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Preface

This report is part of my Master’s thesis within the department of High-Tech Engineering at the Delft
University of Technology. This thesis presents a design and optimisation of a new compliant leg module
for TU Delft’s nano-rover, Lunar Zebro, to obtain increased tractive performance on the lunar terrain.
The Lunar Zebro is depicted in the cover image [1].

During my Bachelor’s studies, I developed a strong interest in robotics, applying my knowledge of
structural design to create robotic hardware in multiple projects. Building on the expertise I gained in
compliant structure design and analysis during my Master’s studies, this thesis reflects my passion
by focusing on one of the most advanced forms of robotics: the lunar rover. I am deeply grateful
for the opportunity to contribute to this field, expand my understanding, and support the Lunar Zebro
programme in achieving its goal of enabling the rover to walk on the Moon.

I would like to express my sincere gratitude to my supervisor, Dr. Ir. J.F.L. Goosen, for his continued
support, guidance, and expertise throughout the process of conducting my Master’s thesis. Finally, I
would like to thank my family and friends for their support throughout this journey.

I acknowledge the utilisation of TeXGPT by Writefull for Overleaf to identify improvements in gram-
mar and spelling of this thesis. The entirety of the text was originally personally written, after which
TeXGPT was employed to identify improvements. These suggested improvements were individually
evaluated and, if judged beneficial, manually incorporated. This thesis explicitly does not include any
prompt-based generated text.

S.X. Bloem
Delft, August 2025
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Abstract

Extra-terrestrial rovers play a vital role in the acquisition of scientific data on celestial bodies, offering a
reduced risk and cost compared to human exploration. In pursuit of mapping the lunar surface, a swarm
of nano-rovers can collectively form a network and cover extensive areas. The Lunar Zebro, a hexapod
nano-rover, employs an innovative C-shaped leg module that combines the efficiency of a wheel with
the stability and climbing capability of a leg. The current C-shaped leg module features a fully rigid
design, for which tractive performance could be improved by increasing the soil contact area. Due to
the extreme thermal environment on the Moon, this improvement must be achieved using compliant
mechanisms and space-graded material. Consequently, the research goal is to design a compliant
leg module to enhance the tractive performance of the Lunar Zebro on lunar terrain, employing an
analytical optimisation model that combines compliant system behaviour with the mechanics of leg-soil
interaction.

The design process employs a morphological analysis along with the ACRREx method, in which dif-
ferent subproblem solutions are combined into multiple concepts. The performance of these concepts
is evaluated against selection criteria, leading to the creation of the final concept by integrating the de-
sign features associated with high criteria performance. The final concept is translated into an analytical
model utilising Castigliano’s theorem to describe the compliant behaviour and Wong’s terramechanics
theorem for deformable wheels to describe the leg-soil interaction. A set of design variables impacting
the system’s compliant behaviour is defined, for which the tractive performance is optimised while con-
fined by constraints that ensure reliability and durability across various movements and scenarios. The
optimisation process is conducted using Sequential Quadratic Programming, due to the non-linearity
of the objective function and constraints. An optimal set of design variables is identified for both the
middle and outer legs, resulting in not only a significant enhancement of tractive performance but also
an increase in tractive efficiency and reduction of leg sinkage. Although concerns are raised about
contact surface wear at the optimal set of design variables, a minimal amount of compliance, while
staying in the feasible region of the design variables, enhances the tractive performance of the compli-
ant leg compared to the original rigid leg. A final leg design is presented that incorporates modifications
informed by research findings.
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1
Introduction

1.1. Lunar Zebro
To gain a greater understanding of the Moon’s surface, its history, and the potential for future space
missions, there is a high demand for exploration and research of the lunar environment. Due to increas-
ingly sophisticated technology of recent times, extra-terrestrial rovers play a vital role in the acquisition
of scientific data, offering a reduced risk and cost compared to humans physically exploring the Moon.
These rovers can be specifically designed and optimised to execute certain tasks. In pursuit of mapping
the lunar surface, a swarm of nano-rovers can collectively form a network and cover extensive areas.
However, these nano-rovers are likely to encounter challenges on the lunar surface, which is covered
by regolith, rocks, and craters, consequently complicating mobility for smaller vehicles equipped with
wheels. The Lunar Zebro presents an innovative approach to overcome such challenges.

The Lunar Zebro is a nano-rover developed by TU Delft, presented in Figure 1.1. It is a hexapod
rover that uses six C-shaped legs to traverse the rough surface and steep slopes of the Moon, while
also being able to climb over obstacles. Its design originates from the RHex robot, which was built
to handle the complexity and diversity of natural terrain [2]. The RHex set a new standard in mobile
robotics by utilising the C-shaped leg design with a single degree of freedom per leg, diverging from
the traditional multi-segmented legs found in most legged robots. The design combines the stability of
legged movement with the efficiency of wheels, allowing RHex to traverse rough terrain more efficiently
and perform complex manoeuvres such as climbing [3]. The initial legs of the Lunar Zebro, presented
in Figure 1.2, were an adaptation of the RHex leg module.

With dimensions comparable to an A4 sheet and a mass of 2.5 kg, the Lunar Zebro can be effi-
ciently transported aboard a rocket. The chassis is characterised by a monocoque design, wherein all
relevant components are integrated, and sensitive components are protected against lunar dust. The
energy required to move is gained through a movable solar panel located on top of the chassis. The
legs are axisymmetrically aligned to maximise stability while maintaining compactness [4]. Each leg
is independently actuated by a space-graded motor, permitting adjustable contact angles and offering
substantial control over the magnitude and direction of the ground contact forces [2].

The Lunar Zebro possesses the capability to employ various gates tailored to specific tasks. This
study focuses exclusively on the walking mechanism of the Lunar Zebro, which uses an alternating
tripod gait. A tripod is established by two outer legs on one side and the middle leg on the other
side. When one tripod establishes ground contact, the alternate tripod rotates in the air to set the next
step. Due to the difference in distance between the legs and the centre of mass within the tripod, the
weight in the static equilibrium of the rover is unevenly distributed over the legs. The weight distribution
also varies depending on whether the rover is climbing, descending, or steering. As the Lunar Zebro
remains under development, with neither the centre of mass nor the contact points of the legs definitively
identified, it is assumed that the middle leg supports half the weight, whereas each outer leg supports
a quarter.

1
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Figure 1.1: Lunar Zebro [5] Figure 1.2: Initial leg module [6] Figure 1.3: Current leg module [7]

As the initial legs of the Lunar Zebro were an adaptation from those of RHex, they are not fully
optimised for the lunar surface characteristics or the Lunar Zebro itself. In a study conducted by Van
Rijn [7], a system-level performance analysis was executed to improve the leg’s design with respect to
traction, mobility, and climbing metrics. Through a computer-aided manual optimisation process using
a foundational model, it was identified that no singular optimal leg shape achieves optimal performance.
Instead, it was concluded that the most effective design is dependent on the weight factors defined by
the designer. An all-round performing design was developed, which is implemented as the current
Lunar Zebro leg module (Figure 1.3).

The current leg features a maximised radius within the given spatial constraints to increase the
contact surface area with the soil and improve traction. Furthermore, the uniform radius contributes to
a smoother walking motion, reducing initial waddling behaviour and thereby improving overall energy
efficiency. The climbing capability of the Lunar Zebro is supported by a hook that serves as the gripping
point, enabling climbing without compromising traction or energy efficiency. The inward curling tips are
designed to reduce digging in and scooping up lunar regolith.

1.2. Problem statement
The first mission of the Lunar Zebro is intended to execute a landing and traverse the lunar surface for
the duration of a lunar day, equivalent to fourteen Earth days. The Lunar Zebro will operate on lunar
regolith and navigate across features such as craters and dunes, requiring the legs to deliver substantial
traction to maintain mobility. As the current leg design is fully rigid, only a small contact area with the soil
is maintained, which limits traction and reduces movement efficiency, ultimately compromising overall
system performance.

Tractive performance can be enhanced through the implementation of a deformable leg design that
increases the contact area with the lunar soil. To endure the Moon’s extreme thermal environment,
with temperature variations ranging from average daytime highs of approximately 124°C to lows near
-178°C just before lunar sunrise [8], this enhancement must be realised using compliant mechanisms
and materials suitable for space. The compliant mechanism must be constrained to ensure reliability
and durability across a range of movements and scenarios.

Currently, no compliant legmodule has been specifically designed for the lunar environment, nor has
amodel been developed to analyse the influence of compliant leg characteristics on leg-soil interactions.
Therefore, the following research goal is formulated:

Design a compliant leg module to enhance the tractive performance of the Lunar Zebro on
lunar terrain.

To achieve this research goal, the following sub-goals can be identified:

• Design a compliant leg concept based on the current Lunar Zebro leg module.
• Create a model to calculate the tractive performance of the leg concept based on terramechanics
and compliance theory.

• Conduct an optimisation process to identify the design variables that yield optimal tractive perfor-
mance.

• Investigate the individual influence of the design variables on the tractive performance.
• Present a compliant Lunar Zebro leg module based on the research findings.
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1.3. Research scope
This study focuses on the design and performance optimisation of a compliant leg module for the Lunar
Zebro operating on the lunar surface. The tractive performance is solely evaluated on a flat terrain of
lunar regolith, utilising the terramechanics theoretical framework. The Lunar Zebromotors are expected
to deliver the required torque to facilitate the traction of the newly designed leg module. The tractive
performance enhancement is assessed by comparing the tractive performance of the newly designed
leg module with the currently used leg module. For the design process, a goal is set to ensure that the
new leg module behaves similarly to the original rigid C-shaped leg of the Lunar Zebro, combining the
efficiency of a wheel with the stability and climbing capability of a leg.

The space journey and landing survivability are excluded from the scope of this research. The study
is limited to the mechanical and structural aspects of the leg, including geometric optimisation and
performance evaluation. The optimisation is conducted using analytical calculations for the objective
and the constraints, with assumptions detailed in the respective sections of the theoretical framework.
These assumptions are accounted for by the comparative nature of the design variables that are opti-
mised, and the optimisation limitations, such as computational constraints. Although the optimisation
results in absolute optima, the primary interest lies in evaluating the design’s tractive performance near
its optima. This includes the determination of whether the optima are sharp or broad and whether cer-
tain design variables significantly exert a notable influence on performance. Such assessments add
significance to both the obtained optima and the design’s performance implications. The absolute per-
formance of the innovative compliant leg could be compared to that of the original rigid leg, providing
valuable insight towards achieving the research goal.

In this study, the tractive performance is defined in the upright leg orientation, which enables maxi-
mum tractive performance. Due to the design of the leg concept, deviations from this upright orientation
result in increased stiffness, thereby decreasing the available tractive performance. The calculation of
the tractive performance of the legs is performed without accounting for the multi-pass effect, signifying
that any changes in the performance due to the pre-compression of lunar soil by a preceding leg are
neglected.

The study focuses specifically on the utilisation of compliant features to gain traction without grousers.
While the traction contribution provided by grousers can be superposed in the case of fully rigid legs
[9], this is not applicable for compliant legs, as grousers would fundamentally change the stiffness of
the used compliant features.

Considering its low operating speed of 5 cm/s, the Lunar Zebro is modelled as a quasi-static system,
in which dynamic effects such as acceleration are considered negligible. Furthermore, the legs of the
Lunar Zebro are low enough in weight to disregard rotational inertia. Nevertheless, slip effects are
incorporated into the analysis.

Due to the extreme temperature variations on the lunar surface, changes in material properties
may influence the compliant behaviour of the design. To minimise these effects, aluminium 7075-T6
is used exclusively, as it demonstrates relatively stable material properties over a wide temperature
range. Since the mission is carried out only at specific periods on lunar day, the compliant behaviour
of the design is modelled at a temperature of 20°C, independently of temperature variations. To eval-
uate performance under extreme operating temperatures, the final design is analysed at 100°C and
-80°C. An effort is made to develop a thermal-resilient version that can be employed across a range of
temperatures.

Due to the lightweight design of the Lunar Zebro, there is limited gravitational force available to
deform the leg. Consequently, the thickness of the ground contact flexure is required to be small,
which may pose a risk for contact surface wear due to the abrasive characteristics of lunar regolith and
the presence of sharp rocks. As the goal of this research is to obtain optimal tractive performance,
and since contact surface wear has uncertain variables and the first mission duration is relatively short,
the analysis is performed without considering contact surface wear. However, because the material
selection for this project is restricted, the optimisation results will determine whether a small ground
contact flexure thickness is critical for increasing the leg’s tractive performance and if soil contact wear
is likely to pose an issue.

This research aims to demonstrate the potential of the compliant design to enhance traction on lunar
soil. By doing so, it will establish a foundation for future testing to identify which design features, such
as material selection, are required to ensure long-term viability.
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1.4. Report structure
This report is structured as follows. In Chapter 2, the design process of the new compliant leg module
is described, outlining the design requirements, concept design methodology, and concept selection.
Chapter 3 describes the optimisation methodology used, based on the objective and constraints. The
theoretical framework of this study is described in the respective Chapters 4, 5, and 6. Chapter 4
presents the theoretical framework of terramechanics, which describes the interaction between the
compliant leg and the lunar soil. Chapter 5 covers the theoretical framework of compliance, detailing
the relationship between applied forces and the resulting deformation of the leg. Chapter 6 addresses
the constraint theory, explaining the calculations related to the constraints acting on the system. The
Chapters 7, 8, and 9 form the results of the study. In Chapter 7, the optimisation is performed, showing
the optimum values for the design variables, while a sensitivity analysis is conducted to evaluate the
influence of the design variables on the model and the optima. In Chapter 8, the performance of the
optima is analysed for each slip ratio, while further analysis explores the performance across a tem-
perature range. The results and their physical implications are evaluated in Chapter 9. In Chapter 10,
the limitations of the study are discussed and recommendations for future work are proposed. Lastly,
Chapter 11 presents a conclusion drawn from the research findings.



2
Design process

This chapter describes the design process of an innovative compliant leg module. Firstly, the design
assignment and requirements are identified, after which multiple concepts are created via combinations
of subproblem solutions. Lastly, a final concept is selected based on the design requirements.

2.1. Design requirements
2.1.1. Design assignment
The design assignment is the objective set to improve the current product, based on the research goal.
In this instance, the assignment is to design a compliant legmodule to enhance the tractive performance
of the Lunar Zebro on lunar terrain. The design must behave similarly to the original rigid C-shaped
leg of the Lunar Zebro, combining the efficiency of a wheel with the stability and climbing capability of
a leg.

2.1.2. Functional requirements
Functional requirements are criteria that the system shall meet to ensure functionality. These require-
ments define the intended behaviour of the system. Within these requirements exists a hierarchy struc-
ture, wherein subfunctions contribute to the primary functions. The functional requirements for the com-
pliant Lunar Zebro leg module are specified, with a function tree visualisation as seen in Appendix A.1.

1. System shall convert motor rotation into forward motion.

(a) System shall generate traction to walk or brake.
i. System shall provide increased ground contact surface.

(b) System shall enable climbing over obstacles.
i. System shall provide a gripping point.

(c) System shall re-establish ground contact after each step cycle.

2. System shall support the weight of the vehicle.

(a) System shall provide a framework to connect flexure components.
(b) System shall provide a contact surface to connect flexures with the ground.
(c) System shall prevent excessive deflection of flexible elements.
(d) System shall provide a mechanical interface with the motor shaft.

3. System shall operate reliably in the lunar environment.

(a) System shall resist abrasive wear from lunar soil.
(b) System shall minimise scooping lunar regolith during operation.
(c) System shall prevent accumulation of lunar regolith on critical surfaces.

5
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2.1.3. Non-functional requirements
The non-functional requirements define what the system shall be, focusing on how well it performs.
These requirements form the constraints of the system and are quantifiable. The non-functional re-
quirements for the compliant Lunar Zebro leg module are specified with their subject and corresponding
specifications. These are established based on earlier Lunar Zebro design literature [6], [7], in addi-
tion to performance values of the current leg design. The deformability requirements are derived from
ExoMars standards, which specify a target vertical deflection range between 10%-20% of the wheel
radius and a maximum vertical deflection to the bump stop set at 24% of the wheel radius [10]. The
target vertical deflection range has been broadened to 5% and 20% of the wheel radius, reflecting the
physical differences between the Lunar Zebro leg module and the ExoMars wheel, alongside findings
by Ishigami, which suggest improved drawbar pull at lower vertical deformation levels [11].

1. System shall be able to transmit motor torque into traction force at ground contact. (Traction
transmissibility)

(a) System shall withstand a longitudinal deflection of a maximum of 5 mm during ground con-
tact.

2. System shall be deformable on ground contact. (Deformability)

(a) System shall vertically deflect between 3-12 mm (5%-20% of the leg radius) in a smooth
motion.

(b) System shall transition to a minimum radius of 58.5 mm at the end of the contact surface
(10% of arc length) to re-establish ground contact after each step cycle.

3. System shall be durable. (Durability)

(a) System shall have a minimum lifespan of 14 Earth days.
i. System shall have a maximum vertical deflection of 14.4 mm (24% of leg radius).
ii. System shall have maximum stress levels lower than the material yield stress of 503

MPa.
iii. System shall be able to withstand the forces and moment along the lateral direction

while skid steering or climbing along a maximum sideways gradient of 15°.

4. System shall be lightweight. (Weight)

(a) System shall have a mass less than 50 grams.
(b) System shall be manufactured using Aluminium 7075-T6.

5. System shall be capable of climbing over obstacles. (Climbing ability)

(a) System shall have a gripping point height higher than 55 mm.

6. System shall be feasible to manufacture. (Manufacturability)

(a) System shall have fewer than 5 parts.
(b) System shall be capable of being assembled in a week.

7. System shall be able to fit in the available design space. (Size)

(a) System shall have a maximum radius of 60 mm.
(b) System shall have a maximum width of 20 mm.

2.2. Concept creation
2.2.1. Concept creation methodology
Morphological analysis
Morphological analysis is used to create concept designs utilising sub-solutions for the functional re-
quirements. For each subfunction, multiple design strategies are presented, from which different em-
bodiments are derived. These embodiments are presented in a morphological chart, providing a clear
overview of all identified sub-solutions. A design concept is made by combining the embodiments
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of all subfunctions, thereby creating a solution to the design assignment. The process of combining
embodiments is executed multiple times to generate designs with different characteristics.

The morphological analysis method is selected because its division of the problem into subfunctions
creates a well-structured environment in which it becomes more manageable to find a comprehensive
solution. Solutions are easier to find for subfunctions than for an entire problem. Additionally, the
sub-solutions give a large amount of combinations, resulting in a high number of concepts.

The disadvantages of the morphological analysis are addressed by Van Egmond [12]. Van Egmond
highlights the method’s reliance on precise subfunction formulations, implying that ”if the subproblems
together do not span the entire main problem, then there will be gaps in created solutions”. Furthermore,
Van Egmond asserts that the ”method leans on recombination to find new solutions” and that ”the sub-
solution space is usually limited by the collective knowledge of the designer(s) and therefore the chance
of finding innovative solutions is limited.”

ACRREx
To address the assertions made by Van Egmonds and to develop more innovative sub-solutions, the
morphological analysis method is expanded with elements of the ACRREx method. The ACRREx
method, created by Breedveld et al. [13], is intended to guide designers in identifying voids within the
solutions obtained.
In the first phase of this method, labelled ”Abstracting, Categorising and finding voids”, fundamental
differences between the identified sub-solutions are assessed. By categorising these differences in a
table, a matrix can be generated in which the embodiments derived from the morphological analysis
are integrated, thereby revealing voids. These voids lead to new solutions to the subproblems. This
procedure is executed for the subfunction ”System shall increase contact surface”. One fundamental
difference can be expressed by the design strategies, which in this case is the flexing orientation, being
either in-plane or out-of-plane deformation. The other fundamental difference is the type of flexure used.
A matrix table, as detailed in Table 2.1, is constructed. By filling in the already found embodiments,
voids are identified, and new embodiments for this subfunction are created. The resulting matrix table
is presented in Table 2.2.

Table 2.1: ACRREx matrix with voids

In-plane deformation Out-of-plane
deformation

Half-circle flexures ?

Wire flexures ?
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Table 2.2: ACRREx matrix with new solutions

In-plane deformation Out-of-plane
deformation

Half-circle flexures

Wire flexures

The second phase of the method, entitled ”Reflecting, Reformulating and Extending”, is aimed at
extending the existing categorisation by examining alternatives to the fundamental differences. In this
case, this approach yields additional flexure types. Next to half-circle and wire flexures, there are also
straight, circle and band flexures, among others. The full ACRREx table is provided in Appendix A.3. Its
findings are incorporated into themorphological chart in Appendix A.2, which presents a comprehensive
overview of all sub-solutions and embodiments.

2.2.2. Concept designs
By creating combinations of the identified embodiments within the morphological chart, multiple con-
cepts are generated. The four concepts selected for further analysis are presented in Figure 2.1, with
their design specifications detailed in Appendix A.4.

Concept 1 Concept 2 Concept 3 Concept 4

Figure 2.1: Concept designs
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2.3. Concept selection
2.3.1. Concept selection methodology
In an ideal situation, the selection of a concept can be achieved by quantifying the performance of
each concept against each non-functional requirement. However, it is not feasible, for instance, to
ascertain the transmittable torque or longevity of a concept. Although some specifications of non-
functional requirements can be determined in future design stages, a decision must be made at the
current design stage with the information presently available. This is achieved by creating concept
selection criteria that are a derivation of the non-functional requirement specifications. For each non-
functional requirement subject, an estimation of specifications is presented to demonstrate the potential
capability of a concept.

Each concept is graded based on its estimated performance on a concept selection criterion. The
scores and their significance are detailed in Table 2.3. The scores corresponding to each criterion per
subject are added together, divided by the total possible score and multiplied by the weight factor of
that subject, as outlined in Table 2.4. The total score is calculated by summing the weighted scores
for each concept. The weight factor shows which criterion subjects have the most influence on the
concept’s performance in achieving the design assignment. Traction transmissibility is assigned the
highest weight factor, as the leg is incapable of moving the Lunar Zebro without traction transmission,
whereas manufacturability is assigned the lowest weight factor, as the time consumption of custom-
made production is a minor inconvenience due to the limited amount of legs required. The complete
reasoning behind the weight factors is provided in Appendix A.5.

It should be recognised that the subjects may be interconnected, such as in a scenario where the
flexures of a concept must be thickened to ensure torque transmission, directly resulting in reduced
deformability and increased weight. In this selection process, the most important criterion subject to
the spirit of a concept, as determined by the designer, is prioritised. In the mentioned example of
utilising thicker flexures, the traction transmissibility was deemed the most important criterion subject.
Consequently, this subject is prioritised, causing the concept to perform worse on the deformability and
weight criteria.

Table 2.3: Concept performance ratings

Performance rating Score Symbol
Good 5 ++
Decent 4 +
Mediocre 3 0
Bad 2 -
Terrible 1 - -

Table 2.4: Weight factor of criterion subject

Criterion subject Weight factor
Traction transmissibility 30
Deformability 20
Durability 20
Weight 15
Climbing ability 10
Manufacturability 5
Total 100
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2.3.2. Concept selection criteria
Based on the non-functional requirements and specifications provided in Section 2.1.3, the concept
selection criteria are determined. The subjects with their respective concept selection criteria are pre-
sented below. The subject of size is not taken into account, as it is expected that every concept fits in
the available design space.

• Traction transmissibility

– Capability to transmit moment from the motor axis to leg contact.
– Capability to transmit moment at leg contact to forward movement.

• Deformability

– Capability to deform in a range of 3-12 mm.
– Capability to do a smooth deformation motion and transition.

• Durability

– Capability to counter over-deflection.
– Capability to have low stress levels.
– Capability to withstand forces and moments along the lateral direction.

• Weight

– Capability to be low weight.

• Climbing ability

– Capability to have a high gripping point.

• Manufacturability

– Capability to manufacture with minimum parts.
– Capability to manufacture in a sufficient time frame.

2.3.3. Concept selection results
The four concepts are evaluated on the selection criteria. The performance of a concept on each
criterion is explained in Appendix A.6. The overall scores are provided in Table 2.5. It is evident that
Concept 1 performs the best. This is largely due to its high performance in traction transmissibility,
while also scoring well on less important criteria such as climbing ability and manufacturability. The
downside of Concept 1 is its deformability, due to the stiff design and non-smooth deformation motion.

Concept 2 scores second best, with its flaw being traction transmissibility, due to the long radial
flexure design. However, this design ensures good deformability performance. Concept 4 is rated
third best. Although the concept scores well in traction transmissibility and deformability, the number
of flexures needed increases the weight and makes it difficult to manufacture. Concept 3 performs
the worst, as the number of parallel flexures causes the concept to deform poorly if reasonable flexure
thicknesses are considered.

Table 2.5: Concept evaluation scores

Concept 1 Concept 2 Concept 3 Concept 4

Criteria Weight factor Score Weighted Score Weighted Score Weighted Score Weighted

Traction
transmissibility

30 9/10 27 6/10 18 9/10 27 8/10 24

Deformability 20 5/10 10 9/10 16 2/10 4 8/10 16

Durability 20 10/15 13.3 11/15 14.7 12/15 16 10/15 13.3

Weight 15 4/5 12 5/5 15 3/5 9 2/5 6

Climbing ability 10 5/5 10 3/5 6 5/5 10 5/5 10

Manufacturability 5 10/10 5 8/10 4 6/10 3 4/10 2

Total 100 77.3 75.7 69.0 71.3
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2.3.4. Concept discussion
Although Concept 1 has the best performance on the concept selection criteria, it does not imply that
this concept is the perfect design for the assignment. It is more valuable to analyse why a design
performs better in certain areas, to understand the influence of a design aspect. This design phase
can be called a second ”Reflecting, Reformulating and Extending” phase.

Reflecting the performance of the concepts on their most important criteria, it can be seen that
Concept 1 has a high traction transmissibility performance, due to the ground contact flexure being
connected to the frame at two points, and the small distance between the ground contact flexure and
the frame. Meanwhile, Concepts 2 and 4 have high deformability performance because the ground
contact flexure is connected to the frame by other flexures, which creates the possibility to deflect in
additional directions than just radially. The deformation performance of Concept 2 is especially high as
the design’s traction contributes to flexure deformation, which is beneficial as the available gravitational
force is low.

When the design task is reformulated, one could question how the leg design could combine the
traction transmissibility performance of Concept 1 with the deformability performance of Concept 2.
In which the answer is given in the combination of the strengths of the concepts. This leads to a
design in which the ground contact flexure is connected to the frame on the side that makes initial
ground contact, creating good traction transmissibility. The other end of the ground contact flexure
is connected to another flexure, which lets the ground contact flexure deflect in both the radial and
longitudinal directions. A reformulated concept of the combination of Concepts 1 and 2 is created and
presented as the radial flexure concept in Figure 2.2. If this reformulation is extended, different types of
flexures can be used to create the deformation of the ground contact flexure, for example, using a single
half-circle flexure, an X-flexure or a double-sided X-flexure, as respectively presented in Figure 2.2.

Radial flexure Half-circle flexure X-flexure
Double-sided
X-flexure

Figure 2.2: Reformulated and extended flexure concepts

The final concept is chosen between the reformulated and extended flexure concepts. Based on
the reformulated design task, the end of the ground contact flexure must be able to deflect both in the
radial and longitudinal directions. The radial flexure concept is expected to have the highest radial and
longitudinal deflection capability. Additionally, its movement is also predictable, and enough stiffness
can be created at the end of the contact surface to achieve a smooth transition to the next step. The
extended flexure designs with half-circle flexure and double-sided X-flexure are presumed to have the
capability to nearly, if not match, the radial flexure performance. However, potential concerns are raised
about these concepts. The half-circle flexure concept could be vulnerable to rotational instability around
its vertical axis, whereas the double-sided X-flexure concept could be vulnerable to rotational instability
around its longitudinal axis. These concerns could limit the performance range of these concepts.
Consequently, they were not selected for this study. Nevertheless, further research is recommended
on these concepts. The single X-flexure is expected to be too stiff to obtain the required rotatory motion
around its central axis to let the ground contact flexure deflect in the longitudinal direction and obtain
enough vertical deflection.
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2.3.5. Final concept
The final concept is presented in Figure 2.3. The frame of the leg is made out of a smaller C-shape
with an extension to form an uncoupled hook. This uncoupled hook gives the design a high gripping
point, while also creating a rigid segment to ensure traction transmission. It has a flexure that consists
of a curved segment and a straight segment, while being fixed to the frame at both ends. The straight
segment is placed radially on the curved segment, increasing stiffness when the leg is at the end of
its step and needs to let the next leg make contact with the ground. The flexure design deflects under
the influence of gravity and traction force. Due to the low mass of the Lunar Zebro and corresponding
low gravitational force, a design that deflects solely under gravity is expected to require such a small
flexure thickness that the design becomes infeasible to operate. The design has a single ground contact
flexure, guaranteeing a large ground contact surface to transmit traction. The design prevents over-
deflection of the ground contact flexure utilising a bump stop created by the base frame. The frame is
connected to the motor axis by a set screw.
Multiple design choices are aimed at helping the leg survive in the lunar environment. The system
minimises scooping up lunar regolith by increasing the design’s contact area to minimise sinkage, while
all edges aremade with fillets to prevent lunar regolith from accumulating on these edges. No protection
against soil contact wear is created, as the mission duration is just fourteen Earth days and a coating
layer is expected to make the flexure behaviour less predictable.
As a final remark, the final concept will undergo optimisation for tractive performance on lunar terrain.
Should this study identify areas where objective performance or constraint satisfaction can be improved
through design modifications, such recommendations will be presented in the design discussion of
Section 9.1.

(a) (b)

Figure 2.3: Final concept



3
Optimisation methodology

This chapter describes the methodology of the optimisation process. First, the research goal is trans-
lated to an optimisation objective, in which three design variables are identified. Subsequently, the
constraints in the optimisation process are presented, and the optimisation method is argued and ex-
plained.

3.1. Objective
The research goal is to design a compliant leg module to enhance the tractive performance of the Lunar
Zebro on lunar terrain. Based on the proposed design, an analytical optimisation model is created that
combines terramechanics and compliance theory. An optimisation process is performed to maximise
the tractive performance, expressed by the maximum drawbar pull. The deformation of the leg is not
constant, as it varies depending on the orientation of the leg relative to the ground contact point, which
consequently affects the drawbar pull. In this research, the drawbar pull is defined at its maximum,
obtained in the leg orientation presented in Figure 2.3, which means that the ground contact flexure
makes full contact with the available soil, and the vertical deformation of the leg is also approximately
at its maximum. As the optimisation is performed in the scaled negative null form, the maximum of
the objective is found by finding the minimum of the negative objective. The objective function f(x) is
given in the scaled negative null form as:

min
x

f(x) = −DP (x), (3.1)

in which DP is the drawbar pull and x are the design variables that are optimised, defined as the
curved flexure thickness tc, straight flexure thickness ts, and straight flexure length L. These variables
influence the compliant behaviour of the leg and, consequently, the leg-soil interaction.

x1 = tc, (3.2a)
x2 = ts, (3.2b)
x3 = L. (3.2c)

As the middle and outer legs are subject to different gravitational forces, the respective legs have
different combinations of design variables that yield optimal tractive performance. Consequently, the
optimisation process and result analysis are performed separately for both.

13
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Figure 3.1: Design variable definition

3.2. Constraints
The optimum of the objective is bounded by six non-linear inequality constraints, which are identified
based on the non-functional requirements, described in Section 2.1.3.

The Lunar Zebro shall be able to walk without failing, meaning that the maximum stress obtained
in the flexure cannot exceed the yield strength σy:

c1(x) = σmax,walk(x)− σy ≤ 0. (3.3)

The Lunar Zebro shall be able to skid steer at a single location. During skid steering, a lateral force
is exerted on the leg, which increases the stress in the ground contact flexure. The maximum stress in
the flexure while skid steering cannot exceed the yield strength σy:

c2(x) = σmax,skid(x)− σy ≤ 0. (3.4)

The Lunar Zebro shall be able to climb along a maximum sideways gradient of 15°. While climbing
along the sideways gradient, the force equilibrium over the legs changes, increasing the stress in the
ground contact flexure on one side. The maximum stress in the flexure while climbing along a sideways
gradient cannot exceed the yield strength σy:

c3(x) = σmax,side(x)− σy ≤ 0. (3.5)

The Lunar Zebro shall transmit the motor torque to a ground contact force. The longitudinal dis-
placement of the force loading point δx cannot exceed the longitudinal displacement threshold δx,max

of 5 mm:
c4(x) = δx(x)− δx,max ≤ 0. (3.6)

The Lunar Zebro shall have a minimum radius at the end of the contact surface to ensure that the
next leg can continue the walking motion. With the used gait by the Lunar Zebro, the first 10% of
the second leg makes ground contact at the same time as the last 10% of the first leg. The effective
remaining radius Reff at the last 10% of the contact surface shall exceed the radius threshold Reff,min

of 58.5 mm:
c5(x) = Reff,min −Reff (x) ≤ 0. (3.7)

The Lunar Zebro shall be able to climb over obstacles. The climbing height yc shall exceed the
climbing threshold yc,min of 55 mm:

c6(x) = yc,min − yc(x) ≤ 0. (3.8)

The design variables are also constrained. The flexure thicknesses are bounded at a minimum
of 0.10 mm due to the feasibility of the design and sustained soil contact wear, and at a maximum
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of 0.40 mm. Flexure length L was initially bounded to 25 mm, due to the feasibility of the design.
However, this was later increased to 40 mm, as the original bound limited the optimal objective value,
and potential design adjustments could accommodate the longer length. At the combined upper bound
of the flexure thicknesses and lower bound of the flexure length, the leg can be considered rigid.

0.10 ≤ tc ≤ 0.40 mm, (3.9a)
0.10 ≤ ts ≤ 0.40 mm, (3.9b)
10 ≤ L ≤ 40 mm. (3.9c)

Due to the lightweight design of the Lunar Zebro, only a limited amount of gravitational force is avail-
able to deform the leg. The design compensates for this by utilising its traction force to get additional
deformation. However, the defined bounds are necessary to ensure deflection. Nevertheless, the
curved flexure thickness can potentially pose a risk for soil contact wear, given the abrasive nature of
lunar regolith and the presence of sharp rocks. Based on the reasoning in Section 1.3, the analysis is
performed using the defined bounds.

