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The dielectric spectra of colloidal systems often contain a typical low frequency

dispersion, which usually remains unnoticed, because of the presence of strong

conduction losses. The KK relations offer a means for converting ε′ into ε′′ data. This

allows us to calculate conduction free ε′′ spectra in which the l.f. dispersion will show

up undisturbed. This interconversion can be done on line with a moving frame of

logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained

by kernel matching and by using symbolic differential operators. Logarithmic derivatives

and differences of ε′ and ε′′ provide another option for conduction free data analysis.

These difference-based functions actually derived from approximations to the distribution

function, have the additional advantage of improving the resolution power of dielectric

studies. A high resolution is important because of the rich relaxation structure of colloidal

suspensions. The development of all-in-1 modeling facilitates the conduction free and

high resolution data analysis. This mathematical tool allows the apart-together fitting of

multiple data and multiple model functions. It proved also useful to go around the KK

conversion altogether. This was achieved by the combined approximating ε′ and ε′′ data

with a complex rational fractional power function. The all-in-1minimization turned out to

be also highly useful for the dielectric modeling of a suspension with the complex dipolar

coefficient. It guarantees a secure correction for the electrode polarization, so that the

modeling with the help of the differences ε′ and ε′′ can zoom in on the genuine colloidal

relaxations.

Keywords: all-in-1modeling, electrode polarization, KK conversion frames, logarithmic derivatives and

differences, matching Debye kernels, multivariate apart-together fitting, spectral resolution, symbolic differential

operators

INTRODUCTION

Dielectric spectroscopy is a powerful technique to study electrokinetic phenomena, it determines
the frequency dependence of the real and imaginary part of the permittivity, ε′ and ε′′. The
measurements can span a very broad frequency range. In electrokinetic spectroscopic studies the
low frequency part is quite relevant. At low frequencies the dissipative loss in ε′′ caused by ohmic
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conduction becomes prominent, often to such an extent that it
overshadows the genuine dispersion or pure relaxation losses
of the colloidal particles. The unwanted ohmic loss might thus
hamper the resolution of nearby relaxation processes seriously.
So, in order to reach a high resolution the contribution of the
ohmic conduction to ε′′ should be eliminated. Conduction may
also reduce the diagnostic selectivity of electrochemical sensors,
so cleaning ε′′ from conduction might be beneficial here as well.

Figure 1 illustrates the problem caused by ohmic conduction.
In order to reveal the hidden peak due to the true relaxation
losses of the colloidal particles the ohmic conduction should be
removed from the measured ε′′-data.

Clearly, the disturbing ohmic energy loss will not show up
in the real part of the permittivity ε′, because ε′ is a measure
of the number of dipoles and ions involved, but not of the
energy required for their motion. Now one of the two Kramers-
Kronig dispersion relations offers a means to calculate from the
ε′ data, the genuine relaxation loss in the imaginary part ε′′.
Unfortunately such a KK interconversion is made difficult by
the fact that the KK relations are singular integrals. We will
describe two methods to approximate the unwieldy integrals
accurately in an easy and fast way. This has the advantage
that the ε′ to ε′′ conversion can be coded as one-liners and
can be used on line. The ε′′ data obtained from ε′ will be
denoted ε′′kk or ε′′cf (with cf being short for conduction
free). The fast interconversion basically consists of a frame of
coefficients by which ε′′kk can be calculated from a limited set of
logarithmically spaced ε′ data clustered around the conversion
frequency. Our compact KK relations in the form of moving
conversion frames can in reverse be used to find the strength
of the conduction loss from the difference of the observed and
the converted ε′′ data. This information is for example crucial
for assessing the onset of percolation when the conducting
phase in a colloidal mixture becomes co-continuous. A versatile
way to avoid the problematic KK integrals is kernel matching.
This mathematical tool relies on the fact that the permittivity
can be considered to originate from a continuous distribution
of elementary Debye relaxation processes. The distributed ε′

and ε′′ do obey the KK relations but these improper integrals
are no longer needed, because the conversion can now be

Abbreviations: cos(πDl/2), cos-operator; cot(πDl/2), cot-operator; sin(πDl/2),

sin-operator; tan(πDl/2), tan-operator; d, electrode distance; dl , Debye length;

D, normal derivative; Dl,logarithmic derivative; E, normal shift; El , logarithmic

shift; f(τ ), distribution function; g(lnτ )= τ f(τ ), logarithmic distribution function;

h, logarithmic spacing; i, imaginary unit; m∗(ω), complex dielectric modulus;

z∗(ω), complex impedance; β∗(ω), complex dipolar coefficient; ε∗(ω), complex

permittivity; εa(ω), magnitude or absolute value; ε∗cs (ω), measured complex cell

permittivity of suspension; εdl , real permittivity of double layer; ε∗e (ω), complex

permittivity electrolyte; ε∗ep (ω), complex permittivity electrode polarization;

ε∗s (ω), true permittivity of suspension; εw , real permittivity of water; ε′, real part

of permittivity; ε′′, imaginary part of permittivity which may include conduction

losses; ε′′
cf−rf

, ε′′ free of conduction via ratio of fractional sums; ε′′kk = ε′′cf ,

ε′′ free of conduction via KK; γ , ohmic conductivity; γ e, ohmic conductivity of

electrolyte; κ ′(x), Debye’s real kernel; κ ′′(x), Debye’s imaginary kernel; τ , relaxation

time; τe, (ohmic) relaxation time electrolyte; dε′/dlnω, logarithmic derivative

of ε′; dε′′/dlnω, logarithmic derivative of ε′′; 1ε′(ω), logarithmic difference

of ε′; 1ε′′
fc
(ω), asymmetric conduction free ε′′ difference; 1ε′′cf (ω), symmetric

conduction free ε′′ difference.

FIGURE 1 | Simulated observed ε′′-spectrum and that of ε′′ calculated

by converting ε′-data into conduction free ε′′-ones. Only the latter shows

us the authentic loss peak we look for. The ε′-spectrum remains unaffected by

conduction. We assumed that the electrode polarization, which may also turn

up at low frequencies, can be neglected, cf. Figure 3.

accomplished by approximating the Debye kernel of the ε′′

distribution-integral with a sum of logarithmic spaced Debye
kernels of the ε′ distribution-integral. This singularity free
approach thus provides the desired conversion panel with which
ε′′kk can be uncovered readily by moving the panel along the
observed logarithmically spaced ε′ data. The other method we
have explored for the fast evaluation of the KK integrals is the
approach of “integration by differentiation.” In this route the
KK integrals are replaced by symbolic differential operators. It
turned out that the logarithmic differential operators cannot
be used in a broad sense. However, one operator, viz. the cot-
operator scheme could be made useful for calculating dε′/dlnω
from a narrow window of logarithmically spaced ε′′data. This
logarithmic derivative can of course also be calculated from ε′

proper, in that case it will be automatically conduction free. The
‘loss’ peaks appearing in the dε′/dlnω spectra have the advantage
of being sharper than their corresponding ε′′ counterparts, which
implies that the resolution increases1. The various conversions
we will discuss are summarized in Figure 2. In addition to ε′′

kk
and dε′/dlnω, we will also pay attention to the special features of
the logarithmic differences of ε′ and ε′′.

Another option to increase the resolution of lf-dispersions
or actually of all dispersions is to compute the underlying
distribution function by inverting the ε′ and/or ε′′ data. For
the latter we clearly should take its pure relaxation part, i.e.,
ε′′kk or ε′′cf . Recall that a single Debye relaxation is narrowed
down upon inversion to an extremely sharp delta distribution.
The ensuing distribution spectra will therefore show the highest
resolution possible. We will discuss a simple way to accomplish
the complex Stieltjes inversion of the ε′ and ε′′ data bymaking use
of rational polynomials in fractional powers. A joint data-analysis
by fitting ε′ and ε′′ “apart-together” leads to an improvement in
resolution power as well. Such a paired simultaneous modeling,

1Although dε′/dlnω is a negative quantity, because ε′ drops with ω, we found it

more convenient to plot and treat it below as a positive quantity. So in most cases

we will actually deal with the absolute value of d ε′/dlnω.

Frontiers in Chemistry | www.frontiersin.org 2 May 2016 | Volume 4 | Article 22

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


van Turnhout Frame-Wise Conversion, Handy Differences, and All-In-1 Modeling

FIGURE 2 | Options explored for converting ε′ and ε′′ data. We will show that the differences of ε′ and ε′′ offer new possibilities for improving the data analysis.

All conversions are done with panels and executed as one-liners.

dubbed all-in-one modeling, wherein the relaxation parameters
are kept the same in the ε′ and ε′′ fit functions, but whereby the
conduction is contained only in the ε′′ fit function, requires a
two-way switch in the co-fit procedure which links the proper
data to the proper fit formulae and thus assures that the two non-
linear least squares minimizations are always done in parallel.
Although we will focus on the data handling of the complex
permittivity, the fast conversion methods developed can also be
applied directly to other complex electrokinetic quantities like the
dielectric modulus and the impedance or to the magnitude and
phase.

Apart from the ohmic conduction, another disturbance is
prominently active in the dielectric spectroscopy of aqueous
colloidal systems. The point being that the ions of the electrolyte
tend to accumulate near the electrodes of the measuring cell. This
causes electrode polarization (EP), which may enhance ε′ and
ε′′ strongly. This phenomenon too may therefore overshadow
the true l.f. relaxation of the colloidal particles. We will
briefly describe in Section Improving the Resolution by All-In-
1 Modeling of the Real and Imaginary Data, how the effect
of this nuisance can be eliminated as well as. Several methods
to accomplish this are discussed recently in more detail in an
upcoming article of this journal (Chassagne et al., submitted) and
in van Turnhout et al. (2016).

Figure 3 illustrates the impact of the EP. The local ionmotions
in tune with the a.c. voltage create a special relaxation peak, which
we have called ρ or space charge peak. Clearly, the calculated ε′′

kk
spectrumwill also reveal the presence of this specific space charge
relaxation peak.

