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ABSTRACT dependencies are not resolved in a well-defined manner. Increas-

A popular form of software reuse is the use of open source software
libraries hosted on centralized code repositories, such as Maven
or npm. Developers only need to declare dependencies to external
libraries, and automated tools make them available to the workspace
of the project. Recent incidents, such as the Equifax data breach and
the leftpad package removal, demonstrate the difficulty in assessing
the severity, impact and spread of bugs in dependency networks.
While dependency checkers are being adapted as a counter measure,
they only provide indicative information. To remedy this situation,
we propose a fine-grained dependency network that goes beyond
packages and into call graphs. The result is a versioned ecosystem-
level call graph. In this paper, we outline the process to construct the
proposed graph and present a preliminary evaluation of a security
issue from a core package to an affected client application.
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1 INTRODUCTION

Software engineers reuse code to reduce development and mainte-
nance costs. A popular form of software reuse is the use of open-
source software (OSS) libraries, hosted on centralized code reposi-
tories, such as Maven! or npm.? In such settings, developers specify
dependencies to external library versions in a textual file, that is
then committed to the repository of the client program. Automated
programs, typically package managers, resolve the dependency de-
scriptions and connect to the central repositories to download the
specific library versions that are required to build the client program.
Library names and versions often follow de-facto conventions, such
as semantic versioning.

Several implications may arise from the fact that programs and
libraries can have dependencies on other libraries, and that those

!https://search.maven.org/
Zhttps://www.npmjs.com/
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ingly, libraries are being used as building blocks for creating other
libraries, leading to highly interconnected ecosystems [4, 7]. The
interconnections form a graph, in which the nodes are versioned
libraries and the edges are dependencies on the libraries. The struc-
tural properties of those graphs can significantly affect the func-
tionality of thousands of end-user projects [6]. Moreover, including
arbitrary code from an online repository induces trust and security
implications; how can developers ensure that the imported code
contains no security holes? How can they know when a security
issue discovered in a transitive dependency requires an update?
Dependency networks also present challenges to library maintain-
ers: how can they assess the direct or transitive impact of their
changes?

In the recent years, we have witnessed dependency network
failures with severe implications on client programs:

e A dispute over a library name in the npm ecosystem led to
the removal of a library called leftpad. The package removal
further lead to the collapse of thousands of libraries which
directly depended on leftpad, and hence a major disruption
for client programs. After the leftpad incident, a study [6]
estimated that there exist libraries whose removal can affect
more that 30% of the core components of the network.

e A company named Equifax leaked over 100.000 credit card
records due to a dependency that was not updated. The
compromised systems included a vulnerable version of the
Apache Struts library, whose update was postponed as the
Equifax security team erroneously underestimated the im-
pact of the bug on their codebase.
Malicious developers uploaded to the Python package man-
ager (PyPI) libraries whose name was deliberately misspelled,
being almost identical to the original libraries (e.g., urllib
instead of urllib3). The intention was to steal information
from client applications of developers who had accidentally
mistyped the library name in the dependency file.

Recent research has been focused on the analysis of the evolution
of code repositories and how libraries are growing together in
a shared environment [3, 4, 7]. To study ecosystems, developers
typically build dependency graphs, in which nodes represent either
libraries or library versions. To represent a dependency (i.e. creating
an edge), researchers emulate the version resolution algorithm of
the original package manager. While this model is useful for initial
evaluations of dependency networks, it can only provide partial
information due to the following limitations:

(1) The dependency relationship in the network is on a version-
basis (e.g library A v1.2.3 depends on library B v2.3.4). Reasoning
about how a library can influence other connected libraries on a

Shttps://blogs.apache.org/foundation/entry/apache-struts- statement-on-equifax


https://doi.org/10.1145/3183399.3183417
https://web.archive.org/web/20180117215836/https://search.maven.org/
https://web.archive.org/web/20180208034942/https://www.npmjs.com/
https://doi.org/10.1145/3183399.3183417
https://web.archive.org/web/20180207224424/https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden

version-basis such as bug propagation is limited. (2) A dependency
on a library does not necessarily mean that the code in that library
is actually used. Providing developers with actionable information
such as security alerts on dependencies requires further analysis of
dependency relationships. (3) Dependency networks do not enable
developers (or researchers) to perform change impact analysis be-
yond a single library; this leads to lost opportunities of evaluating
problems at the ecosystem level.

