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Abstract

The first Dynamic Positioning (DP) systems emerged in the 1960’s from the need for
deep water drilling by the offshore oil and gas industry, as conventional mooring systems,
like a jack-up barge or an anchored rig, can only be used in shallow waters. GustoMSC
has been developing DP drill ships since the early 1970’s and it is still one of their core
businesses.

DP systems automatically control the position and heading of a ship subjected to
environmental and external forces, using its own actuators. The thrust allocator of a DP
system is responsible for the thrust distribution over the actuators of the ship. Apart
from minimizing the power consumption an ideal thrust allocator can also take other
aspects into account, such as forbidden/spoil zones and thruster relations. Because the
Lagrange multiplier method, used inhouse by GustoMSC for thrust allocation, cannot
accurately describe fullscale DP systems with rudders and forbidden/spoil zones, new
methods need to be explored.

Various optimal thrust allocation methods for dynamic positioning of ships are
considered and their practical use is tested with DP capability calculations and time
domain simulations with online optimization routines. The shortcomings of Lagrange
multiplier methods are illustrated and quadratic programming methods combined with
disjunctive programming techniques are used to present a more elaborate solution to
optimal thrust allocation problems. Using disjunctive programming each actuator is
modeled by a finite union of convex polygons representing the attainable thrust region.
This approach allows combinations of non-rotatable thrusters, rotatable azimuth thrusters
with forbidden/spoil zones and main propeller/rudder pairs to be used. As a consequence
the allocation problem decomposes into a finite number of subproblems that all need to
be solved separately in order to find the optimal solution of the main problem. For time
domain simulations the dynamic limitations of the thrusters are taken into account by
adding more convex thrust regions to the problem. Briefly, the potential use of linear
matrix inequalities for optimal thrust allocation problems is treated.

The obtained results are discussed and conclusions are given.
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Chapter 1
Introduction

Offshore drilling dates back to the mid 1920’s when the first subsea wells were drilled.
Starting at tidal zones and piers, the first drilling activities soon occurred from concrete
platforms near the shore. In the 1940’s fixed drilling/production platforms allowed drilling
at a water depth of 6 meters, tens of kilometers off the coast. Keeping a fixed position in
these shallow waters obviously never was a problem, but when the demand for deep water
drilling increased in the 1950’s station keeping became a big obstacle. This resulted in
different positioning solutions.

A jack-up barge can be used in water depths up to approximately 120m. When it
is on location, it can raise itself clear of the sea with its three or more massive legs.
Figure 1.1 shows an installed jack-up rig. Also known as a mobile offshore drilling unit
(MODU) it has the benefits of a fixed platform, combined with the ease of mobility. A
big advantage of this system is that the station keeping is not vulnerable to blackouts or
power shortages and there is no need for a position reference system, once on location.
Despite these advantages the maximum water depth at which it can operate is still very
limiting compared to the other mooring solutions.

Figure 1.1: A jack-up rig showing its three enormous legs.
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Spread mooring and anchor pattern like systems can be used for many different
structure types in water depths exceeding 1000m. The position is controlled by fixing the
vessel to the seabed using mooring lines and anchors. Positioning therefore takes up a
lot of time and can be quite expensive due to the required anchor-handling tugs. Once
anchored, there will always be some movement left due to the flexibility of the mooring
lines, although small adjustments are possible by adjusting the line lengths. When a large
position shift is needed, all or some of the anchors will need to be lifted and relaid. Then
there is also the possibility of underwater hazards represented by any existing underwater
installation, such as pipelines. Regarding the station keeping vulnerabilities is has the
same advantages as the jack-up system. Figure 1.2 shows a spread turret mooring system.

Figure 1.2: Example of spread turret mooring.

Dynamic positioning (DP) systems are not limited to a maximal water depth as they
automatically control the position and heading of a vessel by using its own propulsion
system (see figure 1.3). Although this gives a lot of freedom, it also makes DP systems rel-
atively complex. Because the propulsion system needs to react to environmental/external
changes continuously, DP systems can be quite expensive. Also this online approach brings
more reliability problems, as the system is more vulnerable to failures regarding the power
supply, thrusters, electronics or the reference system. On the other hand, DP systems pro-
vide a solution that can be used at any water depth (only excluding some shallow waters),
are very precise because they can rapidly response to environmental/external changes
and they are set up very quickly and easily. No assisting tugs are required whatsoever
and a DP ship can easily change to another location without a lot of extra costs. Also
underwater installations form no obstacle, as it only relies on its own actuators for station
keeping. Because station keeping can also be relative, DP can also be used for Dynamic
Tracking (DT) purposes, where the system can follow a predefined track, or where it can
maintain position relative to another moving vessel. Nowadays, almost every floating
structure can be quickly fitted with a DP system (as there are also mobile DP solutions
available). All these advantages results in DP systems being used in an increasing number
of applications, including exploration drilling, cable/pipe laying, dredging, shuttle tanker
operations, rocket launch pads, repair/maintenance support, crane vessels. Despite all
the advantages, there is still room for improvements. Redundancy has already made
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DP systems more reliable, but the growing demand for more fuel efficient operation and
the need for more advanced control over the thrusters, calls for the development of new
control techniques.

Figure 1.3: Example of a DP vessel, showing the wash of the propulsors.
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Chapter 2
Dynamic positioning

In this chapter the fundamental working of a DP system will be explained, while giving an
overview of its most essential components. DP systems require many different components
to communicate correctly with each other in order to work and can therefore be very
complex. Because DP suppliers have different philosophies regarding their design, many
variations exist. Despite of these variations, certain components are essential for all DP
systems. In the following sections each of these components will be described. For more
detailed information om DP system components, see [Bra03].

2.1 Position/Heading reference systems

Every DP system needs to measure the state of the system, containing the current
position and heading of the ship. As this is very important for the correct functioning
of the DP system, there are usually multiple devices on board that can generate this
information. There are also many different systems to choose from. Commonly used are
satellite navigation systems (GPS and DGPS), hydro acoustic position reference systems
(HPR), mechanical reference systems (taut wire), relative positioning systems (Artemis
and Fanbeam/CyScan), vertical reference units (VRU) and heading reference systems
(gyrocompass). More accuracy can be achieved by combining different methods. A DP
system also has a mathematical model of the ship from which the position and heading
can be estimated given its current state. This can help to keep the DP system on course
when a reference system failure would occur.

2.2 Sensors: measuring the environment

The three most important environmental factors for a DP system are the wind, the waves
and the current. From these, the wind is the most important factor because the waves are
assumed to be wind driven and the current is often slowly varying. The wind is also the
most easiest to measure and from this, wind-wave relations can be used to estimate the
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waves. Because the DP system cannot react to the high frequency wave loads, only the
second order wave-drift forces are of interest. Using a Kalman filter these can be filtered
from the measured motions (see also [Sni05]).

2.3 Propulsion system

Actuators can exert forces on the ship and are used by the DP system to control its
position. Most propulsion devices use a rotating propeller to generate thrust, although
there are also jet propulsion devices. Controlling the amount of thrust that is generated
by an actuator can be a difficult task. Often the rpm is used for this, although there are
many other factors that influence the amount of generated thrust. Controllable Pitch
(CP) propellers (as opposed to Fixed Pitch (FP) propellers) can be used to increase the
efficiency and wear/tear of the motor. By controlling the pitch angle of the blades on the
propeller, the amount of thrust can be controlled, while the motor can be left at a fixed
efficient state (constant rpm). Other factors that can influence the efficiency, and the
generated amount of thrust, are thruster-thruster interactions (thrusters blowing against
each other), thruster-hull interactions, cavitation phenomena, and strong current. The
ideal DP system should be able to take all these factors into account when controlling
the ship.

