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ILeSi1A: Interactive Learning of Robot Situational
Awareness From Camera Input

Petr Vanc ", Giovanni Franzese

Karla Stepanova ', Jens Kober

Abstract—Learning from demonstration is a promising ap-
proach for teaching robots new skills. However, a central chal-
lenge in the execution of acquired skills is the ability to recognize
faults and prevent failures. This is essential because demonstrations
typically cover only a limited set of scenarios and often only the
successful ones. During task execution, unforeseen situations may
arise, such as changes in the robot’s environment or interaction with
human operators. To recognize such situations, this letter focuses
on teaching the robot situational awareness by using a camera input
and labeling frames as safe or risky. We train a Gaussian Process
(GP) regression model fed by a low-dimensional latent space rep-
resentation of the input images. The model outputs a continuous
risk score ranging from zero to one, quantifying the degree of risk
at each timestep. This allows for pausing task execution in unsafe
situations and directly adding new training data, labeled by the
human user. Our experiments on a robotic manipulator show that
the proposed method can reliably detect both known and novel
faults using only a single example for each new fault. In contrast,
a standard multi-layer perceptron (MLP) performs well only on
faults it has encountered during training. Our method enables the
next generation of cobots to be rapidly deployed with easy-to-set-
up, vision-based risk assessment, proactively safeguarding humans
and detecting misaligned parts or missing objects before failures
occur.

Index Terms—Anomaly detection, collaborative robots,
Gaussian processes, human in the loop, imitation learning.
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I. INTRODUCTION

EARNING from demonstration has great potential to re-

duce the setup cost and increase the adaptability of robotic
systems. This typically involves guiding a robot kinesthetically
through a task to provide a nominal demonstration and teach
the robot a skill that it is then expected to reproduce, for exam-
ple, picking up a peg. However, every recorded demonstration
implicitly assumes specific task conditions, for example, that
the peg is in a known location. During execution, these hidden
assumptions may no longer hold, raising the critical question:
at each moment, how can the robot tell whether it is safe to
continue?

A major challenge is distinguishing harmless variations from
those that could lead to a task failure: an inability of the robot to
complete the intended action successfully. For instance, a slight
rotation of the peg might still allow for successful grasping,
whereas a larger misalignment might make the peg unpickable.
Identifying such potentially harmful deviations requires task-
dependent situational awareness far beyond simply following
the recorded trajectory.

To allow the robot to gain situational awareness, we assume
that there is a human supervisor capable of detecting potential
faults. The term fault [1] refers to any condition that can lead to
a task failure, such as a peg not present in the expected location.
By detecting such conditions, we may prevent pending failures,
such as the peg not being grasped. Faults are treated as root
causes; once detected, they prompt manual recovery without
requiring the system to diagnose their origin.

We aim to detect both seen faults (those encountered and
labeled during training) and novel faults (out-of-distribution
scenarios not previously observed). The human supervisor may
interactively provide feedback to the autonomously acting robot
by detecting faults.

Unlike recent situation-awareness methods that rely on large,
previously collected datasets with extensive annotations [2], [3],
our interactive framework labels faults during task execution.
This human-in-the-loop strategy enables the system to detect
both familiar and unexpected faults with only a handful of
examples.

To demonstrate the effectiveness of our framework, we vali-
date our approach on the Electronic Task Board from Robothon
2023 (see Fig. 1, left). The onboard camera continuously feeds
visual data to our risk estimator, which outputs a scalar risk
score r quantifying deviations from safe states. When this score
exceeds a predefined threshold, a potential fault is indicated,
such as “door not open”, and the system pauses the execution to

IPlatonics: Robothon 2023 website: platonics-delft.github.io/
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Fig. 1. Anillustration showing the use of the ILeSiA system. The plot shows
an estimated risk score (r) during the skill execution. The risk score in each
timestep is estimated from the corresponding camera image. If the threshold 7
is exceeded, risk flag is raised and the execution is paused. In the illustration, a
camera mounted on the robot sees the human hand and detects the situation as
risky. Manipulation tasks use the Electronic Task Board from Robothon 2023
to demonstrate various skills.

prevent a downstream failure, such as an attempt to manipulate
an object behind the unopened door.

