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Abstract In reservoir engineering, it is attractive to char-
acterize the difference between reservoir models in metrics
that relate to the economic performance of the reservoir
as well as to the underlying geological structure. In this
paper, we develop a dissimilarity measure that is based on
reservoir flow patterns under a particular operational strat-
egy. To this end, a spatial-temporal tensor representation
of the reservoir flow patterns is used, while retaining the
spatial structure of the flow variables. This allows reduced-
order tensor representations of the dominating patterns and
simple computation of a flow-induced dissimilarity mea-
sure between models. The developed tensor techniques are
applied to cluster model realizations in an ensemble, based
on similarity of flow characteristics.
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1 Introduction

The increasing demand for energy has encouraged the use
of improved production strategies for conventional oil and
gas resources. In this context, several studies have indicated
a significant scope for reservoir model-based life-cycle opti-
mization of ultimate recovery or net present value (NPV),
especially when combined with computer-assisted history
matching leading to a closed-loop reservoir management
(CLRM) approach (see, e.g., [18, 29] or [10]). In this CLRM
approach, the assessment of the value of information of dif-
ferent resources becomes an important feature (see, e.g.,
[6]). To properly account for the effect of geological uncer-
tainty, it is important to perform both the history matching,
life-cycle optimization and value of information assess-
ment on the basis of several realizations of the reservoir
model. The combination of iterative (large-scale) optimiza-
tion, and history matching, with the need to use multiple
model realizations makes CLRM into a computationally
very demanding process for realistically-sized reservoir
models. Particularly, for the CLRM framework, one would
like to discriminate between realizations which are rep-
resentatives of the different types of flow responses. For
this reason, oil companies have used very few realizations
which are often selected manually, to achieve robustness in
their operational strategies (see, e.g., [28]). The selection of
representative models has become a relevant issue for the
practice of reservoir engineering. In other words, there is
a need for a dissimilarity measure between reservoir real-
izations that is relevant for model-based operation of oil
reservoirs.

There are several options for discriminating between
model realizations, on the basis of either static or dynamic
properties of the reservoir models. [35] and [8] have
used the permeability fields as a measure of dissimilarity.
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This has been done by defining a metric space to compare
and cluster geological models that share common geolog-
ical features. These dissimilarity measures based on static
permeability or porosity properties are known to be quite
different from measures applied to the dynamic behavior of
the reservoir models, reflected in the corresponding flow
patterns, as, e.g., the evolution of oil saturation over the life
cycle of the reservoir. To exemplify this, upscaling of high-
resolution geological models, as is presented in [13], shows
that dissimilar reservoir models may have similar dynam-
ical performance in terms of flow dynamics. At the same
time, reservoir models that are close in geological properties
can have essentially different flow patterns, and therefore
different behavior from a dynamic operation point of view.

From a production optimization perspective, the use of
NPV, generated at the end of a certain production period,
could be a natural basis for a control-relevant dissimilarity
measure between model realizations. If we would restrict
attention to life cycle production optimization under pre-
defined production strategy and well configurations, this
might be true. However, when reservoir models are to be
used also for testing new production strategies, as well as
well-placement, infill-drilling and re-completion plans, the
NPV measure is considered to be too coarse to distinguish
between essential dynamic properties of the models. It is
well known that the NPV is not able to capture the rele-
vant aspects of the reservoir flow patterns associated with
a particular production strategy, in other words: two essen-
tially different geological models could lead to the same
NPV under similar production strategies, but on the basis of
essentially different flow patterns.

In [30] and in [31], the total oil production and water rates
are used as dissimilarity measures to assess the dynamical
responses of different reservoir realizations. Although these
measures are less coarse than the NPV, oil and water pro-
duction rates (combined with pressure measurements) only
provide local information of the flow behavior around the
wellbore, which cannot be extrapolated to characterize the
flow performance of spatial locations far from the produc-
tion sites. Therefore, it suffers from similar limitations as
measures based on NPV.

While streamline simulators have been used to gener-
ate a fast characterization of the cumulative production
rates (see, e.g., [27, 32], and [30]), they have also led
to a technique called dynamic fingerprinting ([41]), where
streamline information (time-of-flight (TOF) or drainage
time) is used to generate flow patterns that are, like a fin-
gerprint, unique to each realization. Then, fingerprints are
used to screen and cluster reservoir realizations with similar
dynamical performance. The resulting dissimilarity mea-
sures are attractive for flow characterization, though they
are merely simplified descriptors of the much more com-
plex spatial-temporal reservoir flow patterns in terms of

evolution of the flow variables (phase saturations, pressures,
etc.) for a particular production strategy.

In this paper, we address the question whether we can
use the full reservoir flow patterns as the dissimilarity measure
between reservoir realizations. Reservoir flow patterns are
numerical solutions of the pressure and transport partial
differential equations (PDEs) ([4]), and they represent the
temporal evolution of the dependent variables in the spatial
domain (typically 105 ∼ 106 grid blocks) of the reser-
voir. Therefore, the discrete-time trajectories for pressure,
saturation, temperature, etc., are usually large-scale data
structures, with dimensions induced by the number of grid
cells of the reservoir model. The large dimensionality of these
structures would make them unsuitable to serve as a dis-
similarity measure for performing model discrimination and
clustering, and therefore reduced-order representations are
necessary. Previously, [9, 26] and [23] have used the sin-
gular value decomposition (SVD) and POD model order
reduction techniques to arrive at low dimensional repre-
sentations of flow variables, while [41] have used SVD to
represent the fingerprints through a reduced set of basis
functions. However, the SVD approach has some limita-
tions. As the reservoir flow patterns are stacked in vectors,
the natural spatial-temporal structure of the reservoir is lost.
This may have serious implications when characterizing
flow profiles in low-dimensional spaces, as some informa-
tion related to the spatial correlations is lost during the
vectorization scheme, see [16].

In this paper, we develop a tensor approach for efficient
storage of reservoir flow patterns in a multidimensional
array. This creates a clear separation of the spatial, temporal,
and flow variables coordinates, and allows for reduced-order
representations using basis functions in each of the sepa-
rate coordinates, thereby appropriately maintaining spatial
correlation structures. With an additional extension of the
tensor coordinates, it will even allow for describing the flow
characteristics of an ensemble of models. Tensor decompo-
sitions and tensor analysis constitute a largely unexplored
subject in reservoir engineering. For the characterization
of geological parameters, [1] and [2] have performed low
rank approximations of permeability fields using a tensor
decomposition, and [14] have used these representations for
efficient history matching. For the reduction of dynami-
cal complexity of reservoir models, [16] have utilized this
framework for constructing reduced-order dynamic mod-
els. In our current paper, we apply state-of-the-art tensor
decomposition techniques to characterize flow profiles in
low-dimensional spaces. The corresponding reduced-order
representations will be analyzed for their suitability to
calculate distance measures between models, and for subse-
quent distance visualization and model clustering.

The paper is organized as follows: In Section 2, we intro-
duce the notions of flow-based dissimilarity measures and
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the state-of-the-art technology for flow characterization. In
Section 3, we present the benefits of exploiting the spa-
tial structure and correlations of the reservoirs by using a
tensor formulation and we introduce our spatial-temporal
approach for the flow characterization through dissimi-
larity measures. In Section 4, we present a tensor-based
workflow for the flow characterization of an ensemble of
reservoir models. In Section 5, we evaluate the performance
of the workflow for flow characterization using flow-based
dissimilarity measures.

