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Preface
With the focus on the reduction of fossil fuel emissions, aircraft are continuously growing towards higher
fuel efficiency. The traditional limits of aircraft performance can be surpassed through the use of com-
posite materials which offer a reduction in aircraft weight. Due to the multidisciplinary nature of aircraft
design, integration of different disciplinary analyses is required to arrive at a feasible design. The in-
clusion of composite design in the preliminary design process, however has become a challenge. This
is due to the high computational cost associated with the composite aeroelastic tailoring tools used in
the design process.

A possible solution is available in the form of surrogate models which can reduce the computational
costs. The current work focuses on the development of a methodology that allows the inclusion of
surrogate-basedmodel in the optimization for a computationally expensive aeroelastic tool (PROTEUS)
developed at TU Delft. The resulting methodology can be expanded to a generic, computationally
expensive tool in a multidisciplinary optimization setting.

Wing design optimization is carried out based on surrogate modeling methodology and metal based
design method. Comparison is made of the final optimized designs based on structural and perfor-
mance parameters.
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1
Introduction

The increased use of aircraft which work on fossil fuels also adds to environmental impact in terms
of greens house gases, nitrogen oxides (NOx) water vapor, and particulate matter Schumann [63].
Reduction in the emission of these gases requires improvement in several aviation technologies.
The analysis of the Brequet Range Equation which is given in Greatrix [26] gives an overview of the
various factors involved which can affect the aircraft performance in terms of the fuel consumption and
efficiency of carrying weight represented by the payload. The equation has been represented in 1.1.
The fuel consumption reduction can be made by a reduction in drag keeping the other factors constant.
This can be controlled by the aerodynamics of the aircraft.

𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑅𝑎𝑛𝑔𝑒 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑇𝑆𝐹𝐶 ( 𝐿𝑖𝑓𝑡𝐷𝑟𝑎𝑔)𝑙𝑛(1 +

𝑊
𝑊 +𝑊 ) (1.1)

• 𝑇𝑆𝐹𝐶−Total specific fuel consumption

• 𝑊 −Weight of fuel

• 𝑊 − Payload weight

• 𝑊 − Operational empty weight

Additionally, the aircraft weight in the form of operational empty weight can be reduced by a reduction
in the wing weight. The wing weight has a cascading effect on the overall aircraft weight. A lower wing
weight leads to a lower overall aircraft weight. As a result the required lift reduces which is directly
correlated to the induced drag. Hence, reduction in wing mass has a dual effect of reducing the actual
aircraft mass and reduction in mass due to reduced fuel mass which is to be carried.

The application of composites has come up as a possible solution to reduce the weight of the aircraft
structure. At the same time aeroelastic tailoring using composites enables additional freedom to the
designer for adapting according to requirements posed by the loads encountered by the aircraft.

1.1. Composites and aeroelastic tailoring
Composite materials provide an advantage over traditional materials in terms of reduced wing weight
Eastep et al. [15]. With the advent of composite material in the wing structure, an additional dimension
was added to wing design. Composites can be used in several innovative ways to extract the required
aeroelastic responses of the wing to enhance performance, some of which have been mentioned in Yu
et al. [85]Stodieck et al. [69]. This ability is achieved by aeroelastic tailoring of the wing structure which
couples the shape deformation of the wing to the aerodynamic loads in a manner that was not possible
for traditional materials such as aluminum. An example can be seen in the form of bending and twist
coupling of the wing. Additionally, the higher stiffness and strength to weight ratio of composites is
the reason for the reduction in the wing weight while still carrying the required load Brooks et al. [3].
This allows for a higher aspect ratio due to the added strength to the wing structure. The aspect ratio
has an inverse correlation with induced drag, thus an increase in the aspect ratio is beneficial for a
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2 1. Introduction

more fuel-efficient aircraft Brooks et al. [3]. Conversely, the aspect ratio has a proportional relation with
wing weight. This indicates the trade-off which needs to be made between the wing weight and drag
reduction to reach at an optimal wing design.

Review work of Jutte and Stanford [36] is used to gain a fundamental understanding of the applica-
tion of aeroelastic tailoring, and the MDO studies where aeroelastic tailoring has been applied. Some
of the papers with a fundamental exploration of aeroelastic tailoring are given in Shirk et al. [65]. The
definition of aeroelastic tailoring as stated in by Shirk et al. [65] is given as ”Aeroelastic tailoring is the
embodiment of directional stiffness into an aircraft structural design to control aeroelastic deformation,
static or dynamic in such a fashion as to affect the aerodynamic and structural performance of that
aircraft beneficially.”
To see the difference in aeroelastic response for different composite configurations the following Fig:
1.1 serves as a reference and gives an idea of the possibilities.

Figure 1.1: The effect that the location of the primary stiffness direction has on the characteristics of the wing Shirk et al. [65]

The application of composites in aeroelastic tailoring has been shown in the works of Weisshaar
[79] and Eastep et al. [15].

With the growing interest in composite aeroelastic tailored wing, a new tool called PROTEUS was
developed at TU Delft by Werter and De Breuker [80]. The tool is capable of performing structural
optimization of a wing based on composite laminate parameters thus automating the process. Both
static and dynamic aeroelasticity calculation capacity are present in the tool.

1.2. Multidisciplinary approach
The tight coupling between aerodynamics and structures due to the resulting flexibility of a high aspect
ratio wing requires a multidisciplinary approach to wing design such as done by Gern et al. [21]. To
attain the trade-off between the drag and wing weight as mentioned in the previous section. Due to the
coupling, aero-structural studies were carried out Skoog and Brown [66].

Optimization studies could be carried out with resulting interactions which led to the growth of struc-
tural optimization. Additionally, due to more advanced analysis methods in individual disciplines other
than structural analysis, it can be computationally challenging to execute such an optimization routine
using a reasonable amount of time and resources. As the fidelity of the tool increases, the probability
that the computational time will increase as well is high . Hence, the developments in data modeling in
the form of surrogate models give a potential solution.
The major MDO studies performed have been listed in the table 1.1. The overview helps to determine
which combination of disciplinary tools have been run in an optimization routine.

Certain studies also include acoustic analysis of the aircraft. The acoustic discipline has not been
presented in the table 1.1. The indication from table 1.1 is that in a majority of the studies structural
discipline involved in the analysis consider isotropic material such as aluminum. In the case of a study
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Publication Str 1 Aero 2 Fdyn 3 control 4 Perf 5 Fin∗ 6 Prop 7

Peoples and Willcox [54]
Perez et al. [56]
Jaeger et al. [34]
Papageorgiou et al. [52]
Tzong et al. [73]
Striz and Lee [70] 8

Wujek et al. [81]
Rao et al. [60]
Perez et al. [55]
Jones et al. [35]
Suleman et al. [71]
Lambe et al. [41]
Elham and van Tooren [16]
Chiba et al. [5]
Diedrich et al. [12]
Henson et al. [32] 9

Hwang and Ning [33]
Leifsson [43]
Morris [49]
Wunderlich [83]

Table 1.1: Multidisciplinary optimization (MDO) studies

involving composite design, the design variables are limited to the composite laminate design variables.

The exceptions are the two works employing the variation of the wing planform design variables in
the works of Kennedy and Martins [38] and Wunderlich et al. [82]. While the works of Kennedy and
Martins [38] considers swept-back wing, the work by Wunderlich et al. [82] considers a forward-swept
wing.
There is hence a limited application of composite aeroelastic tailoring based on planform design
variables to swept-back wings.

1.3. Computational expense
Implementation of composites in aircraft design proves as a popular option considering the motivations
for major aircraft manufacturer’s to shift towards more efficient aircraft. With the different disciplines in-
volved however, application of computational studies to composites in multidisciplinary setting has been
challenging. PROTEUS follows a similar trend and as a result has not been used in a multidisciplinary
design application. One of the solutions is the application of surrogate modeling. The application of
surrogate modeling in MDO has been demonstrated in the works of Kumano et al. [40] and Kanazaki
et al. [37]. In the current case the PROTEUS tool presents such a challenge and hence the application
of surrogate methods is intended in order to make the optimization routine feasible.

1Structure
2Aerodynamics
3Flight dynamics
4Flight controls
5Performance
6Financial
7Propulsion
8Composites are considered
9Composites are considered
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Literature review

In order to conduct the study, the framework available is presented in the given section. The framework
is based on two types of tools.

• Analysis tools

• Execution tools

Optimization studies are performed in a multidisciplinary approach that requires different analysis tools
to be run in conjunction with each other. This facility is provided in the execution tools. The analysis
tools on the other hand provide the physical models required to simulate the aircraft characteristics at
various design points in optimization.

2.1. State of the art
Analysis tools
To evaluate the different designs, analysis has to be performed in terms of different disciplines. De-
pending on the problem, the disciplines can be increased or decreased as the designer wishes. The
analysis employed by the tool may vary depending on the theory on which they are modeled. In the
current case, the tools available at present are listed in table 2.1 along with a description of their func-
tion.

Analysis tools
Tool name Description
INITIATOR Elmendorp et al. [18] Initiates an aircraft design based on top-level requirements
Q3D Mariens et al. [45] Quasi 3D aerodynamic solver
EMWET Elham and van Tooren
[17]

Wing mass estimation tool

PROTEUS Werter and
De Breuker [80]

Aeroelastic wing analysis tool

PHALANX Pfeiffer et al. [57] Flight dynamics tool

Table 2.1: Tools at TU Delft and their description

Since the initiator tool makes use of the top-level requirements, it is neglected. The primary interest
in the current optimization is related to the planform design variables with a fixed top-level requirements.
This is done by the selection of the D-150 aircraft configuration.

To get a better understanding of the internal workings of the analysis tools, further descriptions for
the different tools is provided.