Apart from the correct thruster type, the actuator layout is also very important and
greatly determines the DP capability of the ship. When the thrusters are badly positioned,
an under-actuated ship can be the result. This is bad because the ship will not be able to
maintain position under certain conditions. The aim in designing a DP system is to have
a fully-actuated ship. For more critical DP applications an over-actuated ship will be
preferred. In this case DP problems will have multiple feasible solutions, resulting in a
more robust DP system. Figure 2.1 shows an example actuator layout. Table 2.1 lists the
different thruster types and their corresponding symbol.

CoG

Figure 2.1: Example actuator layout.

Symbol Description

Tunnel thruster

Azimuth thruster

Main propeller

Rudder

Table 2.1: Thruster symbol list.
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Because there are a lot of different thrusters available for different application, the
most basic types will be briefly discussed, explaining their key features (see also figure
2.2).

(a) Two tunnel thrusters at the bow. (b) Close-up of a tunnel thruster.

(c) An azimuth thruster at the stern of a
ship.

(d) The stern of a ship, showing the main propeller
with the rudder and a tunnel thruster.

Figure 2.2: Examples of different actuator types.
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2.3.1 Tunnel thrusters

Tunnel thrusters (see figure 2.2(a), 2.2(b) and 2.2(d)) can generate transverse thrust.
They are usually placed at the bow or the stern of the ship, where they can generate
the greatest moment. Because they are primarily used for steering purposes (and not for
main propulsion purposes), they often have controllable pitch propellers as they need to
be able to switch quickly from forward to reverse mode and vice versa. Multiple tunnel
thrusters can be placed next to each other when more thrust is needed.

2.3.2 Azimuth thrusters

Azimuth thrusters (see figure 2.2(c)) can be used for steering and propulsion purposes.
They can rotate the full 360 degrees to generate thrust in any direction. Because they are
often fitted with a duct around the propeller to reduce cavitation and increase the efficiency,
they are usually not used in reverse mode. Although they can be maneuvered in any
direction this can sometimes also form a hazard when they are positioned near a moonpool
where divers can enter the water. In these situations they will be switched off for safety
reasons. Forbidden/spoil zones can be used to avoid an azimuth thruster from blowing
at the skeg (a sternward extension of the keel of a ship) or to avoid thruster-thruster
interactions, which will reduce the efficiency.

2.3.3 Main propellers and rudders

Main propellers are usually designed to be very efficient under certain conditions. They
are not always part of the DP system, as they will be mainly used for the propulsion of
the ship. Modern DP systems can use them to increase the DP capability, but estimating
the exact capability of a main propeller/rudder pair can be very difficult. Often the
characteristics of the rudder (which can also be seen as a wing) are given by lift and drag
coefficients. These can be transformed into lift and drag curves in percentage of bollard
pull, but then there are still a lot of important factors not taken into account, such as the
hull shape that influences the flow and for instance lift induced thrust, generated by the
rudder. Figure 2.2(d) shows a main propeller and a rudder at the stern of a ship.

2.4 Power system

The power system often consists of more than one power generator and some switchboards
that distribute the power over the ship components. When a generator would fail the
switchboard can switch to another generator to maintain power to certain vital components.
Because DP systems are very vulnerable to power failures the power management system
is very important and should be very robust.
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2.5 Control system

The DP control system forms the brain of the whole DP system. Here all the information
comes together from which the control signals are determined that will be sent to the
actuators. Figure 2.3 shows a block diagram of a DP control system. First the observer
(Kalman filter) estimates the current state from the generated thrust and the measurement
data. Then the controller calculates the required forces and moment from the current
state and the set target state. This information is sent to the thrust allocator, which
distributes thrust over the actuators, trying to satisfy the given requirements as good as
possible. While doing this the allocator also tries to minimize the power consumption and
takes forbidden/spoil zones into account. It could even take thruster-thruster interactions
and thruster-hull interactions into account while distributing the thrust.

Target state

Thrust Observer
State

estimation
Controller

Required

thrust
Allocator

Distribution
Actuators

Measurements

Figure 2.3: Block diagram showing how the thrust allocator is embedded in the DP
system.

2.6 Thesis goal

The problem that the thrust allocator has to solve can become quite difficult and forms the
main subject of this thesis. The Lagrange multiplier method used inhouse by GustoMSC
for thrust allocation, is not able to do DP calculations for azimuth thrusters with
forbidden/spoil zones and propeller/rudder pairs. Therefore a new and better thrust
allocation algorithm needs to be developed. Given the required forces and moment and
the ship layout with the needed actuator information, the new thrust allocator should
be able to do full scale DP calculations, including tunnel (fixed) thrusters, azimuthing
thrusters with forbidden/spoil zones and main propeller/rudder pairs. While doing this it
should also minimize the power consumption.
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Chapter 3
General model assumptions

In this chapter general model assumptions will be given. These will be used for the
Lagrange multiplier method and the Quadratic Programming method.

3.1 Required thrust

The thrust allocation problem will be restricted to the motions in the horizontal plane of
the vessel, leaving only surge, sway and yaw as degrees of freedom (these are controlled by
the forces Fx, Fy and the moment Mz). Figure 3.1 shows the sign conventions for Fx, Fy
and Mz (Note that the coordinate system is different from the typically used Cartesian
coordinate system). The thrust allocator will be given the forces and moment required
by the DP system (see also figure 2.3). These are defined as

τref =
[
Fx,ref, Fy,ref, Mz,ref

]T
. (3.1)

3.2 Actuators

The state of each thruster is given by a thrust vector u = (ux, uy). All thrusters will
be modeled using Cartesian coordinates 1. All thrusters have the same amount of state
variables (two), but as each thruster type has its own thrust characteristics some of the
parameters will have a slightly different meaning for different thruster types. Figure 3.2
gives a schematic overview of the different thruster types.

1Although it is possible to use polar coordinates for fixed non-rotatable thrusters (by incorporating
the constant angle in the configuration matrix), using the same coordinate system for all the thrusters
seems less confusing and will only cost one additional constraint for each fixed thruster.
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Figure 3.1: Sign conventions.
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(a) Fixed thruster model.
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(b) Schematic thrust region for a fixed
thruster.
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(c) Azimuth thruster model.
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(d) Schematic thrust region for an az-
imuth thruster.
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(e) Main propeller & rudder model.
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(f) Schematic thrust region for a pro-
peller/rudder pair.

Figure 3.2: Thruster models.
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3.2.1 Thrust region

Each thruster has a limited working area, regarding its (local) state (ux, uy) (limited
amount of thrust and limited directions in which to generate thrust). For each thruster
we can define a set that contains all its physical realizable states (ux, uy). We will call this
the thrust region of the thruster. Each thrust region forms a limited and closed subset
of R2 that will be linearly approximated by polygons. Different thruster types will have
different thrust region shapes (polygons), as will be clear at the end of this chapter (see
also 3.2).

3.2.2 Fixed thruster

A fixed thruster is a non-rotatable device. Therefore the orientation angle α is fixed and
cannot change. The generated thrust is thus limited to a line shaped region (the line
through zero, with angle α). The maximal and minimal thrust are given respectively by
Tmax and Tmin (in kN). These restrict the thrust region to a line segment. For a tunnel
thruster α will be 90°and typically Tmax = −Tmin = Tlim for some value of Tlim.

3.2.3 Azimuth thruster

An azimuth thruster is a rotatable device and can deliver thrust in any direction. The
angle of the generated thrust is represented by α and is variable. For a given state (ux, uy),
we find that α = arctan(uy/ux). Assuming that an azimuth thruster will not be used in
reverse mode, the minimal thrust Tmin is 0. The maximal thrust Tmax will be limited,
thus creating a circular thrust region. When a forbidden zone is defined the thrust region
will take a Pacman-like shape. More complex shapes are of course also possible.