2 Flow-based dissimilarity measures

2.1 Introduction

In water-flooding, the temporal evolution of the oil satura-
tion (and in particular the oil-water front) provides sensible
information for well placement and for the design of sched-
ules for the well controls in order to optimize production.
Hence, the reservoir flow patterns are the variables with
physical interpretation that best describe the dynamic prop-
erties of the hydrocarbon reservoir, and we can conceptually
state that two reservoir realizations are similar with respect
to their dynamical performance if for a particular oper-
ational strategy, the generated reservoir flow profiles are
similar.

The variable s(x, t, u) will be used in this paper to rep-
resent the flow-related variable, with a spatial coordinate
x ∈ R

2, time t ∈ R, and operational strategy u. In most
cases, s will correspond to the oil saturation in each (spatial)
grid block, although other variables (e.g., pressure, time-of-
flight, drainage time) could be included too. They are the
solutions of the underlying model’s multiphase flow equa-
tions through their corresponding PDE’s, and the result of
a particularly chosen operational strategy of water injec-
tion and control valve settings, reflected by the variable u,
[17]. In this section, we elaborate on the concept of model
distances based on reservoir flow patterns.

2.2 Dissimilarity measures and distance functions

When quantifying flow-based dissimilarities between reser-
voir models, one should consider the use of distance func-
tions. A distance function defines the separation between
two elements in a set (the set of reservoir flow responses)
and it induces a metric space, where the distance between
two different reservoir models is an indicator of their
dissimilarity in the dynamical response. There are many
functions to compute the distance between two objects:
the Euclidean distance, standardized Euclidean, Cheby-
shev distances, and many more. [34] have used the Haus-
dorff distance to measure the dissimilarity of geometry for

reservoir realizations, and [27] have used connectivity dis-
tances based on streamlines. If s1 and s2 are the flow-related
variables corresponding to two different models, a natu-
ral dissimilarity measure to consider is a quadratic distance
measure:

d(s1, s2) =

√
√
√
√
√

K
∑

k=1

I
∑

i=1

J
∑

j=1

‖s1(xij , tk, u) − s2(xij , tk, u)‖2

(1)

where K is the total number of time steps; I, J are the
number of grid cells in each spatial dimension, and the
two models are operated with the same operational strat-
egy u(tk). For brevity of notation, we will often discard
the dependency of s(x, tk, u) on u and simplify the nota-
tion to s(x, tk) whenever there is no risk of confusion. The
underlying spatial domain is assumed to be rectangular with
Cartesian grid. The temporal evolution of the flow variables
s(x, tk) over all grid cells is a collection of high-dimensional
state variables and generally requires the use of huge com-
putational resources for storage, function evaluations, the
evaluation of distances as in (1) and its subsequent use for
visualization and model clustering. In the next section, a
method for the low-dimensional representation of s(x, tk) is
described.

2.3 Low dimensional representations and flow-based
distances through SVD

Compact representations of s(x, tk) are important for an
efficient and fast numerical calculation of distance mea-
sures, see [41]. A typical way to construct lower dimen-
sional representations of s(x, tk) is obtained by utilizing a
basis function expansion for the set of flow variables over
all grid cells:

s(x, tk) =
R̂

∑

i=1

σi(tk)ϕi(x), (2)

where the basis functions ϕi(x), for i = 1, · · · , R̂ can be
selected to be the most informative spatial patterns in the
flow response. If R̂ � N , where N = I ·J is the number of
grid cells, we say that the reservoir flow pattern s(x, tk) is
characterized in a low-dimensional space by the coefficients
σi(tk) and by the basis functions ϕi(x), for i = 1, · · · , R̂.
The classical technique for obtaining this representation is
through principle component analysis (PCA) and the use of
singular value decompositions (SVD), [15]. To this end, the
dynamic variables in the grid are represented as (I · J ) × 1
vectors, denoted as xk , with elements s(xij , tk) at a particu-
lar time moment tk . A number K of these snapshot vectors
xk is collected at time instants t1, · · · , tK , where K may be
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less than or equal to the total number of simulation time
steps. With N = I ·J , this results in a N ×K matrix of data
points

X = [

x1 x2 · · · xK

]

, (3)

which is decomposed using SVD through:

X = ���� =
R

∑

r=1

σrϕrψ
�
r =

R
∑

r=1

σrϕr ⊗ ψr, (4)

where � and � are N × N and K × K orthogonal matrices
containing the left and right singular (column) vectors ϕr

and ψr , � is an N × K rectangular diagonal matrix that has
the ordered singular values σ1 ≥ σ2 ≥ · · · ≥ σR ≥ 0 on
its main diagonal, R is the rank of X, and ⊗ denotes the
tensor or outer product over a vector space. Usually, R ≤
K � N in a typical reservoir simulation application. The
last equality in (4) indicates that X can be decomposed as
the sum of R rank-one matrices �r = ϕr ⊗ψr . In particular,
every individual snapshot vector xk can be written as:

xk =
R

∑

r=1

σrϕrψ
�
r ek =

R
∑

r=1

αk
r ϕr , (5)

where ek is the kth standard unit vector in R
K and αk

r :=
σrψ

�
r ek is a real-valued coefficient. The R left singular

vectors ϕr , r = 1, . . . , R̂ then characterize the spatial
correlations of the original snapshot matrix X, ordered in
decreasing relevance, and allows a low-dimensional approx-

imation x̂k = ∑R̂
r=1 αk

r ϕr , with R̂ < R, of the reservoir
flow patterns and fingerprints in terms of the coefficients
αk

r . Using (5), the Euclidean distance between the ith and
j th snapshots xi , xj is:

dij = ‖xi − xj‖ =
√
√
√
√

( R
∑

r=1

(αi
r − α

j
r )ϕr

)2 =
√
√
√
√

R
∑

r=1

(αi
r − α

j
r )2.

(6)

Now, let us consider the low-rank approximation X̂ =
[

x̂1 x̂2 · · · x̂K

]

of X, which can be obtained by decompos-
ing (4) as

X = X̂+X =
R̂

∑

r=1

σrϕr ⊗ ψr

︸ ︷︷ ︸

X̂

+
R

∑

r=R̂+1

σrϕr ⊗ ψr

︸ ︷︷ ︸

X

, (7)

where R̂ < R is the approximation order and where X =
X − X̂ is the approximation error. For any R̂ < R, the
Frobenius norm of the error

‖X − X̂‖F =
√

∑

r>R̂

σ 2
r

is minimal over all rank R̂ approximations of X. The
approximate representations {x̂k}k=1,···K of the reservoir
flow pattern can now be used as a basis for measuring
dissimilarities between models, where the appropriate cal-
culations can be performed on the basis of the coefficients
αk

r for r = 1, · · · R̂ and k = 1, · · · K . Let us consider
the low-dimensional characterization of the flow patterns in
terms of the coefficients αi

r , α
j
r for r = 1, . . . , R̂, then the

approximated dissimilarity is:

d̂ij =

√
√
√
√
√

R̂
∑

r=1

(αi
r − α

j
r )2, (8)

where d̂ij is the (i, j)th element of a matrix D̂ ∈ R
K×K of

all approximate distances.