3.3. Problem statement
The full optimisation problem in the scaled negative null form is presented below. On the stress con-
straints, a safety factor SF is introduced, with a value of 1.5, representing the ultimate factor of safety
(FOSULT ) used in aircraft and spacecraft [14]. The safety factor is applied to the stress constraints
given the importance of the survivability of the leg in space and the possibility of unaccounted stress
spikes due to made assumptions, external factors or unaccounted loads. An example of a made as-
sumption is the neglect of the warping effect, despite its potential to increase stress. An example of
an unaccounted load is the Lunar Zebro doing small skid steering manoeuvres while climbing along
a sideways gradient. It will not perform full skid steering rotations as expressed by the skid steering
constraint, but small lateral forces will be encountered in the manoeuvres. The extra stress this causes
is incorporated in the safety factor.

The constraints for torque transmission and end of contact surface radius have no safety factor, due
to already strict estimated constraint values (δx,max and Reff,min). Due to the designed curled climbing
hook making initial ground contact when setting a step, the minimum effective radius required at the end
of the contact surface is 55.4 mm. However, to create a smooth walking motion, the constraint threshold
Reff,min is set at 58.5 mm. The climbing height constraint has no safety factor, as it is expected that
the concept design ensures good climbing performance.

min
ts,tc,L

f(tc, ts, L) = −DP (tc, ts, L)

s.t. SF · σmax,walk(tc,ts,L)
σy

− 1 ≤ 0,

SF · σmax,skid(tc,ts,L)
σy

− 1 ≤ 0,

SF · σmax,side(tc,ts,L)
σy

− 1 ≤ 0,
δx(tc,ts,L)
δx,max

− 1 ≤ 0,

1− Reff (tc,ts,L)
Reff,min

≤ 0,

1− yc(tc,ts,L)
yc,min

≤ 0,

0.10 ≤ tc ≤ 0.40 mm,

0.10 ≤ ts ≤ 0.40 mm,

10 ≤ L ≤ 40 mm.

(3.10)

3.4. Optimisation method
The optimisationmethod applied in this research is Sequential Quadratic Programming (SQP), due to its
accuracy and robustness with non-linear problems. This choice is substantiated byGill et al. [15] stating
that ”SQP methods have proved highly effective for solving constrained optimisation problems with
smooth non-linear functions in the objective and constraints”, and by Gould and Toint [16] suggesting
that ”it is now reasonable to accept the widely-held view that SQP methods really are best”.

SQP is a Newton-based iterative method that can incorporate both equality and inequality con-
straints. As detailed in Equation 3.10, only inequality constraints are used in this study, resulting in the
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problem being of the form:
min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

lx ≤ x ≤ ux.

(3.11)

SQP finds a solution to this problem by solving a sequence of Quadratic Programming (QP) subprob-
lems based on a quadratic approximation of the Lagrangian:

L(x, λ) = f(x) +

m∑
i=1

λigi(x). (3.12)

The initial problem is simplified by assuming that the bound constraints are expressed as inequality
constraints. The QP subproblems then become of the form:

min
x

1

2
dTHkd+∇f(xk)

T d

s.t. gi(xk) +∇gi(xk)
T d ≤ 0, i = 1, . . . ,m.

(3.13)

The result of SQP using fmincon is found using the following solving algorithm [17]:

1. Input the initial point x0, with fmincon then initialising Lagrange multiplier λ0 and Hessian H0

estimates.
2. The QP subproblem of Eq. 3.13 is formulated at iteration k and the matrices are set up.
3. The QP subproblem of Eq. 3.13 is solved for search direction dk and estimated Lagrange multi-

pliers λk+1.
4. A line search procedure is performed to find the step length parameter αk, so that a sufficient

decrease in the merit function is obtained. The merit function used is a simplified version of the
one used by Han [18] and Powell [19], without the influence of equality constraints:

Ψ(x) = f(x) +

m∑
i=1

ri max |0, gi(x)|. (3.14)

This function penalises a constraint violation, with ri being the penalty parameter.
5. If the step is accepted, the new iterate is found to be:

xk+1 = xk + αkdk, (3.15)

while the Hessian HK and Lagrange multiplier λk are updated.
6. This process repeats itself from step 2 until the convergence criteria are reached and a feasible

point fulfilling all constraints is found. The default convergence tolerances are applied, with a
function and constraint tolerance of 10−6, and step size tolerance of 10−10.

Since fmincon is a local optimisation solver dependent on the initial point of the analysis, it does
not necessarily find the global optimum. To increase the likelihood of identifying the global minimum,
an additional optimisation procedure is performed, in which fmincon is combined with a global search
method that conducts a scatter search across promising regions of the design space.



4
Terramechanics theory

This chapter describes the terramechanics theory used in the optimisation model. First, the terrame-
chanics model with its assumptions is argued. Subsequently, the used theorem is explained.

4.1. Terramechanics model assumptions
Terramechanics is the theoretical framework that describes the interactions between wheels and soil.
Its foundations were introduced by Bekker [9], enabling the computation of wheel tractive performance
on granular soil through semi-empirical equations. Wong and Reece [20] expanded upon this theorem
by integrating the effects of slippage and the semi-elliptical distribution of stresses beneath the wheel.
Bekker’s model is used to calculate the tractive performance of the current rigid Lunar Zebro leg module
by Van Rijn [7].

This study focuses on the development of a deformable leg, indicating that an altered theoretical
framework is required to model the interaction of the designed deforming leg with lunar regolith. Given
that the designed leg has a limited contact patch and variable stiffness dependent on leg orientation,
the maximum tractive performance is obtained when the leg is in an upright position with the load
application near the centre of the flexure. In this orientation, the leg establishes full contact with the
soil, which makes the theoretical framework for deformable wheels applicable in this context. The
tractive performance is expected to be less in other leg orientations.
The theoretical framework for deformable wheels on granular terrain is described by Wong [21]. It
assumes that if the average ground pressure Pw is lower than the critical pressure Pcr, part of the
wheel flattens against the terrain, as depicted in Figure 4.1. In the static state, the normal stress on this
flattened surface equals the average ground pressure Pw. The theorem divides the wheel-soil contact
into three sections: soil entry section AB, flattened section BC and soil elastic exit section CD. It is
assumed that sections AB and CD keep the original radius, thereby replicating the behaviour of a rigid
wheel.

17
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Figure 4.1: Deformable leg on granular soil when Pw ≤ Pcr [11]

Based on Wong’s description, Ishigami [11] developed a terramechanics model that assesses the
tractive performance of both flexible and rigid wheels traversing on deformable soil. Within this model,
static sinkage and wheel deflection are computed based on the equilibrium between the wheel load
and the pressure distribution on the soil in the static state. Subsequently, the vertical and longitudinal
force equilibria are obtained for a driving wheel in quasi-static state, assuming the size of the flattened
section BC in quasi-static state remains the same as in the static state. Using the equilibrium equations,
the tractive performance of the wheel is calculated.

Ishigami introduced two additional assumptions in his model. Firstly, the normal stress beneath the
flattened section is uniformly distributed. Secondly, the normal stress beneath the entire contact patch
(including non-deformed sections) in the lateral direction is uniformly distributed. Ishigami verified the
reliability of the first assumption through experimental evidence provided by Narita et al. [22], who
demonstrated uniform normal stress on the flattened section of a lunar rover wheel composed of metal
leaf flexures and operating on lunar regolith. Should the ground become more rigid or the mechanical
behaviour of the deformable leg become non-linear, the theorem is expected to lose accuracy.

This study employs a modified version of Ishigami’s model to calculate the tractive performance
of the designed deformable leg. Modifications include the coupling with the compliance theory of the
leg module defined in Chapter 5, an altered sinkage definition and static leg-soil interaction, adopting a
similar approach to Zhu [23], and adjustments to the deformation resistance, incorporating the equation
proposed by Bekker and Semonin [24]. The entire model is explained in successive sections.

As stated, the objective of the calculation is to find the maximum tractive performance, expressed
by the maximum drawbar pull:

DP = H −Rt, (4.1)

where H is the thrust and Rt is the total external resistance. To let the Lunar Zebro move, the thrust
must exceed the total external resistance, requiring a positive drawbar pull. A large drawbar pull on
a horizontal surface is desirable, as it indicates sufficient thrust to accommodate additional resistance,
such as overcoming a slope or an obstacle on the lunar surface.
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4.2. Static leg-soil interaction
4.2.1. Static equilibrium equation

(a) System definition (b) FBD

Figure 4.2: Static equilibrium

In the static state, there is a vertical force equilibrium, which balances the gravitational force on a
single leg W with a summation of the ground reaction forces Fy0 of the flattened section BC (Fy) and
the non-deformed sections AB and CD (2Fs):

Fy0 = Fy + 2Fs. (4.2)

The length of the flattened section lt is defined as:

lt = 2
√
δt(2R− δt), (4.3)

where δt is the vertical deflection and R is the leg radius. The average ground pressure Pw at the
flattened section can be obtained using:

Pw =
Fy

wlt
, (4.4)

where w is the leg width. The static sinkage of the leg is expressed as:

z0 =


(

Pw
kc
lt

+kϕ

) 1
n

if lt < w,(
Pw

kc
w +kϕ

) 1
n if lt ≥ w,

(4.5)

where kc is the cohesive soil deformation modulus, kϕ is the frictional soil deformation modulus, and n
is the exponent of soil deformation.

The normal stress along the non-deformed sections AB and CD can be expressed using the equa-
tion:

σ(θ) =

(
kc
w

+ kϕ

)
Rn(cos θ − cos θf0)

n if θt ≤ θ ≤ θf0, (4.6)

where the initial soil entry angle θf0 and soil flattening angle θt can be calculated using the relations:

θf0 = arccos

(
1− z0 + δt

R

)
, (4.7)

θt = arcsin

(
lt
2R

)
. (4.8)
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By integrating the vertical component of the normal stress over the arced contact area, the ground
reaction force of the non-deformed sections can be obtained:

Fs = Rw

∫ θf0

θt

σ(θ) cos θ dθ. (4.9)

4.2.2. Static model solving procedure
The vertical deflection δt of the leg is calculated in an iteration process. The initial value for δt is the
vertical deflection obtained when no vertical force is yet acting on the leg. As leg deflection depends on
both the vertical and longitudinal forces acting on the flexure, the initial value of δt in the static state is
the calculated vertical deflection caused by only a longitudinal force acting on the leg. This longitudinal
force should estimate the drawbar pull. This might sound counterintuitive, but if the longitudinal force is
not taken into account in the static state, the assumption of the flattened section size staying the same
in the quasi-static state would be incorrect. The calculation procedure is detailed in Section 5.2.3.
Starting the iteration process, the vertical deflection value δt is substituted in the force-displacement
relationship of the leg design, described in Chapter 5, to calculate Fy, and in Eq. 4.3 to calculate lt.
These values can subsequently be substituted in Eq. 4.4 and Eq. 4.5 to obtain the average ground
pressure Pw and the static sinkage z0. Further obtaining the soil angles θf0 and θt, the vertical ground
reaction forceFs of the non-deformed sections can be identified. Using Eq. 4.2, the total ground reaction
force Fy0 can be calculated. If Fy0 equals the vertical load W , the correct value of δt is determined. If
not, alternative values of δt are explored until the correct value is obtained. This process is accelerated
by making δt dependent on the size of the error between Fy0 and W . A flow chart of the static model
solving procedure is presented in Figure B.1.

4.3. Quasi-static leg-soil interaction
4.3.1. Soil angles

(a) System definition (b) FBD

Figure 4.3: Quasi-static equilibrium

When the Lunar Zebro walks, the leg can be described as being in quasi-static interaction with the soil.
In the quasi-static interaction, the soil entry angle θf and soil exit angle θr change due to the movement
of regolith. The entry angle θf increases due to regolith gathering in front of the leg. The soil entry angle
θf and soil exit angle θr can be defined with the relations:

θf = arccos

(
1− z + δt

R

)
, (4.10)

θr = arccos

(
1− λ(z + δt)

R

)
, (4.11)
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where z is the leg sinkage and λ is the terrain reboundness due to soil elasticity. As the length of
the flattened section in the quasi-static state is assumed to stay the same as in the static state, the
soil flattening angle θt also stays the same and can be determined using Eq. 4.8. The angle of the
maximum normal stress θm can be determined using [20]:

θm = (c1 + c2s)θf , (4.12)

where c1 and c2 are wheel-soil interaction coefficients, typically assumed to be c1 ≈ 0.4 and 0 ≤ c2 ≤ 0.3
[11]. In this study, c2 is assumed to be equal to 0.15. The slip ratio s while walking (|vx| ≤ |vt|) can be
determined using:

s = 1− vx
vt

,

= 1− vx
Rω

,
(4.13)

where vx, vt and ω are respectively the forward, theoretical and angular velocity of the leg.

4.3.2. Normal stress distribution
The normal stress distribution in the quasi-static state differs between contact sections. The normal
stress distribution can be obtained using:

σ(θ) =


σf = (kc/w + kϕ)R

n(cos θ − cos θf )
n,

σt =

{
(kc/lt + kϕ)z

n if lt < w,

(kc/w + kϕ)z
n if lt ≥ w,

σr = (kc/w + kϕ)R
n(cos(θf − θ−θr

θm−θr
(θf − θm))− cos θf )

n.

(4.14)

The applicable normal stress equation for the different contact sections is obtained using Table 4.1 and
is dependent on the angle of the maximum normal stress θm.

Table 4.1: Applicable normal stress at each contact section [11]

σ(θ) If θm > θt If θm ≤ θt

σf θm ≤ θ ≤ θf θt ≤ θ ≤ θf

σt −θt ≤ θ < θt −θt ≤ θ < θt

σr

θt ≤ θ < θm
θr ≤ θ < −θt

θr ≤ θ < −θt

4.3.3. Shear stress distribution
In the quasi-static state, the influence of the shear stress is taken into account. The shear stress τ(θ)
can be determined using the equation of Janosi and Hanamoto [25]:

τ(θ) = (c+ σ(θ) tanϕ)
(
1− e−

j(θ)
κ

)
, (4.15)

where c is the soil cohesion, ϕ is the internal friction angle, κ is the shear deformation modulus, and
j is the longitudinal shear displacement. The longitudinal shear displacement j for the non-deformed
contact sections in the case of positive slip ratios (s ≥ 0) is:

j(θ) = R(θf − θ − (1− s)(sin θf − sin θ)) if |θ| ≥ |θt|. (4.16)
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Figure 4.4: Longitudinal shear displacement beneath the deforming leg

In the case of the flattened section BC, the slip velocity is considered constant, which means that
this section has a similar behaviour under a rigid track. Because of this, the shear displacement j along
BC increases proportionally to both the slip ratio s and the distance x from point B [21]:

∆j = sx. (4.17)

The longitudinal shear displacement j for the flattened section in the case of a positive slip ratio (s ≥ 0)
can then be calculated using:

j(θ) = j(θt) + ∆j,

= j(θt) + sx,

= j(θt) + s(R sin θt − (R− δt) tan θ) if |θ| < |θt|.
(4.18)

4.3.4. Leg forces
The total vertical soil reaction force is defined as the summation of the vertical soil reaction forces of
the different contact patches. This is done by integrating over the vertical effects of the normal stress
and shear stress distributions of the entry and exit regions. However, if the flattening angle is larger
than the exit angle, the influence of the exit region is ignored. The vertical reaction force of the flattened
section is only dependent on the normal stress distributions, as the shear stress is perpendicular to the
vertical direction. The vertical reaction force at this section is constant and calculated by multiplying
the normal stress by the contact patch area. The total vertical ground reaction force is:

F = FAB + FBC + FCD,

= Rw

∫ θf

θt

(σ(θ) cos θ + τ(θ) sin θ) dθ + ltwσt +Rw

∫ −θt

θr

(σ(θ) cos θ + τ(θ) sin θ) dθ.
(4.19)

The thrust H of the leg is calculated by a summation of the positive longitudinal soil reaction forces
of the different contact patches. The entire shear stress below the flattened section contributes to the
drawbar pull, showing the positive impact a compliant leg has on tractive performance compared to a
rigid leg, for which the shear stress is tangential to the circular shape of the contact surface. It is also
evident that the normal stress at the exit section contributes to the thrust. However, it is negatively
defined in the equation because the exit-section angles are also negatively defined. This results in the
following equation:

H = HAB +HBC +HCD,

= Rw

∫ θf

θt

τ(θ) cos θ dθ + (R− δt)w

∫ θt

−θt

τ(θ)

cos2 θ
dθ +Rw

∫ −θt

θr

(τ(θ) cos θ − σ(θ) sin θ) dθ.
(4.20)
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The external resistance force Rt acting on the leg is calculated by a summation of the longitudinal
resistance force acting on the entry contact patch due to soil compaction and the leg deformation
resistance Rd. The bulldozing resistance is neglected, as the expected leg sinkage is less than a third
of the wheel radius, which is the threshold at which it begins to significantly increase according to
Petritsenko and Sell [26]. The resistance force Rt is given by the equation:

Rt = RAB +Rd,

= Rw

∫ θf

θt

σ(θ) sin θ dθ +Rd.
(4.21)

Due to the externally induced elastic deformation in the leg, energy is dissipated in internal losses,
causing additional resistance. This resistance depends on the design, construction, material and op-
erating conditions of a wheel or C-shaped leg and is often obtained experimentally. Using a proposed
equation by Bekker and Semonin, an estimation of the deformation resistance can be made [24]:

Rd =
3.581w(2R)2Pwϵ(0.0349θt − sin 2θt)

θt(2R− 2δt)
, (4.22a)

ϵ = 1− exp

(
−keδt
h

)
, (4.22b)

where h is the deformable section height and ke is a parameter related to the wheel/leg construction.
As denoted by Bekker, the value of ke is assumed to be 7, and the soil flattening angle θt in Eq. 4.22a
is expressed in degrees [24].

4.3.5. Quasi-static equilibrium equations
The vertical equilibrium of the deformable leg can be described by equating the gravitational force W
acting on the leg and the vertical ground reaction force F :

W = F,

= Rw

∫ θf

θt

(σ(θ) cos θ + τ(θ) sin θ) dθ + ltwσt +Rw

∫ −θt

θr

(σ(θ) cos θ + τ(θ) sin θ) dθ.
(4.23)

With the longitudinal equilibrium, the performance metric of the leg can be calculated, the drawbar pull.
As mentioned in Eq. 4.1, it can be obtained by subtracting the total external resistance Rt from the
thrust H:

DP = H −Rt,

= Rw

∫ θf

θt

(τ(θ) cos θ − σ(θ) sin θ) dθ + (R− δt)w

∫ θt

−θt

τ(θ)

cos2 θ
dθ

+Rw

∫ −θt

θr

(τ(θ) cos θ − σ(θ) sin θ) dθ −Rd.

(4.24)

4.3.6. Tractive efficiency
The resistance torque T of the deformable leg is obtained by the summation of the shear stress acting
around the leg:

T = TAB + TBC + TCD,

= R2w

∫ θf

θt

τ(θ) dθ + (R− δt)
2w

∫ θt

−θt

τ(θ) + σt tan θ

cos2 θ
dθ +R2w

∫ −θt

θr

τ(θ) dθ.
(4.25)

The resistance torque opposes the rotary motion, equalling the input torque of the motor axis in the
static state. The input torque must be greater than the resistance torque to obtain rotary motion. Using
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the torque, the tractive efficiency η can be identified, which is used to describe the capability to transform
the input torque to output power, being the net traction force or drawbar pull:

η =
DP (1− s)R

T
. (4.26)

4.3.7. Quasi-static model solving procedure
The drawbar pull and tractive efficiency can be calculated in a numerical simulation. First, the gravita-
tional force W acting on the leg and the slip ratio s must be entered. Second, the leg deflection δt and
soil flattening angle θt must be obtained using the process described in Section 4.2.2. The leg sinkage
z in quasi-static state can be calculated using an iteration process focused on the vertical equilibrium
of the total ground reaction force F and the gravitational force W acting on the leg. In this process,
the vertical deflection δt is the initial input of the leg sinkage. Given the sinkage iteration value, the
soil entry angle θf , soil exit angle θr and angle of maximum normal stress θm can be determined using
Eq. 4.10, Eq. 4.11 and Eq. 4.12, respectively. Using these angles, the normal stress and shear stress
can be calculated with Eq. 4.14 and Eq. 4.15. The total ground reaction force F can now be derived
from Eq. 4.19. If the ground reaction force F is unequal to the gravitational force W acting on the leg,
the next step in the iteration process is taken with an increased value of the leg sinkage, until the point
where the ground reaction force F equals the gravitational force W acting on the leg. When this point
is obtained, the values of the leg sinkage, soil angles, shear stress and normal stress can be used in
further calculations.

Using respectively Eq. 4.20 and Eq. 4.21, the thrust H and total external resistance Rt can be
calculated. Whereas the drawbar pullDP can be obtained with Eq. 4.24. Finally, the resistance torque
T can be derived with Eq. 4.25 and the tractive efficiency η with Eq. 4.26. A flow chart of the quasi-static
model solving procedure is presented in Figure B.2.



5
Compliance theory

This chapter describes the compliance theory used in the optimisation model. First, the compliance
model with its assumptions is argued. Subsequently, the used theorem is explained.

5.1. Compliance model assumptions
5.1.1. Load application assumption
To calculate the tractive performance of the innovative leg module in the optimisation process, an ana-
lytical calculation of the force-deflection relationship of the leg module is essential. Within the terrame-
chanics model, this force-deflection relationship is utilised to calculate the force required for a certain
iterated vertical deflection value. It is expected that the true behaviour of the leg can be most accu-
rately characterised by a non-linear contact load on granular soil. However, modelling the deformation
of the leg upon non-linear contact on granular soil is difficult. As the load on the leg increases, the
contact patch of the flexure with the soil increases, resulting in variations in both contact pressure and
deflection shape. Deformation modelling is further complicated by the dynamics of the Lunar Zebro leg
traversing over lunar regolith, as the granular soil particles constantly rearrange, thereby altering the
normal and shear stress distributions at various deformation locations. A possible assumption could
be the analytical description of non-linear deflection due to a contact pressure load at the flattened
section of the leg. However, this method is expected to be challenging to model and computationally
demanding. Instead, the load application is modelled as a single point, which can be combined by
linear and non-linear descriptions of the flexure behaviour.

The assumption of the forces being applied at a single point serves as a simplification of reality and is
most reasonable for small displacements. However, if high loads are applied and the deflection is large,
the accuracy of the results might be compromised. The assumption is believed to be justified by the
comparative nature of the design variables in finding a combination that yields optimal drawbar pull. The
assumption also ensures compatibility with the compliance theorem. The force-deflection relationship
of the flexure with a singular load application point is characterised as statically indeterminate.

The definition of the load application is visualised in Figure 5.1a. Force Fx represents the longitu-
dinal force applied to the leg, which is equal to the drawbar pull accommodated by the available force
arising from the interaction of the leg and the lunar soil. Force Fy represents the vertical ground re-
action force that leads to flexure deflection, as previously mentioned in Section 4.2.1. This force is
accommodated by the gravitational force of the Lunar Zebro mass acting on a single leg. Due to the
tripod walking motion, the gravitational force W acting on the leg is defined as:

W =
mg

N
, (5.1)

where m is the Lunar Zebro mass, g is the gravitational acceleration, and N is the leg load factor:

N =

{
2 if middle leg,
4 if outer leg.

(5.2)

25
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The leg flexure is divided into two distinct cantilever flexures in Figure 5.1b: a straight flexure and a
curved flexure. These distinct flexures are used in the calculation procedure. The intermediate forces
acting on the ends of these flexures are the radial force FB,r, the tangential force FB,θ and the moment
about the z-axis MB,z. The goal of this calculation procedure is to obtain the deflection and angular
displacement at point C, in the direction of the radial force FC,r, tangential force FC,θ, and moment
MC,z.

(a) External forces (b) Reaction forces connection point B

Figure 5.1: FBD leg design

5.1.2. Compliance theorem choice
The singular load application point can be combined with both a linear and a non-linear description of
the flexure behaviour. Although non-linear methods offer a better description of large displacements,
they are inherently more complex. The non-linear Pseudo-Rigid Body Modelling (PRBM) method can
be applied to a leg flexure. Galloway [27] presents such an application in which a compliant C-shape
leg is modelled as an initially curved cantilever beam. However, the flexure of the concept design in this
study is characterised by a double connection to the frame and a combination of applied forces at the
ground contact point, making the flexure statically indeterminate and preventing it from being modelled
as one of the use-cases described in [28]. Instead, the 3R-model for a combined force and moment end
load, wherein a flexure is divided into three distinct flexures with relative motion, is considered a more
appropriate option. The 3R-model was originally developed by Su [29] and subsequently refined by
Chen et al. [30] to enhance the accuracy of deflection modelling for a straight flexure, with the trade-off
of increased complexity [28]. Venkiteswaran’s research [31] further advanced this 3R-model to de-
scribe initially curved cantilever beams with a uniform cross-section. To determine the force-deflection
relationship using Venkiteswaran’s 3R-model, a non-linear optimisation routine is employed to minimise
the residual energy, defined as the difference between the energy input and the strain energy within
the system.

The implementation of a non-linear optimisation routine to obtain the system’s force-deflection rela-
tionship requires conducting an optimisation within the existing optimisation process aimed at identifying
the optimal drawbar pull, consequently demanding significant computing power. Considering this and
the complexity of the 3R-model, a decision was made to use the linear Castigliano’s theorem instead of
the 3R-model. Castigliano’s theorem offers computational efficiency for simpler geometries compared
to numerical methods, as it is anticipated that the strain energy can easily be expressed in terms of
external forces. Furthermore, the extent to which a non-linear method might more accurately describe
the compliant leg’s true behaviour is highly uncertain, as its primary benefit may lie in enhancing the
accuracy of the deflection size based on the assumptions made. When assuming a singular load ap-
plication point, the ability of either a linear or non-linear method to accurately estimate the non-linear
contact load on granular soil remains unknown.

Using Castigliano’s theorem implies an assumption of linear deformations, which limits the accu-
racy of the assumption-based force-deflection relationship as deformations increase. The choice to
utilise a linear method is deemed reasonable given the goal to compare the tractive performance of
different design variables, the described complexity of using non-linear analytical methods, and the
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acknowledged uncertainty of estimating the true compliant behaviour. A linear approximation provides
valuable insight into the influence of different design variables. To verify that the compliance model
behaves as expected, a Finite Element Analysis (FEA) is performed in Appendix E.

5.2. Castigliano's theorem
Castigliano’s theorem is an energy-based deflection analysis method to calculate linear elastic compli-
ance. It is used to determine the force-deflection relationship of a linear-elastic beam, using the partial
derivatives of a point in the beam with respect to the external forces on that point [32]. The deflection
of a loading point δi can be obtained by the derivative of the total strain energy U with respect to an
arbitrary force Fi:

δi =
∂U

∂Fi
. (5.3)

The angular displacement of a loading point ϕi can be obtained by the derivative of the total strain
energy U with respect to an arbitrary moment Mi:

ϕi =
∂U

∂Mi
. (5.4)

5.2.1. Straight flexure deflection
Force and moment equilibrium
Considering the goal of this calculation procedure to obtain the deflection and angular displacement at
point C, in the direction of the radial force FC,r, tangential force FC,θ, and momentMC,z, the Free Body
Diagram (FBD) of a straight flexure part is presented in Figure 6.1, where r is the radial coordinate.

Figure 5.2: FBD straight flexure part

The force equilibria at the cross-section in the straight flexure are given as:

Fr(r) = FC,r, (5.5a)
Fθ(r) = FC,θ. (5.5b)

The moment equilibrium at the cross-section in the straight flexure is given as:

Mz(r) = FC,θr +MC,z. (5.6)
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Strain energy
The strain energy for axial, bending, and shear loading is obtained by the respective equations:

Uaxial =

∫
N2 dr

2EA
, (5.7a)

Ubending =

∫
M2 dr

2EI
, (5.7b)

Ushear =

∫
µV 2 dr

2GA
, (5.7c)

where N is an axial force, M is a bending moment, V is a shear force, E is the Young’s modulus, G
is the shear modulus, and µ is the shear constant. The shear load influence can be neglected at the
following length-thickness threshold,

L

ts
> 10. (5.8)

As the length-thickness ratio is expected to be much higher than ten, the influence of the shear load
Fθ(r) is neglected. Subsequently, the total strain energy in the straight flexure is:

Us =

∫ L

0

Fr(r)
2 dr

2EAs
+

∫ L

0

Mz(r)
2 dr

2EIs,z
, (5.9)

where As is the cross-sectional area and Is,z the moment of inertia about the z-axis of the straight
flexure, which are respectively expressed by the following equations:

As = wts, (5.10a)

Is,z =
wt3s
12

. (5.10b)

Deflection
Given Eq. 5.3, the deflection δi of the straight flexure in the direction of the force Fi for the axial, bending
and shear load can be obtained using the respective equations:

δaxial,i =
1

EA

∫
N

∂N

∂Fi
dr, (5.11a)

δbending,i =
1

EI

∫
M

∂M

∂Fi
dr, (5.11b)

δshear,i =
1

GA

∫
µV

∂V

∂Fi
dr. (5.11c)

The deflection δC,r of the straight flexure in the r-direction at point C, resulting from the axial load Fr(r)
is obtained by the equation:

δC,r =
1

EAs

∫ L

0

Fr(r)
∂Fr(r)

∂FC,r
dr,

=
FC,rL

EAs
.

(5.12)

The deflection δC,θ of the straight flexure in the θ-direction at point C, resulting from the bending moment
Mz(r), is obtained by the equation:

δC,θ =
1

EIs,z

∫ L

0

Mz(r)
∂Mz(r)

∂FC,θ
dr,

=
MC,zL

2

2EIs,z
+

FC,θL
3

3EIs,z
.

(5.13)
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Angular displacement
Given Eq. 5.4, the angular displacement ϕi of the straight flexure in the direction of the momentMi for
the bending load is obtained using the equation:

ϕbending,i =
1

EI

∫
M

∂M

∂Mi
dr. (5.14)

The angular displacement ϕC,z of the straight flexure about the z-axis at point C, resulting from the
bending moment Mz(r), is obtained by the equation:

ϕC,z =
1

EIs,z

∫ L

0

Mz(r)
∂Mz(r)

∂MC,z
dr,

=
MC,zL

EIs,z
+

FC,zL
2

2EIs,z
.

(5.15)

5.2.2. Curved flexure deflection
In Figures 5.3 and 5.4, the FBDs of the straight and curved flexure are respectively presented, where
θ is the leg angle, α is the load application angle, and β is the leg flexure angle. The load application
angle α is dependent on the leg orientation. Note that in compliance theory, the leg angle θ is defined
from the straight flexure onward (see Figure 5.4), whereas in terramechanics theory, the leg angle θ is
defined from the centre of the flattened section.

Figure 5.3: FBD full straight flexure Figure 5.4: FBD Curved flexure

Force and moment equilibrium
As the goal is to obtain the total displacement at point C, the reaction forces and moment at point B
can be expressed by those at point C, using the straight flexure equilibrium equations. Note that the
direction of the forces and moments at point C is equal to that of point B on the curved flexure. The
force equilibria in the full straight flexure are given as:

FB,r = FC,r, (5.16a)
FB,θ = FC,θ. (5.16b)

The moment equilibrium in the full straight flexure is given as:

MB,z = FC,θL+MC,z. (5.17)

The internal moments in the curved flexure before the external forces are applied Mz,1(θ), and after
the external forces are applied Mz,2(θ), are obtained by the equation:

Mz,1(θ) = FB,θR(1− cos(θ)) + FB,rR sin(θ)−MB,z if 0 ≤ θ < α, (5.18a)
Mz,2(θ) = Mz,1(θ)− FxR(1− cos(θ − α))− FyR sin(θ − α) if α ≤ θ ≤ β. (5.18b)
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Strain energy
The strain energy of a curved beam can be expressed by the equation [32]:

Uc =

∫
M2Rdθ

2AeE
+

∫
F 2
θRdθ

2AE
+

∫
CF 2

RRdθ

2AG
−
∫

MFθ dθ

AE
, (5.19)

where M is the total bending moment, Fθ is the tangential force, FR is the radial force, e is the eccen-
tricity, and C is a correction factor. Angle dθ is defined as:

dθ =
dl

R
, (5.20)

where l is the arc length. When the radius R of the curved beam is more than ten times greater than
the thickness tc of the curved flexure,

R

tc
> 10, (5.21)

the strain energy in a curved beam of Eq. 5.19 can be approximated by:

Uc ≃
∫

M2Rdθ

2EI
. (5.22)

This results in the strain energy of the curved flexure:

Uc ≃
∫ α

0

M2
z,1(θ)Rdθ

2EIc,z
+

∫ β

α

M2
z,2(θ)Rdθ

2EIc,z
, (5.23)

where Ic,z is the moment of inertia about the z-axis of the curved flexure, given by:

Ic,z =
wt3c
12

. (5.24)

Deflection
Given Eq. 5.3, the deflection δi of the curved flexure in the direction of the force Fi for the bending load
can be obtained using the equation:

δbending,i =
1

EI

∫
M

∂M

∂Fi
Rdθ. (5.25)

The deflection δB,r of the curved flexure in the r-direction at point B, resulting from the bending moment
Mz(θ), is obtained by the equation:

δB,r =
1

EIc,z

(∫ α

0

Mz,1(θ)
∂Mz,1(θ)

∂FC,r
Rdθ +

∫ β

α

Mz,2(θ)
∂Mz,2(θ)

∂FC,r
Rdθ

)
. (5.26)

The deflection δB,θ of the curved flexure in the θ-direction at point B, resulting from the bending moment
Mz(θ), is obtained by the equation:

δB,θ =
1

EIc,z

(∫ α

0

Mz,1(θ)
∂Mz,1(θ)

∂FC,θ
Rdθ +

∫ β

α

Mz,2(θ)
∂Mz,2(θ)

∂FC,θ
Rdθ

)
. (5.27)

Angular displacement
Given Eq. 5.4, the angular displacement ϕi of the curved flexure in the direction of the moment Mi for
the bending load can be obtained using the equation:

ϕbending,i =
1

EI

∫
M

∂M

∂Mi
Rdθ. (5.28)

The angular displacement ϕB,z of the curved flexure about the z-axis at point B, resulting from the
bending moment Mz(θ), is obtained by the equation:

ϕB,z =
1

EIc,z

(∫ α

0

Mz,1(θ)
∂Mz,1(θ)

∂MC,z
Rdθ +

∫ β

α

Mz,2(θ)
∂Mz,2(θ)

∂MC,z
Rdθ

)
. (5.29)
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5.2.3. Compliance model solving procedure
The leg flexure, consisting of the straight and curved flexure, is fixed at point C. The boundary conditions
are defined as the summation of the total deflection and the angular displacement in every direction at
point C being equal to zero:

δB,r + δC,r = 0, (5.30a)
δB,θ + δC,θ = 0, (5.30b)
ϕB,z + ϕC,z = 0. (5.30c)

As mentioned in Section 4.2.2, the iteration value of the vertical deflection δt is implemented in the
compliance calculation to return the force Fy required for this deflection. The vertical deflection of the
loading point δy can be calculated using the equation:

δy =
1

EIc,z

(∫ α

0

Mz,1(θ)
∂Mz,1(θ)

∂Fy
Rdθ +

∫ β

α

Mz,2(θ)
∂Mz,2(θ)

∂Fy
Rdθ

)
. (5.31)

Given that the vertical deflections δt and δy must be equal, the boundary condition is the following:

δt − δy = 0. (5.32)

Using these boundary conditions, four equations can be identified with five unknown variables, the
vertical deflection δt, the vertical ground reaction force of the flattened section Fy, and the intermediate
forces and moment acting at point C: FC,r, FC,θ, and MC,z. The vertical deflection δt is iterated in the
process described in Section 4.2.2. Initially, the longitudinal force Fx is also unknown, as it should
define the drawbar pull. However, an initial estimated value is used for both the middle and outer legs.
These values are altered by a manual iteration, in which the values are changed based on the outcome
of the calculation, until the estimated values are close to the final optimised drawbar pull.
Solving the four boundary equations gives the value of Fy. This process is performed for every iteration
value δt until a static vertical force equilibrium is obtained in the terramechanics calculation, and the final
value for δt is identified. The initial value of δt in the iteration process is determined when the vertical
force Fy is equal to zero, and only the longitudinal force Fx influences the deflection of the flexure. This
initial deflection must be used to ensure that the terramechanics calculation is not compromised.