When the robot encounters an out-of-distribution visual input
(i.e., a novel fault), it pauses the execution and requests the
human supervisor to label the situation as either safe or risky.
These sparse annotations provided by the supervisor are em-
ployed to update our risk estimator’s model, improving its pre-
dictions in subsequent executions. This approach enables effec-
tive online ground-truth labeling without the need to manually
annotate thousands of frames in advance.

We call this approach ILeSiA: Interactive Learning of Sit-
uational Awareness from Camera Input. ILeSiA starts with a
single fault free demonstration captured by a camera and then
enters an interactive cycle of autonomous execution and sparse
human feedback. Whenever the robot encounters a novel, out-of-
distribution condition, human supervisor adds new annotations
to fine-tune the risk estimator’s model. Over successive runs, the
system incrementally builds internal knowledge and becomes
skilled at recognizing a variety of typical faults in its specific
environment with ever fewer interventions.

Because the model is trained only on task-relevant exam-
ples, it remains lightweight and efficient, enabling reliable
real-time risk detection suitable for industrial applications and
human-robot collaboration. By allowing the supervisor to define
what constitutes a risky situation, ILeSiA enables a flexible,
supervisor-guided expansion of the robot’s situational awareness
over time.

The main contributions of this letter are:

e Development of a compact risk estimator method: it es-
timates the risk score r (evidence of fault) at any given
timestep based on visual input from the camera, requiring
only a single demonstration of the fault. It continuously
assesses the environment for potential faults that could
hinder the robot’s task execution.

o Integration of the risk estimator into a Learning from
Demonstration (LfD) Framework for interactive aggrega-
tion of new faults on top of typical robotic skills executions,
automatic model retraining, and establishing a human-in-
the-loop system, where a human supervisor annotates new
and previously unseen faults as either safe or risky, and
expanding the robot’s knowledge.

All source code, interactive visualization tools, experimen-

tal videos, and datasets are available at: imitrob.ciirc.cvut.cz/
publications/ilesia.
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II. RELATED WORK

The field of fault detection in robotics has traditionally fo-
cused on preventing mechanical or operational failures through
real-time processing. Early works by Van and Ge [4] and Wu
et al. [5] demonstrated the value of using sensor data to detect
deviations from normal behavior [6]. Park et al. [7] and Lello
et al. [8] trained hidden Markov models on multi-modal obser-
vations, e.g., force or proprioception, to detect departures from a
nominal manipulation trajectory. Other data-driven approaches
employ one-class classifiers such as linear SVMs to flag failures
without requiring their examples during training [9].

More recent efforts have broadened the scope from purely
operational failures to encompass situational faults inferred from
visual input, such as detecting a human hand entering the robot’s
workspace. Ruiz-Celada et al. [2] integrated perception and
reasoning to capture epistemic uncertainty and enable robots to
recognize when their sensory information or model knowledge
is insufficient [10].

A closely related challenge is anomaly detection (AD) viewed
as an out-of-distribution (OOD) problem: learning a model of
“normal” data (often with only positive examples) and scoring
deviations [11], or detecting anomalies semantically by using
LLMs [12].

In contrast, our risk-estimation framework combines explic-
itly labeled risky examples for seen faults with OOD cues.
Instead of relying on an NN 4+ 1 classification scheme that
treats risk as a separate class or assuming that risky events
are vanishingly rare, we continuously evaluate the incoming
camera stream, using both learned fault patterns and epistemic
uncertainty.

Vision-based failure detection methods have also been ex-
plored independently of AD. Inceoglu et al. [13] encoded visual
features by using histograms of oriented gradients and applied
PCA to detect proprioceptive failures from camera images,
while others compare outputs of different convolutional neural
networks to identify faults in real time [14].