2.4 Discussion

The SVD-based approach presented in Section 2 has been
adopted in industrial practice, [41], but it has some limita-
tions. Through the vectorized form in which flow variables
are stored, the spatial-temporal structure of the reservoir is
lost. This may have serious implications when characteriz-
ing flow profiles in low-dimensional spaces. When SVD is
applied to a snapshot matrixX, the sets of orthonormal basis

vectors {ϕr }R̂r=1, {ψr}R̂r=1, average the energy of solutions in
time, and by definition, do not discriminate among spatial
coordinates. This temporal averaging of the energy causes
a loss of information for some of the relevant features of
spatial coordination in the data, see [16]. For linear systems
like single-phase flow problems, the spatial correlations are
invariant in time and can be characterized analytically using
concepts from system theory such as controllability and
observability, see [36]. However, the nonlinearities induced
by the multi-phase character of the problems may define
time-variant correlations of the states, and the correlation
between time and specific spatial direction is ignored by
vectorizing the flow variables, in which case it can be attrac-
tive to clearly separate all spatial and temporal coordinates
to maintain their own independent role when construct-
ing approximations. In the next section, a methodology
that overcomes the limitations of SVD methods for flow
characterization is presented.
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3 Spatial-temporal tensor methods for flow-based
dissimilarity measures

3.1 Introduction

In this section, we develop a multidimensional approach
to understand the dynamical similarities between reser-
voir models, which is based on tensor representations and
decompositions of flow related variables. In addition, we
incorporate this approach into a workflow for clustering of
models with similar dynamical performance.

3.2 Tensor representations of reservoir flow patterns

In the previous section, we have constructed vectorized rep-
resentations of the flow variables (I ·J ×1 snapshot vectors).
Alternatively, if the spatial grid has a Cartesian structure,
one can collect K snapshot matrices Xk of size I × J , and
represent this data object in a three-dimensional array S of
size I ×J ×K . That is, the reservoir flow data is represented
as a multi-array S ∈ R

I×J×K . Such a multidimensional
array is called a tensor and can be viewed as the natural
generalization of vectors and matrices to higher dimensional
objects. For a 2D saturation field that evolves over time, a
three-dimensional array is schematically depicted in Fig. 1.

A key advantage of multidimensional data objects is that
they keep the spatial structure of the Cartesian grid intact.
A disadvantage of the use of tensors is that their algebraic
properties are more complicated and that numerical tools for
tensor operations are less developed. In general, tensors are

Fig. 1 Schematic of the tensor representation of a reservoir flow
pattern. Axes represent spatial-temporal coordinates. Color-scale cor-
responds to oil saturation

multilinear generalizations of algebraic objects such as vec-
tors and matrices, and there exist suitable extensions of con-
cepts such as decompositions, basis functions and spectral
expansions to the multilinear case. In the next subsection,
we describe the basic concept of tensor decompositions as
an extension to the concept of matrix decomposition.

3.3 Tensor decompositions and approximation

In analogy to the matrix decomposition in Eq. 4, the ten-
sor S can be decomposed as a Tucker type decomposition
([22]):

S =
I

∑

i=1

J
∑

j=1

K
∑

k=1

σijk ϕi ⊗ψj ⊗χk =
I

∑

i=1

J
∑

j=1

K
∑

k=1

σijk�ijk,

(9)

where the scalars σijk ∈ R are the elements of the so called
core tensor of size I × J × K and where

�ijk := ϕi ⊗ ψj ⊗ χk

is the outer product of vectors ϕi ∈ R
I , ψj ∈ R

J and
χk ∈ R

K . This makes �ijk a rank-one three-way tensor.
In any such representation, the sets {ϕi}Ii=1, {ψj }Jj=1 and

{χk}Kk=1 are usually taken as a basis of RI , RJ , and R
K ,

respectively, and the Tucker decomposition (9) is viewed as
a representation of the tensor with respect to these bases.
Similar to the matrix case, tensors can be interpreted as mul-
tilinear mappings. More precisely, the rank-one three-way
tensor�ijk is a mapping�ijk : RI ×R

J ×R
K → R defined

as

�ijk(ϕ, ψ, χ) := 〈ϕi, ϕ〉 〈ψj , ψ〉 〈χk, χ〉
which is a product of inner products in R

I , RJ and R
K .

At this stage, it is important to observe that the mapping
�ijk , defined in this way, is linear in each of its argument.
Moreover, if the bases {ϕi}Ii=1, {ψj }Jj=1 and {χk}Kk=1 are all
orthonormal sets (that is, 〈ϕi′ , ϕi′′ 〉 = 1 if i′ = i′′ and is zero
otherwise for vectors {ϕi}Ii=1), it follows that

S (ϕi0 , ψj0 , χk0) =
I

∑

i=1

J
∑

j=1

K
∑

k=1

σijk�ijk(ϕi0 , ψj0 , χk0)

= σi0j0k0 (10)

for any triple of indices (i0, j0, k0) with 1 ≤ i0 ≤ I , 1 ≤
j0 ≤ J and 1 ≤ k0 ≤ K . In words, this says that the entries
of the core tensor represent the tensor S when evaluated at
its (orthonormal) basis vectors. If the bases are orthonormal,
then this observation naturally identifies the entries σi0j0k0

of the core tensor with the evaluation of the tensor S at its
(i0, j0, k0)th basis element. If the bases are non-orthonormal
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bases, then the multilinear functionalS : RI ×R
J ×R

K →
R defined in (10) changes its representation. A graphical
illustration of the tensor decomposition (9) is depicted in
Fig. 2.

A low-rank approximation of S can be obtained by
decomposing (9) according to S = Ŝ + S where, for
Î ≤ I , Ĵ ≤ J , K̂ ≤ K , the tensor

Ŝ :=
Î

∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

σijk�ijk (11)

is viewed as the approximation of S to its modal-rank
(Î , Ĵ , K̂) truncation and where S := S − Ŝ is viewed
as the corresponding approximation error. The size of the
approximation error is measured in Frobenius norm and
satisfies

‖ S − Ŝ ‖2F = ‖ S ‖2F −
Î

∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

σ 2
ijk (12)

provided that the bases {ϕi}Ii=1, {ψj }Jj=1 and {χk}Kk=1 are
orthonormal sets.

Suppose that the above tensor decomposition is applied
to the data corresponding to a two-dimensional rectangular
saturation field that evolves over time. The mth sample Xm

is then represented as amatrix of dimension I×J . A number
of K samples Xm is stored in an order-3 tensor S of size
I×J ×K . This tensor is approximated as in (11), and results
in the approximate sample X̂m of the saturation field defined
by the order-2 tensor

X̂m = Ŝ (·, ·, em) =
Î

∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

σijk〈χk, em〉 ϕi ⊗ ψj

=
Î

∑

i=1

Ĵ
∑

j=1

αm
ij ϕi ⊗ ψj , (13)

where em is the mth standard unit vector in R
K and where

αm
ij := ∑K̂

k=1 σijk〈χk, em〉 are real-valued coefficients in
the expansion (13) of (rank 1) two-dimensional fingerprints

of the saturation field. The coefficient αm
ij is a linear com-

bination of the mth element of the basis functions in the
set {χk}K̂k=1, i.e., αm

ij = ∑K̂
k=1 σijk χ

(m)
k , where χ

(m)
k =

〈χk, em〉. This generalizes (5) to the two-dimensional case
and avoids to vectorize the data structures Xm.

