w**2,axis=1)
1212 Dt = np.abs(tcross_i-tcross_j)
1213 delta = np.sqrt(usq*((s_i+s_j)**2-d**2)/wsq)/Dt
1214 for n,j in enumerate(idx):
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1215 delt = delta[n]
1216 if Dt[n]==0:
1217 tcol_ij.append(tcross_i[n])
1218 sat_i.append(i)
1219 sat_j.append(j)
1220 continue
1221 q0,q1 = (T_i/Dt)[n],(T_j/Dt)[n]
1222 k0= 1
1223 k1 = 0
1224 it = 0
1225 while True and it<=5:
1226 print(’\rKEP-->tot: {0:.2f}%, ’.format((i+1)*100/

max_index)+
1227 ’sat i {0}: {1:.2f}%, ’.format(i,(n+1)*100/N)+
1228 ’sat j {0}: iter = {1}’.format(j,it),end=’ ’)
1229 a0 = floor(q0/q1)
1230 q2 = q0-a0*q1
1231 if q2==0:
1232 y = 0
1233 x = np.arange(int((1-delt)/q0),floor((1+delt)/q0)

+1)[0]
1234 if x>=0 and x*q0-y*q1 < delt+1:
1235 k = k0*x-k1*y
1236 else:
1237 k = np.inf
1238 break
1239 k2 = k0-a0*k1
1240 a1 = floor(q1/q2)
1241 q3 = q1-a1*q2
1242 if q3==0:
1243 y = 0
1244 x = np.arange(int((1-delt)/q1),floor((1+delt)/q1)

+1)[0]
1245 if x>=0 and x*q1-y*q2 < delt+1:
1246 k = k1*x-k2*y
1247 else:
1248 k = np.inf
1249 break
1250 k3 = k1-a1*k2
1251 ub = ceil((1+delt)*a0/q2)+1
1252 batchn = ub//self.batchsize
1253 residual = ub%self.batchsize
1254 for i1 in range(batchn+1):
1255 if i1<batchn:
1256 y = np.arange(0,self.batchsize,dtype=np.int32)
1257 else:
1258 y = np.arange(0,residual,dtype=np.int32)
1259 x = np.ceil((q1*y+1-delt)/q0)
1260 difs = x*q0-y*q1
1261 sol = difs<delt+1+i1*self.batchsize*(q0-q1)
1262 solbool = np.any(sol)
1263 if solbool:
1264 sol = np.min(np.where(sol==True)[0])
1265 y = y[sol].astype(np.int64)
1266 x = x[sol].astype(np.int64)
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1267 k = (x+i1*self.batchsize)*k0-(y+i1*self.
batchsize)*k1

1268 break
1269 if solbool:
1270 break
1271 q0,q1 = q2,q3
1272 k0 = k2
1273 k1 = k3
1274 it += 1
1275 if it == 5:
1276 k = np.inf
1277 break
1278 tc = tcross_i[n]+k*T_i
1279 tcol_ij.append(tc)
1280 sat_i.append(i)
1281 sat_j.append(j)
1282

1283 #sorting lists
1284 inf_idx = np.where(np.array(tcol_ij)==np.float(’+inf’))[0]
1285 self.tcol = np.delete(tcol_ij,inf_idx,axis=0)
1286 self.si = np.delete(sat_i,inf_idx,axis=0).astype(np.int32)
1287 self.sj = np.delete(sat_j,inf_idx,axis=0).astype(np.int32)
1288 self.Ri = np.delete(R_i,inf_idx,axis=0)
1289 self.Rj = np.delete(R_j,inf_idx,axis=0)
1290 self.Vi = np.delete(V_i,inf_idx,axis=0)
1291 self.Vj = np.delete(V_j,inf_idx,axis=0)
1292 self.DEi = np.delete(DE_i,inf_idx,axis=0)
1293 self.DEj = np.delete(DE_j,inf_idx,axis=0)
1294 self.sortList()
1295 print(’\nfinished collision list\n’)
1296

1297 def sortList(self,merge=False,other0=None,other1=None):
1298 """sorts collision list as well as corresponding colliding sat.