KK RELATIONS-THE BASICS OF THE
INTERCONVERSION OF REAL AND
IMAGINARY DATA

The KK dispersion relations were proposed by Kramers and
Kronig about a century ago. A candid review of their history
has been given by Bohren (2010). The relations were given as
integrals that relate the real and imaginary part of all dispersion
phenomena. Kramers proposed both integrals for the first time
in Copenhagen (Kramers, 1927). Kronig proposed one of them a
year later (Kronig, 1926). Both did not refer in their accounts to
the Hilbert transform and it inverse, which are basically the same.

FIGURE 3 | The l.f. ρ or space charge relaxation, which is due to the

rather slow up and down motion of the ion clouds near the electrodes,

remains hidden in the ε′′ curve. It too can be disentangled from the

conduction contribution by calculating ε′′kk . The conduction, which stems

from the gross ion motion, appears alongside the EP, if the electrodes are not

fully blocking.

Electrical engineers speak of “real part sufficiency,” which
implies that the imaginary part can be calculated from the real
part of the response of an electric network. They present the
integrals in their textbooks without reference to KK (see e.g.,
Turtle, 1958). It took some time before the KK relations were
actually used in the research of dielectric phenomena. Early
pioneers were for instance: Bayard (1935), Gorter and Kronig
(1936), Gross (1943), Brachman and Macdonald (1954).

The KK relations can be derived by making use of Cauchy’s
integral theorem (Kremer and Schönhals, 2002). They have the
following form for dielectric dispersions or relaxations

ε′(ωo)− ε∞ =
2

π

∫ ∞

0

ωε′′(ω)

ω2 − ω2
o

dω

ε′′(ωo) = −
2ωo

π

∫ ∞

0

ε′(ω)− ε∞

ω2 − ω2
o

dω, (2.1)

where ε′ and ε′′ are the real and imaginary part of the complex
permittivity ε∗(ω)= ε′(ω)− iε′′(ω). Similar integrals hold for the
other quantities used to describe dielectric relaxations such as the
complex dielectric modulus, m∗(ω) = 1/ε∗(ω), the magnitude,
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|ε∗(ω)|, and phase θ(ω) = atn[ε′′(ω)/ε′(ω)]. We shall restrict
ourselves mainly to the interconversion of ε′ to ε′′ and vice versa.
In this process we will derive so-called conversion frames that can
equally well be used to convert m′ into m′′, etc.

Considering the integrals given, it is not surprising that in
practice the KK relations are still not broadly used. This is due to
the fact that their kernels become singular for ω→ωo. However,
this singularity can be removed by rewriting them to

ε′(ωo)− ε∞ =
2

π

∫ ∞

0

ωε′′(ω)− ωoε
′′(ωo)

ω2 − ω2
o

dω

ε′′(ωo) = −
2ωo

π

∫ ∞

0

ε′(ω)− ε′(ωo)

ω2 − ω2
o

dω. (2.2)

Nonetheless the conversion of ε′ into ε′′-values with an integral
like Equation (2.2) is a tedious job. The more so because we
want to know the converted values across the whole frequency
scan. We have therefore discarded numerical integration and
have followed two different approaches, see Figure 5.

Before outlining this in Sections Easy to Use Conversion
Frames Obtained by Matching Debye Kernels and Computing
Conversion Frames with Symbolic Differential Operators, we
should point out an important salient property of the KK
relations, which is often overlooked. By the very fact that ε′′ can
be calculated from ε′, we miss out any possible contribution by
ohmic conduction. In other words by invoking the KK relations
we get a special set of ε′′-data that are conduction free. We
should therefore label the converted data with cf or kk and denote

FIGURE 4 | Kramers (left), in particular Kronig (right) was relatively

young when he proposed one of the KK integrals. At that time he added

de Laer to his last name. His name should not be spelled Krönig.

them as ε′′
kk

or ε′′
cf
. Since the ohmic conduction causes a loss

component of ε′′c (ω) = γ / (εoω) we have

ε′′kk(ω) = ε′′(ω)− ε′′c (ω) = ε′′(ω)− γ
/

(εoω), (2.3)

where ε′′(ω) represents the measured ε′′-data, ε′′c (ω) the
conductive part in ε′′, γ the ohmic conductivity and εo the
permittivity of vacuum.

The KK relations can be of help in the removal of the
dissipative ohmic loss only from ε′′. They cannot be recruited for
its removal from the other dielectric quantities mentioned. Let us
illustrate this for the magnitude-phase relation. Writing ε∗(ω) in
its polar Euler form

ε∗(ω) =
∣

∣ε∗(ω)
∣

∣ eiθ(ω) (2.4)

and taking the natural logarithm we get:

ln[ε∗(ω)] = ln[εa(ω)]+ iθ(ω), (2.5)

with εa(ω) equaling the absolute value |ε∗(ω)| and θ(ω) =

atn[ε′′(ω)/ ε′(ω)].
The real and imaginary parts lnεa and θ obey KK relations

similar to those of Equation (2.1). This means that it is possible
to compute θ from lnεa values, but this does not imply that in
doing so the ε′′c contribution to θ is nullified. The reason being
that the real part lnεa also contains a contribution from ε′′c . Recall

that εa(ω) =
√

ε′(ω)2 + ε′′(ω)2, so ε′ and ε′′ are now mixed up
in the real part.

Zahner (Germany) has implemented in their software this
“logarithmic” version of the KK relations (Schiller et al., 2001;
Lasia, 2014). It embodies an algorithm to calculate lnεa from
measured θ values. We will return to this in Sect. 4. The
logarithmic version of the KK relations is often used by electrical
engineers (Turtle, 1958).

Figure 6 shows the various conversions we will discuss
below. For each we will give the coefficients of the appropriate
conversion frames. The main focus will be on getting one liners
for the conversion of ε′ to ε′′kk and ε′′ to dε′/dlnω. Although, as
just said, we will also shortly touch upon the conversion of θ to
lnεa or for that matter of ε′′ to ε′.

FIGURE 5 | On the left, numerical integration is not the favorite tool for KK conversion. It can be better realized with kernel matching and with symbolic

differential operators. The conversion produces useful spin offs, they are depicted on the right. The higher resolution results from the elimination of the conduction

from the ε′′-data.
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EASY TO USE CONVERSION FRAMES
OBTAINED BY MATCHING DEBYE
KERNELS

The direct use of the unwieldy KK integrals can be avoided by
making use of the integral equations based on the description of
relaxation phenomena with a distribution in relaxation times.

The most elementary dielectric dispersion phenomenon is the
Debye relaxation, which Debye derived for dipole relaxations in
gases and liquids.We can view the intricate relaxation of colloidal
systems as being buildup from a sum of Debye processes

ε∗(ω) = ε∞ +
∑ n

k= 1

1εk

1 + iωτk
, (3.1)

where ε∞ is ε′(∞), τ k the relaxation time of process k. The
relaxation strength1εk can be expressed as1εk = εsk − ε∞ with
∑n

k= 1 εsk = ε′(0). Often the individual Debye processes may
come very close, so we better go a step further and think of the
total dielectric response arising from a continuous distribution
of Debye processes f (τ )

ε∗(ω) = ε∞ + 1ε

∫ ∞

0

f (τ )dτ

1+ iωτ
, (3.2)

in which we can split the complex Debye kernel into a real and
imaginary part

ε′(ω) = ε∞ + 1ε

∫ ∞

0

f (τ )dτ

1+ ω2τ 2
ε′′(ω) = 1ε

∫ ∞

0

f (τ )ωτdτ

1+ ω2τ 2
.

(3.3)
We can prove that these integrals obey the KK relations by
inserting them into Equation (2.1).

We now have 2 additional relations between ε′ and ε′′

that are linked up by the distribution function. Expressions
like Equation (3.3) are common in the theory of viscoelastic
phenomena. It were Ninomiya and Ferry (1959) who were
the first to suggest a powerful trick to manipulate the various
viscoelastic interrelations. By the way they did not deal with the
interconversion of Equation (3.3) as such, but addressed e.g., the
conversion of time to frequency responses and vice versa.

FIGURE 6 | Illustration of the different conversions covered. The

resulting ε′′kk and dε′/dlnω will improve the l.f. spectral resolution, both with

respect to ohmic conduction and to EP.

The clue, as sketched in Figure 7, is to approximate the
respective Debye kernels. We have

κ ′(x) =
1

1+ x2
κ ′′(x) =

x

1+ x2
, (3.4)

where x = ωτ . Hence for the conversion of ε′ to ε′′ we should
approximate ε′′ with a sum of κ ′(x). A good option is

κ ′′(x) ≃
∑n

k=−n
ak[κ

′(2kx)− 1 / 2]. (3.5)

The subtraction of ½ makes the κ ′ kernel antisymmetric around
x = 1 and assures that the ak’s become symmetric. By prescribing
the logarithmic spacing of the κ ′ terms at h = 2, we have reduced
the least squares approximation to a linear one, which is easy to
do. We found:

ak = {0.16192,−0.17918, 0.30015, 0.430378, 0,−0.40378,

−0.30015, 0.17918,−0.16192} (3.6)

These coefficients differ somewhat from the ones, we have given
earlier (Steeman and van Turnhout, 1997; Wübbenhorst and
van Turnhout, 2002; van Turnhout, 2004). We call this set of
coefficients a conversion frame. With such a frame or panel we
can convert a set of log-spaced ε′ data easily to a ε′′

kk
value.

In fact

ε′′kk(ω) ≃
∑4

k=−4
akε

′(2kω) or

ε′′kk(ω) ≃
∑4

k= 1
a4k[ε

′(2−kω)− ε′(2kω)], (3.7)

with a4k = {0.40378, 0.300158,−0.17918, 0.16192}. The data
acquisition of modern test equipment (e.g., from Novocontrol,
HP-Agilent, now Keysight Technologies, etc) allow us to measure
at log-spaced intervals, whereby the choice of a spacing h = 2
poses no problem.