Werter and De Breuker [80] gives the overview for the PROTEUS tool. For the determination of
aerodynamic loads the vortex lattice method is used. It is based on potential flow theory and thus
assumes inviscid flow. This is sufficient for the purpose of load determination since the parasitic drag
forces due to viscosity are much lower and hence are not instrumental in the calculation of aeroelastic
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6 2. Literature review

phenomenon. The tool makes use of lamination parameters for composite design. The advantage as
presented in Dillinger [13] is that it reduces the number of design variables to define the composites
arrangement compared to classical lamination theory which requires the angles, thickness and the
sequence of the laminates.

Mariens et al. [45] presents Q3Dwhichmakes use of a combination of previously available programs
(AVL Budziak [4], XFOIL Drela [14] and VGK Garabedian and Korn [20]) to reduce the computational
effort required in the aerodynamic analysis. For inviscid analysis the AVL software is implemented
which is based on the vortex lattice method. This makes use of potential flow solutions to determine
the lit coefficient and induced drag of the aircraft. For the viscous case, Q3D makes use of the tools
xfoil and VGK programs. The program makes use of the xfoil and avl for low subsonic analysis while
switching to VGK for the transonic analysis. The results have been tested with an established software,
the MATRICS-V van der Wees et al. [74] to confirm that the accuracy of the tool is as required. The
tool can be used for load determination and drag calculation. The drag force can be categorized into
profile drag and induced drag. While the profile drag is a further combination of skin friction drag and
pressure drag. The effect of sweep is included in the results and can be accounted for in the drag force.

The capabilities of Q3D for drag and load analysis prove an asset for the case of wing design opti-
mization. The application of the tool has been demonstrated with an example by the authors in Mariens
et al. [45]. The reduced computational time is also an advantage.

Elham and van Tooren [17] presents EMWET as a weight estimation tool that works in two steps.
The first step is to perform a weight estimation of the wing by assuming a box structure. In the second
step, the tool calculates stress by using the aerodynamic load data on the finite element model of the
wing. Since the wing weight required is dependent on the structure, when it is subjected to loads, a
new structure is required to sustain the stresses. Thus a coupled system occurs which requires con-
sistency to have an equilibrium between the two disciplines. It was developed to perform quick weight
estimation in multidisciplinary optimization and thus is useful in the current study.

Pfeiffer et al. [57] describes phalanx as a flight dynamics assessment code. It combines results
obtained using the aerodynamics, structures, propulsion to create a non-linear flight dynamics model.
The tool can be applied for aircraft flexibility during maneuvers, morphing aerostructures, landing gear
models, etc. The paper also discusses the creation of a CPACS wrapper for a new tool. (In this case,
CPACS represents a format of representing data. It makes it easier to exchange information between
different tools. Further details on CPACS are given in execution tools). The CPACS wrapper acts as an
interface between the tool and the CPACS file since the form of inputs required for the tool are different
for each tool compared to the standardized format used by the CPACS. It also suggests that in case
the tool fidelity levels are separate it is beneficial to have separate CPACS wrappers codes. It suggests
future possible work to be done in terms of finding the best possible strategy for integrating the tool
using CPACS. Tool chain is still to be validated. Additionally, the effect of individual tool accuracy on
the complete workflow is also to be studied.

Execution tools
The high interdisciplinary nature and collaboration required in new aircraft designs propelled the

Agile program which is a consortium of several aerospace institutes, research centers, and indus-
try Ciampa and Nagel [7]. The aim was to develop MDO processes that could significantly reduce
aircraft development time. The overall program worked in several steps, each increasing in design
complexity,accuracy and reliability. As is the approach in multidisciplinary optimization problems the
understanding of the state of the art can be obtained by decomposing the various aspects of the pro-
cess. With increasing development in software and automation, dedicated programs and systems have
been developed for MDO. The developments have been mentioned in the knowledge architecture and
collaborative architecture papers van Gent et al. [75]Ciampa et al. [8].
With the aim of the application of MDO technologies, there have been several new developments within
the AGILE framework. The development aims to reduce the time for aircraft design and development
as well as develop more efficient aircrafts [6]. Some of the advances in design methodologies which
formed a part of the framework are given below.
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CPACS
In order to support MDO one of the concepts which emerged was CPACS (Common Parametric

Aircraft Configuration Schema) Nagel et al. [50]. This was a result of the effort at DLR (Deutsches
Zentrum für Luft- und Raumfahrt) to create a standard data file for the aircraft which could be used by
different disciplines thus reducing the number of interfaces. Some understanding of the functioning of
a common language can be gained from figure 2.1.

Figure 2.1: Overview of CPACS exchange a) without a common standard increasing the number of interfaces, b) With a
common standard and reduced number of interfaces Rizzi et al. [61]

CMDOWS
In an MDO problem, the disciplinary tools, exchanged data and process connections keep evolving

until the formulation is complete van Gent et al. [76]. CMDOWS is a file to store the MDO formulation
in a neutral format. It shows similarities with CPACS. While CPACS defines the standard format of the
aircraft data, CMDOWS takes care of the process data to define the workflow .

OPENMDAO
OpenMDAO Gray et al. [24] is an open-source integration platform for the various tools and creates

the final process for optimization. The details regarding interacting with and working on the openM-
DAO environment are given in Gray et al. [25]. Case studies for design applications have been given in
Gray [23] and Hendricks [31]. In the current case openMDAO is chosen as the integration environment.

2.1.1. Multidisciplinary Optimization (MDO)
The application of optimization has roots in aircraft structural studies. It started with applications in
structural optimization. Following the idea of structural optimization, multidisciplinary optimization de-
veloped which considered not only structural but aerodynamic and performance evaluations. Since the
design of an aircraft works at the confluence of several disciplines, MDO developed as a means for
new aircraft designs which could work with several requirements simultaneously and deliver the best
design possible for the requirement Sobieszczanski-Sobieski and Haftka [67].
The different approaches can be categorized for reference. The work of Martins and Lambe [47] gives
a comprehensive overview of the different MDO architectures. In order to decide on the architecture,
in the current case, the capability of KADMOS plays a role in the decision making. KADMOS is a tool
developed at TU Delft which aids in formulating an MDO problem. It is based on graph theory which
was used to show that the method could be used in MDO formulation by Pate et al. [53]. The size
of the MDO problem has been mentioned as a bottleneck in van Gent et al. [77]. Size, in this case,
refers to the number of analytic tools and variables which are involved in the MDO problem. Besides
the actual run-time of the MDO problem, setting up the problem with the required interlinks is a difficult
task. In order to reduce the efforts required for this formulation, KADMOS was developed. Besides
faster formulation, the objectives of KADMOS are several. With traditional methods, once the MDO
problem was structured using a particular architecture, it was not possible to manipulate the achieved
result to construct a different MDO architecture. KADMOS provides this capability and thus several
methods can be formulated and tested with reduced setup time. This agility is also present in terms of
the number of tools which can be selected, thus the number of disciplinary analysis to be performed
can be increased. The details regarding the working of the KADMOS are given in van Gent et al. [77].
Figure 2.2 gives an understanding of the MDO process and the role of MDO formulation.

It shows that the use of MDO has become highly essential in aircraft design. However, in order
to produce the workflow, the difficulties of joining the tools together in the different architectures have
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been made easy by the use of KADMOS which reduces problem formulation time. KADMOS has also
made it possible to alternate between multiple architectures giving a more common baseline to com-
pare the architecture performances than the traditional formulation.

Martins and Lambe [47] present the different architectures in a standard format. The differences
in the architectures can be seen based on the constraints and consistency requirements in the MDO
architectures. The MDF architecture has minimum number of state variables exchanged between the
disciplines whereas the all-at-once solution has the highest number of state variables exchanged be-
tween the analysis tools. The architectures on a top level can be divided as monolithic and distributed.
In case of monolithic architecture the optimizer evaluates the design at each converged design point.
In case of distributed architectures the optimization function is combined with the analysis evalua-
tion blocks and hence the optimizer receives variables even if a consistent design point has not been
reached.

Tedford and Martins [72] present a study in the comparison of different architectures using the
pyMDO platform which performs a function similar to KADMOS in MDO formulation. Hence, it allowed
the authors to use a baseline problem and apply it in different MDO methods. The authors provided
quantitative metrics for comparison. The work gives a framework to use a common MDO problem and
its relation to the performance of the MDO algorithm. The presented approach uses the number of local
variables and number of design variables for comparison. It was found that MDF and IDF architectures
to be more robust and had ability to deal with different problem formulations whereas the architectures
which made use of approximate functions were more dependent on the problem. The use of complex
step derivatives and finite differences is made to calculate the derivatives required to drive the search
algorithm. The results could be expectantly different for the case of adjoint based sensitivities.

The study serves to show the probable application of KADMOS in MDO architecture studies. The
metrics used in this paper for architecture performance comparison can be used.

Martins and Hwang [46] In the calculation of the sensitivities, which refers to the derivatives of
the objective and constraints with respect to the design variables, different methods available were
presented and unified under a common framework. A result on the effect on relative error of the finite
difference method and complex step shows that the reduction of step size can also have a negative
effect on the relative error in case of finite difference.

The mathematical framework for optimization is gathered from the bookSobieszczanski-Sobieski
et al. [68]. The derivatives and search step thus together help to incrementally move towards an opti-
mum. The various ways of calculating the derivatives have been mentioned previously. It presents the
two fundamental optimization algorithms, gradient based and randomized optimization such as genetic
algorithm. One of the conclusion was that the randomized algorithm tend to be more expensive com-
pared to the gradient based algorithms. There is no universal approach in selection of an optimization
algorithm and it varies with the problem to be solved.