3.2.4 Main propeller with rudder

The main propeller is always pointing to the stern of the ship and can provide a thrust
Tmain in the Fx direction only (see figure 3.3(a)). Because the main propeller generates
no force in the Fy direction, we may shift the force Tmain over an imaginary line (y is
constant), without changing the resulting moment. This way we can model the main
propeller/rudder pair as one thruster. The turning point of the rudder will function as
the position of the combined propeller/rudder thruster (see figure 3.3(a)).

A rudder with a fixed propeller is defined by the bollard pull of the main propeller
and the lift and drag curves of the rudder. The main propeller generates a force Tmain.
The rudder behind the main propeller is able to rotate and generates lift and drag. Lift
and drag curves define the lift and drag forces in percentage of the bollard pull T0 of the
main propeller, as a function of the rudder angle δ.

It can be seen from the lift and drag curves that the lift force generated by the rudder
will eventually stall at an angle around 35°. Rotating a rudder any further will decrease
the generated lift force. The angle at which this happens is called the stall angle and it
defines the limiting angle at which the rudder should be used, to avoid inefficiency.
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The thrust region from a main propeller/rudder pair is determined by the lift and
drag curves, and will have a circle sector like shape. Note that the angle of the generated
thrust need not be the same as the angle of the rudder. This is due to the lift and drag
characteristics of the rudder. Using the lift and drag curves, the thrust angle α can
be translated to and from the rudder angle δ, by using interpolation algorithms on the
quotient of the two curves in figure 3.3(b). For Tmax the bollard pull is used, as the given
lift and drag curves are assumed to be defined in percentage of bollard pull. When no lift
and drag information is known, default lift and drag curves can be used. In figure 3.3(b)
some lift and drag curves are given in percentage of the bollard pull, that can be used for
low ship speeds.

The main propeller can be used in reverse mode. In such a case, the rudder is not
able to deliver a lift force. The thrust region will reduce to a line shaped region, with
about half the amount of bollard pull as the limiting thrust amount, due to inefficient
water flows. For Tmin half the bollard pull is a typical value.

3.3 Configuration matrix

The configuration matrix is used to easily calculate the forces and moment on the ship,
generated by a propulsor, given its state (ux, uy). For this, the Center of Gravity (CoG) of
the ship is assumed to be known and defined as (xCoG, yCoG). For each of the propulsors,
its position with respect to the CoG of the ship is also assumed to be given by (x,y).From
these the lever arms Lx and Ly can be calculated for each of the thrusters using

Lx = x− xCoG,

Ly = y − yCoG.
(3.2)

For every thruster the forces and moment that it generates with respect to the CoG of
the ship are given by (see also figure 3.4)

Fx = ux,

Fy = uy,

Mz = Lxuy − Lyux.
(3.3)

From this the configuration matrix is formed by rewriting (3.3) as 1
1

−Ly Lx

[ux
uy

]
=

FxFy
Mz

 ⇔ Bu = τ. (3.4)

3.4 Minimizing power consumtion

The thrust allocator tries to fulfill the given τref, while minimizing the power consumption.
Because the model variables u represent thrust, we need to know how to relate this to
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(a) Main propeller/rudder forces.
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Figure 3.3: Propeller/rudder forces.
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Figure 3.4: Thruster position definition.

power. The power consumption P as function of the amount of generated thrust T of a
thruster, is typically defined by the non-linear relation:

P (T ) = (Pmax − Pmin)
(
|T |
Tmax

)η
+ Pmin (3.5)

In this model the parameters Pmax, Pmin, Tmax and η totally define the relation between
the thrust T in kN and the power P in kW of a thruster, where typically 1, 3 < η < 1, 7.
Using the least squares method, we can approximate this function with a quadratic
function wT 2 + c, with w, c ∈ R (see figure 3.5).

For the modeled Cartesian decomposed thrust state (ux, uy) and thrust amount T
the following relation holds:

T = ‖(ux, uy)T ‖2 =
√
u2
x + u2

y. (3.6)

It can be seen from figure 3.5 that approximating the function (3.5) with a function
wT 2 + c, where w, c ∈ R are the weights matching the quadratic fit, is not too bad and
matches the shape of P (T ) rather well. We see that

P (T ) ≈ wT 2 + c = w(u2
x + u2

y) + c = (ux, uy)
[
w

w

](
ux
uy

)
+ c = uTWu+ c. (3.7)

With the above approximation, the quadratic cost/weight matrix W is found, which we
will use for the power minimization.
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Figure 3.5: Power thrust relation for a bow thruster with Pmin = 440, Pmax = 2150 and
Tmax = 300.



Chapter 4
Lagrange multiplier method

The Lagrange multiplier method that is used inhouse by GustoMSC will be described,
and its limitations are analyzed. The general model assumptions from Chapter 3 will be
used.

4.1 Problem formulation

The thrust allocation problem is formulated as a quadratic equality constrained minimiza-
tion problem and solved using the Lagrange multiplier method. Assume we have a ship
with n thrusters and that all the information as discussed in Chapter 3 is known for every
thruster. Then we know the cost/weight matrix Wi ∈ R2×2 and the configuration matrix
Bi ∈ R3×2 for i = 1, . . . , n. From these the thrust allocation problem can be assembled as

min
u

uTWu

s.t. Bu = τref
(4.1)

with

W =

W1

. . .
Wn

 , B =
[
B1 · · · Bn

]
and u = (u1, . . . , un)T ,

where
W ∈ R2n×2n, B ∈ R3×2n and u ∈ R2n.

With the Lagrangian, problem (4.1) can be written as an unconstrained minimization
problem

L(u, λ) = uTWu+ λT (−Bu+ τref), (4.2)

where λ ∈ R3 are the Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) conditions
give necessary conditions for an optimal solution:

∂L

∂u
= 2Wu−BTλ = 0 ⇒ u = 1

2W
−1BTλ (4.3)
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and
∂L

∂u
= τref −Bu = 0 ⇒ Bu = τref. (4.4)

From (4.3) and (4.4) it follows that

1
2BW

−1BTλ = τref ⇒ λ = 2(BW−1BT )−1τref. (4.5)

Substitution of (4.5) in (4.3) gives the solution

u = W−1BT (BW−1BT )−1τref. (4.6)

When the matrix BW−1BT is neither singular nor ill conditioned, problem (4.1) can be
solved by solving the linear system of equations in (4.6).

4.2 Saturation handling

A problem with the above solution is that the thrust limits of the thrusters are not taken
into account by the solver. The solutions will contain thrust values that the thrusters
are not physically capable of. To solve this issue saturation handling is added to the
thrust allocator algorithm. A saturation handling routine checks for every thruster if
the proposed solution is saturating the thruster. If this is the case, the thruster is set
to its maximum amount of thrust, and the generated forces and moment are calculated
using Bu = τ for this thruster (equation (3.4)). Then the thruster is taken out of the
problem, after updating τref by subtracting τ from it. Now a smaller problem with one
thruster less remains to be solved in the same fashion as before, until all the thrusters are
saturated, or a valid solution is found.

An overview of the described saturation handling algorithm is given in the pseudo
Matlab code listing 4.1.