Sampling the list of measured ε′ by sliding the frame from the
beginning to the end step by step along all data creates a new set
of ε′′ data that are conduction free. We notice that for each ε′′

value we need 4 ε′ data upfront and 4 at the rear. This means that
we will lose 4 ε′′ at the start and 4 at the end.

FIGURE 7 | Kernel matching is a powerful method for computing the

coefficients of conversion frames, in this case for ε′
→ ε′′

kk . With the

frames we can obtain ε′′kk with one liners, cf. Equations (3.7) and (3.8).
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For that reasonwe have also calculated asymmetric conversion
frames by starting the kernel-approximation of Equation (3.5)
not from k = −4, but from −3,−2,−1. Using these start up
frames we only miss the very first ε′′

kk
value. By starting the sum in

Equation (3.5) from k= −7,−6,−5, we get special end frames by
which we lose out only one ε′′

kk
-value at the end of the frequency

scan.
Most dielectric measurements cover a very wide ω range.

Then the loss of a few ε′′kk data at the start and the end
of the range is hardly serious. In that case we can restrict
the conversion to that with the central frame and simply use
Equation (3.7).

Table 1 lists the coefficients of the ε′ to ε′′ frames. We have
only included the central frame and those for the start, because
those at the end are in fact the same as those at the start albeit in
reversed order and with a minus-sign.

Implemented in Mathematica, the frames with the coefficients
b1k to b4k from top to bottom can be used as follows:

Join























Table

[{

ωi,
9

∑

k= 1

bi− 1,kε
′
k

}

, {i, 2, 4}

]

,

Table

[{

ωi,
4

∑

k=−4

b4,k+ 5ε
′
i+ k

}

, {i, 5, n − 4}

]

,

Table

[{

ωi+ n− 5,−
9

∑

k= 1

b5− i,10− kε
′
k+ n− 9

}

, {i, 2, 4}

]























.

(3.8)

At the start from ω1 we stick to the first 9 ε′ values to get ε′′(2ω1),
ε′′(4ω1), ε′′(16ω1). Next we can march on and drop the first
ε′(ω1) and add a new ε′-value at the end of the central frame to
get ε′′(32ω1), ε

′′(64ω1), etc. This can be continued till we reach
the end of the total of n ε′-data at ωn. We then stick to the
last 9 ε′ data to get ε′′[ωn/16], ε′′[ωn/8], ε′′[ωn/2]. The present
frames give a more accurate conversion than the ones give a more
accurate conversion than the ones given earlier (Steeman and van
Turnhout, 1997).

Figure 8 shows the accuracy achieved with the central panel
for the ε′′ data of a Debye relaxation (the sharpest relaxation
possible). The recalculated values deviate a bit at the wings. This
deviation becomes much less if the begin and end panels are used
as well, as suggested in Equation (3.8).

Brather has also discussed KK conversion based on kern
matching (Brather, 1979). He proposed the use of a series of ε′

terms. These large sums can be applied less easily used than our
conversion frames, which allow conversion on line. He has also
not discussed the special sums needed to begin and finish the
conversion.

We should realize that the ohmic conduction will not
contribute at all at the high end of the frequency range, because
its loss ε′′c drops off with 1/ω. At the end we may therefore also fill
in the missing ε′′

kk
with the measured ε′′ values and thus skip the

use of the special end frames.
In Steeman and van Turnhout (1997) we have also carried out

the KK conversion of ε′ to ε′′ by solving iteratively a triangular
set of ε′′ terms. It will be clear that the one-liners of Equations
(3.7) and (3.8) are much easier to implement in the data analysis.

Clearly, the calculation of conversion frames by kernel
matching can easily be extended to other conversions. Such as the
conversion of a few ε′′ values to dε′/dlnω. a mixed conversion of
ε′′ and ε′ to dε′/dlnω is possible, possible, see Figure 9.

The logarithmic derivative of ε′ is a compelling quantity,
because it has a higher resolution of nearby peaks than ε′′.
However, we should be careful not to infect the resulting
dε′/dlnω by ohmic conduction from ε′′. This can easily
be prevented by imposing a constraint on the linear l.s.q.

FIGURE 8 | KK conversion tested for a Debye relaxation with Equation

(3.7). The dashed line pertains to ε′′kk calculated.

FIGURE 9 | A few options to obtain dε′/dlnω via KK conversion. Any

contribution of possible conduction loss should of course be avoided if we

recruit ε′′ data. This can be effected by implying ε′′cf values. This special

option is obtained by invoking a constraint. ε′ midway refers to sampling of the

ε′ data at half the interval, cf. Equation (7.1). It produces a higher accuracy

than the central discretization of ε′ with Equation (3.11).

TABLE 1 | Coefficients of conversion frames for ε′ to ε′′

kk
.

1.46798 −1.70423 1.22797 −1.42088 0.80091 −0.49497 0.18569 −0.05801 −0.00446

0.64739 −0.57793 1.26737 −1.60656 0.65318 −0.44159 0.10596 −0.02013 −0.02769

0.35083 −0.49787 1.15739 −0.45203 −0.33793 −0.0601 −0.17561 0.09753 −0.08221

0.16192 −0.17918 0.30015 0.40378 0 −0.40378 −0.30015 0.17918 −0.16192
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minimization of the dε′/dlnω kernel. We therefore matched

dκ ′(x)

d ln x
=

2x2

(1+ x2)2
≃

∑1

k=−1
bk[κ

′(2kx)− 1 / 2]+

1
∑

k=−1

ckκ
′′(2kx), (3.9)

with as constraint
∑1

k=−1 ck(2
−k/x+ 2kx) = 0. This leads to the

following mixed conversion

dε′
/

d lnω ≃ 0.378359[ε′(ω / 2)− ε′(2ω)]+ 0.595523

[−ε′′(ω / 2)+ 2.5ε′′(ω)− ε′′(2ω)]. (3.10)

This mixed conversion illustrates the versatility of kernel
matching. Yet it is still compatible with the KK relations.
Apparently, we only need 2 ε′ and 3 ε′′ values to get an accurate
estimate of dε′/dlnω.

Admittedly, we can use as alternative to Equation (3.9) the 5
term central logarithmic difference of ε′. This gives:

dε′/d lnω ≃
∑ 2

k=−2
dkε

′(hkω), (3.11)

with dk = {−1, 8, 0,−8, 1}/(12lnh). This numerical derivative,
which derives from a 3rd degree logarithmic polynomial, is for
h = 2 less accurate than (3.10) for sharp Debye like peaks.

The accuracy obtained with 3 options for calculating dε′/dlnω
is demonstrated in Figure 10. The central difference frame
performs less than themixed frame of Equation (3.9) and also less
than the “halfway” frame of Equation (7.1). An interval of h = 2
roughly equals 100.3, taking h = 100.2 improves the accuracy of
the central difference markedly. It then scores virtually as good as
the other two.

COMPUTING CONVERSION FRAMES WITH
SYMBOLIC DIFFERENTIAL OPERATORS

There is a saying that one can do “integration by differentiation,”
this also applies to the KK relations. The KK integrals are in

FIGURE 10 | Accuracy of 3 options for computing dε′/dlnω for a Debye

relaxation. The commonly used central frame of Equation (3.11) is evidently

not the best near the maximum for h = 2. The offset at the maximum

disappears if we reduce h to 100.2.

fact logarithmic convolution integrals. This can be shown be
rewriting Equation (2.1) to

ε′′(ωo) = −
2ωo

π

∫ ∞

0

ε′(ω)− ε∞

ω2 − ω2
o

dω

= −
2

π

∫ ∞

0

ε′(uωo)− ε∞

u2 − 1
du, (4.1)

in which ε′(uωo) now depends on the product of u and ωo.
Integrals with such a function are called convolution integrals.
They can be evaluated in a special way (Hirschman and Widder,
1955).

For pursuing this, we introduce the logarithmic derivative Dl.
This allows us to move the x-position of a function f to hx using
the symbolic exponential operation

eDl ln hf (x) = f (hx). (4.2)

This is the logarithmic variant of a better known operation with
the normal derivative D, which produces a linear shift

ehDf (x) = f (x+ h). (4.3)

Equation (4.2) can be proven be developing both sides in a Taylor
expansion around h = 1.

The exponential logarithmic derivative operation of Equation
(4.2) can be replaced by a logarithmic shift El

Elf (x) = f (hx), (4.4)

which produces the equality

El = eDl ln h or Dl = ln(El)/ ln h. (4.5)

The action of both logarithmic operators for transforming f(x)
into f(hx) is portrayed in Figure 11 on the left.

It may be illuminating to use the symbolic equality of Equation
(4.5) to find the panel of coefficients for the 1st derivative of ε′:
Dlε

′ = dε′/dlnω. Expanding lnEl in a series of up to the 4th order
around El = 1 results in

Dl = E2l
lnEl
ln h

≃
E2
l

ln h

∑2

k=−2
dkE

k
l , (4.6)

FIGURE 11 | On the left, two symbolic tools to transform f(x) to f(hx). On

the right, trick to link ε′(uωo) symbolically to ε′(ωo) and thus push the latter out

of the convolution integral of KK in Equation (4.8).
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with the coefficients dk equaling those given in Equation (3.11).
Note that we pre-multiplied with E2

l
in order to get the

coefficients of the central difference. Series expansions like that
of Equation (4.6) are easy to do in symbolic programs like Maple
and Mathematica.

With the help of e Equation (4.2), as sketched on the right in
Figure 11, we may replace ε′(uωo) by

ε′(uωo) = eDl ln uε′(ωo), (4.7)

inserting this in Equation (4.1) gives

ε′′(ωo) = −
2

π

∫ ∞

0

eDl ln u

u2 − 1
du[ε′(ωo)− ε∞], (4.8)

in other words we can push ε′(ωo)− ε∞ out of the KK-integral.
The resulting integral with u as variable is known analytically.We
thus get

ε′′(ω) = tan(πDl/2)[ε
′(ω)]. (4.9)

We speak of a symbolic differential operator. In a similar way we
find as symbolic differential operator for the ε′′ to ε′ conversion

ε′(ω) = − cot(πDl / 2)[ε
′′(ω)]. (4.10)

We have thus indeed succeeded in replacing the KK integrals by
KK differential operators.