3.4 Algorithms for tensor decompositions

Clearly, the approximation accuracy of (11) and (13) depend
on the choice of basis vectors ϕi , ψj , and χk , their ordering
and the elements in the core tensor. There exist many algo-
rithms to select these bases in such a way that the approx-
imation error (12) is small or minimized. The problem of
finding these sets can be formulated as the optimization
problem

min{ϕi }i≤Î ,{ψj }j≤Ĵ ,{χk}k≤K̂

∥
∥
∥S −∑Î

i=1
∑Ĵ

j=1
∑K̂

k=1 σijkϕi ⊗ ψj ⊗ χk

∥
∥
∥

F
,

(14)

which is to be solved subject to the constraint that the basis
elements {ϕi | 1 ≤ i ≤ Î }, {ψj | 1 ≤ j ≤ Ĵ } and {χk | 1 ≤
k ≤ K̂} are orthonormal.

This problem has an analytic solution only for the case
where (Î , Ĵ , K̂) = (1, 1, 1). For all other cases one has
to resort to numerical approximations. Several algorithms
have been proposed to compute tensor decompositions
using orthonormal basis functions. The High Order SVD
(HOSVD) proposed by [11] was the first extension of the
classical SVD to the spatial-temporal case and the method-
ology is based on an unfolding procedure of tensors. The
high order orthogonal iteration (HOOI) by [12], the Tensor
SVD proposed by [40], maximum singular value modal rank
(MSVM), and the single directional modal-rank decompo-
sition (SDM) by [33] compute singular values (elements
of the core tensor) and basis vectors in a sequential way,
where the singular values and vectors depend on a search
direction at every decomposition level (Î , Ĵ , K̂). The tensor
SVD, MSVM, and SDM algorithms keep the tensor struc-
ture intact in such a decomposition procedure. In this paper,
we consider the Tucker modal-rank type of decomposition,

Fig. 2 Schematic description for the truncation of a Tucker decomposition of a 3D tensor



Comput Geosci (2017) 21:645–663 651

see [22], which achieves orthonormal sets {ϕi}Ii=1, {ψj }Jj=1

and {χk}Kk=1.
There are several tensor toolboxes available for the Mat-

lab platform, like the Matlab Tensor toolbox, see [5] and the
Tensorlab, see [38]. In this work, we have used an HOSVD
implementation using tensor operations from [5].

3.5 Tensor approximation of reservoir flow patterns

Let us exemplify the concept of signal approximation
and compression of reservoir flow patterns through ten-
sor decompositions. In the framework of multidimensional
(tensor) approximations, the sets of orthonormal basis func-
tions {ϕi}Ii=1, {ψj }Jj=1 represent the most relevant spatial
correlations independently for each spatial coordinate. The
coordinate independence can be exploited to approximate
flow patterns which have a richer variability in a certain
coordinate, as it would be the case for flow patterns in
channelized reservoirs.

We consider a 2 facies, 2D oil reservoir with a square
geometry of length L = 3000 m, one layer of 10 m
thick. The numerical model of one realization has 3600 grid
blocks of size 50 m× 50 m. A description of the physi-
cal parameters, wells configuration, and a link to the data
files can be found in [39]. The sequential solvers of MRST,
see [24], have been used to solve the pressure and satura-
tion equations and the production has been simulated for a
period of 15 years, time step of 5 days. There are four water
injectors, and each of them injects at a rate of 600 m3/day,
and the producers operate at 150 bar. We collect K = 1095
time steps for the temporal evolution of the oil saturation.
Then, we construct a 3D tensor S of size 60 × 60 × 1095,
where the x, y, and temporal dimensions correspond to
the first, second, and third tensor coordinate accordingly.
Hence, the tensor S can be decomposed as in Eq. (9):

S =
60
∑

i=1

60
∑

j=1

1095
∑

k=1

σijkϕi ⊗ ψj ⊗ χk. (15)

The reservoir flow pattern in tensor S is described by I =
60 basis functions of size 60 × 1 in the x coordinate, J =
600 basis functions of size 60 × 1 for the y coordinate, and
K = 1095 basis functions of size 1095× 1 for the temporal
dimension. We compute low-rank approximations Ŝ of the
original flow pattern by truncating the sums in Eq. (15). The
purpose of this example is to study the effect of decreasing
the number of spatial basis functions for the approxima-
tion, and therefore the number of temporal basis functions
are fixed to {χk}K̂=5

k=1 . For the first approximation, we select

basis {ϕi}Î=20
i=1 for the x coordinate and basis {ψj }Ĵ=20

j=1
for the y coordinate, leading to a modal rank approximation
of (20, 20, 5). For the second approximation, we select
{ϕi}Î=10

i=1 basis for x and {ψj }Ĵ=10
j=1 basis for y, leading to a

modal rank approximation of (10, 10, 5). Time snapshots of
the reservoir simulation and the approximations are depicted
in Fig. 3.

From Fig. 3, it is clear that decreasing the number of spatial
basis functions would affect the quality of the approximations.
This can be quantified by using (12) to derive the rel-
ative proximity ν of the approximations Ŝ with respect

to the original tensor S : ν =
(

1 − ‖S −Ŝ ‖F

‖S ‖F

)

× 100.

Here, we consider modal rank approximations of the type
(r, r, 5), for r = 1, · · · , 60, and the relative proximity as a
function of r is presented in Fig. 4. For the flow patterns
depicted in Fig. 3, it is observed that the approximation
(10, 10, 5) preserves almost 85% of the features of Ŝ , while
the approximation (20, 20, 5) preserves more than 90%.

When fixing K̂ = 5, only 0.46% of the total number
of basis function for the temporal domain is used, while
achieving a maximum proximity of 94%. For this exam-
ple, that fact indicates that the temporal dynamics can be
explained with a very small amount of the information
contained in S . The amount of information required to
construct an approximation can be quantified by summing
the size in memory of the constitutive elements in (11):
{ϕi}Îi=1, {ψj }Ĵj=1, {χk}K̂=5

k=1 , and the corresponding core ten-
sor �. Similarly, we consider modal rank approximations

Fig. 3 Oil-water front with tensor approximations. Approximation
1 has modal rank (20, 20, 5). Approximation 2 has modal rank
(10, 10, 5). Colors represent oil saturation
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Fig. 4 Blue-Left axis: Relative
proximity ν(r) . Green-Right
axis: Size in memory of the
modal rank approximation
(r, r, 5) as function of r

of the type (r, r, 5), for r = 1, · · · , 60, and the informa-
tion is presented in Fig. 4. The size in memory of the tensor
S is 30.08 MB, while the approximations (20, 20, 5) and
(10, 10, 5) of Fig. 3 have a size of 79.38 and 57.78 KB
respectively. These findings indicate that the reservoir flow
pattern in S can be approximated using only 0.25% of its
original information, while achieving relative proximities
higher than 90%. This experiment suggests that more than
99% of the information contained in S is redundant for the
purpose of flow characterization.

