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We examine the impact of quantum confinement on the interaction potential between two charges in two-
dimensional semiconductor nanosheets in solution. The resulting effective potential depends on two length
scales, namely, the thickness d and an emergent length scale d* = ed /e, wWhere € is the permittivity of the
nanosheet and €, is the permittivity of the solvent. In particular, quantum confinement, and not electrostatics,
is responsible for the logarithmic behavior of the effective potential for separations smaller than d, instead of
the one-over-distance bulk Coulomb interaction. Finally, we corroborate that the exciton binding energy also
depends on the two-dimensional Bohr radius g, in addition to the length scales d and d* and analyze the

consequences of this dependence.

DOLI: 10.1103/PhysRevB.102.125303

I. INTRODUCTION

Research into two-dimensional materials has increased in
recent years, driven in particular by prospects for their use
in new state-of-the-art optoelectronic devices that convert
light into electric current and vice versa [1-15]. However,
understanding these devices and making them more efficient
requires a firm foundation as a starting point. In particular,
two-dimensional semiconductor nanosheets in solution are
studied in pump-probe experiments, in which electrons and
holes are created using a pump laser and their nature and
properties are subsequently characterized with a probe laser
measuring the complex conductivity [15]. Since the pres-
ence of excitons may make or break a particular application
for optoelectronic devices, a refined understanding of the
properties of excitons, such as their mass, average size, and
binding energy, is advantageous. The most important aspect
that greatly affects the dynamics of excitons is the attrac-
tive interaction potential between electrons and holes that
allows the bound state to form. Electron-hole interactions in
two-dimensional materials have therefore been considered for
several decades, resulting in the Rytova-Keldysh potential that
has been extensively used, and extended, in the literature thus
far [16-26]. Our goal in this paper is to better understand
the consequences of introducing quantum confinement into
the electron-hole interaction potential, specifically its role re-
garding the short-distance logarithmic behavior expected for
a purely two-dimensional Coulomb potential, and ultimately
also on the exciton properties. Our approach in particular
discusses the importance of the three length scales involved
in the exciton problem, i.e., the thickness of the nanosheet
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d, the emergent length scale d* = ed /e, from electrostat-
ics that typically is much larger than the thickness d as the
permittivity € of the nanosheet is much larger than the per-
mittivity €, of the solvent, and the two-dimensional Bohr
radius aq that is introduced by quantum mechanics due to
the relative kinetic energy of the electron-hole pair. To test
this approach, Sec. IV presents a comparison with recent
experiments on CdSe nanoplatelets, a material that has re-
ceived significant attention due to its simpler manufacturing
methods. Nevertheless, our results may be applied to two-
dimensional semiconductor materials other than CdSe, as long
as we are dealing with Wannier excitons.

Initially presented in Refs. [16-18], the electrostatic
Rytova-Keldysh potential indeed incorporates both length
scales d and d*, as we will see explicitly in a moment. More
specifically, the Rytova-Keldysh potential is the solution of
the electrostatics problem that describes the electron-hole in-
teractions in a nanosheet of permittivity € and thickness d,
surrounded by an environment of permittivities €; and e;.
Figure 1 shows an artist impression of this configuration.
An analytic expression that approximates the Rytova-Keldysh
potential and that is widely used to describe interactions in
two-dimensional materials, is obtained in the large distance
limit » 3> d and € > € . This analytic expression is

2

VNG = _:ZE[H()(Gl -:62 2) _N0<€1 -:62 g)]
(1

that we denote as the Struve-Neumann (“+N”) potential. Here
H, (x) is the Struve function and N, (x) is the Neumann func-
tion, also known as the Bessel function of the second kind. To
expose its universal properties, we make the potential dimen-
sionless by dividing by the Coulomb energy E€ = ¢?/4med,
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FIG. 1. Diagram of the system under consideration. A nanosheet
of thickness d and permittivity € is surrounded by an environment
above and below with permittivities €; and e, respectively. The
Rytova-Keldysh potential is the solution of the electrostatics problem
for the interaction potential between the two charges separated by an
in-plane distance r, and displaced along the perpendicular axis by a
distance z; and z,, respectively.

which results in the dimensionless potential

o=afu3) w3 o
J

VR (k, 21, 20) = —

2md? 2cosh [k(4 — z1) + m2] cosh [k(£ + z2) + m1]

where we have defined d* = 2e¢d/(€; + €;), thus explicitly
showing that the dimensionless Struve-Neumann potential
only depends on the ratio r/d*. In other words, the dimen-
sionless Struve-Neumann potential does not depend on d and
d* independently but only on the latter, consistent with the
limit » > d. Note that from now on every energy is made
dimensionless in the same manner. For the purpose of sim-
plicity in the discussion of our results we consider only the
case of nanosheets in solution with €; = €, = €5, < €, while
equations are given for the more general situation €; # ¢;.