Admittedly, the KK relations can be applied for the analysis
of dispersions in many areas. One of these areas are ultrasonic
relaxation studies, where their differential forms did not remain
unnoticed (Waters et al., 2003).

The use of these unusual symbolic operators looks at first sight
not easy. The job was facilitated a lot by inserting for Dl =

lnEl/lnh in the tan and cot operator. Let us illustrate this for
Equation (4.10), see also Figure 12. If we take the logarithmic
derivative of both sides, we get

Dlε
′(ω) = dε′/d lnω = Dl cot(πDl/2)[ε

′′(ω)]. (4.11)

In order to arrive at a conversion frame for 5 logarithmically
spaced ε′′-data with h = 2, we expand Equation (4.11) as follows
around El = 1

E2l lnEl
/

ln 2 cot[π lnEl
/

(2 ln 2)] ≃ E2l

∑2

k=−2
ekE

k
l , (4.12)

which yields for which yields for dε′/dlnω,

dε′
/

d lnω ≃
∑ 2

k=−2
ekε

′′(2kω) (4.13)

We did a similar expansion for only 3 ε′′ terms. The dε′/dlnω
calculated with neither the 3 nor the 5 terms was satisfactorily
accurate for a Debye relaxation (one produced an undershoot,
the other an overshoot). We therefore took the average of the
coefficients. This average results in

ek = {−0.14821,−0.49697, 1.9270,−0.49697,−0.14821}

with these coefficients the dε′/dlnω calculated with Equation
(4.13) turns out to be optimal.

We should stress that Equation (4.13) should not be used
if the ε′′-data contain ohmic conduction. But like kernel
matching, the route via differential operators can be corrected
for that. We will return to this in Section Simple Routes
to a Higher Spectral Resolution: Logarithmic Derivatives or
Differences of ε′ and ε′′. We strongly recommend to rather use
the frame from that section to convert measured ε′′ data to
dε′/dlnω.

Being less ambitious, we could limit ourselves to using only
just the very 1st term of the expansion ofDl cot(πDl

/

2)in Dl near
0. This equals 2/π , which gives as crude approximation

dε′
/

d lnω ≃ 2ε′′(ω)
/

π . (4.14)

This approximation merely gives a reasonable estimate of
dε′/dlnω for broad relaxations. This modest zero-order estimate
for dε′/dlnω is furthermore not conduction free.

We mentioned in Section Introduction that Zahner
(Germany) has incorporated a KK conversion in their software,
viz. for calculating lnεa(ω) from an integral of the phase θ(ω)
(Schiller et al., 2001; Lasia, 2014). This conversion follows
directly from Equation (4.10) by expanding the cot operator in
Dl up to the 1st term

ε′(ω) ≃ [2
/

(πDl)− πDl

/

6]ε′′(ω). (4.15)

Like the inverse of D, 1/D, the inverse operator 1/Dl stands for
integration, in this case logarithmic integration. Realizing that
lnεa corresponds to ε′ and θ to ε′′ we get

ln εa(ωo) ≃
2

π

∫ ∞

ωo

θ(ω)d lnω −
πdθ(ωo)

6d lnω
. (4.16)

The full integration of the θ values down to ωo can be
avoided if we calculate the logarithmic difference of lnεa. A
close approximation for this difference can be derived by series
matching not the cot-operator itself, but the cot operator minus
the integration operator

(E−1
l

− El)[cot(πDl

/

2)− 2
/

(πDl)]. (4.17)

FIGURE 12 | Inserting Dl = lnEl/ln2 in a symbolic operator provides a versatile tool to get an expansion in El , which in turn provides an easy-to-use

conversion frame, in this case for ε′′ to dε′/dlnω.
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The pre-multiplication with 1/El-El is required because

1ε′(ω) = ε′(ω
/

2)− ε′(2ω) = (E−1
l

− El)ε
′(ω). (4.18)

We have done the series matching in a special way by matching
to a sum in E2

l
rather than El. The reason being that this gives a

more accurate approximation. This leads to

(E−1
l

− El){cot[π lnEl
/

(2 ln h)]− 2 ln h
/

(π lnEl)}

≃
∑1

k=−1
akE

2k
l , (4.19)

which gives ak = {−1, 2,−1}π /(12lnh) and results for 1lnεa
with h = 2 in

1 ln εa(ωo) = ln εa(ωo/2)− ln εa(2ωo) ≃
2

π

∫ 2ωo

ωo/2
θ(ω)d lnω

+
∑1

k=−1
akθ(4

kωo). (4.20)

By combining this with the logarithmic version of the Simpson
rule we get

1 ln εa(ω) ≃
2 ln 2

3π
[θ(ω/2)+4θ(ω)+θ(2ω)]+

∑1

k=−1
akθ(4

kω).

(4.21)
Checking Equation (4.21) for a Debye relaxation, we found
that we could improve the results by multiplying the ak
coefficients with 0.94. This produces for h = 2 the following
conversion

1 ln εa(ω) ≃
∑2

k=−2
askθ(2

kω), (4.22)

with ask = {−0.355035, 0.14709, 1.29843, 0.14709, −0.355035}.
If we wish we can use Equation (4.22) recursively and obtain
by starting from a given lnεa value at high ω, values for lnεa at
successively lower ω’s.

This new approximation for lnεa can clearly also be used to
convert ε′′-data to 1ε′(ω) ones

1ε′(ω) = ε′(ω/2)− ε′(2ω) ≃
∑2

k=−2
askε

′′(2kω). (4.23)

An interesting spin off of this conversion of ε′′ to1ε′(ω) is that it
allows us to calculate the ε′ response of models of which only
ε′′ is analytically known. Two typical examples are the Fuoss-
Kirkwood and Jonscher models (see e.g., Tschoegl, 1989; Kremer
and Schönhals, 2002).

There is hardly any need to use Equation (4.23) for converting
measured ε′′ data to 1ε′. However, if we do, then we should
realize that casual ohmic conduction may contaminate the
1ε′ values, because the conversion frame is not conduction
free. We mentioned above that by contrast the presence of
ohmic conduction does not affect the proper conversion of θ

to 1lnεa.
By employing kernel matching with constrains we have found

a conversion frame in which any conduction loss is canceled. This
reads

1ε′(ω) ≃
∑2

k=−2
afkε

′′(2kω), (4.24)

with afk = {−0.485235, 0.465031, 0.899672, 0.465031,
−0.485235}. Imposing the conduction free constraint causes the
conversion to 1ε′ to become a bit less accurate.

Surely, we could have found the frame for converting ε′′ to
1ε′values also directly from the cot operator itself, by simply
matching

El(E
−1
l

− El) cot[π lnEl
/

(2 ln 2)] ≃ El
∑1

k=−1
ackE

k
l . (4.25)

This gives a 3 term frame, we combined it with a 5 term frame to
get optimal results for a Debye relaxation. This yields a combined
frame with the following coefficients

ack = {−0.421343, 0.321676, 1.08188, 0.321676, −0.421343}.
It turned out that the frame based on ask performs somewhat
better to find 1ε′ from ε′′ than ack. Overall the panel of
ask shows the highest accuracy for the KK-conversion of ε′′

to 1ε′.
Shtrauss has also discussed the use of conversion frames

(Shtrauss, 2005, 2006). He derives the frames via the Mellin
transform. This approach has some resemblance with the
symbolic route. Shtrauss calculated his frames (which he calls
functional filters) with l.s.q. If he would have used series
expansion then he would have found the same coefficients as we
have presented in our symbolic panels.

UNCOVERING THE L.F. DISPERSION BY
CALCULATING THE CONDUCTION FREE
ε′′ LOSSES

The removal of the contribution by ohmic loss to the l.f.
dispersion has become an easy task with the availability of a fast
KK conversion of ε′ to ε′′. We just have to include the conversion
frames of Table 1 in the data handling. They require just a few
lines of code as Equation (3.8) shows. In particular the central
part of the ε′′

kk
data is easily computed with Equation (3.7).

The ohmic conduction originates from the continuous flow of
ions toward the electrodes. A flow that is driven by the applied
a.c. field. In some colloidal systems percolation might happen
at a certain critical concentration, when the conducting phase
becomes co-continuous. This will show up in a sharp rise in
the ohmic conduction. This can be monitored by calculating the
conduction from the difference between the observed ε′′ and the
computed ε′′

kk
, by using Equation (2.3) in reverse

γ
/

(εoω) = ε′′(ω)− ε′′kk(ω). (5.1)

Figure 13 displays the result of the computed conduction for a
Debye relaxation with conduction loss present. The conduction
is recovered closely up to a quite high frequency.

CONVERSION WITHOUT KK BY
APPROXIMATING ε′ AND ε′′ DATA WITH A
COMPLEX RATIONAL FUNCTION

In commercial software the KK conversion is avoided by
assuming that the data can be modeled with a complex empirical
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FIGURE 13 | One of the spin offs of the KK conversion, the retrieval of

the conduction from the measured and the converted ε′′ data.

function, ε′ and ε′′ of which can each be specified explicitly.
Usually the HN function is preferred for this purpose (Kremer
and Schönhals, 2002). It reads

ε∗hn(ω) = ε ∞ +
1ε

[1+ (iωτ ) a] b
−

iγ

εoω
, (6.1)

in which the last term accounts for ohmic conduction. The HN
function has two shape or peak broadening parameters a and b.
It can thus model the real and imaginary part of the experimental
data of a relaxation phenomenon often successfully. Usually, a
and b are assumed to remain below 1, but the proper constraints
are 0 < a < 1 and 0 < ab < 1. The latter implies that b may
exceed 1.

