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Abstract
One of the key problems of swarm robotics is how the mo-

bile robots can navigate accurately in a given environment.
To achieve this, the mobile robots need to accurately deter-
mine where they are globally, or relative to other robots and
landmarks. This paper is going to be an investigation of the
Monte Carlo Localization algorithm in an environment con-
taining 3 anchors. In addition, an alternative modification is
suggested to this localization algorithm to improve the lo-
calization performance. An experiment is devised to assess
different aspects of localization performances of these algo-
rithms. With the experimental results, a quantitative analysis
of performance figures are compared and analyzed.

1 Introduction
Swarm robotics is an actively researched topic that is in-
terested in the coordination of a system containing multiple
robots. The main challenge of swarm robotics is solving a
problem where robots coordinate cooperatively [2]. Before
defining the behaviour of the swarm, there are certain sub
problems that needs to be addressed. The sub problem this
paper is going to be focusing on is localization of robots.

Localization is the problem of a robot estimating its current
position within the environment it is in. For now, we can split
localization of a robot into two different scenarios. First be-
ing globally localizing the robot which means that the robot
can estimate its position within a known environment. Sec-
ond scenario is the relative localization which is concerned
with the robot identifying itself by understanding the relative
distance between itself and the objects within the unknown
environment.

There are multiple ways that the robot can be localized.
For the robot to comprehend and analyze the environment,
there are various different types of proprioceptive sensors that
can be used to get a position estimation. That being said, it
is quite uncertain to get a accurate position estimation with
raw sensor data. The uncertainty in the position estimation
can be risen by sensor noises, the approximate nature of the
used algorithm and the inaccurate model of the environment.
The robot needs multiple sources of information which can
be analyzed by probabilistic robotics (statistical robotics) [7]
approaches while estimating its position to reduce the uncer-
tainty.

In this paper, we will investigate globally localizing a robot
using noisy light detection and ranging (LIDAR) sensor [10],
an Inertial Measurement Unit (IMU) [6] combined with a par-
ticle filter [3]. In addition, we will investigate the particle
filter performance using 3 anchors [3]. The goal of the inves-
tigation is to definitively localize the robot using minimum
number of steps up to some uncertainty.

1.1 LIDAR Sensor
A LIDAR sensor [10] measures the distances between the ob-
stacles, and the sensor itself. A 2D representation of a LIDAR
sensor projected by a robot is given in figure 1. The white
lines represent the obstacles (walls). Each green line repre-
sents the distance between the landmark and the robot at a
given angle. The figure given represents a noiseless LIDAR

Figure 1: Visualization of LIDAR sensor distance data

sensor, however, this is hardly the case in real life which is be-
ing discussed in the Sensor Noise section. In this paper, the
virtual robot in the test environment is going to be sensing 3
anchors using a virtual LIDAR sensor.

1.2 IMU
An IMU sensor [6] is a widely used sensor in robotics to keep
track of quantities such as distance traveled, velocity, accel-
eration, rotation data, etc. In real-life applications, just like
a LIDAR sensor, it can be noisy. IMU sensors are usually
paired with another sensor measurement to produce an ac-
curate position estimation. A Kalman filter [11] is generally
used to combine these measurements and produce a position
estimation. In this paper, the virtual robot that is being tested
is going to have an IMU sensor which has an odometer and
rotation data.

1.3 Sensor Noise
In the real world, it is unrealistic to expect a sensor to be-
have perfectly. This is why when analyzing the performance
of the filters mentioned, different sensor noise values need to
be considered. Two sensors will be utilized in the simulation
(LIDAR, IMU), must be noisy to make the experiments as
realistic as possible. These sensors can have a random noise
behavior or can be modeled using Gaussian distribution. For
instance, the LIDAR reading between the boundary and the
sensor itself could be a bit further away or closer to the robot
itself in reality. By amplifying this randomness, the simulator
can be tested with high and low noise in separate experiments.
The sensor noise does not have to be random, it could be pro-
gressive (random but smooth) and could follow a pattern that
can be modeled with Perlin noise [5]. In addition, the sensors
could progressively get less accurate so they could be prone
to drift.