Our paper is organized as follows. Section II revisits
the properties of the Rytova-Keldysh potential, that is, both
its small and large-distance behavior. Section III presents
a derivation of the potential that incorporates the effect of
quantum confinement, and it is applied to both the Coulomb
potential, which is valid for the special case €5, = €, and to
the full Rytova-Keldysh potential for which €, # €. Finally,
Sec. IV analyzes the exciton binding energy computed using
each of the potentials presented in the previous sections, and
Sec. V concludes with a discussion about our findings.

II. ELECTROSTATICS

The full Rytova-Keldysh potential, after dividing by the
Coulomb energy E€, is given in momentum space by [16-18]

kd

where

1 a
naz—ln<6+€>, fora e (1,2} . &)
2 € — ¢,

The coordinates z; and z, correspond to the position of the
two charges along the axis perpendicular to the plane as shown
in Fig. 1, and are both located in the interval [—d /2, d /2]. Fur-
thermore, we define what is usually called the Rytova-Keldysh
potential as VRX(k) = VRK(k, 0, 0). Note that this potential
only describes distances larger than the lattice spacing of the
material, which means that in the limit » — 0 a different
short-distance behavior is needed [27]. For the remainder of
this paper, we assume that every length scale introduced, i.e.,
d, d*, and the Bohr radius g is larger than the lattice spacing.

To study the Rytova-Keldysh potential in real space, Eq. (3)
must be Fourier transformed numerically for z; =z, = 0,
which Fig. 2 shows as a solid red line. The result contains
three different regions separated by the lengths d and d*,
ie., r < d,r > d, and at even larger distances r >> d*, each
resulting in a different approximation of the Rytova-Keldysh
potential. In the regime r > d* the Rytova-Keldysh potential
reduces to the Coulomb potential with the permittivity of the
solvent, that in our units is expressed as

*

d
VRK( > %) ~ -—= V() . ®)

- , 3
sinh (kd + n1 + n2)

(

Notice that even though ngl(r) seems to depend on the
thickness d and material permittivity €, it is only but a byprod-
uct of scaling by E€ — in SI units this potential is a function
of €01 alone, that is,

2

1
—  (in ST units). 6)
47T€sol r

Va(r) = -

The Struve-Neumann potential approximates the Rytova-
Keldysh potential for distances r 3> d, as Fig. 2 shows, but
because this approximation also assumes d*/d = € /€5 > 1,
it is not valid for distances r << d*. At small distances r <« d,
the Rytova-Keldysh potential instead reduces to the Coulomb
potential with the bulk permittivity of the nanosheets that in
our units is simply

VRK(r « d) ~ —%Z =Ve(r) @)

and which in SI units reads

2
Ve = -1 G stunits). 8)
4me r

To present a more physical picture of the Rytova-Keldysh
potential, it may be interpreted as having a space-dependent
dielectric function that connects the behavior at small and
large distances, as

Rk _ __€ 4
V(@) = T 9)
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FIG. 2. The Rytova-Keldysh potential compared to the three ap-
proximations at small, intermediate, and large distances. Computed
for d = 0.1 nm and d* = 1 nm. The potentials used are given by (as
shown in the legend) Egs. (2), (3), (5), and (7). Note that Eq. (3)
is Fourier transformed to real space numerically. Furthermore, every
potential used has been made dimensionless by dividing by E€. In the
regime r > d, the Rytova-Keldysh potential is approximated by the
Struve-Neumann potential, given in Eq. (2). In the regime r > d*,
the Struve-Neumann potential further reduces to the Coulomb poten-
tial of the solvent, given in Eq. (5). In the regime r < d, the Coulomb
potential of the semiconductor material is recovered, given in Eq. (7).

where €(r) is the dielectric function. Equations (5), (7),
and (9) suggest that e (r > d)/e — d/d* = €5,1/€ and €(r K
d)/e — 1, asis explicitly shown in Fig. 3. Physically, at small
distances, charges only feel the permittivity of the material as
opposed to the surrounding solvent at large distances. Note