Listing 4.1: Multiplier Lagrange algorithm
%% Pre−proces s ing
% I n i t i a l i z e the con f i gu ra t i on matrix
% and the cos t matrix f o r each propu l sor
for each Propulsor in Propu l so rL i s t
{

Propulsor . i n i tCon f i gu ra t i onMat r i x ;
Propulsor . in i tCostMatr ix ;

}

%% Lagrange op t imi za t i on loop over the p r o p u l s o r l i s t
while (1 )
{

i f ( Propu l so rL i s t . isEmpty | | (‖τref‖ < 10−3 ) | | I t e r a t i o n > 20 )
{

% Stopping cr i t e r ium
break ;

}

% Assemble the genera l con f i gu ra t i on matrix and
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% the genera l i nve r s e cos t matrix
for each Propulsor in Propu l so rL i s t
{

% Concatenate the con f i gu ra t i on matr ices
B = [ B, Propulsor . getConf igurat ionMatr ix ] ;
% Concatenate the inve r s e weight matr ices
invW = [ invW , diag ( inv ( Propulsor . getCostMatrix ) ) ] ;

}

%% Make sure B i s o f f u l l rank
% ( otherwi se the inve r s i on g i v e s problems )
% This i s necessary when a t h ru s t e r i s l o ca t ed at the CoG.
Tau = TargetTau ( 1 : rank (B) ) ;
B = B( 1 : rank (B) , : ) ;

%% Solve the unconstrained Lagrange problem
% minuuTWu
% subject to: τ −Bu = 0
%
u = W−1BT (BW−1BT )−1

% Break on error s
i f isnan (u)
{

% An error occurred wh i l e s o l v i n g the Lagrange Mu l t i p l i e r system
break ;

}

%% Satura t ion hand l ing
% Post process the s o l u t i on ( f o r each propu l sor ) ,
% tak ing in to account the propu l sor l im i t s
for each Propulsor in Propu l so rL i s t
{

% Calcu la t e the t h r u s t generated by t h i s propu l sor
% according to the Lagrange s o l u t i on
τsol = Bu

% I f one o f the propu l sor parameters i s sa tura t ed
% ( in the new Lagrange s o l u t i on ) , the sa tura t ed parameter
% i s s e t according to the propu l sor l im i t s and
% the propu l sor i s removed from the propu l sor l i s t
% over which the lagrange mu l t i p l i e r method i s app l i e d i t e r a t i v e l y
% a f t e r τref has been updated with τsol
% (The propu l sor cannot be a l t e r e d anymore once i s s a t u ra t e s ) .

}
}

4.3 Thrust inequality constraints

In this section the Lagrange multiplier method will be extended with thrust constraints.
Adding only one linear inequality constraint to (4.1) (representing one of the thrust
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constraints) will give the following problem:

min
u

uTWu

s.t. Bu = τref

Au ≤ b

with
b ∈ R, and A ∈ R1×2.

Eliminating the inequality constraint with a slack variable s ∈ R gives:

min
u,s

uTWu

s.t. Bu = τref

Au+ s2 = b

The Lagrangian now takes the form

L(u, s, λ, µ) = uTWu+ λ(τref −Bu) + µ(b− s2 −Au).

Checking the KKT conditions gives

∂L

∂u
= 2Wu−BTλ−ATµ = 0 ⇒ u = 1

2W
−1BTλ+ 1

2W
−1ATµ,

∂L

∂s
= −2sµT = 0 ⇒ s = 0 or µ = 0,

∂L

∂λ
= τref −Bu = 0 ⇒ Bu = τref,

∂L

∂µ
= b− s2 −Au = 0 ⇒ Au+ s2 = b.

From this it is evident that for every inequality constraint, the problem branches into
two problems. So for n inequality constraints, 2n problems will need to be solved. This
indeed does indicate that a better solution method needs to be used for thrust allocation
problems. In the next chapter Quadratic Programming techniques will be used to solve
this shortcoming.



Chapter 5
Quadratic Programming

In this chapter Quadratic Programming (QP) methods combined with Disjunctive Pro-
gramming techniques will be used to present an optimal thrust allocation algorithm,
capable of doing full scale DP calculations for fixed/tunnel thrusters, azimuthing thrusters
with forbidden/spoil zones and main propellers with rudder, while minimizing the power
consumption. The general model assumptions formulated in Chapter 3 will be used.

Various factors led to the choice for Quadratic Programming methods. Power optimal
thrust allocation required at least a quadratic object function. Also more solvers emerge for
quadratic programming problems, using efficient interior point algorithms. Furthermore
they can guarantee to find the optimal solution in a finite amount of time (which can be
very important for online use), or they can guarantee that no solution exists, whereas
with non-linear optimizations techniques these guarantees cannot be given. Still they are
quite easy to use and easy to define. Because of these factors, Quadratic Programming
seems a very suitable method to handle the thrust allocation problem.

5.1 Problem formulation

Using the same techniques as in Chapter 4, we can formulate the thrust allocation problem
as

min
u

uTWu,

s.t. Bu = τref,

Au ≤ b.

(5.1)

The simplest form of the power limiting thrust allocation problem is now formulated and
can be solved by a QP solver. The only thing that needs some more attention are the
added inequality constraints Au ≤ b which contains the thrust constraints for every type
of actuator.



24 CHAPTER 5. QUADRATIC PROGRAMMING

5.2 Thrust region constraints

For each thruster, a set of inequality constraints is created, representing the thrust
region of the thruster. The inequality constraints will be formed by a finite intersection
of hyperplanes, resulting in a convex polygon. This polygon represents the linearized
thrust region of the thruster and can take different shapes for different thruster types (as
discussed in section 3.2).

5.2.1 Fixed/Tunnel thruster

The thrust region of a fixed thruster can be modeled as a line segment (see figure 3.2(a)
and 3.2(b)). Given its constant angle α and its thrust limits Tmax and Tmin the following
constraints can be added to the QP problem (5.1)

[
sin(α) − cos(α)

](ux
uy

)
= 0,[

cos(α) sin(α)
− cos(α) − sin(α)

](
ux
uy

)
≤
[
Tmax

−Tmin

]
.

The constraints are illustrated in figure 5.1 for a tunnel thruster (a fixed thruster with
α = 90°). Of course the equality constraint can be written as two inequality constraints,
but then they are more likely to give numerical problems for the QP solver. Therefore
one equality constraint and two inequality constraints are used. The equality constraint
will be added to the rest of the defined equality constraints, and forms the only exception
to the inequality constraints, defining the thruster regions.

uy

ux

Tmax Tmin

Figure 5.1: The thrust constraints for a tunnel thruster (a fixed thruster with α = 90°).

5.2.2 Azimuth thruster

For an azimuthing thruster the inequality constraints are more complex. The thrust
region for an azimuth thruster without any forbidden/spoil zones has a circular shape
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with radius Tmax. This can be written as√
u2
x + u2

y ≤ Tmax ⇔ ‖(ux, uy)T ‖2 ≤ Tmax. (5.2)

As these are non linear constraints (and can therefore not be added to (5.1)), they will
need to be linearized, approximating the circular thrust region sufficiently accurately (see
also [Lea08]). When doing this it is necessary to make sure that the approximation stays
strictly within the given thrust region. Otherwise solutions could go beyond the maximal
thrust that can be realized by the thruster, and would over evaluate the DP capability.
To get the best balance between the approximation error and the number of inequality
constraints, the linearization error needs to be analyzed in more detail.

Linear approximation error

A circular region with a radius Tmax = R > 0 will be approximated by a N -sided regular
polygon (with N ≥ 3). The regular polygon divides the circular region into N circular
sectors, each having a central angle of ϕ = 2π/N . One such circle sector is depicted
in figure 5.2(a). For a given circumradius R and a given number of sides N of the

r

R

ϕ ϕ
2

ε

(a) Linear approximating a regular
polygon.

r

R

ϕk

(b) Creating hyperplanes.