3.6 4D Tensors: an approach for handling multiple
realizations

In the multilinear framework, it is possible to define an addi-
tional coordinate, where an index that links the dynamical
behavior (the reservoir flow pattern) to its corresponding
model is assigned to every realization. In this subsection, we
restrict our attention to 2D cartesian grids, without losing
generality for 3D geometries. For the case where we have
an ensemble of R realizations and their corresponding flow

patterns, the full data set is described by two spatial coor-
dinates, the temporal coordinate and a coordinate for the
realizations, i.e., a 4D tensor S of size I × J × K × R,
with I, J the dimension of the spatial coordinates x and y,
K the dimension of the temporal coordinate, i.e., the num-
ber of time steps, and R the number of reservoir models,
which constitutes the size of the ensemble to be character-
ized. A schematic representation of such a data structure is
depicted in Fig. 5. In analogy to the Eq. (9), the 4D tensor
S has a Tucker decomposition of the form:

S =
I

∑

i=1

J
∑

j=1

K
∑

k=1

R
∑

r=1

σijkrϕi ⊗ ψj ⊗ ωk ⊗ χr, (16)

where the orthonormal basis vectors {ϕi | 1 ≤ i ≤ I }, {ψj |
1 ≤ j ≤ J } span the spatial coordinates, {ωk | 1 ≤ k ≤ K}
spans the temporal space and {χk | 1 ≤ k ≤ R} spans the
model space. The reservoir flow patterns of the mth real-
ization Xm is then represented as a tensor of dimension
I × J × K which is approximated similar as in (13), and

Fig. 5 Schematic interpretation of a 4D tensor of reservoir flow patterns
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results in the approximate sample X̂m of the flow patterns
defined by the order-3 tensor

X̂m = Ŝ (·, ·, ·, em)

=
Î

∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

R̂
∑

r=1

σijkr 〈χr, em〉 ϕi ⊗ ψj ⊗ ωk

=
Î

∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

αm
ijkϕi ⊗ ψj ⊗ ωk, (17)

where em is the mth standard unit vector in R
R and where

αm
ijk := ∑R̂

r=1 σijkr 〈χr, em〉 is a real-valued coefficient in
the expansion (17).

This expansion shows explicitly the way how the infor-
mation is distributed in the decomposition. Clearly, the
tensor ϕi ⊗ ψj ⊗ ωk contains the spatial-temporal correla-
tions that are shared by all the set of reservoir flow patterns
in the ensemble. What makes a reservoir flow pattern Xm

distinct from others is the selection of the mth element of
the basis functions for the model coordinate 〈χr, em〉 and
subsequently the coefficients αm

ijk .
As it was indicated previously for the 3D case, the coefficient

αm
ijk is a linear combination of the mth element of all

the basis functions in the set {χr }R̂r=1, i.e., αm
ijk =

∑R̂
r=1 σijkr χ

(m)
r , and the information that characterizes the

dynamical properties of the realizations are embedded into
the elements of core tensor σijkr and the set of basis func-

tions for the model coordinate {χr }R̂r=1. This analysis creates
the foundations for the definition of low-dimensional repre-
sentations of the flow profiles in the next subsection.

3.7 Flow-based dissimilarity measures
in low-dimensional tensor representations

In order to be able to calculate a dissimilarity measure
between two models on the basis of low-dimensional repre-
sentations, we require the tensor representation of the flow
patterns for both models to be expanded with the same basis
functions, as in Eq. (17). Therefore, we construct the 4D
tensor representation described in Section 3.6, and we intro-
duce a metric space by defining a distance function between
two reservoir flow patterns Xp and Xq of the realizations
p, q as:

dpq = ‖Xp − Xq‖F

=
∥
∥
∥
∥

I
∑

i=1

J
∑

j=1

K
∑

k=1

R
∑

r=1

σijkr

[

〈χr , ep〉−〈χr , eq〉
]

ϕi ⊗ ψj ⊗ ωk

∥
∥
∥
∥

F

=
∥
∥
∥
∥

I
∑

i=1

J
∑

j=1

K
∑

k=1

R
∑

r=1

σijkr 〈χr , ep−eq〉 ϕi ⊗ ψj ⊗ ωk

∥
∥
∥
∥

F

, (18)

where ep, eq are the pth and qth standard unit vectors inRR .
Let us define the real-valued coefficient
δijk = ∑R

r=1 σijkr 〈χr, ep − eq〉, which is an element of a
tensor D of dimensions I × J × K . Hence, (18) can be
written as

dpq =
∥
∥
∥
∥

I
∑

i=1

J
∑

j=1

K
∑

k=1

δijk ϕi ⊗ ψj ⊗ ωk

∥
∥
∥
∥

F

= ‖D‖F ‖�‖2‖�‖2‖�‖2, (19)

where �, � and � are column matrices composed by the
basis functions {ϕi | 1 ≤ i ≤ I }, {ψj | 1 ≤ j ≤ J }
and {ωk | 1 ≤ k ≤ K}. Due to the orthonormality of the
columns of �, �, and �, we obtain:

dpq = ∥
∥D

∥
∥

F
=

√
√
√
√
√

I
∑

i=1

J
∑

j=1

K
∑

k=1

|δijk|2. (20)

The expression in (20) suggests that the dissimilarity
between two reservoir realizations can be approximated by
truncation, which corresponds to the expression

d̂pq =

√
√
√
√
√

Î
∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

|δijk|2. (21)

In addition, the scalar δijk can be expressed in terms
of the coefficients αm

ijk in (17), δijk = α
p
ijk − α

q
ijk , and

therefore the tensor-based approximation of the flow-based
distance between the realizations p and q is defined as

d̂pq =
√

∑Î
i=1

∑Ĵ
j=1

∑K̂
k=1 |αp

ijk − α
q
ijk|2. If one stores

the set of coefficients αm
ijk as elements of a tensor Am of

dimension Î × Ĵ × K̂ , then

d̂pq =

√
√
√
√
√

Î
∑

i=1

Ĵ
∑

j=1

K̂
∑

k=1

|αp
ijk − α

q
ijk|2 = ∥

∥Ap − Aq

∥
∥

F
, (22)

where d̂pq is the pqth element of a distance matrix D̂. The
approximation error of computing the dissimilarity measure
using the approximations in (17) is bounded (see [11]).

The approximation of the distance in (22) can be com-
puted based on the tensors Ap and Aq , and they can be seen
as compact representations of the pth and qth reservoir flow
patterns. The set of tensors A = {A1, A2, · · · , AR} is com-
posed by low-dimensional representations of the reservoir
flow patterns for an ensemble of R realizations, and they
are used for further steps in flow characterization such as
distance visualization and model clustering.
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3.8 Discussion

With the spatial-temporal methodology, it is possible to
identify the tensor coordinates with richer information con-
tent, and it introduces flexibility and extra accuracy when
representing flow patterns in low-dimensional spaces and
calculating dissimilarity measures. Flow-based dissimilar-
ity measures allow the classification of the different types
of flow behavior in an ensemble, and the application of
the methods described in this section are useful for model
clustering, where the computational complexity limits the
classification of full reservoir flow patterns. In the next sec-
tions, we apply the concept of flow-based dissimilarity mea-
sures in low-dimensional spaces to the flow classification of
reservoir models using the tensor approach.