1 1
<
S !
d*/d = €/esol
d*/d: 1 1
| — d/d: 2 5
— &'/d: 5
0 T T T T
1072 107! 100 10! 102
r/d

FIG. 3. Real-space dependence of the dielectric function divided
by the permittivity of the nanosheet e(r)/e, obtained from the
Rytova-Keldysh potential. At small distances r/d < 1, it saturates
to one, which means that €(r) reduces to the permittivity of the
nanosheet. At large distances, it saturates to d/d* = €, /€, recover-
ing the Coulomb potential of the solvent. The horizontal lines mark
the corresponding saturation value.

:
S
d/d* = F«.s‘()//f d*/d = ‘6/55‘0/
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FIG. 4. Real-space dependence of the Rytova-Keldysh poten-
tial obtained by numerically Fourier transforming Eq. (3) for z; =
zp = 0. The red lines (lowest one on the left, highest on the right)
correspond to d/d* = 1, in which case the Rytova-Keldysh poten-
tial reduces to the Coulomb potential, and are the same on both
plots. Vertical dashed lines mark the values d/d* = €, /€ (left) and
d*/d = € /e (right). Left: The Rytova-Keldysh potential is shown
in terms of r/d*, thus the universal behavior is present for r/d* > 1.
Right: The Rytova-Keldysh potential is shown in terms of r/d, thus
now the universal behavior is present for r/d < 1.

that the crossover in the dielectric function roughly takes place
at r >~ d, as expected physically. Notice also that Eqgs. (5)
and (7) do not explicitly depend on the permittivities of the
semiconductor material nor of the solvent, thus by using the
variables r/d and r/d* the behavior of the potential is univer-
sal for small and large distances respectively. Figure 2 shows
the Rytova-Keldysh potential and its approximations for each
regime and Fig. 4 shows such universal behavior for several
values of d*/d = € /€.

Confining the electric field to two dimensions, as obtained
by solving the purely two-dimensional Poisson equation,
modifies the usual 1/r behavior of the Coulomb poten-
tial to a logarithmic behavior [28]. Since nanosheets are
(quasi) two-dimensional, one could expect that the interaction
potential exhibits this logarithmic behavior at very small dis-
tances to a good approximation. However, Figs. 2 and 4
clearly show that the Rytova-Keldysh potential does not
present such behavior, since electrostatics alone does not
incorporate any two-dimensional confinement at small dis-
tances, and consequently it does not correctly describe the
interaction between charges in this regime.

III. QUANTUM CONFINEMENT

As a consequence of the Rytova-Keldysh potential lacking
a logarithmic behavior at small distances, it appears that the
electrostatic approach alone does not incorporate the com-
plete physics of the problem. An important omission from
this picture are the quantum-mechanical corrections to the
potential, that is, the effect of the confined wave function
of the interacting charges in the z direction, which become
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significant when the interparticle distance is of the order of
the nanosheet thickness d or less.

Consider a charge confined to the nanosheet in the direc-
tion of the axis perpendicular to the plane by an infinite well
of size equal to the thickness d. Solving for the z component
of the wave function in the Schrodinger equation with such a
confining potential yields

2 nmwz
un(2) =/ 708 (7) forn=1,3,5, .. (10)
and
()—,/zsin(””z) forn=12,4,6 (11)
un <) = d d ’ n= ’ ’ LIRRRS]
with the corresponding energy
i snm\2
E=—(%). (12)
2m\ d

where n is a positive integer. If the energy difference between
E| and E; is large enough compared to the interaction energy,
ie., E; — E; > E€(d*/d), then excited states are not popu-
lated and only the ground state with wave function u(z) =
u1(z) alone determines the effect of quantum confinement.
Notice that thermal effects do not populate excited states
unless the thermal energy kg7 is of the order of the difference
E, — E,. In the case of CdSe nanoplatelets that we consider
later, this difference is much higher than the thermal energy
at room temperature, so this assumption is well justified. Ne-
glecting thermal fluctuations the thickness of the nanosheet
thus has to satisfy

A ey 3T _

d < — = dmax 13)

for the system to be (quasi) two-dimensional.
The ground-state wave function determines the quantum-
confined potential Vq‘j (k) as

d d
2 2

Vb= [ da [ dmiteolev ko m. (4
¢

Note that VY (k, 71, 22) corresponds to the in-plane Fourier
transform of a three-dimensional potential, that is,

VV(k, 21, 22) = / LrvVz, me*. (15)

Here V = C, RK denotes either the Coulomb potential or
the full Rytova-Keldysh potential, respectively.