In our work, we propose to extend dependency networks with
call graph information, within and across dependencies, thereby
constructing ecosystem-wide dependency network call graphs. This
takes into account how libraries are interconnected at the source
code level.

Our vision is the following: (1) Construct a dependency net-
work at the function-level granularity. (2) Evaluate the dynamics of
changes made to libraries in a dependency network from a program
analysis perspective. (3) Study and evaluate historical changes in a
dependency network.

In the following sections, we outline concepts of our call graph
based dependency network and highlight how it can enable a fine-
grained impact analysis assessment.

2 CALL GRAPH BASED DEPENDENCY
NETWORK

Most package managers for OSS libraries use a variation of seman-

tic versioning to specify dependency versions. Semantic versioning
allows developers to specify dependencies, not only as an exact
version but also a version range. The resolution of version ranges
to exact versions is time-dependent; the package manager resolves
the latest version available at the package repository at the time
the resolution was initiated. This complicates precise retrospective
studies of dependency networks and makes their results fragile. As
an example, consider a library A, with two versions: v1.2 released
in Oct 2014 and v1.3 released in Oct 2016. A library B depends
on version 1. of library A. If we create the dependency graph of
the package ecosystem today, we would only resolve the depen-
dency to A v1.3, missing two years worth of time where the correct
dependency would be A v1.2.

Consequently, we need a fine-grained dependency network. For
this, we can exploit the fact that the vast majority of open source li-
braries included in dependency networks are developed on GitHub.
Instead of relying on aggregated metadata from package managers,
such as the data provided by the libraries.io service, we can ana-
lyze the commits on the dependency specification files. Using these
files, we can construct dependency networks with more details.
Following the example above, if the repository exporting library
B has received a commit ¢ at any time between Oct 2014 and Oct
2016, then we could resolve A to v1.2 for the version created in
c. Moreover, relying on GitHub for constructing dependency net-
works will enable us to include client programs in our analysis,
thereby extending the impact of our envisioned analyses.

After obtaining high resolution dependency networks, we need
to construct call graphs for each library version that we include
in our graph. Creating call graphs can be done either with static
analysis, where possible executions are determined from analyzing
the source code or through dynamic analysis, where probes are the
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method invocations recorded at runtime. Our only requirement is
that the call graph construction will be able to (statically) construct
call graphs that extend beyond a single project to the transitive set
of dependencies the project specifies. This requirement is akin to
the linking process in compiled languages, and is already supported
by many tools.

Next, we need to map the call graph on the dependency network.
There are two ways to do this: i) include the generated call graph
as an attribute to a dependency network node, or ii) decorate the
call graph nodes with metadata about the dependency (e.g., the
dependency name and version). We choose the second option, as
the graph nodes are functions and represents our end goal of being
able to perform impact analysis at an ecosystem level.

By following the steps above, we arrive to the definition of our
dependency network call graph as follows:

DErFINITION. A dependency network call graph for an ecosys-
tem is a directed and immutable graph G = (V, C) where:

(1) V is a set of versioned functions. Each v € V is a 3-tuple
<id,v,c >, whereid is a fully qualified function name, v is
the version of the library and c is the commit.

(2) E is a set of edges that connects functions. Each (v1,v3) € E
represents a function call from vy to vs.

Although the dependency network shares some similarities with
the work of Hejderup and Kikas et al [5, 6], it differs in that the
network is a large interconnected call graph and the versioning is
annotated at the function call level. Figure 1 illustrates a simple
call graph based dependency network where dependency 1 depends
one dependency 2. Inside each dependency block, the nodes repre-
sent versioned functions with full function identifier, version and
commit revision. The edges in the network can be classified into in-
ternal and external calls. An external call is made from the a() node
in dependency 1 to the c() node in dependency 2. The process to de-
cide and resolve an external function call into the correct versioned
one is not trivial and is explained in the following subsection.