Thus the use of gradient based and non-gradient based optimization methods can be tried to check
the efficiency of the MDO strategy for the two different methods. Thus the optimization algorithm has
an influence on the number of computation performed before converge is reached. The greater amount
of time in randomized algorithm is compensated by the fact that randomized algorithm are more robust
and can traverse over a more varied design space than a gradient based algorithm.

MDO requires evaluation from several analysis tools. With advances in each individual discipline,
the computational requirements of the tools have increased as more complex analysis can be per-
formed with higher accuracy. There is a continuous attempt to offset the computational time. Han
and Zhang [30]Zhang et al. [86].To reduce the computational expense, an alternative in the form of
meta-modelling or surrogate models is a possibility suggested in literature as has been applied in [42].
Additional review regarding the details of surrogate methods is discussed in section 2.1.2.

2.1.2. Design of experiments and surrogate modelling
As presented briefly in the section on multidisciplinary optimization the application of surrogate mod-
els helps in reducing the computational time by replacing the physics-based tool with a mathematical
model. The advantage of faster function evaluations is that it makes sensitivity and design studies fea-
sible Queipo et al. [58]. There are different possibilities for working with surrogate models. A review on
surrogate-based optimization is provided in Wang and Shan [78],Yondo et al. [84]. They give an under-
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Figure 2.2: Overview of executing a MDO problem from formulation to running the simulation. The process is divided in two
phases: formulation (left) and execution (right). The part simplified by KADMOS is marked by the red box. Figure 1 from van
Gent et al. [77]

standing of the concepts which are involved in the surrogate optimization and the practical implications
of the methods which are useful for implementation. Evaluation strategies are also presented for how
well a surrogate model works. The various design of experiments used in the previous studies among
aircraft design involve the use of latin hypercube sampling. According to Yondo et al. [84] with a limited
computational budget, the optimal use between the low fidelity model obtained from data and the high
fidelity model which uses physics-based equations is required. The idea being that integrating a hybrid
model which modifies the surrogate model based on the accuracy levels required is more effective.
It selects among the physics-based and surrogate model. At regions of high errors for the surrogate
method, the model switches to physics-based tool. This creates an additional requirement to decide
between the use of a hybrid model and a sole surrogate model.

Given the bias and variance errors, a suitable cross validation strategy is suggested in [22] called
the k-fold cross validation method. The models are constructed and tested on all the available points.
This is done by first dividing the design space into n sections. Using the n-1 groups, the surrogate is
constructed and the prediction accuracy on the remaining set is checked. This is repeated for the entire
collection of points thus allowing to use all available points.

It can be concluded that the use of aeroelastic studies use the traditional wing and thus there is a
lack of studies which makes use of aeroelastic tailoring for MDO studies. The disciplines in the table
1.1 are used as a measure of the kind of MDO studies to be performed and also to help selection in
the tools which are available at the faculty. These tools and their capacities are discussed in the next
section.

2.2. Research questions
The structure of the problem can be visualized in a mind map given in Figure 2.3. The limited inclusion
of composite aeroelastic tailoring in the MDO process thus gives us the core research question.

To develop a multidisciplinary optimization work flow with the inclusion of composite aeroe-
lastic tailoring using surrogate modeling techniques.
The challenge presented by the computational time of PROTEUS forms an implicit challenge in the
research question. The sub questions which can be formed to answer the research question are as
follows

1. What is an efficient method to include surrogate model of PROTEUS in the MDO problem?
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Figure 2.3: Disciplines in MDO with the computational barrier in case of aeroelastic tailoring

2. Upon the inclusion of PROTEUS in MDO, what are resulting effects on the wing design?

2.3. Methodology
Before the PROTEUS tool can be integrated into the MDO work-flow, a design of experiments and a
subsequent surrogate modeling of the results is to be performed. This surrogate model is a represen-
tative of the actual model. The surrogate model obtained is evaluated for accuracy. This validation
helps to gain confidence in the surrogate model.The k-fold validation method described previously will
be used for this purpose. Subsequently, the PROTEUS surrogate will be implemented in the MDO
work-flow which brings to the step of preparing the MDO work-flow.

While the inclusion of PROTEUS surrogate allows for a composite wing to be designed, a secondary
method is also formulated. In this second scenario the initial optimization is performed using the tra-
ditional metal based weight estimation tool EMWET. The optimized planform is subsequently used as
an input to PROTEUS to produce the optimized composite structure. A graphical representation of the
methodology with the inclusion of PROTEUS along with the secondary method is given in Figure 2.4
while the steps to create the executable file is shown in figure 2.5.

Figure 2.4: A comparison between the two methodologies proposed for composite wing design with variation in planform
design variables
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Figure 2.5: Execution overview for the MDO workflow. Taken from de Vries et al. [10]





3
Surrogate modeling

With the requirement of reduction in the computational time of the tools, a suitable method to implement
surrogate functions of the involved tools is required. With this motivation in mind, the current section
gives the understanding of the tool KADMOS and the development which were added to support sur-
rogate creation within KADMOS.

The KADMOS graph generation methodology is described in the work of van Gent et al. [77]. The
work of Pate et al. [53] serves as a reference in the use of graph-based descriptions of MDO workflow.
Based on the preliminary ideas in Pate et al. [53] and the open-source graph theory library NetworkX,
an automatic MDO formulation program is developed which is KADMOS. KADMOS forms a part of the
AGILE development program which aims to simplify the creation and execution of MDO workflow and
allow for a greater number of design studies than are possible by the traditional methods.

The working of KADMOS deals with the manipulations of digraphs which are a subcategory of
graphs. To get a simple understanding of the graphs and some of the ideas involved a basic overview
of what is meant by the KADMOS graph is given in the next section.

3.1. Kadmos Graph
A graph can be described by nodes and edges as shown in figure 3.1. Mathematically, a graph can
be described as 𝐺 = (𝑉, 𝐸) where, V is the set of vertices and E is the set of edges. Additionally, the
condition 𝐸 ⊆ [𝑉] is satisfied which implies that the two elements within the edge, are a 2 element
subset of vertices. With the nodes and edges defined, additional attributes can be added to the nodes
or edges.
Function role ∶ One commonly used attribute is the function roles which is divided into the following
five categories.

1. Pre-coupling

2. Coupled

3. Post-coupling

Figure 3.1: A general graph (Win [1])

13
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4. Pre-desvars

5. Post-desvars

This division is used for the function nodes which represent the individual analysis tools. The problem
roles help to categorize the function nodes and thus simplify the analysis. Similarly, the vertices can
also be separated as function nodes and variable nodes with the direction of the edge describing the
relation of the variable with respect to the function. The edges can be of several types however, in the
case of KADMOS since the graphs have to be digraphs, the edges are limited to being unidirectional
which would be similar to edges b,g and h to name a few in the figure 3.1.
As KADMOS makes use of NetworkX Hagberg et al. [29] library of python, the NetworkX library on
github has a general description for the graphs NetworkX manipulates. The graphs used in KADMOS
have uni-direction edges, these fall under the category of digraphs and the methods applicable to
digraphs are also applicable to KADMOS graphs.
Cyclic Graph ∶ An additional property of the KADMOS graphs which needs to be known is the occur-
rence of cycles. In a cyclic graph, it is possible to travel along the direction of the edges to form a cycle
that has the same starting and endpoints. Depending on the various paths possible, each individual
path is identified as a cycle.

3.2. Surrogate models
The creation of surrogate model is based on the input and output of the particular available method.
The general surrogate modeling methodology can be seen in figure 3.2. The simulation based model
(𝑓) generates the data 𝑓 . This data is used to create the estimated model ( ̂𝑓) which can be used as
replacement in the optimization runs.

Figure 3.2: The relation of the existing model to the surrogate model Queipo et al. [59]

In order to create the estimated model, several mathematical functions have been presented in the
literature. Some of the standard methods which can be used for estimation have been presented in
Forrester and Keane [19].
Kriging: From among the available methods, kriging is a popular method used for surrogate creation
in aerospace and hence the current work focuses on the kriging method. In a future pursuit, the other
methods can also be tested for their performance against the kriging results presented in this work.

The estimated inputs for a particular solution are those variables which need to be supplied as inputs
for running the DOE workflow. The corresponding output is then modeled with respect to the estimated
inputs.

3.3. Optimum graph for surrogate
KADMOS deals with the formulation phase of the MDO problem while the execution is done using the
OpenMDAO Gray et al. [25] tool. OpenLEGO de Vries [9] forms the link between the formulation phase
and the execution phase. In the creation of KADMOS output, the Fundamental Problem Graph (FPG)
obtained displays the interconnections of the various tools. It represents the optimization problem in
a graph form. Thus, the overall MDO problem is represented in the form of an FPG where we get an
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overview of the various dependencies of the functions. These dependencies can be used to reduce
the computational cost. The steps in graph manipulation in KADMOS are understood through figure
3.3 which form the formulation sub-part of the overall optimization workflow.

Figure 3.3: The formulation strategy in KADMOS (with the use of the sellar problemSellar et al. [64]) Aigner et al. [2]

The development of surrogate models requires the use of the design of experiments methods where
the number of input variables determines the number of function execution. In the current case, the
number of function evaluations required is determined to be at 10. Hence, the cost of generating the
data for surrogate function can be expressed as

𝑇𝑜𝑡𝑎𝑙𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 10𝑛 𝑡 (3.1)

where 𝑛 is the number of estimated inputs and 𝑡 is the run time for the function. The runtime can
thus be reduced by decreasing the number of estimated inputs.