A. Coulomb potential

Let us first apply this procedure to the Coulomb potential
for the purpose of better understanding quantum confinement
by itself, with the added advantage that our findings carry over
to the Rytova-Keldysh potential case as Sec. III B presents.
Using the Coulomb potential means that the nanosheet and the
solvent have the same permittivity, i.e., €, = €, = €, which
is not experimentally realizable, as the dielectric constant of
a semiconductor typically obeys € > €y, that is, d* > d,
but sheds light on the mechanism that introduces the short-
distance logarithmic behavior. Note that in this case there is

only one length scale, the thickness d, which is equivalently
expressed as d* = d. Introducing the in-plane Fourier trans-
form of the Coulomb potential

27d?

g e K=zl (16)

Ve, 21,2) = —

into Eq. (14) yields
2wd? 3(kd)? + 207>
kd (k) + 42T
27d? 3273 kd — 1+ e
kd (kd) [(kd)? + 47T
= V_(k) + VE(k). (17)

The potential is separated into V_(k) and Vf(k), each
contribution dominating in the regimes r < d and r > d,
respectively. Notice that the Fourier transform of any of the
terms contained in VC(k) diverges if integrated separately
from the others.

In the large-distance regime r >> d, the quantum-confined
Coulomb potential reduces to the Coulomb potential, the rea-
son being that quantum confinement is significant only at
small distances. The long-distance behavior is obtained by
expanding in powers of kd and keeping the lowest-order term,
yielding

Ve (k) =

2wd?
kd

In the small-distance regime r < d, the contribution V_(r)
dominates up to a constant given by VS(r = 0). An exact
analytic expression for V_(r) is derived from Fourier trans-
forming Eq. (17), which results in

2rr 2nr 2nr
V.(r)= _3KO<T> + —K1<—>, (19)

Velkd < 1)~ — =VC(k). (18)

0
— V)
— V¢
=
102 10! 100 10!

r/d

FIG. 5. Real-space dependence of the quantum-confined
Coulomb potential as a function of r/d, computed by Fourier
transforming Eq. (17). The two contributions V_(r) and VS(r) are
represented by the dotted and dashed lines, respectively. The thin
solid line corresponds to V¢(r). The vertical dashed line correspond
to the point r/d = 1.
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where K, (z) is the modified Bessel function of the second
kind. As a consequence of the asymptotic behavior of V_(r)
that tends to zero as (r/d)>e~"/4 for r — o0, its contribution
is significant at small distances and exponentially suppressed
otherwise. The limit K,,(r — 0) reveals the short-distance log-
arithmic behavior as
Tr
V.(r < d) = —3[1n (7) + yE] —1, (20)
where yg is the Euler-Mascheroni constant. More physically,
this logarithmic behavior is a direct consequence of the fact
that the effective potential is obtained by averaging the bulk
Coulomb potential over the z position of the electron and the
hole.
Equation (20) shows some similarities between the
quantum-confined Coulomb potential and the Rytova-

J

27d? 3274 1

VER (k) = Ve(k) —

kd  (kd)* [(kd)? + 472

Keldysh potential at small distances, since both depend on
the ratio r/d alone, however, Vq(c:(r) incorporates the expected
logarithmic behavior whereas the Rytova-Keldysh potential
does not. To explicitly display the universality of the quantum-
confined Coulomb potential, Fig. 5 presents the result of
numerically Fourier transforming Eq. (17) to real space, as
a function of »/d.

B. Rytova-Keldysh potential

With a better understanding of quantum confinement, let
us explore the more realistic electrostatics situation described
by the Rytova-Keldysh potential. Due to the disparate per-
mittivities of nanosheet and solvent, the behavior of the
quantum-confined Rytova-Keldysh potential depends on the
two distinct length scales d and d*. Introducing the full
Rytova-Keldysh potential into Eq. (14) yields

5 (kd sinh(kd + n;) sinh(n,) + sinh(kd + n;) sinh(n;) — 2 sinh(#;) sinh(n2)>

= V_(k) + VR (),

which is separated again into V_(k) and VRK(k), dominating
in the small and large-distance regimes, respectively. Since
V. (k) is identical as for the quantum-confined Coulomb po-
tential, given in Eq. (17), it follows that the logarithmic
behavior is in fact introduced by quantum confinement regard-
less of the potential.