Further bridging the gap between traditional fault detection
and modern risk assessment, interactive imitation learning (IIL)
techniques [15], [16] provide a framework for robots to learn
complex tasks through human feedback [17]. Techniques such as
DAgger[18], ThriftyDAgger [19], and follow-up work [20], [21]
optimize the learning process by focusing on scenarios where
human intervention is most critical, thereby reducing the expert
burden, as explored in FIRE (Failure Identification to Reduce
Expert Burden) [22].

Unlike other approaches, our approach automatically learns
when a situation is risky or safe. For example, our model can be
trained to recognize that an open door is risky at the beginning
of execution.

Recent one-class, uncertainty-aware detectors like FAIL-
Detect [23] introduce a two-stage pipeline: first distilling image
features and robot states into scalar uncertainty scores, then
applying time-varying conformal prediction bands to flag faults
without needing data for these faults. Similarly, the TAM-
PURA framework [24] learns probabilistic transition models
over abstract belief states via simulation and uses Bayesian
upper confidence bounds to direct exploration toward safer, more
informative plans.

Overall, while traditional studies lay a solid foundation for
understanding and detecting faults in robotic systems, our
work extends these concepts by detecting both learned and
out-of-distribution faults via real-time video analysis and
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Fig. 2. Venn diagram example of output space. Images are classified as in-
distribution (i.e., similar to the seen images) or out-of-distribution. Our model
classifies images as safe or potentially risky, where potentially risky cases are
presented to the human supervisor to specify them as risky or safe and update
its own knowledge about risk estimation.

interactive, task-relevant fault labeling. This enables the system
to alert a human supervisor to situations that would otherwise
be deemed unsafe and to simultaneously collect new training
samples.

III. METHOD

The goal of our method is to accurately classify each incoming
image observed during skill execution as safe or risky. However,
the underlying categorization includes three classes: safe, risky,
and out-of-distribution (see Fig. 2). The safe and risky categories
are in-distribution, meaning that similar images were covered by
the training data. In contrast, out-of-distribution situations (i.e.,
images that differ significantly from anything previously seen)
are treated as risky by default.

We propose a two-stage approach. In the first stage, each
image is encoded into a low-dimensional feature representation.
In the second stage, a risk score is estimated from these fea-
tures. This design is motivated by our aim to capture epistemic
uncertainty in the current state: uncertainty arising from a lack
of knowledge. In this way, out-of-distribution inputs are treated
as novel (potentially risky) situations.

In the first stage, we adopt a standard autoencoder (AE) [25]
to extract compact and informative features from images. While
standard autoencoders do not explicitly model uncertainty, they
can serve as effective embeddings of general features into a
latent space that may help classify out-of-distribution cases.
Training the autoencoder on all saved safe instances and seen
faults enhances the model’s ability to recognize subtle visual
variations during skill execution, making the learned feature
space more sensitive to novel faults.

In the second stage, we use Gaussian Process (GP) [26], [27]
regression to estimate arisk score from the AE-encoded features.
GPs provide both a fault prediction and a principled estimate
of epistemic uncertainty thanks to their strong interpolation
capabilities, making them well-suited for identifying diverse
types of faults.

Note that replacing this two-stage approach with a varia-
tional autoencoder (VAE) would enable modeling of aleatoric
uncertainty — that is, uncertainty arising from inherent noise or
variability in the data — rather than epistemic uncertainty, which
is the focus of our approach.

A. Policy Definition

We assume that a trajectory for an individual skill is
recorded by kinesthetic teaching using the existing Learning

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 10, OCTOBER 2025
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Fig. 3. Video embedding architecture utilizing a 4-layer autoencoder and its
connection to the risk estimator.

from Demonstration (LfD) module', originally developed for the
2023 Robothon challenge, see Fig. 1. The camera mounted on the
end effector is recording a video during this demonstration. The
LfD module enables the teaching and execution of robotic skills
through kinesthetic demonstrations. We execute the learned
skills and recorded images at 20 Hz to ensure a comprehensive
visual record.

These newly acquired skills are stored and later performed
towards a specific object (object-centric) as fixed trajectories
within the task space coordinates. This ensures consistent cam-
era views during the trajectory execution, even when the target
object moves between individual demonstrations.