4 A tensor-based workflow for model clustering
using flow measures

4.1 Introduction

In reservoir engineering, multiple realizations are used to
account for the uncertainty of the rock properties of sub-
surface, and the industrial practice indicates that despite
the fact that realizations look different from the geologi-
cal perspective, some of them may have similar dynamical
performance. In flow classification, we aim to find sets
of realizations that share a similar dynamical performance
with respect to the spatial-temporal evolution of their cor-
responding reservoir flow patterns. For that, it is required
to compute dissimilarity measures between related flow
patterns, a method for visualizing these dissimilarities and
a clustering technique to group the models with similar
dynamical properties. When using a flow-based dissimilar-
ity measure for model clustering, these steps are constrained
by the dimensionality of the data set to be analyzed, and
the representation of the reservoir flow patterns in low-
dimensional spaces are used for the efficient classification
of multiple reservoir realizations. The flow-based approach
for dissimilarity measures was introduced in Section 3.
Here, we provide the theoretical foundation for the work-
flow developed in this paper. In Section 4.2, we describe
a tensor-based clustering algorithm, and in Section 4.3, we
describe the method for visualizing distances based on the
distance matrix D̂.

4.2 k-means tensor clustering

When analyzing data sets, analysts aim to extract patterns,
object classification, and data ordering. Thereby, k-means
clustering finds groups of data which are similar to one

another, partitioning a set of objects into clusters. Let us
consider the data objects described in Section 3.7, where
the tensor data set A = {A1, A2, · · · , AR} is composed by
the low-dimensional representations of the flow patterns. In
this section, we aim for a partition of the data set A into a
set of Kc clusters C = {c1, c2, · · · , cKc} with corresponding
centroid μk of dimension Î × Ĵ × K̂ , the same size of the
elements in the set A, where ck ⊂ A for k = 1, · · · Kc, such
that the variance within each cluster is minimized, see [20].
This operation can be formulated as:

argmin
C

Kc∑

k=1

∑

i∈ck

∥
∥Ai − μk

∥
∥
2
F
, subject to: μk = 1

Nk

∑

j∈ck

Aj ,

(23)

where Nk is the number of elements (size) of the cluster ck
and

∑

j∈ck
Aj indicates the element-wise sum of the ten-

sors Aj which have been assigned to the cluster ck . The
k-means algorithm has NP-hard complexity ([3]), which can
be relaxed using heuristic algorithms like the Lloyd’s algo-
rithm ([25]). The algorithm has two basic steps: (1) The
assignment of every tensor object in A to the closest cluster
centroid, and (2) the re-computation of the centroids using
the current cluster membership:

– Initialize cluster centroids μ1, μ2, · · · , μKc randomly.
– Repeat until convergence:

1. Label assignment step: Assign each data point to
the nearest centroid. For j = 1, · · · , R and k =
1, · · · , Kc perform:

lj = argmin
k

∥
∥Aj − μk

∥
∥
2
F
. (24)

2. Clusters update: Update the set C.
3. Centroids update: Compute the average of the clus-

ter elements.

μk = 1

Nk

∑

i∈ck

Ai . (25)

The selection of the Kc is a user choice; however,
there are more systematic methods to determine the ini-
tial guess for the number of clusters, see, e.g., [21]. When
working with large-scale data sets, it is required to account
for the scalability and the computational complexity of the
algorithms for data analysis. Lloyd’s algorithm has linear
computational complexity O(t · Kc · R · n), where t is the
number of iterations needed to converge and n is the size
of the objects to be clustered respectively. From the com-
plexity point of view, the application of the k-means tensor
clustering algorithm is constrained by n, i.e., the dimension-
ality of the objects to be clustered. Particularly, the fact that
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the reservoir flow patterns are large-scale data structures
(n ∼ 106) poses a challenge for the state-of-the-art cluster-
ing algorithms, and limits the use of k-means for flow-based
classification.

For the tensor-based clustering approach, the computa-
tional effort will be dominated by the tensor decomposition
with computational complexity O(max{I 3, J 3, K3, R3}),
see, e.g., [11, 15]. A direct clustering on the basis of the full
reservoir flow patterns would require a computational effort
of order O(t ·Kc ·R ·I ·J ·K) which will generally be two to
three orders of magnitude higher than the former approach,
and it is exemplified in the next section.

4.3 Visualization of dissimilarities

For the visualization of dissimilarities between a set of
reservoir flow patterns, we determine their coordinates in
a metric space using multidimensional scaling (MDS). For
a detailed description, we refer to [7]. For the application
of MDS in uncertainty quantification, we refer to [32, 35]
and [8]. MDS uses the SVD to determine a low-order set
of dimensionless directions in which the relative distances
between the objects can be efficiently represented. In partic-
ular when considering just two or three of the most relevant
directions, it is possible to represent the distances between
the objects graphically.

4.4 A workflow for model clustering using flowmeasures

In this subsection, we use the multilinear algebra meth-
ods described in this paper to find clusters of models with
similar dynamical properties. The developed methodology
uses the concept of flow-based dissimilarity measures, com-
puted in low-dimensional spaces to determine the dynamical
similarities between reservoir models, by exploiting the ten-
sor structure of the reservoir flow patterns. The purpose of
this workflow is to estimate the closeness between two or
multiple realizations with respect to a performance indica-
tor relevant to the CLRM framework. The inputs for the
workflow are:

– R: The number of realizations.
– Xi : Time snapshots of the reservoir flow patterns (i =

1, · · · , R).
– Kc: The number of clusters.
– A predefined production strategy u(t).

The procedure is described as follows:

1. Reservoir simulation: Simulate the flow patterns for the
set of R realizations using u(t).

2. Tensor formulation: Store the reservoir flow patterns
of all the realizations in a tensor S as described in
Section 3.2.

3. Decomposition: Compute the tensor decomposition of
S as in Eq. (16), using the algorithms described in
Section 3.4.

4. Low-dimensional characterization: Construct the low-
dimensional representation of the flow profiles
A = {A1, A2, · · · , AR}, as described in Section 3.7.

5. Dissimilarity: Compute the distances described in
Eq. (22).

6. Clustering: Group the data set A into clusters as
described in Section 4.2.

7. Visualization: Construct an MDS map to visualize clus-
ters as described in Section 4.3.

The output of the workflow is the set of Kc clusters
C = {c1, c2, · · · , cKc}, which groups the types of dynamical
responses of R reservoir realizations. This classification can
be further used to create flow-relevant ensembles, where few
reservoir models are selected to capture the most relevant
dynamical responses of the original set of realizations.

It has to be noted that, if we consider the saturation-based
dissimilarity measure, then the presented model clustering
method requires a full simulation of all model realizations
in the ensemble. In a general CLRM workflow, including
robust optimization and/or value of information assessment,
this burden will generally be outweighted by the advantages
of performing optimization over a considerably reduced
ensemble. In the current procedure, the clustering can be
done once and “off-line.” Nevertheless, if a full simula-
tion of all reservoir realizations is considered unfeasible,
the proposed method and techniques in this paper can still
be applied e.g. on the basis of time-of-flight maps rather
than saturation maps (see, e.g., [40]), thereby considerably
reducing the simulation efforts.