1.4 Localization using a Particle Filter
In this subsection, how a robot can utilize a particle filter to
localize itself in a known environment is going to be dis-
cussed. At the start of the localization process, the robot is
located at a random position on the map and it does not have
any prior clue about where it is located. This means it is
equally probable for the robot to be at any position and di-
rection within the known map.



Figure 2: Probability Density Map of Robot Location (color red is
highly probable)

The robot starts by taking an initial LIDAR measurement.
From this, the robot gains information on how far it is lo-
cated from the obstacles (or landmarks, anchors) on the map.
This measurement alone is not enough to estimate where the
robot is since the map might contain multiple obstacles and
the robot could be sensing any of them. That being said, the
robot can deduce that it is at a point that is some distance
away from the obstacle and therefore can eliminate possible
positions and direction combinations on the map that do not
satisfy these criteria. This measurement constrains the robot
to be at specific locations.

An example of a probability distribution of robot position
is given as a heat-map at figure 2. The given map has a wall
on the outline and a single, white-colored wall segment in
the middle. The red points represent the possible robot loca-
tions given that the robot is measuring the distance between
itself and the wall segment in front of it. The density map for
this figure is generated by taking random particles (position
and direction) and comparing them to what the LIDAR sen-
sor sees. Figure 2 shows that the robot can be at a position
and direction in which the LIDAR sensor reads a particular
distance. It can either be near the borders of the room look-
ing towards the borders at the same distance the actual robot
is viewing the wall segment in the middle, or it can be near
the wall segment in the middle. As mentioned, it is highly
unlikely for the robot to be anywhere else on this simple map
therefore robot may already have a rough idea of its position
and direction. The reason why the red clusters in the figure
2 are widely spread is because of the sensor noise. This can
be modeled as Gaussian noise and allow distance measure-
ments up to some multiple of the standard deviation of the
distribution.

To converge these possible locations to a single location,
the robot can move around the map to observe new features
of the map. Doing this for multiple steps helps eliminate po-
sitions that were initially possible. By recursively updating
the weights of the possible locations, the robot can narrow
down the possible locations it can be in.

1.5 Relevant Limitations of Particle Filter
In some cases, the known map might have rooms that are
quite similar to each other or the map might be too simple
to analyze. In such cases, it is harder for the particle filter
to converge to position and direction estimation in a small

number of steps. In this paper, a step is defined as the single
time frame motion of the robot which contains both position
and direction change.

Even tough particle size could be varied, to have a good po-
sition estimation, generally, a large number of particles need
to be used which is computationally expensive as the particle
size grows.

The particle filter is non-deterministic. This means that the
behaviour might not be reproducible. The systems taking the
same inputs may result in different position estimations. This
is not the case if the same random seed is used for particle
sampling.

2 Formal Problem Description
2.1 Problem Description
This paper is going to be an investigation of the performance
of the Monte Carlo Localization algorithm in a known envi-
ronment containing 3 anchors through simulations. The sim-
ulated robot is going to contain a LIDAR sensor and an IMU.
In terms of performance, the minimum step size & sample
size required for the robot to be localized below 5% error are
going to be assessed. In addition, the algorithm is going to be
modified and tested to reduce minimum step size and mini-
mum percentage error while position estimation.

2.2 Monte Carlo Localization
Monte Carlo Localization algorithm [8] is a particle filter
based localization algorithm in which the positions and di-
rections of the particles (with preset particle size) are initially
uniformly randomized. It is a recursive algorithm meaning
it has a prediction and correction step when doing a position
and direction estimation. For the particle set with J particle
size, X is the weighted samples where xj is the state hypoth-
esis which is the position vector and wj is the importance
weight which is a real number.

X = {⟨x[j], w[j]⟩}j=1,2..J

The samples represent the posterior where δx[j] is the Dirac
impulses.

p(x) =

J∑
j=1

wjδx[j](x)

Initially, if there is no prior information about where the
robot could be in the map, the particle sample is random-
ized. One way of selecting samples is by re-sampling the
particles with a sample probability proportional to the impor-
tance weight. This technique is called importance sampling
[9].

The algorithm steps are as follows

1. Prediction Step, generating a sample particle set by us-
ing a proposal distribution. This step aims to estimate
where the original robot position could be in the envi-
ronment.

x
[j]
t ∼ proposal(xt|...)