index,
1299 -position and velocity lists. Either sorts one list or mergesorts
1300 two sorted lists"""
1301 if merge==False:
1302 s_idx = self.tcol.argsort()
1303 else:
1304 self.tcol = np.append(other0.tcol,other1.tcol)
1305 self.si = np.append(other0.si,other1.si)
1306 self.sj = np.append(other0.sj,other1.sj)
1307 self.Ri = np.append(other0.Ri,other1.Ri,axis=0)
1308 self.Rj = np.append(other0.Rj,other1.Rj,axis=0)
1309 self.Vi = np.append(other0.Vi,other1.Vi,axis=0)
1310 self.Vj = np.append(other0.Vj,other1.Vj,axis=0)
1311 self.DEi = np.append(other0.DEi,other1.DEi)
1312 self.DEj = np.append(other0.DEj,other1.DEj)
1313 s_idx = self.tcol.argsort(kind=’mergesort’)
1314

1315 self.tcol = self.tcol[s_idx]
1316 self.si = self.si[s_idx]
1317 self.sj = self.sj[s_idx]
1318 self.Ri = self.Ri[s_idx]
1319 self.Rj = self.Rj[s_idx]
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1320 self.Vi = self.Vi[s_idx]
1321 self.Vj = self.Vj[s_idx]
1322 self.DEi = self.DEi[s_idx]
1323 self.DEj = self.DEj[s_idx]
1324 max_idx = self.tcol<self.max_t
1325 self.tcol = self.tcol[max_idx]
1326 self.si = self.si[max_idx].astype(np.int64)
1327 self.sj = self.sj[max_idx].astype(np.int64)
1328 self.Ri = self.Ri[max_idx]
1329 self.Rj = self.Rj[max_idx]
1330 self.Vi = self.Vi[max_idx]
1331 self.Vj = self.Vj[max_idx]
1332 self.DEi = self.DEi[max_idx]
1333 self.DEj = self.DEj[max_idx]
1334

1335 def updateSats(self):
1336 """propagates system to desired time t"""
1337 self.t = self.tcol[0] #next collision
1338 idxi_i = self.si[0]
1339 idxi_j = self.sj[0]
1340 self.MnA[idxi_i] += self.MnM[idxi_i]*self.tcol[0]
1341 self.MnA[idxi_j] += self.MnM[idxi_j]*self.tcol[0]
1342 self.E[idxi_i] += self.DEi[0]
1343 self.E[idxi_j] += self.DEj[0]
1344 #even though calculating actual orbit positions is more realistic

...
1345 # self.R[idxi_i] = self.RfromE(idxi_i)
1346 # self.R[idxi_j] = self.RfromE(idxi_j)
1347 #their approximate collision points will satisfy:
1348 self.R[idxi_i] = self.Ri[0]
1349 self.R[idxi_j] = self.Rj[0]
1350 self.V[idxi_i] = self.VfromE(idxi_i)
1351 self.V[idxi_j] = self.VfromE(idxi_j)
1352

1353 @classmethod
1354 def cols(cls,self):
1355 """creates new instance of kepSCM class for the fragments of a

collision,
1356 excludes frags that escape or collide with central mass, calculates
1357 fragments’ orbital elements and creates the fragment collision list

."""
1358 #create fragment instance of kepSCM class
1359 frags = cls(col=True,Lcmin=self.Lcmin,alfa=self.alfa)
1360 frags.max_t = self.max_t
1361 #this algorithm is ’continuous’ and only 1 collision occurs at a

time
1362 #so tcol=[0] (still has to be an array or list) and dt=0
1363 dr_i = np.linalg.norm(self.Ri[0]-self.R[self.si[0]])
1364 dr_j = np.linalg.norm(self.Rj[0]-self.R[self.sj[0]])
1365 if dr_i>20 or dr_j>20:
1366 raise ValueError(’dr_i, dr_j = {0:e}, {1:e}’
1367 .format(dr_i,dr_j))
1368 #generate fragments (scattered particles are also considered

fragments)
1369 self.collision(frags,np.array([0]),0,alg=’kep’)
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1370 #exclude fragments that escape (hyperbolic orbit) and/or collide
with central mass

