
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Flexible Authoring of Web-based, Open
Answer Mathematics Exercises

Author:
Ruben KEULEMANS

Supervisor:
Marcus SPECHT

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

June 21, 2021

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

i

Abstract

Ruben KEULEMANS

Flexible Authoring of Web-based, Open Answer Mathematics
Exercises

Practice is central in mathematics skill acquisition. The practice process can be facili-
tated by flexible digital exercise systems, supporting personalized learning and providing
students with parameterized, open answer exercises containing answer-specific feedback.
However, current solutions for authoring these exercises lack efficiency and expressive-
ness, or rely on unpopular languages for content generation. To address these issues,
this work demonstrates a flexible setup for authoring exercises in Jupyter Notebook cells
using Python and the available libraries therein and evaluates this setup with expert
users and authors of exercises.

ii

Preface

This work is the result of my graduation project at the Web Information Systems Group
for the Master Computer Science at the Delft University of Technology.

I considered this project as an opportunity to broaden my knowledge beyond com-
puter science. After completing the first edition of the Educational Technology master
specialization course in 2020, I was eager to learn more about education and learn-
ing. Following two months of exploring the educational domain, the thesis topic of
mathematical exercise authoring was selected.

I am grateful to my supervisor Marcus Specht for providing me the freedom to
investigate and explore, while providing feedback on scope and focus when necessary.
Special thanks to Eric Bouwers from Grasple for his support. The constructive feedback
and bi-weekly conversations were of great help in my learning process and improving
this work.

Lastly, I want to thank everyone sharing their thoughts on this work throughout this
project. These include the participants in the evaluation studies, Pim and Thijs from
Grasple, members of the Centre for Education and Learning group of the Leiden-Delft-
Erasmus collaboration, comittee members and fellow students. An important lesson
learned during this project is that continuously collecting suggestions from a broad range
of people is central in shaping a solution.

R. Keulemans
Delft, June 2021

iii

Contents

Abstract i

Preface ii

1 Introduction 1
1.1 Developments in Higher Education . 1
1.2 Mathematics in STEM studies . 3
1.3 Importance of practice in learning mathematics 5
1.4 Limitations of typical classroom practice 7
1.5 Initial research question . 8
1.6 Methodology and approach . 9
1.7 Contributions . 10
1.8 Thesis structure . 10

2 Related Work, Problem Statement & Authoring Requirements 12
2.1 Grasple . 12
2.2 Problem statement . 18
2.3 Research question . 19
2.4 Scope and context . 19
2.5 Other solutions: MyOpenMath, RExams, WebWorX and MEGUA 20
2.6 Requirements and use cases . 21

3 Setup for Flexible Exercise Authoring 24
3.1 Authoring setup context . 24
3.2 A first exercise definition: One-off integer addition 26
3.3 Enabling repeated practice: Parameterized integer addition 27
3.4 High level of abstraction: SymPy code generation for matrix exercises . . 28
3.5 Guiding feedback . 30
3.6 Architecture: Exercise player, JSON representation and answer evaluation 32
3.7 Complex exercises . 35

4 Evaluation 40
4.1 Focus groups . 40
4.2 First focus group feedback . 41
4.3 Second focus group feedback . 43
4.4 Setup usability evaluation . 45

4.4.1 Exercise authoring tasks . 45
4.4.2 Semi-structured interviews . 46

4.5 Functional suitability . 48

iv

5 Conclusion & Future Work 52
5.1 Conclusion . 52
5.2 Research limitations . 53
5.3 Recommendations . 53
5.4 Future work . 53
5.5 Further directions . 54

A Usability Evaluation Interview Questions 56
A.1 Understandability . 56
A.2 Abstraction . 56
A.3 Reusability . 56
A.4 Learnability . 57
A.5 Editing and collaboration . 57
A.6 Miscellaneous . 57

B Usability Evaluation Notebook 58

C Code Listings of Selected Exercises 64

Bibliography 69

1

Chapter 1

Introduction

This chapter begins with a high level perspective of the challenges and developments in
the field of higher education relevant for the research in this work: the increasing demand
of STEM (Science, Technology, Engineering, Mathematics) labour and the developments
towards open and scalable education. Next, the central role of mathematics in STEM
studies and corresponding issues for students are described. Informed by the importance
of mathematics in STEM, the topic of learning mathematics is discussed, including
the current and desired method of practice and instruction. Given these observations,
an initial broad research question is formulated, to be further specified in Chapter 2.
Finally, the methodology for answering this question is described and an overview of the
conducted activities and contributions is provided.

1.1 Developments in Higher Education

Serveral important developments in Higher Education have an impact on the topics
of this research. These developments include changes and requirements from the job
market for increased qualifications on STEM subjects and up-scaling of education to
accommodate this change by means of Massive Online Open Courses (MOOCs) and Open
Educational Resources, including video-based learning materials and online learning
opportunities.

STEM education as a key to innovation and engineering is becoming increasingly
supported with digital tools. This work focuses on the potential of creating a setup for
authoring parameterized exercises for online learning of STEM mathematics subjects in
a flexible way.

Increasing demand of STEM labour STEM (Science, Technology, Engineering, Math-
ematics) occupations are primarily responsible for inventing and improving innovative
technologies that increase global welfare and affect our daily lives. Consider the abun-
dance of available food, global communication and information access offered by the
internet and medical equipment for analyzing and curing the human body. These and
many other offerings of modern society are owed to STEM practitioners. In the Euro-
pean Union, a growing demand for these STEM occupations is projected. A research
report published in 2015 on past and projected STEM (Science, Technology, Engineering,
Mathematics) occupations [6], requested by the European Parliament, states:

Employment of STEM professionals and associate professionals in the EU
was approximately 12% higher in 2013 than it was in 2000.

Demand for STEM professionals and associate professionals is expected to
grow by 8% between 2013 and 2025, whilst the average growth forecast for
all occupations is 3%.

Chapter 1. Introduction 2

According to Shapiro et. all [32], the supply and demand of STEM graduates is a
major concern:

The supply and demand of STEM graduates continues to be of major concern
to industry leaders and policy makers due to the traditional importance of
STEM graduates for technology-driven growth, and due to a major replace-
ment need in the coming years as the senior STEM workforce gradually
retires.

Open learning materials In 2001, Massachusetts Institute of Technology (MIT) started
the OpenCourseWare project. OpenCourseWare is an online platform hosting the high
quality learning materials created by MIT staff. This material is the exact same as offered
to students enrolled at MIT. It includes recorded lectures, books written by instructors
and assignments. The initiative enables any teacher or learner to take advantage of the
supplied material, free of charge.

Publicly distributing learning materials created by universities, like MIT started in
2001, is nowadays becoming common practice at universities worldwide. This enables
instructors to reference instead of recreate material and offers students choice in learning
sources. However, adapting the material at hand is difficult, due to the container format
(most often pdf) material is published in. Adaptation of material is important, as teachers
want to shape material using their experience and subjects of interest, given a particular
course and student population. Publicly sharing material is a major step in achieving
open education, but the current container format of shared material limits the potential
value.

MOOCs and scalable education Massive open online courses (MOOCs) are an ap-
proach to provide online, scalable education to anyone in possession of an internet-
connected device, free of charge. MOOCs typically include short lecture videos, written
explanations, quizzes that can be automatically assessed and a forum to discuss course
content. The logging facilities offered by platforms hosting MOOCs, such as EdX or
Coursera, allow teachers to track learner performance and identify difficulties. Due to the
scalability of created content, automated answer assessment, data analytics and forums
where learners help each other, there is a reduced need for expert human guidance,
making learning efficient and accessible.

Educational videos With the advent of YouTube, anyone can become an instructor by
uploading created content and everyone can become a learner by viewing this content.
Social metadata like up/down vote ratio, comments and view count help learners to
identify suitability and quality of the available content. Additionally, the algorithms
implemented by YouTube aid in recommending new learning sources informed by the
history of watched videos. Examples of YouTube channels containing informational
videos of outstanding quality are:

• 3Blue1Brown1, having vivid visualizations providing intuition for many mathe-
matical concepts;

• Ben Eater2, providing instructional videos on how to build an 8-bit computer on
breadboards from first principles (i.e. starting from atoms);

• Khan Academy3, providing contextualized explanations of mathematical theory.

Chapter 1. Introduction 3

Blogging Medium4 is an online open publishing platform, where users can write blog
posts. Publishers and content ranges from hobbyists explaining how to built a go-kart5

to company representatives explaining the architecture of their open source self-driving
car software6.

Educational material is often found on medium, including explanations of complex
mathematical procedures like Principal Component Analysis7 and Gradient Boosting8.
While Medium does not support mathematics notation, this is often circumvented by
inserting images of the mathematical objects and formulas. The articles typically provide
a contextualization of the discussed theoretical concepts and include detailed step-by-
step visualizations, in contrast to abstract and dense information found on Wikipedia.
Articles include links to other sources for additional background information.

A major limitation of Medium (and static text in general) for educational purposes,
is that it is unclear whether the reader understood the information. The direction
of information is mostly unidirectional, unless the reader explicitly takes action and
performs additional Google searches. Testing the reader before moving on explaining
further, dependent topics is not supported.

1.2 Mathematics in STEM studies

This section describes the relevance of mathematics in STEM studies and illustrates this
by the mandatory mathematics courses in the bachelor studies at TU Delft. The shared
learning goals of STEM mathematics are discussed next, including different perspectives
on instruction for achieving these goals. The importance of mathematics is further
stressed by considering the rise of artificial intelligence in STEM studies and the role
of mathematics therein. Finally, two conclusions from educational research on STEM
students are discussed. A body of research attributing STEM dropouts to insufficient
prerequisite mathematical knowledge and a study concluding mathematics exercises to
be the most stressful activity of freshmen students, further indicate the importance of
mathematics and associated learning challenges.

Learning goals Mathematics is an integral part of STEM studies. To illustrate this,
consider the fact that all 16 bachelor studies offered by TU Delft, at least include calculus
(analysis), linear algebra and probability & statistics in their curriculum, except for
Industrial Engineering and Architecture Engineering. The importance of mathematical
thinking and reasoning is acknowledged by Bryan et al., listing it as an important skill
in integrated STEM [5]. The following practices to achieve this skill as stated by the
Common Core Standards Initiative9 are cited by Bryan et al.:

• Make sense of the problem and persevere in solving it;

• Explain the meaning of a problem and look for solution entry points;

• Reason abstractly and quantitatively;

• Decontextualize - create abstractions of a situation and represent it as
symbols and manipulate;

• Construct viable arguments and critique the reasoning of others;

• Model with mathematics;

• Use appropriate tools strategically;

• Attend to precision;

• Look for and make use of structure;

Chapter 1. Introduction 4

• Look for and express regularity in repeated reasoning.

With respect to this, an important remark noted by Bryan et all. is that according to
Devlin [12]: Often times, school mathematics is about learning to think ’inside the box’;
however mathematical thinking is about learning to think flexibly and ’outside the box’.

The lack of learning to think flexibly has also been noted by Boaler [4]. Boaler
compared the performance and student perceptions of two ways of teaching at two high
schools in a 3-year case study, the open and the closed way. The closed way, at the time
the predominant model according to Schoenfield [30], teaches textbook mathematical
methods in an effective way by strictly adhering to the book content. As a result: students
developed an inert, procedural knowledge that was of limited use to them in anything
other than textbook situations. The open way shared some similarities with apprenticeship
forms of learning, particularly because the students were introduced to new concepts and
procedures only as part of authentic activities. This way of teaching put less emphasis
on drilling procedures and more on relating to real world problems. As a result: It
seemed that the act of using mathematical procedures within authentic activities allowed the
students to view the procedures as tools that they could use and adapt. The understandings
and perceptions that resulted from these experiences seemed to lead to increased competence
in transfer situations. The observation that students taught using the open way were
better able to use mathematics in transfer settings is attributed to three characteristics:

• A willingness and ability to perceive and interpret different situations
and develop meaning from them [14] and in relation to them [19];

• a sufficient understanding of the procedures to allow appropriate proce-
dures to be selected [35];

• and a mathematical confidence that enabled students to adapt and
change procedures to fit new situations.

In conclusion, Boaler notes: One important conclusion that I feel able to draw from
this analysis is that a traditional textbook approach that emphasizes computation, rules,
and procedures, at the expense of depth of understanding, is disadvantageous to students,
primarily because it encourages learning that is inflexible, school-bound and of limited use.

Increasing importance of machine learning in STEM, for which mathematics is
required Machine learning techniques are becoming increasingly important in various
STEM studies. The realization that a range of domain specific problems can be formulated
as (supervised) learning optimization problems and the availability of sufficient data to
learn from, opens many new opportunities. Mathematical theory and models form the
fundamentals for these techniques, while application and experimentation certainly are
important next to the theory. To be able to use and evaluate the available techniques for
a problem at hand, a sufficient understanding of the underlying mathematical models
is necessary. The theory required to understand these models depends on the used
technique and ranges from linear algebra (required for k-nearest neighbour, linear
regression, principal component analysis and support vector machines) to probability
theory (for generative models) to (vector) calculus (for neural networks) to information
theory (used in decision trees). This again signifies the importance of mathematics in
STEM studies.

STEM dropouts attributed to insufficient mathematical knowledge Deeken et. al
[10] observed that high dropout rates in STEM studies in various countries often originate
from insufficient basic mathematical knowledge of incoming undergraduates, finding

Chapter 1. Introduction 5

evidence in multiple studies [7, 29, 15, 26, 23]. Addressing this issue is one of the main
motivations for this work. By providing STEM students in higher education with more
flexible and therefore also motivating ways of exercising mathematics in their application
domain this knowledge deficiency can be complemented and learning improves.

Stress during mathematics exercises According to a recent study by Neumann et al.
mathematical exercises in weekly assignments are experienced as the most stressful
everyday activity of freshmen mathematics students [25]. This stress possibly originates
from the changing nature of both the mathematical concepts (from procedures to proofs)
and culture of learning (from supervised high school teaching to self regulated learning).
To support this hypothesis, Neumann et al. cite the work of Martínez-Sierra et al. about
emotions in linear algebra courses [21]. This work reports that solving mathematics
problems is associated with multiple negative emotions ranging from disappointment and
distress to fear. Particularly, failing to complete the (often mandatory) weekly homework
assignment is perceived distressful as students related this to failing the exam.

1.3 Importance of practice in learning mathematics

Several learning theories stress the importance of practice in skill acquisition and com-
petence development of procedural and conceptual mathematical knowledge. In the
following, several aspects of practice and collected requirements from the educational lit-
erature on how good practice should be supported are discussed, including automaticity,
deep processing of information, feedback and motivational factors.

Developing automaticity by repetition A metric for the skill level of procedural
knowledge is fluency. Fluency is defined as responding both accurately and quickly to
a selected stimulus [2]. According to Axtell et al., fluency can be increased by practice
and sufficient fluency results in automation, defined as the phenomenon that a skill can
be performed with minimal awareness of its use. The importance of practice to obtain
automaticity is also stressed by Palmeri [27].

Sufficient automaticity of basic skills is a necessary condition for being able to solve
more complex problems according to cognitive load theory [33]. The automated basic
skills stored in long term memory allow the limited capacity of the working memory
of the brain to be used to oversee the complexity of the problem, as opposed to being
overloaded and constantly requiring information not present in working memory and
losing track.

However, as noted by to Lehtinen et al. [20], the effects of instructional methods
informed by cognitive load theory become less effective as a function of increasing expertise
[34], a phenomena known as the "expertise reversal effect". For learners with higher
levels of expertise, a learning theory known as deliberate practice provides guidelines
for improving learning. Lehtinen et al. studied the possible implications of deliberate
practice on mathematics education. These include: (a) self-initiated practice of useful
training, (b) specific, constructive and critical feedback, (c) practice at the edge of
student competencies, (d) training on how to self-regulate and select more challenging
activities in which they are likely to try and fail, (e) sustainable mathematics motivation
regulation, enabling students to also be engaged in unenjoyable, but necessary, practice.
However, the difficulties of implementing these are also considered: Organizing deliberate
practice in the classroom in such a way that students are continuously provided with tasks
that are optimally challenging for each student, and pushing all students to work on or
beyond the border of their current skills, may be too demanding for teachers in the regular

Chapter 1. Introduction 6

classroom teaching situation without enabling learning environments such as well-planned
digital systems.