Imposing a specific model function is unsatisfactory, because
it does not derive from the underlying process. This pertains
the more so, if the system under study embodies a variety of
relaxation phenomena. This is in fact often the case for colloidal
systems (Grosse, 2002; Chassagne and Bedeaux, 2008; Delgado
et al., 2014).

We have therefore followed a different model free approach
and have approximated ε′ and ε′′ with the real and imaginary
part of a complex ratio in fractional power sums. We have
also included a conduction term. The leads to the following
expression for ε∗

ε∗(ω) = ε∞ + ε∗r (ω) − i
γ

εo ω
= ε∞

+

∑n
k= 0 ak(iω)

ck

1 +
∑ n+ 1

k= 1 bk(iω)
ck

− i
γ

εo ω
, (6.2)

where c is a fractional power and ε∗r represents the dispersion or
relaxation part. −ℑ[ε∗r (ω)] now plays the role of ε′′kk. An upper
limit of n = 2 is often sufficient. The possibilities offered by
approximating ε′ and ε′′ data with a ratio of complex fractional
polynomials in ω are indicated in Figure 142 .

We could model ε′ and ε′′ spectra with several relaxation
peaks quite accurately with Equation (6.2). We usually started the
l.s.q. minimization with c = 0.5 as initial value. The capability

2We may envisage the use of fractional polynomials in iω as a modeling of the

dielectric response with a parallel circuit of several Warburg impedances. By

combining such polynomials in a ratio, we only need sums with a limited number

of terms.

FIGURE 14 | A ratio of complex fractional sums provide a convenient

means to model relaxation spectra. Multiple peaks pose no problem and

we get easy access to conduction free ε′′ data and dε′/dlnω without any

involvement of the KK relations.

of Equation (6.2) to model multiple peaks in one go, is due to
the fact that we do not need to include a relaxation time like
we have to do for the common empirical functions like that of
HN. They are meant to fit one peak only, whereby the relaxation
time τ dictates the peak position on the scale (ωm about 1/τ ).
We should take care to put in Equation (6.2) the degree in
the degree in the denominator one higher than that of the
numerator.

In order to recover both the relaxation part ε∗r and the
conduction term we have combined a two component input (the
ε′ and ε′′ data) with a two way fit [viz. to the real and imaginary
part of Equation (6.2)] when the observed relaxation spectra
show multiple peaks. We further advise to fit instead to the
featureless ε′ or in addition to it the unstructured ε′, logarithmic
difference 1ε′(ω), defined by

1ε′(ω) = ε′(ω / 2)− ε′(2ω) = ℜ[ε∗r (ω / 2)− ε∗r (2ω)]. (6.3)

Further details of this new joint multifunctional fit will be given
in Section Improving the resolution by all-in-1 modeling of the
real and imaginary data.

After this what we call all-in-1 modeling, ε′′kk simply follows
from

ε′′kk(ω) = −ℑ[ε∗r (ω)]. (6.4)

The ε′′kk obtained from the fractional power approximation
covers directly the whole ω range, no special calculations are
needed at the start and the end of the range.

Having an analytical expression for ε∗, we can also use
Equation (6.2) to calculate its logarithmic derivative. This can be
given in closed form, the real part of which leads to

dε′

d lnω
= −ℜ

c
m+n
∑

j= 0
(iω)cj

min(j,m)
∑

k=max(0,j−n)

(2k− j)akbj− k

2n
∑

j= 0
(iω)cj

min(j,n)
∑

k=max(0,j−n)

bkbj− k

, (6.5)

where m is the upper limit in the numerator sum of ε∗, and n
that in the denominator sum. We may usually take n = m + 1,
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with m say m = 2. The use of the all-in-1 l.s.q. fit as the basis to
obtain ε′′kk and dε

′/dlnω, has the advantage that these quantities
become less prone to experimental errors.

The accuracy reached with Equation (6.5) and m = 2 and
n = 3 for the merger of a double HN relaxation with ε∞ =

0.6, 1ε1 = 0.75, a1 = 0.6, b1 = 0.7, τ 1 = 1, 1ε2 = 0.5, a2 =

0.9, b2 = 0.7, and τ 2 = 7 is shown in Figure 15. We see a nice
lining up with the exact dε′/dlnω curve. This holds by the way
also for the fits to the ε′ and ε′′ data. It is interesting to note that
the dε′/dlnω curve with its better resolution indeed hints, albeit
it vaguely, to the presence of two relaxations.

We successfully tried some other model free approximations
for ε∗. These too allowed us to go around the KK conversion; they
will be discussed elsewhere. The fractional power approximation
for ε∗ of Equation (6.2) will be used in Section Improving the
Resolution by All-In-1 Modeling of the Real and Imaginary Data
to obtain a close analytical approximation to the distribution
function of the underlying relaxation processes.

SIMPLE ROUTES TO A HIGHER SPECTRAL
RESOLUTION: LOGARITHMIC
DERIVATIVES OR DIFFERENCES OF ε′

AND ε′′

The removal of the ohmic conduction from ε′′ is essential
for getting insight in the low frequency part of the dielectric
spectrum. But also the rest of the spectrum contains a lot of
information about the diversity of processes possible. They occur
alongside each other, and they often overlap.

We will obtain the best fingerprint if the various phenomena
are resolved as good as possible. The most common way is to
consider the ε′′ spectra. For sure this demonstrates with its peaks
much more structure than the monotonous ε′-spectra. But better
options are at hand. The derivative dε′/dlnω e.g., has a better
resolution than ε′′. However, an accurate numerical calculation
of dε′/dlnω from h = 2 spaced ε′-data is less easy than it seems
for sharp peaks. Since most colloidal systems are liquids most of
their relaxations are rather sharp (i.e., Debye like).

In addition to the options to compute dε′/dlnω presented
in Sections Computing Conversion Frames with Symbolic
Differential Operators and Uncovering the l.f. Dispersion by

FIGURE 15 | After an all-in-1 rational fit dε′/dlnω is directly analytically

available from Equation (6.5). The accuracy of such a l.s.q. based dε′/dlnω

is clearly high. It coincides with the exact curve across a broad ω range.

Calculating the Conduction Free ε′′ Losses, we like to draw
attention to the use the midway central difference. This can be
obtained by expanding

Dl = E3/ 2
l

lnEl/ ln h = E3/ 2
l

∑3/ 2

k=−3/ 2
dhkE

k
l , (7.1)

around El = 1, which gives dhk ={−1, 27, −27, 1}/(24lnh). The
higher accuracy of the midway logarithmic central difference for
sharp peaks is due to the fact that it is based on ε′’s closer to the
peak than the normal central difference Equation (4.6). That the
halfway difference is more accurate has also been pointed out by
Shtrauss (2006). The high accuracy of the half-spaced difference
for dε′/dlnω with h = 2 has already been shown in Figure 10.

The possible uncertainties of the numerical calculation of
dε′/dlnω from the observed ε′ data for sharp peaks brought us to
use a well-defined alternative, the simple symmetric logarithmic
difference 1ε′ of ε′

1ε′(ω) = ε′(ω / 2)− ε′(2ω). (7.2)

If the input data are not available at a spacing of h = 2 then we
can take more generally

1hε
′(ω) = ε′(ω / h)− ε′(hω) (7.2.1)

As depicted in Figure 16, we can also opt for logarithmic
differences of ε′′. Those differences should show like 1ε′ a peak
for each relaxation time present (when ωm = 1/τ ). Another
prerequisite is that they should be conduction free, so that they
cancel any possible contribution from ohmic conduction in the
experimental ε′′ data. This gives us two options an asymmetric
one with two terms and a symmetric one with three terms

1ε′′fc(ω) = −ε′′(ω
/

2)+ 2ε′′(ω) (7.3)

1ε′′cf (ω) = −2ε′′(ω
/

2)+ 5ε′′(ω)− 2ε′′(2ω). (7.4)

Here too we can use a spacing different from h = 2

1hε
′′
fc(ω) = −ε′′(ω

/

h)+ hε′′(ω) (7.3.1)

1hε
′′
cf (ω) = −hε′′(ω

/

h)+ (h2 + 1)ε′′(ω)− hε′′(hω). (7.4.1)

FIGURE 16 | We will show that additional functions like the logarithmic

difference of 1ε′ and the conduction free ε′′ difference 1ε′′

cf will

increase the resolution. Interestingly, the handy 1ε′ performs almost as

good as dε′/dlnω.
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It goes without saying that in the data analysis we should take h
the same in all parts of the l.s.q. minimization. Hence, we should
choose the same h in the sampling of the experimental data and in
the theoretical model representation of 1ε′ and 1ε′′. In order to
simplify the minimization we best model 1ε′ and 1ε′′ by taking:

1hε
′(ω) = ℜ[ε∗(ω

/

h)− ε∗(hω)] (7.2.2)

1hε
′′
fc(ω) = −ℑ[−ε∗(ω

/

h)+ hε∗(ω)] (7.3.2)

1hε
′′
cf (ω) = −ℑ[−hε∗(ω

/

h)+ (h2 + 1)ε∗(ω)

− hε∗(hω)]. (7.4.2)

The reason being that the analytical expression for ε∗ is often
much simpler than that for ε′ and ε′′. By using Equations (7.2.2–
7.4.2) we let the l.s.q. routine compute the real and imaginary part
of the differences, which is the most efficient way.

The increase in resolution by using the ε′ and ε′′ differences is
shown in Figure 17. Their peaks are like that of dε′/dlnω much
narrower than that of ε′′ or ε′′kk for a Debye relaxation. However,
they can be calculated much easier, while like dε′/dlnω they have
the added advantage that they too remove the conduction. It
is further gratifying to notice that 1ε′ enhances the resolution
virtually as good as dε′/dlnω.