B. State Representation

To effectively detect faults during a novel demonstration,
we first process the video signal, resize it, and convert it to
grayscale. The videos were recorded in laboratory conditions,
eliminating concerns about image lighting sensitivity or camera
shake. Subsequently, we embed the input images in a latent space
utilizing an autoencoder network (see Fig. 3).

C. Risky or Safe: Learning and Judging the Current Situation

In the second stage, we estimate the risk score for the observed
situation. We create an input vector o for the risk estimator by
concatenating the latent space vector h corresponding to the
frame from the demonstration at normalized time « (positional
encoding):

o=hoa, (D

where @ denotes concatenation. The risk score r for each skill
is computed in real time by using the following formula:
r=7R(o), rel0,1], )

where R denotes the method used for risk estimation. We
propose the use of a GP [26], [27] as a core component of our
risk estimation method. A GP is defined as:

f(x) ~ GP(m(x), k(x,x)), 3)

where m(x) is the mean function specified as m(x) = 0 and
k(x,x’) is the covariance function specified as a Radial Basis
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Function (RBF) kernel with Automatic Relevance Determina-
tion (ARD) [28] as:

k(x,x) = 02 exp <_; XD: (W)) L@

d=1

where 012} is the prior uncertainty of the model. x4 denotes the
d-th component of x. The ARD optimizes the horizontal and
vertical length scale parameters (A4, crf}) that determine how
quickly the model moves out of distribution. The optimization
decides which features (latent variables) are important for pre-
dicting the output variable and which can be safely ignored.

The central challenge lies in handling novel situations. Novel
visual inputs fall outside the trained distribution and are iden-
tified by their deviation from the training data, leveraging the
model’s inherent uncertainty.

When making posterior predictions (function £*) at new points
x* based on training data X and their ground truth fault (risky or
safe) labels y, the GP provides a posterior predictive distribution,
which is also multivariate normal:

X,y x" ~ N(p", X9) (5)
where: p* = K(x*, X)[K(X,X) +02I] "'y and o*?=
K(x*,x*) — K(x*, X)[K(X,X) + 02| 1 K(X,x*), with

o2 the observation-noise variance parameter computed from
all training samples (the Gaussian likelihood’s noise variance).
K(X,X) is the covariance matrix computed from the RBF
kernel over all pairs of inputs in X and I is an identity matrix.

Following the human supervisor approach to handling novel
situations, we classify anything that is not deemed safe as risky —
this includes both novel situations and scenarios corresponding
to previously labeled faults. To capture this by our model, we
propose a novel method for estimating the risk score 7 of the
given situation:

r=clip(p* + o), (6)

where p* (reflects the in-distribution behavior) and o* (proxy
for out-of-distribution detection) are parameters of the predicted
posterior distribution provided by the GP, function clip(z) =
min(1, max(0,z)) clips the value between zero and one. Note
that we use GP regression to obtain the distribution parameters
w and o from which we compute the real number 7 (6).

Finally, the binary variable indicating the presence or absence
of fault, the risk flag y, is computed given the selected threshold
7 = 0.5, chosen because the model is trained on binary labels
and 7 = 0.5 represents the midpoint. Then,

1 ifr>71
- . 7
4 {0 itr <7 @)

We didn’t find any benefit in optimizing the 7 or using separate
threshold values for  and o, where the risk flag is raised if
either 1 or o exceeds its respective threshold, i.e., y = (u* >
Tu) V(0" > 75).

Stop Signal: When the risk flag is detected (e.g., an unexpected
object or human hand is observed), the execution is paused by
issuing a stop signal that asks the human supervisor to confirm
or reject the detected fault. The execution continues after the
fault is assessed by the human supervisor.
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Fig. 4. ILeSiA: Interactive learning loop. The proposed system allows the

human supervisor to kinesthetically teach a new skill and execute it on the
robot. If a fault arises during execution, the stop signal is triggered by the risk
estimator or the human supervisor. This pauses the execution, and the human
supervisor gives feedback. These safety labels are linked to the corresponding
camera images and used to train the risk estimator.