In the creation of the surrogate function an optimum graph can be used which helps to reduce the
number of runs that are required to build the surrogate model. An example can be described in the
figure 3.4 given below. For the function D3, the number of inputs is quite high. With the addition of the
function D2 a surrogate of the combined functions, D3 and D2 can be created. This combined function
has a lower number of estimated inputs. Thus, the idea which forms the base for the optimum graph
is that the computational cost to build the surrogate function can be reduced by combining functions
together and creating a surrogate for the combined functions.

In order to make the selection of the functions to be run together with the target surrogate function,
four algorithms were hence developed.

1. Brute-force

2. Function combinations

3. Topological method

4. Adjacency method

One of the primary parts of the algorithm is a command available within KADMOS for function
sequencing in FPG. The specific sequencing command applied in KADMOS is the single-swap. The
sequencing arranges the function in a manner that reduces the number of feedback inputs required.
Example of feedback are variables s4 and s in fig 3.4.

The details for the different algorithms are given below:
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Figure 3.4: Validation case

3.3.1. Brute-force
Brute-force algorithm is the most basic approach which traverses through all the possible sub-graphs
which includes the target surrogate function. The order of the functions in the sub-graph is also deter-
mined through permutation. The valid solutions are filtered from the total possible solutions. To identify
a valid solution, the target surrogate function needs to present in the sub-graph obtained. In order
to reduce the computational effort an additional filter is added which categorises the target surrogate
function based on its functional role.

Since the brute force method is extensive in its search for solutions, it serves as a benchmark
against which the other algorithms can be checked further on.

3.3.2. Function combinations
The brute force method while accurate had a low computational limit where it could handle a graph
with very few functions. This is since the time required would scale proportional to the factorial of the
number of functions. A second alternative method was thus implemented based on the combinations
of the various functions in the graph. The computational time for this algorithm scaled exponentially as
opposed to the brute force method which scaled in a factorial manner. Thus the limit of the number of
functions was increased. The algorithm implemented is thus presented below.

3.3.3. Topological method
While the combination method provides a faster method, it has a limited application since the com-
putational effort rises exponentially with the number of functions in the MDO problem. The topo-
logical method is based on the topological sort algorithm presented in [39] and can be applied to a
larger function group than the combination method. A requirement for the application of the command
all_topological_sorts from NetworkX is that the input graph has to be a directed acyclic graph (DAG).
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Algorithm 1 Brute force
1: Get function order
2: Remove post-coupled functions
3: Find the function category
4: if Function category = pre-coupling then
5: Remove post-coupling and coupled functions
6: Create permutations of the functions
7: if Target function in permutation then
8: if Function not linked to target function then
9: Remove function

10: end if
11: end if
12: Evaluate the function sub graphs obtained
13: Return estimated inputs, run times and function orders
14: end if
15: if function category = coupled then
16: Remove post-coupling function
17: Repeat steps 6 - 13
18: end if

Algorithm 2 Fuction combinations
1: Get dependent functions
2: Find the target function category
3: if Function category = pre-coupling then
4: Get main sub-graph with dependent functions and target function
5: Apply topological sort to main sub-graph to obtain topological function order
6: for Each combination in function combinations do
7: Get sub-graph for function combination
8: for Function in sub-graph do
9: if Function not linked to target function then

10: Discard combination
11: else
12: Arrange functions according to topological function order
13: Evaluate the function sub graphs obtained
14: Return estimated inputs, run times and function orders
15: end if
16: end for
17: end for
18: end if
19: if Function category = coupled then
20: Get sub-graph with dependent functions
21: Get function combinations
22: for Combination in function combinations do
23: if Function not linked to target function then
24: Discard combination
25: else
26: Arrange functions through single-swap function order for minimum feedback
27: Evaluate the function sub graphs obtained
28: Return estimated inputs, run times and function orders
29: end if
30: end for
31: end if

Thus, the feedback couplings in the graph are removed before applying the all_topological_sort com-
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mand. The solutions obtained by topological sort were sensitive to the density of the graph and the

Algorithm 3 Topological method
1: Get dependent functions
2: Create sub-graph based on dependent functions
3: Get function graph from sub-graph
4: Get variable coupling dictionary
5: Build source and target dictionary of functions
6: Find the function category
7: if function category = pre-coupling then
8: Reverse edge directions
9: Apply branching to the directed acyclic graph

10: Reverse edge directions
11: Get zero in-degree nodes
12: if Zero in-degree nodes < 8 then
13: Apply all topological sorts
14: Evaluate the function sub graphs obtained
15: Return estimated inputs, run times and function
16: else
17: Solution not possible, too many in-degree nodes
18: end if
19: end if
20: if function category = coupled then
21: Get best possible function order with single-swap ( minimum feedback is calculated based on

number of unique variables in feedback)
22: Remove feedback edges of sub-graph to create DAG (directed acyclic graph)
23: Remove functions not a source of target function
24: Repeat steps
25: end if

location of the function within the graph structure, thus, the method was unreliable although effective
for some cases.

3.3.4. Adjacency method
The major task in the four algorithms is to find a sub-set graph of the complete graph. While this graph
has to be evaluated based on the number of estimated inputs and the total run-time to calculate the
objective. In the adjacency method, to find these connected subsets, an algorithm developed by Luo
et al. [44] has been used through a modification. The original algorithm is developed for an undirected
graph to find all the possible connected subsets given a root function, which in the current case would
be the target function. The KADMOS graphs are directed hence the algorithm had to be modified to
function for direct graphs as inputs. The computational cost for the algorithm is proportional to the
square of the number of functions which makes it suitable for cases with large number of disciplines.
The pseudo-algorithm for the method is given below.

3.4. Algorithm testing
Validation and verification tests are performed on the algorithms developed which have been presented
in this section. Finally, the ability of the algorithms to scale up is also shown, in the performance
evaluation. The scaling up ability indicates the limits of the various algorithms developed in terms of
the time required to evaluate.

3.4.1. Validation
The application of the various algorithms is tested though the case presented in figure 3.4. The problem
setup is as follows:

• A,B, D1, D2, D3 and F represent function blocks.
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Algorithm 4 Adjacency-method
1: Get dependent functions
2: Create sub-graph based on dependent functions
3: Get function graph from sub-graph
4: Find the function category
5: if function category = pre-coupling then
6: Set initial values
7: 𝐺 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑝ℎ
8: 𝑅, 𝑉𝑐𝑎𝑝 = 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
9: Run FindConnectedSubsets routine with the initial values

10: Reorder connected subsets using topological order of function graph
11: Evaluate the function sub graphs obtained from the connected subsets
12: Return estimated inputs, run times and function orders
13: end if
14: if function category = coupled then
15: Get best possible function order with minimum feedback ( minimum feedback is calculated

based on number of unique variables in feedback)
16: Remove functions after surrogate function in function order
17: Remove feedback edges to create DAG
18: Create function graph
19: repeat steps 6 − 11
20: Return estimated inputs, run times and function orders
21: end if

• D3 represents the target function block.

• The variables x1, z1 and z2 are the design variables.

• Variables a, b, y6, y7 and y8 represent non-variable function inputs. These are considered con-
stant.

• The variables y9, y4, y3 and f are individual function outputs.

• The rest of the variables are referred to as the coupling variables. These are exchanged between
the different functions.

• Lastly, the variables s4 and s, while being coupling variables, are also feedback variables.

The brute force optimum solution is given in figure 3.7. The number of coupling inputs to the function
D3 is ten. For the sub-graph which can be used to build a surrogate of D3, the number of estimated
inputs is reduced to 5. To calculate the objective value the run times of the individual functions are used
which are given in table 3.1.

Table 3.1: Run times of the functions in the validation case

Function Run time
A 2
B 4
D1 10
D2 20
D3 100

The objective value for the best solution can be calculated as

𝑜𝑏𝑗 = 10 ∗ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (3.2)

which comes out to be 6800, the value obtained in the figure 3.7 for the best solution.
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The adjacency method makes use of modification within a previously available algorithm. The
validation is thus done in 2 parts. First, the modified adjacency method is checked for the accuracy on
a directed graph since it was originally designed for an undirected graph. This is followed up with the
test on the sample case on which all the algorithms are validated.

Two test cases for the directed graph adjacency algorithm are shown in figures 3.5 and 3.6. The
set of solutions which are obtained for case 1 are given below represent the exhaustive set of solutions
for this case.

• (5)

• (4, 5)

• (3, 4, 5)

• (4, 5, 7)

• (8, 4, 5, 7)

• (8, 9, 4, 5, 7)

• (3, 4, 5, 7)

• (8, 3, 4, 5, 7)

• (3, 4, 5, 7, 8, 9)

For case 2, from among the solutions obtained, the case [5,4,10,3,8] is neglected as is expected
of the modified algorithm. This is since the modified algorithm can only traverse in a direction which is
opposite to the direction of the edge.

The two cases hence display the validity of the modified connected subset function used in the
adjacency algorithm.

Figure 3.5: Adjacency algorithm modification to find connected subsets for directed graphs (case 1)

3.4.2. Verification
Brute force solution serves as a basis for verification of the results obtained from the combination,
topological sort and adjacency methods. In table 3.2 the comparison is done for the case of problems
consisting of up to 8 disciplinary tools. The variable complexity script created previously has been used
for generating cases based on a varying number of connections between the function nodes.

In a successful evaluation, the method is able to find the best possible solution which has also
been determined by the brute force method. In certain cases, the methods are unable to give the best
possible solution and are hence counted as the error cases. In the unresolved cases, the computational
time of the method exceeds beyond 300 seconds and hence there is no valid solution obtained in such
cases.

The results indicate that while the topological method is promising, the reliability of the adjacency
method is higher making it a more suitable algorithm.
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Figure 3.6: Adjacency algorithm modification to find connected subsets for directed graphs (case 2)

Figure 3.7: Brute force solutions with the best solution marked

3.4.3. Performance
The performance of the algorithms refers to the time taken to find solution. Continuing the use of
variable complexity problem graphs, time is measured for the graphs generated with varying number
of disciplines. A random target surrogate function is selected from the graph generated. Based on
this target surrogate function, the time taken to find an optimum surrogate graph is calculated for the
different algorithms. The resulting time chart is shown in figure 3.9 given below.