Figure 5.2: Creating a system of linear inequalities that represent a circular thrust region,
by approximating it with a regular polygon.

approximating regular polygon, we find for the inradius r of the regular polygon

r = R cos
(ϕ

2

)
= R cos

(
π
N

)
. (5.3)

The maximum approximation error ε is found as the difference between the circumradius
R and the inradius r of the regular polygon (see also figure 5.2(a))

ε = R− r = R
(
1− cos

(
π
N

))
. (5.4)

The maximum approximation error depends on the given circumradius R and the given
number of sides N of the regular polygon. When the circumradius R and a maximum
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error ε > 0 are given, we find for the minimum number of sides of the approximating
regular polygon that

N =

⌈
π

arccos
(
1− ε

R

)⌉ , with R > 0. (5.5)

With the approximation error ε defined as 1% of Tmax (ε = Tmax/100), the minimum
number of sides required to achieve this accuracy is given by formula (5.5). Using formula
(5.3) for the inradius r the circular thrust region is defined by the following system of
linear inequalities (see also figure 5.2(b))

[
cosϕk sinϕk

](ux
uy

)
≤ r, (5.6)

for every

ϕk =
π

N
+ k

2π
N

= (2k + 1)
π

N
, with k = 0, . . . , N − 1. (5.7)

Figure 5.3 shows some examples of the linearization method described above.

Forbidden zones

Forbidden zones can be defined by taking out some portion of the thrust region. This
way the solver is prevented from allocating thrust in the defined forbidden zone, because
it will no longer be part of the feasible set in which the solver searches for its solution.
For azimuth thrusters it is obvious to choose circle sector/pie shaped regions, as this will
restrict the azimuth thruster from operating at certain angles and thrust magnitudes.
To create pie shaped thrust regions, the method described in 5.2.2 can be used again to
balance the accuracy and the number of inequality constraints for the thrust region. The
two additional hyperplanes, limiting the sector angle (see also figure 5.4), are of the form[

sinϕstart − cosϕstart
− sinϕend cosϕend

](
ux
uy

)
≤
[
0
0

]
. (5.8)

Here ϕstart and ϕend should be ordered counterclockwise. Figure 5.5 shows some examples
of circle sector/pie shaped thrust regions, with their corresponding hyperplanes.

By defining a forbidden zone for an azimuth thruster, a Pacman like thrust region
shape is left over. Because this shape is in general not convex, it must be split up into
multiple (disjunct) convex thrust regions. When split, using disjunctive programming
techniques the problem can still be solved at the cost of extra computation time. Intelligent
splitting of the thrust region into a minimal number of convex thrust regions is necessary
to be able to use forbidden zones in the problem definition and the minimal number
of regions will minimize the computation time. With this technique quite exotic thrust
regions can be used, as can be seen in figure 5.6. It could also be used to define a thrust
region for an azimuth thruster, that minimizes thruster-hull interactions.
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Figure 5.3: Examples of linear circle approximations showing the hyperplanes that define
the regular polygon for a different number of sides/constraints (N = 8, N = 12 and
N = 24).
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uy

ux

Figure 5.4: A circle sector shaped thrust region, illustrating the sector angle constraints.

5.2.3 Main propeller with rudder

The thrust region for a propeller/rudder pair operating in forward mode is derived from
the lift and drag curves (see figure 3.3(a), 5.8(a) and [MT07]). These relate the rudder
angle to the lift/drag forces in percentage of the bollard pull1 T0 (often known from a
bollard pull test). From the lift and drag curves and the known bollard pull, the generated
thrust in the Fx and Fy directions can be derived for every rudder angle. These points
define the vertices of the polygon used to define the thrust region for the propeller/rudder
pair in forward mode. To find the inequality constraint for every hyperplane, we use the
fact that the line through two different points (x1, y1) and (x2, y2) is defined by

(y − y1) =
(y2 − y1)
(x2 − x1)

(x− x1).

Assuming that the polygon vertices are ordered counterclockwise the hyperplanes defining
the thrust region are [

ak,1 ak,2
](ux

uy

)
≤ bk, (5.9)

with

ak,1 = (yk+1 − yk),
ak,2 = (xk − xk+1),
bk = xkyk+1 − xk+1yk,

(5.10)

for every couterclockwise succeeding pair of points (xk, yk) and (xk+1, yk+1), where
k = 0, . . . , N (see also figure 5.7). Note that for a cyclic/closed polygon (x0, y0) = (xN , yN ).

1In a bollard pull test the ship is tied to a bollard and the maximum pulling force is measured when the
ship is at full power. This gives an indication of the maximum thrust force, generated by the propulsion
system on the ship.
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Figure 5.5: Examples of circle sector/pie shaped thrust region approximations (resulting
in 4, 6 and 8 hyperplanes/inequality constraints).



30 CHAPTER 5. QUADRATIC PROGRAMMING

uy

ux

(a) An exotic thrust region for an az-
imuth thruster.

uy

ux

(b) A Pacman shaped thrust region for
an azimuth thruster, split into two
disjunct convex regions.

Figure 5.6: Examples of some exotic thrust regions that can be defined using multiple
disjunct thrust regions.

The convex polygon is now defined by the linear system of inequalitiesa0,1 a0,2
...

...
aN,1 aN,2

(ux
uy

)
≤

 b0...
bN

 ⇔ Au ≤ b. (5.11)

Figure 5.8 shows the approximated thrust region for an example propeller/rudder pair.

uy

ux

(x0, y0)

(x1, y1)

(x2, y2)

Figure 5.7: Creating hyperplanes from counterclockwise ordered polygon vertices.

When no lift and drag curves are known, a circle sector/pie shaped thrust region could
also be used for the thrust region.

When the propeller is working in reverse mode a line shaped thrust region appears, as
the rudder cannot generate lift in this situation. This is again easily defined (by 1 equality
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Figure 5.8: Approximating the thrust region of a propeller/rudder pair in forward mode
from the lift and drag curves.
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constraint and 2 inequality constraints) and is added to the problem as a disjunct thrust
region of the propeller/rudder pair, because the combined thrust region is obviously not
convex when Tmin < 0.

5.2.4 Thrust relations

Additional thrust relations between different thrusters can also be added to the problem
formulation. For instance, the relation uy,1 = uy,2 would link the amount of thrust
generated by thruster 1 in the Fy direction with the amount of thrust generated in the
Fy direction by thruster 2. This can be used when two tunnel thrusters are physically
controlled by one signal. With these kind of relations thrust mirroring is also possible
(uy,1 = −uy,2). Even thrust relations between multiple thrusters are possible, as long as
the relations are linear in u.

5.3 Handling non-convex thrust regions

If all the thrust regions would have been convex, the formulated problem can be solved
right away. Since some of the thrust regions are split into multiple convex thrust regions
additional treatment is required (see also [STJ06]). If on the other hand one would try to
define a non convex thrust region with intersecting hyperplanes, only a smaller portion of
the intended thrust region will be the result. This is because one can prove that a finite
number of intersecting hyperplanes always will result in a convex set. So the choice is
either to split the non convex region up into multiple convex disjunct parts, or to use a
different shaped and smaller thrust region that indeed is convex.

The trick to solving the main optimization problem when disjunct thrust regions are
defined, is to first generate all the possible combinations of the thrust regions, picking
one disjunct convex region for each thruster. This can be programmed as a backtracking
routine, using recursion to go to the shrinking tree of possible combinations for each
thruster. The total number of combinations can be derived by multiplying the number
of disjunct thrust regions for each thruster. It is therefore wise to use as little disjunct
thrust regions as possible, to minimize computation time.