The tail of the Rytova-Keldysh potential reemerges in the
large-distance regime r >> d by expanding VRK(k) in powers
of kd, while keeping only the lowest-order term, which results
in

27d? cosh(n;)cosh(,)
kd cosh(n; + 12)

Vik(kd < 1) ~ —

22
) (22)
X b
kd + tanh(n; + n7)
further simplifying to
2 (d*)? 1
2

in the case of d*/d = € /€01 > 1. Equation (23) shows that
the quantum-confined Rytova-Keldysh potential at large dis-
tances is approximated by the Struve-Neumann potential that
only depends on the length scale d*. In the small distance
regime r < d the logarithmic behavior of V_(r) takes over,
while VRX(r) saturates to a constant at r = 0, similarly to
the quantum-confined Coulomb potential. Note, however, that
in the truly two-dimensional limit d — 0 (while keeping €
fixed), the quantum-confined Rytova-Keldysh potential re-
duces to the Coulomb potential of the solvent as given in

sinh(kd + 1 + 12)

@

(

Eq. (5). The same also occurs for the Rytova-Keldysh po-
tential and the Struve-Neumann potential. Physically, this
demonstrates that in the limit d — 0 the effective permittivity
is no longer determined by the semiconductor nanosheets, but
only by the solvent.

Figure 6 shows the real-space dependence of the quantum-
confined Rytova-Keldysh potential as a function of r/d* (on
the left) and r/d (on the right), analogously to Fig. 4, and
presents the universal behavior in the regime r/d* > 1 and
r/d < 1, respectively. Because V_(r) only depends on r/d,
on the right side of Fig. 6 it shows as only one line.

Lastly, let us briefly consider the momentum-space depen-
dence of each potential with the aim of understanding their
differing small and large-distance behaviors from a new angle.
As an additional benefit, introducing screening effects due to
free charges is more straightforward in momentum space, as
Ref. [29] extensively shows. Figure 7 shows the momentum-
space dependence of the quantum-confined Rytova-Keldysh
potential, the Struve-Neumann potential, and the Rytova-
Keldysh potential, all divided by V (k) as given in Eq. (18). In
the regime kd < 1 every potential saturates to d*/d = € /¢,
which physically corresponds to recovering the Coulomb po-
tential of the solvent at large distances. On the opposite regime
kd > 1, the tails differ significantly: for the Rytova-Keldysh
potential it tends to one, while for the quantum-confined
Rytova-Keldysh potential and the Struve-Neumann potential
it tends to zero. In the case of the Rytova-Keldysh potential,
the tail tends to one at large momenta, which means that
the Coulomb potential of the material reappears at small dis-
tances. Since the logarithmic behavior in real space appears
due to Fourier transforming a term o< 1/k?, expressing the

125303-5
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—— d/d": 1.0 & /d: 1
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r/d* r/d

FIG. 6. Real-space dependence of the quantum-confined Rytova-
Keldysh potential as a function of r/d* (left) and r/d (right),
computed by Fourier transforming Eq. (21). The two contributions
V_.(r)and V>RK(r) are represented by dotted and dashed lines, respec-
tively. The thin solid lines correspond to VRX(r), for each value of
d/d* = € /€ (left) and d*/d = € /ey (right). The red line (bottom
one on the left, top one on the right, d/d* = 1) is computed using
the quantum-confined Coulomb potential, and thus is the same as
that shown in Fig. 5. Left: The vertical dashed lines correspond to
the points r/d* = d/d*. Right: The vertical dashed magenta line
corresponds to r/d = 1.

Rytova-Keldysh potential in momentum space further shows
that it does not incorporate a logarithmic tail at small dis-
tances. For the quantum-confined Rytova-Keldysh potential,
the tail does indeed tend toward zero as 1/k* due to V. (k),
thus resulting in a logarithmic behavior at small distances.