The topological method and the adjacency method, both can be scaled up to a high number of
disciplines. However, the unreliability of the topological method seen in the verification section is also
visible in the time distribution. For a particular number of disciplines, for example at 15, the time taken
varies for the different graphs generated and for every target surrogate function. The distribution for
the adjacency method is more uniform.
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Figure 3.8: Solutions obtained from combinations, topological and adjacency methods compared with brute force solutions

Table 3.2: Verification of topological, combination and adjacency method against brute force method

Method Successful evaluation Error percentage Unresolved percentage
Topological 92.4 1 6.6
Adjacency 99.3 0.7 0

Figure 3.9: Time performance comparison for the 4 methods
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MDO formulation

The purpose of the surrogate modeling method developed previously in this work has been to enable
Multidisciplinary Optimization (MDO) with reduced computational effort. The problem that we want to
study using MDO still needs to be defined. Various factors are taken into account when constructing an
MDO problem. The MDO problem that is to be solved in an MDO exercise is of the form given below
as shown in de Weck et al. [11]. It indicates the various factors within MDO.

𝑠.𝑡 𝑔(𝑥, 𝑝) < 0, ℎ(𝑥, 𝑝) = 0

(4.1)
The objective is represented by the function f which has to be optimized based on the design vari-

ables x to find a minimum value. The variables p remain constant in the operations and represent
values such as material density, fluid viscosity, etc. The values for the design variables are bound by
the upper and lower limits specified through 𝑥 , and 𝑥 , . The functions 𝑔 and ℎ represent inequality
and equality constraints. The objective function f is a simplified representation of the analysis per-
formed to calculate the objective value. In MDO, this objective value is obtained by evaluation through
multiple disciplines. In order to present the MDO problem thus a description of the individual analysis
tools as well their non-variable parameters (represented by p) is given in section 4.1.

4.1. Analysis Tools
An overview of the tools available from the repository is given previously in table 1.1. These are the in-
house tools developed at TU Delft. The calculation methods employed in the analysis tools are useful
in understanding the design that is arrived at. This is since the tools are modified for application in the
current case.
Q3D: The Q3D tool ( Quasi 3 dimensional), is based on the integration of 2-dimensional analysis tools,
AVL, XFOIL, and VGK. Q3D is run in twomodes - viscid and inviscid.In the inviscidmode, the tool makes
use of AVL. AVL is based on the vortex lattice method and can provide accurate load distribution on
the wing for the subsonic region. Additionally, compressibility corrections have been applied in AVL to
extend the capability to flows with weak shocks.

In the viscous mode, the tools makes use of a combination of XFOIL and VGK tools. In the current
analysis, the tool was further modified. The multidisciplinary optimization requires iteration to create a
converged design due to the coupling between the different tools.Previously, Q3D made use of VGK to
solve for compressible flows. However, VGK has difficulties in convergence at lift coefficients 0.58 and
higher. Since the initial point obtained from literature was very close to this limit, Q3D was modified to
function using XFOIL and avoid the limitation of VGK.

If we look at the drag coefficient breakdown as explained in Roskam [62], the different components
are:

23
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𝐶 , = 𝐶 , + 𝐶 , (4.2)

𝐶 , = 𝐶 , + 𝐶 , (4.3)

In Q3D while 𝐶 , (drag coefficient due to lift) and 𝐶 , (zero-lift drag coefficient) are com-
puted using AVL and XFOIL, the wave drag (𝐶 , ) is computed using VGK. As a result, the wave
drag component from the total drag could not be computed by Q3D itself and hence a constant wave
drag coefficient of 0.0022 to the total drag coefficient was added. The value of 0.0022 was chosen
as a percentage of the overall drag. From aircraft similar to D-150 which fall under the category of
commercial transport jet, the historical value of wave drag percentage was used. The additional effect
of this simplification was that sweep was removed from the design variables. This was since sweep is
a factor which affects wave drag.
EMWET : EMWET was developed with the specific purpose of application in MDO. Hence, the eval-
uation times for EMWET are low. It works via a two step process. In the first step, based on the
aerodynamic loads, the wing box weight is estimated. Analytical methods are used for this purpose. In
the second step using a correlation obtained from simulations for different aircrafts, the complete wing
weight is obtained. The correlation between the wing box weight and the total wing weight is as follows:

𝑊 = 10.147𝑊 . (4.4)

where𝑊 is the total wing weight and𝑊 is the wing box weight. The material used within EMWET
is aluminium 2024 alloy.

PROTEUS: PROTEUS functions as an aeroelastic tailoring tool. The application of composites for
the advantages rendered by aeroelastic tailoring to achieve performance objectives was the primary
driving force behind the development of PROTEUS. While the studies did previously were able to study
specific responses in the wing due to the presence of composites. PROTEUS served as a preliminary
design tool with the ability to perform static and dynamic aeroelastic analysis. The optimization routine
combined with the analysis outputs minimizes the wing weight within the structural constraints set by
strain and buckling.
Besides the primary aerodynamic loads due to air, non-structural masses (fuel and engine) are included
in the calculation of loads on the wing. EMWET also considers the non-structural masses of fuel and
engine weight and thus allows for a better comparison between the optimizations performed by the two
tools.
Even though the PROTEUS tool successfully calculates the wing box weight, in its application to MDO
an addition of secondary weight to the primary wing weight is required to calculate the complete wing
weight. Hence, the correlation used between the wing box weight (primary wing weight) and the com-
plete wing weight in EMWET, is extended for use in PROTEUS. So the relation 4.4 is used in calculating
the complete wing weight using PROTEUS.
SMFA: The SMFA tool calculates the fuel for themission based on the Brequet range equation. It makes
use of the aerodynamic coefficients (𝐶 and 𝐶 ) at cruise conditions. Additionally, SMFA assumes the
cruise condition fuel requirement as a fraction of the total fuel mass. This is to accommodate the other
segments of the flight mission which include, take-off and landing, taxi, takeoff, climb, and descent.

𝑒𝑥𝑝 = 𝑅𝑎𝑛𝑔𝑒𝑆𝐹𝐶/(𝑠𝑝𝑒𝑒𝑑 , ,
,

)

𝑓𝑢𝑒𝑙 𝑚𝑎𝑠𝑠 = (1 − )𝑀𝑇𝑂𝑊
(4.5)

Though the aerodynamic coefficients are obtained from Q3D and calculated for each design point,
the wing-less aircraft drag (𝐶 , ) is assumed constant. 𝐶 , was calculated from data available for
an aircraft similar to D-150 which is the airbus A-320. The wing-less aircraft drag consists of the skin-
friction drag and hence based on an estimate of the surface area. To calculate the wing-less aircraft
drag, the following calculations are used.
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𝐴 = 𝐴 + 𝐴
𝐷 = 𝐶 𝑞

𝐶 , = 2
(4.6)

The wetted area of the rest of the aircraft 𝐴 is obtained based on the total wetted area 𝐴 obtained
from figure 40.17 in Obert [51] which presents the friction coefficients of various aircrafts along with the
total wetted area. The drag coefficient 𝐶 𝑊𝐴 obtained in this manner is used for the calculation of fuel
as shown in eqn 4.6.

MTOW: TheMTOW tool simply adds the weights obtained from the analysis and gives themaximum
take-off weight (MTOM) and the zero fuel mass (ZFM). It consists of the folowing equations:

𝑀𝑇𝑂𝑀 = 𝑚𝑊𝐴 +𝑚𝐹𝑢𝑒𝑙 + 𝑚𝑊𝑖𝑛𝑔𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
𝑚𝑍𝐹𝑀 = 𝑚𝑊𝐴 +𝑚𝑊𝑖𝑛𝑔𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (4.7)

where mWA, mFuel and mWingStructure represent the wingless aircraft mass, fuel mass and the com-
plete wing mass respectively.

4.2. MDO problem
In order to perform the design study, the D150 aircraft configuration is used as the base model which
acts as an initial point.The D150 aircraft is representative of an Airbus A320 class aircraft.
The selection of the objective is such that the factor is affected by multiple design disciplines in an
inverse manner leading to a situation where compromise has to be made between multiple tool output
values. In the current case, to reduce fuel weight is pursued as an objective. The design variables
used in the optimization are given in table 4.1 along with the upper and lower bounds.

Table 4.1: Design variables with their upper and lower bounds.

Design variable Upper bound Lower bound
Aspect ratio 13 8

Taper ratio 1 (𝜆 ) 0.8 0.5
Taper ratio 2 (𝜆 ) 0.4 0.2

Span(m) 37 30

Table 4.2: Constraints employed

Constraints
𝑉 < 𝑉

(𝑊/𝑆) ≤ (𝑊/𝑆)

Table 4.3: Load case for the EMWET based optimization.

LC (Load case) Mach No EAS(m/s) Load factor H(m)
1 0.78 125 2.5 11000

Two constraints used in the design are also included (table 4.2. The first constraint limits the fuel
volume to be less than the available volume within the wing. The wing loading constraint limits the
amount of run-way length required. Thus, the aircraft can take-off and land from standard runways.

While the design variable and the constraints remain similar for the composite design case, the
loadcases applied are different. This is due to the ability of PROTEUS to consider multiple loadcases
in the design of a composite wing. The loadcases applied in the case of design using PROTEUS is
given in the table 4.4 below.
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Table 4.4: Load cases for the PROTEUS based optimization.