6
Constraints theory

This chapter describes the theory of the different constraints applied in the optimisation model. First,
the material stress while walking is obtained, after which this theory is expanded by introducing a
lateral force for skid steering and climbing along a sideways gradient. This is followed by descriptions
of the motor torque transmission, end of contact surface radius for the next step, and climbing height
constraints, respectively.

6.1. Stress limit while walking
The Lunar Zebro shall be able to walk without failing, meaning that the maximum stress obtained in the
flexure cannot exceed the yield strength. The stress in the flexure is calculated, with the stress tensor
considering general plane stress defined as

σ =

[
σr τrθ

τθr σθ

]
.

6.1.1. Straight flexure stress
The maximum stress in the straight flexure is obtained at the fixed end, at point C. The normal stress
σs,r in the r-direction is subject to the influence of the axial load FB,r, and bending moment MC,z:

σs,r1 =
FB,r

wts
, (6.1a)

σs,r2 =
MC,zcz
Is,z

=
(MB,z − FB,θL)cz

Is,z
, (6.1b)

leading to the equation:

σs,r =
FB,r

wts
+

(MB,z − FB,θL)cz
Is,z

. (6.2)

The shear stresses τs,rθ and τs,θr are subject to bending stress due to shear force FB,θ:

τs,rθ = τs,θr =
3FB,θ

2wts
. (6.3)

Given that aluminium is a ductile material, the von Mises stress criterion can be used to predict yielding
[33]. The general plane von Mises stress σs,vm in the straight flexure is given by:

σs,vm =
√
σ2
s,r + 3τ2s,rθ. (6.4)

The stress in the straight flexure while walking σs,walk is obtained using this equation.

32
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6.1.2. Curved flexure stress
The maximum stress in the curved flexure is obtained at the fixed end, at point A. The normal stress
σc,θ in the θ-direction is subject to the influence of the axial load FB,θ, and bending moment Mz,2(β):

σc,θ1 =
FB,θ

wtc
, (6.5a)

σc,θ2 =
Mz,2(β)(R

∗ −R)

wtcR(R−R∗)
, (6.5b)

where the distance between the centre of curvature and the neutral axis R∗, and the distance between
the centre of curvature and the centroid of the cross-section R are given as, respectively:

R∗ =
tc

ln R
R−tc

, (6.6a)

R =
R+ (R− tc)

2
. (6.6b)

This leads to the total normal stress equation:

σc,θ =
FB,θ

wtc
+

Mz,2(β)(R
∗ −R)

wtcR(R−R∗)
. (6.7)

The shear stresses τc,rθ and τc,θr are subject to bending stress due to shear force FB,r:

τc,rθ = τc,θr =
3FB,r

2wtc
. (6.8)

The general plane von Mises stress σc,vm in the curved flexure is given by:

σc,vm =
√

σ2
c,θ + 3τ2c,rθ. (6.9)

The stress in the curved flexure while walking σc,walk is obtained using this equation.

6.1.3. Maximum stress application angle
The deformation of the leg flexure is constrained by the maximum stress. In terramechanics and com-
pliance theory, it is assumed that the leg orientation is upright, with the load application point located at
the centre of the flexure (Figure 5.1a). However, it is expected that the stress is greater in alternative
leg orientations. Given that the load application point, at which the maximum stress is obtained, is de-
pendent on the applied load and the design variables tc, ts and L, there exists no fixed point from which
the maximum stress can be computed. The maximum stress in either the straight or curved flexure is
also obtained at different load application points. Consequently, the intermediate forces and moment
acting at point C: FC,r, FC,θ, and MC,z, are calculated for each load application angle α and utilised to
obtain the respective stress. The maximum stress σmax,walk obtained at one of these load application
angles of either the straight flexure σs,walk or curved flexure σc,walk is used to form the constraint.

As the deformable leg has a limited contact patch with the soil and varying stiffness at different
load application points, it is expected that the maximum drawbar pull is not obtained at points outside
the centre of the flexure. Nonetheless, it is assumed that the maximum drawbar pull is exerted at all
these load application points, given the complexity and the computing power required to calculate the
drawbar pull at each leg orientation. For similar reasons, it is also assumed that the ground reaction
force applied at the load application point is equal to the entire gravitational force acting on the leg. This
assumption contrasts with the terramechanics theorem, which asserts that the ground reaction forces
are divided into three sections, with only the flattened section force contributing to the deformation of
the leg. As the flattened section force is unattainable at each leg orientation, the entire gravitational
force on the leg represents the most viable alternative assumption.

The assumptions of the maximum drawbar pull and the entire gravitational force on the leg acting as
the ground reaction force on the load application point form a more stringent constraint, ensuring that
the found optimum satisfies the constraints in reality. Consequently, the ground loading point forces



6.2. Stress limit with lateral force 34

necessary to calculate the intermediate forces in the calculation procedure of Section 5.2 while walking
are:

Fx = DP, (6.10a)
Fy = W. (6.10b)

Given that the vertical force Fy is known, only the boundary conditions of Eq. 5.30 are used to calculate
the intermediate forces and moment required for the stress equations.

6.2. Stress limit with lateral force
In the event of the Lunar Zebro skid steering or climbing along a sideways gradient, a lateral force Fz

acts on the leg. The intermediate force and moment equilibria change, consequently altering the stress
levels in the flexure, which must be analysed in 3D. The lateral force Fz applied while skid steering is
derived in Section 6.3 and while climbing along a sideways gradient in Section 6.4. The load application
points are assumed to be in the centre of the flexure width. The goal of this calculation procedure is
to obtain the deformation and angular displacement at point C, to derive the intermediate forces and
moments in the system that are required to calculate the stress in the flexure.

In this calculation, the warping effects of the flexure are neglected. Although warping is expected to
increase both deflection and stress levels, its impact is beyond the scope of this study and is assumed
to be covered by the safety factor. To verify that the compliance model behaves as expected, a Finite
Element Analysis (FEA) is performed in Appendix E.

6.2.1. Straight flexure deflection
Force and moment equilibrium
The FBD of a straight flexure part is presented in Figure 6.1. Due to the lateral resistance force Fz, the
reaction force in the lateral direction Fz(r) and the moments about the radial and tangential direction,
Mr(r) and Mθ(r), are introduced.

Figure 6.1: FBD straight flexure part

The force equilibria in the straight flexure are given as:

Fr(r) = FC,r, (6.11a)
Fθ(r) = FC,θ, (6.11b)
Fz(r) = FC,z. (6.11c)

The moment equilibria in the straight flexure are given as:

Mr(r) = MC,r, (6.12a)
Mθ(r) = FC,zr +MC,θ, (6.12b)
Mz(r) = FC,θr +MC,z. (6.12c)
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Strain energy
In addition to the equations of the straight flexure strain energy for axial, bending, and shear loading of
Eq. 5.7, the strain energy for torsion loading is obtained by:

Utorsion =

∫
T 2 dr

2GJ
, (6.13)

where T is a torsion moment. The total strain energy in the straight flexure is then obtained by:

Us =

∫ L

0

Fr(r)
2 dr

2EAs
+

∫ L

0

Mz(r)
2 dr

2EIs,z
+

∫ L

0

Mθ(r)
2 dr

2EIs,θ
+

∫ L

0

Mr(r)
2 dr

2GJs
+

∫ L

0

µFz(r)
2 dr

2GAs
, (6.14)

where the moment of inertia Is,θ about the θ-axis and the polar moment of inertia Js of the straight
flexure are given by the respective equations:

Is,θ =
tsw

3

12
, (6.15a)

Js =
wts(w

2 + t2s)

12
. (6.15b)

In contrast to the influence of shear load Fθ(r), the influence of shear load Fz(r) is not neglected
because the length-width ratio is expected to be smaller than 10. The length-width threshold at which
the shear load influence can be neglected is

L

w
> 10. (6.16)

The shear constant µ for a rectangular cross-section is equal to 1.2.

Deflection
Given Eq. 5.3, the deflection δi of the straight flexure in the direction of the force Fi for the torsion load
can be found using the equation:

δtorsion,i =
1

GJs

∫
T
∂T

∂Fi
dr. (6.17)

The load application point C is considered to be in the centre of the flexure width, meaning that the
torsion load does not influence the deflection of the straight flexure at point C. The deflection δC,z of the
straight flexure in the z-direction at point C, resulting from the bending moment Mθ(r) and the shear
force Fz(r) is obtained by the equation:

δC,z =
1

EIs,θ

∫ L

0

Mθ(r)
∂Mθ(r)

∂FC,z
dr +

1

GAs

∫ L

0

µFz(r)
∂Fz(r)

∂FC,z
dr,

=
MC,θL

2

2EIs,θ
+

FC,zL
3

3EIs,θ
+

µFC,zL

GAs
.

(6.18)

Angular displacement
Given Eq. 5.4, the angular displacement ϕi of the straight flexure in the direction of the momentMi for
the torsion load can be found using the equation:

ϕtorsion,i =
1

GJs

∫
T

∂T

∂Mi
dr. (6.19)

The angular displacement ϕC,θ of the straight flexure about the θ-axis at point C, resulting from the
bending moment Mθ(r) is obtained by the equation:

ϕC,θ =
1

EIs,θ

∫ L

0

Mθ(r)
∂Mθ(r)

∂MC,θ
dr,

=
MC,θL

EIs,θ
+

FC,zL
2

2EIs,θ
.

(6.20)
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The angular displacement ϕC,r of the straight flexure about the r-axis at point C, resulting from the
bending moment Mr(r) is obtained by the equation:

ϕC,r =
1

GJs

∫ L

0

Mr(r)
∂Mr(r)

∂MC,r
dr,

=
MC,rL

GJs
.

(6.21)

6.2.2. Curved flexure deflection
Force and moment equilibrium
The FBDs of the straight and curved flexure are presented in Figures 6.2 and 6.3, respectively.

Figure 6.2: FBD Full straight flexure Figure 6.3: FBD Curved flexure

As the goal is to obtain the total displacement at point C, the reaction forces and moment at point B can
be expressed by those at point C using the straight flexure equilibrium equations. The force equilibria
in the straight flexure are given as:

FB,r = FC,r, (6.22a)
FB,θ = FC,θ, (6.22b)
FB,z = FC,z. (6.22c)

The moment equilibria in the straight flexure are given as:

MB,r = MC,r, (6.23a)
MB,θ = FC,zL+MC,θ, (6.23b)
MB,z = FC,θL+MC,z. (6.23c)

The internal moment in the curved flexure before the external forces are applied Mr,1(θ), Mθ,1(θ) and
Mz,1(θ), and after the external forces are applied Mr,2(θ), Mθ,2(θ) and Mz,2(θ) around the respective
r, θ and z-axes, are given by the equations:

Mr,1(θ) = −FB,zR sin(θ) +MB,r cos(θ) +MB,θ sin(θ) if 0 ≤ θ < α, (6.24a)
Mr,2(θ) = Mr,1(θ) + FzR sin(θ − α) if α ≤ θ ≤ β, (6.24b)

Mθ,1(θ) = −FB,zR(1− cos(θ)) +MB,r sin(θ)−MB,θ cos(θ) if 0 ≤ θ < α, (6.25a)
Mθ,2(θ) = Mθ,1(θ) + FzR(1− cos(θ − α)) if α ≤ θ ≤ β, (6.25b)
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Mz,1(θ) = FB,θR(1− cos(θ)) + FB,rR sin(θ)−MB,z if 0 ≤ θ < α, (6.26a)
Mz,2(θ) = Mz,1(θ)− FxR(1− cos(θ − α))− FyR sin(θ − α) if α ≤ θ ≤ β. (6.26b)

Strain energy
In addition to the equations of the curved flexure strain energy for bending Eq. 5.22, the strain energy
for torsion loading is given by:

Utorsion =

∫
T 2Rdθ

2GJ
. (6.27)

The total strain energy in the curved flexure then becomes:

Uc =

∫ α

0

Mr,1(θ)
2Rdθ

2EIc,r
+

∫ β

α

Mr,2(θ)
2Rdθ

2EIc,r
+

∫ α

0

Mθ,1(θ)
2Rdθ

2GJc

+

∫ β

α

Mθ,2(θ)
2Rdθ

2GJc
+

∫ α

0

Mz,1(θ)
2Rdθ

2EIc,z
+

∫ β

α

Mz,2(θ)
2Rdθ

2EIc,z
,

(6.28)

where the moment of inertia Ic,r about the r-axis and the polar moment of inertia Jc of the curved flexure
are given by the respective equations:

Ic,r =
tcw

3

12
, (6.29a)

Jc =
wtc(w

2 + t2c)

12
. (6.29b)

Deflection
Given Eq. 5.3, the deflection δi of the curved flexure in the direction of the force Fi for the torsion load
can be found using the equation:

δtorsion,i =
1

GJ

∫
T
∂T

∂Fi
Rdθ. (6.30)

The deflection δB,z of the curved flexure in the z-direction at point B, resulting from the bending moment
Mr(θ) and torsion moment Mθ(θ) is obtained by the equation:

δB,z =
1

EIc,r

(∫ α

0

Mr,1(θ)
∂Mr,1(θ)

∂FC,z
Rdθ +

∫ β

α

Mr,2(θ)
∂Mr,2(θ)

∂FC,z
Rdθ

)

+
1

GJc

(∫ α

0

Mθ,1(θ)
∂Mθ,1(θ)

∂FC,z
Rdθ +

∫ β

α

Mθ,2(θ)
∂Mθ,2(θ)

∂FC,z
Rdθ

)
.

(6.31)

Angular displacement
Given Eq. 5.4, the angular displacement ϕi of the curved flexure in the direction of the moment Mi for
the torsion load can be found using the equation:

ϕtorsion,i =
1

GJ

∫
T

∂T

∂Mi
Rdθ. (6.32)

The angular displacement ϕB,r of the curved flexure about the r-axis at point B, resulting from the
bending moment Mr(θ) and torsion moment Mθ(θ) is obtained by the equation:

ϕB,r =
1

EIc,r

(∫ α

0

Mr,1(θ)
∂Mr,1(θ)

∂MC,r
Rdθ +

∫ β

α

Mr,2(θ)
∂Mr,2(θ)

∂MC,r
Rdθ

)

+
1

GJc

(∫ α

0

Mθ,1(θ)
∂Mθ,1(θ)

∂MC,r
Rdθ +

∫ β

α

Mθ,2(θ)
∂Mθ,2(θ)

∂MC,r
Rdθ

)
.

(6.33)
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The angular displacement ϕB,θ of the curved flexure about the θ-axis at point B, resulting from the
bending moment Mr(θ) and torsion moment Mθ(θ) is obtained by the equation:

ϕB,θ =
1

EIc,r

(∫ α

0

Mr,1(θ)
∂Mr,1(θ)

∂MC,θ
Rdθ +

∫ β

α

Mr,2(θ)
∂Mr,2(θ)

∂MC,θ
Rdθ

)

+
1

GJc

(∫ α

0

Mθ,1(θ)
∂Mθ,1(θ)

∂MC,θ
Rdθ +

∫ β

α

Mθ,2(θ)
∂Mθ,2(θ)

∂MC,θ
Rdθ

)
.

(6.34)

6.2.3. Loading point deflection
The leg flexure, consisting of the straight and curved flexure, is fixed at point C. The boundary conditions
are defined as the summation of the total deflection and the angular displacement in every direction at
point C being equal to zero:

δB,r + δC,r = 0, (6.35a)
δB,θ + δC,θ = 0, (6.35b)
δB,z + δC,z = 0, (6.35c)
ϕB,r + ϕC,r = 0, (6.35d)
ϕB,θ + ϕC,θ = 0, (6.35e)
ϕB,z + ϕC,z = 0. (6.35f)

Using these boundary conditions, six equations can be identified with six unknown variables, being the
intermediate forces and moments acting at point C: FC,r, FC,θ, FC,z, MC,r, MC,θ and MC,z. Solving
these equations gives the values of the intermediate forces and moments acting at point C, which are
used to calculate the displacements at the load application point and the stress in the flexure.

The lateral deflection δz in the direction of the load application force Fz can be found using the
equation:

δz =
1

EIc,r

(∫ α

0

Mr,1(θ)
∂Mr,1(θ)

∂Fz
Rdθ +

∫ β

α

Mr,2(θ)
∂Mr,2(θ)

∂Fz
Rdθ

)

+
1

GJc

(∫ α

0

Mθ,1(θ)
∂Mθ,1(θ)

∂Fz
Rdθ +

∫ β

α

Mθ,2(θ)
∂Mθ,2(θ)

∂Fz
Rdθ

)
.

(6.36)

6.2.4. Straight flexure stress
The stress tensor is defined as

σ =

σr τrθ τrz

τθr σθ τθz

τzr τzθ σz

 .

The maximum stress in the straight flexure is obtained at the fixed end, at point C. The normal stress
σs,r in the r-direction is subject to the influence of the axial load FB,r, and the bending moments MC,θ

and MC,z:

σs,r1 =
FB,r

wts
, (6.37a)

σs,r2 =
MC,zcz
Is,z

=
(MB,z − FB,θL)cz

Is,z
, (6.37b)

σs,r3 =
MC,θcθ
Is,θ

=
(MB,θ − FB,zL)cθ

Is,θ
, (6.37c)

leading to the equation:

σs,r =
FB,r

wts
+

(MB,z − FB,θL)cz
Is,z

+
(MB,θ − FB,zL)cθ

Is,θ
, (6.38)
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where cz and cθ are the distances from the respective neutral axes z and θ. The shear stresses τs,rθ
and τs,θr are subject to bending stress due to shear force FB,θ:

τs,rθ = τs,θr =
3FB,θ

2wts
, (6.39)

whereas τs,rz and τs,zr are subject to bending stress due to shear force FB,z:

τs,rz = τs,zr =
3FB,z

2Lts
. (6.40)

The shear stresses τs,θz and τs,zθ are subject to torsion stress due to torsion moment MC,r:

τs,θz = τs,zθ =
3MC,r

wt2s
=

3MB,r

wt2s
. (6.41)

The von Mises stress σs,vm in the straight flexure is given by:

σs,vm =
√
σ2
s,r + 3(τ2s,rθ + τ2s,θz + τ2s,zr). (6.42)

The stress in the straight flexure while skid steering σs,skid and climbing along a sideways gradient
σs,side are obtained using this equation.

6.2.5. Curved flexure stress
The maximum stress in the curved flexure is obtained at the fixed end, at point A. The normal stress
σc,θ in the θ-direction is subject to the influence of the axial load FB,θ, and bending moments Mr,2(β)
and Mz,2(β):

σc,θ1 =
FB,θ

wtc
, (6.43a)

σc,θ2 =
Mz,2(β)(R

∗ −R)

wtcR(R−R∗)
, (6.43b)

σc,θ3 =
Mr,2(β)cr

Ic,r
, (6.43c)

where cr is the distance from the respective neutral axis r. Using β, the bending moments of the entire
curved flexure are calculated at point A. The total normal stress is then given as the equation:

σc,r =
FB,θ

wtc
+

Mz,2(β)(R
∗ −R)

wtcR(R−R∗)
+

Mr,2(β)cr
Ic,r

. (6.44)

The shear stresses τc,rθ and τc,θr are subject to bending stress due to shear force FB,r:

τc,rθ = τc,θr =
3FB,r

2wtc
, (6.45)

whereas τc,θz and τc,zθ are subject to bending stress due to shear force FB,z:

τc,θz = τc,zθ =
3FB,z

2βRtc
. (6.46)

The shear stresses τc,rz and τc,zr are subject to torsion stress due to torsion moment Mθ,2(β):

τc,rz = τc,zr =
3Mθ,2(β)

wt2c
. (6.47)

The von Mises stress σc,vm in the curved flexure is given by:

σc,vm =
√
σ2
c,θ + 3(τ2c,rθ + τ2c,θz + τ2c,zr). (6.48)

The stress in the curved flexure while skid steering σc,skid and climbing along a sideways gradient
σc,side are obtained using this equation.
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6.2.6. Maximum stress application angle
In addition to the variables mentioned in Section 6.1.3, the lateral force influences the load application
point from which the maximum stress is calculated. To find the maximum stress obtained when a
lateral force is applied, the intermediate forces and moments acting at point C: FC,r, FC,θ, FC,z, MC,r,
MC,θ, and MC,z, are computed for every load application angle α and used to calculate the respective
stress. The maximum stress value obtained at one of the load application angles is used to form the
constraint. The same assumptions are made as in Section 6.1.3, using the maximum drawbar pull and
entire gravitational force on the leg as ground reaction force at the load application point, to form a
more stringent constraint, ensuring that the found optimum satisfies the constraints in reality.

6.3. Skid steering
The Lunar Zebro shall be able to skid steer at a single location. During skid steering, the legs on one
side of the Lunar Zebro move forward, while the legs on the other side move backwards, resulting in a
lateral force being exerted on the legs, which increases the stress in the ground contact flexures. For
the concept leg design, the forward-moving legs endure the highest stress load, which therefore forms
the constraint. The maximum stress during skid steering cannot exceed the yield strength. The lateral
force is determined by evaluating the soil resistance.

6.3.1. Lateral resistance force

(a) (b)

Figure 6.4: Leg velocity coordinate system

The lateral resistance forceRz acting on the leg consists of two types of resistance, the soil compaction
resistance Rz,c exerted by the shear stress that develops at the ground contact between the leg and
the lunar soil, and the bulldozing resistance Rz,b exerted by the sidewall of the leg bulldozing in the
lunar soil [34]. As the created leg design makes ground contact via a flexure, the size of the sidewall
is minimal. Consequently, the bulldozing resistance is neglected, and the lateral resistance force is
computed based solely on the soil compaction resistance:

Rz = Rz,c. (6.49)

The shear stress in the lateral direction is derived using the equation [25]:

τz(θ) = (c+ σ(θ) tanϕ)
(
1− e−

jz(θ)
κz

)
, (6.50)

where κz is the lateral shear deformation modulus, and jz is the lateral shear displacement:

jz(θ) = r(1− s)(θf − θ) tan βslip. (6.51)
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The slip angle βslip is defined by the equation:

βslip = tan−1

(
vz
vx

)
, (6.52)

where vx is the forward velocity and vz the lateral velocity. When skid steering perfectly, the leg only
has a lateral velocity vz, whereas the forward velocity vx is equal to zero. In this case, the slip angle
equals 90°. Using Eq. 4.13, the slip ratio when vx is zero becomes equal to one. Implementing this
value in Eq. 6.51 results in a total lateral shear stress of zero.

In a more realistic scenario, there is still a small forward velocity, resulting in a slip angle that ap-
proaches but does not reach 90°, and a slip ratio that approaches but does not reach one. Conse-
quently, the tangent of βslip becomes an exceptionally high number, which implies that the lateral
shear stress of Eq. 6.50 can be simplified to represent the maximum obtainable lateral shear stress:

τz,max(θ) = c+ σ(θ) tanϕ. (6.53)

This maximum lateral shear stress is used to find the maximum lateral resistance, which is the value
at which the maximum stress in the leg flexure is obtained, forming the constraint. The total lateral
resistance Rz of the deformable leg during skid steering can be calculated using:

Rz = Rz,AB +Rz,BC +Rz,CD,

= Rw

∫ θf

θt

τz(θ) dθ + (R− δt)w

∫ θt

−θt

τz(θ)

cos2 θ
dθ +Rw

∫ −θt

θr

τz(θ) dθ.
(6.54)

The maximum total lateral resistance force Rz,max is obtained using τz,max in Eq. 6.54.

6.3.2. Solving procedure
To calculate the stress during skid steering, the following ground loading point forces Fx, Fy, and Fz

are used in the calculation procedure described in Section 6.2:

Fx = DP, (6.55a)
Fy = W, (6.55b)
Fz = Rz,max. (6.55c)

The calculation will result in the maximum stress in the straight flexure σs,skid and in the curved flexure
σc,skid, from which the highest value forms the constraint σmax,skid.

6.4. Sideways gradient
The Lunar Zebro shall be able to climb along a maximum sideways gradient of 15°. During this, the
force equilibrium over the legs changes, with higher forces applied at the lower leg(s), consequently
increasing the stress in the ground contact flexure. The maximum stress in the flexure while climbing
along a sideways gradient cannot exceed the yield strength.

The distance between the centre of gravity and the legs varies between the middle and outer legs,
as the middle leg is located farther outward. However, since the Lunar Zebro is still in its design phase,
the exact location of the centre of gravity is yet unknown. As a result, it is assumed that these distances
are equal, with their estimated value and that of the height of the centre of gravity detailed in Table C.1.
It is also assumed that the Lunar Zebro uses small rotations to steer and does not perform full skid
steering rotations while climbing along a sideways gradient.
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6.4.1. Force and moment equilibrium

Figure 6.5: FBD Lunar Zebro on sideways gradient

The total gravitational force of the Lunar Zebro exerted on the centre of mass is given by:

Fm = mg. (6.56)

Due to the sideways gradient γ, the gravitational force is divided into the normal and lateral direction
of the body:

Fm,z = Fm sin γ, (6.57a)
Fm,y = Fm cos γ. (6.57b)

The highest load is applied at the lower leg(s), making forces Fc1,y and Fc1,z of interest. Using the
moment around point c2 at the higher leg(s), an equation for Fc1,y is derived:

Fc1,y =
Fm,zycom + Fm,ybLZ

2bLZ
, (6.58)

where ycom is the height of the CoM and bLZ is the lateral distance between the CoM and the load
application points of the legs at ground contact. Lateral force Fc1,z is then given as:

Fc1,z = Fc1,y tan γ. (6.59)

6.4.2. Solving procedure
Due to the load distribution on the legs while climbing along a sideways gradient, the flexure deforma-
tion and consequently the drawbar pull of the leg have changed. The drawbar pull of the critical leg
DPc1 is calculated by defining the vertical force causing leg deformation as the normal force on the
critical leg (Eq. 6.60b) in the terramechanics model of Chapter 4. As explained in Section 5.2.3, the
longitudinal force Fx, defined as the drawbar pull, is initially unknown. However, an initial estimated
value is implemented for both the middle and outer legs, which is altered by manual iteration until the
estimated values are close to the final optimised drawbar pull.

To calculate the stress in the flexure while climbing along a sideways gradient, the following ground
loading point forces Fx, Fy, and Fz are used in the theorem described in Section 6.2:

Fx = DPc1, (6.60a)

Fy =
2Fc1,y

N
, (6.60b)

Fz =
2Fc1,z

N
, (6.60c)
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where N is the leg load factor, which is used to define the number of legs on the critical side: one
middle or two outer legs. Using the defined ground loading point forces, the resulting intermediate
flexure forces, deformations, and stress can be calculated by the procedure described in Section 6.2.
The calculation will result in the maximum stress in the straight flexure σs,side and in the curved flexure
σc,side, from which the highest value forms the constraint σmax,side.

6.5. Motor torque transmission
The Lunar Zebro shall transmit the motor torque to ground contact force. Therefore, the leg flexure shall
have a certain stiffness in the longitudinal direction, which is represented in the longitudinal displace-
ment of the force loading point being restricted from excessively deforming and, consequently, being
constrained by a longitudinal displacement threshold. Using the compliance model described in Chap-
ter 5, the intermediate forces and moment acting at point C: FC,r, FC,θ, and MC,z, can be calculated.
Using these variables, the longitudinal deflection δx is obtained using the equation:

δx =
1

EIc,z

(∫ α

0

Mz,1(θ)
∂Mz,1(θ)

∂Fx
Rdθ +

∫ β

α

Mz,2(θ)
∂Mz,2(θ)

∂Fx
Rdθ

)
, (6.61)

where Fx equals the drawbar pull DP . The longitudinal displacement is calculated at every leg orien-
tation, and the maximum longitudinal displacement obtained is used to form the constraint.

6.6. End of contact surface radius for next step
The Lunar Zebro shall have a minimum radius at the end of the contact surface to ensure that the next
leg can continue the walking motion. With the used gait by the Lunar Zebro, the first 10% of the second
leg makes ground contact at the same time as the last 10% of the first leg. The effective remaining
radius at the last 10% of the contact surface shall exceed the radius threshold.

Figure 6.6: Effective radius definition

The angle of the load application point at the last 10% of the is calculated using:

αend = 0.10β. (6.62)

Using αend in the compliance calculation described in Chapter 5, the intermediate forces and moment
acting at point C: FC,r, FC,θ, and MC,z can be calculated when the leg stands on the last 10% of its
contact surface. Using these values, the vertical deflection δy can be obtained using the equation:

δy =
1

EIc,z

(∫ αend

0

Mz,1(θ)
∂Mz,1(θ)

∂Fy
Rdθ +

∫ β

αend

Mz,2(θ)
∂Mz,2(θ)

∂Fy
Rdθ

)
. (6.63)

Due to the limited contact surface between the leg and the soil when it sets itself up for the next step, it
is assumed that the ground reaction force Fy is equal to the entire gravitational force W acting on the
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leg at the load application point. As in all other constraints, the maximum drawbar pull DP is assumed
to act as Fx at the load application point. In reality, this maximum drawbar pull is not reached due to
the higher stiffness at the end of the contact surface and the limited contact surface between the leg
and the soil. The remaining effective radius Reff at the last 10% of the contact surface is then given
as:

Reff = R− δy. (6.64)

The impact of sinkage is excluded in this formulation, as it is anticipated that the leg will experience
comparable sinkage at the initiation of the contact surface in the following steps, combined with the
decreased radius the leg has at the initiation, due to the curled tip. To prevent unforeseen outcomes
and address potential waddling motion, the minimum radius threshold Reff,min, designated for the
effective radius Reff , is strictly defined.

6.7. Climbing height
The Lunar Zebro shall be able to climb over obstacles, and therefore its climbing height yc shall exceed
a climbing threshold. In this study, the climbing height of the Lunar Zebro is defined as the height at
which the gripping point can make contact with an elevated object when the leg is maximally deformed.
The climbing height yc is obtained using the equation:

yc = R+ yg − z − δt, (6.65)

where yg is the vertical distance between the leg axle and the gripping point.

Figure 6.7: Climbing height definition

It is assumed that the available normal force at the contact point is sufficient to climb. However, the
climbing performance is more unpredictable in practice, attributed to factors such as the difference in
shape and texture of obstacles, the used gait, the leg orientation with respect to the obstacle, and the
combination of tractive force and slippage of the legs [7]. As this research focuses on the comparison
of design variables that make the leg deformable and increase tractive performance, combined with
the fact that the climbing definition is the same for all variables, the climbing height measurement is
assumed to be sufficient.



7
System Analysis

This chapter describes the results of the performed optimisation process for both the middle and outer
leg. First, the optima are presented, after which the objective and constraint behaviour is analysed
to understand the sharpness of the found optima in the design space. Lastly, a sensitivity analysis
is performed to acknowledge the individual influence of the design variables on the objective function
near the optima.

7.1. Optimisation process
The tractive performance optimisation of the designed compliant leg module is conducted. The optimal
solutions were initially identified utilising the SQP algorithm and fmincon from the initial point x0, after
which the global search strategy was applied to expand the exploration of the design space. However,
the global search strategy did not result in improved optima, signifying there is a clear optimum in the
design space. The initial point x0 is defined as:

x0 =

tcts
L

 =

0.1500.300

30.0

 mm,

with the parameter values used in the model are detailed in Table C.1. The slip ratio is assumed to
be equal to one, for which the maximum drawbar pull can be obtained. A separate analysis on the
performance of the optimal legs per slip ratio is performed in Section 8.1.

The optima are presented together with their objective and constraint performance in rounded fig-
ures. However, the optimisation process locates exact optima in higher significant figures, which are
presented in Appendix C.2. These values are mathematical optima that cannot be translated to reality
with such precision due to the assumptions made in the analytical model and the physical challenges
in production. Nonetheless, as explained in the scope of this study, the absolute performance at the
optima of the innovative compliant leg is compared to that of the original rigid leg in Section 8.1 to
provide valuable insight into achieving the research goal.