1371 Npe,Npccb = frags.excludeFrags()
1372 self.updateColCnt(Npe,Npccb)
1373 L_norm = np.linalg.norm(frags.L,axis=1)
1374 Nfrags = len(frags.S)
1375 h_sq = (L_norm/frags.M)**2 #angular momentum per unit mass
1376 frags.SMA = h_sq/(self.mu*(1-frags.Ecc**2))
1377 #b = frags.SMA*np.sqrt(1-frags.Ecc**2) #semi-minor axis
1378 frags.MnM = np.sqrt(frags.mu/frags.SMA**3)
1379 frags.Inc = np.arccos(frags.L[:,2]/L_norm) # acos(l3/|L|)
1380 frags.AgP = np.arcsin(frags.Ecc_vec[:,2]/(frags.Ecc*np.sin(frags.

Inc))) #asin(e3/(e*sin(I)))
1381 frags.LAN = np.arcsin(frags.L[:,0]/(L_norm*np.sin(frags.Inc))) #

asin(l1/(|L|*sin(I)))
1382 frags.E = frags.EfromR()
1383 frags.MnA = frags.E-frags.Ecc*np.sin(frags.E) #Kepler’s equation
1384 frags.t0 = np.array([self.t]*Nfrags)#creation time of frags
1385 frags.Nfrags = Nfrags
1386 if self.inclFragCols:
1387 self.Nfrags = Nfrags
1388 else:
1389 self.Nfrags += Nfrags
1390 #delete collided particles from collision lists and other arrays
1391 #and correct particle counts
1392 self.deleteIndices()
1393 #create collision list for fragments
1394 frags.colList(self)
1395 return frags,Npe,Npccb
1396

1397 def deleteIndices(self):
1398 """deletes (indices of) collided satellites from all data arrays
1399 (collision list) and adjusts satellite and fragment count."""
1400 #remove performed collision and any future collision involving

collided sats
1401 didx_i,didx_j = self.si[0],self.sj[0]
1402 didxs_i = np.append(np.where(self.si==didx_i)[0],
1403 np.where(self.si==didx_j)[0])
1404 didxs_j = np.append(np.where(self.sj==didx_j)[0],
1405 np.where(self.sj==didx_i)[0])
1406 didxs = np.union1d(didxs_i,didxs_j)
1407 #since the two colliding particles are deleted
1408 #every collision index larger than the collided indices
1409 #should be shifted too (downwards, following the smaller list of

partciles)
1410 pili = self.si>didx_i
1411 pilj = self.si>didx_j
1412 pjli = self.sj>didx_i
1413 pjlj = self.sj>didx_j
1414 self.si[pili] = self.si[pili]-1
1415 self.si[pilj] = self.si[pilj]-1
1416 self.sj[pjli] = self.sj[pjli]-1
1417 self.sj[pjlj] = self.sj[pjlj]-1
1418 latr = [’si’,’sj’,’Ri’,’Rj’,’Vi’,’Vj’,’DEi’,’DEj’,’tcol’]
1419 for atr in latr:
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1420 atrval = getattr(self, atr)
1421 setattr(self,atr,np.delete(atrval,didxs,axis=0))
1422 #remove collided particles from all arrays
1423 didx = np.append(didx_i,didx_j)
1424 latr = [’L’,’R’,’V’,’Inc’,’LAN’,’AgP’,’MnA’,’SMA’,’Ecc’,’MnM’,’S’,’

M’,
1425 ’t0’,’E’,’Ecc_vec’]
1426 for atr in latr:
1427 atrval = getattr(self, atr)
1428 setattr(self,atr,np.delete(atrval,didx,axis=0))
1429 #correct number of particles
1430 c1 = didx_i < self.Nsats
1431 c2 = didx_j < self.Nsats
1432 #substract only collided sats from total sat count
1433 self.Nsats = self.Nsats-c1*1-c2*1 #True*number=number & False*

number=0
1434 #idem for frags
1435 self.Nfragstot[-1] = self.Nfragstot[-1]-(not c1)*1-(not c2)*1
1436 if not self.inclFragCols:
1437 self.Nfrags = self.Nfrags-(not c1)*1-(not c2)*1
1438