LC (Load case) Mach No EAS(m/s) Load factor H(m)
1 0.74 155 -1 7500
2 0.89 185 2.5 7500
3 0.89 143 1 11000

Figure 4.1: N2 chart for EMWET based MDO problem

Figure 4.2: N2 chart for PROTEUS based MDO problem

An easier representation of the MDO problem for the two cases is provided in terms of the N2 chart.
This representation is done in figures 4.1 and 4.2.

In order to complete the description of the MDO problem the reference values for the D-150 con-
figuration are presented in table 4.5. The operating values of design range, mach cruise and cruise
altitude remain constant throughout the optimization. Additionally, since D-150 is an open source con-
figuration, it can be used in further studies based on the surrogate modeling methodology present in
this report. It serves as the common baseline configuration.

4.3. MDO workflow
The previous sections develop the MDO problem in terms of the inputs and outputs of the various tools
to minimize the objective which is fuel. In order to execute this MDO problem, the automation capability
provided by KADMOS is used to create the executable workflow files. The outputs obtained can be
visualized as XDSM graphs. The MDO problem is formed into a fundamental problem graph (FPG).
With the knowledge of FPG, suitable computational architecture can be added to obtain the MDAO
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graph. The process is presented in section 3.1 and can be revisited for reference.

4.3.1. EMWET based
The EMWET based workflow is representative of the metallic wing optimization. In order to perform the
optimization, an optimization framework has to be superimposed upon this problem. For the current
work, the analysis is limited to the use of a single framework which is the𝑀𝐷𝐹−𝐺𝑆. With this framework
superimposed upon the FPG, the resulting executable workflow can be seen in the figure given below.
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Table 4.5: D150 reference values from Gu et al. [27]

Parameter Value Unit
Design range 4000 km
Mach cruise 0.78 -
Wing span 33.74 m

Reference area (𝑆 ) 463.2 𝑚
Cruise altitude 10668 m

4.3.2. PROTEUS surrogate based
In order to construct the PROTEUS surrogate based framework, intermediate workflows were imple-
mented which have been presented in this section along with the resulting final workflow. A flowchart
showing the steps to perform the composite optimization using PROTEUS is shown in figure 4.3. An
additional step is added in order to include the deformation of the wing in flight mode. This addition to
the geometry allows a more accurate estimate of the aerodynamic coefficients using Q3D.

Building PROTEUS surrogate
As presented earlier surrogate modeling is an estimation problem and hence data needs to be gener-
ated which can be used to create a model representative of the tool. The development of the optimum
surrogate graph strategy supports the development of the surrogate due to the run time for PROTEUS.
In the current study, the time taken is higher than 24 hours for single PROTEUS simulation. Using the
surrogate modeling methodology, the design of experiments (DOE) workflow created is shown in figure
4.4.

The workflow thus developed is used to generate PROTEUS data based on Latin-hypercube sam-
pling McKay [48]. The purpose of using Latin-hypercube sampling is to get an even distribution over
the design space. An overview of Latin-hypercube sampling is provided in Queipo et al. [59]. Since,
there are 4 design variables along with 2 variables from the couplings, 60 ( 10 design points for every
additional input variable) samples obtained. The variable range for the data sampling is the same as
the range for the MDO problem in the case of the design variables. For the other two variables, a range
is estimated based engineering estimate for aircraft of the A-320 class. The design range for these two
variables is provided in table 4.6.

Variable upper bound lower bound
Fuel weight 15000 7000

Max take-off weight 70000 55000

Table 4.6: Upper and lower limits for the additional input variables in the creation of PROTEUS surrogate

The consequent surrogate model developed is evaluated for its accuracy. For this purpose, the
k-fold validation method is implemented. The advantage of using k-fold validation is to reduce bias in
the model. The accuracy is measured for multiple subsets of data obtained from the overall set. Thus,
all the data can be used for training and testing purposes. The error for the various cases is calculated
using the root mean square error (RMSE) 4.8.

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑐𝑖𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙 )

𝑁 (4.8)

The root mean square error in wing weight is given in figure 4.5 for the possible cases in a k-fold
validation.

Wing aeroelastic deformation
For the steady state flight, the aircraft wing deflections due to aircraft loads can be obtained from PRO-
TEUS which was not possible for EMWET. In order to obtain the deflections, the laminate distribution
obtained for the optimized design points is used. The resulting deflected shape is analyzed using Q3D
viscous mode in order to create a surrogate version for the aerodynamics analysis.

The aeroelastic analysis with the deformed shape can be explained in two steps with the figurative
representation in figure 4.6.
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Figure 4.3: Overview of the relation between surrogate modeling and surrogate based MDO. (* - represents the modification
done to the training data to include 1-g deformation in cruise condition)

Figure 4.4: The workflow for generating the PROTEUS surrogate data
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Figure 4.5: Error values for k-fold validation cases

1. In the first step, the optimized laminate distribution is obtained. This represents the previous
section where the design of experiments is performed over the design space. Along with the
wing weight, the corresponding optimized laminate distributions are obtained as well.

2. In the second step, the optimized laminate distribution is used as an input to PROTEUS. As a
result when the steady state cruise loads are applied the deflections are calculated using the
optimized laminates. These deflected shapes are used as input to Q3D viscous analysis which
calculates the aerodynamic coefficients for the modified shape.

(a) Creation of the surrogate data
(b) Processing the optimized data to obtain the aerodynamic coefficients

for deflected shapes

Figure 4.6: Steps to obtain deformed wing shape aerodynamic coefficients

With the resulting aerodynamic coefficients data, a surrogate model for the aerodynamic analysis is
used in place of the Q3D analysis. This interpolates the aeroelastic analysis over the design space and
thus approximates the passing of the deflected shape from PROTEUS to Q3D. For the surrogate model
created the accuracy of the models is estimated using the k-fold validation method. The percentage
error for the various cases of validation is given in figure 4.7.

The average error for the Q3D surrogate model and the PROTEUS model is summarized in table
4.7.
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Building PROTEUS based MDO
The objective of creating the PROTEUS surrogate was for implementation in the MDO workflow. Upon
replacing the PROTEUS and Q3D functions with the surrogate function we obtain the MDO workflow
on the next page.

This represents the executable form of the original MDO problem which was discussed in section
4.2. The final executable file in the form of the CMDOWS format is based on this workflow and run via
the openMDAO platform.

Thus, the construction of the two workflows necessary for the study is presented until now. With
the construction of the PROTEUS based MDO workflow and the EMWET based workflow, the focus
can then be shifted towards the validation of the surrogate based workflow for PROTEUS and the
optimization outputs generated.
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Figure 4.7: Percentage error

Analytical tool Interpolation model Average Error

𝑃𝑅𝑂𝑇𝐸𝑈𝑆 Kriging Root mean square
77.68 kgs

𝑄3𝐷∗ Kriging
Percentage error

𝐶 1.01
𝐶 3.91

Table 4.7: Average errors for the surrogate models created

4.4. MDO workflow validation
The workflow created for the MDO problem needs to be tested for the accuracy of the analysis per-
formed by the design tools. This verification helps to make sure the modeling parameters of the tools
are correct along with the exchange of values between the various tools. The aircraft case for which
the MDO problem is formulated is the D-150 and thus the same configuration is used for the multidis-
ciplinary analysis (MDA).

The resulting analysis values are presented in table 4.8. In the table the values are compared with
a similar analysis performed by Gu et al. [28].

Mass(kg) Conceptual VLM (% ) Euler-CFD(%) Q3D-EMWET (%)
MTOM 76168 −2.5 5.9 −1.4
MFM 13142 −12.9 29.1 20.2

Table 4.8: Multidisciplinary analysis of the Q3D-EMWET based system compared to previous data.

The higher fuel consumption in the case of Euler-CFD analysis is due to the overestimated wave
drag as has been explained by the author in Gu et al. [28]. For the case of Q3D-EMWET, since the
wave drag estimation is modeled, the value of the constant magnitude wave drag was thus set to a
value to emulate the Lift/drag ratio of a commercial jet. A reference for the various Lift/drag is provided
in the text by Obert [51]. A constant value is thus set for the wave drag coefficient. The resulting
aerodynamic parameters for the initial design point are presented in table 4.9 along with the reference
data from the literature. One cause of the difference between the values is due to the difference in the
ways the D-150 geometry is used. In the case of the reference, an initial geometry is generated using
VAMP zero . This thus creates a wing design with differences in geometry parameters to the one used
in the current study. The higher lift coefficient results in a higher lift induced drag and thus a higher
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overall drag. This is also the cause for the comparatively higher maximum fuel mass for Q3D-EMWET
in table 4.8.

Conceptual VLM Euler-CFD Q3D-EMWET
𝐶 0.584 0.562 0.622 0.629
𝐶 0.0304 0.0271 0.0451 0.0334

Table 4.9: Aerodynamic coefficients of the Q3D-EMWET based system compared to previous data.

The additional parameter of comparison for the case in the wing weight estimation which compared
to the wing weight for an aircraft similar to the D-150. In this case, the Airbus A320-200 data is used
from Obert [51].

The wing weight for the airbus aircraft is given as 8801 kg while the weight obtained using EMWET
in the current analysis is 9311 kg. The difference in weight is 5.7 % and thus gives confidence in the
modeling parameters for the EMWET tool used for metallic weight estimation.

The comparison of the values obtained for the various tools used in the analysis thus indicates
that the modeling parameters are thus sufficient to analyze the various design points which would be
obtained while the optimizer searcher for an optimum design.





5
Results and Discussion

While the results in the previous sections presented the development of the framework, the focus now is
towards the insights made available by the application of this framework. The optimizations performed
using the EMWET based workflow and the PROTEUS based workflow lead to themetal based planform
and composite based planform respectively. In order to make these optimizations possible, PROTEUS
surrogate was used instead of the physics based version of PROTEUS. Additionally, the cruise defor-
mation of the wing was included. The results for these two designs are further superimposed with a
composite design using PROTEUS. Thus, three sets of results are formed.