An enhanced resolution becomes of course more acute if the
relaxation processes tend to overlap as often occurs in colloidal
systems. Such a merger is also the case for the 2 HN relaxations
considered in Figure 15. In Figure 18 we compare the ensuing
spectra of 1ε′ and 1ε′′cf of these associated HN relaxations with
the traditionally used spectrum of ε′′h, which at low frequencies
also contains the additional conduction loss. The 2 underlying
HN relaxations can in particularly be conceived in the 1ε′′cf
spectrum. The distinction in the 1ε′ spectrum is less, but better
than in the ε′′-curve, which merely shows one united peak.

We can next make use of 1ε′′cf to get an approximation for
dε′/dlnω from a frame of 5 ε′′ values via the cot operator that is
conduction free. We warned that this was not the case with the
frame of Equation (4.13).

We recall from Section Computing Conversion Frames with
Symbolic Differential Operators.

dε′

d lnω
= Dl cot(πDl

/

2)[ε′′(ω)] =
lnEl
ln h

cot(
π lnEl
2 ln h

)[ε′′(ω)].

(7.5)

We further have for 1ε′′cf

1ε′′cf (ω) = (−2
/

El + 5− 2El)ε
′′(ω). (7.6)

By replacing ε′′(ω) by 1ε′′cf in Equation (7.4) we get accordingly

dε′

d lnω
=

lnEl

(−2
/

El + 5+ 2El) ln h
cot(

π lnEl
2 ln h

)[1ε′′cf (ω)]. (7.7)

By series matching the r.h.s of Equation (7.7) for one term and
three terms in El we get as coefficients: {0.63662} and {0.183437,

FIGURE 18 | Another illustration that 1ε′ and 1ε′′

cf increase the

resolution of dielectric spectroscopy. We simulated the different spectra of

2 nearby HN relaxations, which fuse together into a single ε′′h peak. By

contrast, the new differences do hint, even for these very close by relaxations,

to the presence of 2 relaxations. This is in part due to the absence of the

conduction loss in 1ε′ and 1ε′′cf .

FIGURE 17 | On the left peak shape of dε′/dlnω compared to that of ε′′. On the right the peaks of the logarithmic differences 1ε′ and 1ε′′cf , in particular the

latter is much spikier than ε′′kk . The curves are given for a Debye relaxation and h = 2. The rise in ε′′ in the low ω region is caused by ohmic conduction, it clearly

lessens the resolution.
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0.269745, 0.183437}. We combined these coefficients into one
set so that the optimal approximation for dε′/dlnω of a Debye
relaxation was achieved. This gives for the best coefficients of the
conversion of 1ε′′cf from Equation (7.4) at respectively ω/2,ω
and 2 ω to dε′/dlnω: {0.0984351, 0.43975, 0.0984351}.

We can now turn back directly to the measured ε′′-data.
This results in the following 5 term frame for the conduction
free conversion of the observed ε′′-data into the logarithmic
derivative of ε′

dε′
/

d lnω ≃
∑2

k=−2
efkε

′′(2kω), (7.8)

with efk ={−0.19687,−0.38732, 1.80501,−0.38732,−0.19687}.
The accuracy of the special conduction free conversion of ε′′

to dε′/dlnω for a Debye relaxation can be seen in Figure 19. It
behaves about equally well as the unconstrained conversion of
Equation (4.13). However, it performs slightly less at the wings
than the mixed conversion of ε′ and ε′′ of Equation (3.10), which
is also conduction free.

ENHANCING THE RESOLUTION BY
CALCULATING SIMPLE APPROXIMATIONS
TO THE DISTRIBUTION FUNCTION

If several concurrent relaxation processes are active, as is often
the case in colloidal systems, then we can sort out the entire
relaxation behavior comprehensively with a distribution function
in relaxation times.

A Debye relaxation appears in such a distribution as a line
spectrum. This is clear if we substitute a δ function in Equation
(2.1) we then get

ε∗(ω) = ε∞ +
1ε

1+ iωτ
. (8.1)

This shows that the distribution function offers us the highest
resolution possible. A powerful method to obtain the distribution
from a complex function like ε∗ was proposed as long ago as
1894 by Stieltjes in his correspondence with Hermite about his
pioneering work on continued fractions. His inversion relies on

FIGURE 19 | The KK conversion allows the calculation of dε′/dlnω from

ε′′ data. The figure compares the plain, direct ε′′ conversion of Equation

(4.13) and the special one of Equation (7.8), by taking ε′′ data of a Debye

relaxation polluted by conduction.

inserting for w→i/τ . This transforms the kernel in Equation (3.2)
into a singularity and leads owing to Cauchy’s integral theorem to

g(ln τ ) = τ f (τ ) = −
1

π
ℑ[ε∗(i

/

τ )], (8.2)

where g(lnτ ) is the so-called logarithmic distribution function
τ f(τ ).

In view of Equation (8.2) we can now take up the complex
rational fractional power approximation of Equation (6.2) and
simply find

g(ln τ ) = −
1

π
ℑ

∑n
k= 0 ak(−1

/

τ )ck

1+
∑n+1

k= 1 bk(−1
/

τ )ck
. (8.3)

We can further make use of Equation (4.2) and the fact that lni=
iπ /2 to derive in a simple way the symbolic differential operators
for the inversion of ε′ and ε′′. By expressing ε∗(iω) in ε′ and ε′′

we get:

ε∗(iω) = eDl lniε∗(ω) = [cos(πDl

/

2)+ i sin(πDl

/

2)]ε∗(ω) =
[cos(πDl

/

2)+ i sin(πDl

/

2)][ε′(ω)− iε′′(ω)] (8.4)
This gives in view of Equation (8.2) for the symbolic inversion via
ε′ and ε′′

sin(πDl/2)[ε
′(ω)] = −(π/2)g(ln τ )

cos(πDl/2)[ε
′′(ω)] = π/2g(ln τ ). (8.5)

It may be worthwhile to point out that the sin and cos inversion
operator and the tan and cot KK operator are compatible. In fact
by dividing the sin and cos operations in Equation (8.5) for g(lnτ )
we just get our KK tan operator of Equation (4.9).

By using the product or Mittag-Leffler approximations in
Dl for the sin and cos operator, we can show that crude
approximations to g(lnτ ) can be obtained from:

dε′

d lnω
, ε′′ +

dε′′

d lnω
, ε′′ −

d2ε′′

d ln2 ω
, (8.6)

with ω→1/τ (see e.g., Tschoegl, 1989). If we discretize the
derivatives in Equation (8.6), then we obtain as differences

1ε′(ω) = ε′(ω/2)− ε′(2ω) 1ε′′fc(ω) = −ε′′(ω
/

2)+ 2ε′′(ω)

1ε′′cf (ω) = −2ε′′(ω
/

2)+ 5ε′′(ω)− 2ε′′(2ω). (8.7)

We have manipulated the discretization of the derivatives of ε′′

somewhat so that with just 2 and 3 terms full nullification for
ohmic conduction was achieved.

We used these logarithmic differences already in Section
Simple Routes to a Higher Spectral Resolution: Logarithmic
Derivatives or Differences of ε′ and ε′′. It is now no longer
surprising that we found them to promote the spectral resolution,
as we have already demonstrated in Figures 17, 18. The mix of
ε′′+ dε′′/dlnω was proposed by Kaatze (2003), as a means to
remove the ohmic conduction. In fact ε′′(ω) − d2ε′′/d ln2 ω is a
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better choice, not only because it is symmetric, but also because it
has a higher resolution. Obviously, our differences of ε′′ are much
easier calculated than the combination of ε′′ with its derivatives,
while their performance almost matches that of the differential
expressions.

The performance of the difference approximations for
decomposing the overlapping HN relaxations used earlier in
Figure 15 compared to that of the distribution obtained with
Equation (8.3) is shown in Figure 20. Since Stieltjes inversion is
based on ω→i/τ , we have rather plotted g(lnα), where α = 1/τ .
In this way we can use the same scale for all spectra.

Clearly the exact complex Stieltjes inversion performs best.
The curve of the distribution function reveals convincingly the
2 HN relaxations present. The next best resolution is provided
by 1ε′′cf . The simple difference approximations on the other
hand have the advantage that they can be applied directly to
the measured data, and thus readily provide straight insight via
plots in the relaxation behavior under study. The location of the
peaks in the plots supply good estimates for the various relaxation
times that are active. These estimates, which often lie decades
apart, can be used as initial values in the final mathematical
modeling.

IMPROVING THE RESOLUTION BY
ALL-IN-1 MODELING OF THE REAL AND
IMAGINARY DATA

It is often illuminating if overlapping relaxations can be separated
visually in plots. We showed in Section Enhancing the Resolution
by Calculating Simple Approximations to the Distribution
Function that this can be achieved by plotting approximations to
the distribution function like 1ε′ and 1ε′′cf or even more so by
plotting the distribution function itself by invoking the complex
Stieltjes inversion.

FIGURE 20 | Evidence of the strong resolution power of the distribution

function. Using Equation (8.3) we computed the distribution from a rational

all-in-1 modeling to ε′and ε′′of the 2 overlapping HN relaxations employed

before in Figures 15, 18. The underpinning relaxations can also be

distinguished in the spectra of the differences 1ε′and 1ε′′cf , this is in

particular true for the latter.

However, we should realize that appropriate fitting offers a
much more powerful tool to separate nearby relaxations. The
common approach is to model a multiple relaxation with a sum
of HN functions. By modifying Equation (6.1) to a sum, we have

ε∗hn(ω) = ε∞ +
∑n

k= 1

1εk

[1+ (iωτk)ak ]bk
−

iγ

εoω
. (9.1)

Even a limited sum of 2 HN functions and one conduction
term leads to no less than 10 unknowns. This hampers a proper
mathematical separation of the 2 processes, the more so because
the l.s.q. minimization is a nonlinear one.

