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Abstract

This research investigates the impact of data
imbalances on the learning curve using the
nearest mean model. Learning curves are use-
ful to represent the performance of the model
as the training size increases. Imbalanced data
sets are often encountered in real-life scenarios
and pose challenges to standard classifier mod-
els impacting their performance. Thus, the re-
search question is ”How do data imbalances af-
fect the learning curves using the nearest mean
model?”. To answer the question, an exper-
iment is conducted using data from a multi-
variate Gaussian distribution to sample vary-
ing levels of imbalances. The imbalance ratio
explored is [0.1, 0.2, 0.3, 0.4, 0.5], representing
the percentage of the dataset that consists of
the minority class.

The findings indicated that as the data be-
comes more imbalanced, the learning curves
reach the accuracy plateau at a later rate. The
analysis of the curve parameter which follows
the logistic function suggests that imbalances
have an impact on the maximum achievable ac-
curacy and rightward shift of the curves. How-
ever, the maximum achievable accuracy is non-
significant and the shape of the curves remains
similar. Additionally, false negatives have a
significant impact on the learning curves.

1 Introduction

Learning curves are visual representations that
show the progression of a learning model’s per-
formance as the train size increases [1]. It
serves as a tool for model selection, forecast-
ing the impact of additional training data,
and mitigating the computational complex-
ity associated with model training and hyper-
parameter tuning [2].

This report explores the impact of the
dataset’s characteristics on the learning curve.
Namely the class imbalances in the datasets.
Imbalance datasets are characterized by
skewed class proportions where classes that
make up a large portion of the data are called
the majority and the smaller portions are
called the minority [3]. Imbalance data neg-
atively impacts the performance of most stan-
dard classifier learning models which assume

relatively balanced distribution [4]. Unfor-
tunately, real-world data collection typically
involves imbalanced datasets, and there are
instances, especially in the medical industry,
where data inadequacy compounds the chal-
lenges of imbalanced datasets [5]. Given the
prevalent issue of imbalanced datasets, the re-
search question for the paper is ”How do data
imbalances affect the learning curves using the
nearest mean model?”.

This paper is structured into the following
sections: Related Work(Section 2), where the
existing literature is examined; Methodology
(Section 3), providing details on the method-
ologies; Results and Discussions(Section 4),
presenting findings and the analysis; Conclu-
sion and Future Work(Section 5), summarizing
important insights and future suggestions; Re-
sponsible Research(Section 6), discussing the
reproducibility and ethics of the paper.

2 Related Works

Banko et al. concluded that classification mod-
els can benefit greatly from larger training sizes
when dealing with imbalanced data, although
they acknowledge that there are other factors
such as dimensionality and feature complex-
ity [6]. Their experiment based on millions of
data points from a word corpus, utilized the
accuracy curve for evaluation. In a comple-
mentary study, Samir Al Stouhi et al. ex-
tended the conclusion by Banko et Al.using
non-language models [7]. They have concluded
that the choice of classification model is less
important than the size of the training data.

Zheng et al. investigated the relationship be-
tween varying performance in machine learning
models and imbalance ratio [8]. Their find-
ings suggest that increasing the imbalance ra-
tio results in a decrease in performance by the
models. However, they observed that there
were results where it contradicted the conclu-
sion but speculated that oversampling caused
new data points to not follow the original dis-
tribution. They defined the imbalance ratio us-
ing NumberOfMajority

NumberOfMinority , the value rounded down

and decrements the ratio by 1
10 at a time to pro-

duce varying levels of imbalance in the data set.
To achieve the imbalance of data required ac-
cording to the ratio, they used three methods;
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SMOTE, undersampling, and hybrid. The ex-
periment involves eight machine-learning mod-
els for the experiment, evaluated using AFG,
AUC, F1-score and G-mean. AFG is described
as the arithmetic mean of AUC. However, the
experiment did not take into consideration the
difference in sample sizes when changing the
imbalances in the data set.