1. Intermediate planform optimization

2. Final composite design.

3. Performance of final wing designs

For brevity, further on in the report, the final composite designs obtained via the two workflows are
referenced as D1 and D2. D1 will be used for the composite design which is obtained after superimpos-
ing the composite design on intermediate planform obtained by the metal based workflow. Similarly,
D2 will be used for the composite design obtained after superimposing the composite design on the
intermediate planform obtained by the PROTEUS surrogate based workflow.

5.1. Tool sensitivity
The normalized tool outputs are generated for sensitivity plots. By varying a single input design variable
from the lower bound to the upper bound the corresponding outputs were obtained. These bounds are
used as defined in the MDO problem. Hence, two sets of sensitivity plots are obtained, one for each
optimization and shown in figure 5.1a and figure 5.1b.

(a) Metal based design sensitivities (b) Composite based design sensitivities

Figure 5.1: Plots of sensitivity for the composite and metal based design
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The main indication to read from the graphs is the magnitude of change which occurs for the design
variables. The increase or decrease in the design variable indicates the direction in which the optimizer
is expected to move to find the optimum. Thus, in the wing optimization results, these changes are
referred to check if the optimum is correct.The physical explanation for the sensitivity graph can be
looked at for each design variable.

In the case of length, an increase indicates a more slender wing (higher aspect ratio) which causes
the induced drag to reduce. However, after a certain point, the increase in wing weight negates the
reduction in drag due to a higher aspect ratio.

The aspect ratio, based on the relation with induced drag, indicates a reduction in overall fuel mass
due to an increase in aspect ratio.

5.2. Wing optimization
The optimizations performed using the EMWET and PROTEUS based workflows are discussed in this
section. The differences caused in the planform design can be attributed to a difference in sensitivities.
The tool sensitivities have hence been presented in the previous section which gives an understanding
of how the initial design changes to achieve the optimum. The optimum planforms obtained using
EMWET and PROTEUS surrogate have been shown in figure 5.2 along with the baseline design for
comparison.

The primary difference between the two designs is present in terms of the aspect ratio. The com-
posite wing is able to achieve a higher aspect ratio which can be attributed to the higher strength to
weight ratio of the composite wing. It is hence able to carry the aerodynamic loads with a wing weight
increase which does not negate the drag reduction benefits.

Figure 5.2: Baseline(Blue), metal(red) and composite (green) optimized wings.

For the individual design variables, the increase or decrease in the value of a particular variable is
shown in table 5.1 and table 5.2 for the metal and composite designs respectively. The change is in
agreement with the sensitivities in figure 5.1.

The convergence of the optimized design shown for the two cases in figures 5.3 and 5.4 displaying
the objective, constraints and design variables. The optimized design is affected by the design bound-
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Table 5.1: Initial and optimized design variables for metal design

Design variable Initial Optimized Change
Length 16.95 21 ↑

Aspect ratio 9.39 10.2 ↑
𝜆 0.617 0.67 ↑
𝜆 0.246 0.20 ↓

Table 5.2: Initial and optimized design variables for composite design

Design variable Initial Optimized Change
Length 17 20.38 ↑

Aspect ratio 12.5 11.5 ↓
𝜆 0.85 0.79 ↓
𝜆 0.45 0.20 ↓

aries in case of metal design with the length reaching the maximum value. The constraints remain
inactive in the case of metallic design optimization.

In the case of the composite design while the design length value remained within the allowable
design range the design was affected by the constraint value on the wing loading which was unsatisfied
in case of the initial design. As a result, the optimizer moved towards a lower aspect ratio and thus
satisfying the wing loading constraint. A further increase in length creates a higher aspect ratio. As a
result, the length of the composite wing is shorter than the metallic wing.

The length and aspect ratio parameters display similar tendencies with a positive increase asso-
ciated with a decrease in fuel weight. The composite wing, however, does have a noticeable higher
aspect ratio which can be attributed to the use of composites. The magnitude of length is lower in
composite wing compared to the metal wing,since a further increase would lead to an increase in wing
weight and hence an increase in fuel consumption. While the taper ratio in the case of the metallic
wing has a predictable sensitivity, the sensitivity in the case of the composite wing is dependent on the
initial design. The taper sensitivity in the case of composite design is different based on the design
point around which it is calculated. In order to choose the best design, hence, the one with the best
fuel efficiency is chosen with a different initial design point set for each case.

5.3. Wing composite superimposition output
Once the planform designs for the metal based workflow and the composite based workflow are ob-
tained, the final step in the methodology involves the superimposing the composite design upon the
wing. This effectively means, the planform shape obtained is designed as a composite wing using
PROTEUS. Since PROTEUS performs an optimization, the final design supersedes the previous de-
sign similar to a sequential optimization process.The resulting structural design is presented in terms
of 4 properties by PROTEUS.

1. Buckling index

2. Strain index

3. Stiffness distribution

4. Laminate thickness

Strain and buckling index values represent normalized values with respect to the maximum allow-
able strain and buckling. Thus, the wing region with an index value of 1 represents strain and buckling
critical regions. The structural properties of thickness and stiffness determine the wing design since
they are used as inputs in order to determine the stacking of the laminates.

Metal superimposed composite
The metal superimposed composite designs will be referred to as D1 further on in the report. As
described previously, the design output produced from PROTEUS is shown based on the 4 structural
properties. The different loadcases create the loading conditions needed to evaluate the stresses.
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(a) Taper 1 (b) Objective

(c) Taper 2 (d) Length

(e) Aspect ratio (f) Constraint 1

(g) Constraint 2

Figure 5.3: Optimization convergence for design variables of metal based design
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(a) Taper 1 (b) Objective

(c) Taper 2 (d) Length

(e) Aspect ratio

(f) Constraint 1 (fuel volume tank volume

(g) Constraint 2 (Wing loading limit)

Figure 5.4: optimization convergence history for composite wing design
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Several observations can be made for the design D1.

1. The buckling indices are presented in figures 5.5 which indicate that the indices are higher on
the top-skin. The resulting aeroelastic tailoring can be observed for the out of plane stiffness
distribution of the top skin in figure 5.8. Due to a comparatively lower buckling critical region, the
lower-skin indicates a lack of in/out of plane stiffness distribution.
While it can be argued that the thickness could be reduced for the lower-skin in order to create
aeroelastic tailoring and thus reduce weight, the in-plane stiffness does not allow to do so. The
lower skin is dominated by strain critical regions created due to load condition 2. Since the in-
plane and out-of plane stiffness are not independent of each other the wing is tailored for the
dominant strain critical regions through in-plane stiffness.

2. The strain failure index is active for both the top and lower skin. The strain critical regions if com-
pared to the buckling critical regions show a larger region of impact. As a result, the aeroelastic
tailoring in figure 5.8 shows in-plane stiffness which is oriented along the wing.

3. While the in-plane stiffness does align itself to cater to the strain critical regions, an additional
effect is also created. The in-plane stiffness is oriented in the forward direction. Such a stiffness
distribution creates a response resulting in wash-out at the wing tips. The reason for the optimizer
to do this is to shift the aerodynamic center towards the wing root and thus reduce the bending
moment in the outer regions. The reduced bending moment allows for a lighter wing.

4. The thickness of the wing presents an additional effect that the aeroelastic tailoring produces.
The thickness of the wing shown in figure 5.8 is higher in the front part of the wing as compared
to the rear. Such a shift in thickness is present in the top and lower skin with a more pronounced
effect in the lower-skin. The front spar also has a higher thickness as compared to the rear spar.
This forward shift in thickness moves the elastic axis of the wing forward and thus creates an
additional wash out effect moving the aerodynamic center towards the wing root and reducing
wing load at the wing tip.

5. While the thickness in the forward spar is higher than the rear spar in the rest of the wing, at the
root we see a reverse trend. This is explained by the strain failure index comparison of the front
and rear spar at the root. The strain failure constraint is active in the rear spar. Thus, in order to
achieve the required strength, the optimizer increased the thickness at the root for the rear spar.

Composite design
The composite design is obtained from the superimposition of composite structure on PROTEUS based
planform design. Further on in the report, this design is referred to as D2. The design observations
which were presented for design D1 are also presented for the design D2 further below.

1. In terms of similarities, the critical regions for the different loadcases remain similar in design
D1 and D2. The LC2 creates strain critical region on the top and bottom skin in the D1 and D2
designs alike with as can be seen in figures 5.6 and 5.12. In terms of buckling the failure index
also present a similar effect fro the top-skin and lower skin for the two designs for the loadcases
LC1, LC2 and LC3 based on the figures 5.5 and 5.9 for D1 and D2 respectively.

2. The stiffness distribution in the composite design D2 is dominated by in-plane stiffness which is
shown in figure 5.13a. Since the in-plane and out-plane stiffness cannot be modified indepen-
dently of each other the aeroelastic tailoring for out-plane stiffness is limited. The influential factor
for the in-plane stiffness is observed from the strain failure index for LC2 in figure 5.11b. It shows
that the top and lower skin are both dominated by critical index values which are not presented in
the loadcases LC1 and LC3. Thus, LC2 can be considered as the major design driving constraint.

3. The thickness distribution in the design D2 creates similar load alleviation conditions as the design
D1 with the shifting of the wing thickness towards the front as compared to rear in the top and
rear skin.