Better retention of information by deep processing Processing information in a
deep or meaningful way results in better retention as opposed to processing shallowly.
This is studied by Craik & Lockhart, defining information processing depth as: the
meaningfulness extracted from the stimulus rather than in terms of the number of analysis
performed upon it [8]. Deeper analysis and processing of information leads to more
persistent memory traces, resulting in improved learning and retention. An example
of deep processing includes the semantic processing of information, for example by
means of relating newly presented information to existing knowledge or by applying
learnt knowledge. As Kirschner and Hendrick conclude in the chapter How Deep is Your
Processing in the book How Learning Happens about this topic: For most educational tasks,
students will benefit from those strategies that specifically encourage them to extract the
meaning of the to-be-remembered information. Thus if you want your students to learn well,
and that means here that they not only know things, but they also have to do things with
what they’ve learnt [17].

Increasing motivation by experiencing success In the learning literature, the rela-
tion between motivation and skill acquisition is considered controversial. Kirschner and
Hendrick state that motivation is no guarantee for learning [31]. There is no causal
relationship indicating that motivation leads to better learning and performance. Nei-
ther is there a reciprocal relationship indicating that motivation leads to learning and
learning in turn leads to motivation. The only proven relationship is that learning leads
to motivation: When we experience success, no matter how small that success is, it feeds our
motivation to continue. For example, good maths performance has a significant positive
effect on the intrinsic motivation of students for maths, but motivation for maths doesn’t
lead to better math performance [13, 22].

Requirements from educational literature for steering the practice process Know-
ing that solving exercises is crucial for learning mathematics, one may wonder what the
best-practices are regarding the instructional design of exercises. Several best-practices
have been found in the scientific literature by Kirschner and Hendrick [31]. Some of
these principles that are applicable to learning mathematics are identified:

• Frequent feedback Several studies show firm evidence that innovations designed
to strengthen the frequent feedback that students receive about their learning yield
substantial learning gains [17].

• Interleaving Cognitive load can be reduced by interleaving content and problems
as opposed to blocking. Blocking involves solving one type of problem at a time before
the next (for example, “problem A” before “problem B” and so forth. The learning
pattern formed looks like this: AAABBBCCC. Interleaving, in contrast, involves solving
several related problems mixed up together. The learning pattern here looks like this:
ABCBCAACB [17].

• Mastery learning Students should master one topic before learning new content.
Mastery learning is an instructional approach where students are tested on material
learned and if they get less than 90% in a test then they are given additional instruction
on that material until they get over 90% or until they have “mastered” the content
[17].

Chapter 1. Introduction 7

• Open answers By requiring open answers, students are tested for answer gener-
ation instead of recall/recognition or guessing the correct answer, as is possibly
the case when using multiple choice answers. When asked for answer generation,
higher levels in Bloom’s revised taxonomy of the cognitive domain [1] are covered.

• Context or rationale Finally, the discussed requirement for contextualization
is identified by Boaler [4]. In case contextualization is infeasible, significant
motivational improvement can be accomplished by providing a rationale for pure
theoretical practice [16].

1.4 Limitations of typical classroom practice

The typical way of learning mathematics in a university setting is as follows. All students
visit the same lecture, which consists of two 45-minute slots, in which they listen and
take notes. After the lecture, students practice exercises from a textbook at home. This
one-size-fits-all instruction does not account for different background knowledge levels
and learning speed of students. As such, it does not provide the desired flexibility to
conveniently implement the policies described above. Consider the paper or electronic
books, being currently still the main source of exercise material in mathematics courses
and the three principles discussed above. First, obtaining frequent feedback is inconve-
nient, because answers should be manually checked and are often not even included in
the textbook. Furthermore, is inconvenient to get answer specific feedback by manually
inspecting reference answers. Second, while interleaving can be applied in books, the
interleaving is static and does not consider the prior knowledge level and current level
of mastery. Finally, by using book exercises, measuring learning progress (including level
of mastery) is an inconvenient, manual process. This possibly results in moving to new
topics before sufficiently mastering other (dependent) topics, with inefficient learning as
a consequence.

Computer-based exercises allow to overcome these issues because of their flexibility
and automation. Feedback can be given immediately by automatically evaluating the
given answer. Interleaving and mastery learning can be controlled by automatically
tracking the learners performance. In addition, parameterization of exercises allows
students to continue practicing until mastery is achieved.

Web-based approaches for learning mathematics A rage of online platforms exists
providing support for learning mathematics. To get an impression of the diversity of the
solutions available, a selection is briefly discussed below.

• OpenStax provides complete, web-optimized, college level mathematics books10

without interactivity.

• Khan Academy11 provides mathematics modules from kindergarten to college level
including short videos, practice by both multiple choice and numerical-answer
questions. Gamification elements are used to engage learners.

• Math is Fun12 aims at explaining mathematics in a user friendly manner by means
of providing worked out examples of easy, contextualized problem instances.

• Brilliant13 is a commercial platform for learning mathematics, next other topics.
Major selling points of Brilliant are the interactive elements and animations helping
the learner to develop a better understanding of the topic at hand.

Chapter 1. Introduction 8

• Grasple14 is an online mathematics exercise platform used in higher education in
The Netherlands. A detailed explanation of the available functionality for both
content authors and students is provided in Chapter 2.

• SOWISO15 is a commercial platform allowing teachers to create mathematics
learning material for high school and university students. It facilitates remote
testing, learning analytics and specific answer feedback (e.g. the answer is correct,
but can be further simplified).

• Slader16 is a platform providing detailed step-by-step answers of textbook exercises,
typically provided by users. Answers are provided in a structured manner including
used theory and intermediate steps. Social metadata is used to allow community
rating of answers.

• StackExchange Mathematics 17 allows learners to ask for help with respect to a
mathematical problem. Fellow users can answer or up-vote answers of other users.
In this way, the best answers propagate by collective rating. By openly sharing the
problem statement and answers, the information can be reused by any learner.

• WolframAlpha18 can be used for solving user-defined mathematical problem state-
ments and provides step-by-step explanations and visualizations of answer. While
some functionality is freely accessible, step-by-step explanations are a paid fea-
ture. WolframAlpha includes an API for integrating the offered services in external
applications.

• Jupyter Notebooks demonstrating mathematical concepts in books and course
modules in relation to Python libraries implementing these. For example a series
of notebooks covering the Linear Algebra course of Gilbert Strang from MIT
OpenCourseWare19.

For some of these platforms, the available content is primarily human generated,
while others rely on automated processing and generation of content. The utility for
each of these tools for a learner highly depends on the educational setting, background
knowledge and ability to self regulate and study independently. Some learners might
use a selection of these to learn a new subject at their own pace, while others might use
these when a college lecture falls short.

1.5 Initial research question

Informed by the current practice of learning mathematics and the limitations with respect
to implementing the desired flexibility for steering the practice process, the following
initial broad research question is formulated:

How can mathematics practice and the creation of exercises be supported in a
flexible way?

This research question is further shaped in Chapter 2, after investigating the possibil-
ities and limitations of related work.

Chapter 1. Introduction 9

1.6 Methodology and approach

To understand the context and the state of research an exploratory literature review
and an analysis of related work is conducted first. Second, by talking to different
stakeholders including software developers, mathematics course authors and teachers,
needs are collected. Then, experimentation and prototyping informed by these needs is
performed. Finally, focus groups and a usability study are used to collect suggestions for
further refinements.

Exploratory literature review Prior to implementing a solution, sufficient scientific
understanding of the educational background of practice in mathematics skill acquisition
is necessary, because this affects the solution. To this end, an exploratory literature
review is conducted, informed by initial sources provided by the thesis supervisor and
snowball sampling from theses sources.

Related work Existing online exercise solutions identified by various mathematics
teachers participating in an open online workshop organized by Grasple are briefly
evaluated. Additional online search is performed to identify other solutions. Related
work regarding the technologies composing the exercise format, authoring and player
environments in these solutions are derived, including those of Grasple.

Context analysis by conversational interviews Two conversational interviews with
instructors at the TU Delft were conducted. Both stated the need for more expressiveness
and efficiency when authoring exercises within Grasple. The limitations of their current
practices regarding instructional design and authoring of learning material are discussed,
including suggestions for improvements.

Experimentation and prototyping Early in the thesis project, alongside problem and
context analysis, small experiments with the available technologies are carried out to
create minimal working prototypes. The final design is informed by the experiences of
creating these prototypes.

Evaluation in focus groups About halfway throughout the project, the current solution
is evaluated in two focus group meetings with instructors in Higher Education from
different backgrounds. The goal of these meetings is to get feedback on the proposed
solution and collect additional requirements.

Usability evaluation To get detailed feedback on the new flexible setup of authoring
exercises and the Python classes facilitating in authoring exercises, a usability evaluation
is performed. The evaluation procedure consists of having instructors perform four
exercise authoring tasks, taking about 30 minutes, and a semi-structured interview about
their experiences and suggestions afterwards, also taking about 30 minutes.

Functional suitability The software developed is reviewed in the light of ISO 25010:
quality characteristics of a software product. ISO 25010 is part of the ISO 25000 series,
known as SQuaRE (System and Software Quality Requirements and Evaluation), having the
goal of creating a framework for the evaluation of software product quality 20. This standard
aids in systematically discussing the system aspects relevant to the research question and
finding limitations. The quality characteristic functional suitability is discussed because
of the primary focus of this project: extending exercise authoring possibilities.

Chapter 1. Introduction 10

Timeline A brief overview of the main activities is shown in Table 1.1. In the first
months of this research project, considerable time is spent on topic orientation, refine-
ment and learning about the educational domain, being mostly unknown to the author
prior to this work.

1.7 Contributions

The main contributions as part of answering the research question by following the given
methodology are as follows:

• Collection of requirements from authors and literature;

– High level of abstraction: direct access to a scripting language and available
libraries;

– Contextualized, open answers exercises with direct and answer-specific feed-
back.

• Identification of shortcomings of existing solutions with respect to these require-
ments;

• Design and implementation of an experimental software system conforming to the
identified requirements or allowing extension to support additional requirements,
including:

– An exercise editor setup using Jupyter Notebook and Python classes facilitating
exercise authoring (definition, preview and export);

– An exercise player responsible for web-based presentation of exercises, con-
sisting of a formula editor to formulate answers and a feedback component;

– An evaluation component responsible for evaluating user answers with respect
to an exercise;

– An exercise specification in JSON, allowing the exchange of exercises between
components.

• Evaluation of the developed solution with authors;

• Three merged pull-requests to open-source projects used:

– MathLive - Add display = [] to example code to make code snippet valid #79621

– Arithmatex - Update arithmatex.md #126622

– Phoenix LiveView - Update documentation to recommend single root element
in phoenix_live_component.ex #140123, as a result of a bug identified in
LiveComponent appended instead of patched when parent changes #139824

1.8 Thesis structure

This chapter covered the background and introduction to the topic of this work, including
the initial problem statement and methodology. Chapter 2 covers related work with
respect to digital mathematics exercises, limitations of these and use cases of exercises
illustrating the need of flexibly authoring exercise content. Next, Chapter 3 demonstrates
a new, flexible setup of authoring exercises. This setup is evaluated in Chapter 4,
discussing the methodology and outcomes of the focus groups and usability evaluation
in detail. Chapter 5 starts off with the conclusion, then discusses the limitations, future
work and recommendations.

Chapter 1. Introduction 11

TABLE 1.1: Timeline of main activities

Month
2020 - 2021

Phase Activity

November Exploring educa-
tion

• Exploratory literature review on initial topic:
creating learning material in collaboration

• Conversational interviews with two instruc-
tors and two managers

December Context analysis
and scoping

• Fix scope: authoring mathematics exercises
• Further literature analysis (Chapter 1)
• Experiments with available technologies

January Detailed problem
analysis, prototyp-
ing

• Presentation and discussion at Grasple
• Literature review on importance of practice in

learning mathematics (Chapter 1)
• State-of-the-art analysis of technologies and

approaches for creating math exercises (Chap-
ter 2)

• Experimenting with available technologies
• Early prototyping of exercise format and

player

February Setup design and
implementation

• Encapsulation of exercise abstractions in
Python classes

• Documentation and unit tests
• Preparation of focus groups

March Solution design
and implementa-
tion, evaluation

• Further development of novel authoring setup
(Chapter 3)

• Presentation and discussion at Grasple
• Focus groups (2x) (Chapter 4)
• Preparation of usability evaluation

April Evaluation • Semi-structured interviews for usability evalu-
ation (3 users) (Chapter 4)

• Prepare Grasple player compatibility of exer-
cises

• Data analysis

May Writing • Minor adjustments to exercise player and for-
mat

• Data analysis and writing

June Wrap up • Minor adjustments to exercise player and for-
mat

• Writing

July Defence • July 2nd 11.00 - defence

12

Chapter 2

Related Work, Problem Statement &
Authoring Requirements

This chapter describes the related work regarding online mathematics exercise solutions
and the limitations of these. From these limitations, additional authoring requirements
are identified and the corresponding problem statement addressed in this work is
derived. Finally, multiple example exercise topics in need of the identified requirements
are illustrated.

2.1 Grasple

Introduction Grasple is an online mathematics exercise platform used increasingly
in courses containing mathematics in higher education in The Netherlands. It allows
students to practice mathematics exercises online in their browser, providing guided
feedback on erroneous answers toward the correct solution, based on answer charac-
teristics. Authors can create learning modules containing slides with explanation and
exercises using the provided online editing environment. Features of the exercises and
authoring environment are further discussed next.

Exercise content Grasple allows mathematics instructors with no programming expe-
rience to author mathematics exercises using a WYSIWYG editor to edit exercise content.
To author mathematical notation as part of the exercise content, a WYSIWYG formula
editor is provided. Consider authoring the content for the following integer addition
exercise.

Question What is 1 + 1?

Creating this exercise within Grasple can be achieved by typing the sentence in the
text field. Mathematics notation can be inserted at the current cursor position by clicking
the formula editor icon. Clicking this icon reveals the formula editor and inserts a math
field at the current cursor position, see Figure 2.1. This math field can be populated with
mathematical notation by clicking the concepts in the formula editor GUI or by typing
LaTeX code directly into the field.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 13

(A) Trigger formula
editor

(B) Insert mathematics
using available

features

FIGURE 2.1: Insert mathematics notation field and populate with content

Next to using plain text and mathematics notation, styling text, inserting images,
tables, lists and links are supported, see Figure 2.2.

(A) Insert an image (B) Text styling,
inserting tables, lists

and links

FIGURE 2.2: Additional exercise content editing features

Finally, 2-dimensional graphs can be added to illustrate problem statements formu-
lated in exercises. For example, an exercise asking the learner to compute the intersection
point of two lines is shown in Figure 2.3.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 14

(A) Configuring a graph

(B) Exercise as presented to learner

FIGURE 2.3: Graph configuration and presentation

Exercise answers Grasple currently supports four answer types, for each of which an
example is shown in Figure 2.4:

• Multiple Choice In the supported multiple choice answer type, one answer out
of the available options should be selected by the learner. The author can mark
multiple answers as correct and provide specific feedback for each answer. Answer
options can include mathematics, text and images or a combination of these.

• Numeric The numeric answer type allows for numerical answers, like 7.83, or
statements that can be evaluated to numerical answers, like

√
2 or e2

3 . This type is
different from the Math / Equation type, because it allows for a minor deviation
between the student and reference answer.

• One Word Answer A one word answer is used to test whether a student correctly
recalls the terminology of a certain concept. The answer can actually contain
more then one word. Similar to the multiple choice question type, the author can

Chapter 2. Related Work, Problem Statement & Authoring Requirements 15

configure specific feedback for each answer. A matching accuracy can be configured
to accept similar words as being correct.

• Math / Equation This answer type allows learners to type (complex, symbolic)
mathematical answers. This answer type can be used to ask for exact analytical
solutions.