Our paper seeks to validate the conclusions
made by Banko et al. and Samir Al Stouhi
which state that training size has a bigger im-
pact on performance than the imbalance ra-
tio and the inverse relation of imbalance ratio
and performance by Zheng et al [6][7][8]. Our
experiment shares similarities with the experi-
ment conducted by Zheng et al but diverges in
the choice of imbalance ratios, methods to pro-
duce the desired imbalance ratio and consid-
eration for sample size across imbalanced data
sets. Furthermore, the experiment is evaluated
using the accuracy curve, the area under the
accuracy curve, multivariate Gaussian distri-
bution, plateau analysis, parameter analysis,
and false positive and negative curves. It will
not be evaluated using AFG, F0-score and G-
mean.

3 Methodology

This section describes how the experiment was
conducted to investigate the impact of class
imbalances on the learning curve using the
nearest-mean model. It describes the data set
used and how the results were produced with
the model to create learning curves for analy-
sis.

3.1 Definitions

The ratio of the class imbalance used for the
experiment is [0.1, 0.2, 0.3, 0.4, 0.5]. The value
represents the percentage of the dataset that
consists of the minority. 0.5 indicates a bal-
anced data set, while a ratio of 0.1 implies
that 10% of the dataset consists of the minority
class. There are two classes in the experiment;
class 0 (C0) and class 1(C1). Class 0 is the
majority, the negative class and class 1 is the
minority, the positive class.

3.2 Data Set

The source of the data set used for the experi-
ment is sampled from a multivariate Gaussian
distribution. For class 0, the parameters are

defined by µ0 =

[
2
0

]
and Σ0 =

[
1 0
0 1

]
. For

class 1, the parameters are µ1 =

[
0
0

]
and Σ1 =[

1 0
0 1

]
. Figure 1 visually shows the distribu-

tion that will be used for the experiment.

Figure 1: Multivariate Gaussian Distribution.

The means are: µ0 =

[
2
0

]
, µ1 =

[
0
0

]
. The

covariance is identity matrix.

3.3 Experiment

The experiment begins by sampling 100 data
points from the multivariate distribution based
on the imbalance ratio. The test set con-
sists of a balanced data set with 10000 sam-
ples from the same distribution. The near-
est mean model is trained using specific sub-
set sizes, defined as the following: [10, 20, 30,
40, 50, 60, 70, 80, 100]. The experiment is re-
peated 1000 repetitions to ensure the reliability
of the results. After training, the model’s ac-
curacy metrics on the test set are averaged and
learning curves are produced.

4 Results and Discussion

In this section, the results of the experiment
are presented and analysed, focusing on the
shapes of the learning curves, the accuracy

3



plateau, performance disparities across imbal-
ance ratios, and the false positive and negative
rates.

4.1 Performance

The performance of the nearest mean model
decreases with the increase of imbalances in the
data set. Illustrated in Figure 2, the learning
curves across the imbalance ratio. A notable
performance gap is observed in training size 10.
However, as the training size increases, all im-
balance curves progressively approach the per-
formance level of the balanced dataset. This
indicates that with sufficient data irrespective
of the imbalance ratios, the model can perform
relatively well. To quantify the model’s per-
formance throughout the training process, the
area under the curves was calculated, this is
shown in Figure 4. It shows that as the level of
imbalances in the data set increases, the over-
all performance during the training decreases.
This suggests the significant role of the training
size on the performance of the model regardless
of the imbalance ratios specified in this paper.

Figure 2: Comparison of Learning Curves of
various imbalance ratios. The performance of
the model increases as the level of imbalance
in the data decreases

Figure 3: Partial representation of the stan-
dard error during training. The standard er-
rors are relatively non-significant across the im-
balance ratios. As the train size increases, the
standard error increases as the imbalance in-
creases

Figure 4: Area under the curve across the
imbalance ratio. It indicates that as the im-
balances of the data set increases, the overall
training performance decreases

4.2 Shape of the Curves

An analysis of the shape of the learning curves
was conducted by fitting the logistic function
onto the existing curve, providing approxima-
tions for parameters a, b, and c. The logistic
function is defined by f(x) = a

1+e−b·(x−c) and
parameters are defined as the following: a is
the maximum achievable accuracy; b is growth
rate; c is the midpoint of the logistic curve; x is
the train size. Figure 5 shows the curve fitting
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result on the balanced curve. Despite a few
missed points, the relationship among the fit-
ted curves mirrors that of the original curves,
as depicted in 6. Additionally, the square error
was calculated between the original and fitted
curves as shown in 7. The square error indi-
cates that the fitted curves are less accurate
when performed on curves resulting in more
imbalance data but the errors are not signifi-
cant, indicating that the fitted curves are rel-
atively reliable. Therefore, the approximated
values of the parameters can provide valuable
insights into the shape of the curves.