2.1 Network Construction

The process of constructing the network is shown in Algorithm 1.
The initial step is to select commits that include changes to the
dependency file of the repository (line 3). A change can be a new
release of the library or a change to the list of specified dependencies.
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Algorithm 1: Network Construction

Algorithm 2: Resolving Dependencies

Input :git-based repository
1 G« 0
2 buildNetwork repo

3 C « filterDependencyCommits(repo);

4 if C # 0 then

5 foreach ¢ € C do

6 rev « checkout(c);

7 CG « constructCG(rev);

8 CGgnn < annnoteFunctions(CG);

9 if ¢ specifies new library version then

10 ‘ G « GUgetPrevCommitEdges(c, CGann);
1 end

12 if ¢ specifies a dependency update then

13 ‘ G « GUresolveDependencies(c, G, CGgnn);
14 end

15 end

16 end

For each of the selected commits, the source code of the library
is checked-out when the commit was made and a call graph is
constructed from the source code (lines 6-7). The functions (i.e.,
nodes) of the call graph are annotated with information about the
commit, name and version of the library and then added to the
dependency network (line 8). Depending on the type of the change
in the processed commit, there are two sub-cases:

(1) If the change is a new release of the library, a copy of the
edges representing function calls to external libraries in the
previous version is added to the graph.

(2) If the change specifies a new dependency, the dependencies
need to be re-evaluated and edges from each function in
CGgnn to functions in external libraries need to be created.

The process to resolve dependencies is presented in Algorithm 2.
The dependency file is obtained and parsed from the commit (lines
3-4). For each dependency, the existing dependency network is
sliced by the dependency name, then sliced further by the version
that is resolved by emulating the resolution process in the original
package manager. The remaining step is to slice at the commit level.
The time stamp of the provided commit is extracted and the closest
commit to the time stamp in Gy, is selected. The (transitive) call
graph for the processed dependency is created and links between
the processed dependency and external dependencies are resolved
and returned (line 11). After the edges are created, the process
repeats until there are no more dependencies to add in the graph.

2.2 Impact Analysis

Impact analysis helps in the determination of the subset of the de-
pendency network that is affected by a given set of changes or bugs.
The identified subset allows developers and library maintainers to
evaluate the impact within or across dependencies at the function
call level. As an example, library maintainers can assess the poten-
tial impact of a set of changes in the network before releasing a
new version. Further, developers can localize functions or methods
in the program that are implicitly affected by a critical bug in a
transitive dependency. Finally, the commit revision in the set of

Input :commit, G, CGann
Output:set of resolved dependency call edges
1 resolveDependencies commit, G, CGgnn

2 E « 0;

3 depfile « getDependencyFile(commit);

4 D « parse(depfile);

5 if D # 0 then

6 foreach d € D do

7 Gname < sliceByName(G, d.name);

8 ver « resolveVersion(d.constraint, c);
9 Guer < sliceByVersion(Gname, ver);

10 CGg « sliceByCommit(Gyer, commit);
1 E « EU {getDependencyCalls(CGg, CGann)};
12 end

13 end

14 return E

affected function nodes could be extended with using tools such
as git-diff or git-log to track and identify function additions,
removals or renames.

The process of identifying the affected nodes in a dependency
network is summarized in Algorithm 3. Given the name and version
of a library and the set of changed functions, the initial process is
to find the corresponding versioned functions of f in the depen-
dency network (line 3). For each versioned function, a reachability
analysis is performed that traverses the dependency network for
identifying one or more calls to the set of changed functions (line
5). The result of CG,,4cp contains a subset of the impacted (e.g
reachable) function calls to one versioned function. The partial
impact set CG,.,4.p, is added to the result in G (line 7). Finally, after
all versioned functions are processed, the impact set is returned
(line 10).