(A) Multiple Choice (B) Numeric

(C) One Word Answer (D) Math / Equation

FIGURE 2.4: Answer types in Grasple

Both the Numeric and Math / Equation answer types also support answer-specific
feedback. For the Numeric type, the answers to compare the user answer against are
numeric values or expressions that evaluate to numeric values. The Math / Equation
answer type is similar to the Numeric type, however, in addition, functions can be applied
to the given student answer to conveniently provide specific feedback for a range of
possible answers. For example, the feedback for any answer larger then 5 might state
that this cannot be correct, given some argumentation about the exercise values and
corresponding mathematical theory. The possible values for configuring answer specific
feedback are listed in Figure 2.5. Answer specific feedback for Math / Equation answers
are referred to as answer rules. Answer rules are important for students, as these can
contain guiding hints given their answer, without revealing the solution.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 16

FIGURE 2.5: Configuring answer rules

Parameterization To create multiple instances of an exercise, each having different
values and answers, parameters can be used. Grasple allows configuration of parameters
by a selected set of functions. The integer addition exercise can be parameterized using
the configuration in Figure 2.6, using the Range function. The parameters can be inserted
as part of the exercise content using the parameters dropdown menu in the formula
editor. Parameters can also be used in answer rules to (a) express answers and (b) write
answer feedback, see Figure 2.7. Parameterized exercises allow repeated practice of
mathematical definitions or procedures at hand. Knowing that repetition is crucial in
developing automaticity, using this feature greatly benefits students.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 17

FIGURE 2.6: Parameterized integer addition

FIGURE 2.7: Answer specific feedback for parameterized integer addition
exercise

Grasple functionality Grasple largely fulfills the requirements identified from educa-
tional literature for learning mathematics. The web based exercises provide students an
accessible way to practice, with frequent, specific feedback on open answer exercises. Pa-
rameterized exercises in addition enable repeated practice of similar exercises, required
to achieve automaticity. By automatically collecting responses, student performance can
be evaluated and the learning path can be personalized, satisfying the requirements of
mastery learning and interleaving. The rising amount of exercises available on Grasple
provides the opportunity to select exercises that match the student level, allowing them
to successfully complete exercises feeding their motivation to continue learning.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 18

However, the current setup limits the efficiency and expressiveness of authors with
respect to creating exercises, ultimately affecting the richness and diversity of exercises
available for students. These limitations are discussed in detail next.

2.2 Problem statement

The available functionality within Grasple allow authors with no programming knowledge
to construct exercises. Since the number of available functions is limited, used functions
in similar learning material are likely to be known by authors of this material, or
can be understood easily. This allows authors to understand, edit and reuse learning
material created by others and furthermore enables collaboration between authors. Two
consequences of this design choice form the basis of this thesis.

• Efficiency The small set limits the efficiency of authoring exercises. For example,
consider a matrix multiplication problem of two n ∗ n matrices containing random
integers values between 0 and 10. In Grasple, modeling this problem would require
2n2 parameters for the random integer values in both matrices. For two 3 by 3
matrices, the author must configure 18 parameters using the Range function with
the exact same settings: generate a value between 0 and 10. One can imagine that
using a scripting language, the same result can be achieved with less repetition by
using the readily available (high-level) abstractions in libraries or by creating new
functions.

• Expressiveness The small set of operations limits the expressiveness. Consider
the same matrix multiplication problem described above. To optimally support
practice of different problem instances, the dimensions of the matrices need to
be parameterized. Unfortunately, this is not possible within Grasple. The only
possibility for achieving this, is crafting exercises with different matrix dimensions
by hand, which is quite cumbersome and hardly matches the diversity of exercises
that could have existed when parameterizing the dimensions. This potentially
restricts the available learning material for students. Again, one can imagine that
by using a scripting language, the desired exercise can be created, since it offers
the flexibility to model this exercise.

Next to the lack of expressiveness with respect to instantiating mathematical objects,
there is a lack of expressiveness with respect to possibilites for visualization. Grasple
only supports 2D plots of functions, whereas matrix visualizations by means of grid
representations of images are desired for linear algebra. While inserting images
of the desired visualizations created externally is possible, this does not allow for
parameterization of visualizations.

The trade-off by providing access to a full scripting language instead of the small set
of operators selected by Grasple is increased efficiency and effectiveness for authoring
selected exercises, at the cost of a smaller group being able to author these exercises,
because knowledge of a scripting language is required. Since two interviewed authors
indicated the discussed desire for more expressiveness and efficiency by means of
authoring exercises using a scripting language, it is worth investigating the possibilities
of facilitating this in a user-friendly way.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 19

2.3 Research question

Given the design choice of Grasple and identified trade-off, the following research
question is formulated:

How can a user-friendly format and specification for a set of elementary linear
algebra mathematics exercises be designed allowing for high level abstraction and
parametrisation?

The scope of the linear algebra procedures to be covered in the exercises and the
feasibility of automatically evaluating these is discussed next. Then, the context is
described in terms of technology used by Grasple.

2.4 Scope and context

This section specifies the scope of the selected linear algebra mathematics sub domain to
be covered with exercises and the feasibility of automatically assessing the procedural
knowledge within this domain. The context of this project is described next, consisting
of the technology stack used by Grasple and the standards for typesetting mathematical
documents.

Scope Considering that the mathematics domain is very broad and deep, covering a
wide range of concepts and operations, a sub-domain is selected to author exercises for:
linear algebra. In particular, undergraduate linear algebra as typically found in first year
computer science courses, like CSE1205 Linear Algebra. The exercise content should
cover the concepts and procedures found in these courses, like:

CSE1205 Linear Algebra25:

• Be able to perform matrix operations (sum, scalar multiple, multiplication,
transpose) and describe the law-like properties of matrix multiplication
and apply these properties;

• Solve systems of linear equations;

• Determinants;

• Eigenvalues and eigenvectors;

• Diagonalization;

• Inner products and orthogonal sets.

The outcomes of applying these skills these should be automatically evaluated and
assessed. This knowledge mostly corresponds to the bottom four out of the six total
layers of the revised edition of Bloom’s taxonomy of the cognitive domain [1] being, from
the bottom up; remember, understand, apply, analyze, evaluate and create. Knowledge
in these layers within the linear algebra domain is suitable for automated assessment,
which is typically harder for higher layers (e.g. think about automatically evaluating a
written proof created using mostly natural language).

Exercises can be used at many places in the learning process. Prior to taking a
course, these can facilitate checking whether sufficient prerequisite knowledge is present,
or whether certain subjects should be revisited, in which these can facilitate as well.
During a course, exercises can be used for self-study at home. Furthermore, exercises

Chapter 2. Related Work, Problem Statement & Authoring Requirements 20

can be embedded around or within lectures. Shortly before or at the start of a lecture,
knowledge the lecture builds upon can be refreshed. During a lecture (break), exercises
can be used to practice introduced material, helping the instructor to see whether the
subject is sufficiently understood. Finally, shortly after a lecture, when the new material is
(hopefully) still (partially) in memory, exercises can help strengthen the new connections.

Context The implemented solution uses (part of) the technology stack used by Grasple.
This allows to easily recreate part of the functionality offered by Grasple by obtaining
information about (the interplay between) used technologies (but no implementation),
and thus prevents designing a complete solution from scratch.

A central technology used by Grasple to generate and evaluate answers is SymPy, a
computer algebra system written in Python. Authors are expected to be familiar with
Python to be able to author exercises and use the functionality to generate mathematical
objects in exercise content using SymPy.

Python is popular according to the TIOBE Index of April 2021, obtaining the third
place after C and Java26, having over 11% of the total ratings. Therefore Python is likely
to be known by authors.

Next to SymPy, Grasple uses LaTeX for mathematical expressions in exercises and
answers. LaTeX is the de facto standard for mathematical typesetting in academic
documents, likely to be known by authors having a technical academic background.
Since not all mathematical concepts can be easily expressed directly in SymPy, knowledge
of LaTeX is required to complement SymPy in providing exercise content. This will be
further elaborated in Chapter 3.

2.5 Other solutions: MyOpenMath, RExams, WebWorX and
MEGUA

Existing exercise solutions have been collaboratively investigated by the employees
of Grasple, instructors from Dutch universities and other interested individuals at an
action lab at Open Education Global (OE Global)27, a community encouraging open
education. The goal of this action lab was to formulate a common standard for an open
format for online, interactive math exercises28 by learning from the existing solutions and
experiences of exercise authors. Four open math format initiatives have been identified:
MyOpenMath, RExams, WebWorX and MathDox. Due to the lack of documentation
available about MathDox, this format is not discussed further. None of these formats uses
Python to define exercises, instead the used languages range from PHP in MyOpenMath
to Lisp in WebWorX to R in RExams. These languages are expected to be less likely to be
known by (potential) authors.

Regarding the requirements for the format, six suggestions are stated by participants:

• Version controllable This allows authors to track changes between different ver-
sions of an exercise and revert these if needed.

• Human readable The format should have a textual representation that can be
inspected and edited. This enables authors without an interface to inspect the
exercises.

• Easy to understand The format should be easy to understand. This allows authors
to understand and reuse material created by others.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 21

• Allow for an intuitive, visual editor based on the format A visual editor allows
authors with insufficient programming knowledge to author exercises.

• Flexible and extensible The format should enable all current features used in
interactive mathematics exercises. Furthermore, it should be possible to extend
the format with functionality not thought of now.

• Declarative The exercise definition should state how the exercise should look like,
not the detailed procedures about how to obtain the content. This allows for an
efficient definition of an exercise that is easy to understand.

From this list of requirements, the requirement of a flexible and extensible format is
most closely related to the research question addressed in this work. The high level of
abstraction should allow authors to be flexible and extensible in authoring exercises by
using libraries for generating exercise content or creating custom functions.

MEGUA MEGUA is developed by Cruz et al. from the University of Aveiro in Portugal
[9], it uses SageMath and LaTeX templates to author exercises. Multi-line LaTeX strings
can be parameterized and functions can be defined for providing the substitutions and
computing the answer. An example of an exercise asking the learner to compute the
transpose of a matrix is stated in Listing 2.1.

CODE LISTING 2.1: Matrix transpose parameterized exercise in MEGUA

1 t x t=r ’ ’ ’
2 \%SUMMARY Matr i ces ; Types of Matr i ces About matr ix types and t r a n s p o s i t i o n .
3 \%PROBLEM Type of a matr ix Which i s the order of the matr ix given by :
4 $$ A=matrixA ? $$
5 Write down i t s t ranspose .
6 \%ANSWER Matrix A has nr rows and nc columns so i t s order i s $nr \

t imes nc $. Transposing a matr ix c o n s i s t s on using rows from the f i r s t
matr ix as columns in the second matrix , f o r ins tance , column 1 in A
w i l l be row 1 in the t ranspose of A The t ranspose i s a matr ix with nr
columns and nc rows , so i t s order i s $nc \ t imes nr$

7 $$ matrixATranpose $$
8 c l a s s E12X34_matrices_001 (Exe r c i s e) :
9 def make_random(s) :

10 s . nr = ZZ . random_element (2 ,5)
11 s . nc = ZZ . random_element (2 ,5)
12 s . matrixA = ZZ . random_matrix (ZZ , s . nr , s . nc)
13 def so l ve (s) :
14 s . matrixATranspose = s . someMatrix . t ranspose ()
15 ’ ’ ’
16 meg . save (t x t)

However, MEGUA does not support open answers that are evaluated automatically,
therefore it neither supports answer rules.

2.6 Requirements and use cases

This section first summarizes the functional requirements for students and authors,
and compares related work with respect to these requirements. Next, two use cases
illustrate learning situations posing the identified requirements, one of which is the
matrix multiplication operation discussed earlier.

Chapter 2. Related Work, Problem Statement & Authoring Requirements 22

Requirements The existing solutions are compared with respect to the authoring
language and answering technology, requirements from literature, discussed problem
statement and context in Table 2.1. The Final answer column in 2.1 states the maximum
supported expressiveness in the answer options offered by the platform. This ranges
from a WYSIWYG formula editor, to a raw expression string to selecting an alternative
from a predefined list of answer options (multiple choice).

Authoring language,
Answer input

Requirements from
literature

High level of
abstraction

O
ri

gi
n

La
ng

ua
ge

Fi
na

la
ns

w
er

Pa
ra

m
et

er
iz

ed

O
pe

n
an

sw
er

ex
pr

es
si

on

O
pe

n
an

sw
er

sp
ec

ifi
c

fe
ed

ba
ck

Py
th

on

Li
br

ar
ie

s
fo

r
co

nt
ex

tu
al

iz
at

io
n

Grasple 2014 GUI WYSIWYG Yes Yes Yes No No
MEGUA 2014 Sage fixed Yes No No Yes Yes
R/Exams 2008 R fixed Yes No No No Limited
MyOpenMath 2005 PHP WYSIWYG Yes No No No No
WeBWork 1996 Perl raw Yes Yes No No No
textbook - LaTeX raw No Yes No No Yes

TABLE 2.1: Comparison of mathematical exercise solutions

Use cases The use cases described below illustrate the need for flexible authoring and
access to high level abstractions. Exercises for a selection of use cases are elaborated in
Chapter 3.

• Matrix multiplication Matrix multiplication is an operation used in linear algebra
to transform matrices. Applications of this operation include transforming images
in the computer graphics domain and computing forward passes of data through
neural networks in the machine learning domain.

Learning matrix multiplication requires practice, being able to perform this opera-
tion automatically typically requires repeating the concept over time.

An expected mistake when performing matrix multiplication is making arithmetic
errors when simplifying the final solution matrix. Furthermore, issues can occur on
a conceptual level, because the definition is not properly applied (e.g. think about
the corner case of multiplying two square matrices, tricking the inexperienced stu-
dent to use multiplication similar to how matrix addition is defined, i.e. computing
the product instead of the sum for each pair of values at the same index).

Thus, to support learning this operation, a diversity of exercises is required to
cover all corner cases and enable repeated practice. Furthermore, answer specific
feedback can guide students towards the correct answers based on their answer
characteristics, without explicitly revealing the solution.

• Matrix visualization To illustrate the effects of applying operations on matrices
used to model digital images, visualizations are desired. These visualizations show

Chapter 2. Related Work, Problem Statement & Authoring Requirements 23

how the mathematical concept of a matrix corresponds to the applied real world
manifestation of an image. This provides the contextualization of learned theory.
For example, consider these subjects:

– Matrix dimensions, corresponding to the width and height of an image

– Matrix indexing, corresponding to obtaining the intensity of a single pixel
value in a gray scale image

– Matrix/vector similarity, corresponding to the concept of comparing two
images (using absolute difference, euclidean distance or cosine similarity)

– Matrix convolution by applying an image processing kernel to an image matrix,
corresponding to the concept of (pre)processing images, for example before
training a machine learning classifier.

24

Chapter 3

Setup for Flexible Exercise
Authoring

This chapter describes the developed authoring setup. After covering the system context
by discussing the interactions between the actors and system components, the functional-
ity for authoring exercises using the developed Python classes is discussed. Next, system
components and their implementation details are discussed in detail. Finally the chapter
demonstrates the flexibility of this new setup by describing a range of linear algebra
exercises.

3.1 Authoring setup context

The context of the authoring setup is depicted in Figure 3.1, showing the main actors
and their interactions with the systems in the setup. Authors interact with the exercise
authoring environment to define exercises, through which they access the embedded
exercise player to preview these. Learners interact with the player directly through their
browser, without knowing about the authoring environment.

FIGURE 3.1: System context

In the developed setup, the authoring environment is a Jupyter Notebook. In Grasple,
this is the web interface as described in Chapter 2. Within this Jupyter Notebook,
exercises are defined at a cell level. Created exercises are previewed in iFrame, shown
as the final result of executing the cell. An example of an exercise definition in a code

Chapter 3. Setup for Flexible Exercise Authoring 25

cell and corresponding iFrame cell output is shown in Figure 3.2. This iFrame contains
the exercise player containing the exercise content (served from an external webserver).
The exercise is shown as it will be shown to the learner. The author can interact with the
exercise as the learner would, and verify the correctness both content- and interaction
wise.

FIGURE 3.2: Example exercise instance in authoring environment (Jupyter
Notebook): Exercise definition in code cell, corresponding exercise pre-

view in exercise player embedded in iFrame

The player presents the exercise content and allows students to express answers in a
WYSIWYG formula editor using either their physical keyboard or the virtual keyboard
activated by clicking the keyboard symbol. Answer expressions are evaluated according
to the exercise definition and the defined feedback is returned to the user. This process
is shown in Figure 3.3.

Chapter 3. Setup for Flexible Exercise Authoring 26

(A) Answer expression:
2

(B) Feedback for
answer expression: 2

(C) Feedback for
answer expression: 0

(D) Feedback for
answer expression: 11

FIGURE 3.3: Exercise interaction: formulating an answer and receiving
feedback

The exercise definition setup and player functionality are described next.

3.2 A first exercise definition: One-off integer addition

Consider the integer addition exercise described earlier. Let’s create this exercise step by
step using the developed setup. The content of this exercise is contained in a Markdown
string, where mathematics notation can be included in an inline LaTeX expression
wrapped around dollar signs, see Listing 3.1.

CODE LISTING 3.1: Integer addition exercise content markup

1 m = "What is $1 + 1$?"

The exercise constructor accepts a Markdown string as an argument specifying the
exercise content, shown in Listing 3.2.