The observation of the results presents that the two designs D1 and D2 have certain differences
and certain similarities. While there is a difference in the magnitude of the parameters, the patterns for
stiffness distribution and thickness can be considered to be similar.
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(a) Buckling index - locadcase 1

(b) Buckling index - locadcase 2

Figure 5.5: Buckling index for the different loadcases used in PRTOEUS for design D1.
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(c) Buckling index - locadcase 3

Figure 5.5: Buckling index for the different loadcases used in PRTOEUS for design D1. (**contd)

5.4. Performance comparison
The difference in performance for the two designs dictates the fuel efficiency. Reduction in fuel weight
has the immediate effect of lower operational cost and also emissions in the long run. With the com-
posite design obtained for the two methodologies based on EMWET based workflow and PROTEUS
based workflow, the performance is estimated for the two design in terms of fuel weight. The results
obtained in table 5.3 indicate a greater fuel efficiency for the PROTEUS based design D2.

Table 5.3: Fuel efficiency performance comparison for the designs D1 and D2 based on the two design methodologies

Parameter Initial Metal superimposed (D1) Composite superimposed (D2)
Fuel 15803 14646 14371

Percentage reduction - 7.3% 9.06%
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(a) Strain index -loadcase 1

(b) Strain index -loadcase 2

Figure 5.6: Strain index for the different loadcases used in PRTOEUS for design D1.
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(a) Strain index -loadcase 3

Figure 5.7: Strain index for the different loadcases used in PRTOEUS for design D1.(**contd)
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(a) In-plane stiffness and thickness in design D1.

(b) In-plane stiffness and thickness in design D2.

Figure 5.8: In-plane and out-plane stiffness for design D1.
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(a) Metal based design sensitivities

(b) Composite based design sensitivities

Figure 5.9: Buckling index for different loadcases obtained using PROTEUS for design D2.
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(a) Composite based design sensitivities

Figure 5.10: Buckling index for different loadcases obtained using PROTEUS for design D2.(**contd)
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(a) strain index - LC1

(b) strain index - LC2

Figure 5.11: Strain index for different loadcases obtained using PROTEUS for design D2.
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(a) strain index - LC3

Figure 5.12: Strain index for different loadcases obtained using PROTEUS for design D2.(**contd)
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(a) In-plane stiffness and thickness

(b) Out-plane stiffness and thickness

Figure 5.13: Stiffness and thickness for design D2.



6
Conclusions and recommendations

The work presented in the current thesis leads towards the answers sought for the research questions
developed in the literature study. The results are divided into two major sections, one of KADMOS
functionality and the other of applying the functionality in the design of composite wing which forms the
design study. These are used to make the conclusions and recommendations.

1. The difficulty of using PROTEUS as a tool in optimization studies was established earlier. A sur-
rogate modeling methodology was thus successfully developed as an addition to the KADMOS
functions in order to overcome the computational barrier. The key difficulty found in applying the
surrogate modeling methodology was the selection of an appropriate set of functions from all the
functions. These could then be combined to reduce the computational cost evaluated based on
run time and the number of runs to be made. Four algorithms are developed for this purpose
among which the adjacency based algorithm proved to have the highest accuracy and perfor-
mance requirement. The kriging method is used to model the training data. After the surrogate
model was obtained validation tests were conducted. The validation study indicated the surrogate
model accuracy compared to the original PROTEUS tool for various design points.

2. Using the surrogate modeling methodology design studies were carried out for the PROTEUS
based design while the metal (EMWET) based design was created through the traditional opti-
mization. With the final superimposition of PROTEUS optimization on the intermediate planform
designs the final wing designs D1 and D2 are obtained. The wing optimized composite designs
D1 and D2 display similarities in the distribution of laminates. This is attributed to the similar buck-
ling and strain response obtained in the two scenarios. The majority of the fuel weight reduction
thus occurs from the inclusion of PROTEUS in the optimization workflow to obtain a more efficient
intermediate planform design in terms of planform design variables(length, aspect ratio, 𝜆 and
𝜆 ).

3. The difference in the fuel efficiency for the two designs indicates a reduction in fuel weight for the
wing designed using PROTEUS surrogate methodology. The surrogate methodology thus gives
a better design in terms of fuel efficiency.

Some recommendations can also be listed which present additional studies which can be done.

1. The functionality of creating a surrogate of tool in an MDO study, in KADMOS, can be extended
to different tools other than PROTEUS. This is due to the nature of KADMOS being a common
platform to formulate an MDO problem. In order to be able to extend the methodology an under-
standing of the factors causing errors is needed. These errors are caused by the physics based
tool being replaced by the surrogate based tool. There is hence an uncertainty in the final design
due to these error factors. An evaluation of the uncertainty caused due to the error in surrogate
model can be a possible future study.

2. In the current study, the kriging method was used for modeling the training data with respect to
the design variables. Further studies could hence be done in regards to the differences caused in
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the accuracy due to the various estimated models which can be generated. The artificial neural
network and radial basis functions present two such possible estimation models.

3. The design using the surrogate method presented an advantage in fuel consumption. While
the reduction in fuel is useful, an extra computational effort of building the surrogate model is
required. One possible line of questioning here would be if the computational cost is lower than
the reduction in fuel costs which can be accumulated over the lifetime o the aircraft.

4. The MDO problem itself can be made more representative of real aircraft design through the
inclusion of the PHALANX flight dynamics tool which is already a part the repository of TU Delft.
The tool can be used to evaluate the dynamic flight responses as well include constraints for
situations such as engine failure on take-off and crosswinds.



7
Appendix-A

The interaction between openLEGO and KADMOS has been something attempted for the first time. In
order for future researchers to know firsthand some preliminary knowledge, some o the steps taken up
in the setting up of the complete workflow have been mentioned in the current appendix.

Certain values from the files required for the KADMOS file have to modify it. These are attributes
other than uID which are necessary to run the tools and were previously not compatible with the working
of openLEGO and openMDAO.

• In case of the point list the attribute maptype = vector is required to denote the vector input
in case of the point list required for the aerofoil profiles.

• The description of the wing needs to be done using symmetry attribute, which describes the
plane about the which the wing is similarly generated as the original wing.

• The mode description n of the tools included in the CMDOWS file need to be used to create
separate function files based on the names of the 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒 + 𝑡𝑜𝑜𝑙.

• instances of the variables occurring the inputs and outputs need to added in the variable names
to make sure circular couplings can be included in the final MDO workflow.
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8
Appendix-B

Code to modify the variable complexity problem to obtain increased feed forward coupling in the KAD-
MOS graph. The various representative MDO problems were used as test cases for verification.

# Import modules
import random

def modify_fpg(fpg, n_disciplines, function_order, feedback_ratio):
”””
:param fpg: Fundamental problem graph
:param n_disciplines: Number of function nodes

:param function_order: Sequence of the function within the Fundamental problem graph
:param feedback_ratio: Give the ratio between the number of feed-

forward and feedback coupling nodes
(value x : 1 < x < infinity)
:return:
”””
# add the variables in the coupling
coupling_nodes_dictionary = fpg.get_coupling_nodes_dict()

function_nodes = fpg.get_function_nodes()
function_nodes.remove(’F’)
function_nodes.remove(’G01’)
if n_disciplines > 8:
coupled_functions = fpg.graph[’problem_formulation’][’function_ordering’]

[’coupled’]
for function_idx1 in coupled_functions:

function_idx1_index = function_order.index(function_idx1)
print(function_idx1_index)
function_outputs = fpg.get_targets(function_idx1)

for function_idx2 in function_nodes:
function_idx2_index = function_order.index(function_idx2)
if function_idx2_index < function_idx1_index:

removal_edges = []
addition_edges = []
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# Find if couplings exist between the two elements
try:

num_coupling_nodes = len(coupling_nodes_dictionary[function_idx1]
[function_idx2])

except:
num_coupling_nodes = 0

# if couplings exist
if num_coupling_nodes > 0:

couplings = coupling_nodes_dictionary[function_idx1][function_idx2]
print (len(couplings))
random_coupling_value =

random.randint(1, int(len(couplings) / feedback_ratio) + 1)
sample = random.sample(list(couplings), random_coupling_value)

for coupling in couplings:
removal_edges.append((coupling, function_idx2))

fpg.remove_edges_from(removal_edges)

for sample_element in sample:
addition_edges.append((sample_element, function_idx2))

fpg.add_edges_from(addition_edges)

else:
removal_edges = []
addition_edges = []

if not function_idx1 == function_idx2:
try:

num_coupling_nodes = len(coupling_nodes_dictionary[function_idx1]
[function_idx2])

except:
num_coupling_nodes = 0

if num_coupling_nodes > 0:
couplings = coupling_nodes_dictionary[function_idx1]

[function_idx2]
random_coupling_value = random.randint(1, len(function_outputs))

sample = random.sample(list(function_outputs)
, random_coupling_value)

for coupling in couplings:
removal_edges.append((coupling, function_idx2))

fpg.remove_edges_from(removal_edges)

for sample_element in sample:
addition_edges.append((sample_element, function_idx2))

fpg.add_edges_from(addition_edges)

else:
for function_idx1 in function_nodes:

for function_idx2 in function_nodes:
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removal_edges = []
addition_edges = []

if function_idx1 < function_idx2:
try:

num_coupling_nodes = len(coupling_nodes_dictionary[function_idx1]
[function_idx2])

except:
num_coupling_nodes = 0

if num_coupling_nodes > 0:
couplings = coupling_nodes_dictionary[function_idx1][function_idx2]

random_coupling_value =
random.randint(1, int(len(couplings/feedback_ratio)) + 1)

sample = random.sample(list(couplings), random_coupling_value)

# print(sample)

for coupling in couplings:
removal_edges.append((coupling, function_idx2))

fpg.remove_edges_from(removal_edges)

for sample_element in sample:
addition_edges.append((sample_element, function_idx2))

fpg.add_edges_from(addition_edges)

return fpg
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