7.1.1. Middle leg
The point at which the middle leg achieves optimal tractive performance is:

xm,opt =

tcts
L

 =

0.1390.308

33.2

 mm.

The value of the objective function, the drawbar pull, at this point is equal to 1.81 N. The leg vertically
deforms 10.6 mm at the load application point, resulting in a flattened section length that measures
68.1 mm. The critical constraints are c3 and c4, corresponding to the maximum stress in the flexure
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while climbing along a sideways gradient and the maximum longitudinal displacement required to en-
sure torque transmission. The constraint values at the optimum point are detailed in Table 7.1. The
constraint on the minimum radius at the end of the contact surface (c5) is close to its limiting value,
whereas the minimum climbing height constraint (c6) has negligible influence. Similarly, the stress con-
straint while walking (c1) and skid steering (c2) are also inactive compared to the stress constraint while
climbing along a sideways gradient, which is a predictable outcome, given the load encountered at the
specific legs.

Table 7.1: Constraint performance middle leg

Constraint Value Value with safety factor (1.5) Limiting value
c1 307 MPa 461 MPa ≤ 503 MPa
c2 313 MPa 470 MPa ≤ 503 MPa
c3 335 MPa 503 MPa ≤ 503 MPa
c4 5.00 mm - ≤ 5.00 mm
c5 59.1 mm - ≥ 58.5 mm
c6 82.3 mm - ≥ 55.0 mm

The contour plots in Figures 7.1, 7.2, and 7.3 illustrate the visual representations of the design
space at the optimum value of the remaining design variable. Enlarged versions of the contour plots
are presented in Appendix C.3. The constraints are visualised together with their infeasible region
(IR). The plots show a dominant gradient direction, where the drawbar pull increases as either tc or ts
decreases, orL increases. Figures 7.1 and 7.2 illustrate contour lines with double curvatures, indicating
that the objective function experiences non-linear local sensitivity. By analysing the spacing between
the contour lines of one design variable while keeping the other variable constant at its optimum value,
an insight is offered into the individual linearity of the local sensitivities of design variables near the
optimum. In the case of tc, the spacing becomes larger at higher values in both Figures 7.1 and 7.2,
meaning that the local sensitivity of tc becomes non-linear at higher values. For ts and L, the spacing
in the respective Figures 7.1 and 7.2 remains relatively similar, which means that the local sensitivities
of these design variables are more linear. The latter is reaffirmed in Figure 7.3, as illustrated by the fact
that the contour lines of ts and L at tc,opt are diagonal, parallel, and evenly spaced below the constraint
lines, indicating that the local normalised sensitivity of ts and L at tc,opt are similar, relatively high and
relatively linear.

Figures 7.1 and 7.2 also illustrate relatively small critical constraint intersection angles, indicating
that in directions involving tc, the feasible region near the optimum is moderately narrow and small
movements away from the optimum violate constraints or decrease objective performance. The critical
constraint lines near the optimum in Figure 7.3 are almost parallel to each other and the objective
contour lines, which means that the feasible region near the optimum is wide and the optimum is
flat in the direction along the critical constraint lines. The latter indicates that multiple combinations
of ts and L could yield similar tractive performance as the optimum at the fixed tc,opt. However, the
tightly spaced contour lines perpendicular to the critical constraint lines are an indication of a sharp
optimum. Consequently, if the values of ts and Lmove away from the critical constraint lines, objective
performance quickly degrades.
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Figure 7.1: Contour plot middle leg drawbar pull DP , tc vs ts at Lopt

Figure 7.2: Contour plot middle leg drawbar pull DP , tc vs L at ts,opt
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Figure 7.3: Contour plot middle leg drawbar pull DP , ts vs L at tc,opt

7.1.2. Outer leg
The point at which the outer leg achieves optimal tractive performance is:

xo,opt =

tcts
L

 =

0.1000.157

19.8

 mm.

The value of the objective function, the drawbar pull, at this point is equal to 1.17 N. The leg vertically
deforms 11.0 mm at the load application point, resulting in a flattened section length that measures
69.4 mm, which slightly exceeds that of the middle leg. The critical constraints are again c3 and c4, but
in this case, these are accompanied by the lower bound of tc. This indicates that the minimum curved
flexure thickness limits the drawbar pull.

The constraint values at the optimum point are detailed in Table 7.2. Almost all constraints behave
similarly to those of the middle leg, except for the stress encountered during skid steering. The value
has changed from the middle leg value, whereas the stress values encountered while walking and
climbing along a sideways gradient have negligible or no changes. This difference can be explained
by the sideways compaction force acting on the leg during skid steering. As the load on the leg varies
between the middle and outer legs, this compaction force changes indirectly, much like the drawbar
pull. Both these load changes cause a stress variation. In contrast, for walking and sideways gradient
climbing, the load distribution is the only thing changing, which happens at the same rate for both
constraints.

Table 7.2: Constraint performance outer leg

Constraint Value Value with safety factor (1.5) Limiting value
c1 309 MPa 463 MPa ≤ 503 MPa
c2 330 MPa 495 MPa ≤ 503 MPa
c3 335 MPa 503 MPa ≤ 503 MPa
c4 5.00 mm - ≤ 5.00 mm
c5 59.2 mm - ≥ 58.5 mm
c6 82.6 mm - ≥ 55.0 mm
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The contour plots in Figures 7.4, 7.5, and 7.6 illustrate the visual representations of the design space
at the optimum value of the remaining design variable. The contour plots have changed significantly
from the middle leg. Firstly, the constraints and the optimum are located within a narrow region of
the design space, due to the decrease in normal load on the leg. Secondly, the spacing between
the contour lines enlarges for all design variables, indicating that the non-linearity of their respective
sensitivities has increased. Lastly, the behaviour of the critical constraints to variations in ts and L
differs significantly. At the fixed tc,opt used for the middle leg in Figure 7.3, the critical constraint lines
are nearly coincident with each other and parallel to the objective’s contour lines near the optimum.
This alignment means that a variation in ts and L along one of the critical constraint lines results in only
a slight decrease in objective performance, whereas both constraint values remain nearly unchanged.
In contrast, Figure 7.6 shows that the critical constraint lines for the outer leg are not closely aligned.
For values of ts and L greater than the optimum, c4 remains as the critical constraint, whereas the initial
critical constraint c3 and constraints c1 and c2 become less restrictive. Since c4 is nearly parallel to the
objective’s contour lines, this leads to a region of points with similar drawbar pull to the optimum, but
less stress obtained in the flexure while walking, skid steering, or climbing along a sideways gradient.

In Figure 7.6, it is illustrated that the feasible area near the optimum has become narrower in contrast
to Figure 7.3 of the middle leg, while the optimum remains flat in the direction along the constraint line
c4 from approximately ts = 0.21 mm and L = 22 mm onwards. The closely spaced contour lines cause
the optimum to be sharp in directions perpendicular to the constraint lines. Figures 7.4 and 7.5 show
that the feasible area near the optimum is moderately narrow in their respective planes by the lower
bound of tc. Although the critical constraint lines of c3 and c4 in Figure 7.4 are relatively similar to the
constraint lines near the optimum, the difference between the two and the closely spaced contour lines
show that different value combinations of tc and ts cause a loss in objective performance, indicating a
relatively sharp optimum in multiple directions of this plane. The latter is also true for the optimum in
the plane of Figure 7.5, but this is mainly attributed to the difference in shape between the constraint
line c4 and the contour lines.

Figure 7.4: Contour plot outer leg drawbar pull DP , tc vs ts at Lopt
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Figure 7.5: Contour plot outer leg drawbar pull DP , tc vs L at ts,opt

Figure 7.6: Contour plot outer leg drawbar pull DP , ts vs L at tc,opt

7.2. Sensitivity analysis
Although the previous section provided an initial understanding of the sensitivities of the design vari-
ables, a numerical sensitivity analysis is conducted at the optimal points xopt to comprehend the influ-
ence of these variables on the objective function near these points. The sensitivity indicates the degree
to which the output of the objective function varies in response to changes in the input variables. This
analysis will ascertain which variable exerts the greatest influence and should thus be prioritised, as
well as identify variables whose contribution is negligible. Furthermore, sensitivity analysis contributes
to the evaluation of the robustness of the system by detecting its linearity, potential instability, and
noise. Due to the complexity of the calculations, it is not feasible to compute the analytical sensitivity.
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Instead, the local sensitivity is estimated using finite difference methods. The central finite difference
method is used for the design variables ts and L, given its high accuracy due to the symmetric eval-
uation about the analysis point. This high accuracy comes at the cost of being computationally more
expensive. However, this approach is unsuitable for the design variable tc because the optimal points
are positioned near, or in the case of the outer leg, precisely on the lower boundary of the design space.
The perturbations are defined to obey the bounds of the design space, similar to the SQP algorithm in
fmincon [35]. When the lower boundary constrains the design variable, only the forward finite difference
method is applicable.

It is crucial to exercise caution when using finite difference sensitivities in iterative models. Due
to the iterative nature of the solution procedures and the associated residuals, additional inaccuracies
arise [36], which could introduce noise that distorts the true sensitivities. However, these effects were
found to be minimal in this model.

7.2.1. Forward finite difference
The forward finite difference sensitivity Sx,FFD for a design variable xi is calculated using the equation:

Sxi,FFD =
∂f

∂xi
≈ f(xi +∆xi)− f(xi)

∆xi
, (7.1)

where ∆xi is the perturbation size. As the design variables have different magnitudes, the sensitivities
are not directly comparable. To enable a consistent and dimensionless comparison, the sensitivities
are normalised using the expression:

Ŝxi,FFD = Sxi,FFD · xi

f(x)
. (7.2)

Given the design variable bounds and the optimal points xopt, the maximum perturbation size of the
FFD method is assumed to be 0.10× 10−3 m.

7.2.2. Central finite difference
The central finite difference sensitivity Sx,CFD for a design variable xi is calculated using the equation:

Sxi,CFD =
∂f

∂xi
≈ f(xi +∆xi)− f(xi −∆xi)

2∆xi
, (7.3)

whereas the normalised central finite difference sensitivity is given by the expression:

Ŝxi,CFD = Sxi,CFD · xi

f(x)
. (7.4)

The maximum perturbation sizes ∆ts,max and ∆Lmax of the CFD method to stay within the design
space bounds are calculated using the equations:

∆ts,max =

{
uts − ts,opt if ts,opt ≥ 0.25× 10−3 m,

ts,opt − lts if ts,opt < 0.25× 10−3 m,
(7.5a)

∆Lmax =

{
uL − Lopt if ts,opt ≥ 25× 10−3 m,

Lopt − lL if ts,opt < 25× 10−3 m,
(7.5b)

where uxi and lxi are the respective upper and lower bounds of the design variables xi.

7.2.3. Middle leg
According to Figures 7.7a and 7.8a, the normalised sensitivities of the curved flexure thickness Ŝtc and
the straight flexure thickness Ŝts remain stable throughout the perturbation range, registering values of
-0.33 and -0.29, respectively. This indicates that a local increase in these design variables corresponds
to a decrease in drawbar pull, which is supported by Figures 7.7b and 7.8b. The drawbar pull decreases
at a higher rate for tc than for ts. As noted in Figure 7.9a, the normalised sensitivity of the straight flexure
length ŜL maintains a relatively constant value of 0.32 until 5.0×10−4 m, indicating that the drawbar pull
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increases along with L. For perturbations below 4.0 × 10−7 m, small fluctuations are observed in ŜL,
attributable to light round-off error noise. The increase of ŜL at perturbations higher than 5.0× 10−4 m
can be attributed to the subtle non-linear relationship between L and the drawbar pull beyond optimal
values, which is evident in Figure 7.9b. These values are obtained for larger perturbation magnitudes,
consequently increasing the sensitivity. The non-linearity in the relationship between the drawbar pull
and tc, as well as ts, does not appear in the normalised sensitivity plots because the corresponding
high perturbations have not been reached due to the maximum perturbation sizes.

(a) Normalised sensitivity Ŝtc at xm,opt (b) Drawbar pull DP as a function of tc, at ts,opt and Lopt

Figure 7.7: Middle leg curved flexure thickness tc

(a) Normalised sensitivity Ŝts at xm,opt (b) Drawbar pull DP as a function of ts, at tc,opt and Lopt

Figure 7.8: Middle leg straight flexure thickness ts
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(a) Normalised sensitivity ŜL at xm,opt (b) Drawbar pull DP as a function of L, at ts,opt and tc,opt

Figure 7.9: Middle leg straight flexure length L

Given the absolute values of the sensitivities at the stable perturbation regions, it is evident that tc
has themost influence on the drawbar pull near the optimum, closely followed byL and ts. However, the
difference between the absolute normalised sensitivities is too small to consider one design variable
dominant. Instead, it can be concluded that all design variables have a similar influence near the
optimum of the middle leg.

7.2.4. Outer leg
Similarly to the middle leg, Figures 7.10a and 7.11a demonstrate that the normalised sensitivities of
both the outer leg curved flexure thickness Ŝtc and straight flexure thickness Ŝts remain stable through-
out the perturbation range, registering values of -0.47 and -0.38, respectively. As noted in Figure 7.12a,
the normalised sensitivity of the straight flexure length ŜL within the perturbation range of 4.0 × 10−7-
5.0 × 10−4 m maintains a stable value of 0.43. The region of perturbations below 4.0 × 10−7 m is
characterised by instability, which can be attributed to the presence of round-off error noise, as illus-
trated by the absence of disruptions in Figure 7.12b. The round-off error noise is much more defined
than for the middle leg, likely attributable to tc,opt being located at its lower bound, limiting the system’s
response freedom. The other design variables are interdependent, causing tc,opt to indirectly distort
the reaction of the objective drawbar pull on the other design variables, increasing their round-off error
noise. However, this round-off error noise is only visible for ŜL, which can be explained by the differ-
ence in magnitude of L with respect to tc and ts. Perturbations of 10−8 m are much smaller for L, that
can range 10-40 mm, than for tc and ts, that can range 0.10-0.40 mm. For perturbations lower than
10−8 m, the noise becomes also visible for tc and ts, but these perturbations are too small to be of
interest.

According to Figure 7.12a, ŜL exhibits an increase at perturbations surpassing 5.0×10−4 m, compa-
rable to that observed of ŜL of themiddle leg. Again, this peak likely results from the subtle non-linear in-
teraction between L and the drawbar pull at values exceeding the optimum, as depicted in Figure 7.12b,
whereas the non-linear interactions of the drawbar pull with tc and ts are not evident in the normalised
sensitivity plots, given that such high perturbations are not achieved due to the maximum perturbation
size.
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(a) Normalised sensitivity Ŝtc at xo,opt (b) Drawbar pull DP as a function of tc, at ts,opt and Lopt

Figure 7.10: Outer leg curved flexure thickness tc

(a) Normalised sensitivity Ŝts at xo,opt (b) Drawbar pull DP as a function of ts, at tc,opt and Lopt

Figure 7.11: Outer leg straight flexure thickness ts

(a) Normalised sensitivity ŜL at xo,opt (b) Drawbar pull DP as a function of L, at ts,opt and tc,opt

Figure 7.12: Outer leg straight flexure length L

Based on the absolute values of the sensitivities within the stable perturbation regions, it can be
concluded that the hierarchy of influence among the design variables near the optimum is equal to
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that of the middle leg. However, the absolute normalised sensitivities have increased compared to the
middle leg system, indicating that the outer leg system demonstrates heightened sensitivity to variations
in design variables. This increase broadens the disparity between the absolute normalised sensitivities,
resulting in a clearer distinction of the influence of each design variable. Consequently, for the outer leg
drawbar pull, tc emerges as the most influential design variable near the optimum, closely followed by
L, while ts has the least influence. To optimise computational efficiency, the design variable that exerts
the least influence could be stabilised in the optimisation process. However, given that the absolute
normalised sensitivities remain close to each other and considering the optimisation process involving
three variables is computationally feasible, this approach has not been pursued.



8
Performance Analysis

This chapter describes the performance of the optimised compliant leg module. First, a slip ratio anal-
ysis is performed, in which the drawbar pull, sinkage, resistance torque, and tractive efficiency are
reviewed over a range of slip ratios and compared to those of the original rigid leg. Subsequently, an
analysis is conducted on the performance at the extreme temperatures encountered on the Moon.

8.1. Slip ratio analysis
In the optimisation model, the slip ratio is assumed to be equal to one, as this value provides the
maximum drawbar pull. However, a slip ratio of one implies that the forward velocity vx is nullified,
and consequently the rover remains stationary. The slip ratio at which the rover will operate is logically
lower and is influenced by the combination of torque input and soil properties. By defining the leg
performance as a function of the slip ratio, the leg performance can be obtained at a certain operating
slip ratio. The analysis is conducted for both the optimised compliant leg and the original rigid leg to
present the enhanced performance of the compliant leg, as a result of this research. The performance
enhancement is defined at the maximum achievable value in this study, at a slip ratio of one. The true
performance enhancement depends on the slip ratio at which the rover will operate.

8.1.1. Middle leg
The compliant middle leg generates amaximum drawbar pull of 1.81 N, in contrast to the rigid leg, which
achieves a maximum drawbar pull of 0.836 N, representing a 116% enhancement in performance. A
leg with lower compliance than the optimum, visualised by the contour lines in Figures 7.1, 7.2 and 7.3,
still reaches higher drawbar pull than the rigid leg, from which can be concluded that the introduction of
a minimal amount of compliance to the leg, while staying in the feasible region of the design variables,
enhances its tractive performance.

At a slip ratio of zero, the interaction between the leg and the soil is free of slip. As visible in
Figure 8.1a, the drawbar pull becomes negative for both legs at slip ratios approaching zero, indicating
that the resistance generated by the legs is greater than the thrust. This phenomenon can be attributed
to the dependence of the thrust on the slip ratio via shear stress, whereas the resistance remains largely
unaffected. Instead, the resistance is predominantly dependent on the normal stress at the soil entry
section. Hence, the drawbar pull is more negatively affected for the rigid leg, as its soil entry section is
larger compared to that of a compliant leg. In contrast, the compliant leg has a large flattened section
that is subjected solely to positive thrust. When using the optimal design variables, the deformation
resistance has the highest impact on the drawbar pull of the compliant leg.

The obtained sinkage of the compliant middle leg is approximately 1.64 mm, whereas the sinkage
of the rigid leg varies between 6.51 and 7.21 mm, representing an average decrease of 76%. The
reduction in sinkage of the compliant leg compared to the rigid leg can be explained by the lower av-
erage normal stress experienced by the compliant leg due to the increased contact patch with the soil.
The rigid leg sinkage increases with the slip ratio, while the compliant leg sinkage remains constant.
Ishigami explains this difference, asserting that ”the sinkage of deforming wheels is almost constant
regardless of the slip ratio since the flattened section of the wheel mostly supports the vertical load of
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the wheel,” in contrast to the sinkage of most rigid wheels, which increases with rising slip ratios ”due to
the fact that the shear deformation of a wheel increases with increasing the slip ratio” [11]. These asser-
tions are validated by the model results, with the relationship between shear deformation and slip ratio
detailed in Eq. 4.16. The reduction in sinkage experienced by the compliant leg increases its climbing
capability and positively influences its drawbar pull due to the decreased compaction resistance.

The maximum resistance torque for the compliant middle leg is 0.0963 Nm, in contrast to the rigid
leg’s 0.0742 Nm, reflecting a 30% increase. The flattened section of the compliant leg experiences
higher normal and shear stresses, thereby not only enhancing the drawbar pull but also contributing to
an increased resistance torque. As a result, the rotary motion of the compliant leg requires a greater
input torque to overcome the increased resistance torque.

The maximum tractive efficiency of the compliant middle leg is 82.2%, significantly exceeding that
of the rigid leg, which is 30.2%. Tractive efficiency denotes the capability to convert input torque into
output power, which is the drawbar pull. Higher tractive efficiency indicates that less input torque is
required to traverse a given distance, thereby raising the energy efficiency of the leg. The compliant
leg has a higher tractive efficiency than the rigid leg across all slip ratios, indicating superior energy
efficiency. However, the energy losses induced by the waddling motion of the compliant leg are not
taken into account. Consequently, the real energy efficiency of the compliant leg is expected to be
lower than the calculated value. As demonstrated in Figure 8.1d, the maximum tractive efficiency for
the compliant and rigid legs occurs at different slip ratios. For optimal energy efficiency, the compliant
leg should operate at the slip ratio corresponding to this maximum, which is 0.151. It should be noted
that this optimal energy efficiency operation reduces the output drawbar pull to approximately 0.549 N.

(a) Drawbar pull DP (b) Sinkage z

(c) Resistance torque T (d) Tractive efficiency η

Figure 8.1: Slip ratio analysis of compliant and rigid middle leg
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8.1.2. Outer leg
The results of the conducted analysis of the compliant outer leg reveal that it demonstrates a greater
performance enhancement compared to the middle leg. The compliant outer leg generates a maxi-
mum drawbar pull of 1.17 N, in contrast to the rigid leg, which achieves only 0.448 N. This represents
a 206% improvement in performance, whereas the middle leg exhibited only a 116% improvement.
Furthermore, the resistance torque of the outer leg has also increased, achieving a maximum value
of 0.0607 Nm, compared to 0.0364 Nm of the rigid leg. This corresponds to an increase of 67%, as
opposed to a 30% increase for the middle leg.

The difference in performance enhancement can be attributed to the reduced dependency of the
traction force on the normal load, as opposed to the resistance force. Due to distinct optimisations
of the middle and outer legs, they possess different stiffness characteristics, resulting in similar verti-
cal deflection and consequently a similar contact area. The traction force is generated by the shear
stress beneath the contact area, with the contact area exerting a substantial influence on shear stress,
whereas that of the normal stress is small. Consequently, the increase in the shear stress of the middle
leg compared to that of the rigid leg is less than that of the outer leg. At maximum drawbar pull, there
is a 106% increase in traction for the outer leg, compared to a 60% increase for the middle leg.

The resistance force is predominantly dependent on the normal stress. An increase in normal stress
directly amplifies resistance. The middle leg, subjected to a higher load, consequently experiences
greater normal stress and resistance force than the outer leg. However, given the similar vertical
deflection and contact area between the middle and outer legs, the resistance forces of both decrease
at a similar rate as those of the rigid legs. At maximum drawbar pull, the resistance force is reduced
by 63% for the outer leg, whereas it is reduced by 57% for the middle leg.

As a result, the increase in traction force of the middle leg proceeds at a slower rate relative to
the rigid leg than that of the outer leg, while both legs experience a comparable rate of reduction in
resistance force. Consequently, the overall drawbar pull of the middle leg increases at a slower rate
than that of the outer leg. It is thus concluded that if wheel deformation is similar, the compliant leg’s
advantage increases at lower loads.

Not all performance metrics of the outer leg reflect a substantial relative difference when compared
to those of the middle leg. The sinkage of the compliant outer leg is approximately 0.808 mm, whereas
the sinkage of the rigid leg varies between 4.08 and 4.56 mm. On average, this is a reduction of 81%,
which is similar to the reduction of 76% observed for the middle leg. Again, the similar contact area
under their respective loads causes a similar relative difference with the rigid leg for both the middle
and outer compliant legs.

The maximum tractive efficiency of the compliant outer leg is 87.9%, which is significantly higher
than the 34.1% of the rigid leg. However, as mentioned earlier, the real energy efficiency of the compli-
ant leg is expected to be lower than the calculated value, because of the induced waddling motion of
the compliant leg module. The maximum tractive efficiency occurs at a slip ratio of 0.141, which is the
slip ratio at which the compliant outer leg achieves optimal energy efficiency. Meanwhile, the drawbar
pull decreases to approximately 0.334 N.
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(a) Drawbar pull DP (b) Sinkage z

(c) Resistance torque T (d) Tractive efficiency η

Figure 8.2: Slip ratio analysis of compliant and rigid outer leg

8.2. Temperature range analysis
Despite the extreme temperature fluctuations experienced on the Moon and possible heat accumula-
tion caused by friction, it is assumed that the legs will operate at a temperature of 20°C. Consequently,
the legs are optimised for operation at this nominal temperature. Although Aluminium 7075-T6 is gen-
erally robust against these extreme temperature fluctuations, the performance of thin leg flexures can
be sensitive to small changes in material properties. To account for this, the optimal legs are anal-
ysed at extreme temperatures of 100°C and -80°C. The corresponding material properties at these
temperatures are provided in Table 8.1.

Table 8.1: Material properties per temperature [37]

Symbol Description Value Unit
T = 100°C

σy Yield strength 448 MPa
E Young’s modulus 68.3 GPa
G Shear modulus 25.7 GPa

T = -80°C
σy Yield strength 545 MPa
E Young’s modulus 73.8 GPa
G Shear modulus 27.7 GPa
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The objective and constraint performance of the optimal designs at extreme temperatures are pre-
sented in Appendix C.2. The variations in drawbar pull and constraint values are minimal, which can
be explained by the marginal difference in the Young’s and shear moduli of the material. In contrast,
the material yield strength is significantly influenced by temperature, directly affecting constraint limits.
As the temperature rises, the yield strength decreases, leading to more stringent stress constraints. At
100°C, while the stress remains within constraint limits, the safety factor is compromised. The oppo-
site behaviour is observed at lower temperatures, where a decrease in temperature results in increased
yield strength and, consequently, less restrictive stress constraints. At -80°C, stress levels remain sub-
stantially below the constraint limits, even when considering the safety factor, indicating the potential
for enhanced performance.

The legs optimised for 20°C continue operational viability at lower temperatures. However, elevated
temperatures pose an increased risk due to violation of the stress safety factor. To achieve functionality
across the entire temperature range, the legs should be optimised for maximum temperature condi-
tions. Although this approach ensures safe operation, it results in peak tractive performance occurring
at the maximum temperature, compromising tractive performance at lower temperatures. The follow-
ing subsections present an optimisation of the middle and outer leg to determine the optimal tractive
performance at the extreme temperature of 100°C, creating a thermal-resilient design that ensures
functionality across the temperature range. The same optimisation procedure and settings are used
as for the legs optimised at 20°C. However, the design space for this analysis has an increased upper
bound for L:

0.10 ≤ tc ≤ 0.40 mm, (8.1a)
0.10 ≤ ts ≤ 0.40 mm, (8.1b)
10 ≤ L ≤ 50 mm. (8.1c)

8.2.1. Middle leg
The point at which the middle leg achieves optimal tractive performance at 100°C is:

xm,100°C =

tcts
L

 =

0.1500.380

40.9

 mm.

The thermal-resilient middle leg generates a maximum drawbar pull of 1.79 N at 100°C. At the standard
operating temperature of 20°C, the maximum drawbar pull achieved is 1.77 N, which represents a
slight reduction compared to the design specifically optimised for 20°C, with optimal design variables
at 100°C differing substantially from those at 20°C. In Figure 8.3, it is observed that the 100°C-optimum
exists at the intersection point of critical constraints c3 and c4, similar to the 20°C-optimum. Plotting the
100°C-optimum at 20°C in Figure 8.4, it becomes evident that the stress constraints are more reluctant
at 20°C, and the drawbar pull of the 100°C-optimum has decreased. The decreased drawbar pull
can be attributed to the increased Young’s and shear moduli at 20°C. The 100°C-optimum had lower
Young’s and shear moduli, resulting in reduced stiffness of the leg. This reduction is compensated
for by increasing the values of the design variables, ensuring a similar deflection and contact area
that is necessary for optimal drawbar pull. At 20°C, the increase in Young’s and shear moduli raises
the overall stiffness of the 100°C-optimised leg, consequently decreasing the deflection and drawbar
pull. Figure 8.4 further shows that the torque transmission constraint (c4) alters at a similar rate as the
drawbar pull, as both depend similarly on the changes in Young’s and shear moduli.
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Figure 8.3: Contour plot middle leg drawbar pull DP , ts vs L at tc,100°C , T = 100°C

Figure 8.4: Contour plot middle leg drawbar pull DP , ts vs L at tc,100°C , T = 20°C

8.2.2. Outer leg
The point at which the outer leg achieves optimal tractive performance at 100°C is:

xo,100°C =

tcts
L

 =

0.1020.234

28.1

 mm.

The thermal-resilient outer leg generates a maximum drawbar pull of 1.17 N at 100°C. At the standard
operating temperature of 20°C, the drawbar pull is equal to 1.15 N, which is again a slight reduction
compared to the design optimised specifically for 20°C. The system reacts similarly to the outer leg as
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to the middle leg. However, this time the optimal value of tc at 100°C is nearly identical to the optimal
value at 20°C. As discussed in Section 7.1.2, at the 20°C-optimum value of tc, the constraint line of c4
is parallel to the contour line of the drawbar pull, and the constraint line of c3 is much less critical for
higher values of ts and L, indicating that similar drawbar pull values can be achieved by varying ts and
L, while simultaneously reducing the stress in the flexure. Although due to the decreased yield strength
at 100°C, the constraint line of c3 has moved on top of that of c4, which creates the optimum point, as
visible in Figure 8.5. In contrast, Figure 8.6 illustrates that at 20°C, the 100°C critical constraint lines
have moved away from each other, and the 100°C-optimum has a decreased drawbar pull.

Figure 8.5: Contour plot outer leg drawbar pull DP , ts vs L at tc,100°C , T = 100°C

Figure 8.6: Contour plot outer leg drawbar pull DP , ts vs L at tc,100°C , T = 20°C
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Result Evaluation

This chapter describes an evaluation of the research findings. The study has yielded optima that sat-
isfy all constraints and significantly enhance tractive performance, thereby achieving the research goal.
However, the scope of the study extends beyond solely creating a design and obtaining the optimal
tractive performance. The aim is to comprehend the implications of these results for the design’s phys-
ical performance. The emphasis is placed on investigating potential design modifications informed by
research findings, examining potential variations of the optimum design variables, and understanding
the physical consequences of these results.

9.1. Design
Asmentioned at the start of the optimisation process, the final concept is subject to design modifications
as the optimisation study highlights areas where enhancements in objective performance or constraint
satisfaction are achievable. The final designs of the middle and outer legs at their respective optima
are presented in Figures 9.1 and 9.2, respectively. The modifications made to create the final designs
are detailed.

Initially, it was determined that the optimal straight flexure length was excessively large for the final
concept’s feasibility. To accommodate this, its connection point to the frame has been altered to connect
directly with the leg hub. Furthermore, the end of contact surface radius constraint was identified
as approaching critical status, showing the importance of a bump stop that covers the entire contact
surface with the ground. To integrate this bump stop, the frame has been modified into a triangular
shape. This modification would increase not only the bump stop coverage of the ground contact flexure
but also that of the straight flexure, if it is deflected into the frame when the leg rotates backwards during
skid steering or encounters unforeseen forces. The bump stop restricts maximum vertical deflections
of the ground contact flexure at 20% of the leg radius. Within the triangular frame, the connection of
the straight flexure with the leg hub structurally supports the forces at the point of flexure connection,
thereby reducing the structural reliance on the bump stop in the final concept. Consequently, a reduction
in bump stop thickness could result in weight savings. The final designs in the presented configuration,
without weight and structural optimisation, have a mass of approximately 48 grams.

One of the critical constraints of the optimisation is the stress encountered while climbing along
a sideways gradient. In the middle leg, the maximum stress is located near the connection point of
the curved flexure with the frame, whereas in the outer leg, it is near the connection point with the
straight flexure and the frame. These respective locations are consistent across all stress constraints.
An additional bump stop has been incorporated on the outer side of the straight flexure to stop over-
deflection and reduce fracture risk. The size of the bump stop depends on the optimised length of the
straight flexure.
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(a) (b)

Figure 9.1: Final design middle leg

(a) (b)

Figure 9.2: Final design outer leg

9.2. Optima points
The sharpness of the feasible region near the optima is examined to explore potential variations of
design variables. Although the sensitivities of the design variables for the middle leg are notably similar,
the narrowness of the feasible region in directions that involve tc indicates that minimal adjustments to
the optimum value of tc can be made without decreasing objective performance. However, the feasible
region near the optimum in the ts-L plane visible in Figure 7.3 is wide, and the optimum is flat in the
direction along the critical constraint lines. The latter suggests that various combinations of ts and
L could yield tractive performance comparable to the optimum at the fixed tc,opt. Nevertheless, these
combinationsmust lie on the critical constraint lines, as the sharp optimum in the direction perpendicular
to these lines results in objective performance degradation. The combination of values for ts ranges
approximately 0.22-0.38 mm, while for L, it ranges approximately 23-40 mm. Changes in the values of
ts and L could be justified when constraint performance improves with the altered values. As the critical
constraint lines are almost coincident, there is no substantial basis to modify the optimum values for the
middle leg. However, for the outer leg, changes in the values of ts and L could yield improved constraint
performance. While the optimum in the ts-L plane visible in Figure 7.3 is located at the intersection point
of two critical constraint lines, the optimum is flat in the direction along a single critical constraint line.
The other initial critical constraint, the stress in the flexure while climbing along a sideways gradient,
is demonstrated to become less restrictive, alongside the stress constraints while walking and skid
steering. For the middle leg, combinations of values of ts and L must lie on the critical constraint line,
as deviations in the direction perpendicular to the critical constraint lines lead to objective performance
degradation due to the sharp optimum in this direction. The combination of values usable for ts ranges
approximately 0.16-0.34 mm, whereas for L, it ranges approximately 20-40 mm. An example of a point
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on the critical constraint line is:

xo,new =

tcts
L

 =

0.1000.230

28.0

 mm.

The value of the objective function, the drawbar pull, at this point is equal to 1.17 N. The constraint
values at this point are presented in Table 9.1. If these values are compared to the constraint values
of the outer leg optimum in Table 7.2, it can be concluded that all constraints, excluding the critical
constraint c4, are further away from their limiting value, showing increased performance.