D. Active and Interactive Labeling of Situations From Human
Feedback

The risk estimator and its integration into the existing Learn-
ing from Demonstration module (ILeSiA)! are shown in Fig. 4.
The human supervisor halts the execution of the task upon
detecting a fault. The risk estimator automatically captures these
moments and uses them as training samples to update its future
predictions. Labeling is facilitated through interactive inputs, for
example, from the keyboard or using the robot’s integrated but-
tons.? This method allows for immediate and accurate labeling
of relevant data points as safe or risky during demonstrations.

IV. EXPERIMENTAL SETUP

We tested the proposed system on manipulation tasks using
the Electronic Task Board, which was part of the Robothon
Challenge 2023 [29], see Fig. 1. The setup features a Franka
Robotics Panda robot with an Intel RealSense D455 camera
mounted close to the end-effector.

A. Recording Manipulation Skills

The experiments focus on the three most frequently performed
skills with the board: 1) Pick Peg, 2) Open Door, and 3) Place
Peg. The robot encounters the following situations (see Fig. 5),
which may be considered risky depending on the specific task:

1) Door open or closed.

2) Peg missing or misoriented during picking.

3) Peg misoriented after placement.

4) Cable held by the gripper after a picking attempt.

5) Obstacles or clutter, such as tangled cables.

6) Human hands visible in the camera frame.

We categorize these situations into novel faults (situations 5
and 6), i.e., faults for which the system has not been trained,
and seen faults, which are faults included and labeled within the
training data. However, even situations 1-4 contain a degree of
novelty due to inherent variability: for example, the peg rotation

’Franka Buttons package: github.com/franzesegiovanni/franka_buttons
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Fig. 5. Examples of recorded manipulation skills and their associated seen
faults, which define conditions for successful skill execution. When these faults
occur, the skills result in failure. Videos demonstrating skill executions are
available on our website?.

can vary continuously, yet only a limited subset of rotations
appears in the dataset.

Training dataset: For each task, we first recorded a kinesthetic
demonstration. During trajectory recording, we ensured that the
camera captured sufficient information for the human supervisor
to identify faults from the video stream. We then recorded be-
tween 4 and 10 autonomous executions of each skill for training:
at least one was safe, while the others were intentionally made to
exhibit some of the faults (seen faults 1-4 listed above). Human
supervisors provided labels for skill preconditions and execution
faults.

Novel & seen dataset: For each task, we recorded 30 test ex-
ecutions simulating real-world scenarios containing seen faults,
and between 8 and 11 executions containing novel faults (e.g.,
human hands or clutter entering the view). Each skill includes
two evaluation segments to assess possible faults: one verifying
preconditions at the beginning (e.g., verifying that the door is
initially closed before opening) and another verifying postcon-
ditions at the end (e.g., confirming that the door is successfully
opened).

In total, we recorded 3 kinesthetic demonstrations, 18 training
executions (including various faults), 90 test executions (con-
taining 190 instances of seen faults), and 30 novel test executions
(containing 100 novel fault instances). The datasets totaling
7.6 GB are publicly available on our website.> The observed
inference time for detecting the risk score from an image varies
around 35 &£ 15 ms. Training the GP model from the dataset
IV-A for a single skill took between 16 s and 36 s, depending
on the number of input samples and the type of the skill: Place
Peg 16 s for (1670 samples), Open Door 33 s (4050 samples),
and Pick Peg 35 s (2200 samples).

B. Video Embedding

Our approach employs a standard autoencoder for dimension-
ality reduction, as detailed in Section III. Its architecture com-
prises convolutional layers, normalization, ReLLU activations,
dropout, and max-pooling layers to compress the video data.
We train the autoencoder on all skill executions except those
containing novel faults (skills 5 and 6; see Section IV-A). This
ensures that all seen faults are accurately encoded.