CODE LISTING 3.2: Exercise object instantiation

1 e = Exercise(m)

Answers can be defined by calling the add_answer function on an exercise instance.
This function takes three parameters, an answer expression being either an integer or
a SymPy object, a boolean indicating whether the answer is correct and the feedback
shown when this answer is provided by the user, see Listing 3.3.

CODE LISTING 3.3: Default feedback

1 e.add_answer(expression=2, correct=True , feedback="Indeed , $1 + 1 = 2$")

Chapter 3. Setup for Flexible Exercise Authoring 27

2 e.add_answer(expression=0, correct=False , feedback="Hmmm , did you compute
$1 - 1 = 0$ instead?")

Default feedback can be provided, shown in case of an incorrect answer not matching
any of the specified answers, shown in Listing 3.4.

CODE LISTING 3.4: Answer definition

1 e.add_default_feedback("Please revisit the definition of natural numbers
and the ($+$) operator")

With the exercise content and answer definitions in place, the exercise can be
published and previewed using the play function, depicted in Listing 3.5. This reveals
the exercise player as an iFrame as shown in Figure 3.2.

CODE LISTING 3.5: Publish and preview exercise

1 e.play()

That’s it! This four lines of code define the exercise. Currently, this exercise is a
one-off, meaning that students cannot practice the same concept again with different
numbers. Fortunately, exercises can be parameterized to facilitate repeated practice,
discussed next.

3.3 Enabling repeated practice: Parameterized integer addi-
tion

The integer addition exercise can be parameterized by replacing the static values in the
sum by parameter names prefixed with the @ symbol, as listed in Listing 3.6.

CODE LISTING 3.6: Parameterized Markdown string

1 m = "What is $@a + @b$?"

To replace the parameters with integer values, a dictionary is created with parameters
names as keys and as values the randomized integer values. To create a random integer
value between 0 and 10, NumPy is used. This is shown in Listing 3.7.

CODE LISTING 3.7: Parameter declaration

1 params = {}
2 params["a"] = np.random.randint(10)
3 params["b"] = np.random.randint(10)

The markdown string and the parameter dictionary containing the replacements are
passed as arguments to a new instance of a MarkdownBlock object. This object performs
the replacements of the parameters with the string representations of the generated
integers. This MarkdownBlock is then passed to the exercise constructor to provide the
content for a one-off exercise instance, see Listing 3.8.

CODE LISTING 3.8: Parameter declaration

1 e = Exercise(MarkdownBlock(m, params))

Answers can be expressed in terms of parameters in the parameters dictionary and
added to this dictionary to conveniently use these in answer feedback expressions, see
Listing 3.9.

Chapter 3. Setup for Flexible Exercise Authoring 28

CODE LISTING 3.9: Parameter declaration

1 params["ans_correct"] = params["a"] + params["b"]
2 params["ans_incorrect"] = params["a"] - params["b"]
3 e.add_answer(expression=params["ans_correct"], correct=True , feedback=

MarkdownBlock("That’s right! $@a +
@b = @ans_correct$")

4 e.add_answer(expression=params["ans_incorrect"], correct=False , feedback=
MarkdownBlock("Hmm , did you compute
$@a - @b = @ans_incorrect$ instead?"
))

Note that for this exercise, in case both @a and @b happen to be 0, the correct
and incorrect answer are the same. Possibly this can be avoided by implementing
additional logic to neglect instances for which this occurs, thereby being more sure
the feedback corresponds to the procedure executed by the student. In the current
implementation, another approach is chosen. The answers are compared against the
user answer sequentially and the feedback for the first matching answer is returned.
Assuming that in case the correct and incorrect answer are the same the student should
be given the feedback for the correct answer, this answer should be declared first.

Each time the code cell containing the exercise definition is executed, new values are
generated and a new one-off exercise instance is generated. To store different instances, a
function returning an exercise instance can be supplied to the write_multiple function.
This function calls the provided function for the specified amount of instances and
stores the list of exercises under a given name. Generating multiple instances of the
parameterized integer addition exercise is illustrated in Listing 3.10. The generator
function can include additional checks on the generated parameter values and make
a recursive call to generate a new instance in case the desired conditions are not met.
By clicking the Version button in the player, learners can manually iterate through the
generated instances.

CODE LISTING 3.10: Parameter declaration

1 def generator ():
2 m = r"What is $@a + @b$?"
3
4 params = {}
5 params["a"] = np.random.randint(0, 10)
6 params["b"] = np.random.randint(10 , 20)
7 params["ans"] = params["a"] + params["b"]
8
9 e = Exercise(MarkdownBlock(m, params))

10 e.add_answer(params["ans"], True , MarkdownBlock("Yes!", params))
11 e.add_default_feedback(MarkdownBlock("No!", params))
12
13 return e
14
15 Exercise.write_multiple(generator=generator , instances_count=100 , id="

int_param")
16 Exercise.play_by_id(id="int_param")

3.4 High level of abstraction: SymPy code generation for ma-
trix exercises

Using vectors and matrices is at the core of linear algebra. SymPy supports many
objects and operations for working with these. This allows authors to express exercise

Chapter 3. Setup for Flexible Exercise Authoring 29

content and answers using the abstractions provided by SymPy. For example, consider
an exercise covering vector addition. Given the constructs explained so far, one could
create a Markdown string for a one-off vector addition exercise as stated in Listing 3.11.

CODE LISTING 3.11: Naive vector addition exercise content

1 m = r"What is $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3
\\ 4 \end{bmatrix}$"

2 # Note: the string is prefixed with ’r’ to get a raw Python string ,
3 # treating backslashes (\) as literal characters ,
4 # this is required to maintain the proper representation of the LaTeX

code

While this approach works and the values could even be parameterized to get multiple
instances, this approach is limited. First, typing the LaTeX code for (large) vectors and
matrices is rather inconvenient. Second, creating parameter values for each of the values
is cumbersome (even if performed in a loop). Third, manually expressing the answers in
terms of the parameters is again busy work. Finally, the length of the vectors are fixed,
therefore, creating exercises with varying vector length requires specifying a new content
string and adjusting the parameters. These limitations illustrate the need for a higher
level of abstraction. Fortunately, SymPy provides these abstractions. The Matrix class
allows to instantiate (randomized) matrices and vectors (a special type of matrix with a
single column), as shown in Listing 3.12.

CODE LISTING 3.12: Random vector object using SymPy

1 # matrix with four rows , one column , containing values between 0 and 10
2 v1 = sp.randMatrix(r=4, c=1, min=0, max=10)

This vector can be further manipulated if needed. To use this vector as part of exercise
content, the corresponding LaTeX expression should be obtained. SymPy provides the
latex() function to produce this representation for a given object, stated in Listing 3.13.

CODE LISTING 3.13: LaTeX representation of SymPy object

1 sp.latex(v1)

For the statement in 3.13 the LaTeX string in 3.14 is returned.

CODE LISTING 3.14: LaTeX string returned from function call

1 ’\\left [\\ begin{matrix}1\\\\3\\\\7\\\\9\\end{matrix}\\ right]’

This allows authors to use SymPy objects as parameter values as demonstrated in
Listing 3.15, resulting in the exercise shown in Figure 3.4. The MarkdownBlock object is
responsible for obtaining the LaTeX expression and replacing the parameter values with
the LaTeX strings. The process of exercise transformation from templated Markdown
string to exercise content shown to the learner is depicted in Figure 3.5.

CODE LISTING 3.15: Parameterized vector addition using SymPy objects

1 m = "What is $@v1 + @v2$?"
2
3 params = {}
4 params["v1"] = sp.randMatrix(r=4, c=1, min=0, max=10)
5 params["v2"] = sp.randMatrix(r=4, c=1, min=0, max=10)
6 params["ans"] = params["v1"] + params["v2"]
7
8 e = Exercise(MarkdownBlock(m, params))
9 e.add_answer(params["ans"], True , "Correct!")

10
11 e.play()

Chapter 3. Setup for Flexible Exercise Authoring 30

FIGURE 3.4: Parameterized vector addition exercise resulting from Listing
3.15

FIGURE 3.5: Exercise content transformation steps

Currently, the exercise contains no detailed feedback on a correct or incorrect answer.
Next, the possibilities for facilitating this are discussed.

3.5 Guiding feedback

Consider the following detailed feedback for the vector addition exercise. In case of a
correct answer, the complete solution is shown to the user. In case of an incorrect answer,
a hint is given to the user revealing the definition of vector addition for two vectors of

Chapter 3. Setup for Flexible Exercise Authoring 31

the same size as in the problem instance. The feedback for each of these is shown in
Figure 3.6.

(A) Feedback for correct answer

(B) Feedback for incorrect answer

FIGURE 3.6: Detailed feedback for correct and incorrect answer respec-
tively

To generate this feedback, a function explain_add is created to obtain the unevalu-
ated intermediate representation of the addition operation, as shown in the second to
last vector at the correct answer feedback and the last vector at the incorrect answer
feedback in Figure 3.6. This function relies on the feature of SymPy to keep expressions
unevaluated29, see Listing 3.16.

CODE LISTING 3.16: Function to obtain LaTeX of vector addition

1 from sympy import Symbol , latex , UnevaluatedExpr
2
3 u = lambda x : UnevaluatedExpr(x)
4
5 def explain_add(a, b):
6 # only matrices with the same dimensions can be added
7 assert(np.shape(a) == np.shape(b))
8 rows , columns = np.shape(a)
9 return sp.Matrix([[Symbol(f"({latex(u(a[i,j]))} + {latex(u(b[i,j]))})

") for j in range(columns)] for
i in range(rows)])

This function can be used in the exercise definition as in Listing 3.17. It takes two
matrices as arguments. Since a symbolic explanation is desired over revealing the full
solution, two symbolic vectors of the same length are generated by the symbolic_matrix
function in Listing 3.18.

Chapter 3. Setup for Flexible Exercise Authoring 32

CODE LISTING 3.17: Parameterized vector addition with detailed answer
feedback

1 length = np.random.randint(1, 7)
2 v1 = sp.randMatrix(r=length , c=1, min=0, max=10)
3 v2 = sp.randMatrix(r=length , c=1, min=0, max=10)
4
5 s = "What is $@v1 + @v2?$"
6
7 params = {}
8 params["v1"] = v1
9 params["v2"] = v2

10 e = Exercise(MarkdownBlock(s, params))
11
12 params["v3"] = explain_add(v1 ,v2)
13 params["v4"] = v1 + v2
14 s1 = "Yes , $@v1 + @v2 = @v3 = @v4$!"
15 e.add_answer(v1 + v2 , True , MarkdownBlock(s1, params))
16
17 a = symbolic_matrix("a", length , 1)
18 b = symbolic_matrix("b", length , 1)
19 ab = explain_add(a, b)
20 default_feedback = "Remember the definition of matrix addition: $@a + @b

= @ab$"
21 e.add_default_feedback(MarkdownBlock(default_feedback , dict(a=a, b=b, ab=

ab)))

CODE LISTING 3.18: Function to obtain the LaTeX repsesentation of a
symbolic matrix

1 def symbolic_matrix(character , rows , columns):
2 return sp.Matrix([[Symbol(f"{{{character}}}_{{{i+1}, {j+1}}}") for j

in range(columns)] for i in
range(rows)])

While SymPy provides the MatrixSymbol constructor to this end, it is zero indexed
and therefore cannot be used for generating the mathematics notation being one indexed.

3.6 Architecture: Exercise player, JSON representation and
answer evaluation

Player This paragraph describes the functionality and of the exercise player and inter-
action with other components.

The player allows students to view exercise content, express answers by means of
the WYSIWYG formula editor and receive feedback with respect to the given answer.
Furthermore students can request a new exercise instance with different values by using
the Version button.

The player is implemented in Elixir using the Phoenix LiveView framework. After
posting an exercise instance to a developed Python API (in FastAPI) for storing and
retrieving exercises, by using the play function of an Exercise instance, the exercise
can be requested to be served in the browser from the Phoenix app, by browsing to
the url of the exercise (e.g. https://www.mscthesis.nl/preview?id=bfcf5246-5064-
429c-96ad-f61ba3e94e8c). Using the play functionality, the exercise is loaded into
the iFrame automatically, without explicitly requiring the user to copy the url in a new
browser tab. Phoenix obtains the JSON file of the exercise from the API, processes the
content and presents the exercise in the player to the user. It serves the raw HTML
as part of the exercise definition contained in the JSON format discussed below and

https://www.mscthesis.nl/preview?id=bfcf5246-5064-429c-96ad-f61ba3e94e8c
https://www.mscthesis.nl/preview?id=bfcf5246-5064-429c-96ad-f61ba3e94e8c

Chapter 3. Setup for Flexible Exercise Authoring 33

calls a Phoenix hook30 to use KaTeX to render the mathematics notation in the clients
browser when the exercise content is updated. The sequential interaction between the
components for publishing an exercise and loading it into the player is shown in Figure
3.7.

FIGURE 3.7: Component interaction of publishing and playing exercises

The MathLive31 formula editor is used to express answers. Answers can be expressed
by using a physical keyboard and typical shortcuts for editing expressions (e.g. pressing
^ for power, / for fractions), or by using the virtual keyboard triggered by pressing
the keyboard icon with expression templates, shown in Figure 3.8. Since the virtual
keyboard does not provide an option for inserting matrices, a feature for easily inserting
matrix templates of specified dimensions is provided, depicted in Figure 3.8.

(A) MathLive virtual
keyboard

(B) Matrix insertion
functionality

FIGURE 3.8: Player answer editing functionality

The pushEvent and pushEventTo Phoenix functions are used to interact between the
Javascript state in the clients browser (e.g. the answer expression in the formula editor)

Chapter 3. Setup for Flexible Exercise Authoring 34

and the server. When the Check button is clicked, the user answer LaTeX expression is
obtained from the client and send to a stateless remote cloud function together with
the exercise JSON representation (containing the answers) for evaluation. This remote
function returns the raw HTML feedback for the user answer, which is returned to the
server, which in turn updates the client. The interaction between the components when
answering an exercise is shown in Figure 3.9. By clicking the Retry button, a new answer
can be formulated.

FIGURE 3.9: Component interaction for answer evaluation

Exercise format The created Exercise class allows the Python exercise object instance
to be serialized in JSON. A serialized representation is necessary for storage and the
exchange between components in the architecture. While the object could be naively
serialized as a Python pickle file, the JSON representation has multiple advantages over
a pickle. First of all, since JSON parsers are commonly available in many languages,
thus the exercise can be exchanged between components using different languages.
In the chosen setup, the player is implemented in Elixir while the authoring setup is
developed in Python. The JSON format allows exchange of the exercise between these
components, independent of the languages used in these components. Second, in case
exercise functionality is altered or extended affecting the format, a parser can account
for these changes and accept different versions, while this would be inconvenient using
the pickled representation. Finally, the JSON format can easily be manually inspected
because of the human readable textual representation, this is as easy for a binary object.

The JSON exercise format contains the following keys:

• id An unique identifier corresponding to this exercise;

• html The raw HTML content of the exercise;

• default_feedback The feedback shown to the user in case none of the specified
answers matches the user answer.

• answers An array of answers, each containing the following keys:

– expression A LaTeX answer expression;

– correct A boolean indicating whether this answer is correct;

– feedback The raw HTML feedback to be shown to the user.

The JSON representation of the vector addition exercise discussed earlier is listed in
Listing 3.19. Parameterized exercises contain an JSON array of these exercise instances.

CODE LISTING 3.19: JSON representation of randomized vector addition
exercise

1 {
2 " id " : "955 bf3e0−cd6b−4401−9e90−a04392a6c2c4 " ,

Chapter 3. Setup for Flexible Exercise Authoring 35

3 " html " : "<p>What i s $\\ l e f t [\\ begin { matr ix }7\\\\7\\\\5\\end{ matr ix }\\
r i g h t] + \\ l e f t [\\ begin { matr ix }6\\\\1\\\\8\\end{ matr ix }\\ r i g h t]$?</p
>" ,

4 " de fau l t_ feedback " : " In co r re c t , no s p e c i f i c feedback provided matching
your answer " ,

5 " answers " : [
6 {
7 " expres s ion " : " \\ l e f t [\\ begin { matr ix }13\\\\8\\\\13\\end{ matr ix

}\\ r i g h t] " ,
8 " c o r r e c t " : true ,
9 " feedback " : "<p>That \ " s r i g h t !</p>"

10 }
11]
12 }%

The language independence of the JSON format is demonstrated by making the
exercises compatible with the Grasple player. A company representative and developer of
Grasple, created a working prototype for playing exercises in the specified JSON format
in the Grasple player.