Table 9.1: Constraint performance outer leg at xo,new

Constraint Value Value with safety factor (1.5) Limiting value
c1 283 MPa 424 MPa ≤ 503 MPa
c2 289 MPa 433 MPa ≤ 503 MPa
c3 304 MPa 462 MPa ≤ 503 MPa
c4 5.00 mm - ≤ 5.00 mm
c5 59.0 mm - ≥ 58.5 mm
c6 82.7 mm - ≥ 55.0 mm

9.3. Contact surface wear
The physical impact of the optima is not only positive. The findings indicate that the thickness of the
ground contact (curved) flexure is small near the optima, raising concerns regarding potential perfor-
mance losses and failures induced by contact surface wear. The abrasive nature of lunar regolith and
the presence of sharp rocks can cause substantial damage to the flexure, while metal fatigue poses a
potential issue in future, longer missions. Increasing the ground contact flexure thickness could offer
a viable solution, but it is shown to significantly decrease tractive performance. Nonetheless, even a
slight increase in compliance added to the leg demonstrates an improvement in tractive performance
compared to the original rigid leg. An additional optimisation process incorporating an increased mini-
mum curved flexure thickness is presented in Appendix D.1.

9.4. Temperature range
The temperature range analysis revealed that the optima obtained at the standard operating temper-
ature of 20°C failed to satisfy the constraints under elevated temperatures, which may arise due to
increased ambient temperatures or heat accumulation caused by friction. Consequently, an effort was
made to obtain a thermal-resilient leg by optimising at 100°C. This process resulted in optima with a
slight reduction in drawbar pull of 0.04 N and 0.02 N for the respective middle and outer leg at the stan-
dard operating temperature, in comparison to those optimised at the standard operating temperature.
However, the stress experienced in the flexure is significantly reduced. This observation, combined with
the capability of the thermal-resilient leg to ensure functionality across the entire temperature range,
provides a reason to use the thermal-resilient design that is optimised at maximum temperature con-
ditions. It is also no coincidence that the newly proposed outer leg point xo,new is very similar to the
optimum of the thermal-resilient design. The fine margins between the design variable values, although
the respective drawbar pull at the standard operating temperature of 20°C differs by 0.02 N, do show
the sensitivity of the system.
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Discussion and recommendations

This chapter discusses the results and methodology of the study. Limitations for the design and opti-
misation model are identified, and recommendations are proposed for future work.

10.1. Design
The presented design is not yet a final product, leaving opportunities for improvement in future work.
The performance of the design could be improved by ensuring comprehensive bump stop coverage
over displacements causing significant stress peaks, for which the entire flexure’s deflection across
all locations must be analysed. Additionally, a weight and structural optimisation can be performed to
limit the total weight of the design. Furthermore, potential failure methods that affect the longevity of
the design should be analysed, such as contact surface wear and wear experienced due to contact
between the flexure and the bump stop. Based on these analyses, conclusions can be drawn about
the feasibility of the design. Future studies may also focus on making the design fault-tolerant. In the
scenario where the flexure may fail unexpectedly, the bump stop could potentially preserve the leg’s
functionality. This likelihood is enhanced if future studies explore increasing the bump stop curvature.

The created designs are the result of an extensive design and optimisation process aimed at increas-
ing tractive performance on lunar terrain. Although performance has improved, an optimal solution
remains unattainable due to designer bias in the design process. A limitation inherent to the created
design is the induced waddling motion, attributable to variations in vertical stiffness dependent on leg
orientation, that causes extra energy losses. Future work may explore alternative design solutions to
further improve performance. A design could be created with a uniform optimal stiffness that enhances
not only energy efficiency but also ensures a consistent optimised drawbar pull over the entire contact
surface, instead of the maximum drawbar pull obtained solely in the upright orientation, as is the case
in this study. The achievement of uniform stiffness is complicated by the torque transmission and climb-
ing height constraints. However, the climbing height has proven to be the least critical constraint, as it
comfortably reaches the benchmark due to the design created. Although it is positive that the design
excels in this area, if a different design objective is adopted, such as decreasing the waddling motion,
the position of the climbing hook could be modified.

As demonstrated in this study, the tractive performance of a leg on lunar terrain improves with
a compliant, uniform contact surface. However, most extra-terrestrial rover wheels have integrated
grousers, which enhance tractive performance by providing additional thrust due to the shearing action
of the vertical surfaces in the granular lunar soil [21]. Future work could incorporate grousers into the
design and analytical optimisation model to further improve tractive performance, while significantly
impacting the leg’s compliant behaviour.

10.2. Contact surface wear
Contact surface wear is the most significant vulnerability of the design, induced by the small thickness
of the ground contact (curved) flexure near the optima. Consequently, future work must analyse the
influence of contact surface wear on the longevity of the design. To achieve optimal tractive perfor-
mance without concerns of contact surface wear, future work may focus on creating designs with a
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larger ground contact flexure thickness that maintain the design’s deformability in the radial direction
and stiffness in the longitudinal direction. A solution to still utilise the made design is employing alterna-
tive materials. Such materials should have a high strain-to-failure ratio, allowing them to deflect without
fracturing. Nitinol may serve as such a material due to its testing by NASA for use on rover wheels.
Because nitinol is a shape memory alloy, it ”provides enhanced control over the effective stiffness as a
function of the deformation, providing increased design versatility” [38]. Additionally, an alternative ma-
terial could also address other challenges associated with low flexure thickness, such as manufacturing
complexity and space journey survivability (which is not in the scope of this study).

10.3. Analytical optimisation model
In the constructed model, several assumptions and simplifications have been applied, which result in
the model calculating an estimation of the true performance, whereas the optima of the tractive perfor-
mance are presented with significant precision. The majority of these assumptions and simplifications
are accounted for by the comparative nature of the design variables in this study and the optimisation
limitations, such as computational constraints. To validate the performance of the developed design
and the theoretical model, experimental evaluations must be conducted.

To increase the model’s accuracy in representing reality, some assumptions require modifications.
Most importantly, the assumption of linear deflections and a single load application point might cause
the model to inaccurately describe the performance of the compliant design compared to the rigid
design. Instead of presuming linear deflections and a single load application point, the flexure should
be characterised by non-linear deflections and granular contact load. Achieving this analytically is
challenging, but it may be accomplished using simulation software. A potentially analytically achievable
method is the assumption of non-linear deflections due to a single contact pressure load, which is
likely more accurate than the current assumption. However, it could be challenging to model and
computationally demanding. To ensure easy handling of the model in future use cases, the manual
iteration of the longitudinal force Fx can be converted into a computed iteration.

The terramechanics model can have multiple improvements. Firstly, the assumption that the flat-
tened section length remains constant between static and quasi-static interactions, and that the curved
parts retain the original radius, is debatable, as the deflection created by the radial flexure is not incorpo-
rated outside the force-deflection relationship. Although the analytical terramechanics framework using
compliant parts is limited, a study could explore applying the substitute-circle approach of Bekker [9]
and Schmid [39], which assumes that the deformed wheel or leg retains a residual radius. Secondly, the
normal stress equation is based on the assumption that the contact surface between the wheel and the
soil can be modelled as a flat plate. This assumption loses accuracy for smaller wheels, or in this case,
legs. A study by Meirion-Griffith and Spenko [40] developed a normal stress equation incorporating the
influence of wheel diameter. However, this model is currently based on a limited set of experimental
results, which should be improved and extended for applications involving lunar regolith in future work.
Thirdly, the proposed deformation resistance equation is typically employed to model pneumatic tire
deformation. Although the analytical model contains the same parameter assumptions as Ishigami’s
study [11], it is recommended for future work to obtain another deformation resistance equation that is
more suitable for the design. Lastly, the multi-pass effect can be incorporated, taking into account the
changes in tractive performance due to the pre-compression of lunar soil by a preceding leg.

To ensure that a future design is not at risk of contact surface wear, a constraint must be imple-
mented based on the properties of the lunar soil and the mission duration. However, this is complicated
by the uncertainty of encountered obstacles and their unknown effect on wear. Furthermore, the defi-
nition of the climbing height could be improved. The current definition expects that if the gripping point
makes contact with an obstacle, the Lunar Zebro will be able to climb over it, whereas in reality, factors
such as the shape and texture of obstacles, the gait, the leg orientation with respect to the obstacle
and the combination of tractive force and slippage of the legs play significant roles. Other constraint
definitions that could be improved are those of torque transmission and end of contact surface radius.
In this study, it is assumed that these constraints limit walking, whereas they could instead limit climbing
along a sideways gradient, as the legs on one side of the Lunar Zebro will experience larger normal
forces than when walking. However, these constraints are not as critical as a stress constraint, given
that it is not necessarily the case that the torque cannot be transmitted or the next step cannot be set
if these constraints are slightly violated, due to the limiting values of the constraints being very strict.
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Conclusion

This paper presents an effort to design a compliant leg module to enhance the tractive performance of
the Lunar Zebro on lunar terrain. To achieve this research goal, different sub-goals were identified and
reached, each resulting in new insights.

Firstly, a conceptual compliant leg module for the Lunar Zebro was developed. Given the limitations
imposed by the exclusive use of aluminium 7075-T6, the minimal mass of the Lunar Zebro, and its
associated low gravitational force on the Moon, a design that deflects purely under the influence of
gravity was found to require unfeasibly small flexure thicknesses. Consequently, a flexure design is
employed that deflects under both gravitational and traction forces.

Secondly, a model was created to calculate the tractive performance of the leg concept based
on terramechanics and compliance theory. The model directly combines the compliant behaviour of
the leg concept with the mechanics of the interaction between lunar soil and the leg to calculate the
tractive performance. It was observed that accurately creating an analytical model of the compliant
behaviour of the flexure was challenging due to the non-linear contact load on granular soil, leading to an
approximation of compliance behaviour by applying a point load and assuming linear deflections. The
model is capable of estimating tractive performance for different materials, dimensions and surfaces.

Thirdly, an optimisation process was conducted to identify the design variables that yield optimal
tractive performance for the created compliant leg module, while being limited by constraints. The
optimisation process yielded sets of design variables that result in an optimal drawbar pull of 1.81 N for
the middle leg and 1.17 N for the outer leg, marking respective improvements of 116% and 206% over
the original rigid legs. The legs experience significantly reduced sinkage and demonstrate an improved
capability to convert the torque input into tractive output, thereby enhancing the energy efficiency of the
Lunar Zebro. It was determined that constraints related to the maximum stress while climbing along a
sideways gradient and the torque transmission were critical for both the middle and outer legs.

An analysis aimed at the sharpness of the feasible region near the optima revealed an alternative
set of design variables for the outer leg that offers tractive performance similar to the optimum while
improving constraint performance. Additionally, a performance analysis was conducted to create a
thermal-resilient design capable of operating at temperatures up to 100°C, resulting in sets of design
variables with a drawbar pull of 1.77 N for the middle leg and 1.15 N for the outer leg at the standard
operating temperature of 20°C. Furthermore, the stress in the flexure is significantly reduced compared
to the leg optimised at the standard operating temperature.

Fourthly, the individual influence of each compliant variable on the tractive performance was inves-
tigated. The sensitivity of the design variables for the middle leg was observed to be similar, indicating
equal influence on tractive performance. However, the design variables for the outer leg exhibited
greater and more distinct sensitivities, demonstrating significant changes when the design variables
are varied, with the curved flexure thickness exerting greater influence on tractive performance com-
pared to other variables. In the optimal design variable set, the curved flexure is thin and any increase
in thickness results in a notable decrease in tractive performance. As the curved flexure makes contact
with the soil, its minimal thickness raises concerns regarding contact surface wear, increasing the risk
of failure and limiting potential mission duration.
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Ultimately, an innovative compliant Lunar Zebro leg with enhanced tractive performance on the
lunar terrain is presented. The improvement in performance at the determined optima is significant.
Although concerns are raised about contact surface wear at the optima and the reduction in tractive
performance that results from an increase in curved flexure thickness, the introduction of a minimal
amount of compliance to the leg, while staying in the feasible region of the design variables, enhances
its tractive performance compared to the original rigid design, highlighting the concept’s potential. Ex-
periments will ascertain whether the design’s performance aligns with expectations and if concerns
regarding contact surface wear are warranted. The outcome will inform a strategy for future work,
potentially involving alternative material choices.



Abbreviations

FOSULT Ultimate factor of safety in aircraft and spacecraft.

CFD Central Finite Difference.
CoM Centre of Mass.
CoR Centre of Rotation.

FACT Freedom and Constraint Topology.
FBD Free Body Diagram.
FEA Finite Element Analysis.
FFD Forward Finite Difference.

IR Infeasible Region.

PRBM Pseudo-Rigid Body Modelling.

SQP Sequential Quadratic Programming.
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Nomenclature

α Load application angle
β Leg flexure angle
βslip Slip angle
∆xi Perturbation size
δi Deflection of loading point in i-direction
δt Vertical deflection
δB,i Deflection of curved flexure at point B in

the i-direction
δC,i Deflection of straight flexure at point C in

the i-direction
η Tractive efficiency
γ Sideways gradient angle
Ŝxi,CFD Normalised sensitivity CFD
Ŝxi,FFD Normalised sensitivity FFD
κ Longitudinal shear deformation modulus
κz Lateral shear deformation modulus
λ Terrain reboundness due to soil elasticity
X Design variable vector
X0 Initial point
Xm,100°C Optimal point middle leg at 100°C
Xm,opt Optimal point middle leg
Xo,100°C Optimal point outer leg at 100°C
Xo,new New point outer leg
Xo,opt Optimal point outer leg
µ Shear constant
ω Angular velocity
R Distance between the centre of curvature

and the centroid of the cross-section
ϕ Coulombian internal friction angle
ϕi Angular displacement of loading point in i-

direction
ϕB,i Angular displacement of curved flexure at

point B in the i-direction
ϕC,i Angular displacement of straight flexure at

point C in the i-direction
σ Soil normal stress
σy Tensile yield strength
σc,i Curved flexure normal stress in i-direction
σc,side Curved flexure stress while climbing along

a sideways gradient
σc,skid Curved flexure stress while skid steering
σc,vm Curved flexure von Mises stress
σc,walk Curved flexure stress while walking
σmax Maximum von Mises stress
σs,i Straight flexure normal stress in i-direction
σs,side Straight flexure stress while climbing along

a sideways gradient
σs,skid Straight flexure stress while skid steering

σs,vm Straight flexure von Mises stress
σs,walk Straight flexure stress while walking
τ Longitudinal soil shear stress
τz Lateral soil shear stress
τc,ij Curved flexure shear stress in i,j-surface
τs,ij Straight flexure shear stress in i,j-surface
θ Leg angle
θ Tangential coordinate
θf Soil entry angle
θm Angle of the maximum normal stress
θr Soil exit angle
θt Soil flattening angle
θf0 Initial soil entry angle
Ac Curved flexure surface area
As Straight flexure surface area
bLZ Width between outer legs and CoM
c Soil cohesion
c1 Wheel soil interaction coefficient
c2 Wheel soil interaction coefficient
ci Distance from neutral axis i
cj Constraints
DP Drawbar pull
E Young’s modulus
e Eccentricity
F Vertical ground reaction force
f Objective
Fi Force at deflection point in i-direction
Fm Total Lunar Zebro gravitational force
FB,i Force at point B in i-direction
FC,i Force at point C in i-direction
Fc,i Force on leg in i-direction
Fm,i Total Lunar Zebro gravitational force in i-

direction
G Shear modulus
g Gravitational acceleration
H Soil thrust
h Deformable section height
Ic,i Curved flexure moment of inertia about the

i-axis
Is,i Straight flexure moment of inertia about

the i-axis
j Longitudinal shear displacement
Jc Curved flexure polar moment of inertia
Js Straight flexure polar moment of inertia
jz Lateral shear displacement
kϕ Frictional soil deformation modulus
kc Cohesive soil deformation modulus
ke Parameter related to the wheel/leg con-

struction
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Nomenclature 72

L Straight flexure length
l Arc length
lt Flat contact section length
lxi

Lower bound of design variable xi

M Total bending moment
m Lunar Zebro mass
Mi Moment in flexure around i-direction
MB,i Moment at point B around i-axis
MC,i Moment at point C around i-axis
N Axial load
N Leg load factor
n Exponent of soil deformation
Pw Average ground pressure flattened sur-

face
Pcr Critical ground pressure
R Leg radius
r Radial coordinate
R∗ Distance between the centre of curvature

and the neutral axis
Rd Deformation resistance
Rt Total external resistance force
Rz Lateral resistance force
Reff Effective remaining radius
Rz,c Lateral compaction resistance force
s Slip ratio
Sxi,CFD Sensitivity CFD

Sxi,FFD Sensitivity FFD
SF Safety factor
T Resistance torque
T Temperature
T Torsion moment
tc Curved flexure thickness
ts Straight flexure thickness
U Strain energy
uxi

Upper bound of design variable xi

V Shear load
vt Theoretical velocity
vx Forward velocity
vz Lateral velocity
W Gravitational force on axle
w Leg width
x Longitudinal coordinate
xi Design variable
xi,opt Optimal design variable value
y Vertical coordinate
yc Climbing height
yg Distance between gripping point and axle
ycom Height of CoM
ymin Minimal climbing height
z Lateral coordinate
z Leg sinkage
z0 Static leg sinkage
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A.1. Function Tree

Figure A.1: Function Tree
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A.2. Morphological chart

Table A.1: Morphological chart

Functional
requirement

Strategy Embodiments

1. System shall convert motor rotation into forward motion
System shall
provide increased
ground contact
surface

In-plane
deformation

Single ground
contact flexure

C-flexure Cylinder flexure Double sided
curved flexures

Double sided
X-flexure

Flexure band
double [41]

Half-circle flexure Honeycomb Origami Springs

Straight radial
flexures

Wire carcass X-flexure [42] Compliant linear
guide

Double half-circle
flexures

Horizontal flexures Leaf spring
suspension

Single linear
guided ground
flexure attached to
springs

Spiral flexures
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Functional
requirement

Strategy Embodiments

Out-of-plane
deformation

C-flexures Cylinder flexures Double sided
curved flexures

Double sided
X-flexure

Flexure band

Half-circle flexures Honeycomb Origami Springs Straight flexures

Wire carcass X-flexure

System shall
provide a gripping
point

Leg tip point Minimise radius [7] Minimise CoR
offset [7]

Tip hooking point
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Functional
requirement

Strategy Embodiments

Uncoupled
gripping point

Uncoupled hook [7]

System shall
re-establish
ground contact
after each step
cycle

Tip radial on
flexure

Standard flexure tip

Tip radial on
framework

Standard
framework tip

Curved framework
tip
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Functional
requirement

Strategy Embodiments

2. System shall support the weight of the vehicle
System shall
provide a
framework to
connect flexure
components

Aluminium frame Sharp angle C-shape Triangle C-shape with
cylinder

G-shape

Cylinder Mirrored Z-shape Double C-shape
connection

Half-circle

System shall
provide a contact
surface to connect
flexures with the
ground

Single flexure Single flexure
connected to frame

Single flexure
connected to
flexures

Cross pattern
flexure

Non-flexure
materials

Blocks directly
connected to
flexures

Blocks connected
to central flexure
[43]

Traction pads on
central flexure

Plates connected
with hinges
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Functional
requirement

Strategy Embodiments

No contact
surface (Flexure
to ground
contact)

Spiral flexures T flexures

System shall
prevent excessive
deflection of
flexible elements

Contact Structural bump
stop

Outpointing bump
stop

Sheet bump stop
(Exomars) [41]

Stiff inner frame
(LRV) [44]

Linear guide

Dimensions Thin flexures Combination of
thick flexures

System shall
provide a
mechanical
interface with the
motor shaft

Weld Welded to motor
axis
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Functional
requirement

Strategy Embodiments

Clamped Clamped on motor
axis

Set screw Screwed to motor
axis
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Functional
requirement

Strategy Embodiments

3. System shall operate reliably in the lunar environment
System shall resist
abrasive wear
from lunar soil

Material contact Flexure contact

Material layer Nylon textile [43]
Coating layer APS Al2O3-TiO2

coating [45]
Cr3C2-NiCr
coating [45]

System shall
minimise scooping
lunar regolith
during operation

Minimise
sinkage

Increased contact
surface

Resistant
coating layer

APS Al2O3-TiO2
coating [45]

Cr3C2-NiCr
coating [45]

Inward curling tip Curled end tip [7]

Perforated
structure

Perforated ground
contact flexure

System shall
prevent
accumulation of
lunar regolith on
critical surfaces

Resistant
coating layer

APS Al2O3-TiO2
coating [45]

Cr3C2-NiCr
coating [45]

Resistant shape Fillet edges Chamfered edges Perforated
structure
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A.3. ACRREx table

Table A.2: ACRREx matrix with new solutions, new sub-solutions implemented in voids are indicated with *

In-plane deformation Out-of-plane deformation

C-flexures
*

Cylinder flexures

Double sided
curved flexures

*

Double sided
X-flexures

*

Flexure bands
*

Half-circle flexures
*

Honeycomb
*

Origami

*

Springs

*

Straight flexures
*

Wire flexures
*

X-flexures
*
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A.4. Concept designs
Every concept design consists of a combination of functional requirement embodiments from the mor-
phological chart in Appendix A.2. In Table A.3, an overview is given of the used embodiments per
concept, coupled to the functional requirements below:

1. System shall convert motor rotation into forward motion.

(a) System shall provide increased ground contact surface.
(b) System shall provide a gripping point.
(c) System shall re-establish ground contact after each step cycle.

2. System shall support the weight of the vehicle.

(a) System shall provide a framework to connect flexure components.
(b) System shall provide a contact surface to connect flexures with the ground.
(c) System shall prevent excessive deflection of flexible elements.
(d) System shall provide a mechanical interface with the motor shaft.

3. System shall operate reliably in the lunar environment.

(a) System shall resist abrasive wear from lunar soil.
(b) System shall minimise scooping lunar regolith during operation.
(c) System shall prevent accumulation of lunar regolith on critical surfaces.

It is worth noting that for certain functional requirements, all concepts use the same embodiment.
In some cases, this is due to that embodiment simply being the best applicable, such as the fillet edges
used to prevent lunar regolith from accumulating on flexure edges. In other cases, the embodiment
choice results from the Lunar Zebro design team. It became clear that the design team preferred to
connect the system to the motor axis using a set screw and that the aluminium flexure does not get
additional soil contact protection. These preferences are applied to the different concepts.

Table A.3: Concept embodiment usage

Embodiment usage

Concept 1

1. System shall convert motor rotation into forward motion.

(a) Single ground contact flexure
(b) Uncoupled hook
(c) Curved framework tip

2. System shall support the weight of the vehicle.

(a) C-shape frame
(b) Single ground contact flexure connected to frame
(c) Structural bump stop
(d) Set screw

3. System shall operate reliably in the lunar environment.

(a) Aluminium flexure contact
(b) Increased contact surface and inward curling tips
(c) Fillet edges
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Embodiment usage

Concept 2

1. System shall convert motor rotation into forward motion.

(a) Straight radial flexures
(b) Uncoupled hook
(c) Standard flexure tip

2. System shall support the weight of the vehicle.

(a) C-shape frame
(b) Single ground contact flexure connected to flexures
(c) Combination of flexures
(d) Set screw

3. System shall operate reliably in the lunar environment.

(a) Aluminium flexure contact
(b) Increased contact surface
(c) Fillet edges

Concept 3

1. System shall convert motor rotation into forward motion.

(a) Horizontal flexures
(b) Uncoupled hook
(c) Standard framework tip

2. System shall support the weight of the vehicle.

(a) Half-circle frame
(b) Single ground contact flexure connected to frame

and flexures
(c) Outpointing bump stop
(d) Set screw

3. System shall operate reliably in the lunar environment.

(a) Aluminium flexure contact
(b) Increased contact surface
(c) Fillet edges
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Embodiment usage

Concept 4

1. System shall convert motor rotation into forward motion.

(a) Half-circle flexures (Out-of-plane deformation)
(b) Uncoupled hook
(c) Standard flexure tip

2. System shall support the weight of the vehicle.

(a) C-shape frame
(b) Single ground contact flexure connected to frame

and flexures
(c) Stiff inner frame
(d) Set screw

3. System shall operate reliably in the lunar environment.

(a) Aluminium flexure contact
(b) Increased contact surface and perforated ground

contact flexure
(c) Fillet edges and perforated ground contact flexure

Final concept

1. System shall convert motor rotation into forward motion.

(a) Straight radial flexure
(b) Uncoupled hook
(c) Standard flexure tip

2. System shall support the weight of the vehicle.

(a) C-shape frame
(b) Single ground contact flexure connected to frame

and flexure
(c) Structural bump stop
(d) Set screw

3. System shall operate reliably in the lunar environment.

(a) Aluminium flexure contact
(b) Increased contact surface
(c) Fillet edges
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Embodiment usage

Final design

1. System shall convert motor rotation into forward motion.

(a) Straight radial flexure
(b) Uncoupled hook
(c) Standard flexure tip

2. System shall support the weight of the vehicle.

(a) Triangular-shape frame
(b) Single ground contact flexure connected to frame

and flexure
(c) Structural bump stop
(d) Set screw

3. System shall operate reliably in the lunar environment.

(a) Aluminium flexure contact
(b) Increased contact surface
(c) Fillet edges

A.5. Weight factor reasoning

Table A.4: Weight factor reasoning of criterion subject

Criterion subject Weight Reasoning

Traction transmissibility 30 The leg is incapable of moving the Lunar Zebro without
traction transmission.

Deformability 20 The research focus is on improving the tractive performance
of the leg module using deformation, making it necessary
that the design is capable of doing so.

Durability 20 The leg module cannot be repaired on the Moon and thus
must be durable.

Weight 15 Low weight decreases the cost needed to get the Lunar
Zebro to the Moon, but the leg module weight is not expected
to drastically increase relative to the old solid design.

Climbing ability 10 The research focus is on improving the tractive performance
of the leg module, but the leg module needs to be able to
climb a certain height to ensure functionality on the Moon
surface.

Manufacturability 5 The time consumption of custom-made production is a minor
inconvenience, as a limited number of legs are needed.

Total 100
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A.6. Concept selection evaluation

Table A.5: Concept 1 evaluation chart, main subject indicated with *

Concept 1
Subject Concept selection criteria Score Reasoning
Traction
transmissibility *

Capability to transmit moment from the
motor axis to leg contact.

++ Concept 1 is expected to be capable of transmitting the moment from the motor axis to leg
contact, due to the small distance between the stiff frame and the ground contact flexure.

Capability to transmit moment at leg
contact to forward movement.

+ Concept 1 is expected to be decently capable of transmitting the force at leg contact to
forward movement, due to the full contact surface. The contact surface is enlarged by radial
deformation, but this deformation is expected to be small.

Deformability Capability to deform in a range of 3-12
mm.

o Concept 1 is expected to perform mediocre at vertically deforming in a range of 3-12 mm,
due to the limited gravitational force available and the fixed connections of the ground
contact flexure, leading to an increase in stiffness.

Capability to do a smooth deformation
motion and transition.

- Concept 1 is expected to have a wobbling, non-smooth motion, due to the fixed connections
not giving space for deformation. Because of the high stiffness at the end of the contact
surface, the transition to the next leg is expected to succeed.

Durability
Capability to counter over-deflection. + Concept 1 is expected to be decently capable of countering vertical over-deflection, due to

the bump stop created by the frame. Horizontal over-deflection is limited due to the ends of
the flexure being connected to the frame. This does mean that the stress level of this flexure
is expected to be higher.

Capability to have low stress levels. -
Capability to withstand forces and
moments along the lateral direction.

+ Concept 1 is expected to be decently capable of withstanding forces and moments along the
lateral direction, due to both ends being connected to the frame and the small distance
between these connections and the ground contact flexure.

Weight Capability to be low weight. + Concept 1 is expected to be of a decently low weight, due to the normal-sized frame and the
single flexure.

Climbing ability Capability to climb by having a high
gripping point.

++ Concept 1 is expected to perform well at climbing due to the uncoupled gripping point at
radius distance.

Manufacturability Capability to manufacture with
minimum parts.

++ Concept 1 is expected to be capable of being manufactured with minimal parts in a sufficient
time frame, due to its single flexure design.

Capability to manufacture in a sufficient
time frame.

++
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Table A.6: Concept 2 evaluation chart, main subject indicated with *

Concept 2
Subject Concept selection criteria Score Reasoning
Traction
transmissibility

Capability to transmit moment from the
motor axis to leg contact.

- Concept 2 is not expected to be capable of transmitting the moment from the motor axis to
leg contact, due to the large distance between the stiff frame and the ground contact flexure.
To get the desired traction transmission, the flexure needs to have an increase in stiffness,
leading to a performance decrease of other concept selection criteria, such as the
deformability and weight.

Capability to transmit moment at leg
contact to forward movement.

+ Concept 2 is expected to be capable of transmitting the force at leg contact to forward
movement, due to the full contact surface. The contact surface is enlarged by radial and
longitudinal deformation. This deformation is expected to be large.

Deformability * Capability to deform in a range of 3-12
mm.

++ Concept 2 is expected to be capable of vertically deforming in a range of 3-12 mm, due to
the large flexures and the ground contact flexure being capable of deflecting horizontally at
the end connections. The traction force contributes to the deflection.

Capability to do a smooth deformation
motion and transition.

+ Concept 2 is expected to be decently capable of creating a smooth deformation motion, with
the ground flexure having enough room to deflect. However, the high radial stiffness of the
middle flexures may take away some of the smoothness. Because of the radial flexure at the
end of the contact surface, the transition to the next leg is expected to succeed.

Durability
Capability to counter over-deflection. o Concept 2 is expected to perform mediocre at countering both vertical and horizontal

over-deflection, due to not having a bump stop but instead relying on the stiffness of the
multiple flexures.

Capability to have low stress levels. ++ Concept 2 is expected to have low stress levels due to the length of the flexures.
Capability to withstand forces and
moments along the lateral direction.

o Concept 2 is expected to perform mediocre at withstanding forces and moments along the
lateral direction, due to long flexures with a large distance between the frame and the ground
contact flexure. The use of multiple flexures does give an increase in lateral stiffness.

Weight Capability to be low weight. ++ Concept 2 is expected to be low weight, due to the small frame size and multiple lightweight
flexures.

Climbing ability Capability to climb by having a high
gripping point.

o Concept 2 is expected to perform mediocre at climbing due to the uncoupled gripping point
at approximately half radius distance.

Manufacturability Capability to manufacture with
minimum parts.

+ Concept 2 is expected to be decently capable of being manufactured with minimal parts in a
sufficient time frame, due to the ease of the flexure connections and multiple flexure parts.

Capability to manufacture in a sufficient
time frame.

+
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Table A.7: Concept 3 evaluation chart, main subject indicated with *

Concept 3
Subject Concept selection criteria Score Reasoning
Traction
transmissibility *

Capability to transmit moment from the
motor axis to leg contact.

++ Concept 3 is expected to perform well at transmitting the moment from the motor axis to leg
contact, due to the small distance between the stiff frame and the ground contact flexure.

Capability to transmit moment at leg
contact to forward movement.

+ Concept 3 is expected to be decently capable of transmitting the force at leg contact to
forward movement, due to the full contact surface. The contact surface is enlarged by radial
deformation, but this deformation is expected to be small.

Deformability Capability to deform in a range of 3-12
mm.

- - Concept 3 is expected to perform badly at vertically deforming in a range of 3-12 mm, due to
the limited gravitational force available and the multiple flexures used to counter the
deformation in other directions. The flexures are expected to be very thin to be able to get
the desired deformation, making the structure vulnerable to wear and difficult to manufacture.

Capability to do a smooth deformation
motion and transition.

- - Concept 3 is not expected to have smooth deformation, due to the ground flexure having
three fixed points to the frame. Because of the high stiffness at the end of the contact
surface, the transition to the next leg is expected to succeed.

Durability
Capability to counter over-deflection. ++ Concept 3 is expected to perform well at countering both vertical and horizontal

over-deflection, due to the bump stop and the FACT-design limiting movements in other
directions.

Capability to have low stress levels. - Concept 3 is expected to have decently high stress levels due to the flexures not being able
to be as thin as needed to get the desired deformation.

Capability to withstand forces and
moments along the lateral direction.

++ Concept 3 is expected to perform well at withstanding forces and moments along the lateral
direction, due to the FACT-design limiting movements in other directions.

Weight Capability to be low weight. o Concept 3 is expected to be of mediocre weight, due to the larger frame and multiple
lightweight flexures.

Climbing ability Capability to climb by having a high
gripping point.

++ Concept 3 is expected to perform well at climbing due to the uncoupled gripping point at
radius distance.

Manufacturability Capability to manufacture with
minimum parts.

o Concept 3 is expected to perform mediocre at being capable of manufacturing with minimal
parts in a sufficient time frame, due to the multiple very thin flexures needed.

Capability to manufacture in a sufficient
time frame.

o
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Table A.8: Concept 4 evaluation chart, main subject indicated with *

Concept 4
Subject Concept selection criteria Score Reasoning
Traction
transmissibility

Capability to transmit moment from the
motor axis to leg contact.

+ Concept 4 is expected to be decently capable of transmitting the moment from the motor
axis to leg contact, due to the large amount of flexures used to create a structure that is stiff
in the direction of walking.

Capability to transmit moment at leg
contact to forward movement.

+ Concept 4 is expected to be decently capable of transmitting the force at leg contact to
forward movement, due to the contact surface being enlarged by both out-of-plane
deformation. Though the contact surface is made smaller by the perforated ground contact
flexure.

Deformability * Capability to deform in a range of 3-12
mm.

+ Concept 4 is expected to perform decently at vertically deforming in a range of 3-12 mm, due
to the flexures being able to deflect in radial and lateral directions. A consideration needs to
be made of the amount of flexures required to create traction in the direction of walking,
while also leaving enough room for vertical deformation. However, a problem could occur
when the flexures deform too much in the lateral direction, as they would go outside the
design volume, potentially coming in contact with other legs, depending on the gait used.

Capability to do a smooth deformation
motion and transition.

+ Concept 4 is expected to have a smooth deformation motion, due to the ground flexure
being connected to other flexures, while the transition to the next leg is expected to succeed
due to the smaller cylinder flexures with higher stiffness at the end of the contact surface.