When for example a ship with 2 tunnel thrusters and 2 propeller/rudder pairs is
given, we know that the tunnel thrusters each have only one disjunct thrust region (line
shaped) and each propeller/rudder pair will have two disjunct thrust regions (one for
forward mode and one for reverse mode). All the possible thrust region combinations
are schematically given by (using the notation (1st tunnel, 2nd tunnel, 1st rudder, 2nd

rudder))

(1,1,1,1) The tunnel thrusters use their only defined thrust region, and the pro-
peller/rudder pairs are both operating in forward mode;

(1,1,1,2) The tunnel thrusters use their only defined thrust region, and the first
propeller/rudder pair is operating in forward mode, while the second one is operating
in reverse mode;
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(1,1,2,1) The tunnel thrusters use their only defined thrust region, and the second
propeller/rudder pair is operating in forward mode, while the first one is operating
in reverse mode;

(1,1,2,2) The tunnel thrusters use their only defined thrust region, and the pro-
peller/rudder pairs are both operating in reverse mode.

For each of these thrust region combinations, the QP problem is formulated/assembled
and solved. While this happens, the solution corresponding to each combination is
stored. After solving all the QP subproblems, the best solution is chosen by comparing
the objective costs and this will be the optimal solution of the main problem (see also
[JFTF08]).

Obviously the number of disjunct thrust regions that can be used with this method is
limited, given that the problem should be solved within a defined finite amount of time
(also neglecting any possible computer problems, such as memory size etc.). However,
in practice, the number of thrusters on a vessel is also limited, and no more than a few
forbidden zones will be needed for most applications.

The disjunctive programming technique lets us solve the problem for non convex
thrust regions, taking up extra computation time. The disjunctive programming method
can be exploited more, resulting in more control on the allocator, while even reducing the
main problem size. This will be discussed in the following two sections.

5.3.1 Spoil zones

To define spoil zones for certain thrust regions a spoil multiplier is introduced and defined
for every disjunct thrust region, for every thruster. This coefficient can now be used in
every subproblem, by using it as a multiplier in the objective/cost function (multiplying
it with the corresponding thruster weights w). So setting the spoil multiplier to 1, will
not change the problem whatsoever, but increasing the multiplier for a particular thrust
region, increases the objective/cost function, and thus makes it a more expensive solution,
making the spoil zone region less attractive for the solver to use. Because the main
solution is determined by comparing the costs of the subproblems, the spoil multiplier
has the effect of making certain thrust regions less likely to be used, hence the name spoil
zone. It is even possible to split the thrust regions into disjunct thrust regions just to
represent a spoil zone.

5.3.2 Thruster relations

Another way to exploit the disjunct programming technique is to remove some of the
combinations of thrust regions from the problem. This can come in handy when for
instance one is only interested in solutions where the two propeller/rudder pairs should
work simultaneously in forward mode. This can be easily realized by throwing away the
correct subproblems from the main problem. Even more relations can be forced by using
a filter on the thrust region combinations. This also reduces the number of subproblems
that need to be solved to find the solution of the main problem and thus also reduces the
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computation time. Again disjunct thrust regions can also be created with these kind of
thruster relations in mind.

5.4 Dynamic thrust regions

For the time domain simulation the thrust limits of each thruster for each time step will
be modeled by adding a so called dynamic thrust region to the problem for each thruster
(see also [Rut08]). A dynamic thrust region models the physical limitations of a thruster
at a given time step. For instance, an azimuth thruster can not turn 180 degrees in half
a second, and without these dynamic regions that limit the thrust region, unrealistic
behavior would be the result in time domain simulations. By adding the dynamic region
for each thruster to the global problem, the global/static thrust allocation problem, with
all its subproblems, needs to be assembled only once (at initialization). The dynamic
thrust regions will be created at every time step, as these can change every time step
(see also 5.9). Because the dynamic thrust region for every thruster contains no more
than five vertices2, they are computationally cheap to generate. Each dynamic thrust
region will therefore add no more than five inequality constraints to the global problem.
Figure 5.10 shows how the dynamic thrust region is defined, and figure 5.11 shows a
created dynamic thrust region with its hyperplanes. In figure 5.12(a) the thrust region of
an azimuth thruster with a forbidden zone and a dynamic thrust region can be seen. It
shows how the global/static and the dynamic thrust constraints work together (being
both in the problem formulation). Figure 5.12(b) shows that a small forbidden zone and
a relative large dynamic thrust region can give problems.

Thrust Allocator
Static

Allocation
Problem

τt
Optimization

Solver
ut+1

ut
Dynamic

Constraints

Merge

Figure 5.9: QP thrust allocator block diagram.

2When necessary, the dynamic thrust region can also reduce to a pie, line or point like shape. This is
achieved by using some checking algorithms which can be implemented straight forward.
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Figure 5.10: Defining a dynamic thrust region, representing the physical limits of a
thruster.
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Figure 5.11: A dynamic thrust region.
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uy

ux

(a) An azimuth thruster with a defined
forbidden zone and a dynamic thrust
region.

uy

ux

(b) An azimuth thruster with forbidden
zones and a dynamic thrust region
in a problematic position.

Figure 5.12: Azimuth thrusters with forbidden zones and a dynamic thrust region.

5.5 QP models

5.5.1 QP basic model

This model is used to solve the basic thrust allocation problem. It tries to solve the DP
problem while minimizing the power consumption.

min
u

uTWu

s.t. Bu = τ

Au ≤ b

(5.12)

with

W =

W1

. . .
Wn

 B =
[
B1 · · · Bn

]
A =

A1

. . .
An


u =

[
u1 · · · un

]T
b =

[
b1 · · · bn

]T
with W > 0 containing the power/thrust coefficients.

5.5.2 QP minimize largest thrust force

This model is the same as the basic model, but also gives penalty to the maximum thrust
force ū ∈ R. Therefore this model avoids/discourages solutions with large differences in
the amount of thrust, generated by the different thrusters, when other solutions with
overall smaller thrust amounts exist (see also [JFT05]).
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min
u,ū

uTWu+ βū

s.t. Bu = τ

Au ≤ b
− ū ≤ u ≤ ū

(5.13)

with W > 0 containing the power/thrust coefficients and where β ≥ 0 minimizes the
largest force

ū = max
i
|ui|. (5.14)

Problem (5.13) can be formulated in the standard QP form:

min
u,ū

[
u
ū

]T [
W 0
0 0

] [
u
ū

]
+
[
0 β

] [u
ū

]
s.t.

[
B 0

] [u
ū

]
= τ A 0

−I −1
I −1

[u
ū

]
≤

b0
0


[
−∞

]
≤
[
ū
]
≤
[
∞
]

(5.15)

5.5.3 QP relaxed model

This model always generates a solution, even when the ship cannot hold position. This
model is used for the time domain simulations, as the system still needs to know what it
should do, even though it cannot always hold position. The slack variable s ∈ R3 is given
a relative high cost (Q >> W > 0), so that the solver will first try to minimize s and will
therefore first try to make sure that Bu = τ . The model can be written as:

min
u,s

uTWu+ sTQs

s.t. Bu = τ + s

Au ≤ b
−∞ ≤ s ≤ ∞

(5.16)

with Q >> W > 0. It is also possible to give preference to position holding or heading
keeping. When position keeping is more important than heading keeping, then s1 and s2

should be chosen such that s1 >> s3 and s2 >> s3. The standard QP form of (5.16) is
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given by:

min
u,s

[
u
s

]T [
W 0
0 Q

] [
u
s

]
s.t.