ResNet comparison: We evaluated our autoencoder against a
ResNet-50 model [30] pre-trained on ImageNet [31]. To match

3Website with datasets, skill execution videos, and interactive tool: http://
imitrob.ciirc.cvut.cz/publications/ilesia/
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TABLE I
COMPARISON OF VIDEO EMBEDDING APPROACHES

Autoencoder (ours) ResNet-50 [30]

Input Size 64 X 64 (grayscale) 224 x 224 (RGB)
Preprocessing Resize, grayscale Upsample, normalize
Architecture 4-layer CNN AE Pre-trained CNN
Embedding R12 (latent space size)  Blocks 2,3 (R256:512)

inputs, we upsampled and normalized the grayscale images to
RGB using a per-channel transformation z/, = (x. — u.)/oe,
with g = [0.485,0.456, 0.406] and o = [0.229,0.224,0.225],
aligning the input distribution with the RGB ImageNet statis-
tics expected by the pretrained ResNet. We extracted fea-
tures from ResNet’s block 2 (256-dimensional) or block 3
(512-dimensional) and fed them into the same risk estimator.
Table I summarizes the model specifications. On the seen dataset
(Section IV-A) using the multi-layer perceptron (MLP) risk
estimator (Section V-Al), ResNet-50 performed comparably to
our autoencoder. Low-level features from earlier blocks excelled
atdetecting simpler faults (e.g., aheld cable), whereas high-level
features from later blocks were more effective at distinguishing
semantic faults (e.g., open versus closed door).

We selected the autoencoder because it learns task-specific
features unsupervised from our own data, dynamically adapting
to the specific faults of interest. A more detailed embedding
comparison is beyond the scope of this letter.

C. Risk Estimator Dataset Collection

The final dataset D used for training the risk estimator con-
sists of T" recorded skill executions ¢; (see dataset details in
Section IV-A):

D= {tj}?:lv

Each skill execution ¢; comprises N; frames:

N.:
ti ={dji}tisy,
where d; ; is i-th frame of the j-th execution trial:
dji = (4, Ry Siis i),

with h;; denoting the feature vector of frame ¢ in execution j,
R, ; € {0, 1} indicating the “risky” label, S; ; € {0, 1} indicat-
ing the “safe” label, and o ; = N% representing the normalized
time within the execution. '

All frames are considered safe if no risk flag is triggered
during the execution. Additionally, all frames recorded during
the nominal kinesthetic demonstrations are labeled as safe. To
ensure that the GP estimator functions correctly, even with only
a single trajectory, we include white and black image samples
labeled as risky; without these samples, the estimator would con-
sistently predict “safe.”. For executions containing a fault, we
prefer to use the Dgjecreq dataset, which includes only explicitly
labeled samples for training. This avoids introducing conflicting
labels into the dataset, as we cannot precisely determine where
a fault started or ended.

Dielected = {(dz €D | (Rz \ Sz) = 1}. ()
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V. EXPERIMENTS

In this section, we present experiments conducted to validate
the proposed method and its key design decisions. The exper-
iments evaluate three different risk-estimation methods using
the datasets described in Section IV. Section V-A describes
hyperparameter selection and training procedures.

A. Experiment Configuration

These are the baseline methods and their hyperparameters:

1) Risk Estimation Baseline: We compared our proposed
GP-based method (see Section III-C) with two baseline ap-
proaches: a MLP and logistic regression (LR). The MLP consists
of three hidden layers, each containing 32 nodes with dropout
applied. Both the MLP and LR were trained using binary cross-
entropy loss optimized via Adam [32] with a learning rate of
1073 and weight decay of 107°.

2) Size of Latent Space: The size of the autoencoder’s latent
space, denoted as len(h), significantly influences the overall
performance of our proposed method. We evaluate the embed-
ding quality by assessing image reconstruction performance.
The latent space must be sufficiently large to encode fault-
capturing features; however, increasing its dimensionality ad-
versely affects GP performance. These trade-offs are discussed
in Section V-C. Based on initial experiments, we selected a latent
space dimension of 12.

3) Number of Training Epochs and Learning Rate: The num-
ber of training epochs may be dynamically determined based on
validation loss computed from an independent demonstration
trial. Typically, we train for more than 400 epochs with a learning
rate ({r) of 0.01. Note that the optimal number of epochs depends
on the specific autoencoder architecture.