S

V(k) | VE(k)

1073 1072 107! 10° 10! 102 10°
kd

FIG. 7. Momentum-space dependence of the quantum-confined
Rytova-Keldysh potential (solid), the Struve-Neumann potential
(dotted), and the Rytova-Keldysh potential (dashed), divided by the
Coulomb potential of the material, as a function of kd. The quantum-
confined Rytova-Keldysh potential is computed from Eq. (21), the
Struve-Neumann potential from Eq. (23), and the Rytova-Keldysh
potential from Eq. (3).

Because the Struve-Neumann potential is only but an ap-
proximation of the Rytova-Keldysh potential for kd < 1, the
behavior in the regime kd > 1 is in principle not valid as
it is used outside of the region of applicability of this ap-
proximation, even though it resembles the quantum-confined
Rytova-Keldysh potential.

IV. EXCITONS

Studying the small- and large-distance behavior of the
potentials does not by itself present the whole picture of
the exciton wave functions as quantum mehcanics introduces
another length scale into the problem due to the relative
kinetic energy of an electron-hole pair. Hence, we next com-
pute the energy level of an exciton bound state that forms
due to the quantum-confined Rytova-Keldysh potential, the
Struve-Neumann potential, and the Rytova-Keldysh poten-
tial with the intent of better understanding their differences
and appropriately comparing our results with the literature.
Furthermore, we determine not only the ground-state exciton
energy level but also that of the first several s-wave states, thus
presenting a more complete analysis of our findings.

For the purpose of relating our results to an experimen-
tally realizable case, we exemplify the use of our theory by
setting the parameters of the model corresponding to CdSe
nanoplatelets in hexane solvent at room temperature [15,29].
As a consequence, we use for the electron and hole masses
the values m, = 0.27 mg and mj;, = 0.45 my, where my is the
fundamental electron mass, corresponding to a thickness of
4.5 CdSe monolayers having d = 1.37 nm, given as n = 4 in
Ref. [30]. Note that due to using these values, the presented
curves in the following three figures are only specific for CdSe
nanoplatelets. Nevertheless, our theoretical results are com-
pletely general and may be applied to other two-dimensional
semiconductor materials by using different values for these
parameters. The permittivity of the hexane solvent is €5, =
2¢p, where € is the vacuum permittivity. In an effort to present
a more general discussion, the ratio of the material and the
hexane permittivities d*/d = € /¢, is treated as a free param-
eter, and the exciton energy levels are computed for several
thicknesses. Note that the effect that the thickness has on the
effective masses is neglected here for simplicity without any
impact on the qualitative behavior of our results. Furthermore,
any effects due to the finite lateral sizes of the nanoplatelets
are also neglected.

Finding the exciton wave function u,(r) and accom-
panying energy & involves solving the radial part of the
Schrodinger equation, given by

> m*—1/4 d*d*
<_ﬁ + - + ag[V(}’d*) - S])um(r) =0,

(24)

with m = 0 corresponding to the s-wave solution of the ex-
citon ground state on which we exclusively focus from now
on. Here we have scaled the equation by E€, used » — rd*,
and introduced the Bohr radius ay. For a given material of
permittivity € the two-dimensional Bohr radius a is [31]

2re B
ap= 20 (25)

ez m,

125303-6



EFFECTS OF MATERIAL THICKNESS AND SURROUNDING ...

PHYSICAL REVIEW B 102, 125303 (2020)

107
=
o €f(e>
—1.51 —_— d‘/(],(]i 0.1
d*/ag: 0.2
— d*/(l(]Z 1
—— d*/ag: CdSe
531‘ —_— d*/agi 10
1 10 100

d*/d

FIG. 8. Exciton ground-state energy computed using the
quantum-confined Rytova-Keldysh potential Sch (solid), the Struve-
Neumann potential £V (dotted), and the Rytova-Keldysh potential
ERK (dashed). The filled dots mark the points for which d*/d = 1,
while the empty magenta dot at the bottom marks ER® = £,. The
line labeled with CdSe corresponds to the thickness d = 1.37 nm
(d*/ag ~ 4.37), and the empty light-blue dot corresponds to the ratio
d*/d = € /€4 = 6.99 that leads to the exciton ground-state energy of
—193 meV and Bohr radius of ay =~ 2.19 nm, representing the CdSe
nanoplatelets considered in Refs. [15,29]. Lower values of d*/ag
result in more negative energies.