1439 @classmethod
1440 def mergeFrags(cls,self,other): #self=fragments,other=satellites
1441 """merges satellite and fragment data arrays and collision lists.
1442 returns new merged class object"""
1443 merge = cls(col=True,Lcmin=other.Lcmin,alfa=other.alfa,max_t=other.

max_t)
1444 merge.t = other.t
1445 merge.max_t = other.max_t
1446 #correct colliding indices of frags
1447 if other.inclFragCols:
1448 merge.Nsats = other.Nsats + other.Nfrags #include frag-frag

cols
1449 merge.N = other.Nsats + other.Nfrags
1450 merge.Nfrags = 0 #reset frag count
1451 self.si = (self.si + other.Nsats).astype(np.int32)
1452 merge.Nfragstot = np.append(other.Nfragstot,other.Nfragstot[-1]
1453 + other.Nfrags)
1454 else:
1455 merge.Nsats = other.Nsats #update sat count
1456 merge.Nfrags = self.Nfrags + other.Nfrags #increase frag count
1457 merge.N = other.Nsats + other.Nfrags + self.Nfrags
1458 self.si = (self.si + other.Nsats + other.Nfrags).astype(np.

int32)
1459 merge.sortList(merge=True,other0=self,other1=other)
1460 latr = [’L’,’R’,’V’,’Inc’,’LAN’,’AgP’,’MnA’,’SMA’,’Ecc’,’MnM’,’S’,’

M’,
1461 ’t0’,’E’,’Ecc_vec’]
1462 for atr in latr:
1463 fragms = getattr(self,atr)
1464 satls = getattr(other,atr)
1465 atrval = np.append(satls,fragms,axis=0)
1466 setattr(merge,atr,atrval)
1467 merge.Nsc = other.Nsc
1468 merge.Nncc = other.Nncc
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1469 merge.Ncc = other.Ncc
1470 merge.Nsct = other.Nsct
1471 merge.Nncct = other.Nncct
1472 merge.Ncct = other.Ncct
1473 merge.Npe = other.Npe
1474 merge.Npccb = other.Npccb
1475 merge.Ncols = other.Ncols
1476 return merge
1477

1478 def MOID_vel(self,L,M,E_vec,l,r):
1479 r_norm = np.linalg.norm(r,axis=1)
1480 return np.cross(L/(M*l),E_vec+r/r_norm[:,None])
1481

1482 @staticmethod
1483 def arctan2(y,x):
1484 """wrapper of the numpy.arctan2 method, which returns angles in the

range [0,2pi)."""
1485 if len(np.shape(y))==0:
1486 if y>=0:
1487 return np.arctan2(y,x)
1488 else:
1489 return 2*np.pi+np.arctan2(y,x)
1490 else:
1491 out = np.arctan2(y,x)
1492 out[y<0] += 2*np.pi
1493 return out
1494

1495 def EfromR(self):
1496 """returns the eccentric anomaly of a satellite given its position
1497 vector, eccentricity longitude of ascending node, argument of

periapsis
1498 and inclination."""
1499 coM = Kessler.cotrans(self.LAN,self.AgP,self.Inc)
1500 coM_inv = np.linalg.inv(coM)
1501 n = np.shape(coM_inv)[0]
1502 r_orb = np.matmul(coM_inv,self.R.reshape(n,3,1)).reshape((n,3))
1503 F = kepSCM.arctan2(r_orb[:,1],r_orb[:,0]) #true anomaly
1504 #we have:
1505 #cosE = (self.Ecc+np.cos(F))/(1+self.Ecc*np.cos(F))
1506 #sinE = (np.sqrt(1-self.Ecc**2)*np.sin(F))/(1+self.Ecc*np.cos(F))
1507 #But we leave out the denominator, as we devide it out in the

arctangent anyway
1508 cosE = self.Ecc+np.cos(F)
1509 sinE = np.sqrt(1-self.Ecc**2)*np.sin(F)
1510 E = kepSCM.arctan2(sinE,cosE)
1511 return E
1512