5 Application case

In this section, the workflow for model clustering presented
in Section 4 is applied to a set of channelized reservoirs,
and we analyze the performance of the spatial-temporal
approach using flow-based dissimilarity measures. Channelized
reservoirs present a challenge for field development plans,
because moderate changes in well configurations may lead
to very high variations in the resulting reservoir flow pat-
terns. Let us consider an ensemble ofR = 100, 3D reservoir
models with a geological structure consisting on a network
of fossilized meandering channels of high permeability. The
data set has been uploaded to the 4TU.Datacentrum repos-
itory and can be accessed by external users, see [19] for
the physical parameters of the models. The reservoir size is
480 m × 480 m × 28 m with 7 geological layers, and it is
composed by 25,200 grid blocks 8 m × 8 m × 4 m in size.
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Fig. 6 Well configuration and
samples of permeability fields
from the ensemble. Color scale
in mDarcy

We have used a rectangular-shaped geometry instead of the
egg-shaped reservoir described originally in [19]. The well
configuration is composed of eight injectors and four pro-
ducers. A view of some geological realizations is depicted
in Fig. 6.

5.1 Generation of the reservoir flow patterns

We have simulated the reservoir flow patterns of the R =
100 realizations, which correspond to the spatial-temporal
evolution of the oil saturation. The sequential solvers of
MRST, see [24], have been used to solve the pressure and
saturation equations, and the production has been simulated
for a period of 10 years with a time step of 30 days, i.e.,
K = 122 time steps. The water injection rates are fixed
at 79.5 m3/day for all the injectors and the bottom-hole
pressures are fixed at 395 bar for all the producers.

5.2 Low-dimensional tensor representation of the
reservoir flow patterns

The data structure that contains the reservoir flow patterns
for the ensemble can be stored in a 5D tensor of size
I ×J ×Z×K×R with I = 60 the dimension of the x coor-
dinate, J = 60 the dimension of the y coordinate, Z = 7
layers, K = 122 time steps and R = 100 realizations. The
tensor S is decomposed similarly to the decomposition in
(16), while augmenting a coordinate for geological layers.
Hence, the reservoir flow patterns corresponding to the mth
realization can be described as:

X̂m =
I

∑

i=1

J
∑

j=1

Z
∑

z=1

K
∑

k=1

αm
ijzkϕi ⊗ ψj ⊗ νz ⊗ ωk, (26)

where {νz}Zz=1 are the set of basis functions for the lay-

ers coordinate and αm
ijzk := ∑R

r=1 σijzkr 〈χr, em〉. For the
low-dimensional approximation ofS , we truncate the num-
ber of the basis functions in every coordinate such that the
approximation error described in (12) is relatively small. We
have set the number of basis functions for the layers coor-
dinate to be Ẑ = 2, and for the temporal coordinate to be
K̂ = 2. From the expression in (17), it is inferred that the
number of basis functions for the model coordinate does not
affect the number of parameters αijzk required to describe a
flow pattern, and thus we select R̂ = 100 basis functions for
the model coordinate. In order to choose an adequate num-
ber of spatial basis functions for the x and y coordinates,

Fig. 7 Approximation error er (Î , Ĵ ) = ‖S −Ŝ (Î ,Ĵ )‖F‖S ‖F
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Fig. 8 Snapshots of oil
saturation for model 57 (layer 3)
with Î = 10, Ĵ = 10, Ẑ = 2,
K̂ = 2, and R̂ = 100. Top:
Reservoir simulation. Bottom:
Tensor approximation

we perform an error analysis using the approximation error
defined in (12).

In Fig. 8, the approximation error as a function of the
number of basis functions used for the approximation Ŝ is
presented. Using Fig. 8, we can perform a trade-off between
accuracy and the amount of information required for the
approximation. The truncation criterion is defined by the
user, and we accept tensor approximations with relative
errors lower than 20% with respect to the original tensor S .
By choosing a truncation Î = 10 and Ĵ = 10 we achieve
a relative error of 17.6% with respect to the flow patterns
from the full simulation. Figure 8 displays an almost sym-
metric shape, and shows that the approximation error tends
to zero as we increase the number of basis functions in both
coordinates.

Snapshots of the approximation for one of the realiza-
tions are depicted in Fig. 7. Despite that the oil/water front is
not as sharp as in the reservoir simulation, the tensor approx-
imation is able to capture the relevant flow patterns as time
evolves. These approximations allow the characterization of
the reservoir flow patterns in low-dimensional spaces. As
was described in the previous section, the reservoir flow pat-
tern of the mth realization Xm (of size I × J × Z × K , i.e.
3.074 × 106 grid-block oil saturations) is characterized in a
low-dimensional space by the tensor Am of size Î × Ĵ ×Ẑ×
K̂ composed by the set of coefficients αijzk , i.e., 400 coef-
ficients. This low-dimensional characterization represents a
reduction of 99.9% of the amount of information necessary
for further classification analysis.

5.3 Model clustering and visualization

The low-dimensional tensor representation in (26) and the
methods described in Section 4.4 are used formodel clustering.

In the previous section, we have derived a set of tensors
A = {A1, A2, · · · , AR} which are low-dimensional repre-
sentations of the reservoir flow patterns for an ensemble of
R realizations. Here, we use them for constructing model
clusters with similar reservoir flow patterns.

The k-means clustering algorithm described in
Section 4.2 has been used to classify the set A. The algo-
rithm is provided with the number of clusters Kc = 7,

Fig. 9 MDS plot. Color represent flow-based clusters. Numbers are
assigned to all the realizations
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Fig. 10 MDS plot. Left: Color represents NPV (USD). Right: Color represents total oil production (stb). Numbers are assigned to all the
realizations

which have been selected by visual inspection of the MDS
plots depicted in Fig. 9. A predefined initial condition for
all the centroids μ0 = 0.1 · E , where E is a tensor of size
10 × 10 × 2 × 2 with all the elements equal to 1.

To visualize the clusters, the MDS map is constructed
using a distance matrix D̂ based on the approximated dis-
similarity function defined in (22). In the MDS plot, every
dot corresponds to a low-dimensional representation of the

reservoir flow patterns for one realization, and the colors
indicate clusters. The MDS map in Fig. 9 is a 3D projection
of a higher-dimensional space, and the first three axes rep-
resent 72% of the total variability. The clusters depicted in
the MDS plot are visually separated and the plot has a tetra-
hedron shape. Big clusters are found in the corners of the
tetrahedron, indicating four predominant and different types
of flow patterns.

Fig. 11 Snapshots of oil saturation (top layer) of sample models from cluster 4
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Fig. 12 Snapshots of oil saturation (top layer) of sample models from cluster 2

The distribution of NPV and total oil for the clusters
can be visualized in the MDS plots of Fig. 10. From visual
inspection, patterns of similar NPV, and total oil production
can be detected for models which belong to the same clus-
ter and are close in the flow patterns, and there is a positive
correlation of the model distances with the target variables.

Typical flow patterns of these clusters are depicted in
Figs. 11, 12, 13, and 14.