Answer evaluation Answers received from the server are evaluated using a stateless
cloud function written in Flask, running on Google Cloud. This function is run on Google
Cloud for the automated sandboxing and configurable computational resources and time
constraints. This is desired for handling undesired answer expressions, such as extreme
expressions, like 101010

, being impossibly large to evaluate, or invalid expressions not
understood by SymPy. The function executes as follows. The function receives the JSON
exercise object and the user LaTeX answer string from the server in a HTTP request.
Next, the user answer is parsed to a SymPy object and simplified using the expression
simplification functionality32. Then, this answer is sequentially compared against the
parsed and simplified reference answers under the answers key in the JSON format. In
case of the answer matches, the corresponding answer feedback is returned.

3.7 Complex exercises

This section demonstrates the flexibility of the designed format by means of describing
some introductory linear algebra exercises, including the learning goals for the student
and example exercise instances. The code snippets defining the exercises are added in
Appendix C. Defined exercises rely on the developed Python classes and functionality
already discussed in this chapter, therefore, only exercise specific code level details are
discussed. The exercises start off with the basics of linear algebra and finish with complex
operations on matrices.

Matrix definition: Rows, columns, total values Matrices can be used as a mathemat-
ical representation of data. For example, matrices can be used to model digital images.
The width of the image in pixels corresponds to the amount of columns, while the height
corresponds to the amount of rows. The total amount of values in a matrix is the amount
of rows multiplied by the amount of columns.

Two exercise instances asking the user to determine the amount of columns in a matrix
are shown in Figure 3.10. The first exercise provides a vanilla matrix representation,
while the second provides a contextualized matrix as a random digital image. The latter
relies on functionality created around the imshow Matplotlib function to plot matrices.
Plotted matrices are stored as images, which can be referenced in exercise templates. By

Chapter 3. Setup for Flexible Exercise Authoring 36

using the Pymdownx.b6433 Markdown extension, images are embedded in the HTML
content of the exercise.

(A) Vanilla exercise (B) Contextualized
exercise

FIGURE 3.10: Exercise: Matrix dimensions - amount of columns

Similar exercises can be created asking students to compute the amount of rows and
amount of total values in a matrix.

Matrix definition: Symbolic indexing Being able to determine the value at a given
position in a matrix is a necessary skill for selecting specific information from matrices.
Furthermore this is key for understanding other operations defined on matrices. In a
grey scale image, the matrix values indicate the intensity of the pixel value (from white
being 0 to black being 15). A first exercise on this topic could ask the learner to identify
a matrix value by providing a symbolic reference (e.g. a1,2) to the value. The exercise
content can support the learner in understanding this concept. For example, the matrix
to be indexed can contain axis names stating row and column. Additionally, a symbolic
matrix of matching dimensions could be provided (possibly as part of an answer hint).
Finally, in case the learner swaps the rows and columns, i.e. returns the value for aj,i
instead of the value ai,j which is asked for, feedback could be provided indicating this
error, if such value exists. Exercises demonstrating this are show in Figure 3.11.

Chapter 3. Setup for Flexible Exercise Authoring 37

(A) Vanilla exercise,
feedback for answer 10

(B) Contextualized
exercise, default

feedback on wrong
answer

FIGURE 3.11: Exercise: Matrix indexing

Another way to practice this concept is by asking students to create a matrix from
given symbolic references, for which an exercise is visible in Figure 3.12. Creating the
content for this exercise requires custom string formatting and LaTeX generation, both of
which could possibly be further abstracted for in a future work.

FIGURE 3.12: Exercise: Construct matrix from description

Matrix operation: Distance score between digits With these matrix basics in place,
students are ready to learn about operations that can be defined on matrices, allowing
them to use these to solve interesting problems. Consider students being introduced
to the topic of hand written digit classification by means of the kNN algorithm, using
different distance measures to compare digits (matrices). Starting simple, students are
tasked to compute the absolute difference matrix between two given binary digit matrices.
This matrix is defined as the absolute difference between each two corresponding matrix
entries at the same index. Next, this distance matrix is reduced to a single distance score

Chapter 3. Setup for Flexible Exercise Authoring 38

value between these two digits, being the sum of all elements in the distance matrix. An
exercise asking learners to compute this distance score for two given digits is shown in
Figure 3.13. This exercise combines the two steps, while these could also be separately
tested.

FIGURE 3.13: Exercise: Compute distance score between two binary digit
images

This exercise can be gradually extended by introducing more complexity. Full gray
scale images can be provided, instead of the binary image, shown in Figure 3.14. This
exercise asks learners to compute the difference score for the first row only to keep the
exercise feasible. Furthermore other distance metrics could be used, such as Euclidean
distance or cosine distance.

Chapter 3. Setup for Flexible Exercise Authoring 39

FIGURE 3.14: Exercise: Distance score for first row, between two gray
scale digit images

40

Chapter 4

Evaluation

This chapter covers the evaluation of the developed setup explained in Chapter 3, by
means of focus groups and a usability study consisting of authoring tasks and semi-
structured interviews.

4.1 Focus groups

Two focus group meetings were organized to collect feedback from exercise authors.
The characteristics of focus groups are defined by Kreuger [18]:

1. A small group of people, who,

2. possess certain characteristics,

3. provide qualitative data,

4. in a focused discussion,

5. to help understand the topic of interest.

The key component making focus groups distinctive from other forms of feedback
collection, such as interviews or surveys, is the conversational discussion in which
participants can openly discuss and follow-up on suggestions of others.

The duration of the focus group is one hour. Zoom is used to facilitate the online
meeting.

The outline of the activities during the focus group is as follows:

1. Introduction. Participants are asked to briefly introduce themselves, providing
information about their professional activities and their affiliation with education
(5 minutes).

2. Presentation. The topic of this thesis and the initial requirements originating from
learning theory literature, authors and Grasple are presented. Next, the derived
research questions are shown (10 minutes).

3. Demo. The features of the developed Python framework are shown by using
the screen sharing functionality of Zoom. Exercises of increasing complexity are
created, starting with a static exercise covering integer addition and finishing with
operations on parameterized matrices. Participants are asked for questions/input
while creating exercises. These questions are answered right away. In addition,
participants were asked to write notes containing suggestions on a blank (i.e. no
templates) Miro board (15 minutes).

Chapter 4. Evaluation 41

4. Discussion. During the discussion, participants are asked to reply to suggestions
of others. This results in an open discussion around additional requirements and
limitations of the proposed solution (25 minutes).

5. Closing. Participants are made aware that the meeting is about to end. Any final
comments can be stated and participants are acknowledged for their time and
input (5 minutes).

4.2 First focus group feedback

Three external participants attended the first focus group meeting. Two of them did
know each other prior to the meeting. Both are affiliated with the Electrical Engineering
faculty at TU Delft. The other external member is a developer of learning and assessment
material for Computer Science and Applied Mathematics from the University of Twente.

The result of the Miro board is depicted in Figure 4.1. Since the participants didn’t
put notes on the board by themselves, these are added by the group leader during the
meeting.

FIGURE 4.1: Miro board after first focus group

The topics listed in Figure 4.1 are elaborated below. The feedback is grouped in
four categories: positive feedback, additional requirements, existing solutions and other
comments. This grouping originates from reviewing the received feedback and identifying
similar comments. For each category, a paraphrased quote from one of the participants is
stated as an example for comments in the respective category. Considerations discussing
selected feedback are written in italic.

Positive feedback This covers the positive feedback regarding the presented work.

"Digital exercise systems facilitate in flipping the classroom. We are imple-
menting flipping the classroom for our courses to use the contact hours more
effectively."

Chapter 4. Evaluation 42

• Efficiency The high level of abstraction offered by providing direct access to SymPy
objects and Markdown templates is recognized by one participant (a Grasple user)
to be a more efficient way of authoring parameterized matrix exercises compared
to current Grasple authoring options.

• Flipping the classroom Two participants acknowledged the need for digital ex-
ercise solutions. These facilitate in personalized learning by leveraging learning
analytics for learners with different prior knowledge, leaving lecture time for
discussing questions and instructor guided project support.

Additional Requirements This covers additional requirements discussed by partici-
pants.

"Can you support collecting common incorrect answers to allow instructors to
provide answer-specific feedback?"

• Sub-questions Two participants recommended asking sub-questions, in case the
initial question is too difficult to answer. This can guide students towards the
correct answer without immediately showing the correct answer.

• Feedback on incorrect answer type In case a student provides a incorrect answer
type, for example a scalar instead of a matrix for a matrix-addition problem,
specific feedback should be given with respect to answer-aspects beyond symbolic
equivalence with a reference answer.

• Learning Analytics Identifying typical mistakes can be facilitated by collecting
user answers and grouping these. This gives teachers insight in common student
misconceptions.

• Tagging A participant mentioned the need for tagging exercises to link to topics.
This should support providing learning analytics on a per-topic basis.

Existing Solutions Existing solutions mentioned by participants are listed.

"Are you familiar with Maxima? SymPy has limitations as it comes to large
matrix multiplications, and Jupyter Notebook is unstable from time to time
because of kernel failures, look into Maxima instead."

• Maxima One of the participants recommended using Maxima over SymPy because
of experience with limitations of SymPy as it comes to multiplications of matrices
with large dimensions. Maxima uses Lisp, which is unpopular compared to Python
(0.36% versus 11.87% in the TIOBE index of May 202134 respectively). Furthermore
more libraries supporting the authoring of exercises are available in Python.

• Scientific WorkPlace A participant recommended investigating the possibilities of
Scientific WorkPlace for WYSIWYG LaTeX editing and CAS functionality. Scientific
WorkPlace is commercial software and seems inappropriate for creating parameterized
exercises due to the lack of programming possibilities.

Chapter 4. Evaluation 43

Other Comments This includes any comments outside of the other categories.

"Why are you using LaTeX to store answer expressions? In LaTeX, multiple
notations exist for the same mathematical object (e.g. matrix, pmatrix,
bmatrix), all of these need to be parsed and understood. Why not use AsciiMath
instead for a uniform representation of such objects?"

• AsciiMath One participant advised to use AsciiMath to store and represent the an-
swer expressions over the LaTeX representation currently used. The main concern
of this participant is that in LaTeX, multiple syntactically different terms refer to
the same semantic object, for example, a matrix can be one of: matrix, pmatrix,
bmatrix, Bmatrix, vmatrix or Vmatrix, all of which refer to a matrix object and
should be properly recognized by the parser. Indeed, by using LaTeX, which is
designed for typesetting documents and not for formulating mathematical expressions
serving as input for semantic recognition by a computer, all of the mentioned syntactic
terms should be parsed. From a parser writer perspective, using AsciiMath to store
expressions would indeed be a better option. However, SymPy does not support parsing
AsciiMath expressions as input, therefore this suggestion cannot be implemented.

• Open Source A strong opinion is voiced to create a fully open source solution,
without any dependencies on commercial software systems. This allows for full
control over all aspects of the system, including extension possibilities. For multiple-
choice quiz questions generated with similar solutions, the instructors do not want
to be restricted by the functionality offered by BrightSpace for presentation and
learning analytics.

4.3 Second focus group feedback

Four external participants attended the second focus group meeting. Three members are
instructors at TU Delft, two of these are from the teaching team of the Computer Science
bachelor, one is an instructor teaching various mathematics courses. One member is a
researcher at Utrecht University, studying and teaching mathematics.

FIGURE 4.2: Miro board after second focus group

The topics in Figure 4.2 are elaborated below.

Chapter 4. Evaluation 44

Positive Feedback This covers the positive feedback regarding the presented work.

While we provided you with a lot of comments and suggestions, it should be
noted that the current setup is promising.

• Current setup A participant encouraged the current setup and demonstrated
possibilities.

Additional Requirements This covers additional requirements discussed by partici-
pants.

Many platforms in our daily lives start adopting gamification elements, ranging
from encouraging savings in banking apps to promoting physical activity using
apps. Did you consider implementing some sort of gamification?

• Answer-specific feedback Two participants expressed their concerns regarding
the possibility of copying the problem statement in the answer field. Another
participant mentioned the need for an option to accept only the simplest form of
an expression, that is, maximally analytically simplified.

• Adaptive difficulty One participant recommended to make the difficulty adaptive
so similar assignments do not become too repetitive in a short practice session.
Another participant recommended to use spaced repetition to avoid this problem.

• Integration in existing software Two participants expressed the desire for a
fully open source solution, that can be easily integrated in the existing learning
management system used by TU Delft, WebLab. Integration could include learning
analytics and asking questions related to exercise instances.

• Gamification All participants agreed that gamification elements can potentially
increase learner engagement. While gamification elements are found in various
other platforms, these seem rarely available in instruction systems used in higher
education.

Existing Solutions Existing solutions mentioned by participants are listed.

The problems you aim to address are already solved by Numworx and Alge-
braKiT.

• Numworx According to a participant, the problems addressed by this work are
already solved in Numworx, a commercial mathematics instruction platform.

• AlgebraKiT A participant recommended to investigate the possibilities of Alge-
braKiT. Both Numworx and AlgebraKiT are commercial solutions, while these solutions
are not investigated thoroughly, these do not seem to support using external libraries
for creating images, furthermore these do not support the flexibility offered by a
general purpose programming language.

Other Comments This includes any comments outside of the other categories.

Is it possible to configure the extent of automated answer simplification? For
some exercises, simply copying the problem statement as the answer should not
be considered a correct solution.

Chapter 4. Evaluation 45

• Evaluation timeout A participant asked whether the answer evaluation will time-
out on evaluating complex or extreme answers (such as: 101010

). This problem is, at
the time of writing, mitigated by evaluating the student answer using a stateless cloud
function.

• Answer simplification A participant mentioned that configuring the extent to
which an answer should be simplified by the student is impossible within Grasple.
Therefore, for some exercises, copying the problem statement in the formula editor
as an answer is accepted correct. At the time of writing, the implementation checks
whether the simplified version of both the student and reference answer are the same,
by using the simplify function. For applying the operations of matrices used in this
work (e.g. matrix addition and multiplication), this works as desired, as these are not
simplified. For other problems, configuration of the extent to which student solutions
should be simplified is desired.

4.4 Setup usability evaluation

To evaluate the usability of the developed Python classes for authoring exercises, with
authors, three university staff members are asked to create four exercises based on the
corresponding exercise task descriptions. After completing the tasks, which is estimated
to take about 30 minutes, a 30 minute semi-structured interview is conducted to collect
experiences and suggestions.

4.4.1 Exercise authoring tasks

While all authors attended the focus group meetings discussing the developed solution,
the notebook introduced the exercise construction process from scratch, allowing authors
to review the functionality prior to constructing new exercises. To make the authoring
process as convenient as possible, the Jupyter Notebook environment required for
authoring exercises is designed to be compatible with Binder35. Binder allows the
notebook to run in the browser, without requiring installing any dependencies locally.
Binder creates a remote Docker container and installs all specified Python dependencies
found in requirements.txt in a virtual environment within this container. This allows
authors to start authoring exercises within the notebook by clicking the Lauch Binder
button in the README.md file shown on the public GitHub repository containing the
notebook.

The plain task descriptions are listed below, the full notebook can be found in
Appendix B. Tasks one to three are successfully completed by all participants.

For the third task, one participant asked learners to describe the position of a given
value in a matrix, instead of providing the value for a given position. Given the open-
ended task description, this formulation could have been expected, but wasn’t anticipated
for. The user succeeded in authoring the exercise under this interpretation by providing
the answer in row-vector form.

The final task is only fully completed by one author. As for the other two authors, one
did have issues with understanding the provided explain_multiply answer function,
while the other missed the dollar signs around the mathematics parameters in an
otherwise perfect exercise.

Task 1: Integer division Create an exercise asking learners to compute 3/3. Provide
answer-specific feedback in case learners compute 3 ∗ 3 instead. Add default feedback

Chapter 4. Evaluation 46

(using e.add_default_feedback(...)) with a link pointing to a source of preference
explaining (integer) division (hint: [link](www.example.com)). Feel free to embed your
favorite meme or xkcd at a correct/incorrect answer (hint ![img](www.example.com/img)).

Task 2: Parameterized vector addition Create an exercise asking learners to compute
the sum of two vectors of random length (within reasonable limits), with random integer
values. Note: if you prefer NumPy for working with matrices, you are in luck! NumPy
objects can be passed to the SymPy matrix constructor, e.g. sp.Matrix(np.arange(4)).