The usual approach is to minimize the deviations between the
measured and the HN-model values of ε′ and ε′′ in one sum as
follows

∑n

k= 1
[ε′(ωk)−ε′hn(ωk)]

2+[ε′′(ωk)−ε′′hn(ωk)]
2 = min . (9.2)

However, a better choice is to split the sum in two and minimize

∑n

k= 1
[ε′(ωk)−ε′hn(ωk)]

2 = min,

n
∑

k= 1

[ε′′(ωk)−ε′′hn(ωk)]
2 = min .

(9.3)
This apart-together or all-in-1 fitting can be achieved by making
use of a mathematical switch, which combines the proper data,
say ε′, with the proper model i.e., ε′

hn
= ℜ[ε∗

hn
], etc. Such a

coupled minimization assures that the HN parameters in ε′hn
and ε′′hn are not allowed to differ, which clearly is a necessity.
Figure 21 outlines the basics of the all-in-1modeling.

Most commercial software, such as Maple, Mathematica,
Matlab, have a nonlinear l.s.q. procedure. We should preferably
use the ones with the Levenberg-Marquardt routine built-in.
They should also allow for the minimization of more than
one variable. A typical example is the routine FindFit of
Mathematica, in which the switching can be implemented with
several commands. One of the switches we use is based on the
conditional if statement, which can be applied in other software
as well. Another one is e.g., Kronecker’s delta.

FindFit has the following structure FindFit [input data, model,
unknowns, variables]. It gives the values of the unknowns as
output. Assuming that we do the all-in-1 modeling for ε′ and ε′′,
with two HN’s and one conduction term, we have

ε∗hn(ω) = ε∞ +

2
∑

k= 1

1εk

[1+ (iωτk)ak ]bk
−

iγ

εoω
. (9.4)

We should then activate FindFit as follows,
input data: Join[Table[{ωk, 1, ε′(ωk)}, {k, n}], Table[{ωk, 2,
ε′′(ωk)}, {k, n}].
model: If[i= 1, ε′hn(ω), 0]+ If[i= 2, ε′′hn(ω), 0].
unknowns: ε∞, 1ε1, a1, b1, τ 1, 1ε2, a2, b2, τ 2 and γ .
variables: ω, i.
We have thus added to ω an extra variable i. This is an index that
controls the if switch and makes the proper choice between the
input data and the ε′ and ε′′ models, for i = 1 it selects the ε′

data and links it to the ε′-model, while for i = 2 it selects and
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combines the ε′′-data and the ε′′-model. This is the reason that
the input data comprise along with ωk and the function values
for ε′(ωk) and ε′′(ωk), the index i as 2nd variable. In doing so
we have transformed the common univariate minimization in ω,
into a quasi-bivariate (or two-dimensional) minimization in ω

and i. Although ε′hn and ε′′hn can be written out analytically, we
better model them as suggested earlier with

ε′hn(ω) = ℜ[ε∗hn(ω)] and ε′′hn(ω) = −ℑ[ε∗hn(ω)], (9.5)

in order to keep the minimization simple.
The all-in-1modeling can of course be extended tomore input

data and more model functions. In particular data and models
for 1ε′ and 1ε′′ are attractive, because they have intrinsically
a better resolution power. They are therefore more powerful in
separating well the genuine colloid relaxations from that of the
electrode polarization. Both have the additional advantage over
ε′′ that they are not affected by ohmic conduction. Furthermore,
the models for both are simple for e.g., 1ε′ we frankly have

1ε′(ω) = ℜ[ε∗hn(ω
/

2)− ε∗hn(2ω)]. (9.6)

Figure 22 illustrates what can be achieved with an all-in-1
modeling of 2 overlapping HN relaxations, using Equation (9.4).
Visually it seems that we are only dealing with 1 relaxation.
However, by using not only ε′ and ε′′, but 1ε′ and 1ε′′cf as

input as well, we could unravel the 2 underlying HN’s nicely,
despite the fact that we have contaminated the data in this
simulation with random relative errors of ±1%. We can see
on the r.h.s. of Figure 22 that the recalculated ε′′h1 and ε′′h2
relaxation peaks closely resemble the original exact curves. The
data were generated for: ε∞ = 0.6, 1ε1 = 0.75, a1 = 0.6, b1 =

0.7, τ 1 = 1, 1ε2 = 0.5, a2 = 0.9, b2 = 0.7, τ 2 = 7, and γ =

0.003, with the all-in-1 modeling we recovered these values as:
ε∞ = 0.60, 1ε1 = 0.75, a1 = 0.58, b1 = 0.74,τ 1 = 1, 1ε2 =

0.50, a2 = 0.91, b2 = 0.66, τ 2 = 7.22, and γ = 0.003.
The HN function is just an empirical model function. A

much better way to characterize the various dielectric properties
of colloidal systems is by making use of the complex dipolar
coefficient β∗.

This function is defined as follows, if we have a mixture
of two components, say of spherical particles dispersed in a
medium, then we can model according to Maxwell and Wagner
the complex permittivity of this mixture ε∗m by Grosse (2002) and
Steeman and van Turnhout (2002)

ε∗m(ω)− ε∗
b
(ω)

ε∗m(ω)+ ε∗
b
(ω)

= φ
ε∗p (ω)− ε∗

b
(ω)

ε∗p (ω)+ ε∗
b
(ω)

= φβ∗(ω), (9.7)

where ε∗
b
is the complex permittivity of the bulk, ε∗p that of

the particles, φ their volume fraction and β∗(ω) the complex

FIGURE 21 | Scheme of the all-in-1 or apart-together l.s.q. modeling. The strategy is to link the mix of input data to the mix of models via an extra dummy

variable, in fact an index, that acts as a switch and thus takes care of the correct link.

FIGURE 22 | Decomposing 2 overlapping HN relaxations with all-in-1 modeling. Despite the fact that the 2 HN relaxations almost blend into one we could

recover, as the results on the right show, each of the two genuine HN relaxations comfortably. Even though the simulated data were disturbed with random

errors of ±1%.
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dipolar coefficient. We can rewrite Equation (9.6) to an explicit
expression for ε∗m

ε∗m(ω) = ε∗b (ω)
1+ 2φβ∗(ω)

1− φβ∗(ω)
. (9.8)

In colloidal suspensions the bulk consists of the suspending
electrolyte so ε∗

b
= ε∗e . We see from Equation (9.6) that β∗(ω) is

determined by ε∗p and ε∗e . The electrolyte is full of ions which are
pushed by the alternating electric field to and fro the electrodes
and the (insulating) particles. The ionic motion is however in
part also controlled by diffusion. Near the electrodes the ions
form electric double layers, which give rise to a strong EP.
The motion of the ionic clouds near the particles give rise to
special relaxations. The permittivity of the particles ε∗p therefore
is not simply due to the dipole relaxations and possible ohmic
conduction. We should further realize that the particles may
carry a charge (this depends on their ζ potential).

All in all it is quite a challenge to account for the many
processes possible. Expressions for β∗(ω) have e.g., been given
by Grosse (2002) and Chassagne and Bedeaux (2008). The β∗-
model from Chassagne and Bedeaux (2008) was not fully explicit.
Fortunately, it has been possible to achieve this lately, further
details are given in Chassagne et al. (submitted).

Replacing ε∗m by ε∗s , the permittivity of the suspension, and ε∗
b

by ε∗e , the permittivity of the electrolyte, we get

ε∗s (ω) = ε∗e (ω)
1+ 2φβ∗(ω)

1− φβ∗(ω)
≃ ε∗e (ω)[1+ 3φβ∗(ω)], (9.9)

where ε∗e (ω) = εw − iεw
/

(ωτe), with τe = εoεw
/

γe. However,
if we measure the capacity of a cell with a colloidal suspension,
then it includes a large contribution caused by the EP. This huge
contribution manifests itself at low frequencies, because the ions
move rather slowly.

The usual way to account for EP is to use a series circuit model
as depicted in Figure 23. This consists of a large capacitor filled
with electrolyte devoid of its ions. This represents the part formed
by the two electric double layers near the electrodes. The DL
capacitor is tied up in series with the complex bulk capacitor
of the suspension, which is a mixture of the electrolyte and the
colloidal particles. This leads to

d
/

ε∗cs(ω) = 2dl
/

εw + (d − 2dl)
/

ε∗s (ω) ≃ 2dl
/

εw + d
/

ε∗s (ω),
(9.10)

where ε∗cs denotes the complex permittivity of the suspension as
measured with the cell, εw the (real) permittivity of water and ε∗s
the true complex permittivity of the suspension. We may neglect
2dl against d in Equation (9.9), because the Debye length dl
is extremely small for aqueous systems. Note that dl is known
analytically, and can be calculated using handbook values e.g.,
fromWeast (1987).

To simplify matters we suppose that the electrodes in the
series model are totally blocking any charge exchange. We can
generalize the model to partial blocking, the EP then becomes
less dominant, but this will not be pursued here (see e.g., Coelho,
1983). Although it should be stressed that it is only for partial
blocking that we will observe ohmic conduction losses.

We rather like to illustrate the use of Equations (9.9) and
(9.10) in all-in-1 modeling. Obviously, we are mainly, not to say
only, interested in the true response of the colloidal particles free

of EP. This can again be achieved by using1ε′ and1ε
′′

cf
as input.

They should be calculated from the ε′cs and ε′′cs values measured.