1513 #%% KDT subclass
1514 from sklearn.neighbors import KDTree
1515 class kdtSCM(Kessler):
1516 """Subclass of the Kessler class. Contains a method for collision

detection
1517 in an arbitrary system of satellites using a k-d tree"""
1518

1519 def __init__(self,dtype=None,args=None,max_t=None,k=None,
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1520 Lcmin=None,alfa=None,dt=None,col=False,
1521 newdata=False,data=None):
1522 Kessler.__init__(self,Lcmin,alfa)
1523 if not col:
1524 if newdata: #data specifies whether or not data should be

generated
1525 if dtype==None: #if sats are initialised, a data type must

be given
1526 raise TypeError("specify data type: [’eph’,’kep’,’col

’,’sim’,’ord’,’rog’,’sc’,’ze’]")
1527 self.load_data(dtype,max_t,args)
1528 else:
1529 if data==None: #if data is already generated it should be

passed as an argument
1530 raise TypeError("no data provided")
1531 latr = [’Nsats’, ’Inc’, ’LAN’, ’AgP’, ’MnA’, ’SMA’,
1532 ’Ecc’, ’MnM’, ’S’, ’M’, ’max_t’, ’Lcmin’, ’alfa’]
1533 for atr in latr:
1534 data_atr = getattr(data,atr)
1535 setattr(self,atr,data_atr)
1536 self.t = 0 #current time
1537 self.E = self.E_series()
1538 self.R = self.RfromE()
1539 self.V = self.VfromE()
1540 del self.E # we have no other use for E in this algorithm
1541 if dt == None:
1542 self.dt = 10
1543 else:
1544 self.dt = dt
1545 if k == None:
1546 self.k = 6
1547 else:
1548 self.k = k
1549 self.tree = KDTree(self.R,leaf_size=30)
1550 self.Li,self.Ei = self.physQuant()
1551 self.Li_normsq = np.sum(self.Li**2)
1552

1553 @classmethod
1554 def fromDataSet(cls,data):
1555 sats = cls(Lcmin=data.Lcmin,alfa=data.alfa,data=data)
1556 return sats
1557

1558 @classmethod
1559 def simulate(cls,self,single=False):
1560 """main method of the kdtSCM class. Consists of a discrete

algorithm
1561 with timestep dt. During each iteration the k-d tree is queried for

NNs
1562 usingthe kepSCM.getNNs method. Motion of these NNss is then

linearised
1563 in order to calcute their collision time and check if a collision

occurs
1564 in the current timestep. Only the earliest collisions are performed

in
1565 case any satellite occurs in multiple collisions (or mulitple
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collisions
1566 involve the same satellite). Then, all the colliding sats are

passed to
1567 the Kessler.collision method, after whichthe entire system of

satellites
1568 is propagated to the next timestep using the Kessler.Verlet method.
1569 Only now the fragments are appended to the existing set of