Task 3: Matrix indexing Create an exercise asking learners to identify a value at
randomized indices (but within bounds) in a 5 by 5 matrix. Please make sure all values
are unique so there is only one correct answer.

Task 4: Matrix multiplication Create an exercise asking users to multiply two ma-
trices. Provide a default answer explaining the procedure in case a wrong answer is
supplied. You can use the symbolic_matrix and explain_multiply functions supplied
in helpers.py.

4.4.2 Semi-structured interviews

The questions for the semi-structured interviews to collect experiences and suggestions
are taken from an API usability study performed by Piccioni et al. [28] investigating
the usability of an API written in Eiffel to perform database queries. This study inves-
tigates four characteristics of usability: understandability, abstraction, reusability and
learnability. In addition to these characteristics, two other topics are added. Editing
& collaboration asks participants about authoring using the given setup in comparison
to a WYSIWYG editor and what collaboration with non-power users could look like.
Miscellaneous asks participants for missing features and leaves room for any additional
comments not covered by any of the earlier questions. The complete list of questions for
each usability characteristic can be found in Appendix A. In a 30 minute Zoom interview
one or more questions per characteristic are asked, depending on time of replying and
topics already implicitly discussed in earlier questions. The comments collected are
stated below and provided with additional context and reactions if necessary. In case
a similar comment is provided by multiple participants, these comments are grouped
and the number in front of the item indicates the amount of times this is mentioned. A
discussion of the comments is written in italic.

Understandability

• (1) When mathematical LaTeX objects are not wrapped in dollar signs (e.g. by
writing @a + @b instead of $@a + @b$), the rendered exercise content does not
show as expected. For the author, it is unclear where this error originates from or
how to debug this issue. Automatic wrapping of SymPy objects when the generating
LaTeX code is something not thought of at design time. In a future iteration, this
is possible by setting the mode argument of the latex function of SymPy, with the
desired delimiters.

Abstraction

Chapter 4. Evaluation 47

• (1) The add_answer function takes three arguments: the answer expression as a
SymPy object, a boolean indicating whether the answer is correct and a feedback
string. A participant asked whether this function supports overloading by supplying
less arguments. At the time of the usability study this is not the case, however, in a
future iteration the feedback argument could be made optional.

• (2) Two participants mentioned that it is unclear whether a string or a MarkdownBlock
should be supplied to an Exercise constructor. While no explicit issues are en-
countered, both participants questioned the "right" way to use it. Neither of these
participants inspected the documentation or implementation to find an answer.

• (1) For one participant, it is unclear why the answer is part of the params dictionary.
This participant insisted on separating the parameters from the answers. To prevent
redefinition of exercise parameters used in the answer feedback, the answer is added
to the exercise parameters.

Reusability

• (3) All participants indicated that the amount of code required to solve the tasks
matched their expectations.

• (3) The possibilities for evaluating progress while authoring an exercise is reported
to be sufficient for the tasks at hand.

• (1) A participant indicated that multiple solutions exist to model and solve the
task. In addition, it is noted that while some solutions may be more elegant than
others in general perception, other solution differences may depend on personal
code style and organization preference.

Learnability

• (3) Participants indicated a lack of knowledge with respect to the NumPy and
SymPy dependencies. While the desired functions to solve the tasks were described
to be intuitive and fast to find using Google, a lack of knowledge with respect to
these was slightly underestimated.

• (1) To debug the output of mathematical operations by SymPy and NumPy, a
participant used print statements. The participant indicated that this worked well.

• (1) One participant indicated that because of the increasing complexity of the tasks,
performing later tasks was not easier.

Editing and Collaboration

• (2) Two participants suggested implementing a variable inspector to get a real
time rendered preview of mathematical objects, similar to functionality found in
MATLAB.

• (1) Collaboration by hosting the notebook on GitHub and using the GUI to request
comments is mentioned by one participant. While this sounds feasible, support for
version control of notebooks is limited, including line-by-line comments on GitHub
and diffing of notebooks allowing easy merging.

Chapter 4. Evaluation 48

Miscellaneous

• (1) To provide highly detailed feedback on the user answer, one participant re-
quested support for providing feedback beyond symbolic equivalence answer
matching. The participant immediately stated that this would possibly make the
currently fairly straightforward programming model more complex. This request is
definitely something being thought of. The sketch for implementing this is supplying a
custom Python evaluation function as a string to the stateless Google Cloud Function
used for evaluation. This custom function should accept a LaTeX answer expression
string as input, and return HTML as feedback. By running this function on Google
Cloud, sandboxing is managed by Google and computational limits can be configured
to manage timing issues (e.g. unanticipated infinite loops).

• (1) For complex procedures in linear algebra, such as solving a system of equations,
a participant suggested implementing the functionality to define multiple answer
stages. For example, stage one is bringing the system in a certain form (e.g. echelon
form), stage two is bringing the system in a subsequent next stage (e.g. reduced
echelon form), stage three is performing an operation on the matrix in this form
etc. A suitable approach for creating exercises for complex procedures remains future
work. The reusability of earlier created exercises and answer rules for less complex
procedures composing complex procedures should be considered an important part of
this.

• (1) After using the functionality of providing answer specific feedback, a participant
suggested revealing statistics of the given answer to the user, if sufficiently available.
This participant noticed that during lectures, students pay careful attention to slides
entitled Common Exam Mistakes. Therefore, seeing that your mistake is a typical
mistake might help students paying extra attention to the error in their answer.
Your answer is incorrect, 60% of your fellow students made this mistake at least
once when answering this exercise, might be suggestion for information shown to
the student. Implementing this type of functionality is certainly possible, however
it requires careful design. Considering that some students might follow a ’trail and
error’ approach compared to others being more conservative in using the check answer
button, should the first answer attempt be compared to first attempts of others or
to all attempts? Additionally, what are the effects on learning of constantly being
compared to others, especially for the least performant students? These and other
considerations come in play when designing this policy.

4.5 Functional suitability

The developed software system is partially evaluated using ISO 25010: quality character-
istics of a software product. Eight characteristics are distinguished: Functional Suitability,
Performance Efficiency, Usability, Compatibility, Reliability, Security, Maintainability and
Portability. One of these characteristics is discussed: Functional Suitability. Functional
suitability is covered since it is most closely related to the research question relating
to functional requirements: flexibility and access to a high level of abstraction. The
descriptions for the listed characteristics originate from www.iso25000.com36 and are
stated in italic.

Functional Suitability This characteristic represents the degree to which a product or
system provides functions that meet stated and implied needs when used under specified
conditions. This characteristic is composed of the following sub-characteristics:

Chapter 4. Evaluation 49

Functional completeness Degree to which the set of functions covers all the specified
tasks and user objectives.

By allowing authors to access a scripting language (Python) and the available libraries
therein, including SymPy and NumPy, users get access to high level abstractions to author
the content of linear algebra exercises. This is demonstrated by authoring the matrix
multiplication exercise defined in the Problem Statement in Chapter 2, using the provided
abstractions. Furthermore, in case desired functionality is not directly available, authors
can create helper functions for authoring the exercise at hand. Still, there are limitations
with respect to the functional completeness, most of which originate from desired
functionality not currently present in SymPy. These can be addressed by extending the
functionality of SymPy.

• Obtaining symbolic value references from SymPy matrix instances Since SymPy
is created for expressing intent with respect to computations, options for getting
LaTeX representations of objects for creating explanations are sometimes limited.
Consider creating an exercise asking a user to identify a value at a given position
in a matrix:

Given

A =

[
1 2
3 4

]
(4.1)

What is a1,1?

This is possible using the following code:

1 e = " " "
2 Cons ide r the matr ix A below , what i s the va lue at $a_ {1 , 1}$?
3 <p a l i g n =" c e n t e r ">
4 $A = @a$
5 </p>
6 " " "
7
8 params = {}
9 params [" a "] = sp . Matrix ([[1 , 2] , [3 , 4]])

10
11 e3 = Exer c i s e (MarkdownBlock (e , params))

It is not possible to get the symbolic LaTeX representation a_{1, 1} from the in-
dexed matrix SymPy object. The expression params["a"][0, 0] obtains the value
at that position. However, there is no way to get the corresponding reference as a
LaTeX expression a_{1, 1} out of this expression for creating parameterized exer-
cise content or explanation. Obtaining a symbolic matrix for creating explanations
requires custom functions, as demonstrated in Chapter 3.

• Configuring requested answer simplification For answer evaluation, currently
only simplified expression equivalence is available: basic operations are evaluated
(e.g. +, −, ∗, /), while complex operators are not (e.g. vector addition). Therefore,
numeric answers, accepted within a certain margin, are not supported (e.g. the
user answers 1.110 while the correct answer is 1.111). Additionally, requesting
and strictly accepting only the simplest form of an answer expression (e.g. maxi-
mally simplifying fractions), is not supported. This limits the configuration of the
strictness with which the answer should be given, resulting in less specific guidance
toward the correct answer.

Chapter 4. Evaluation 50

• Highlighting errors in user answer matrices It is not possible to provide a cus-
tom answer evaluation function (per exercise), providing highly specific answer
feedback and error-highlighting. This restricts the possibilities of providing answer-
specific feedback to the end user. For example, value specific errors within matrices
cannot be easily highlighted. As such, consider the following exercise:

Compute:

1
2
3

+

1
2
3

 (4.2)

Consider the user answer

2
4
9

, containing a wrong value in the last row. By

subtracting the user answer from the given answer, the non-zero entries in the
resulting vector indicate the error position in the user answer. While this vector
can be returned to the user for feedback, a more elegant solution is highlighting
the error in the given answer. SymPy does not support markup for the latter.

• Parsing unsupported symbolic answer expressions Only LaTeX strings that can
be parsed to SymPy objects are supported. For example, answering by symbolic
indexing of a matrix is not possible. As such, the following exercise is not possible,
since the LaTeX expression string a_{2,1} cannot be translated to a SymPy object:

Given:

A =

[
1 2
3 4

]
(4.3)

What is the symbolic reference of the value 3 in this matrix?
Expected answer: a2,1

Similarly, only LaTeX answer expressions are supported that can be produced by the
MathLive formula editor, however, most likely this is not a limiting factor because
of the broad range of MathLive compatible LaTeX.

Functional correctness Degree to which a product or system provides the correct results
with the needed degree of precision.

• Since SymPy and MathLive are not formally compatible, it is possible that LaTeX
produced by SymPy objects is not correctly shown in MathLive (which in turn
partially relies on KaTeX for rendering LaTeX in the browser), because MathLive
only supports a subset of LaTeX.

• Similarly, LaTeX expressions produced by MathLive possibly do not properly parse
to the desired SymPy objects, since SymPy only supports object representations for
a subset of LaTeX.

Functional appropriateness Degree to which the functions facilitate the accomplish-
ment of specified tasks and objectives.

For creating and playing a set of elementary linear algebra exercises, the system
setup is considered appropriate, because:

• End-users are able to complete the vast majority of exercise authoring tasks as
requested in the usability study, within reasonable time.

Chapter 4. Evaluation 51

• A Grasple user noticed the increased efficiency by direct access to the abstractions
available in SymPy and NumPy.

• The matrix multiplication exercise defined in the problem statement in Chapter 2
can be created (effectiveness), written in reasonable time (efficiency) by authors
(a similar exercise is part of the usability evaluation) and can include explanations
generated by high-level helper functions.

52

Chapter 5

Conclusion & Future Work

This final chapter begins with a concluding section with respect to the research question
and performed evaluations. Next, research limitations are discussed. To enable future
students conducting similar research to learn from issues encountered, a recommenda-
tions section is added. Finally, future work related to the research question is listed and
suggestions for further directions are discussed.

5.1 Conclusion

Given the identified requirements from educational literature and authors, a new setup
for authoring linear algebra exercises is developed. This setup is primarily inspired by
the exercise string templating used in MEGUA and the open answer handling of Grasple
using SymPy. The Jupyter Notebook environment is used to author and preview exercises.
Editing exercise content and specifying answers rely on developed Python classes. These
classes in turn rely on the LaTeX input and output facilities of SymPy, and the Python
Markdown library for generating the exercise content.

The setup allows authors to use Python as a scripting language for generating exercise
content. This facilitates working at a high level of abstraction by means of using the
available libraries for content generation or by creating custom functions. The flexibility
of this setup is demonstrated by the contextualized linear algebra problems related to
classifying hand written digits, discussed in Chapter 3. By means of visualized, parame-
terized, open answer exercises with guiding feedback based on answer characteristics,
students get an in-depth understanding of the mathematical procedures required in
applied problem solving.

The developed solution is evaluated in two focus groups to collect suggestions in a
conversational way, and in a usability evaluation to collect feedback about authoring
exercises.

The feedback from the focus group confirmed the identified functional requirements.
Additional requirements provide possible directions for further extending this work.

The usability evaluation revealed some usability issues, most importantly, the lack
of expected prior knowledge with respect to the NumPy library and lack of support
for debugging rendered exercises in case parameters are not wrapped in the required
dollar signs for rendering LaTeX. One of the three authors completed all authoring tasks
perfectly, while two authors completed three out of the four tasks due to mentioned
issues. In general, authors appreciated the flexibility of the designed solution for the
tasks at hand. Authors reported that the amount of code required to solve the tasks
matches their expectations and that the developed functionality maps to the domain
concepts (exercise content, answers and feedback) as expected. In conclusion, the setup
is considered usable for the four linear algebra exercise authoring tasks in the usability
study for the three participating authors.

Chapter 5. Conclusion & Future Work 53

5.2 Research limitations

The performed research has multiple limitations.
First, the size of the evaluation groups are small and the amount of exercise authoring

tasks in the usability evaluation is few. This limits the generalizability of the feedback
and the linear algebra operations to be covered with exercises respectively. In case more
participants would have joined the study, these limitations could be overcome.

Second, while the developed software and evaluation procedures are publicly avail-
able, the reproducibility of the feedback from the evaluations depends on the participants,
being not explicitly mentioned.

Third, two of the seven participants are known to the author personally prior to
conducting the evaluation studies. The existing relationship possibly limits the amount
of critical feedback provided in order not to affect the relationship.

Finally, the formulation of the problem, collection of the requirements, implemen-
tation of the new setup, evaluation procedure and execution, analysis and reporting
are all executed by a single person. Preferably, solution developers do not execute the
evaluation of the implemented solution. Their prior knowledge and desire to deliver
positive results can influence the outcome.

5.3 Recommendations

This section briefly discusses recommendations regarding the evaluation procedures.
These recommendations inform future students conducting similar research.

Asking participants to use tooling in focus groups Properly guiding collective use
of Miro is nontrivial. Participants should be educated on the possibilities of Miro and the
desired features to be used should be discussed. To have everyone actively contributing,
the requested contributions should start easy and effortless and only when everybody
is aboard the complexity of the contributions can increase. Performing this guidance
online, which is necessary due to COVID-19, complicates this task.

Observing author performance in usability evaluation To get detailed insight in the
authoring process, logging intermediate versions of exercises while authoring could help
understand the authoring process and identify problems.

5.4 Future work

Regarding the requirement stated in the research question, allowing exercises to be
authored with a high level of abstraction and parameterization, three topics for future
work are suggested.

Complexity of exercises Because of the high level abstractions available in SymPy,
it is easy to generate an instance of a complex exercise. For example, generating a
matrix with random values and asking the user to compute the QR or LU decomposition
is straightforward by using the QRDecomposition() and LUDecomposition() methods
of the Matrix class to define the answer. However, providing specific feedback or
guiding the user through the steps within this procedure is not straightforward. Similarly,
generating the LaTeX code for a complete worked out solution of the problem instance at
hand is not facilitated by SymPy. SymPy, a computer algebra system, provides high level

Chapter 5. Conclusion & Future Work 54

abstractions for modeling problems, the procedure is typically not relevant for the user,
as long as it is performant. In learning, understanding the steps in the procedure is key.
Therefore, it might be worth investigating the possibilities for creating a library or even
a domain specific language for the sake of instructing (and explaining) mathematical
procedures.

Diversity of exercises Systematically authoring (linear algebra) exercises beyond the
subset of exercises discussed in this work, for example by converting static book exercises
to digital counterparts, should provide more insight in the power and limitations of the
designed solution.

Measuring effectiveness and efficiency The effectiveness and efficiency gain of the
developed solution can be evaluated by a comparative user study, asking authors to
complete authoring tasks using different solutions. This would require carefully selecting
suitable metrics for comparison.

5.5 Further directions

This includes broader topics thought of throughout project execution.