[
B −I

] [u
s

]
= τ

[
A 0

] [u
s

]
≤ b[

−∞
]
≤
[
s
]
≤
[
∞
]

(5.17)

5.5.4 QP relaxed model, minimizing power and largest thrust force

This model simply combines the previously discussed relaxed model 5.16 and force
minimizing model 5.13 into one:

min
u,s,ū

uTWu+ sTQs+ βū

s.t. Bu = τ + s

Au ≤ b
−∞ ≤ s ≤ ∞
− ū ≤ u ≤ ū

(5.18)

with Q >> W > 0 and where β ≥ 0. Where again

ū = maxi|ui|. (5.19)

Formulating problem (5.18) in standard QP form gives:

min
u,s,ū

us
ū

T W 0 0
0 Q 0
0 0 0

us
ū

+
[
0 0 β

] us
ū


s.t.

[
B −I 0

] us
ū

 = τ

 A 0 0
−I 0 −1
I 0 −1

us
ū

 ≤
b0

0


[
−∞
−∞

]
≤
[
s
ū

]
≤
[
∞
∞

]

(5.20)

5.6 Problem scaling

To avoid numerical problems, the QP problem can be scaled before it goes to the QP solver.
After the scaled QP problem is solved, the solution is scaled back again. Especially when
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the quadratic weight/cost coefficients (in the matrices W and Q) are large, numerical
problems can arise, therefore the scaling factor cscale is chosen such that

cscaleu
2
max ≈ 1, (5.21)

where umax is the largest absolute thrust value that can be generated by one of the
thrusters. Then this scaling factor is also used when the thrust regions (inequality
constraints) are created (Tmin and Tmax are pre-scaled with this factor) and on the τref
vector. After the scaled problem is solved by a QP solver the vector u containing the
solution is scaled back again with 1/cscale.

5.7 QP solvers

Two external open source QP solvers were used to solve the QP problems in Matlab .
They are both compiled with a c++ compiler, and used in Matlab as mex code. QPC
and OOQP are both open source quadratic program solvers, written in c. They are based
on interior-point methods, for solving convex quadratic programming problems. More
information on these solvers can be found at http://pages.cs.wisc.edu/~swright/
ooqp/ and http://sigpromu.org/quadprog/index.html.

http://pages.cs.wisc.edu/~swright/ooqp/
http://pages.cs.wisc.edu/~swright/ooqp/
http://sigpromu.org/quadprog/index.html
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Chapter 6
Results

Using the DP tools developed and used by GustoMSC inhouse the proposed QP power op-
timal thrust allocation algorithm is implemented in Matlab and tested in the GustoMSC
DP tools environment, testing it with DP capability plots and time domain simulations.
The results will be presented in the following sections.

6.1 DP Capability Plots

A DP capability plot gives a visual impression of the maximum environment in which
a ship can hold position. They are used in the development phase of a ship, to get an
indication of its future DP capabilities. They are also used when analyzing the robustness
of a DP system. For instance, the impact of a thruster failure on the DP capability can
be analyzed with a DP capability plot.

Specifications on the production of DP capability plots are given by The International
Marine Contractors Association (IMCAM140) [3]. These have the primary goal to
standardize the production of capability plots and enable a direct comparison of DP
capability plots from different vessels. There is however still some degree of freedom, and
the specifications are mere guidelines for best industry practice.

A (static) DP capability plot only depends on the existence of solutions to DP
problems, for different environmental conditions. Every point in a DP capability plot
defines an environmental state, defining a wind speed and a direction from which the
wind, current and waves come from. It is common practice to look at the worst case
scenario and take the wind, current and waves collinear. From this information τref can be
calculated for the particular ship, and the thrust allocator tries to solve the DP problem.
For each direction a point is plotted at the highest wind speed for which the DP problem
has a solution. Doing this for all the directions creates what is called a DP plot and
indicates the DP capability of the ship. So again, only the existence of a solution to a
DP problem is actually needed to create a DP capability plot, the actual solution is not
necessary, but can of course be used to get more insight in the DP capabilities of the ship.

In the following sections some DP capability plots are discussed.
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6.1.1 Optimal thrust allocation

Figure 6.1 shows two DP capability plots for a ship containing only azimuth thrusters.
Because the ship has only azimuth thrusters defined, the Lagrange multiplier method and
the Quadratic Programming methods can be compared for this ship. It can be cleary seen
from figure 6.1 that the Lagrange multiplier method results in less DP capability for this
ship, where the QP thrust allocator is still able to find solutions for some more extreme
conditions. This is not very surprising, because the Lagrange multiplier method can not
generate optimal solutions. It actually solves the problem for thrusters with unlimited
thrust capabilities and then the saturation handling takes into account the thrust regions.
Even changing the order in which the saturation of the thrusters is handled, can give
different results. There were also differences in the proposed thruster configuration for
different conditions. This also is no surprise as we are comparing a non-optimal with an
optimal thrust allocation method.

Another point of interest is that the Lagrange multiplier method did run into numerical
difficulties for this problem. This occured because the matrix BW−1BT gets ill conditioned
for certain situations. Also in the time domain simulations this did happen from time to
time, making it less robust than the QP thrust allocator (with problem scaling). Especially
for under and fully actuated problems this can be a big problem (where in some cases
the Lagrange multiplier allocator was not able to find any solution). For over actuated
problems the number of numerical problems decrease, but can still pop up under certain
conditions. To avoid numerical problems with the Lagrange multiplier method near zero
thrust, it could be possible to add a relative large artificial force to the problem, before
solving it, and then subtract it again from the found solution. This method is however
not tested in this thesis.

6.1.2 Thruster relations

In this section a somewhat strange phenomena will be discussed, where two tunnel
thrusters seem to be wasting energy by working in opposite directions. At first this
seemed strange, because it did not look like a very optimal solution, but given the problem
formulation, it all makes sense. The DP capability plot can be seen in figure 6.2.

On closer inspection the two tunnel thrusters were operating in the same direction for
an environment coming from 350°. For increasing wind speeds the tunnel thrusters seemed
to generate thrust in the same direction, but at a certain point the solution from the
thrust allocator made the tunnel thrusters blow in opposite direction. This can however
be explained by the fact that the two tunnel thrusters are a few meters apart from each
other. Because of this, a small moment can be generated by letting them generate thrust
in opposite direction, while the resulting force in the Fy direction remains zero (they
counteract each other). For this particular environmental condition this small amount of
extra moment can just make the problem solvable. Letting the tunnel thrusters blow in
opposite directions, apparently forms the only possible way to solve this particular DP
problem. Because it is the only solution to the DP problem it is automatically also the
optimal solution.
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Figure 6.1: A DP Capability Plot: (a) Schematic actuator layout of the ship, showing the modeled
thrust region for each thruster; (b) The corresponding DP capability plot.
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Thrust linking or a thruster relation can eliminate these sort of solutions from appearing
and it is therefore advised to use these methods to avoid these unwanted solutions. It
also shows that the generated solutions need not change continuously, but can jump quite
rapidly from one thruster configuration to another. This is good to know for the time
domain simulations, where the dynamic thrust regions are necessary to reduce jumpy
thruster behavior.

Figure 6.2(c) also shows that little perturbations in the environmental conditions
can lead to large differences in the power optimal thrust allocation solution. Each red
line shows all the solutions for a fixed environment direction and increasing wind speeds.
Clearly there are occasions where a little wind speed change makes the solution jump
from reverse to forward mode for the propeller/rudder pairs. This indicates that small
environmental changes do not always lead to a small changes in the solution. This result
also proves that the dynamic regions for the time domain simulations are really necessary.

Note that the DP capability of this ship actually has a non-smooth form, because
of the two rudders, having a line shaped thrust region for their reverse mode. When
the resolution of the DP plot is increased, a sharp spike will appear in the DP plot for
environments coming from the stern side of the ship.