However, we can model 1ε′ and 1ε
′′

cf
by taking straightaway ε∗s

from Equation (9.9). We need not to use the more complicated
theoretical for 1ε′ and 1ε

′′

cf
from ε∗cs measured with the EP

included. This simplification is allowed in the ω region where the
EP has died out. This ω region becomes readily visible from the

1ε′ and 1ε
′′

cf
plots. So in the apart-together model with built-in

FIGURE 23 | Series model for the total complex capacitance of a colloidal suspension in a measuring cell. The model on the right shows the true complex

capacitance of the suspension C*
s in series with the DL capacitance, which is responsible for the EP. The circuit in the middle shows the series model for the

electrolyte without the colloidal particles. The model on the left depicts the ion layers near the electrodes, when the top electrode is negative and the bottom one

positive. We have also pointed to a continuous flow of ions, This ongoing flow is only possible if the electrodes are partially blocking. In our theoretical analysis, we

assume that the electrodes are fully blocking, the EP is then at its strongest.
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switch we take:

if [i = 1,1ε′(ω) = ℜ[ε∗s (ω/2)− ε∗s (2ω)], 0]+

if [i = 2,1ε′′fc(ω) = −ℑ[−ε∗s (ω/2)+ 2ε∗s (ω)], 0]

where ε∗s follows from Equation (9.9) wherein ε∗e can be
specified for most electrolytes using the conductivities given in
a handbook like (Weast, 1987). Instead of 1ε′′

fc
we can also use

the symmetric difference 1ε′′cf . The basic parameters in β∗ are
the zeta potential and the particle radius ao (see Chassagne et al.,
submitted). It are these important unknowns that will come out
of the all-in-1 fit.

An unique aspect of the β∗ function over the HN fit is that it
allows the fitting of multiple relaxation processes with just one
function, provided that it is explicit and that in the β∗ model
all underlying relaxations are properly accounted for Chassagne
et al. (submitted).

The real and imaginary part of the dipolar coefficient of 50 nm
particles with a zeta-potential of 4 dispersed in an 1:1 electrolyte
is shown in Figure 24. We generated these curves by taking
the same parameter values for the electrolyte as mentioned in

FIGURE 24 | The β′and β′′ spectra for a colloidal mixture of 50nm

sized spherical particles with εp = 2 carrying a charge equivalent to a ζ

potential of 4 suspended in an 1:1 electrolyte.

Chassagne et al. (submitted) Interestingly, we could retrieve the
given particle size and zeta-potential accurately by performing
the all-in-1 fit as outlined above. The recalculated β ′ and β ′′

curves coincide nicely with the exact ones across the whole ω

range.We found that this remains so, if we include random errors
in the input data.

The dipolar coefficient represented in Figure 24 actually gives
rise to two distinct relaxation phenomena at high frequencies.
These relaxations do not show up in the ε′′ curve, because the ε′′

loss is dominated and controlled by that of the electrolyte and so
is very high. However, they do emerge brightly in the logarithmic
differences of ε′ and ε′′.

This is demonstrated in Figure 25, which shows on the left
1ε′ and on the right 1ε

′′

cf
for the same colloidal suspension

with ζ = 4 and particle radius ao = 25 nm. They unravel
that such a suspension shows right after the EP relaxation, two
clear relaxation peaks due to the particles. Both could be nicely

fitted with one and the same β∗ model using 1ε′ and 1ε
′′

cf
. Not

surprisingly, we could therefore ascertain the parameter values
used in the simulated data quite accurately. It may be worth
pointing out that the steep rise at low frequencies in 1ε′cs and

1ε
′′

cf ,cs
, which quantities both derive from the measured data, is

brought about by the EP in the measuring cell. Comparing the

1ε′cs and 1ε
′′

cf ,cs
curves we see that this rise starts earlier, i.e., at

higherω’s, for1ε′cs. This means that even in the differences of the
measured cell data the genuine relaxation peaks come out quite

reliably. This is specially apparent in the1ε
′′

cf ,cs
spectrum. It is by

virtue of this close overlap between 1ε′s vs. 1ε′cs and 1ε
′′

cf ,s
vs.

1ε
′′

cf ,cs
that the all-in-1 modeling is so successful.

Clearly, we would have found a very similar close agreement
between the measured and true curves of the logarithmic
derivative dε′/dlnω beyond the EP region. The possibility to
remove with a more advanced data analysis the EP-contribution
was earlier established and explored by Jimenez et al. (2002).
Instead of dε′/dlnω we now rather advocate and prefer the
use of 1ε′ and 1ε

′′

cf
, because these well-defined quantities are

much easier to calculate from the data and to model. It should
be stressed that actually an analytical model for dε′/dlnω of
Equation (9.9) cannot be given, because β∗(ω) can only only

FIGURE 25 | Plots of 1ε′, 1ε
′′

cf
, and ε′′ for the measured data (labeled with subscript cs) and the true values of the suspension itself (labeled with s).

The ε′′ loss is very high, so we have rather plotted 10−6ε′′. The data were generated with the β* model of Figure 24. The ε′′ curves do not reveal the factual colloidal

relaxations present. By contrast the difference curves do so indisputably, in particular the 1ε
′′

cf curves exhibit two prominent peaks.
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be represented by a very complicated expression, cf. Chassagne
et al. (submitted)3.

DISCUSSION

The use of the singular KK integrals for the interconversion
between the real and imaginary part is still limited. They are
mainly used in impedance spectroscopy to discover spurious
effects in the data analysis caused by measuring errors
(Barsoukov and Macdonald, 2005; Orazem and Tribollet, 2008).

By taking up the real part sufficiency based on the KK
relations we have managed to convert ε′ into ε′′ data. In this
way conduction free ε′′ losses can be calculated that allow us
to uncover the genuine l.f. colloidal dispersions that otherwise
remain hidden below strong conduction losses. This dissipative
energy loss originates from the continuous flow of ions in the
electrolyte toward the electrodes. It has nothing to do with the
true relaxations of the colloidal particles.

We have strived for a fast and easy KK conversion. This was
achieved by replacing the KK integrals by conversion frames,
which consist of a window of coefficients by which a set of
logarithmically spaced ε′ data are multiplied. By moving such
frames step by step along all ε′ data we get a new set of ε′′ fully
cleaned from ohmic conduction. The cleaned ε′′ data can only
come from the genuine relaxation losses. The best method to
derive the easy to use conversion frames is kernel matching. This
versatile method can also provide panels for other conversions
such as from ε′′ to dε′/dlnω. We took care to do the latter in
such a way that this conversion remains unaffected by possible
conduction in the observed ε′′-data. This requires a special frame
of logarithmically spaced ε′′-data.

As other source to generate conversion frames we explored
symbolic differential operators. They were found by replacing
the conventional KK integration by differentiation. This option
is possible because the KK integrals can be seen as logarithmic
convolution integrals. We invoked the logarithmic shift operator
El to expand the cot operator in an apt way in conversion frames
for dε′/dlnω. We further showed that this operator plays a key
role in Zahner’s software for the logarithmic form of the KK
conversion (Schiller et al., 2001; Lasia, 2014).

Since the dielectric response of colloidal systems often
involves several processes (Grosse, 2002; Chassagne and Bedeaux,
2008; Delgado et al., 2014; Chassagne et al., submitted), we paid
also attention to an improvement of the resolution power for
the entire dielectric spectrum. Major gains in this respect could
be made by using derivatives or differences in ε′ and ε′′. The
logarithmic differences made up of a few terms are the easiest
to use, while they perform almost as good as the derivatives. Our
approach has been to use differences based on approximations to
the distribution function.

The ensuing distribution in fact outperforms all other
methods and produces the highest resolution possible. We
calculated the distribution to a high accuracy by making use of
Stieltjes’s complex inversion. For this purpose we approximated

3This means that under these circumstances the theoretical model function for

dε′/dlnω has to be calculated via a logarithmic difference with an interval h →1,

say of h= 100.05 or less.

ε′ and ε′′ by a complex rational fractional power function.
This model free function has the additional advantage that it
also allows a direct interconversion between ε′ and ε′′. A KK
conversion is no longer needed.

A better resolution shows up visually in plots vs. frequency. An
even higher resolution of nearby relaxations can be achieved by
mathematical modeling. A common approach is to describe each
relaxation process present in an empirical way by a Cole-Cole
function or Havriliak-Negami function. The latter is the most
general. A sum of a few HN functions contains a lot of adjustable
parameters. This makes the nonlinear l.s.q. minimization a
formidable task.

The accuracy of the parameter estimation and thus of the
reliability of the resolution could be improved a lot by developing
a joint “apart-together” minimization of the real and imaginary
parts. We have called this all-in-1 modeling and incorporated
it in Mathematica’s l.s.q. one liner routine FindFit. The trick is
that we have built in a mathematical switch that links the proper
input data to the proper part of the model function. The switch
is controlled by an index i that is included as dummy variable in
FindFit, which transforms it from an univariate ω-minimization
into a pseudo bivariate ω,i-fit.

We successfully retrieved with the all-in-1 modeling those
parameters that are the most crucial in the dielectric response
of colloidal suspensions, viz. the charge and size of the particles.
We could recover these vital unknowns by using the explicit β-
model discussed in Chassagne et al. (submitted) for the dipolar
coefficient of a suspension.

The ohmic conduction is not the only disturbance that poses
a problem to the characterization of colloidal systems with DS.
The electrode polarization may be an even larger thread to
the unraveling of the true nature of the l.f. dispersion. The
elimination of this hindrance bymere data fitting is touched upon
in Section Improving the resolution by all-in-1 modeling of the
real and imaginary data. Its removal is recently dealt with to a
greater extent in Chassagne et al. (submitted) and van Turnhout
et al. (2016), see also Ishai et al. (2013).

The KK relations can be applied to many areas (Peiponen
et al., 1999; King, 2009; van Dalen et al., 2013). They have
basically the same form in all areas. This means that the fast
conversion tools based on conversion frames we have discussed
may equally well be applied in the analysis of many other
spectroscopic methods.

CONCLUSIONS

By a ready-made panel-based conversion of ε′ to ε′′ data the
l.f. resolution of dielectric spectra of colloidal systems can be
improved. The crux bringing about this improvement is that ε′

data will never contain any contribution of the ohmic conduction
current, which is in phase with the applied a.c. voltage, whereas
the current from the real or ε′ part is out phase.

A high resolution is also an issue when several relaxation
processes occur in near unison. Simple avenues are proposed
to enhance the resolution of nearby colloidal peaks. In addition
to the use of 2 or 3 term differences of ε′ and ε′′, a new way
of modeling is advocated. The methods designed furthermore
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facilitate, by virtue of their resolving power, the proper correction
of the data of colloids for electrode polarization.
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