where m, = m.m;,/(m, + my,) is the reduced mass of the ex-
citon problem. Take note that the size of the exciton is not
equal to the Bohr radius a¢ and is obtained by solving the
Schrodinger equation. It is related to ay by a multiplicative
factor depending on the ratios d*/ag and d*/d. Hence in
general, the two dimensionless parameters that the exciton
energy turns out to depend on are d*/ay and d*/d = € /€.
Notice that if the potential V () is a function of the ratio r/d*
alone, such as the Coulomb potential of the solvent or the
Struve-Neumann potential, then the dimensionless exciton en-
ergy £ depends only on the product (d*/d) - (d*/ap). Lastly,
note that the ratio d*/ay does not depend on the dielectric
constant of the material €, and thus it is equal to d/ay(€so1),
i.e., the ratio of d and the Bohr radius in the Coulomb potential
of the solvent.

Let us analyze the exciton energies of CdSe in hexane in SI
units that Fig. 8 presents, obtained from computing the exciton
ground-state energy as a function of the parameter d*/d =
€ /€501, for several values of d*/ag. Consider first the exci-
ton energy obtained from the Rytova-Keldysh potential ER¥,
represented by the dashed lines. Because the Rytova-Keldysh
potential reduces to the Coulomb potential if d*/d = 1, the
exciton energy reduces to the hydrogenlike result [31,32],

2m,e*

C —_
EO =~ enp

(26)
that we define for the solvent as S = EC(es1) and is
represented by an empty magenta dot. Furthermore, still
focusing on the d*/d =1 case, notice that the quantum-
confined Rytova-Keldysh potential analogously reduces to

gP

sol

—_ EHN
=31 — @ /ay 0.1
d*/ap: 0.2
4] — d*/ag: 1
—— d*/ag: CdSe
— d*/ay: 10
- 10° 10! 102

(d"/d) - (d"/ao)

FIG. 9. Exciton energy, scaled by E€ = ¢?/4med, computed us-
ing the quantum-confined Rytova-Keldysh potential (solid) and the
Rytova-Keldysh potential (dashed). Because the Coulomb potential
of the solvent and the Struve-Neumann potential only depend on d*,
the resulting energies £, and £*N (thin and thick magenta solid
lines, respectively) do not depend on the ratio d*/ay. The filled dots
mark the points for which d*/d = 1, while the empty dots mark
ERK = £C . The line labeled CdSe corresponds to the thickness d =
1.37 nm (d* /ayp ~ 4.37), and the empty light-blue dot corresponds to
theratio d*/d = € /e, =~ 6.99 that results in the exciton ground-state
energy of —193 meV and Bohr radius of ap 2~ 2.19 nm, representing
the CdSe nanoplatelets considered in Refs. [15,29]. Higher values of
d*/ay result in more negative energies.

the quantum-confined Coulomb potential, thus resulting in a
smaller exciton energy |E85| < |G| solely due to quantum
confinement. To satisfy the upper limit on the thickness set by
Eq. (13), the parameter d*/ay has to be small enough, which
turns out to be d < dmax =~ 3.8 nm for CdSe nanoplatelets.
This implies that we can consider only nanoplatelets with
a thickess of at most 10 CdSe layers. This condition is in-
deed satisfied for every curve shown in Fig. 8. Regarding the
Struve-Neumann potential, it should be noted that the result-
ing energy is not physically meaningful in the d*/d = 1 case
because, strictly speaking, it does not satisfy the assumption
d*/d > 1 used in the derivation of Eq. (23).

Moving on to the regime d*/d > 1, ERX separates from
&S| as it becomes closer to zero. Note that as the ratio d*/ag
grows, ERK tends to £C(€) due to the Rytova-Keldysh po-
tential reducing to the Coulomb potential of the material in
the limit d — oo. Furthermore, when d*/d > d*/ay, i.e.,
ap > d, every one of the potentials considered in Fig. 8 results
in the same exciton energy, meaning that the small-distance
behavior r < d* is no longer significant.