Durability
Capability to counter over-deflection. + Concept 4 is expected to perform decently at countering both vertical and horizontal

over-deflection, due to the stiff inner frame.
Capability to have low stress levels. o Concept 4 is expected to have mediocre stress levels due to the length of the flexures.
Capability to withstand forces and
moments along the lateral direction.

o Concept 4 is expected to perform mediocre at withstanding forces and moments along the
lateral direction, due to the half-circle flexures having a low stiffness in the lateral direction.

Weight Capability to be low weight. - Concept 4 is expected to be of decently high weight, due to the larger frame and the large
amount of flexures.

Climbing ability Capability to climb by having a high
gripping point.

++ Concept 4 is expected to perform well at climbing due to the uncoupled gripping point at
radius distance.

Manufacturability Capability to manufacture with
minimum parts.

- Concept 4 is expected to be difficult to manufacture with minimum parts in a sufficient time
frame, due to the large amount of flexures needed and the difficulty of the connections.

Capability to manufacture in a sufficient
time frame.

-
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B.1. Solving procedure flow charts

Figure B.1: Solving procedure static model Figure B.2: Solving procedure quasi-static model
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C.1. Model parameters

Table C.1: Model parameters

Symbol Description Value Unit

Material properties

E Young’s modulus 71.7 1 GPa

G Shear modulus 26.9 1 GPa

SF Stress safety factor 1.5 –

Terramechanics

κ Shear deformation modulus 0.018 2 m

λ Terrain reboundness 0.1 3 –

ϕ Internal friction angle 42 4 °

c Soil cohesion coefficient 0.52 4 kPa

g Gravitational acceleration 1.62 4 m/s²

h Deformable section height of leg 0.020 m

kc Cohesion modulus of soil deformation 1.4 2 kPa/m1−n

ke Leg construction parameter 7 3 –

kϕ Friction modulus of soil deformation 820 2 kPa/mn

m Lunar rover mass 2.5 kg

n Exponent of soil deformation 1 –

N Leg load factor (Middle / Outer leg) 2 / 4 –

s Slip ratio 1 –

Force-deflection relationship

α Load application angle 41.8 °

β Leg flexure angle 83.6 °

R Leg radius 0.060 m

w Leg width 0.020 m

Skid steering constraint

µ Shear constant (rectangle) 1.2 –

Sideways gradient constraint

γ Soil gradient angle 15 °

bLZ Width between outer legs and CoM 0.125 m

ycom Height of CoM 0.06 m

Climbing height constraint

yg Height between gripping point and axle 0.034 m
1 At 20°C, data from [46]
2 Data from [47]
3 Data from [11]
4 Data from [48]
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C.2. Temperature range performance analysis
The optima of the standard (20°C-optimised) and the thermal-resilient (100°C-optimised) designs are
presented with their objective and constraint performance. The values are presented in high signif-
icant figures as a result of the exact optimum location obtained in the optimisation process. These
values are mathematical optima that cannot be translated to reality with such precision due to the as-
sumptions made in the analytical optimisation model and the physical challenges in production. When
using slightly altered or rounded values of the optima, the objective and constraint performance results
change accordingly.

C.2.1. Middle leg
The point at which the middle leg achieves optimal tractive performance at 20°C is:

xm,opt =


tc

ts

L

 =


0.13857

0.30778

33.16760

 mm.

The objective and constraint performances for this optimum point at various temperatures are detailed
in Table C.2 and Table C.3, respectively.

Table C.2: Objective performance middle leg per temperature

Objective Value

T = 100°C (Constraints violated)

Drawbar pull DP 1.8268 N

Thrust H 1.9696 N

Total external resistance Rt 0.1428 N

Sinkage z 1.6010 mm

Vertical deformation δt 11.1568 mm

T = 20°C

Drawbar pull DP 1.8085 N

Thrust H 1.9471 N

Total external resistance Rt 0.1387 N

Sinkage z 1.6351 mm

Vertical deformation δt 10.6091 mm

T = -80°C

Drawbar pull DP 1.7975 N

Thrust H 1.9339 N

Total external resistance Rt 0.1363 N

Sinkage z 1.6557 mm

Vertical deformation δt 10.2951 mm
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Table C.3: Constraint performance middle leg per temperature

Constraint Value Value with safety factor (x1.5) Limiting value

T = 100°C (Constraints violated)

c1 308 MPa 462 MPa ≤ 448 MPa

c2 314 MPa 471 MPa ≤ 448 MPa

c3 336 MPa 504 MPa ≤ 448 MPa

c4 5.27 mm - ≤ 5.00 mm

c5 59.0 mm - ≥ 58.5 mm

c6 81.7 mm - ≥ 55.0 mm

T = 20°C

c1 307 MPa 461 MPa ≤ 503 MPa

c2 314 MPa 470 MPa ≤ 503 MPa

c3 335 MPa 503 MPa ≤ 503 MPa

c4 5.00 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 82.3 mm - ≥ 55.0 mm

T = -80°C

c1 307 MPa 460 MPa ≤ 545 MPa

c2 313 MPa 469 MPa ≤ 545 MPa

c3 335 MPa 502 MPa ≤ 545 MPa

c4 4.84 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 82.5 mm - ≥ 55.0 mm
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C.2.2. Thermal-resilient middle leg
The point at which the middle leg achieves optimal tractive performance at 100°C is:

xm,100°C =


tc

ts

L

 =


0.14981

0.38005

40.88794

 mm.

The objective and constraint performances for this optimum point at various temperatures are detailed
in Table C.4 and Table C.5, respectively.

Table C.4: Objective performance thermal-resilient middle leg per temperature

Objective Value

T = 100°C

Drawbar pull DP 1.7915 N

Thrust H 1.9265 N

Total external resistance Rt 0.1351 N

Sinkage z 1.6672 mm

Vertical deformation δt 10.1254 mm

T = 20°C

Drawbar pull DP 1.7731 N

Thrust H 1.9045 N

Total external resistance Rt 0.1314 N

Sinkage z 1.7028 mm

Vertical deformation δt 9.6260 mm

T = -80°C

Drawbar pull DP 1.7621 N

Thrust H 1.8915 N

Total external resistance Rt 0.1293 N

Sinkage z 1.7244 mm

Vertical deformation δt 9.3401 mm
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Table C.5: Constraint performance thermal-resilient middle leg per temperature

Constraint Value Value with safety factor (x1.5) Limiting value

T = 100°C

c1 273 MPa 410 MPa ≤ 448 MPa

c2 280 MPa 419 MPa ≤ 448 MPa

c3 299 MPa 448 MPa ≤ 448 MPa

c4 5.00 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 82.7 mm - ≥ 55.0 mm

T = 20°C

c1 273 MPa 409 MPa ≤ 503 MPa

c2 279 MPa 418 MPa ≤ 503 MPa

c3 298 MPa 447 MPa ≤ 503 MPa

c4 4.74 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 83.2 mm - ≥ 55.0 mm

T = -80°C

c1 272 MPa 409 MPa ≤ 503 MPa

c2 279 MPa 418 MPa ≤ 503 MPa

c3 298 MPa 447 MPa ≤ 503 MPa

c4 4.59 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 83.4 mm - ≥ 55.0 mm
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C.2.3. Outer leg
The point at which the outer leg achieves optimal tractive performance at 20°C is:

xo,opt =


tc

ts

L

 =


0.10000

0.15707

19.84535

 mm.

The objective and constraint performances for this optimum point at various temperatures are detailed
in Table C.6 and Table C.7, respectively.

Table C.6: Objective performance outer leg per temperature

Objective Value

T = 100°C (Constraints violated)

Drawbar pull DP 1.1908 N

Thrust H 1.2589 N

Total external resistance Rt 0.0682 N

Sinkage z 0.7909 mm

Vertical deformation δt 11.6040 mm

T = 20°C

Drawbar pull DP 1.1735 N

Thrust H 1.2394 N

Total external resistance Rt 0.0659 N

Sinkage z 0.8077 mm

Vertical deformation δt 11.0444 mm

T = -80°C

Drawbar pull DP 1.1633 N

Thrust H 1.2278 N

Total external resistance Rt 0.0645 N

Sinkage z 0.8179 mm

Vertical deformation δt 10.7242 mm
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Table C.7: Constraint performance outer leg per temperature

Constraint Value Value with safety factor (x1.5) Limiting value

T = 100°C (Constraints violated)

c1 310 MPa 465 MPa ≤ 448 MPa

c2 332 MPa 499 MPa ≤ 448 MPa

c3 337 MPa 506 MPa ≤ 448 MPa

c4 5.29 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 82.1 mm - ≥ 55.0 mm

T = 20°C

c1 309 MPa 463 MPa ≤ 503 MPa

c2 330 MPa 495 MPa ≤ 503 MPa

c3 335 MPa 503 MPa ≤ 503 MPa

c4 5.00 mm - ≤ 5.00 mm

c5 59.2 mm - ≥ 58.5 mm

c6 82.6 mm - ≥ 55.0 mm

T = -80°C

c1 307 MPa 461 MPa ≤ 545 MPa

c2 329 MPa 493 MPa ≤ 545 MPa

c3 334 MPa 501 MPa ≤ 545 MPa

c4 4.83 mm - ≤ 5.00 mm

c5 59.2 mm - ≥ 58.5 mm

c6 83.0 mm - ≥ 55.0 mm
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C.2.4. Thermal-resilient outer leg
The point at which the outer leg achieves optimal tractive performance at 100°C is:

xo,100°C =


tc

ts

L

 =


0.10150

0.23422

28.05035

 mm.

The objective and constraint performances for this optimum point at various temperatures are detailed
in Table C.8 and Table C.9, respectively.

Table C.8: Objective performance thermal-resilient outer leg per temperature

Objective Value

T = 100°C

Drawbar pull DP 1.1710 N

Thrust H 1.2366 N

Total external resistance Rt 0.0655 N

Sinkage z 0.8102 mm

Vertical deformation δt 10.9657 mm

T = 20°C

Drawbar pull DP 1.1539 N

Thrust H 1.2172 N

Total external resistance Rt 0.0634 N

Sinkage z 0.8275 mm

Vertical deformation δt 10.4361 mm

T = -80°C

Drawbar pull DP 1.1438 N

Thrust H 1.2059 N

Total external resistance Rt 0.0621 N

Sinkage z 0.8380 mm

Vertical deformation δt 10.1336 mm



C.2. Temperature range performance analysis 105

Table C.9: Constraint performance thermal-resilient outer leg per temperature

Constraint Value Value with safety factor (x1.5) Limiting value

T = 100°C

c1 274 MPa 411 MPa ≤ 448 MPa

c2 280 MPa 420 MPa ≤ 448 MPa

c3 299 MPa 448 MPa ≤ 448 MPa

c4 5.00 mm - ≤ 5.00 mm

c5 59.0 mm - ≥ 58.5 mm

c6 82.7 mm - ≥ 55.0 mm

T = 20°C

c1 273 MPa 410 MPa ≤ 503 MPa

c2 279 MPa 418 MPa ≤ 503 MPa

c3 298 MPa 446 MPa ≤ 503 MPa

c4 4.72 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 83.2 mm - ≥ 55.0 mm

T = -80°C

c1 273 MPa 409 MPa ≤ 503 MPa

c2 278 MPa 417 MPa ≤ 503 MPa

c3 297 MPa 445 MPa ≤ 503 MPa

c4 4.56 mm - ≤ 5.00 mm

c5 59.1 mm - ≥ 58.5 mm

c6 83.5 mm - ≥ 55.0 mm
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C.3. Contour plots
C.3.1. Middle leg

Figure 7.1: Contour plot middle leg drawbar pull DP , tc vs ts at Lopt
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Figure 7.2: Contour plot middle leg drawbar pull DP , tc vs L at ts,opt
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Figure 7.3: Contour plot middle leg drawbar pull DP , ts vs L at tc,opt
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C.3.2. Outer leg

Figure 7.4: Contour plot outer leg drawbar pull DP , tc vs ts at Lopt



C.3.
Contourplots

110

Figure 7.5: Contour plot outer leg drawbar pull DP , tc vs L at ts,opt
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Figure 7.6: Contour plot outer leg drawbar pull DP , ts vs L at tc,opt
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C.3.3. Thermal-resilient middle leg

Figure 8.3: Contour plot middle leg drawbar pull DP , ts vs L at tc,100°C , T = 100°C
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Figure 8.4: Contour plot middle leg drawbar pull DP , ts vs L at tc,100°C , T = 20°C
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C.3.4. Thermal-resilient outer leg

Figure 8.5: Contour plot outer leg drawbar pull DP , ts vs L at tc,100°C , T = 100°C
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Figure 8.6: Contour plot outer leg drawbar pull DP , ts vs L at tc,100°C , T = 20°C
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D.1. Contact surface wear analysis
The contact surface wear is not taken into account in the scope of the original optimisation, as explained
in Section 1.3. But as the results of the optimisation show a low ground contact (curved) flexure thick-
ness is necessary for high tractive performance, especially in the case of the outer leg, concerns can
be raised about the abrasive lunar regolith and sharp rocks causing substantial damage to the flexure.
In future longer missions, metal fatigue could also be present.

The Martian rover Curiosity has six wheels made out of the same material as the optimised leg,
Aluminium 7075. These wheels have a diameter of 500 mm, a width of 400 mm and a tire shell of 0.75
mm thick to support the 900 kg mass of the rover [49]. In its current mission on Mars, the tire shells
have suffered damage. This damage can be attributed to single-event punctures due to sharp rocks
embedded in bedrock, as well as metal fatigue [50]. Although the Lunar Zebro is significantly lighter in
weight, this fact raises concerns. Especially as research of Kalácska et al. [51] in soil simulants shows
that ”the wear effect of the lunar dusts was considerably higher than Martian ones”.

In order to develop a design more resilient to contact surface wear, an optimisation analysis is
conducted where the minimum curved flexure thickness is set at 0.25 mm. This analysis is anticipated
to yield a design wherein compliance is primarily associated with the straight flexure, with a particular
interest in its effect on the remaining tractive performance. The design space is defined as:

0.25 ≤ tc ≤ 0.40 mm, (D.1a)
0.10 ≤ ts ≤ 0.40 mm, (D.1b)
10 ≤ L ≤ 50 mm. (D.1c)

D.1.1. Middle leg
The point at which the middle leg achieves optimal tractive performance with an increased ground
contact flexure thickness is:

xm,CSW =


tc

ts

L

 =


0.250

0.211

50.0

 mm.

The optimised middle leg generates a maximum drawbar pull of 1.6198 N. The increased ground con-
tact flexure thickness has led to a 94% improvement in performance compared to the rigid middle leg,
while the standard optimised design gave an improvement of 116%. The leg vertically deforms 6.14 mm
at the load application point, resulting in a flattened section that measures 52.9 mm. This is a 22% de-
crease in comparison to the optimal middle leg flattened section length. The critical constraints are c5,
corresponding to the minimum radius at the end of contact surface, the lower bound of the curved flex-
ure thickness, and the upper bound of the straight flexure length. The constraint values at the optimum
point are detailed in Table D.1.

Table D.1: Constraint performance middle leg optimised for contact surface wear

Constraint Value Value with safety factor (1.5) Limiting value

c1 184 MPa 276 MPa ≤ 503 MPa

c2 192 MPa 287 MPa ≤ 503 MPa

c3 202 MPa 303 MPa ≤ 503 MPa

c4 4.07 mm - ≤ 5.00 mm

c5 58.5 mm - ≥ 58.5 mm

c6 86.3 mm - ≥ 55.0 mm
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D.1.2. Outer leg
The point at which the outer leg achieves optimal tractive performance with an increased ground contact
flexure thickness is:

xo,CSW =


tc

ts

L

 =


0.250

0.122

50.0

 mm.

The optimised outer leg generates a maximum drawbar pull of 0.905 N. The increased ground contact
flexure thickness has led to a 103% improvement in performance compared to the rigid middle leg, while
the standard optimised design gave an improvement of 206%. This is a large difference, attributed to
the lower normal load exerted on the outer leg compared to the middle leg. Consequently, the generic
minimum ground contact flexure thickness is not the ideal solution to contact surface wear, as both the
compliance of the design and contact surface wear are dependent on the exerted normal load.

The leg vertically deforms 4.56 mm at the load application point, resulting in a flattened section that
measures 45.9 mm. This is a 34% decrease in comparison to the optimal outer leg flattened section
length. The critical constraints are the same as the middle leg, with the constraint values at the optimum
point being detailed in Table D.2.

Table D.2: Constraint performance outer leg optimised for contact surface wear

Constraint Value Value with safety factor (1.5) Limiting value

c1 122 MPa 183 MPa ≤ 503 MPa

c2 129 MPa 194 MPa ≤ 503 MPa

c3 134 MPa 200 MPa ≤ 503 MPa

c4 3.33 mm - ≤ 5.00 mm

c5 58.5 mm - ≥ 58.5 mm

c6 88.7 mm - ≥ 55.0 mm
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E.1. Stress
A Finite Element Analysis (FEA) is performed to verify that the analytical calculations of the compliance
and stress give the expected results. This analysis was performed with placeholder variable values
before the optimisation process, which showed a good correlation with the analytical calculation. To
ensure good compatibility with the optimal designs, this analysis is again performed with the created
final middle and outer legs while transmitting the maximum drawbar pull. The analysis is conducted
using COMSOL Multiphysics and will specifically focus on the stress encountered in the legs while
walking (2D) and while climbing along a sideways gradient (3D). The analysis is modelled with the
same assumptions as the analytical calculations, with linear deflections and a single load application
point. The lateral force while climbing along a sideways gradient is modelled as an edge load, to ensure
that the force is equally spread over the flexure width. The design is fixed around themotor axis, and the
material properties of Table C.1 are applied. The maximum stress angle, at which the load application
point is located, is defined from the straight flexure onward.

E.1.1. Middle leg
The analytically derived maximum stress values for the straight and curved flexures of the middle leg
during both walking and climbing along a sideways gradient are provided in Table E.1, along with
the corresponding leg orientation angles at which these maximum stresses occur. The respective
maximum stresses obtained through FEA while walking are presented in Figures E.1 and E.2, and
while climbing along a sideways gradient in Figures E.3 and E.4.

Table E.1: Analytically derived stress values middle leg at xm,opt

Maximum stress Value Maximum stress angle

σs,walk 230 MPa 35.6°

σc,walk 307 MPa 62.9°

σs,side 251 MPa 35.6°

σc,side 335 MPa 62.9°

(a) Middle leg in maximum stress orientation (b) Straight flexure connection point

Figure E.1: Maximum stress σs,walk in straight flexure of middle leg while walking
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(a) Middle leg in maximum stress orientation (b) Curved flexure connection point

Figure E.2: Maximum stress σc,walk in curved flexure of middle leg while walking

(a) Middle leg in maximum stress orientation (b) Straight flexure connection point

Figure E.3: Maximum stress σs,side in straight flexure of middle leg while climbing along a sideways gradient

(a) Middle leg in maximum stress orientation (b) Curved flexure connection point

Figure E.4: Maximum stress σc,side in curved flexure of middle leg while climbing along a sideways gradient

E.1.2. Outer leg
The analytically derived maximum stress values for the straight and curved flexures of the outer leg
during both walking and climbing along a sideways gradient are provided in Table E.2, along with
the corresponding leg orientation angles at which these maximum stresses occur. The respective
maximum stresses obtained through FEA while walking are presented in Figures E.5 and E.6, and
while climbing along a sideways gradient in Figures E.7 and E.8.
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Table E.2: Analytically derived stress values outer leg at xo,opt

Maximum stress Value Maximum stress angle

σs,walk 309 MPa 34.7°

σc,walk 291 MPa 62.9°

σs,side 335 MPa 34.7°

σc,side 317 MPa 62.9°

(a) Outer leg in maximum stress orientation (b) Straight flexure connection point

Figure E.5: Maximum stress σs,walk in straight flexure of outer leg while walking

(a) Outer leg in maximum stress orientation (b) Curved flexure connection point

Figure E.6: Maximum stress σc,walk in curved flexure of outer leg while walking
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(a) Outer leg in maximum stress orientation (b) Straight flexure connection point

Figure E.7: Maximum stress σs,side in straight flexure of outer leg while climbing along a sideways gradient

(a) Outer leg in maximum stress orientation (b) Curved flexure connection point

Figure E.8: Maximum stress σc,side in curved flexure of outer leg while climbing along a sideways gradient

E.1.3. Result discussion
The results indicate that the middle leg stress obtained from the FEA closely aligns with the values de-
rived from analytical calculations, thereby successfully validating the analytical compliance and stress
calculations. It is important to note that the maximum stress obtained in the FEA can be influenced by
variations in the fillet radius of the flexure connection. The simulation and mesh data of the FEA are
detailed in Table E.3.

Table E.3: FEA data

Model Number of elements DoF

Middle leg σs,walk 10754 46899

Middle leg σc,walk 10919 47589

Middle leg σs,side 753109 4170129

Middle leg σc,side 762507 4210947

Outer leg σs,walk 11400 50171

Outer leg σc,walk 11662 51271

Outer leg σs,side 1068887 6070212

Outer leg σc,side 1163873 6638340
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F.1. Parameters
1 %% Middle or outer leg optimisation parameters
2 leg_choice = 'middle'; % Options: 'middle' or 'outer'
3

4 switch leg_choice
5 case 'middle'
6 N = 2; % Leg load factor, middle legs [-]
7 F_x = 1.81; % Longitudinal force at application point used for deflection

with no vertical force, middle legs [N]
8 F_xside = 1.96; % Longitudinal force at application point when climbing along a

sideways gradient used for deflection with no vertical force, middle legs [N]
9

10 case 'outer'
11 N = 4; % Leg load factor, outer legs [-]
12 F_x = 1.17; % Longitudinal force at application point used for deflection

with no vertical force, outer legs [N]
13 F_xside = 1.26; % Longitudinal force at application point when climbing along a

sideways gradient used for deflection with no vertical force, outer legs [N]
14

15 otherwise
16 error('Invalid leg choice. Use "middle" or "outer".');
17 end
18

19 %% Material parameters
20 % Temperature
21 temp = '20'; % Options: '20', '100' or '-80'
22

23 switch temp
24 case '20' % T = 20 deg C
25 E = 71.7e9; % Young's modulus [Pa]
26 G = 26.9e9; % Shear modulus [Pa]
27 sigma_y = 503e6; % Tensile yield strength [Pa]
28

29 case '100' % T = 100 deg C
30 E = 68.3e9; % Young's modulus [Pa]
31 G = 25.7e9; % Shear modulus [Pa]
32 sigma_y = 448e6; % Tensile yield strength [Pa]
33

34 case '-80' % T = -80 deg C
35 E = 73.8e9; % Young's modulus [Pa]
36 G = 27.7e9; % Shear modulus [Pa]
37 sigma_y = 545e6; % Tensile yield strength [Pa]
38

39 otherwise
40 error('Invalid temperature choice. Use "20", "100" or "-80".');
41 end
42

43 SF = 1.5; % Stress safety factor [-]
44

45 %% Parameters terramechanics
46 kappa = 18e-3; % Shear deformation modulus [m]
47 lambda = 0.1; % Terrain reboundness due to soil elasticity [-]
48 phi_deg = 42; % Internal friction coefficient [deg]
49 c = 520; % Soil cohesion coefficient [Pa]
50 g = 1.62; % Gravitational acceleration [m/s^2]
51 h = 20e-3; % Leg deformable section height [m]
52 k_c = 1400; % Cohesion modulus of soil deformation [Pa/m^{−n1}]
53 k_e = 7; % Parameter related to leg construction [-]
54 k_phi = 820000; % Friction modulus of soil deformation [Pa/m^n]
55 m = 2.5; % Lunar rover mass [kg]
56 n = 1; % Exponent of soil deformation −[]
57 s = 1; % Slip ratio [-]
58

59 % Static equilibrium iteration parameters in Analysis.m and SidewaysGradient.m
60 tolerance = 1e-2; % Tolerance for convergence F_y0 vs. W
61 max_iterations = 500; % Maximum number of iterations to prevent infinite loops
62 update_factor = 0.0001; % Factor to update delta_t
63

64 % Quasi-static equilibrium iteration parameters in Analysis.m and SidewaysGradient.m
65 tolerance2 = 1e-2; % Tolerance for convergence F vs. W
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66 max_iterations2 = 100; % Maximum number of iterations to prevent infinite loops
67 update_factor2 = 0.0005; % Factor to update z
68

69 %% Parameters force deflection relationship
70 alpha_angle = deg2rad(41.8); % Load application angle [rad]
71 beta_angle = deg2rad(83.6); % Leg flexure angle [rad]
72 R = 60e-3; % Leg radius [m]
73 w = 20e-3; % Leg width [m]
74

75 %% Parameters skid steering stress constraint
76 mu = 1.2; % Shear constant (rectangle) [-]
77

78 %% Parameters climbing sideways gradient constraint
79 gamma_angle = deg2rad(15); % Sideways gradient LZ needs to be able to ascend [rad]
80 b_LZ = 0.125; % Width between outer legs and CoM of Lunar Zebro chassis [m]
81 y_com = 60e-3; % Height of CoM [m]
82

83 %% Parameters motor torque transmission constraint
84 delta_x_max = 5e-3; % Maximum longitudinal displacement for torque coupling [m]
85

86 %% Parameters tip displacement next step constraint
87 R_eff_min = 58.5e-3; % Minimum radius needed to initiate next leg [m]
88

89 %% Parameters climbing height constraint
90 y_c_min = 55e-3; % Minimal required climbing height [m]
91 y_g = 34.5e-3; % Height between gripping point and axle [m]
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F.2. Optimisation
1 %% Leg optimisation
2 % Optimisation using fmincon and SQP algorithm
3 % Initialization
4 close all, clear, clc
5

6 % Input parameters
7 Parameters;
8 fprintf('Leg choice: %s\n', leg_choice)
9

10 % Initial design point
11 x0 = [0.15e-3, 0.30e-3, 30e-3];
12

13 % Options for fmincon
14 options = optimoptions('fmincon', 'Algorithm', 'sqp', 'Display', 'iter', 'PlotFcn',

@optimplotfval);
15

16 % Objective function
17 objfun = @OBJ;
18

19 % Constraint function
20 confun = @CONS;
21

22 tic;
23

24 % Solve using fmincon
25 [x_opt, fval, exitflag, output, lambda_lag, grad, hessian] = fmincon(objfun, x0, [], [], [],

[], [0.1e-3, 0.1e-3, 10e-3], [0.4e-3, 0.4e-3, 40e-3], confun, options);
26

27 elapsedTime = toc;
28 [eigenvectors, eigenvalues] = eig(hessian);
29

30 %% Display results
31 fprintf('Optimal design variables: t_c = %.5f mm, t_s = %.5f mm, L = %.5f mm\n', x_opt(1)*1e3

, x_opt(2)*1e3, x_opt(3)*1e3);
32 fprintf('Objective function value (DP): %.5f N\n', -fval);
33 fprintf('Exit flag: %d\n', exitflag);
34 disp('Output structure:');
35 disp(output);
36 disp('Lagrange multipliers:');
37 disp(lambda_lag);
38 fprintf('Elapsed optimisation time: %.2f seconds\n', elapsedTime);
39

40 % Compute values and constraints at optimum point
41 [con_opt, ceq] = CONS(x_opt);
42 [DP, z, T, eta, delta_t, sigma_max_walk, sigma_max_skid, sigma_max_side, delta_x, R_eff, y_c

]=Analysis(x_opt(1),x_opt(2),x_opt(3),g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h,kappa,E,G,
w,R, alpha_angle,beta_angle,mu,F_x,F_xside,y_g,b_LZ,gamma_angle,y_com,N,tolerance,
max_iterations,update_factor,tolerance2,max_iterations2,update_factor2);

43 fprintf('Drawbar Pull DP: %.4f N\n', DP);
44 fprintf('Sinkage z: %.4f mm\n', z*1e3);
45 fprintf('Resistance torque T: %.4f N\n', T);
46 fprintf('Tractive efficiency eta: %.4f %%\n', eta);
47 fprintf('Vertical deflection of leg delta_t: %.4f mm\n', delta_t*1e3);
48 fprintf('Max. stress in flexure while walking sigma_max_walk: %.4f MPa\n', sigma_max_walk/1e6

);
49 fprintf('Max. stress in flexure while skid steering sigma_max_skid: %.4f MPa\n',

sigma_max_skid/1e6);
50 fprintf('Max. stress in flexure while climbing along a sideways gradient sigma_max_side: %.4f

MPa\n', sigma_max_side/1e6);
51 fprintf('Max. stress in flexure while walking sigma_max_walk with safety factor: %.4f MPa\n',

SF*sigma_max_walk/1e6);
52 fprintf('Max. stress in flexure while skid steering sigma_max_skid with safety factor: %.4f

MPa\n', SF*sigma_max_skid/1e6);
53 fprintf('Max. stress in flexure while climbing along a sideways gradient sigma_max_side with

safety factor: %.4f MPa\n', SF*sigma_max_side/1e6);
54 fprintf('Maximum longitudinal deflection delta_x: %.4f mm\n', delta_x*1e3);
55 fprintf('Effective radius at last 10%% of contact surface: %.4f mm\n', R_eff*1e3);
56 fprintf('Climbing height y_c: %.4f mm\n', y_c*1e3);
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F.3. Optimisation using GlobalSearch
1 %% Leg optimisation Global Search
2 % Optimisation using fmincon and SQP wrapped with GlobalSearch
3

4 % Initialization
5 close all; clear; clc;
6

7 % Input parameters
8 Parameters;
9 fprintf('Leg choice: %s\n', leg_choice)
10

11 % Initial design point
12 x0 = [0.15e-3, 0.30e-3, 30e-3];
13

14 % Lower and upper bounds
15 lb = [0.1e-3, 0.1e-3, 10e-3];
16 ub = [0.4e-3, 0.4e-3, 40e-3];
17

18 % Options for fmincon
19 options = optimoptions('fmincon', ...
20 'Algorithm', 'sqp', ...
21 'Display', 'iter', ...
22 'PlotFcn', @optimplotfval, ...
23 'OptimalityTolerance', 1e-4, ...
24 'StepTolerance', 1e-4, ...
25 'ConstraintTolerance', 1e-4, ...
26 'MaxIterations', 1000);
27

28 % Objective function
29 objfun = @OBJ;
30

31 % Constraint function
32 confun = @CONS;
33

34 % Create problem structure for GlobalSearch
35 problem = createOptimProblem('fmincon', ...
36 'objective', objfun, ...
37 'x0', x0, ...
38 'lb', lb, ...
39 'ub', ub, ...
40 'nonlcon', confun, ...
41 'options', options);
42

43 % Create GlobalSearch object
44 gs = GlobalSearch('Display', 'iter', ...
45 'NumStageOnePoints', 20, ...
46 'NumTrialPoints', 40);
47

48 tic;
49

50 % Run GlobalSearch
51 [x_opt, fval, exitflag, output, solutions] = run(gs, problem);
52

53 elapsedTime = toc;
54

55 %% Display results
56 fprintf('Optimal design variables: t_c = %.5f mm, t_s = %.5f mm, L = %.5f mm\n', x_opt(1)*1e3

, x_opt(2)*1e3, x_opt(3)*1e3);
57 fprintf('Objective function value (DP): %.5f N\n', -fval);
58 fprintf('Exit flag: %d\n', exitflag);
59 disp('Output structure:');
60 disp(output);
61 disp('Solutions:');
62 disp(solutions);
63 fprintf('Elapsed optimisation time: %.2f seconds\n', elapsedTime);
64

65 % Compute values and constraints at optimum point
66 [con_opt, ceq] = CONS(x_opt);
67 [DP, z, T, eta, delta_t, sigma_max_walk, sigma_max_skid, sigma_max_side, delta_x, R_eff, y_c

]=Analysis(x_opt(1),x_opt(2),x_opt(3),g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h,kappa,E,G,
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w,R,alpha_angle,beta_angle,mu,F_x,F_xside,y_g,b_LZ,gamma_angle,y_com,N,tolerance,
max_iterations,update_factor,tolerance2,max_iterations2,update_factor2);

68 fprintf('Drawbar Pull DP: %.4f N\n', DP);
69 fprintf('Sinkage z: %.4f mm\n', z*1e3);
70 fprintf('Resistance torque T: %.4f N\n', T);
71 fprintf('Tractive efficiency eta: %.4f %%\n', eta);
72 fprintf('Vertical deflection of leg delta_t: %.4f mm\n', delta_t*1e3);
73 fprintf('Max. stress in flexure while walking sigma_max_walk: %.4f MPa\n', sigma_max_walk/1e6

);
74 fprintf('Max. stress in flexure while skid steering sigma_max_skid: %.4f MPa\n',

sigma_max_skid/1e6);
75 fprintf('Max. stress in flexure while climbing along a sideways gradient sigma_max_side: %.4f

MPa\n', sigma_max_side/1e6);
76 fprintf('Max. stress in flexure while walking sigma_max_walk with safety factor: %.4f MPa\n',

SF*sigma_max_walk/1e6);
77 fprintf('Max. stress in flexure while skid steering sigma_max_skid with safety factor: %.4f

MPa\n', SF*sigma_max_skid/1e6);
78 fprintf('Max. stress in flexure while climbing along a sideways gradient sigma_max_side with

safety factor: %.4f MPa\n', SF*sigma_max_side/1e6);
79 fprintf('Maximum longitudinal deflection delta_x: %.4f mm\n', delta_x*1e3);
80 fprintf('Effective radius at last 10%% of contact surface: %.4f mm\n', R_eff*1e3);
81 fprintf('Climbing height y_c: %.4f mm\n', y_c*1e3);

F.4. Objective function
1 function f = OBJ(x)
2 % Computation of objective function
3 % Input: x: [1x3] row of design variables (t_c, t_s and L)
4 % Output: f: {1x1] scalar of objective function value
5

6 % Assignment of design variables
7 t_c = x(1);
8 t_s = x(2);
9 L = x(3);
10

11 % Input parameters
12 Parameters;
13

14 % Analysis
15 [DP, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~]=...
16 Analysis(t_c,t_s,L,g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h,kappa,E,G,w,R, ...
17 alpha_angle,beta_angle,mu,F_x,F_xside,y_g,b_LZ,gamma_angle,y_com,N, ...
18 tolerance,max_iterations,update_factor,tolerance2,max_iterations2,update_factor2);
19

20 % Objective function
21 f = -DP; % Objective is maximising DP, thus minimising -DP using fmincon.
22