To describe the observations, let us analyze the type of
reservoir flow patterns classified in some of the clusters. In
Fig. 11, the flow patterns corresponding to the realizations
9 and 64 indicate a large connectivity between the injec-
tors 2, 4, and 7 with the producers 2 and 3 resulting in flow
patterns with an elongated shape in the y coordinate. In
Fig. 12, the flow patterns of the realizations 3 and 38 present
a large connectivity between injectors 1, 2, 3, and 4 with

Fig. 13 Snapshots of oil saturation (top layer) of sample models from cluster 1
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Fig. 14 Snapshots of oil saturation (top layer) of sample models from cluster 3

producers 1, 2, and 3 resulting in a rounded flow pattern
in the center of the reservoir. In Fig. 13, the flow patterns
indicate a large connectivity between injectors 1, 2, and 3
with producer 1, while the flow patterns corresponding to
the cluster in Fig. 14 do not exhibit such connectivity. The
results depicted in Figs. 11, 12, 13, and 14 confirm the effec-
tivity of the spatial-temporal workflow for model clustering
using flow-based dissimilarity measures.

In this application case, the computational complexity
of the tensor decomposition comes down to O(K3) =
O(1223) ∼ O(2 · 106). Since the flow patterns have a
reduced-order representation composed of n = 400 elements,
the application of Lloyd’s k-means clustering algorithm has
a computational complexity of order ∼ O(0.0004 · 106).
Alternatively, the brute force calculation of all pairwise
distances between the original feature vectors, requires a
number of computations of the order O( 12R

2 · I · J · Z · K),
which for the example case comes down to O( 12100

2 · 60 ·
60 · 7 · 122) ∼ O(1.5 · 1010), without considering the clus-
tering step. Applying Lloyd’s clustering algorithm to the
original features has a computational complexity of order
O(it · Kc · 1

2R
2 · I · J · Z · K) = O(it · 7 · 5000 · 60 · 60 · 7 ·

122) ∼ O(it · 1011). From these figures, it is clear that the
computational advantages of the tensor reduction step are
substantial. This computational gain will greatly facilitate
the implementation of clustering algorithms for problems of
practical size.

5.4 NPV and oil production in the clusters

Previously, we have discussed the fact that models with
similar outputs such as NPV or production rates might
have very different reservoir flow patterns. In the context
of model clustering with flow-based dissimilarity mea-
sures, it is expected that the models within a cluster share
similar flow patterns. We anticipate that the NPVs and
total oil productions are similar as well, based on the fact
that models with similar flow patterns might have similar

Table 1 Average and standard deviation of NPV and total oil for each
of the seven clusters and for the full ensemble

Cluster NPV (106 USD) Total Oil (103 stb)

No. Nk : Cluster
size

μnpv σnpv μoil σoil

1 14 113.64 2.33 101.67 1.55

2 9 115.44 2.22 102.86 1.48

3 8 110.11 2.24 99.32 1.49

4 15 114.02 2.47 101.92 1.64

5 17 113.13 2.20 101.33 1.46

6 22 111.47 2.54 100.22 1.69

7 15 111.03 2.54 99.93 1.69

Ensemble 100 112.62 2.80 100.99 1.86
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Table 2 Production strategies

Strategy Injection rates Deviation

Base case r = 79.5 m3/day –

2 rodd = r − �1, reven = r + �1 �1 = 4 m3/day

3 rodd = r + �1, reven = r − �1 �1 = 4 m3/day

4 rodd = r − �2, reven = r + �2 �2 = 10 m3/day

5 rodd = r + �2, reven = r − �2 �2 = 10 m3/day

evolution of the oil saturation and pressure patterns, gen-
erating close water breakthrough times and rates at the
production wells. For the application case considered in this
section, we compute the undiscounted NPV as in [18], with
ro = 55 USD/stb the oil price, rwi = rwp = 2 USD/stb
the cost associated to water injection and production. The
range of NPV for the ensemble is ωNPV := [104.82 ×
106, 119.27 × 106] USD, with a mean value of μNPV =
112.62 × 106 USD and standard deviation σNPV = 2.80 ×
106 USD. The statistical properties (mean and standard
deviation) of NPV and total oil production of the flow-based
clusters are presented in Table 1. From the table, we con-
clude that for all seven clusters, the intra-cluster standard
deviations of NPV (σnpv) and total oil (σoil) are smaller
than the standard deviations of these variables over the full
ensemble. This is an evidence for the statement that the clus-
tering has been done in a way that is relevant with respect to
these two performance measures.

5.5 Input dependency of the reservoir flow patterns and
dissimilarity measures

One of the possible limitations of the workflow is the nonlinear
dependency of the reservoir flow patterns on the type of

production strategy. In this section, we compare the results
of clustering using flow-based dissimilarity measures for
different production strategies. The strategies that will be
considered in this section consist on a fixed bottom-hole
pressure of 395bar at the producers, while the injection rates
are perturbed by ±5 and ±12.5%, as specified in Table 2.

In general, it would be beneficial to have a small sensi-
tivity of the workflow to variations in the control input. In
order to assess this sensitivity, we have applied the work-
flow for flow characterization with the control strategies
described in Table 2, and have generated Kc = 7 clusters
for each strategy. Here, we define the closeness of the clus-
ters with deviated control to the clusters of the base case,
as the number of shared models among the clusters. This
cluster similarity can be quantified as the percentage of the
elements shared with the cluster in the base case. Let cbaser

and cnr be the rth clusters for the base and the nth produc-
tion strategy. We define the percentage of similarity of the
cluster cnr with respect to the base case cbaser as:

pr = card(cbaser ∩ cnr )

card(cbaser )
· 100, (27)

where card(·) denotes the set cardinality, i.e., the number of
elements of a set. In Fig. 15, this percentage of similarity is
presented.

The results in Fig. 15 indicate that for small deviations
(strategies 2,3), there is a good agreement of the clusters
for deviated controls with the classification obtained by the
base case, as most of the clusters match the base case with
at least 68%, with the exception of cluster 7 for strategy
2. This is expected, as there are no large variations in the
reservoir flow patterns for small variations in the controls.
For large deviations in the control inputs (strategies 4, 5),

Fig. 15 Model clusters
similarity with respect to
clusters of the base case
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the similarity of the clusters with respect to the base cases
decreases, however, there it is still a good match, and the
generated clusters have a significant similarity with respect
to the classification found in the base case.

The results indicate that the nonlinear dependency of the
flow patterns on the control input is an inherent limitation of
the workflow. However, this methodology is valid for small
deviations around the production strategy.

6 Conclusions

Some relevant advantages have been identified for the
proposed methodology of model classification using flow-
based dissimilarity measures and tensor representations:
Firstly, the spatial structure of the reservoir is preserved,
which allows the extraction of spatial correlations from the
reservoir flow patterns. Secondly, the spatial correlations are
not averaged in time, which is particularly useful for the
flow characterization of nonlinear reservoir systems, where
the spatial correlations of the reservoir variables are time-
variant. Thirdly, a tensor-based representation provides the
user with enough flexibility for handling multidimensional
reservoir flow patterns and for performing a directional
approximation of the data, i.e., keeping the directions where
the dynamics have a higher variability. As a consequence,
the tensor approximations can represent patterns in the full
simulation using only 0.1% of the original information.

Finally, a low-dimensional representation of the reservoir
flow patterns allows the implementation of dissimilarity and
clustering techniques for reservoir models. The presented
clustering technique can be used to construct reduced-sized
ensembles for instance for applying robust life cycle opti-
mization [37], value of information assessment [6], or well
placement optimization while the original uncertainty in the
ensemble of reservoir models is captured by a reduced set
of ensemble members, chosen after flow-relevant cluster-
ing of the realizations, and thereby leading to substantial
computational benefits.
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