Figure 5: Fitted Curve vs Original Curve of
Balanced Data Set. The fitted curve did not
capture every data point but the squared error
is minimal. The square error for this curve is
5.01335× 10−06.

Figure 6: Fitted curves of all original curves.
The fitted curves seem to capture similar pat-
terns from the original curves.

The estimated parameters obtained from
curve fitting were compared across different im-
balance ratios, this is presented in Figure 8, 9,
and 10 which shows a, b and c, respectively.

Parameter a decreases as the imbalances in
the data set increase. This indicates that the
maximum accuracy achievable by the fitted
curve decreases with increasing class imbal-
ances. No observable relationship can be iden-
tified for parameter b. Parameter c increases
as the imbalances increase, implying the right-
ward shift of the function with increasing im-
balance.

Further analysis reveals that while param-
eters a and b have no significant differences
between the imbalance ratios, parameter c dis-
plays significant disparities. This suggests that
the impact of imbalances on the learning curves
majorly affects the rightward shift of the fitting
function and has little impact on the maximum
achievable accuracy and growth rate.

Figure 7: The square errors of the fitted curve
and the original curves. The square error
increases as the curves are made from more
imbalanced datasets. The errors are non-
significant, indicating that it is relatively re-
liable.
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Figure 8: Parameter a comparison, maximum
accuracy the fitted curve can obtain. Increased
imbalances result in a decrease of a. However,
the difference is non-significant.

Figure 9: Parameter b comparison, the steep-
ness of the fitted curve. No conclusion can
be made from the figure. However, the dif-
ferences between the imbalance ratios are non-
significant.

Figure 10: Parameter c comparison, the hori-
zontal shift of the logistic function. As the im-
balances in data increase, the logistic function
shifts to the right. The differences are signifi-
cant.

4.3 Plateau

The plateau of the curves provides insights into
when increasing the training size yields no fur-
ther significant advancement in accuracy. The
derivatives of the curves were calculated and a
threshold of 0.0001 was applied to determine
the plateau point. Figure 11 shows the change
in derivatives along the curves. Curves with
imbalance ratios 0.5, 0.4 and 0.3 plateau at
train size 50, while curves with imbalance ra-
tios 0.2 and 0.1 plateau at train sizes 60 and
80 respectively.The observation implies that as
the data set becomes more imbalanced, more
training samples are required to reach their
plateau. The values of the derivatives for the
curves can be found in Appendix TODO Ap-
pendix

Figure 11: The derivatives of the learning
curves. With a threshold of 0.0001, curves 0.5,
0.4 and 0.3 reaches a plateau after 50 train size.
Curves 0.2 and 0.1 reach the plateau after 60
and 80 train sizes respectively.

4.4 False Positives and Negatives

The false positive and negative rates of the
curve provide details on how the model han-
dles imbalanced data sets and how it impacts
the learning curve dynamics. Figure 12 and
13 illustrate the false positive rate and false
negative rate across the imbalance ratios, re-
spectively. The positive class signifies the mi-
nority, while the negative class signifies the
majority. The false positive rate curves show
increased noise as imbalances in the data in-
crease. However, the curves behaved as ex-
pected since there are more majority instances
in more imbalanced data sets, and the rate of
false positives is decreased. On the other hand,
the false negative rate curves exhibited no vis-
ible noise and behaved as expected as higher
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imbalances lead to higher false negative rate.
During the early training phase, the maximum
difference among the false positive curves is
approximately 3% whereas the false negative
is approximately 12%. Toward the end of the
training, the maximum difference for the false
positive rate is approximately 0.5% and the
false negative rate is approximately 1%. This
suggests that the learning curves are more sig-
nificantly impacted by the false negatives, em-
phasizing their importance over the false posi-
tives. As a result, the balanced learning curve
performed the best.