satellites.
1570 If no satellites collide during any timestep, the system is

propagated
1571 to the next timestep without performing any additional steps. After
1572 propagation, a new k-d tree is constructed using the
1573 sklearn.neighbors.KDTree method."""
1574 while self.t<self.max_t:#cumcol<num_cols:
1575 NNs = self.getNNs()
1576 n = len(NNs[:,0])
1577 k = self.k
1578 index = np.transpose(np.tile(NNs[:,0],(k-1,1)))
1579 S_i = np.transpose(np.tile(self.S[NNs[:,0]],(k-1,1)))
1580 R_i = np.transpose(np.tile(self.R[NNs[:,0]],(k-1,1,1)),(1,0,2))
1581 V_i = np.transpose(np.tile(self.V[NNs[:,0]],(k-1,1,1)),(1,0,2))
1582 S_j = self.S[NNs[:,1]]
1583 R_j = self.R[NNs[:,1]]
1584 V_j = self.V[NNs[:,1]]
1585 for i in range(2,self.k):
1586 S_j = np.append(S_j,self.S[NNs[:,i]],axis=0)
1587 R_j = np.append(R_j,self.R[NNs[:,i]],axis=1)
1588 V_j = np.append(V_j,self.V[NNs[:,i]],axis=1)
1589 S_j = np.reshape(S_j,(n,k-1))
1590 R_j = np.reshape(R_j,(n,k-1,3))
1591 V_j = np.reshape(V_j,(n,k-1,3))
1592 Ssum = (S_i+S_j)**2
1593 D = R_j-R_i
1594 U = V_j-V_i
1595 u_dot_d = np.sum(U*D,axis=2)
1596 u_norm = np.sum(U**2,axis=2)
1597 zidx = u_norm==0
1598 self_idx = np.where(NNs[:,1:k]==index)
1599 u_norm[zidx] = 1
1600 Tcol = -u_dot_d/u_norm
1601 Tcol[zidx] = np.inf
1602 Tcol[self_idx] = np.inf
1603 a1 = Tcol>0
1604 a2 = Tcol<=self.dt
1605 a = a1&a2
1606 if not np.any(a):
1607 self.updateColCnt(0,0)
1608 self.t += self.dt
1609 self.tree = KDTree(self.R,leaf_size=30)
1610 self.R,self.V = self.Verlet(dt=self.dt)
1611 self.printProgress()
1612 if not single: continue
1613 else: break
1614 else:
1615 u_norm = np.sum(U**2,axis=2)
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1616 d_cross_u_norm = np.sum(np.cross(U,D,axis=2)**2,axis=2)
1617 b = d_cross_u_norm < Ssum*u_norm
1618 c = a&b
1619 if not np.any(c):
1620 self.updateColCnt(0,0)
1621 self.t += self.dt
1622 self.R,self.V = self.Verlet(dt=self.dt)
1623 self.tree = KDTree(self.R,leaf_size=30)
1624 self.printProgress()
1625 if not single: continue
1626 else: break
1627 else:
1628 idxi,idxj = np.where(c==True)
1629 tcol = Tcol[idxi,idxj]
1630 pi = NNs[idxi,0]
1631 pj = NNs[idxi,idxj+1]
1632 pi_s,i_inv,counts_i = np.unique(pi,return_inverse=True,
1633 return_counts=True)
1634 pj_s,j_inv,counts_j = np.unique(pj,return_inverse=True,
1635 return_counts=True)
1636 n,m = len(pi_s),len(pj_s)
1637 Tcolmat = np.zeros((n,m)).astype(np.float32) #saves

memory
1638 Tcolmat[i_inv,j_inv] = Tcol[idxi,idxj]
1639 Tcolmat[np.where(Tcolmat==0)] = np.inf
1640 #ensure earliest collision for any pair of colliding

sats
1641 pi,pj,tcol = np.array([]),np.array([]),np.array([])
1642 while np.any(Tcolmat!=np.inf):
1643 Tcolmin = np.transpose(np.tile(np.min(Tcolmat,axis

=1),(m,1)))
1644 Tcolmat[np.where(Tcolmat>Tcolmin)] = np.inf
1645 Tcolmin = np.tile(np.min(Tcolmat,axis=0),(n,1))
1646 Tcolmat[np.where(Tcolmat>Tcolmin)] = np.inf
1647 i_inv,j_inv = np.where((Tcolmat>=0)&(Tcolmat<self.

dt))
1648 pi = np.append(pi,pi_s[i_inv]).astype(np.int32)
1649 pj = np.append(pj,pj_s[j_inv]).astype(np.int32)
1650 self.tcol = np.append(tcol,Tcolmat[i_inv,j_inv])
1651 Tcolmat = np.delete(Tcolmat,i_inv,axis=0)
1652 Tcolmat = np.delete(Tcolmat,j_inv,axis=1)
1653 self.si,self.sj = pi,pj
1654 frags = cls(col=True)
1655 self.collision(frags,self.tcol,self.dt)
1656 #exclude fragments that escape (hyperbolic orbit) and/

or collide with central mass
1657 Npe,Npccb = frags.excludeFrags()
1658 self.updateColCnt(Npe,Npccb)
1659 self.t += self.dt
1660 self.R,self.V = self.Verlet(dt=self.dt)
1661 self.mergeFrags(frags)
1662 self.Nsats = len(self.S)
1663 self.tree = KDTree(self.R,leaf_size=30)
1664 self.printProgress()
1665 if not single: continue
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1666 else: break
1667