23 end
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F.5. Analysis: Terramechanics model
1 function [DP, z, T, eta, delta_t, sigma_max_walk, sigma_max_skid, sigma_max_side, delta_x,

R_eff, y_c]=...
2 Analysis(t_c,t_s,L,g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h,kappa,E,G,w,R, ...
3 alpha_angle,beta_angle,mu,F_x,F_xside,y_g,b_LZ,gamma_angle,y_com,N, ...
4 tolerance,max_iterations,update_factor,tolerance2,max_iterations2,update_factor2)
5

6 W = (m/N)*g; % Gravitational force on leg axle
7 phi = deg2rad(phi_deg); % Soil friction angle (in radians)
8

9 %% Static equilibrium
10 delta_t = LongitudinalForceDeflection(E, w, t_s, t_c, R, L, alpha_angle, beta_angle, F_x); %

Initial guess for delta_t, dependent on the deflection by pure longitudinal force F_x.
11

12 for iter = 1:max_iterations
13 % Calculate flattened section length l_t
14 if 2 * R * delta_t > delta_t^2
15 l_t = 2 * sqrt(2 * R * delta_t - delta_t^2);
16 else
17 % warning('Non-physical values for l_t');
18 % fprintf('Last static total vertical force F_y0: %.4f N\n', F_y0);
19 % fprintf('Last leg deflection delta_t: %.4f mm\n', delta_t*10^3)
20

21 if delta_t < 0
22 delta_t = 0;
23 l_t = 0;
24 theta_t0 = 0;
25 z_0 = 0.0005; % Default initial guess
26 % fprintf('Rigid leg considered, thus leg deflection delta_t: %.4f mm\n', delta_t

*10^3)
27 else
28 % warning('Deflection too big for leg, results are inaccurate.');
29 end
30 break;
31 end
32

33 % Calculate average ground pressure P_w
34 [F_y, ~] = ForceDeflection(E, w, t_s, t_c, R, L, alpha_angle, beta_angle, F_x, delta_t);
35 P_w = F_y / (w * l_t);
36

37 % Calculate static sinkage z_0
38 if l_t < w
39 z_0 = (P_w / (k_c / l_t + k_phi))^(1/n);
40 else
41 z_0 = (P_w / (k_c / w + k_phi))^(1/n);
42 end
43

44 theta_f0 = acos(1 - (z_0+delta_t)/R); % Static entry angle contact patch
45 theta_t0 = asin(l_t / (2*R)); % Static flattening angle contact patch
46

47 % Calculate total static ground reaction force F_y0
48 sigma_Fs = @(theta) (k_c / w + k_phi) * R^n * (cos(theta) - cos(theta_f0)).^n;
49

50 integrand_Fs = @(theta) sigma_Fs(theta) .* cos(theta);
51 F_s = R * w * integral(integrand_Fs, theta_t0, theta_f0);
52 F_w = P_w * w * l_t;
53 F_y0 = F_w + 2 * F_s;
54

55 % Check if F_y0 is almost equal to vertical load W
56 if abs(F_y0 - W) < tolerance % Converged
57 % Output results
58 % disp('Result static equilibrium:');
59 % fprintf('Converged to correct delta_t value after %d iterations.\n', iter);
60 % fprintf('Leg deflection delta_t: %.4f mm\n', delta_t*10^3);
61 % fprintf('Length flattened section l_t: %.4f mm\n', l_t*10^3);
62 % fprintf('Static sinkage z_0: %.4f mm\n', z_0*10^3);
63 % fprintf('Static entry angle theta_f0 %.4f deg\n', rad2deg(theta_f0))
64 % fprintf('Static flattening angle theta_t0 %.4f deg\n', rad2deg(theta_t0))
65 % fprintf('Static vertical force flattened section F_w: %.4f N\n', F_w);
66 % fprintf('Static vertical force entry & exit section F_s: %.4f N\n', F_s);
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67 % fprintf('Static total vertical force F_y0: %.4f N\n', F_y0);
68 break;
69 else
70 delta_t = delta_t + update_factor*(W-F_y0); % Update delta_t for the next iteration
71 end
72

73 % If maximum iterations reached without convergence, display a warning
74 if iter == max_iterations
75 % warning('Maximum iterations reached without convergence.');
76 % fprintf('Max. iter. value delta_t: %.4f mm\n', delta_t*10^3);
77 % fprintf('Max. iter. value F_y0: %.4f N\n', F_y0);
78 end
79 end
80

81 theta_t = theta_t0; % Flattening angle considered equal in static and quisi-static state
82

83

84 %% Quisi-static equilibrium
85 z = z_0; % Initial guess for leg sinkage
86 for iter = 1:max_iterations2
87

88 theta_f = acos(1 - (z+delta_t)/R); % Entry angle contact patch
89 theta_r = - acos(1 - lambda * (z+delta_t) / R); % Exit angle contact patch
90 theta_m = (0.4+0.15*s)*theta_f; % Maximum normal stress angle
91

92 theta_t_deg = rad2deg(theta_t);
93 theta_f_deg = rad2deg(theta_f);
94 theta_r_deg = rad2deg(theta_r);
95 theta_m_deg = rad2deg(theta_m);
96

97 % Normal stress sigma(theta) function
98 sigma = @(theta) calculate_sigma(theta, theta_f, theta_r, theta_m, k_c, k_phi, z, R, w, n

, l_t, theta_t);
99

100 % Soil deformation j(theta) function
101 j = @(theta) calculate_j_theta(theta, theta_f, theta_t, R, s, delta_t);
102

103 % Shear stress tau(theta) function
104 tau = @(theta) calculate_tau(sigma(theta), c, phi, j(theta), kappa);
105

106 % Vertical ground reaction force F
107 integrand_F1 = @(theta) (sigma(theta) .* cos(theta) + tau(theta) .* sin(theta));
108

109 if l_t < w && l_t ~= 0 % Flattened section normal pressure, as theta_t and l_t are
constant and independent of theta.

110 sigma_t = (k_c / l_t + k_phi) * z^n ;
111 else
112 sigma_t = (k_c / w + k_phi) * z^n ;
113 end
114

115 F_AB = R * w * integral(integrand_F1, theta_t, theta_f); % Entry section contribution
116 F_BC = l_t * w * sigma_t; % Flattened section

contribution, as theta_t and l_t are constant independent of theta.
117 F_CD = R * w * integral(integrand_F1, theta_r, -theta_t); % Exit section contribution
118

119 % If flattening angle is bigger than exit angle, ignore exit section contribution
120 if -theta_t <= theta_r
121 F = F_AB + F_BC;
122 else
123 F = F_AB + F_BC + F_CD;
124 end
125

126 % Check if F matches the load W
127 if abs(F - W) < tolerance2 % Converged
128 % disp(' ');
129 % disp('Result dynamic equilibrium:');
130 % fprintf('Converged to correct z value after %d iterations.\n', iter);
131 % fprintf('Final value of sinkage z: %.4f mm\n', z*10^3);
132 % fprintf('Final value of vertical ground reaction force F: %.4f N\n', F);
133 break;
134 else
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135 z = z + update_factor2*(W-F); % Update z for the next iteration
136 end
137

138 % If maximum iterations reached without convergence, display a warning
139 if iter == max_iterations2
140 % warning('Maximum iterations reached without convergence.');
141 % fprintf('Max. iter. value of z: %.4f meters\n', z);
142 % fprintf('Max. iter. value of F: %.4f N\n', F);
143 break;
144 end
145 end
146

147 % Calculate thrust H
148 integrand_H_AB = @(theta) tau(theta) .* cos(theta);
149 integrand_H_BC = @(theta) tau(theta) ./ cos(theta).^2;
150 integrand_H_CD = @(theta) (tau(theta) .* cos(theta) - sigma(theta) .* sin(theta));
151 H_AB = R * w * integral(integrand_H_AB, theta_t, theta_f); % Entry section

contribution
152 H_BC = (R - delta_t) * w * integral(integrand_H_BC, -theta_t, theta_t); % Flattened

section contribution
153 H_CD = R * w * integral(integrand_H_CD, theta_r, -theta_t); % Exit section

contribution
154

155 % If flattening angle is bigger than exit angle, ignore exit section contribution
156 if -theta_t <= theta_r
157 H = H_AB + H_BC;
158 else
159 H = H_AB + H_BC + H_CD;
160 end
161

162 % Calculate resistance force R_t
163 % Soil compaction resistance R_c
164 integrand_Rc = @(theta) sigma(theta) .* sin(theta);
165 R_c = R * w * integral(integrand_Rc, theta_t, theta_f);
166

167 % Leg deformation resistance R_d
168 epsilon = 1 - exp(-k_e * delta_t / h);
169 if theta_t_deg > 0
170 R_d = (3.581 * w * (2*R)^2 * P_w * epsilon * (0.0349 * theta_t_deg - sind(2*theta_t_deg))

) / (theta_t_deg * (2*R - 2*delta_t));
171 else
172 R_d = 0; % No leg deformation resistance (Rigid leg)
173 end
174

175 R_t = R_c + R_d;
176

177 % Calculate drawbar pull DP
178 DP = H - R_t;
179

180 % Calculate resistance torque T
181 integrand_T_AB = @(theta) tau(theta);
182 integrand_T_BC = @(theta) (tau(theta) + sigma_t * tan(theta)) ./ cos(theta).^2;
183 integrand_T_CD = @(theta) tau(theta);
184

185 T_AB = R^2 * w * integral(integrand_T_AB, theta_t, theta_f); % Entry section
contribution

186 T_BC = (R - delta_t)^2 * w * integral(integrand_T_BC, -theta_t, theta_t); % Flattened
section contribution

187 T_CD = R^2 * w * integral(integrand_T_CD, theta_r, -theta_t); % Exit section
contribution

188

189 % If flattening angle is bigger than exit angle, ignore exit section contribution
190 if -theta_t <= theta_r
191 T = T_AB + T_BC;
192 else
193 T = T_AB + T_BC + T_CD;
194 end
195

196 % Calculate tractive efficiency eta
197 eta = (DP * (1 - s) * R / T) * 100;
198
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199

200 %% Maximum stress while skid steering constraint
201 % Maximum lateral shear stress
202 tau_z_max = @(theta) (c + sigma(theta) .* tan(phi));
203

204 % Calculate the maximum lateral resistance when skid steering
205 integrand_Rz_AB = @(theta) tau_z_max(theta);
206 integrand_Rz_BC = @(theta) tau_z_max(theta)./ cos(theta).^2;
207 integrand_Rz_CD = @(theta) tau_z_max(theta);
208

209 Rz_AB = R * w * integral(integrand_Rz_AB, theta_t, theta_f); % Entry section
contribution

210 Rz_BC = (R - delta_t) * w * integral(integrand_Rz_BC, -theta_t, theta_t); % Flattened
section contribution

211 Rz_CD = R * w * integral(integrand_Rz_CD, theta_r, -theta_t); % Exit section
contribution

212

213 if -theta_t <= theta_r
214 Rz_max = Rz_AB + Rz_BC;
215 else
216 Rz_max = Rz_AB + Rz_BC + Rz_CD;
217 end
218

219 %% Constraints
220 if delta_t == 0
221 % If rigid leg is considered, some constraints are not of interest
222 sigma_max_walk = 0;
223 sigma_max_skid = 0;
224 sigma_max_side = 0;
225 delta_x = 0;
226 R_eff = R;
227 [y_c] = ClimbingHeight(R, y_g, z, delta_t);
228 else
229 %% Stress while walking constraint and Motor torque transmission constraint
230 % F_x is the drawbar pull DP
231 % F_y is the vertical gravitational force W
232 [sigma_max_walk, sigma_vm_straight_walk , sigma_vm_curved_walk , delta_x] =

MaxStressAndDeflection2D(E, w, t_s, t_c, R, L, beta_angle, DP, W);
233

234 %% Skid steering constraint
235 % F_x is the drawbar pull DP
236 % F_y is the vertical gravitational force W
237 % F_z is the maximum lateral resistance equals Rz_max
238 [sigma_max_skid, sigma_vm_straight_skid , sigma_vm_curved_skid] = MaxStress3D(E, G, w, t_s

, t_c, R, L, beta_angle, mu, DP, W, Rz_max);
239

240 %% Side gradient constraint
241 [sigma_max_side, sigma_vm_straight_side , sigma_vm_curved_side] = SidewaysGradient( ...
242 g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h, kappa, E, G, w, t_s, t_c, R, L, ...
243 alpha_angle, beta_angle, mu, F_xside, b_LZ, gamma_angle, y_com, N, ...
244 tolerance, max_iterations, update_factor, tolerance2, max_iterations2, update_factor2

);
245

246 %% End of contact surface constraint
247 % F_x is the drawbar pull DP
248 % F_y is the full gravitational force W, due to small contact surface
249 [R_eff] = MinimumRadiusNextStep(E, w, t_s, t_c, R, L, beta_angle, DP, W);
250

251 %% Climbing height constraint
252 % delta_y is the maximum vertical deflection delta_t
253 [y_c] = ClimbingHeight(R, y_g, z, delta_t);
254 end
255

256

257 %% Output results
258 % fprintf('Static vertical force Fy: %.4f N\n', F_y);
259 % fprintf('Gravitational force on leg axle W: %.4f N\n', W);
260 % fprintf('Entry angle theta_f: %.4f deg\n', theta_f_deg);
261 % fprintf('Maximum normal pressure angle theta_m: %.4f deg\n', theta_m_deg);
262 % fprintf('Flattened section angle theta_t: %.4f deg\n', theta_t_deg);
263 % fprintf('Exit angle theta_r: %.4f deg\n', theta_r_deg);
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264 % fprintf('Vertical force entry section F_AB: %.4f N\n', F_AB);
265 % fprintf('Vertical force flattened section F_BC: %.4f N\n', F_BC);
266 % fprintf('Vertical force exit section F_CD: %.4f N\n', F_CD);
267 % fprintf('Thrust entry section H_AB: %.4f N\n', H_AB);
268 % fprintf('Thrust flattened section H_BC: %.4f N\n', H_BC);
269 % fprintf('Thrust exit section H_CD: %.4f N\n', H_CD);
270 % fprintf('Compaction resistance R_c: %.4f N\n', R_c);
271 % fprintf('Deformation resistance R_d: %.4f N\n', R_d);
272 % fprintf('Max lateral resistance entry section Rz_AB: %.4f N\n', Rz_AB);
273 % fprintf('Max lateral resistance flattened section Rz_BC: %.4f N\n', Rz_BC);
274 % fprintf('Max lateral resistance exit section Rz_CD: %.4f N\n', Rz_CD);
275 % fprintf('Max lateral resistance Rz_max: %.4f N\n', Rz_max);
276 % fprintf('Slip ratio s: %.4f \n', s);
277 % disp(' ');
278

279 % fprintf('Vertical force F: %.4f N\n', F);
280 % fprintf('Sinkage z: %.4f mm\n', z*10^3);
281 % fprintf('Thrust H: %.4f N\n', H);
282 % fprintf('Resistance R_t: %.4f N\n', R_t);
283 % fprintf('Drawbar Pull DP: %.4f N\n', DP);
284 % fprintf('Resistance torque T: %.4f N\n', T);
285 % fprintf('Tractive efficiency eta: %.4f %%\n', eta);
286 % fprintf('Max. stress in straight flexure while walking sigma_vm_straight_walk: %.4f MPa\n',

sigma_vm_straight_walk/1e6);
287 % fprintf('Max. stress in curved flexure while walking sigma_vm_curved_walk: %.4f MPa\n',

sigma_vm_curved_walk/1e6);
288 % fprintf('Max. stress in straight flexure while skid steering sigma_vm_straight_skid: %.4f

MPa\n', sigma_vm_straight_skid/1e6);
289 % fprintf('Max. stress in curved flexure while skid steering sigma_vm_curved_skid: %.4f MPa\n

', sigma_vm_curved_skid/1e6);
290 % fprintf('Max. stress in straight flexure while climbing along a sideways gradient

sigma_vm_straight_side: %.4f MPa\n', sigma_vm_straight_side/1e6);
291 % fprintf('Max. stress in curved flexure while climbing along a sideways gradient

sigma_vm_curved_side: %.4f MPa\n', sigma_vm_curved_side/1e6);
292

293 %% Functions
294 % Normal pressure sigma(theta)
295 function sigma_theta = calculate_sigma(theta, theta_f, theta_r, theta_m, k_c, k_phi, z, R, w,

n, l_t, theta_t)
296 if theta_m > theta_t
297 sigma_theta = zeros(size(theta)); % Initialise sigma_theta for all values of theta.
298

299 % Entry section
300 entry_section = (theta >= theta_m) & (theta <= theta_f);
301 sigma_theta(entry_section) = (k_c / w + k_phi) * R^n * (cos(theta(entry_section)) -

cos(theta_f)).^n;
302

303 % Flattened section (Denoted to calculate H_BC and T_BC)
304 flat_section = ((theta >= -theta_t) & (theta < theta_t));
305 if l_t < w
306 sigma_theta(flat_section) = (k_c / l_t + k_phi) * z^n;
307 else
308 sigma_theta(flat_section) = (k_c / w + k_phi) * z^n;
309 end
310

311 % Exit section and further section
312 exit_section = ((theta >= theta_r) & (theta < -theta_t)) | ((theta >= theta_t) & (

theta < theta_m));
313 sigma_theta(exit_section) = (k_c / w + k_phi) * R^n * (cos(theta_f - (theta(

exit_section) - theta_r)*(theta_f - theta_m)/(theta_m - theta_r)) - cos(theta_f))
.^n;

314

315 else
316 % Condition when theta_m <= theta_t
317 sigma_theta = zeros(size(theta)); % Initialise sigma_theta for all values of theta
318

319 % Entry section
320 entry_section = (theta >= theta_t) & (theta <= theta_f);
321 sigma_theta(entry_section) = (k_c / w + k_phi) * R^n * (cos(theta(entry_section)) -

cos(theta_f)).^n;
322
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323 % Flattened section (Denoted to calculate H_BC and T_BC)
324 flat_section = ((theta >= -theta_t) & (theta < theta_t));
325 if l_t < w
326 sigma_theta(flat_section) = (k_c / l_t + k_phi) * z^n;
327 else
328 sigma_theta(flat_section) = (k_c / w + k_phi) * z^n;
329 end
330

331 % Exit section
332 exit_section = (theta >= theta_r) & (theta < -theta_t);
333 sigma_theta(exit_section) = (k_c / w + k_phi) * R^n * (cos(theta_f - (theta(

exit_section) - theta_r)*(theta_f - theta_m)/(theta_m - theta_r)) - cos(theta_f))
.^n;

334

335 end
336 end
337

338 % Shear stress tau(theta)
339 function tau_theta = calculate_tau(sigma_theta, c, phi, j_theta, kappa)
340 tau_theta = (c + sigma_theta .* tan(phi)) .* (1 - exp(-j_theta ./ kappa));
341 end
342

343 % Soil deformation j(theta)
344 function j_theta = calculate_j_theta(theta, theta_f, theta_t, R, s, delta_t)
345 if abs(theta) >= abs(theta_t)
346 j_theta = R * (theta_f - theta - (1 - s) * (sin(theta_f) - sin(theta)));
347 else
348 j_theta_t = R * (theta_f - theta_t - (1 - s) * (sin(theta_f) - sin(theta_t)));
349 j_theta = j_theta_t + s * (R * sin(theta_t) - (R - delta_t) * tan(theta));
350 end
351 end
352 end
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F.6. Compliance model
F.6.1. Force-deflection relationship

1 function [F_y, delta_x]=...
2 ForceDeflection(E, w, t_s, t_c, R, L, alpha_angle, beta_angle, F_x, delta_y)
3

4 % Moment of inertia and area
5 I_sz = (1/12) * w * t_s^3;
6 I_cz = (1/12) * w * t_c^3;
7 A_s = w * t_s;
8 A_c = w * t_c;
9

10 %% Straight flexure
11 % Deflections in straight flexure
12 delta_Cr_straight = @(F_Cr) (F_Cr * L)/(E*A_s);
13 delta_Ct_straight = @(F_Ct, M_Cz) (M_Cz * L^2)/(2*E*I_sz) + (F_Ct * L^3) / (3*E*I_sz);
14 phi_Cz_straight = @(F_Ct, M_Cz) (M_Cz * L)/(E*I_sz) + (F_Ct * L^2)/(2*E*I_sz);
15

16 %% Curved flexure
17 % Force and moment equilibrium full straight flexure
18 F_Br = @(F_Cr) F_Cr;
19 F_Bt = @(F_Ct) F_Ct;
20 M_Bz = @(F_Ct, M_Cz) F_Ct*L + M_Cz;
21

22 % Moment functions curved flexure
23 Mz1 = @(theta, F_Ct, F_Cr, M_Cz) F_Bt(F_Ct) * R * (1 - cos(theta)) + F_Br(F_Cr) * R * sin(

theta) - M_Bz(F_Ct, M_Cz);
24 Mz2 = @(theta, F_Ct, F_Cr, M_Cz, F_y) Mz1(theta, F_Ct, F_Cr, M_Cz) - F_x * R * (1 - cos(theta

- alpha_angle)) - F_y * R * sin(theta - alpha_angle);
25

26 % Compute partial derivatives
27 partial_Mz1_FCr = @(theta) R * sin(theta);
28 partial_Mz1_FCt = @(theta) R * (1 - cos(theta)) - L;
29 partial_Mz1_MCz = @(theta) -1;
30

31 partial_Mz2_FCr = @(theta) partial_Mz1_FCr(theta);
32 partial_Mz2_FCt = @(theta) partial_Mz1_FCt(theta);
33 partial_Mz2_MCz = @(theta) partial_Mz1_MCz(theta);
34

35 partial_Mz1_Fx = @(theta) 0;
36 partial_Mz2_Fx = @(theta) -R * (1 - cos(theta - alpha_angle));
37

38 partial_Mz1_Fy = @(theta) 0;
39 partial_Mz2_Fy = @(theta) -R * sin(theta - alpha_angle);
40

41 % Deflections in curved flexure
42 delta_Br_curved = @(F_Cr, F_Ct, M_Cz, F_y) ...
43 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCr(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
44 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz, F_y) .* partial_Mz2_FCr(theta

), alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
45

46 delta_Bt_curved = @(F_Cr, F_Ct, M_Cz, F_y) ...
47 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCt(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
48 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz, F_y) .* partial_Mz2_FCt(theta

), alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
49

50 phi_Bz_curved = @(F_Cr, F_Ct, M_Cz, F_y) ...
51 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_MCz(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
52 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz, F_y) .* partial_Mz2_MCz(theta

), alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
53

54 delta_y_curved = @(F_Cr, F_Ct, M_Cz, F_y) ...
55 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_Fy(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
56 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz, F_y) .* partial_Mz2_Fy(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
57
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58 %% Solving
59 % Define function for nonlinear solver
60 force_equations = @(F) [
61 delta_Br_curved(F(1), F(2), F(3), F(4)) + delta_Cr_straight(F(1));
62 delta_Bt_curved(F(1), F(2), F(3), F(4)) + delta_Ct_straight(F(2), F(3));
63 phi_Bz_curved(F(1), F(2), F(3), F(4)) + phi_Cz_straight(F(2), F(3));
64 delta_y - delta_y_curved(F(1), F(2), F(3), F(4))
65 ];
66

67 % Improved numerical integration settings
68 opts = optimset('TolFun', 1e-12, 'TolX', 1e-12, 'Display', 'off');
69

70 % Solve
71 F_init = [1,1,0,1];
72 lb = [-Inf, -Inf, -Inf, 0]; % F_y must be >= 0
73 ub = [Inf, Inf, Inf, Inf];
74 F = lsqnonlin(@(F) force_equations(F), F_init, lb, ub, opts);
75

76 F_Cr = F(1);
77 F_Ct = F(2);
78 M_Cz = F(3);
79 F_y = F(4);
80

81 %% Deflection of loading point
82 % Longitudinal deflection loading point
83 delta_x = (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_Fx(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
84 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz, F_y) .* partial_Mz2_Fx(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
85 end
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F.6.2. Longitudinal force-deflection relationship
1 function [delta_y_init]=...
2 LongitudinalForceDeflection(E, w, t_s, t_c, R, L, alpha_angle, beta_angle, F_x)
3

4 % No vertical force
5 F_y = 0;
6

7 % Moment of inertia and area
8 I_sz = (1/12) * w * t_s^3;
9 I_cz = (1/12) * w * t_c^3;
10 A_s = w * t_s;
11

12 %% Straight flexure
13 % Deflections in straight flexure
14 delta_Cr_straight = @(F_Cr) (F_Cr * L)/(E*A_s);
15 delta_Ct_straight = @(F_Ct, M_Cz) (M_Cz * L^2)/(2*E*I_sz) + (F_Ct * L^3) / (3*E*I_sz);
16 phi_Cz_straight = @(F_Ct, M_Cz) (M_Cz * L)/(E*I_sz) + (F_Ct * L^2)/(2*E*I_sz);
17

18 %% Curved flexure
19 % Force and moment equilibrium full straight flexure
20 F_Br = @(F_Cr) F_Cr;
21 F_Bt = @(F_Ct) F_Ct;
22 M_Bz = @(F_Ct, M_Cz) F_Ct*L + M_Cz;
23

24 % Moment functions curved flexure
25 Mz1 = @(theta, F_Ct, F_Cr, M_Cz) F_Bt(F_Ct) * R * (1 - cos(theta)) + F_Br(F_Cr) * R * sin(

theta) - M_Bz(F_Ct, M_Cz);
26 Mz2 = @(theta, F_Ct, F_Cr, M_Cz) Mz1(theta, F_Ct, F_Cr, M_Cz) - F_x * R * (1 - cos(theta -

alpha_angle)) - F_y * R * sin(theta - alpha_angle);
27

28 % Compute partial derivatives
29 partial_Mz1_FCr = @(theta) R * sin(theta);
30 partial_Mz1_FCt = @(theta) R * (1 - cos(theta)) - L;
31 partial_Mz1_MCz = @(theta) -1;
32

33 partial_Mz2_FCr = @(theta) partial_Mz1_FCr(theta);
34 partial_Mz2_FCt = @(theta) partial_Mz1_FCt(theta);
35 partial_Mz2_MCz = @(theta) partial_Mz1_MCz(theta);
36

37 partial_Mz1_Fx = @(theta) 0;
38 partial_Mz2_Fx = @(theta) -R * (1 - cos(theta - alpha_angle));
39

40 partial_Mz1_Fy = @(theta) 0;
41 partial_Mz2_Fy = @(theta) -R * sin(theta - alpha_angle);
42

43 % Deflections in curved flexure
44 delta_Br_curved = @(F_Cr, F_Ct, M_Cz) ...
45 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCr(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
46 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCr(theta),

alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
47

48 delta_Bt_curved = @(F_Cr, F_Ct, M_Cz) ...
49 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCt(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
50 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCt(theta),

alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
51

52 phi_Bz_curved = @(F_Cr, F_Ct, M_Cz) ...
53 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_MCz(theta),

0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
54 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_MCz(theta),

alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
55

56 %% Solving
57 % Define function for nonlinear solver
58 force_equations = @(F) [
59 delta_Br_curved(F(1), F(2), F(3)) + delta_Cr_straight(F(1));
60 delta_Bt_curved(F(1), F(2), F(3)) + delta_Ct_straight(F(2), F(3));
61 phi_Bz_curved(F(1), F(2), F(3)) + phi_Cz_straight(F(2), F(3));
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62 ];
63

64 % Improved numerical integration settings
65 opts = optimset('TolFun', 1e-12, 'TolX', 1e-12, 'Display', 'off');
66

67 % Solve
68 F_init = [1,1,0];
69 lb = [-Inf, -Inf, -Inf];
70 ub = [Inf, Inf, Inf];
71 F = lsqnonlin(@(F) force_equations(F), F_init, lb, ub, opts);
72

73 F_Cr = F(1);
74 F_Ct = F(2);
75 M_Cz = F(3);
76

77 %% Deflection of loading point
78 % Longitudinal deflection loading point
79 delta_x_init = (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .*

partial_Mz1_Fx(theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
80 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_Fx(theta),

alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
81

82 % Vertical deflection loading point
83 delta_y_init = (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .*

partial_Mz1_Fy(theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
84 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_Fy(theta),

alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
85 end
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F.7. Constraints
F.7.1. Constraints definition

1 function [con, ceq] = CONS(x)
2 % Computation of the constraint function
3 % Input: x: [1x3] row of design variables (t_c, t_s and L)
4 % Output: g: {1x6] row of inequality constraint values
5

6 % Assignment of design variables
7 t_c = x(1);
8 t_s = x(2);
9 L = x(3);
10

11 % Input parameters
12 Parameters;
13

14 % Analysis
15 [~, ~, ~, ~, ~, sigma_max_walk, sigma_max_skid, sigma_max_side, delta_x, R_eff, y_c]=...
16 Analysis(t_c,t_s,L,g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h,kappa,E,G,w,R, ...
17 alpha_angle,beta_angle,mu,F_x,F_xside,y_g,b_LZ,gamma_angle,y_com,N, ...
18 tolerance,max_iterations,update_factor,tolerance2,max_iterations2,update_factor2);
19

20 %% Inequility constraints
21 % Maximum Von Mises stress in flexure due to walking
22 con(1) = SF * sigma_max_walk / sigma_y - 1;
23

24 % Maximum Von Mises stress in flexure due to skid steering
25 con(2) = SF * sigma_max_skid / sigma_y - 1;
26

27 % Maximum Von Mises stress in flexure due to climbing along a sideways gradient
28 con(3) = SF * sigma_max_side / sigma_y - 1;
29

30 % Maximum longitudinal deflection for torque transmission
31 con(4) = delta_x / delta_x_max - 1;
32

33 % Minimum end of contact surface radius
34 con(5) = 1 - R_eff / R_eff_min;
35

36 % Minimum climbing height
37 con(6) = 1 - y_c / y_c_min;
38

39 %% No equality constraints
40 ceq = [];
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F.7.2. Stress limit while walking & motor torque transmission
1 function [sigma_max_vm, sigma_max_vm_straight , sigma_max_vm_curved, delta_x_max]=...
2 MaxStressAndDeflection2D(E, w, t_s, t_c, R, L, beta_angle, F_x, F_y)
3

4 % Initialise arrays for storing results
5 alpha_values = linspace(0, beta_angle-deg2rad(0.1), 90);
6 sigma_straight_values = zeros(size(alpha_values));
7 sigma_curved_values = zeros(size(alpha_values));
8 delta_x_values = zeros(size(alpha_values));
9

10 % Cycle through angles alpha to find maximum stress angle
11 for i = 1:length(alpha_values)
12 alpha_angle = alpha_values(i);
13

14 % Moment of inertia and area
15 I_sz = (1/12) * w * t_s^3;
16 I_cz = (1/12) * w * t_c^3;
17 A_s = w * t_s;
18 A_c = w * t_c;
19

20 %% Straight flexure
21 % Deflections in straight flexure
22 delta_Cr_straight = @(F_Cr) (F_Cr * L)/(E*A_s);
23 delta_Ct_straight = @(F_Ct, M_Cz) (M_Cz * L^2)/(2*E*I_sz) + (F_Ct * L^3) / (3*E*I_sz);
24 phi_Cz_straight = @(F_Ct, M_Cz) (M_Cz * L)/(E*I_sz) + (F_Ct * L^2)/(2*E*I_sz);
25

26 %% Curved flexure
27 % Force and moment equilibrium full straight flexure
28 F_Br = @(F_Cr) F_Cr;
29 F_Bt = @(F_Ct) F_Ct;
30 M_Bz = @(F_Ct, M_Cz) F_Ct*L + M_Cz;
31

32 % Moment functions curved flexure
33 Mz1 = @(theta, F_Ct, F_Cr, M_Cz) F_Bt(F_Ct) * R * (1 - cos(theta)) + F_Br(F_Cr) * R * sin

(theta) - M_Bz(F_Ct, M_Cz);
34 Mz2 = @(theta, F_Ct, F_Cr, M_Cz) Mz1(theta, F_Ct, F_Cr, M_Cz) - F_x * R * (1 - cos(theta

- alpha_angle)) - F_y * R * sin(theta - alpha_angle);
35

36 % Compute partial derivatives
37 partial_Mz1_FCr = @(theta) R * sin(theta);
38 partial_Mz1_FCt = @(theta) R * (1 - cos(theta)) - L;
39 partial_Mz1_MCz = @(theta) -1;
40

41 partial_Mz2_FCr = @(theta) partial_Mz1_FCr(theta);
42 partial_Mz2_FCt = @(theta) partial_Mz1_FCt(theta);
43 partial_Mz2_MCz = @(theta) partial_Mz1_MCz(theta);
44

45 partial_Mz1_Fx = @(theta) 0;
46 partial_Mz2_Fx = @(theta) -R * (1 - cos(theta - alpha_angle));
47

48 % Deflections in curved flexure
49 delta_Br_curved = @(F_Cr, F_Ct, M_Cz) ...
50 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCr(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
51 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCr(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
52

53 delta_Bt_curved = @(F_Cr, F_Ct, M_Cz) ...
54 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCt(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
55 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCt(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
56

57 phi_Bz_curved = @(F_Cr, F_Ct, M_Cz) ...
58 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_MCz(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
59 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_MCz(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
60

61 %% Solving
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62 % Define function for nonlinear solver
63 force_equations = @(F) [
64 delta_Br_curved(F(1), F(2), F(3)) + delta_Cr_straight(F(1));
65 delta_Bt_curved(F(1), F(2), F(3)) + delta_Ct_straight(F(2), F(3));
66 phi_Bz_curved(F(1), F(2), F(3)) + phi_Cz_straight(F(2), F(3));
67 ];
68

69 % Improved numerical integration settings
70 opts = optimset('TolFun', 1e-12, 'TolX', 1e-12, 'Display', 'off');
71

72 % Solve
73 F_init = [0 1 0.01];
74 F = fsolve(force_equations, F_init, opts);
75