Particles generated are going to be treated as a posi-
tion hypothesis where the proposal p is the observation



model, u is the movement & rotation command, xt−1 is
the previous belief on where the robot was, and xt is the
current belief on where the robot is.

x
[j]
t ∼ p(xt|xt−1, ut)

2. Correction Step, by using importance sampling, the al-
gorithm calculates the importance weights of the particle
set generated in step 1. The weights calculated are pro-
portional to the outcome of the observation model given
xt, zt which is the measurement at time t using LIDAR
and m as the map of the environment.

w
[j]
t =

target(x
[j]
t )

proposal(x
[j]
t )

∝ p(zt|xt,m)

3. Re-sampling Step, which pools a sample from the pro-
posal distribution by its importance weight. This step
replaces the weighted samples into frequencies so that
sample j is going to have a probability of w[j]

t . This pro-
cess is repeated J times for re-sampling. This means that
the re-sampled distribution is going to contain highly
probable samples.

Algorithm 1 MCL Algorithm derived from [8]

MCL(Xt−1, ut, zt,m):
X̄t = Xt = ∅
j = 1
while j ̸= J do

x
[j]
t ∼ p(xt|x[j]

t−1, ut,m) ▷ sample particle
w

[j]
t = p(zt|xt,m) ▷ calculate weight

X̄t = X̄t + ⟨x[j], w[j]⟩
j = j + 1

end while
wt = wt/J ▷ Normalize the weights
j = 1
while j ̸= J do ▷ Importance Sampling

draw sample x
[j]
t with probability ∼ w

[j]
t

Xt = Xt + x
[j]
t

j = j + 1
end while
return Xt

3 Modifying MCL Algorithm
In this section, a modified version of the MCL algorithm is
given to increase the minimum step size and lowest possible
error performance.

3.1 Proposed Optimization
The proposed algorithm aims to reduce the minimum num-
ber of steps and overall lower uncertainty by modifying the
importance sampling part of the Monte Carlo Localization
(MCL) algorithm. Particle-based filters such as the MCL al-
gorithm takes the positions of the particles into account. The

Figure 3: re-sampling based on prediction

original Monte Carlo Localization algorithm proposed is tak-
ing position data into account while localizing. The suggested
algorithm presented is also will take direction and particle
spread into account while localizing.

The idea behind the proposed modification is based on
knowing the robot’s motion model, which is described in the
Setup section. Knowing how much the robot travels in a sin-
gle step, and how much direction it can change in a single
step would allow us to make predictions, and allow us to ma-
nipulate the position and directions of our proposed particle
distribution.

In the re-sampling step of the MCL algorithm, the impor-
tance sampling principle associates the weights of the parti-
cles with frequencies. This means that only the most highly
probable particles are going to be considered for the next step
in the localization process. This results in sampling that only
consists of a small percentage of particles with high weights
for the next generation which results in a slow rate of decrease
in percentage error in small step sizes if the sensor noise is
high.

To improve the particle sampling for the next step, an algo-
rithm can disregard a portion of the initially re-sampled par-
ticles. The idea is that based on the position prediction, we
can generate new particles that are some Gaussian noise away
from the predicted position. This achieves a highly dense par-
ticle sample that is around the previous position prediction,
which increases the rate of decrease in percentage error.

The figure 3 shows the robot itself outlined with a green
color. The head of the robot is represented by the point circle
which indicates the heading direction. The yellow points rep-
resent the particles after importance sampling. The blue point
represents the prediction and the red circle around represents
the outer bound of where the actual robot can be based on the
LIDAR sensor noise. As it can be seen in the figure 3, impor-
tance sampling does not necessarily produce a sample set that
is particularly close to the robot’s position. That being said,
the position estimation (blue point) is fairly accurate.

To add variance and accuracy to the model in later steps,
the suggested algorithm makes use of this red circle and re-
samples some portion of the already re-sampled particle set.