1668 def getNNs(self):
1669 """retrieves the k-nearest neighbours (NNs) of all the satellites

from the current
1670 k-d tree. The corresponding distances are retrieved as well. These

are used to
1671 exclude any pair of satellites between which no collision is

possible."""
1672 dmax = 2*np.max(np.linalg.norm(self.V,axis=1))*self.dt
1673 dist,nns = self.tree.query(self.R,k=self.k,return_distance=True,

dualtree=False)
1674 N = self.Nsats
1675 nns[np.where(dist>dmax)] = N #set particles larger than dmax to ’

infinity’ index
1676 nns = np.delete(nns,np.where(nns[:,1]==N),axis=0) #delete particles

with no nns
1677 nns[np.where(nns==N)] = nns[np.where(nns==N)[0],0] #set N+1 idx to

own idx
1678 index = np.transpose(np.tile(nns[:,0],(self.k,1)))
1679 nns[np.where(nns<index)] = nns[np.where(nns<index)[0],0] #avoid

double counting
1680 return nns
1681

1682 def mergeFrags(self,other): #other=frags
1683 """deletes collided satellites and appends fragment data and
1684 checks for collisions with the earth."""
1685 R = np.delete(self.R,self.delarr,axis=0)
1686 V = np.delete(self.V,self.delarr,axis=0)
1687 M = np.delete(self.M,self.delarr)
1688 S = np.delete(self.S,self.delarr)
1689 R = np.append(R,other.R,axis=0)
1690 V = np.append(V,other.V,axis=0)
1691 M = np.append(M,other.M)
1692 S = np.append(S,other.S)
1693 learthR = np.linalg.norm(R,axis=1)>self.earthR
1694 self.R = R[learthR]
1695 self.V = V[learthR]
1696 self.M = M[learthR]
1697 self.S = S[learthR]
1698

1699 def printProgress(self):
1700 """print progress and conserved quantities"""
1701 L,E = self.physQuant()
1702 L_dot_Li = np.sum(L*self.Li)
1703 print(str(’\rKDT--> t = {0:.3f} min, L/L_init = {1:.12f},’
1704 +’E/E_init = {2:.12f}, k = {3:.0f} ’
1705 +’#sats: {4} ’
1706 +’#cc: {5} ’
1707 +’#ncc: {6} ’
1708 +’#sc: {7} ’)
1709 .format(self.t/self.minute,L_dot_Li/self.Li_normsq,E/self.Ei,
1710 self.k,self.Nsats,np.sum(self.Ncc),np.sum(self.Nncc)
1711 ,np.sum(self.Nsc)),end=’’)
1712
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1713

1714 #####old method for selecting earliest collisions (too strict)#########
1715 # #ensure only one collision occurs for any sat
1716 # intersect,comi,comj = np.intersect1d(pi,pj,assume_unique=True,
1717 # return_indices=True)
1718 # if intersect.size > 0:
1719 # #at least one sat occurs in two distinct collisions
1720 # #which is impossible (as far as this model is concerned)
1721 # #occurence of the satellite in the i’th index is the
1722 # #collision that happens first if
1723 # c = (tcol[comi]<tcol[comj]).astype(int)
1724 # #picks out the correct indices
1725 # col_idx = np.array([comj,comi])[c,np.arange(len(comi))]
1726 # com = np.append(comi,comj)s
1727 # #delete all common indices and append only the correct ones
1728 # pi = np.append(np.delete(pi,com),pi[col_idx])
1729 # pj = np.append(np.delete(pj,com),pj[col_idx])
1730 # tcol = np.append(np.delete(tcol,com),tcol[col_idx])

93


	Abstract
	Introduction
	The two-body problem
	Kepler orbits: an analytical solution to the two-body problem
	Numerical integration of the two-body problem

	Collision detection
	Collision detection using Kepler orbits
	Colliding pairs
	First MOID passage time
	Collision time
	The continuous algorithm

	Collision detection for time-integrated system
	K-d tree based algorithm for finding NN
	Time complexity of K-d tree and its algorithms
	Colliding pairs from NN
	Collision ambiguity
	The discrete algorithm

	Comparison of the continuous discrete algorithms

	Modelling collisions
	Elastic collisions
	NASA's SBM
	Analysis of SBM

	Kessler syndrome
	Conclusion
	References