Algorithm 3: Impact Analysis

Input :A set of affected f in name & version of library
Output: Affected slice of the dependency network

1 G0

2 impact (name, version, f)

3 F « findVersionedFunctions(name, version, f);
4 foreach function f; € F do

5 Greach < reachability(fi);

6 if CGregen # 0 then

7 | G—GNCGreqchs

8 end

9 end

10 return G

3 INITIAL EVALUATION

The concepts presented in the previous section are implemented in
an early prototype in JavaScript and currently process npm-based
projects. The dependency resolution mechanism in the prototype
is based on npm’s semver? library, and call graphs are extracted

*https://github.com/npm/node-semver
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Figure 2: Impacted function calls in globwatch

from executing test cases of npm packages in Jalangi,’ which is a
dynamic analysis framework.

The initial evaluation concentrates on testing the concepts
in a small controlled setting before attempting processing at an
ecosystem-scale. The first use case evaluates the impact of a secu-
rity bug in the npm ecosystem. Towards this end, we use security
advisories from the Node Security Platform and evaluate the impact
of a bug discovered in the isaacs/Minimatch library.® The bug
is localized in the parse function and we obtained the affected
commits tagged with a version (e.g, all <=3.0.1) from the reposi-
tory. Using reversed dependency resolution in place of a call graph
network in Algorithm 3, led to the discovery of over 36.000 npm
packages that directly or indirectly resolve to a vulnerable version
of Minimatch; our results are publicly available.”

We selected an arbitrary package called globwatch (v0.0.1)
from the results and checked-out the commit 82cef59 from
airportyh/globwatch®. This npm module continuously keeps
watching for file changes via a user-defined glob pattern. We ob-
tained the call graph by executing the test cases in Jalangi and
later traversed the call graph to find call-paths that implicitly use
the parse function in isaacs/Minimatch (v0.2.14/72845fa). The
impacted set resulted in two distinct call-paths, of which, the output
of one call path is presented in Figure 2 where the call is executed
from top to bottom. Each node in the figure contains the commit sha
and also the line and the column information of the function in the
source code. The line and column number information is retained
to precisely identify anonymous function (e.g anonFn) bodies in
JavaScript.

4 DISCUSSION & CHALLENGES

The sheer size of code repositories and the frequent release of li-
braries poses many challenges to the construction and maintenance
of a versioned call graph based dependency network. The concepts
presented in Section 2 imply a use of program analysis techniques
to construct, infer and traverse call graphs. Performing such an anal-
ysis at ecosystem-scale introduces several problems: (1) Obtaining a
sound or accurate call graph can be computationally expensive, thus
making the construction of the network time consuming. (2) Hav-
ing an imprecise call graph could potentially lead to false negatives
in the impact analysis. (3) The use of commit time for resolving ver-
sion ranges in Algorithm 2 could be unreliable for repositories with

Shttps://github.com/Samsung/jalangi2

®https://nodesecurity.io/advisories/118, isaacs/Minimatch is the Github identifier of
the minimatch package
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8https://github.com/airportyh/globwatch
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improper time configuration. We intent to mitigate this by using the
build time of a commit from TravisCI-connected repositories [1].

To make the technique practical for developers and library main-
tainers, it is necessary to process ecosystems events such as changes
made to a library and their dependencies in real-time. Building a
real-time pipeline and adapting program analysis techniques to
process on an event-basis calls for modifying current tools to work
on an incremental basis.

5 RELATED WORK

In several studies [3-7], dependency networks have been used to
study the dynamics of interconnected libraries in software ecosys-
tems. However, there is a lack of research on dependency manage-
ment, and yet, it is among some of the most common activities a
developer needs to handle. To the best of our knowledge, there
is one qualitative study by Bogart et al [2] that reasons about the
cost of changes between library maintainers and their clients. How-
ever, none of these studies focus on techniques for a fine-grained
and actionable dependency management for developers and library
maintainers.

6 SUMMARY

In this paper, we present a technique to construct and analyze
dependency relationships in a software ecosystem at the function-
level granularity. The technique combines historical dependency
data from version-controlled repositories with call graph construc-
tion to build a fine-grained representation of a dependency network.
This representation can extend program analysis to diagnose prob-
lems at an ecosystem level, such as the spread of a security bug
to affected clients or libraries by inspecting their interconnected
function call relationship. We believe that our approach points to-
wards actionable dependency management, where dependencies
and their changes are evaluated at the source code level.
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