Importantly, training for fewer than 200 epochs at i = 0.01
may lead to poor interpolation of the GP’s length scale, hindering
the effective detection of novel (out-of-distribution) faults.

B. Performance on Seen Faults

First, we assessed the model’s ability to detect seen faults, i.e.,
faults present in the training data, within held-out test trajecto-
ries. We compared GP and MLP risk estimators by evaluating
their frame-by-frame predictions during two distinct fault events
in a single test demonstration (Fig. 6). Both models were trained
using samples whose timestamps approximately aligned with
our ground-truth labels. For example, since the door was already
open before the human supervisor marked it as risky, it was
reasonable for the model to label that region as high-risk, even
beyond the explicitly labeled area.

Next, using the dataset from Section [V-A (Table II), the GP
model consistently achieved high accuracy on the held-out test
demonstrations. For the Open Door skill, which failed in 33%
of executions, the model correctly predicted 99% of cases. All
faults were detected, with only a single false alarm. Most remain-
ing misclassifications occurred when test executions deviated
from the training distribution, occasionally triggering false posi-
tives. Importantly, augmenting the training set with a few of these
out-of-distribution executions improved the overall accuracy to
nearly 100%, except for a small number of cases affected by
poor video reconstruction. Such degraded reconstructions (see
Section V-C) can be automatically flagged by comparing each
frame’s reconstruction loss to the distribution observed during
training.
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Fig. 6. Riskscore prediction on a test trial for the Open Door skill, comparing
GP and MLP models. The red curve indicates predicted risk flags (r > 7),
while the blue curve represents safe predictions. Ground-truth risky segments are
marked with xx, emphasizing the importance of accurate detection during these
intervals. Representative original frames and their corresponding reconstruction
loss values are shown. For this skill, the door must start closed and end open to
be considered safe. Midway through the trial, the human supervisor manually
closes the door, correctly reducing the risk score. Later, the robot fails to open
the door, and the risk score rises as the door snaps shut. The system employs
a non-interrupting policy, allowing execution to continue despite triggered risk
flags.

TABLE I
COMPARISON OF GP AND MLP PERFORMANCE ON SEEN VS. NOVEL FAULTS

Pick Peg  Open Door Place Peg
Seen-Fault Accuracy (%) (180 samples total)
GP (ours) 91.8 99.3 94.6
MLP 90.5 91.5 93.9
Logistic Regression (LR) 71.2 69.3 79.7
Total seen-fault samples 60 60 60
False-Alarm NPV (%) (Negative predictive value)
GP (ours) 91.8 95.7 99.9
MLP 99.9 95.4 100.0

Novel-Fault Detection Accuracy (%) (100 samples total)

GP (ours) 84.2 92.3 73.9
MLP 39.5 28.2 52.1
Total novel-fault samples 38 39 23

Finally, Fig. 7 illustrates how detection performance scales
with additional demonstration videos. When trained on all four
available demonstrations, our system generalized effectively
across 35 test executions, achieving 92% overall accuracy and
nearly 100% recall—meaning it reliably flagged every fault
occurrence.

Out-of-distribution behavior: We simulate a transition from
a safe to a risky state by manually manipulating the door and
peg using an invisible twine to induce unexpected changes. This
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labeled videos are incorporated (y-axis: number of training videos). Evaluation is
performed across 35 test executions (z-axis), totaling 8,600 samples. With only
one training video, the model fails to detect in-distribution faults but correctly
identifies out-of-distribution cases (e.g., “hands”). Incrementally adding more
videos improves generalization across distinct trajectory segments—video 2
helps in detecting risky test samples, while videos 3 and 4 help generalize across
the remaining safe test samples.
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Fig. 8. (Left) When the door is closed, the situation is safe. As the door begins
to open, the risk score increases, reflecting the deviation from the expected
state. (Right) The peg can be successfully picked when correctly aligned. As its
rotation angle deviates from the trained orientation, the risk score rises. Once
this deviation exceeds 30 degrees, the skill fails, triggering the risk flag and
stopping the robot.

setup demonstrates how such deviations influence the risk score,
as illustrated in Fig. 8.