In the context of the dependence on the ratio d*/ay, we
similarly identify two regimes. For d*/ap < 1, the electric
field is mostly outside of the nanoplatelet, and consequently
the exciton energy is close to that obtained using the Coulomb
potential of the solvent £S,. Only in the limit d*/d > 1
the effect of the permittivity of the nanoplatelet significantly
impacts the resulting energy. In the case of d*/ay > 1, the
opposite is true: The permittivity of the nanoplatelet has a
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FIG. 10. Energy of the first several ns states computed us-
ing the quantum-confined Rytova-Keldysh potential (solid), the
Struve-Neumann potential (dotted), and the Rytova-Keldysh poten-
tial (dashed). Computed for the thickness d = 1.37 nm (d*/ay =~
4.37). On the left, the energies of the exciton ground state and
the first four excited ns states. The empty dots mark the value of
d*/d = €/es = 6.99 that results in the exciton ground-state energy
of —193 meV, representing the CdSe nanoplatelets considered in
Refs. [15,29]. The energies of the excited states are —96.1 meV,
—58.6 meV, —39.2 meV, and —27.9 meV. On the right, a zoom-in
on the energy of the 3s state, as an example, better showing the
differences between potentials.

very significant effect on the exciton energy for any value
of d*/d = €/ey,. Figure 8 shows an empty dot obtained
for the ratio d*/d = €/€eso ~ 6.99, that leads to the experi-
mentally observed value of the exciton ground-state energy
—193 meV. This result is highlighted because it represents the
experimental findings of Refs. [15,29]. Therefore, the ratio of
permittivities € /€5, =~ 6.99 is physically meaningful in that it
compares favorably with other independent measurements on
CdSe.

Previously, we discussed the universality of the Rytova-
Keldysh potential and quantum-confined Rytova-Keldysh
potential at small and large distances, made explicit when
expressed in terms of the variables r/d and r/d*, respectively.
Even though this universality is also reproduced by the exci-
ton energy, it is not immediately obvious in Fig. 8. For the
purpose of studying the universal behavior, the exciton energy
is made dimensionless by E€ = ¢?/4med which results in a
dimensionless exciton energy that we compute as a function
of (d*/d) - (d*/ay). Figure 9 shows the exciton energies from
Fig. 8 altered by these transformations. Despite the fact that,
in general, £ depends on d*/d = € /€5 and d* /ay separately,
in the limit d*/d >> 1 the exciton energy turns out to be the
same regardless of the potential used—hence it depends on
a single variable: the product of the two parameters as they
appear in Eq. (24). Consequently, E&K shows a data collapse
in the regime d*/d > d*/ay, that is, the Bohr radius is much
larger than the thickness ag > d.

For a better comparison with other experimental results for
CdSe in hexane solvent, Fig. 10 shows not only the ground-
state energy but also the energy of the first several excited
s-wave states at the fixed ratio d*/ay =~ 4.37 corresponding to
the experiment studied in Refs. [15,29]. Furthermore, each en-
ergy is obtained from the quantum-confined Rytova-Keldysh
potential, the Struve-Neumann potential, and the Rytova-
Keldysh potential. Notice that the excited-states energies as
a function of d*/d = €/€y, generally follow the same trend
as that of the ground state. However, the right side of Fig. 10
shows that using the Rytova-Keldysh potential results in an
energy closer to that obtained from the quantum-confined
Rytova-Keldysh potential than from the Struve-Neumann po-
tential.

V. SUMMARY AND CONCLUSION

In an effort to elucidate the behavior of the Rytova-Keldysh
potential, we have presented a comprehensive discussion on
the mechanism responsible for quantum confinement, along-
side the two-dimensional short-distance logarithmic behavior
of the interaction potential. Section II began by presenting
the actual behavior of the Rytova-Keldysh potential at small
distances, which led us to develop a method to incorpo-
rate quantum confinement into the potential. Our approach
is based on the charges being confined by an infinite well,
but can easily be generalized to other situations that may
be described by using a different confinement potential, in
a similar direction as in Ref. [23]. Of course, this would
quantitatively affect our results for the quantum-confined po-
tentials at small distances » < d, but not qualitatively. With
the quantum-confined Rytova-Keldysh potential in hand, we
analyzed its behavior in terms of the length scales d and
d* = ed [es, by comparing either the inter-particle distance r
or the two-dimensional Bohr radius ay to these length scales.
Note that we have implicitly assumed that the Bohr radius ay,
as well as every other length scale, is much larger than the
lattice spacing of the material, that is, we only treat Wannier
excitons, not Frenkel excitons. To contrast our results with
the literature, we provided an in-depth analysis of the exciton
energy obtained using the quantum-confined Rytova-Keldysh
potential, in terms of the variables d*/d = €/¢es, and d*/ay.
In the future, we aim to present a similar analysis for charges
in the bulk and on the surface of a topological insulator.
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