Another aspect in which the re-sampling section of the al-
gorithm could be improved is by taking the motion model
into account. The yellow-colored particles in figure 3 may



have accurate positions however they may not have accurate
direction. At the next step of the simulation, some of these
highly probable particles may become irrelevant. By stor-
ing the previous position estimate gt−1 and calculating the
current position estimate gt, the algorithm can roughly deter-
mine the direction of the robot. Knowing the maximum ra-
dius which the robot can turn in a single step and the noise in
the rotation, would limit the possibilities of where the robot is
heading. So rotationNoise = Maximum rotation in a single
step + sensor noise.

By combining steps 1 and 2, the algorithm can generate
particles that are some Gaussian distance away from the pre-
diction, and also would incorporate the position estimation
into account. By re-sampling using this algorithm, the parti-
cles would be spread over an area that is highly probable and
would move towards where the actual robot would be mov-
ing. This is why, in the next step, the particles that are moved
have a higher chance of being near the actual position of the
robot.

Gaussian(µ, σ2) defined in the algorithm 2 returns a ran-
dom sample of a Gaussian distribution of mean µ and vari-
ance σ2. The function centerPoint(Xt) returns the central
position of the particles in set Xt.

Algorithm 2 Modified MCL Algorithm

MMCL(Xt−1, ut, zt,m, gt−1):
X̄t = Xt = ∅
j = 1
while j ̸= J do

x
[j]
t ∼ p(xt|x[j]

t−1, ut,m) ▷ sample particle
w

[j]
t = p(zt|xt,m) ▷ calculate weight

X̄t = X̄t + ⟨x[j], w[j]⟩
j = j + 1

end while
wt = wt/J ▷ Normalize the weights
j = 1
while j ̸= J do ▷ Importance Sampling

draw sample x
[j]
t with probability ∼ w

[j]
t

Xt = Xt + x
[j]
t

j = j + 1
end while
Xt = sort(Xt) ▷ Sort using weights (high to low)
j = J ∗ k ▷ k is a constant, from 0 to 1
Xt = Xt[0 : j] ▷ disregard k portion of Xt

gt = centerPoint(Xt)
θ = gt − gt−1 ▷ Estimated Direction
while j ̸= J do ▷ Generate new particles

nt = gt +Gaussian(gt, lidarNoise)
nt.dir = θ +Gaussian(gt, rotationNoise)
Xt = Xt + nt

j = j + 1
end while
return ⟨Xt, gt⟩

Figure 4: (MCL) Error percent based on particle size and step size

Figure 5: (MMCL) Error percent based on particle size and step
size

4 Experimental Setup
In order to test the localization performance of the Monte
Carlo Localization algorithm, a square map with 3 randomly
placed anchors is going to be used. In each test, the robot
is going to have a random initial position with random direc-
tion. In each of these tests, the mean distance of particles to
the robot’s position is going to be calculated and compared.

The tests are going to be conducted using a simulation. The
performance criteria are going to be assessed based on the
minimum number of steps that the robot needs to take before
it is localized to %5 uncertainty. Additionally, the average
uncertainty that is achieved in 5 steps is going to be assessed.
This experiment is going to be repeated 10000 times for every
setup to accurately assess the performance.

The simulation is going to have an environment of size
1000 by 1000 pixels which represents a room of size 100m2.
Initially, the robot’s LIDAR sensor is assumed to have a 2%
error on distance measurements on the anchors. A step is de-



Figure 6: MCL vs MMCL, 100 particles

Figure 7: MCL vs MMCL, 1000 particles

fined as a 50cm movement in the environment. The robot’s
optometry and rotation are going to have a 1% error in a sin-
gle step.

The robot’s motion is based on steps. In a step, a robot
travels roughly 50 cm and can rotate from −π

6 radians to +π
6

radians. The rotation is calculated by using Perlin noise [5].
This ensures that the robots change direction progressively,
not instantaneously while discovering the environment. The
directions are random however it is more predictable which
is more representative of an actual robot’s direction change
model.

The simulation is written in typescript paired with the p5.js
drawing library which allows for visualization of the simula-
tion. A standard Monte Carlo Localization algorithm is ini-
tially implemented. Then the Modified Monte Carlo Local-
ization algorithm is implemented. The performances of these
two algorithms are compared and discussed in section 5.