C. Impact of Reconstruction Quality

The quality of video reconstruction directly affects fault-
detection performance. As shown in Fig. 9 (second frame from
the left), low-quality reconstructions frequently lead to misclas-
sifications (false alarms). To mitigate this issue, the autoencoder
should be fine-tuned with new images after each run.

We evaluated latent-space dimensions ranging from 8 to 64.
Dimensions of 12 or higher enabled the AE to reconstruct fault
events over sequences of up to 700 frames. However, smaller
dimensions (e.g., 12) often blurred critical details, such as vari-
ations in peg rotation, because the AE is trained with an unsuper-
vised reconstruction loss that does not explicitly emphasize these
features. Larger latent spaces (48 or 64) captured a broader range
of peg rotations but still fell short of fully generalizing across an
effectively infinite continuum of angles. In constrained settings
with only a few discrete states, such as a door being either open or
closed, even a moderate latent dimensions produce sufficiently
accurate reconstructions to reliably detect faults.

D. Quality of the Risk Estimation for Novel Risks

In this experiment, we assess our model’s ability to detect
novel faults, i.e., faults not encountered during training. The
dataset (Section IV-A) includes examples of unexpected objects
entering the scene, such as a human hand or tangled cables.
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Fig. 9. Risk score prediction for a test trial of the Pick Peg skill, highlighting

a novel (out-of-distribution) fault and the impact of poor video reconstruction.
Predictions from the GP model are plotted, with the red curve indicating triggered
risk flags (r > 7), and x* marking ground-truth risky segments. Below the plot,
original and reconstructed frames are displayed along with their reconstruction
losses. Note that the second frame from the left exhibits a poor reconstruction,
omitting the peg and thus incorrectly triggering a risk flag. In the third frame, a
novel fault occurs as a human hand enters the field of view, causing an additional
rise in the risk score. At the end, the gripper intentionally remains open. The
system employs a non-interrupting policy, allowing execution to continue despite
detected risks.

Our GP risk estimator (Section III-C, (6)) flags any significant
deviation from the learned skill (safe distribution) as risky. The
out-of-distribution threshold is determined automatically via
the Automatic Relevance Determination (ARD) mechanism (4),
which learns this threshold to separate safe from risky image
embeddings based on the training data.

Fig. 9 illustrates the GP model’s response when a human hand
enters the scene. As soon as the hand appears, the GP’s predictive
uncertainty o* sharply increases, along with the risk score 7,
accurately signaling the emergence of an unfamiliar scenario.

We found that smaller latent dimensions (< 16) yield sparser
connections among training samples, preserving longer length
scales and thus maintaining lower uncertainty for familiar
frames. In contrast, latent dimensions larger than 16 collapse
length scales too rapidly, causing uniformly high uncertainty,
even for images closely resembling training data.

By contrast, an MLP risk estimator (Table II, “Novel Faults”
subset) failed to recognize hands or other unexpected objects,
posing a significant safety risk in real-world deployments.

VI. CONCLUSION

In this letter, we introduced a method to detect faults during
robotic manipulation and prevent task failures. We demonstrate
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our approach in a Learning-from-Demonstration setting, where
a robot is taught manipulation tasks with an Electronic Task
Board. A human supervisor subsequently observes several ex-
ecutions of the learned skills and labels potentially risky situ-
ations. Using a Gaussian Process (GP) model, our method can
identify both known and previously unseen faults.

We experimentally compare our method with logistic re-
gression (LR) and an optimized multi-layer perceptron (MLP).
While the GP and MLP models perform comparably when
detecting previously seen, labeled faults, the GP model shows
a clear advantage in handling novel situations. Specifically,
scenarios involving previously unseen faults, such as the un-
expected appearance of a human hand in the scene, were not
consistently recognized by the MLP. In contrast, the GP model
effectively detected these out-of-distribution events thanks to its
inherent uncertainty estimation capability.

In our future research, we will generalize the method further
by incorporating additional modalities into the risk estimation,
such as force sensors or microphone input. This enhance-
ment can increase robot’s situational awareness and expand
the range of tasks in which robots can act autonomously and
safely.
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