76 F_Cr = F(1);
77 F_Ct = F(2);
78 M_Cz = F(3);
79

80 %% Deflection of loading point
81 % Longitudinal deflection loading point
82 delta_x = (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .*

partial_Mz1_Fx(theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
83 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_Fx(theta),

alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
84

85 delta_x_values(i) = delta_x;
86

87 %% Stress straight flexure
88 % Stress at point C
89 sigma_r1 = F_Br(F_Cr) / A_s;
90 sigma_r2 = M_Cz*(t_s/2) / I_sz;
91 sigma_r = sigma_r1 + sigma_r2;
92 tau_rt_straight = (3*F_Bt(F_Ct)) / (2*A_s);
93

94 sigma_vm_straight = sqrt(sigma_r^2 + 3*tau_rt_straight^2);
95 sigma_straight_values(i) = sigma_vm_straight;
96

97 %% Stress curved flexure
98 % Stress at point A
99 r_1 = R-t_c;
100 r_2 = R;
101 R_a = t_c/log(r_2/r_1);
102 R_str = (r_1+r_2)/2;
103 sigma_curved_inner = - Mz2(beta_angle, F_Ct, F_Cr, M_Cz) * (R_a - r_1) / (w*t_c*r_1*(

R_str - R_a));
104 sigma_curved_outer = Mz2(beta_angle, F_Ct, F_Cr, M_Cz) * (R_a - r_2) / (w*t_c*r_2*(R_str

- R_a));
105 sigma_curved_max = max(abs(sigma_curved_inner), abs(sigma_curved_outer));
106

107 sigma_t1 = F_Bt(F_Ct) / A_c;
108 sigma_t2 = sigma_curved_max;
109 sigma_t = sigma_t1 + sigma_t2;
110 tau_rt_curved = (3*F_Br(F_Cr)) / (2*A_c);
111

112 sigma_vm_curved = sqrt(sigma_t^2 + 3*tau_rt_curved^2);
113 sigma_curved_values(i) = sigma_vm_curved;
114

115 end
116

117 [sigma_max_vm_straight , index1] = max(sigma_straight_values ,[],"all","linear");
118 angle_sigma_max_vm_straight = alpha_values(index1)*180/pi;
119

120 [sigma_max_vm_curved , index2] = max(sigma_curved_values ,[],"all","linear");
121 angle_sigma_max_vm_curved = alpha_values(index2)*180/pi;
122

123 sigma_max_vm = max([sigma_max_vm_straight , sigma_max_vm_curved]);
124

125 [delta_x_max, index3] = max(delta_x_values ,[],"all","linear");
126 angle_delta_x_max = alpha_values(index3)*180/pi;
127 end
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F.7.3. Stress limit with lateral force
1 function [sigma_max_vm, sigma_max_vm_straight , sigma_max_vm_curved]=...
2 MaxStress3D(E, G, w, t_s, t_c, R, L, beta_angle, mu, F_x, F_y, F_z)
3

4 % Initialise arrays for storing results
5 alpha_values = linspace(0, beta_angle-deg2rad(0.1), 90);
6 sigma_straight_values = zeros(size(alpha_values));
7 sigma_curved_values = zeros(size(alpha_values));
8

9 % Cycle through angles alpha to find maximum stress angle
10 for i = 1:length(alpha_values)
11 alpha_angle = alpha_values(i);
12

13 % Moment of inertia and area
14 I_sz = (1/12) * w * t_s^3;
15 I_st = (1/12) * t_s * w^3;
16 J_s = (1/12) * w * t_s * (w^2 + t_s^2);
17 A_s = w * t_s;
18

19 I_cz = (1/12) * w * t_c^3;
20 I_cr = (1/12) * t_c * w^3;
21 J_c = (1/12) * w * t_c * (w^2 + t_c^2);
22 A_c = w * t_c;
23

24 %% Straight flexure
25 % Deflections in straight flexure
26 delta_Cz_straight = @(F_Cz, M_Ct) (M_Ct * L^2)/(2*E*I_st) + (F_Cz * L^3) / (3*E*I_st) + (

mu * F_Cz * L) / (G*A_s);
27 delta_Cr_straight = @(F_Cr) (F_Cr * L)/(E*A_s);
28 delta_Ct_straight = @(F_Ct, M_Cz) (M_Cz * L^2)/(2*E*I_sz) + (F_Ct * L^3) / (3*E*I_sz);
29

30 phi_Cz_straight = @(F_Ct, M_Cz) (M_Cz * L)/(E*I_sz) + (F_Ct * L^2)/(2*E*I_sz);
31 phi_Cr_straight = @(M_Cr) (M_Cr * L)/(G*J_s);
32 phi_Ct_straight = @(F_Cz, M_Ct) (M_Ct * L)/(E*I_st) + (F_Cz * L^2)/(2*E*I_st);
33

34 %% Curved flexure
35 % Force and moment equilibrium full straight flexure
36 F_Br = @(F_Cr) F_Cr;
37 F_Bt = @(F_Ct) F_Ct;
38 F_Bz = @(F_Cz) F_Cz;
39 M_Br = @(M_Cr) M_Cr;
40 M_Bt = @(F_Cz, M_Ct) F_Cz*L + M_Ct;
41 M_Bz = @(F_Ct, M_Cz) F_Ct*L + M_Cz;
42

43 % Moment functions curved flexure
44 Mz1 = @(theta, F_Ct, F_Cr, M_Cz) F_Bt(F_Ct) * R * (1 - cos(theta)) + F_Br(F_Cr) * R * sin

(theta) - M_Bz(F_Ct, M_Cz);
45 Mz2 = @(theta, F_Ct, F_Cr, M_Cz) Mz1(theta, F_Ct, F_Cr, M_Cz) - F_x * R * (1 - cos(theta

- alpha_angle)) - F_y * R * sin(theta - alpha_angle);
46

47 Mr1 = @(theta, F_Cz, M_Cr, M_Ct) -F_Bz(F_Cz) * R * sin(theta) + M_Br(M_Cr) * cos(theta) +
M_Bt(F_Cz, M_Ct) * sin(theta);

48 Mr2 = @(theta, F_Cz, M_Cr, M_Ct) Mr1(theta, F_Cz, M_Cr, M_Ct) + F_z * R * sin(theta -
alpha_angle);

49

50 Mt1 = @(theta, F_Cz, M_Cr, M_Ct) -F_Bz(F_Cz) * R * (1 - cos(theta)) + M_Br(M_Cr) * sin(
theta) - M_Bt(F_Cz, M_Ct) * cos(theta);

51 Mt2 = @(theta, F_Cz, M_Cr, M_Ct) Mt1(theta, F_Cz, M_Cr, M_Ct) + F_z * R * (1 - cos(theta
- alpha_angle));

52

53 % Compute partial derivatives
54 partial_Mz1_FCr = @(theta) R * sin(theta);
55 partial_Mz1_FCt = @(theta) R * (1 - cos(theta)) - L;
56 partial_Mz1_MCz = @(theta) -1;
57

58 partial_Mz2_FCr = @(theta) partial_Mz1_FCr(theta);
59 partial_Mz2_FCt = @(theta) partial_Mz1_FCt(theta);
60 partial_Mz2_MCz = @(theta) partial_Mz1_MCz(theta);
61

62 partial_Mr1_FCz = @(theta) -R * sin(theta) + L * sin(theta);
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63 partial_Mr1_MCr = @(theta) cos(theta);
64 partial_Mr1_MCt = @(theta) sin(theta);
65

66 partial_Mr2_FCz = @(theta) partial_Mr1_FCz(theta);
67 partial_Mr2_MCr = @(theta) partial_Mr1_MCr(theta);
68 partial_Mr2_MCt = @(theta) partial_Mr1_MCt(theta);
69

70 partial_Mt1_FCz = @(theta) -R * (1 - cos(theta)) - L * cos(theta);
71 partial_Mt1_MCr = @(theta) sin(theta);
72 partial_Mt1_MCt = @(theta) -cos(theta);
73

74 partial_Mt2_FCz = @(theta) partial_Mt1_FCz(theta);
75 partial_Mt2_MCr = @(theta) partial_Mt1_MCr(theta);
76 partial_Mt2_MCt = @(theta) partial_Mt1_MCt(theta);
77

78 % Deflections in curved flexure
79 delta_Bz_curved = @(F_Cz, M_Cr, M_Ct) ...
80 (R/(E*I_cr)) * (integral(@(theta) Mr1(theta, F_Cz, M_Cr, M_Ct) .* partial_Mr1_FCz(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
81 integral(@(theta) Mr2(theta, F_Cz, M_Cr, M_Ct) .* partial_Mr2_FCz(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12)) + ...
82 (R/(G*J_c)) * (integral(@(theta) Mt1(theta, F_Cz, M_Cr, M_Ct) .* partial_Mt1_FCz(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
83 integral(@(theta) Mt2(theta, F_Cz, M_Cr, M_Ct) .* partial_Mt2_FCz(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
84

85 delta_Br_curved = @(F_Cr, F_Ct, M_Cz) ...
86 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCr(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
87 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCr(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
88

89 delta_Bt_curved = @(F_Cr, F_Ct, M_Cz) ...
90 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCt(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
91 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCt(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
92

93 phi_Bz_curved = @(F_Cr, F_Ct, M_Cz) ...
94 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_MCz(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
95 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_MCz(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
96

97 phi_Br_curved = @(F_Cz, M_Cr, M_Ct) ...
98 (R/(E*I_cr)) * (integral(@(theta) Mr1(theta, F_Cz, M_Cr, M_Ct) .* partial_Mr1_MCr(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
99 integral(@(theta) Mr2(theta, F_Cz, M_Cr, M_Ct) .* partial_Mr2_MCr(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12)) + ...
100 (R/(G*J_c)) * (integral(@(theta) Mt1(theta, F_Cz, M_Cr, M_Ct) .* partial_Mt1_MCr(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
101 integral(@(theta) Mt2(theta, F_Cz, M_Cr, M_Ct) .* partial_Mt2_MCr(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
102

103 phi_Bt_curved = @(F_Cz, M_Cr, M_Ct) ...
104 (R/(E*I_cr)) * (integral(@(theta) Mr1(theta, F_Cz, M_Cr, M_Ct) .* partial_Mr1_MCt(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
105 integral(@(theta) Mr2(theta, F_Cz, M_Cr, M_Ct) .* partial_Mr2_MCt(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12)) + ...
106 (R/(G*J_c)) * (integral(@(theta) Mt1(theta, F_Cz, M_Cr, M_Ct) .* partial_Mt1_MCt(

theta), 0, alpha_angle, 'RelTol',1e-12,'AbsTol',1e-12) + ...
107 integral(@(theta) Mt2(theta, F_Cz, M_Cr, M_Ct) .* partial_Mt2_MCt(theta)

, alpha_angle, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
108

109 %% Solving
110 % Define function for nonlinear solver
111 force_equations = @(F) [
112 delta_Bz_curved(F(1), F(5), F(6)) + delta_Cz_straight(F(1), F(6));
113 delta_Br_curved(F(2), F(3), F(4)) + delta_Cr_straight(F(2));
114 delta_Bt_curved(F(2), F(3), F(4)) + delta_Ct_straight(F(3), F(4));
115 phi_Bz_curved(F(2), F(3), F(4)) + phi_Cz_straight(F(3), F(4));
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116 phi_Br_curved(F(1), F(5), F(6)) + phi_Cr_straight(F(5));
117 phi_Bt_curved(F(1), F(5), F(6)) + phi_Ct_straight(F(1), F(6));
118 ];
119

120 % Improved numerical integration settings
121 opts = optimset('TolFun', 1e-12, 'TolX', 1e-12, 'Display', 'off');
122

123 % Solve
124 F_init = [0 0 2 0 0 0];
125 lb = [-Inf, -Inf, -Inf, -Inf, -Inf, -Inf];
126 ub = [Inf, Inf, Inf, Inf, Inf, Inf,];
127 F = lsqnonlin(@(F) force_equations(F), F_init, lb, ub, opts);
128

129 F_Cz = F(1);
130 F_Cr = F(2);
131 F_Ct = F(3);
132 M_Cz = F(4);
133 M_Cr = F(5);
134 M_Ct = F(6);
135

136 %% Stress straight flexure
137 % Stress at point C
138 sigma_r1 = F_Br(F_Cr) / A_s;
139 sigma_r2 = M_Cz*(t_s/2) / I_sz;
140 sigma_r3 = M_Ct*(w/2) / I_st;
141 sigma_r = sigma_r1 + sigma_r2 + sigma_r3;
142 tau_rt_straight = (3*F_Bt(F_Ct)) / (2*A_s);
143 tau_rz_straight = (3*F_Bz(F_Cz)) / (2*L*t_s);
144 tau_tz_straight = (3*M_Cr) / (w*t_s^2);
145

146 sigma_vm_straight = sqrt(sigma_r^2 + 3*(tau_rt_straight^2 + tau_rz_straight^2 +
tau_tz_straight^2));

147 sigma_straight_values(i) = sigma_vm_straight;
148

149 %% Stress curved flexure
150 % Stress at point A
151 r_1 = R-t_c;
152 r_2 = R;
153 R_a = t_c/log(r_2/r_1);
154 R_str = (r_1+r_2)/2;
155 sigma_curved_inner = - Mz2(beta_angle, F_Ct, F_Cr, M_Cz) * (R_a - r_1) / (w*t_c*r_1*(

R_str - R_a));
156 sigma_curved_outer = Mz2(beta_angle, F_Ct, F_Cr, M_Cz) * (R_a - r_2) / (w*t_c*r_2*(R_str

- R_a));
157 sigma_curved_max = max(abs(sigma_curved_inner), abs(sigma_curved_outer));
158

159 sigma_t1 = F_Bt(F_Ct) / A_c;
160 sigma_t2 = sigma_curved_max;
161 sigma_t3 = Mr2(beta_angle, F_Cz, M_Cr, M_Ct)*(w/2) / I_cr;
162 sigma_t = sigma_t1 + sigma_t2 + sigma_t3;
163 tau_rt_curved = (3*F_Br(F_Cr)) / (2*A_c);
164 tau_tz_curved = (3*F_Bz(F_Cz)) / (2*(beta_angle*R)*t_c);
165 tau_rz_curved = 3 * Mt2(beta_angle, F_Cz, M_Cr, M_Ct) / (w * t_c^2);
166

167 sigma_vm_curved = sqrt(sigma_t^2 + 3*(tau_rt_curved^2 + tau_tz_curved^2 + tau_rz_curved
^2));

168 sigma_curved_values(i) = sigma_vm_curved;
169

170 end
171

172 [sigma_max_vm_straight , index1] = max(sigma_straight_values ,[],"all","linear");
173 angle_sigma_max_vm_straight = alpha_values(index1)*180/pi;
174

175 [sigma_max_vm_curved , index2] = max(sigma_curved_values ,[],"all","linear");
176 angle_sigma_max_vm_curved = alpha_values(index2)*180/pi;
177

178 sigma_max_vm = max([sigma_max_vm_straight , sigma_max_vm_curved]);
179 end



F.7. Constraints 146

F.7.4. Sideways gradient
1 function [sigma_max_side, sigma_vm_straight_side , sigma_vm_curved_side]=...
2 SidewaysGradient(g,m,k_c,k_phi,n,phi_deg,c,lambda,s,k_e,h, k, E, G, w, t_s, t_c, R, L, ...
3 alpha_angle, beta_angle, mu, F_x, b_LZ, gamma_angle, y_com, N, ...
4 tolerance, max_iterations, update_factor, tolerance2, max_iterations2, update_factor2)
5

6 phi = deg2rad(phi_deg); % Soil friction angle (in radians)
7

8 %% Force and moment equilibrium
9 F_m = m*g;
10 F_mz = F_m*sin(gamma_angle);
11 F_my = F_m*cos(gamma_angle);
12 F_c1y = (F_mz*y_com + F_my*b_LZ)/(2*b_LZ);
13

14 N_eff = N/2; % Leg number, middle leg: N_eff=1, outer legs N_eff=2.
15

16 F_c1z = F_c1y*tan(gamma_angle)/N_eff;
17 W = F_c1y / N_eff;
18

19 %% Static equilibrium
20 delta_t = LongitudinalForceDeflection(E, w, t_s, t_c, R, L, alpha_angle, beta_angle, F_x); %

Initial guess for delta_t, dependent on the deflection by pure longitudinal force F_x.
21

22 for iter = 1:max_iterations
23 % Calculate flattened section length l_t
24 if 2 * R * delta_t > delta_t^2
25 l_t = 2 * sqrt(2 * R * delta_t - delta_t^2);
26 else
27 % warning('Non-physical values for l_t');
28 % fprintf('Last static total vertical force F_y0: %.4f N\n', F_y0);
29 % fprintf('Last leg deflection delta_t: %.4f mm\n', delta_t*10^3)
30

31 if delta_t < 0
32 delta_t = 0;
33 l_t = 0;
34 theta_t0 = 0;
35 z_0 = 0.0005; % Default initial guess
36 % fprintf('Rigid leg considered, thus leg deflection delta_t: %.4f mm\n', delta_t

*10^3)
37 else
38 % warning('Deflection too big for leg, results are inaccurate.');
39 end
40 break;
41 end
42

43 % Calculate average ground pressure P_w
44 [F_y, ~] = ForceDeflection(E, w, t_s, t_c, R, L, alpha_angle, beta_angle, F_x, delta_t);
45 P_w = F_y / (w * l_t);
46

47 % Calculate static sinkage z_0
48 if l_t < w
49 z_0 = (P_w / (k_c / l_t + k_phi))^(1/n);
50 else
51 z_0 = (P_w / (k_c / w + k_phi))^(1/n);
52 end
53

54 theta_f0 = acos(1 - (z_0+delta_t)/R); % Static entry angle contact patch
55 theta_t0 = asin(l_t / (2*R)); % Static flattening angle contact patch
56

57 % Calculate total static ground reaction force F_y0
58 sigma_Fs = @(theta) (k_c / w + k_phi) * R^n * (cos(theta) - cos(theta_f0)).^n;
59

60 integrand_Fs = @(theta) sigma_Fs(theta) .* cos(theta);
61 F_s = R * w * integral(integrand_Fs, theta_t0, theta_f0);
62 F_w = P_w * w * l_t;
63 F_y0 = F_w + 2 * F_s;
64

65 % Check if F_y0 is almost equal to vertical load W
66 if abs(F_y0 - W) < tolerance % Converged
67 % Output results
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68 % disp('Result static equilibrium:');
69 % fprintf('Converged to correct delta_t value after %d iterations.\n', iter);
70 % fprintf('Leg deflection delta_t: %.4f mm\n', delta_t*10^3);
71 % fprintf('Length flattened section l_t: %.4f mm\n', l_t*10^3);
72 % fprintf('Static sinkage z_0: %.4f mm\n', z_0*10^3);
73 % fprintf('Static entry angle theta_f0 %.4f deg\n', rad2deg(theta_f0))
74 % fprintf('Static flattening angle theta_t0 %.4f deg\n', rad2deg(theta_t0))
75 % fprintf('Static vertical force flattened section F_w: %.4f N\n', F_w);
76 % fprintf('Static vertical force entry & exit section F_s: %.4f N\n', F_s);
77 % fprintf('Static total vertical force F_y0: %.4f N\n', F_y0);
78 break;
79 else
80 delta_t = delta_t + update_factor*(W-F_y0); % Update delta_t for the next iteration
81 end
82

83 % If maximum iterations reached without convergence, display a warning
84 if iter == max_iterations
85 % warning('Maximum iterations reached without convergence.');
86 % fprintf('Max. iter. value delta_t: %.4f mm\n', delta_t*10^3);
87 % fprintf('Max. iter. value F_y0: %.4f N\n', F_y0);
88 end
89 end
90

91 theta_t = theta_t0; % Flattening angle considered equal in static and quisi-static
situation

92

93

94 %% Quisi-static equilibrium
95 z = z_0; % Initial guess for leg sinkage
96

97 for iter = 1:max_iterations2
98

99 theta_f = acos(1 - (z+delta_t)/R); % Entry angle contact patch
100 theta_r = - acos(1 - lambda * (z+delta_t) / R); % Exit angle contact patch
101 theta_m = (0.4+0.15*s)*theta_f; % Maximum normal stress angle
102

103 theta_t_deg = rad2deg(theta_t);
104 theta_f_deg = rad2deg(theta_f);
105 theta_r_deg = rad2deg(theta_r);
106 theta_m_deg = rad2deg(theta_m);
107

108 % Normal stress sigma(theta) function
109 sigma = @(theta) calculate_sigma(theta, theta_f, theta_r, theta_m, k_c, k_phi, z, R, w, n

, l_t, theta_t);
110

111 % Soil deformation j(theta) function
112 j = @(theta) calculate_j_theta(theta, theta_f, theta_t, R, s, delta_t);
113

114 % Shear stress tau(theta) function
115 tau = @(theta) calculate_tau(sigma(theta), c, phi, j(theta), k);
116

117 % Vertical force F
118 integrand_F1 = @(theta) (sigma(theta) .* cos(theta) + tau(theta) .* sin(theta));
119

120 if l_t < w && l_t ~= 0 % Flattened section normal pressure, as theta_t and l_t are
constant and independent of theta.

121 sigma_t = (k_c / l_t + k_phi) * z^n ;
122 else
123 sigma_t = (k_c / w + k_phi) * z^n ;
124 end
125

126 F_AB = R * w * integral(integrand_F1, theta_t, theta_f); % Entry section contribution
127 F_BC = l_t * w * sigma_t; % Flattened section

contribution, as theta_t and l_t are constant independent of theta.
128 F_CD = R * w * integral(integrand_F1, theta_r, -theta_t); % Exit section contribution
129

130 % If flattening angle is bigger than exit angle, ignore exit section contribution
131 if -theta_t <= theta_r
132 F = F_AB + F_BC;
133 else
134 F = F_AB + F_BC + F_CD;
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135 end
136

137 % Check if F matches the load W
138 if abs(F - W) < tolerance2 % Converged
139 % disp(' ');
140 % disp('Result dynamic equilibrium:');
141 % fprintf('Converged to correct z value after %d iterations.\n', iter);
142 % fprintf('Final value of sinkage z: %.4f mm\n', z*10^3);
143 % fprintf('Final value of F: %.4f N\n', F);
144 break;
145 else
146 z = z + update_factor2*(W-F); % Update z for the next iteration
147 end
148

149 % If maximum iterations reached without convergence, display a warning
150 if iter == max_iterations2
151 % warning('Maximum iterations reached without convergence.');
152 % fprintf('Max. iter. value of z: %.4f meters\n', z);
153 % fprintf('Max. iter. value of F: %.4f N\n', F);
154 break;
155 end
156 end
157

158 % Calculate thrust H
159 integrand_H_AB = @(theta) tau(theta) .* cos(theta);
160 integrand_H_BC = @(theta) tau(theta) ./ cos(theta).^2;
161 integrand_H_CD = @(theta) (tau(theta) .* cos(theta) - sigma(theta) .* sin(theta));
162 H_AB = R * w * integral(integrand_H_AB, theta_t, theta_f); % Entry section

contribution
163 H_BC = (R - delta_t) * w * integral(integrand_H_BC, -theta_t, theta_t); % Flattened

section contribution
164 H_CD = R * w * integral(integrand_H_CD, theta_r, -theta_t); % Exit section

contribution
165

166 % If flattening angle is bigger than exit angle, ignore exit section contribution
167 if -theta_t <= theta_r
168 H = H_AB + H_BC;
169 else
170 H = H_AB + H_BC + H_CD;
171 end
172

173 % Calculate resistance force R_t
174 % Soil compaction resistance R_c
175 integrand_Rc = @(theta) sigma(theta) .* sin(theta);
176 R_c = R * w * integral(integrand_Rc, theta_t, theta_f);
177

178 % Leg deformation resistance R_d
179 epsilon = 1 - exp(-k_e * delta_t / h);
180 if theta_t_deg > 0
181 R_d = (3.581 * w * (2*R)^2 * P_w * epsilon * (0.0349 * theta_t_deg - sind(2*theta_t_deg))

) / (theta_t_deg * (2*R - 2*delta_t));
182 else
183 R_d = 0; % No leg deformation resistance (Rigid leg)
184 end
185

186 R_t = R_c + R_d;
187

188 % Calculate drawbar pull DP
189 DP = H - R_t;
190

191 %% Maximum stress while ascending sideways gradient
192 % Effectively a lateral force acting on the flexure, thus the same stress calculation.
193 % F_x is the drawbar pull DP
194 % F_y is the vertical gravitational force W
195 % F_z is the lateral force due to gravity F_c1z
196 [sigma_max_side, sigma_vm_straight_side , sigma_vm_curved_side]= MaxStress3D(E, G, w, t_s, t_c

, R, L, beta_angle, mu, DP, W, F_c1z);
197

198

199 %% Output results
200 % fprintf('Static vertical force Fy: %.4f N\n', F_y);
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201 % fprintf('Gravitational force on C_leg axle W: %.4f N\n', W);
202 % fprintf('Entry angle theta_f: %.4f deg\n', theta_f_deg);
203 % fprintf('Maximum normal pressure angle theta_m: %.4f deg\n', theta_m_deg);
204 % fprintf('Flattened section angle theta_t: %.4f deg\n', theta_t_deg);
205 % fprintf('Exit angle theta_r: %.4f deg\n', theta_r_deg);
206 % fprintf('Vertical force entry section F_AB: %.4f N\n', F_AB);
207 % fprintf('Vertical force flattened section F_BC: %.4f N\n', F_BC);
208 % fprintf('Vertical force exit section F_CD: %.4f N\n', F_CD);
209 % fprintf('Thrust entry section H_AB: %.4f N\n', H_AB);
210 % fprintf('Thrust flattened section H_BC: %.4f N\n', H_BC);
211 % fprintf('Thrust exit section H_CD: %.4f N\n', H_CD);
212 % fprintf('Compaction resistance R_c: %.4f N\n', R_c);
213 % fprintf('Deformation resistance R_d: %.4f N\n', R_d);
214 % fprintf('Slip ratio s: %.4f \n', s);
215 % disp(' ');
216 %
217 % fprintf('Vertical force F: %.4f N\n', F);
218 % fprintf('Leg sinkage z: %.4f mm\n', z*10^3);
219 % fprintf('Thrust H: %.4f N\n', H);
220 % fprintf('Resistance R_t: %.4f N\n', R_t);
221 % fprintf('Drawbar Pull DP while climbing along a sideways gradient: %.4f N\n', DP);
222

223 %% Functions
224 % Normal pressure sigma(theta)
225 function sigma_theta = calculate_sigma(theta, theta_f, theta_r, theta_m, k_c, k_phi, z, R, w,

n, l_t, theta_t)
226 if theta_m > theta_t
227 sigma_theta = zeros(size(theta)); % Initialise sigma_theta for all values of theta.
228

229 % Entry section
230 entry_section = (theta >= theta_m) & (theta <= theta_f);
231 sigma_theta(entry_section) = (k_c / w + k_phi) * R^n * (cos(theta(entry_section)) -

cos(theta_f)).^n;
232

233 % Flattened section (Denoted to calculate H_BC and T_BC)
234 flat_section = ((theta >= -theta_t) & (theta < theta_t));
235 if l_t < w
236 sigma_theta(flat_section) = (k_c / l_t + k_phi) * z^n;
237 else
238 sigma_theta(flat_section) = (k_c / w + k_phi) * z^n;
239 end
240

241 % Exit section and further section
242 exit_section = ((theta >= theta_r) & (theta < -theta_t)) | ((theta >= theta_t) & (

theta < theta_m));
243 sigma_theta(exit_section) = (k_c / w + k_phi) * R^n * (cos(theta_f - (theta(

exit_section) - theta_r)*(theta_f - theta_m)/(theta_m - theta_r)) - cos(theta_f))
.^n;

244

245 else
246 % Condition when theta_m <= theta_t
247 sigma_theta = zeros(size(theta)); % Initialise sigma_theta for all values of theta
248

249 % Entry section
250 entry_section = (theta >= theta_t) & (theta <= theta_f);
251 sigma_theta(entry_section) = (k_c / w + k_phi) * R^n * (cos(theta(entry_section)) -

cos(theta_f)).^n;
252

253 % Flattened section (Denoted to calculate H_BC and T_BC)
254 flat_section = ((theta >= -theta_t) & (theta < theta_t));
255 if l_t < w
256 sigma_theta(flat_section) = (k_c / l_t + k_phi) * z^n;
257 else
258 sigma_theta(flat_section) = (k_c / w + k_phi) * z^n;
259 end
260

261 % Exit section
262 exit_section = (theta >= theta_r) & (theta < -theta_t);
263 sigma_theta(exit_section) = (k_c / w + k_phi) * R^n * (cos(theta_f - (theta(

exit_section) - theta_r)*(theta_f - theta_m)/(theta_m - theta_r)) - cos(theta_f))
.^n;
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264

265 end
266 end
267

268 % Shear stress tau(theta)
269 function tau_theta = calculate_tau(sigma_theta, c, phi, j_theta, k)
270 tau_theta = (c + sigma_theta .* tan(phi)) .* (1 - exp(-j_theta ./ k));
271 end
272

273 % Soil deformation j(theta)
274 function j_theta = calculate_j_theta(theta, theta_f, theta_t, R, s, delta_t)
275 if abs(theta) >= abs(theta_t)
276 j_theta = R * (theta_f - theta - (1 - s) * (sin(theta_f) - sin(theta)));
277 else
278 j_theta_t = R * (theta_f - theta_t - (1 - s) * (sin(theta_f) - sin(theta_t)));
279 j_theta = j_theta_t + s * (R * sin(theta_t) - (R - delta_t) * tan(theta));
280 end
281 end
282 end
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F.7.5. End of contact surface radius for next step
1 function [R_eff]=...
2 MinimumRadiusNextStep(E, w, t_s, t_c, R, L, beta_angle, F_x, F_y)
3

4 alpha_end = 0.10*beta_angle;
5

6 % Moment of inertia and area
7 I_sz = (1/12) * w * t_s^3;
8 I_cz = (1/12) * w * t_c^3;
9 A_s = w * t_s;
10

11 %% Straight flexure
12 % Deflections in straight flexure
13 delta_Cr_straight = @(F_Cr) (F_Cr * L)/(E*A_s);
14 delta_Ct_straight = @(F_Ct, M_Cz) (M_Cz * L^2)/(2*E*I_sz) + (F_Ct * L^3) / (3*E*I_sz);
15 phi_Cz_straight = @(F_Ct, M_Cz) (M_Cz * L)/(E*I_sz) + (F_Ct * L^2)/(2*E*I_sz);
16

17 %% Curved flexure
18 % Force and moment equilibrium full straight flexure
19 F_Br = @(F_Cr) F_Cr;
20 F_Bt = @(F_Ct) F_Ct;
21 M_Bz = @(F_Ct, M_Cz) F_Ct*L + M_Cz;
22

23 % Moment functions curved flexure
24 Mz1 = @(theta, F_Ct, F_Cr, M_Cz) F_Bt(F_Ct) * R * (1 - cos(theta)) + F_Br(F_Cr) * R * sin(

theta) - M_Bz(F_Ct, M_Cz);
25 Mz2 = @(theta, F_Ct, F_Cr, M_Cz) Mz1(theta, F_Ct, F_Cr, M_Cz) - F_x * R * (1 - cos(theta -

alpha_end)) - F_y * R * sin(theta - alpha_end);
26

27 % Compute partial derivatives
28 partial_Mz1_FCr = @(theta) R * sin(theta);
29 partial_Mz1_FCt = @(theta) R * (1 - cos(theta)) - L;
30 partial_Mz1_MCz = @(theta) -1;
31

32 partial_Mz2_FCr = @(theta) partial_Mz1_FCr(theta);
33 partial_Mz2_FCt = @(theta) partial_Mz1_FCt(theta);
34 partial_Mz2_MCz = @(theta) partial_Mz1_MCz(theta);
35

36 partial_Mz1_Fy = @(theta) 0;
37 partial_Mz2_Fy = @(theta) -R * sin(theta - alpha_end);
38

39 % Deflections in curved flexure
40 delta_Br_curved = @(F_Cr, F_Ct, M_Cz) ...
41 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCr(theta),

0, alpha_end, 'RelTol',1e-12,'AbsTol',1e-12) + ...
42 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCr(theta),

alpha_end, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
43

44 delta_Bt_curved = @(F_Cr, F_Ct, M_Cz) ...
45 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_FCt(theta),

0, alpha_end, 'RelTol',1e-12,'AbsTol',1e-12) + ...
46 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_FCt(theta),

alpha_end, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
47

48 phi_Bz_curved = @(F_Cr, F_Ct, M_Cz) ...
49 (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_MCz(theta),

0, alpha_end, 'RelTol',1e-12,'AbsTol',1e-12) + ...
50 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_MCz(theta),

alpha_end, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
51

52 %% Solving
53 % Define function for nonlinear solver
54 force_equations = @(F) [
55 delta_Br_curved(F(1), F(2), F(3)) + delta_Cr_straight(F(1));
56 delta_Bt_curved(F(1), F(2), F(3)) + delta_Ct_straight(F(2), F(3));
57 phi_Bz_curved(F(1), F(2), F(3)) + phi_Cz_straight(F(2), F(3));
58 ];
59

60 % Improved numerical integration settings
61 opts = optimset('TolFun', 1e-12, 'TolX', 1e-12, 'Display', 'off');
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62

63 % Solve
64 F_init = [0 1 0.01];
65 F = fsolve(force_equations, F_init, opts);
66

67 F_Cr = F(1);
68 F_Ct = F(2);
69 M_Cz = F(3);
70

71 %% Deflection of loading point
72 % Vertical deflection loading point
73 delta_y = (R/(E*I_cz)) * (integral(@(theta) Mz1(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz1_Fy(

theta), 0, alpha_end, 'RelTol',1e-12,'AbsTol',1e-12) + ...
74 integral(@(theta) Mz2(theta, F_Ct, F_Cr, M_Cz) .* partial_Mz2_Fy(theta),

alpha_end, beta_angle, 'RelTol',1e-12,'AbsTol',1e-12));
75

76 %% Effective radius
77 R_eff = R - delta_y;
78 end

F.7.6. Climbing height
1 function [y_c]=...
2 ClimbingHeight(R, y_g, z, delta_y)
3

4 % Climbing height y_c
5 y_c = R + y_g - z - delta_y;
6

7 end
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