Figure 12: False Positive Rate Curves. The
balanced curve showed no visible noise, but
noise began to appear with increase of imbal-
ances. However, it behaved as expected, that
is lower false positive rate as imbalances de-
crease.

Figure 13: False Negative Rate Curves. The
curves behaved as expected. The mislabelling
of the minority class decreases as the curve be-
comes less imbalance.

4.5 Limitations

The experiment conducted is not perfect, it
has some limitations which are discussed in
this section. The limitations discussed are the
choice of subset size and imbalance ratios.

Due to the simplicity of the data used, the
analysis is only conducted with a maximum of
100 training samples, which is the main con-
tributor to the limitation of this experiment.
As a result, the choice of imbalance ratios and
subset sizes for the training is limited to main-
tain consistency throughout the training of the
model and sufficient data points for the curves.
To ensure that the desired imbalance ratio is
maintained throughout the training, the subset
size can only be intervals of 10 and the imbal-
ance to be intervals of 0.1. Additionally, the
nearest mean model from sklearn requires that
there is at least one instance of each class, con-
tributing to the choice of the subset size and
imbalance ratio intervals.

5 Conclusion and Future
Works

In conclusion, this research aims to investigate
the impact of data imbalances on the learn-
ing curve using the nearest mean model. The
experiment uses a multivariate Gaussian dis-
tribution to generate the samples for the train-
ing of the model with various imbalances in
the samples. The analysis of curve parame-
ters using the logistic function reveals that the
maximum achievable accuracy decreases with
increased imbalances and shifts the curves to
the right. However, the difference in achievable
accuracy is not significantly big. Furthermore,
the plateau analysis demonstrated that with
increased imbalances, more training sample is
needed to reach a plateau in accuracy. The
examination of the false negative and positive
rate curves suggests that false negatives have
a significant impact on the learning curves.
Additionally, the variability of the curves is
greater with increased imbalances, though in-
significant. Overall, the findings support the
conclusion made by Banko et al. and Samir Al
Stouhi et al., emphasizing the significance of
training size over imbalance ratio in the data
set. Additionally, it supports Zheng et al. find-
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ings that conclude the decrease in performance
is due to increased imbalances in the data.
While the finding of this study provides valu-

able insights into the impact of data imbal-
ances on the learning curve, it is of utmost
importance to acknowledge that this paper is
based on simple synthetic data and specific
constraints imposed by the chosen model and
experimental design. To ensure generalisabil-
ity, future research should be done. This in-
cludes more models and diversity in data used.

6 Responsible Research

In order to ensure reproducibility, this pa-
per provides the methodology of the experi-
ment, including all relevant data such as the
distribution, repetition size, train size, imbal-
ance ratio and model. The experiment source
code can be found at https://gitlab.com/

jiajiefeng000/research-project.git. Ad-
ditionally, various limitations of the experi-
ment is stated.
Large language models were used during the

production of this research paper. It was used
to assist in ideas for writing in some sections,
latex, producing code to plot the analysis of the
data and debugging code. All related prompts
with the large language model can be found in
Appendix TODO.
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A Derivatives

Table 1: The derivatives of the fitted curves

Train Size
10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-100

0.1 0.00249 0.000939 0.000537 0.000307 0.000206 0.00014 0.000105 8.94e-05
0.2 0.00135 0.000495 0.000271 0.000193 0.000122 7.1e-05 6.45e-05 5.8e-05
0.3 0.00105 0.000353 0.000197 0.000151 9.71e-05 7.31e-05 5.36e-05 3.7e-05
0.4 0.000968 0.000334 0.000185 0.000122 8.71e-05 6.27e-05 5.17e-05 3.9e-05
0.5 0.000896 0.000312 0.000175 0.000104 8.07e-05 5.4e-05 4.11e-05 3.64e-05

B Large Language Model Prompts
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