Improved editor support: real time preview, syntax highlighting and autocomplete
Most Markdown editors have a preview screen to see a live preview of the rendered
content while authoring. Similar functionality can possibly be implemented, making the
authoring process more convenient. Additional functionality to improve the authoring
experience includes syntax highlighting of the exercise template strings and automatic
completion of defined parameters therein.

Extensions to the format and player: answer templates and sequential hints The
exercise format and player can be extended with additional features supporting the
learner. Answer templates guide the student towards the correct answer. Instead
of showing the definition of a concept or procedure as feedback on a wrong answer,
similar feedback can be used in an answer template. Within this template, students
can easily replace the symbolic placeholder values with values in the problem instance.
Alternatively, empty placeholder templates can be used instead. Examples for both cases
of this functionality on the notion of cosine similarity between two vectors is shown in
Figure 5.1.

Chapter 5. Conclusion & Future Work 55

(A) Symbolic
placeholder values

(B) Blank placeholder
values

FIGURE 5.1: Cosine similarity answer template

Next to answer templates, sequential hints can be used. Instead of providing a single
hint as default feedback on an incorrect answer, first a minor hint is shown. Only in
case this hint is not sufficient to complete the exercise, more information is provided
step-by-step.

Real-time collaborative exercise authoring Within Grasple, authors can collaborate
by editing the same exercise at different points in time. Real time collaboration is possi-
ble by ’pair-programming’ exercises, for example using the remote screen sharing and
mouse/keyboard takeover functionality of Zoom. It could be interesting to compare au-
thoring time and the exercise content (and implementation) between pair-programming
couples and individual authors.

Student contributed exercises Since computer science students are likely to be famil-
iar with Python and Markdown, it would be feasible to encourage students to create
exercises for their peer population. This allows students to create rich artifacts of their
learning process, being exercises demonstrating their understanding of the material at
hand. In Bloom’s revised taxonomy [1], this activity corresponds to the highest layer:
create. Doing so benefits both the authoring student and fellow students, and vastly
increases the amount of practice material available. To monitor the quality and utility of
exercises, social feedback loops can be utilized. For multiple choice questions, this idea
is implemented by Denny et al. [11] in a system called PeerWise. PeerWise is used in
multiple university courses, including an introductory physics [3] and biology course
[24] at the University of Edinburgh.

56

Appendix A

Usability Evaluation Interview
Questions

This appendix includes the questions used in the semi-structured interviews for the
usability evaluation. Sections A.1 to A.4 are after [28], the questions in Section A.5 are
informed by interests of Grasple and finally A.6 allows for any additional comments.

A.1 Understandability

1. Do you find that the API types map to the domain concepts in the way you
expected?

2. Do you feel you had to keep track of information not represented by the API to
solve the tasks?

3. Does the code required to solve the tasks match your expectations?

A.2 Abstraction

1. Do you find the API abstraction level appropriate for the tasks?

2. Did you need to adapt the API (inheriting from API classes, overriding default
behaviours, providing non-API types) to meet your needs?

3. Do you feel you had to understand the underlying implementation to be able to
use the API?

A.3 Reusability

1. Does the amount of code required for each tasks seem about right, too much, or
too little for you?

2. How easy was it to evaluate you own progress (intermediate results) while solving
tasks?

3. Do you feel you had to choose one way (out of many) to solve a task in the
scenario?

Appendix A. Usability Evaluation Interview Questions 57

A.4 Learnability

1. Once you performed the first two tasks, was it easier to perform the remaining
tasks?

2. Do you feel you had to learn many classes and dependencies to solve the tasks?

A.5 Editing and collaboration

1. Do you prefer this way of authoring over a WYSIWYG environment?

2. Do you see any merit in higher-order helper functions, not available in SymPy/NumPy
you can now write? For example: step-by-step explanations, generation of specific
matrices.

3. How would you see collaboration with non-power users?

4. Do you think this format allows for collaboration and reuse? Would you be able to
understand/adjust an exercise created by someone else?

A.6 Miscellaneous

1. Are there features you missed while executing the tasks?

2. Anything else you want to comment on?

58

Appendix B

Usability Evaluation Notebook

This appendix includes the notebook used for the usability evaluation. The notebook
contains an introduction to the exercise format by means of explanation and examples
and four exercise authoring tasks.

Usability Evaluation Notebook

May 25, 2021

[1]: from sympy.matrices import Matrix
import sympy as sp
import numpy as np
from Exercise import Exercise, MarkdownBlock

from process_latex import process_sympy

try:
from config import URL, TOKEN

except:
None

TODO: replace with supplied strings
Exercise.URL = ""
Exercise.TOKEN = ""

0.1 Introduction

In this notebook, you are about to create some (linear algebra) exercises using the developed
Exercise Python library aiming to facilitate authoring parameterized mathematics exercises
at a high level of abstraction (i.e. access to a scripting language and the libraries available in
there, including as SymPy, NumPy and Matplotlib). Created exercises can be ‘played’ inline,
using the web-based player developed as part of this project. Roughly speaking this project
is new combination of existing approaches: MEGUA-like parameterized text, SymPy’s CAS
functionality and exercise-setup as used by Grasple and SageMath for working with mathe-
matical objects in notebooks.

The goal is to evaluate the usability of the developed library and the authoring setup (this
notebook). Note that by no means you or your skills are being tested, it is by no means a prob-
lem if exercises are left uncompleted. Notes, comments and suggestions are very welcome,
please write these either as code-comments or in the Markdown cells in the notebook. All
feedback will be reported and reflected upon anonymously. Completing the notebook should
take about 30 minutes, depending on setup time, prior knowledge about this project, familiar-
ity with linear algebra and the supplied frameworks etc. Please download the notebook when
done and send it by email. After completion, in a brief semi-structured interview, you can
further elaborate upon your experiences.

To start creating exercises, please replace the URL and TOKEN in the block above with the strings
supplied by email:

Exercise.URL = "<supplied_url_here>"
Exercise.TOKEN = "<supplied_token_here>"

1

Appendix B. Usability Evaluation Notebook 59

Assumptions: - Familiarity with Python, Markdown, LaTeX - Familiarity with Jupyter-
Notebook - Familiarity with the very basics of linear algebra

Recommendations: - Use Binder (www.mybinder.org) to edit this notebook, if you prefer local
setup instead, see README.md. - Use Firefox, the iFrame exercise player embeddings do
not work in Chrome or Safari due to global cross-origin policies set by these browsers. - Other
browsers (Chrome, Safari) can still be used, however, playing exercises is only possible outside
of the notebook by clicking the generated exercise links, which is rather inconvenient.

Notes: - Documentation can for the Python library can be found in the html directory. - Within
Jupyter-Notebook, function documentation can be viewed by writing a ? after the function,
like so: Exercise("What is $1 + 1$?").add_answer? - Within exercises, only inline math
notation is supported. - Preview-exercises are purged from the server from time to time, don’t
expect long-term, persistent availability of any played exercises. - Please skip an exercise in
case completing it requires more than a few minutes.

Happy coding ;)

0.2 Exercise Basics

The most basic exercise contains a Markdown string with the exercise content and a single
answer rule specifying the correct answer. Mathematics notation can be written inline in LaTeX
between dollar signs.

[2]: # Create an exercise instance
e = Exercise("What is $1 + 1$?")
Add 2 as a correct answer
e.add_answer(2, True, "Correct!")
Verify that the exercise is working correctly
e.play()
Note: as of now, all basic arithmatic is simplified by sp.simplify(...),␣

↪→there is not yet a way to control this behaviour;
therefore writing 1 + 1 in the answer box is accepted correct
Details on what is simplified: https://docs.sympy.org/latest/tutorial/

↪→simplification.html

<IPython.lib.display.IFrame at 0x7f6db198d850>

Published succesfully, preview at:
https://www.mscthesis.nl/preview?id=232910bc-4856-465f-a04e-7c191a18367a

Let’s imagine the typical student mistake for this exercise is computing 1− 1 = 0 instead. We
add an answer rule to catch that error and provide the student with answer-specific feedback.

[3]: e.add_answer(0, False, "That's not right, did you compute $1 - 1 = 0$ instead?
↪→")

Verify that the specific feedback is shown
e.play()

<IPython.lib.display.IFrame at 0x7f6de45c6a10>

Published succesfully, preview at:
https://www.mscthesis.nl/preview?id=9b044fa6-5830-4a38-b85c-4082fed9c92b

2

Appendix B. Usability Evaluation Notebook 60

0.2.1 Task 1

Create an exercise asking learners to compute 3/3. Provide answer-specific feedback in case
learners compute 3 ∗ 3 instead. Add default feedback (using e.add_default_feedback(...))
with a link pointing to a source of preference explaining (integer) devision (hint:
[link](www.example.com)). Feel free to embed your favorite meme or xkcd at a cor-
rect/incorrect answer (hint ![img](www.example.com/img)).

[4]: # Task 1 user code:

0.3 Templating Exercises

Exercises can be parameterized/templated (still looking for the correct terminology on this
one), this allows for two things: 1. Randomization. By making part of the content random,
multiple instances can be generated, allowing for repeated practice. 2. Abstraction. By utiliz-
ing the functionality of SymPy objects to be translated to LaTeX, authoring exercises remains
efficient and effective.

The integer-exercise can be randomized as follows:

[4]: string = """
Integer addition

Please compute $@a + @b$
"""

params = {}
avoid 0 + 0 instance, since 0 + 0 == 0 - 0, answer same in case our typical␣

↪→mistake is made
params["a"] = np.random.randint(0, 10)
params["b"] = np.random.randint(1, 10)
params["ans_correct"] = params["a"] + params["b"]
params["ans_incorrect"] = params["a"] - params["b"]

e = Exercise(MarkdownBlock(string, params))
e.add_answer(params["ans_correct"], True, "Correct!")
e.add_answer(params["ans_incorrect"], False, MarkdownBlock("Did you compute␣

↪→$@a - @b = @ans_incorrect$ instead?", params))

e.play()

<IPython.lib.display.IFrame at 0x7f6db13fa7d0>

Published succesfully, preview at:
https://www.mscthesis.nl/preview?id=c9f8db25-bdcc-4def-9443-36160609aa86

Currently, only a single instance is generated played at a time. Support for multi-instance
generation is planned.

0.3.1 Working with SymPy objects to represent mathematical objects

We can work with SymPy objects to represent mathematical objects, like vectors and matrices.
An vector addition exercise can be created as follows:

3

Appendix B. Usability Evaluation Notebook 61

[6]: string = "What is $@v_1 + @v_2$?"

params["v_1"] = sp.Matrix([1, 2, 3])
params["v_2"] = sp.Matrix([4, 5, 6])
params["ans"] = params["v_1"] + params["v_2"]

e = Exercise(MarkdownBlock(string, params))
e.add_answer(params["ans"], True, "That's right!")

e.play()

<IPython.lib.display.IFrame at 0x7f6db13c1d10>

Published succesfully, preview at:
https://www.mscthesis.nl/preview?id=f547846d-30b5-4689-a899-15b7c381b974

0.3.2 Task 2 Parameterized vector addition

Create an exercise asking learners to compute the sum of two vectors of random length (within
reasonable limits), with random integer values. Note: if you prefer NumPy for working with
matrices, you are in luck! NumPy objects can be passed to the SymPy matrix constructor,
e.g. sp.Matrix(np.arange(4)).

[7]: # Task 2 user code:

0.3.3 Task 3 - Matrix indexing

Create an exercise asking learners to identify a value at randomized indices (but within
bounds) in a 5 by 5 matrix. Please make sure all values are unique so there is only one correct
answer.

[8]: # Task 3 user code:

0.3.4 Task 4 - Matrix multiplication

Create an exercise asking users to multiply two matrices. Provide a default answer explaining
the procedure in case a wrong answer is supplied. You can use the symbolic_matrix and
explain_multiply functions supplied in helpers.py as follows:

[7]: from helpers import symbolic_matrix, explain_multiply
a = symbolic_matrix("a", 2, 2)
b = symbolic_matrix("b", 2, 2)
display(explain_multiply(a, b))

a = sp.Matrix([1,2,3])
b = sp.Matrix(np.matrix([5,6,7]).reshape(-1))
display(explain_multiply(a, b))

[
a1,1 · b1,1 + a1,2 · b2,1 a1,1 · b1,2 + a1,2 · b2,2
a2,1 · b1,1 + a2,2 · b2,1 a2,1 · b1,2 + a2,2 · b2,2

]

4

Appendix B. Usability Evaluation Notebook 62

1 · 5 1 · 6 1 · 7
2 · 5 2 · 6 2 · 7
3 · 5 3 · 6 3 · 7

[20]: # Task 4 user code:

Hooray! If you made it this far, you completed the notebook! Please add any additonal com-
ments below. Thank you for participating!

Write any additional comments here. . .

5

Appendix B. Usability Evaluation Notebook 63

64

Appendix C

Code Listings of Selected Exercises

This appendix includes the code listings of exercises discussed in Chapter 3.

CODE LISTING C.1: Columns in matrix, vanilla

1 m = """
2 Consider the matrix A , how many columns does A have?
3 <p align =" center">
4 $A = @a$
5 </p>
6 """
7
8 def generator ():
9 params = {}

10 rows = np.random.randint(2, 10)
11 columns = np.random.randint(2, 10)
12 matrix = sp.randMatrix(rows , columns , min=0, max=15)
13 params["a"] = matrix
14
15 e = Exercise(MarkdownBlock(m, params))
16 e.add_answer(sp.simplify(columns), True , "Correct!")
17 if rows >= columns:
18 e.add_answer(sp.simplify(rows), False , "Nope , that’s the amount

of rows.")
19 return e
20
21 Exercise.write_multiple(generator , 100 , "matrix_cols")

CODE LISTING C.2: Columns in matrix, visualized

1 m = """
2 Consider the matrix randomart image below , how many columns does it

contain?
3 <p align =" center">
4
5 </p>
6 """
7
8 def generator ():
9 params = {}

10 rows = np.random.randint(2, 10)
11 columns = np.random.randint(2, 10)
12 matrix = sp.randMatrix(rows , columns , min=0, max=15)
13 params["a"] = matrix
14 matrix_to_image(np.array(matrix , dtype=float), "m", grid=False ,

values_in_cells=False ,
axis_indices=False , axis_titles=
False)

15
16 e = Exercise(MarkdownBlock(m, params))
17 e.add_answer(sp.simplify(rows), True , "Correct!")

Appendix C. Code Listings of Selected Exercises 65

18 if columns >= rows:
19 e.add_answer(sp.simplify(columns), False , "Nope , that’s the

amount of columns.")
20 return e
21
22 Exercise.write_multiple(generator , 10, "cols_in_image")

CODE LISTING C.3: Matrix indexing, vanilla

1 m = """
2 Consider the matrix A , what is the value at $a_{@i , @j}$?
3 <p align =" center">
4 $A = @a$
5 </p>
6 """
7
8 def generator ():
9 params = {}

10 rows = np.random.randint(2, 10)
11 columns = np.random.randint(2, 10)
12 matrix = sp.randMatrix(rows , columns)
13 params["a"] = matrix
14 i = np.random.randint(0, rows)
15 j = np.random.randint(0, columns)
16 params["i"] = i + 1
17 params["j"] = j + 1
18
19 e = Exercise(MarkdownBlock(m, params))
20 e.add_answer(sp.simplify(matrix[i,j]), True , "Correct!")
21 if i < columns and j < rows:
22 e.add_answer(sp.simplify(matrix[j,i]), False , "You seem to have

swapped the row and column
index.")

23 return e
24
25 Exercise.write_multiple(generator , 100 , "matrix_indexing")

CODE LISTING C.4: Matrix indexing, visualized

1 m = """
2 Consider the matrix image A below , what is the value at $a_{@i , @j}$?
3 <p align =" center">
4
5 </p>
6 """
7
8 def generator ():
9 params = {}

10 rows = np.random.randint(2, 10)
11 columns = np.random.randint(2, 10)
12 matrix = sp.randMatrix(rows , columns , min=0, max=15)
13 params["a"] = matrix
14 i = np.random.randint(0, rows)
15 j = np.random.randint(0, columns)
16 params["i"] = i + 1
17 params["j"] = j + 1
18
19 matrix_to_image(np.array(matrix , dtype=float), "m", grid=True ,

values_in_cells=True ,
axis_indices=True , axis_titles=
True)

20
21 e = Exercise(MarkdownBlock(m, params))

Appendix C. Code Listings of Selected Exercises 66

22 e.add_answer(sp.simplify(matrix[i,j]), True , "Correct!")
23 if i < columns and j < rows:
24 e.add_answer(sp.simplify(matrix[j,i]), False , "You seem to have

swapped the row and column
index.")