5 Results
The performance criteria in this section is measured by cal-
culating the mean distance of the particle set Xt to the ac-
tual robot position. The algorithm is run for 105 times with
random anchor & robot positioning, up to 25 steps for both
MCL and MMCL. The direct comparison for 100 and 1000
particles is given in figures 6 and 7 respectively, blue line rep-
resenting MCL, red line representing MMCL.

In 5 steps, on average with 100 particles, MCL achieves
5.64%, MMCL achieves 5.05% error. At the end of 25 steps,

Figure 8: MCL vs MMCL, high noise, 100 particles

Figure 9: MCL vs MMCL, high noise, 1000 particles

MCL approaches 4.65% and MMCL approaches 4.47% error.
In 5 steps, on average with 1000 particles, MCL achieves

3.59%, MMCL achieves 3.21% error. At the end of 25 steps,
MCL approaches 3.10% and MMCL approaches 3.00% error.

The figures 6 and 7 shows that the the rate of decrease of
error percentage in MMCL is considerably higher than MCL.

Another aspect that can be analyzed is the fail rates of the
algorithm. We are going to define a failing experiment as
having a ϵ uncertainty and higher after α number of steps.
Using 100 particles with α = 10 and ϵ = 5%, MCL has a
fail rate of 14.28%, MMCL has a fail rate of 13.31%. When
it comes to a 1000 particles using the same α and ϵ, the fail
rate of MCL and MMCL is 7.15% and 6.36% respectively.

That being said, in case of increasing the sensor errors,
LIDAR from 2% to 5%, and optometry (both position and
direction) from 1%, 3%, figures 8 and figure 9 still shows
that the rate of decrease of error percentage in MMCL still
are considerably lower than the MCL. Looking at the graphs,
MMCL performs quite similar with lower particles where as
in MCL, it can be clearly seen that increasing the particle
size increases its performance. In both, 100 and 1000 parti-
cle cases, the MMCL approaches an uncertainty lower than
7% where as the MCL approaches this uncertainty in 1000
particle case only.

Taking Step size and particle size into account, the figure 4
and 5 show that for both of the algorithms, as the step size and
particle size increase, the localization performance in terms of
the minimum number of steps to achieve lower than 5% error,
and achieving lower overall percentage error increases.



6 Discussion and Future Work
Robust Monte Carlo Localization for Mobile Robots [8] is the
state-of-the-art algorithm that is used for indoor localization.
MCL combines the advantages of accuracy and efficiency of a
Kalman filter[11] and Markov localization[4] which is a grid-
based localization algorithm.

Robots MINERVA, was being used as a museum tour guide
in the Smithsonian’s of American History using the Monte
Carlo Localization algorithm for position estimation [8].

That being said, the Monte Carlo Localization algorithm
is introduced in 1999, which is why there are existing spe-
cialized Monte Carlo localization algorithms for specific en-
vironments and sensor data. Some of the mainline advances
are given in paper [1].

Another modified Monte Carlo Algorithm that takes posi-
tion estimation and tracking into account is given in paper
[12] which is tested in more complex environments to show
how its performance scales compared to the original Monte
Carlo Localization Algorithm.

The algorithm presented in this paper is specifically tuned
for 3 anchors, this is why in a real-life situation where there
are more landmarks or anchors, it may be beneficial to com-
pare how a specialized Monte Carlo Localization algorithm
behaves.

7 Responsible Research
The experiments devised and done on the research parts are
evaluated using a statistical analysis. Since the localization
algorithms are tested are non-deterministic, it is crucial to
point out that the tests are reproducible. The repository used
in this project contains a typescript project in which one can
visually test how the algorithms behave, also generate mul-
tiple data sets to be analyzed. Also, python script is used to
generate the graphics used in some of the figures, which is
also included in the repository 1.

8 Conclusions
This experimental study discusses the performance of the
original Monte Carlo Algorithm 1. In addition, a modified
version of the Monte Carlo Algorithm 2 is presented for an
environment containing 3 anchors. The parts in which the
presented algorithm improves on the original algorithm are
explained. The performances of these algorithms are quanti-
tatively compared with figures. The real-life implications of
these algorithms are questioned and debated. Finally, the re-
peatability aspect of the experiments conducted is explained.
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