6.1.3 Extended testing

In figure 6.3 another DP capability plot is shown, testing more exotic thrust regions. In
this case, 1 · 1 · 3 · 3 · 2 · 1 · 2 · 2 = 72 subproblems need to be solved for each DP problem
(this is the number of possible convex thrust region combinations).

6.2 Time Domain Simulations

Using time domain simulations the thrust allocators were tested on their quality and
practical use as online thrust allocators. For the QP thrust allocator, additional dynamic
thrust regions for each thruster were added to model their physical limitations. For
the Lagrange multiplier method the dynamic thruster limitations are coded next to the
saturation handling. The simulation environment uses a great deal of the DP tools
environment developed inhouse by GustoMSC, including JONSWAP spectra and Kalman
filtering. As it is out of the scope of this thesis to explain the whole set-up simulation
environment, only the results regarding the thrust allocation algorithms are discussed.

6.2.1 Optimal thrust allocation

Using the Lagrange multiplier method in the simulation environment immediately showed
major problems. At some point in the simulation (using only azimuth thrusters for the
ship) all the azimuth thrusters turned around 360°. This is a highly unwanted effect and
could be very dangerous in real life situations. Explaining the phenomena brings us again
to the saturation handling. Apparently the order in which the saturation handling is
commenced, can have a huge impact on the overall behavior of the online thrust allocator.
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Figure 6.2: A DP Capability Plot: (a) Schematic actuator layout of the ship, showing the modeled
thrust region for each thruster; (b) The corresponding DP capability plot; (c) Rudder states for a whole
DP plot, where for every environment direction, increasing environments are connected.
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Figure 6.3: A DP Capability Plot: (a) Schematic actuator layout of the ship, showing the modeled
thrust region for each thruster; (b) The corresponding DP capability plot.
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The fact that the Lagrange allocator does not generate optimal solutions, apparently
results in an growing error, leading to the 360°behavior.

As the QP thrust allocator generates optimal solutions, the 360°error was not present.
Although the QP thrust allocator looked as if it was reacting a little bit slower than
the Lagrange allocator, it did not behave strange. Because of the linearly approximated
thrust regions, the allocator prefers to be on the vertices of the thrust regions at all time,
when τref is way too large for the DP system to handle. This has a nice advantage, making
the allocator less jumpy, where the Lagrange allocator constantly tries to make even the
smallest control adjustment.

6.2.2 Forbidden zones

The forbidden zones did give some problems. The QP allocator seems to hang at forbidden
zones, because at zero thrust the allocator will not turn the azimuth thruster. If this
is really the desired behavior for a forbidden zone will depend on the application. The
behavior can be easily changed by defining very small thrust regions at the forbidden
zones, allowing the allocator to rotate the thruster, when it is delivering a very small
amount of thrust (see also figure 6.3(a)).

6.3 QPC vs OOQP

For almost all of the thrust allocation problems, QPC outperforms OOQP when is comes
to computation time. They both generate the same results (as should be the case),
although it is advised to use problem scaling with both of these solvers, because numerical
problems can occur when this is not done.
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Chapter 7
Discussion

This chapter will discuss some of the problems, and ideas, regarding the described thrust
allocation methods.

7.1 Rudder Flapping

Rudder flapping happens when the rudder is working at near zero thrust. Because of
numerical problems near zero, the rudder can be flapping from one side to the other. A
way to minimize this rudder flapping is to remove a thrust region part near zero thrust as
can be seen in figure 7.1. Other solutions can be found in [Lea08].

uy

ux

(a) Normal main propeller & rudder
thrust region.

uy

ux

(b) Modified main propeller & rudder
thrust region.

Figure 7.1: Modified main propeller & rudder thrust region to reduce rudder flapping
near zero thrust.
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7.2 Thruster dynamics model

To get a more accurate description of the movement of the thrusters, a thruster dynamics
model can be used to create the dynamic thrust regions (see figure 7.2. This thrust
dynamics model can take into account the momentum of a thruster, resulting in a more
realistic behavior of the thrusters in real time simulations.

Thrust Allocator
Static

Allocation
Problem

τt
Optimization

Solver
ut+1

ut

Thruster
Dynamics
Model

Dynamic
Constraints

Merge

Figure 7.2: QP thrust allocator block diagram including a thruster dynamics model.

7.3 Linear Programming

The only reason for using quadratic programming techniques is because of the quadratic
approximation of the power/thrust relation. This relation can of course also be approxi-
mated by a linear function. The approximation error will of course be larger, but a linear
object/cost function allows us to use linear programming techniques, which are generally
considered to be more mature and robust than quadratic programming techniques.

Because u can contain negative elements, the linear optimization problem has the
form:

min
u

wT |u|,

s.t. Bu = τref,

Au ≤ b,
−∞ ≤ u ≤ ∞.

(7.1)

Because of the absolute value in the object/cost function the problem can not be solved
in this form by a linear optimization solver. The problem can however be rewritten as:

min
u,v

wT v,

s.t. Bu = τref,

Au ≤ b,
− v ≤ u ≤ v.

(7.2)
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Here u is closed in by −v and +v, for v > 0 and models the absolute value of u. This
form is compatible with common linear constrained optimization solvers. The problem
has the following standard LP form:

min
u,v

[
0 w

] [u
v

]
s.t.

[
B 0

] [u
v

]
= τ A 0

−1 −1
1 −1

[u
v

]
≤

b0
0


(7.3)

7.4 LMI

Linear Matrix Inequalities are used to define Semi-Definite Programming (SDP) problems
that form a bigger class op optimization problems. The QP problem

min
x

xTQTQx+ cTx,

s.t. Ax ≥ b,

can be written as a SDP problem, by using the Schur complement:

γ ≥ xTQTQx+ cTx ⇔ FQ(γ, x) =
[
γ − cTx xTQT

Qx I

]
≥ 0.

Now the equivalent SDP problem is

min
γ,x

γ,

s.t. F (γ, x) ≥ 0,

where F (γ, x) = block diag[FQ(γ, x), Aix− bi], with Ai the ith row of A.
LMI’s may have some advantages over QP problems. Especially when only the

existence of a solution is needed (as is the case for creating DP capability plots) LMI’s
seem very promising, because this translates into checking the positive definiteness of a
matrix. The 2-norm constraints seen for azimuth thrusters also should fit nice into SDP
formulations. Maybe even more accurate power/thrust approximations are possible by
using higher order convex polynomials.
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Chapter 8
Conclusions

Although the power optimal thrust allocation problem may seem simple at first, finding a
practical solution method for this problem proved to be very challenging. The amount of
factors that can play a role in the problem also makes the implementation very difficult.
Let alone the amount of input variables needed to define the problem. Because the
problems can get quite complex, the amount of exceptions that need to be checked in the
code also grows quite large. Compiling and interfacing the QP solvers also took more
time than expected.

Apart from these implementation difficulties, it can be concluded that the QP thrust
allocation algorithm is a big improvement on the Lagrange thrust allocator. Fixed/tunnel
thrusters, azimuth thrusters with forbidden/spoil zones and propeller/rudder pairs can be
used for power optimal thrust allocation. Even thrusters can be linked with each other in
various way’s, making it possible to model the propulsion system on a ship more accurate.
Problem scaling makes the algorithm less sensitive to numerical problems, yielding in
a robust solution for static and dynamic thrust allocation applications. For online use
the presented dynamic thrust regions work rather well, although there is still room for
improvements. Especially the rudder flapping at zero, or the forbidden zones for azimuth
thrusters can be sources of problems. Altogether Quadratic Programming seems to be at
the right spot for Dynamic Positioning.
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