25 params["d"] = symbolic_matrix("a", rows , columns)
26 e.add_default_feedback(MarkdownBlock("Remember how values are indexed

: $@d$", params))
27 return e
28
29 Exercise.write_multiple(generator , 10, "matrix_indexing_image")

CODE LISTING C.5: Creating matrix from description

1 from helpers import *
2 import random
3
4 m = """
5 Place the following values at the right positions in a matrix:
6
7 <p align =" center">
8 ${values}$
9 </p>

10 """
11 def generator ():
12 params = {}
13 character = "a"
14 rows = np.random.randint(2,4)
15 columns = np.random.randint(1,3)
16 araw = [[[Symbol(f"{{{character}}}_{{{i+1}, {j+1}}}"), np.random.

randint(0, 100)] for j in range(
columns)] for i in range(rows)]

17 for r in araw:
18 random.shuffle(r)
19 random.shuffle(araw)
20 a = sp.Matrix(araw)
21
22 v = ""
23 ans = np.empty((rows , columns), dtype=int)
24 for i, row in enumerate(araw):
25 for j, col in enumerate(row):
26 v = v + f"{latex(col[0])} = {col[1]}, "
27 ans[i][j] = col[1]
28
29 # remove trailing space (latex wrapping should be tight e.g. $a,$

instead of $a , $) and comma ($a$
instead of $a ,$)

30 v = v[:-2]
31 e = Exercise(MarkdownBlock(m.format(values=v), params))
32 e.add_answer(sp.Matrix(ans), True , "Indeed")
33 return e
34
35 Exercise.write_multiple(generator , 100 , "values_in_matrix")

CODE LISTING C.6: Distance score between binary digits

1 m = """
2 Given the matrices
3
4 <div class="d-flex flex -1 flex -items -center">
5 $A = $, $B = $ <img src="b.png" height ="

150">
6 </div >

Appendix C. Code Listings of Selected Exercises 67

7
8 #### Task
9 Frist , determine $D = |A - B|$, then compute $\sum_{i=1}^{} \sum_{j=1}{}

d_{i,j}$
10 """
11
12 f1 = """
13 Correct!
14
15 $D = $
16
17 $\sum D = @sum$
18 """
19
20 f2 = """
21 <div class="d-flex flex -1 flex -items -center">
22 Hint: $D = $
23 </div >
24 """
25 def generator ():
26 # to vector: .reshape(-1, 1)
27 a = to_binary(nums[np.random.randint(1700)])
28 b = to_binary(nums[np.random.randint(1700)])
29 d = np.abs(a-b)
30 matrix_to_image(a, "a", grid=True , values_in_cells=True , axis_indices

=True)
31 matrix_to_image(b, "b", grid=True , values_in_cells=True , axis_indices

=True)
32 matrix_to_image(d, "d", grid=True , values_in_cells=True , axis_indices

=True)
33
34 e = Exercise(m)
35
36 ans = int(np.sum(d))
37 e.add_answer(expression=ans , correct=True , feedback=MarkdownBlock(md=

f1, params=dict(sum=ans)))
38 e.add_answer(expression=ans-1, correct=False , feedback="You are close

, please check your answer")
39 e.add_answer(expression=ans+1, correct=False , feedback="You are close

, please check your answer")
40 e.add_default_feedback(feedback=f2)
41 return e
42
43 Exercise.write_multiple(generator , 10, "digit_matrices")

CODE LISTING C.7: Distance score between gray scale digits

1 m = """
2 Given the matrices
3
4 <div class="d-flex flex -1 flex -items -center">
5 $A = $, $B = $ <img src="b.png" height ="

200">
6 </div >
7
8 #### Task
9 Defining D as $D = |A - B|$, compute $\sum_{j=1}{} d_{1,j}$

10 """
11
12 f1 = """
13 Correct!
14
15 $D = $

Appendix C. Code Listings of Selected Exercises 68

16
17 $\sum D = @sum$
18 """
19
20 f2 = """
21 <div class="d-flex flex -1 flex -items -center">
22 Hint: $D = $
23 </div >
24 """
25 def generator ():
26 # to vector: .reshape(-1, 1)
27 a = nums[np.random.randint(1700)]
28 b = nums[np.random.randint(1700)]
29 d = np.abs(a-b)
30 matrix_to_image(a, "a", grid=True , values_in_cells=True , axis_indices

=True)
31 matrix_to_image(b, "b", grid=True , values_in_cells=True , axis_indices

=True)
32 matrix_to_image(d, "d", grid=True , values_in_cells=True , axis_indices

=True)
33
34 e = Exercise(m)
35
36 ans = np.sum(d[0,:])
37 e.add_answer(expression=ans , correct=True , feedback=MarkdownBlock(md=

f1, params=dict(sum=ans)))
38 e.add_default_feedback(feedback=f2)
39 return e
40
41 Exercise.write_multiple(generator , 5, "digit_vectors_grayscale")

69

Bibliography

[1] Lorin W Anderson, Benjamin Samuel Bloom, et al. A taxonomy for learning,
teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives.
Longman, 2001.

[2] Philip K Axtell et al. “Developing math automaticity using a classwide fluency
building procedure for middle school students: A preliminary study”. In: Psychology
in the Schools 46.6 (2009), pp. 526–538.

[3] Simon P Bates, Ross K Galloway, and Karon L McBride. “Student-generated
content: Using PeerWise to enhance engagement and outcomes in introductory
physics courses”. In: AIP Conference Proceedings. Vol. 1413. 1. American Institute
of Physics. 2012, pp. 123–126.

[4] Jo Boaler. “Open and closed mathematics: Student experiences and understand-
ings”. In: Journal for research in mathematics education (1998), pp. 41–62.

[5] Lynn A Bryan et al. “Integrated STEM education”. In: STEM road map: A framework
for integrated STEM education (2015), pp. 23–37.

[6] M Caprile et al. “Encouraging STEM studies for the labour market”. In: Directorate
General for Internal Policies, European Union (2015).

[7] W Cox. “On the expectations of the mathematical knowledge of first-year under-
graduates”. In: International Journal of Mathematical Education in Science and
Technology 32.6 (2001), pp. 847–861.

[8] Fergus IM Craik and Robert S Lockhart. “Levels of processing: A framework for
memory research”. In: Journal of verbal learning and verbal behavior 11.6 (1972),
pp. 671–684.

[9] Pedro Cruz, Paula Oliveira, Dina Seabra, et al. “Exercise templates with Sage”. In:
Tbilisi Mathematical Journal 5.2 (2012), pp. 37–44.

[10] Christoph Deeken, Irene Neumann, and Aiso Heinze. “Mathematical Prerequisites
for STEM Programs: What do University Instructors Expect from New STEM Un-
dergraduates?” In: International Journal of Research in Undergraduate Mathematics
Education 6.1 (2020), pp. 23–41.

[11] Paul Denny, Andrew Luxton-Reilly, and John Hamer. “The PeerWise system of
student contributed assessment questions”. In: Proceedings of the tenth conference
on Australasian computing education-Volume 78. Citeseer. 2008, pp. 69–74.

[12] Keith Devlin. The joy of sets: fundamentals of contemporary set theory. Springer
Science & Business Media, 2012.

[13] Gabrielle Garon-Carrier et al. “Intrinsic motivation and achievement in mathe-
matics in elementary school: A longitudinal investigation of their association”. In:
Child development 87.1 (2016), pp. 165–175.

[14] James J Gibson. The ecological approach to visual perception: classic edition. Psy-
chology Press, 2014.

Bibliography 70

[15] Ulrich Heublein, Robert Schmelzer, and Dieter Sommer. “Die Entwicklung der
Studienabbruchquote an den deutschen Hochschulen”. In: HIS-Projektbericht,
Hannover (2008).

[16] Hyungshim Jang. “Supporting students’ motivation, engagement, and learning
during an uninteresting activity.” In: Journal of Educational Psychology 100.4
(2008), p. 798.

[17] Paul Arthur Kirschner and Carl Hendrick. How learning happens: Seminal works in
educational psychology and what they mean in practice. Routledge, 2020.

[18] Richard A Krueger. Focus groups: A practical guide for applied research. Sage
publications, 2014.

[19] Jean Lave. “Situating learning in communities of practice.” In: (1991).

[20] Erno Lehtinen et al. “Cultivating mathematical skills: From drill-and-practice to
deliberate practice”. In: ZDM 49.4 (2017), pp. 625–636.

[21] Gustavo Martínez-Sierra and María del Socorro García-Gonzalez. “Undergraduate
mathematics students’ emotional experiences in Linear Algebra courses”. In:
Educational Studies in Mathematics 91.1 (2016), pp. 87–106.

[22] Andrew McConney et al. “Inquiry, engagement, and literacy in science: A ret-
rospective, cross-national analysis using PISA 2006”. In: Science Education 98.6
(2014), pp. 963–980.

[23] Nancy J McCormick and Marva S Lucas. “Exploring mathematics college readiness
in the United States”. In: Current Issues in Education 14.1 (2011).

[24] Heather A McQueen et al. “PeerWise provides significant academic benefits to
biological science students across diverse learning tasks, but with minimal instruc-
tor intervention”. In: Biochemistry and Molecular Biology Education 42.5 (2014),
pp. 371–381.

[25] Irene Neumann, Colin Jeschke, and Aiso Heinze. “First Year Students’ Resilience
to Cope with Mathematics Exercises in the University Mathematics Studies”. In:
Journal für Mathematik-Didaktik (2020), pp. 1–27.

[26] National Audit Office. Staying the course: The retention of students in higher
education. Vol. 616. The Stationery Office, 2007.

[27] Thomas J Palmeri. “Automaticity”. In: Encyclopedia of cognitive science (2006).

[28] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. “An empirical study of API
usability”. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE. 2013, pp. 5–14.

[29] Leanne J Rylands and Carmel Coady. “Performance of students with weak mathe-
matics in first-year mathematics and science”. In: International Journal of Mathe-
matical Education in Science and Technology 40.6 (2009), pp. 741–753.

[30] Mark Schoenfield and Jeannette Rosenblatt. Adventures with logic. Fearon Teacher
Aids, 1985.

[31] Neil H Schwartz. Kirschner, PA, & Hendrick, C.(2020). How learning happens:
Seminal works in educational psychology and what they mean in practice. Routledge.
ISBN 9780367184575. 2020.

[32] Hanne Shapiro, SF Østergård, and KF Hougard. “Does the EU need more STEM
graduates”. In: Publications Office of the European Union: Luxembourg (2015).

[33] John Sweller. “Cognitive load theory”. In: Psychology of learning and motivation.
Vol. 55. Elsevier, 2011, pp. 37–76.

REFERENCES 71

[34] John Sweller et al. “The expertise reversal effect”. In: (2003).

[35] Alfred North Whitehead et al. Aims of education. Simon and Schuster, 1967.

References

1https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

2https://www.youtube.com/user/eaterbc

3https://www.youtube.com/user/khanacademy

4https://medium.com/

5https://medium.com/@adekunle.r.adepoju/how-to-build-a-techy-go-kart-part-
1-everything-hurts-443916a2cae5

6https://medium.com/@chengyao.shen/decoding-comma-ai-openpilot-the-driving-
model-a1ad3b4a3612

7https://towardsdatascience.com/a-one-stop-shop-for-principal-component-
analysis-5582fb7e0a9c

8https://medium.com/analytics-vidhya/introduction-to-the-gradient-boosting-
algorithm-c25c653f826b

9http://www.corestandards.org/Math/

10https://openstax.org/details/books/college-algebra

11https://www.khanacademy.org/

12https://www.mathsisfun.com/

13https://brilliant.org/

14https://grasple.com/

15https://sowiso.nl/en/

16https://www.slader.com/

17https://math.stackexchange.com/

18https://www.wolframalpha.com

19https://github.com/juanklopper/MIT_OCW_Linear_Algebra_18_06

20https://iso25000.com/index.php/en/iso-25000-standards

21https://github.com/arnog/mathlive/pull/796

22https://github.com/facelessuser/pymdown-extensions/pull/1266

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/user/eaterbc
https://www.youtube.com/user/khanacademy
https://medium.com/
https://medium.com/@adekunle.r.adepoju/how-to-build-a-techy-go-kart-part-1-everything-hurts-443916a2cae5
https://medium.com/@adekunle.r.adepoju/how-to-build-a-techy-go-kart-part-1-everything-hurts-443916a2cae5
https://medium.com/@chengyao.shen/decoding-comma-ai-openpilot-the-driving-model-a1ad3b4a3612
https://medium.com/@chengyao.shen/decoding-comma-ai-openpilot-the-driving-model-a1ad3b4a3612
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://medium.com/analytics-vidhya/introduction-to-the-gradient-boosting-algorithm-c25c653f826b
https://medium.com/analytics-vidhya/introduction-to-the-gradient-boosting-algorithm-c25c653f826b
http://www.corestandards.org/Math/
https://openstax.org/details/books/college-algebra
https://www.khanacademy.org/
https://www.mathsisfun.com/
https://brilliant.org/
https://grasple.com/
https://sowiso.nl/en/
https://www.slader.com/
https://math.stackexchange.com/
https://www.wolframalpha.com
https://github.com/juanklopper/MIT_OCW_Linear_Algebra_18_06
https://iso25000.com/index.php/en/iso-25000-standards
https://github.com/arnog/mathlive/pull/796
https://github.com/facelessuser/pymdown-extensions/pull/1266

REFERENCES 72

23https://github.com/phoenixframework/phoenix_live_view/pull/1401

24https://github.com/phoenixframework/phoenix_live_view/issues/1398

25https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=55101

26https://www.tiobe.com/tiobe-index/

27https://docs.google.com/document/d/1Ti7MXtY0PGGMAIFPnDc9PXr9-hypOR2VTfxqPyVcfEs

28https://connect.oeglobal.org/t/action-lab-standard-and-format-for-open-
interactive-math-exercises/329

29https://docs.sympy.org/latest/tutorial/manipulation.html

30https://hexdocs.pm/phoenix_live_view/js-interop.html

31https://mathlive.io/

32https://docs.sympy.org/latest/tutorial/simplification.html

33https://facelessuser.github.io/pymdown-extensions/extensions/b64/

34https://www.tiobe.com/tiobe-index/

35https://mybinder.org/

36https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://github.com/phoenixframework/phoenix_live_view/pull/1401
https://github.com/phoenixframework/phoenix_live_view/issues/1398
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=55101
https://www.tiobe.com/tiobe-index/
https://docs.google.com/document/d/1Ti7MXtY0PGGMAIFPnDc9PXr9-hypOR2VTfxqPyVcfEs
https://connect.oeglobal.org/t/action-lab-standard-and-format-for-open-interactive-math-exercises/329
https://connect.oeglobal.org/t/action-lab-standard-and-format-for-open-interactive-math-exercises/329
https://docs.sympy.org/latest/tutorial/manipulation.html
https://hexdocs.pm/phoenix_live_view/js-interop.html
https://mathlive.io/
https://docs.sympy.org/latest/tutorial/simplification.html
https://facelessuser.github.io/pymdown-extensions/extensions/b64/
https://www.tiobe.com/tiobe-index/
https://mybinder.org/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

	Abstract
	Preface
	Introduction
	Developments in Higher Education
	Mathematics in STEM studies
	Importance of practice in learning mathematics
	Limitations of typical classroom practice
	Initial research question
	Methodology and approach
	Contributions
	Thesis structure

	Related Work, Problem Statement & Authoring Requirements
	Grasple
	Problem statement
	Research question
	Scope and context
	Other solutions: MyOpenMath, RExams, WebWorX and MEGUA
	Requirements and use cases

	Setup for Flexible Exercise Authoring
	Authoring setup context
	A first exercise definition: One-off integer addition
	Enabling repeated practice: Parameterized integer addition
	High level of abstraction: SymPy code generation for matrix exercises
	Guiding feedback
	Architecture: Exercise player, JSON representation and answer evaluation
	Complex exercises

	Evaluation
	Focus groups
	First focus group feedback
	Second focus group feedback
	Setup usability evaluation
	Exercise authoring tasks
	Semi-structured interviews

	Functional suitability

	Conclusion & Future Work
	Conclusion
	Research limitations
	Recommendations
	Future work
	Further directions

	Usability Evaluation Interview Questions
	Understandability
	Abstraction
	Reusability
	Learnability
	Editing and collaboration
	Miscellaneous

	Usability Evaluation Notebook
	Code Listings of Selected Exercises
	Bibliography

