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 A B S T R A C T

Peat subsidence occurs when parts of the peat soil interact with air, usually due to water table lowering, 
then triggers peat consolidation, shrinkage, and oxidation, releasing substantial CO2 emissions. Managing 
and mitigating these impacts requires a comprehensive understanding of the mechanisms and the spatio-
temporal variations of the subsidence. Advanced space geodetic techniques, particularly InSAR, enable surface 
displacement monitoring. While time series InSAR analysis effectively estimates displacement, its precision, 
accuracy, and representativity are compromised by temporal decorrelation, noise, and dynamic soil movement, 
especially over pastures on peat soils. Moreover, loss-of-lock events caused by an irrecoverable loss of coherence 
disrupt the time series and introduce arbitrary unintelligible phase offsets. Strategies such as multilooking 
using contextual information have improved the reliability of the InSAR displacement estimates. However, 
more experience in the efficacy of InSAR-based surface dynamics assessments is required. This study estimates 
and analyzes surface motion in a regional peat area in Midden-Delfland, The Netherlands, using Sentinel-1 
data and the SPAMS model. SPAMS incorporates precipitation and evapotranspiration information to estimate 
surface motion parameters, distinguishing between reversible and irreversible subsidence. The results reveal 
an average subsidence rate of −5.4 ± 0.7 mm/year within the study area. Irreversible subsidence is strongly 
correlated with climatic conditions, with the most significant subsidence observed during a prolonged dry 
period in the summers of 2018 and 2022. Mitigating peatland subsidence includes preserving soil water 
content, especially during dry periods. Integrating InSAR and SPAMS provides a valuable tool for monitoring 
peat surface elevation, water management, and reducing peatland degradation.
1. Introduction

A large part of the Netherlands consists of low-lying coastal and flu-
vial regions characterized by wetlands. It was formed by two geological 
periods: the Pleistocene glacial activity shaped ice-pushed ridges and 
sandy plains, and the Holocene sea-level rise created wetter conditions 
in which peat overtook significant portions of the western and northern 
Netherlands (Ten Veen et al., 2025). From the Late Iron Age on-
ward, human interaction intensified, accelerating during the medieval 
period with large-scale reclamation and embankment of coastal and flu-
vial areas (Borger, 1992; Pierik, 2021). This transformation converted 
peatlands into polders using dikes and windmills for agricultural and 
residential use, causing subsidence in drained peatlands.

Lowering of the water table, causing the oxic exposure of organic 
material in peatlands, results in the processes of peat consolidation, 
shrinkage, compaction, and CO2 emission by oxidation, leading into 

∗ Corresponding author at: Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands.
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consequent subsidence (Schothorst, 1982; Hooijer et al., 2011), as 
illustrated in Fig.  1. Schothorst (1977) found that six years after ditch-
water levels had been lowered, surfaces on three polders had subsided 
6–10 cm. The study concluded that 65% of it could be attributed 
to shrinkage and oxidation of organic matter in the layer above the 
groundwater level. Meanwhile, the rest is expected to be due to the 
compression of the layer below the groundwater level (Schothorst, 
1977). Within approximately 50 years of data, a recent study reports 
total peat subsidence of 24 and 31 cm, depending on the ditchwater 
level (Massop et al., 2024).

Addressing the challenges posed by land subsidence in densely pop-
ulated coastal areas requires a comprehensive grasp of the underlying 
processes. It includes understanding the factors driving subsidence and 
their variations across space and time. Leveling can accurately measure 
surface height differences between benchmarks distributed across the 
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Fig. 1. Conceptual model of peat subsidence processes in drained peatlands. The sequence illustrates the progressive stages of peat subsidence due to drainage: 
(a) Natural state with intact peat profile; (b) Initial drainage causing decomposition of organic matter and realase of CO2; (c) subsequent subsidence due to 
compaction and oxidation of peat materials; and (d) Continued drainage leading to a further subsidence and increased CO2 emissions.
area of interest (Fryksten and Nilfouroushan, 2019). However, existing 
benchmarks are typically installed in objects with a relatively deep 
foundation depth and are therefore not sensitive to shallow processes. 
Installing dedicated benchmarks at the surface in the field is difficult 
and prone to distortion (Cain and Hensel, 2018; van Asselen et al., 
2020), so it is not recommended on a large scale. Furthermore, leveling 
requires many resources to measure a vast region, including time, 
human resources, and budget (Saari et al., 2015). Therefore, repeating 
the measurement in time for elevation monitoring is not efficient.

As an alternative, monitoring land subsidence has been performed 
using extensometers, which provide precise measurement of vertical 
displacement at high temporal resolution (Corominas et al., 2000; Liu 
et al., 2019; Buckley et al., 2003; Miller et al., 2020; Galloway and 
Burbey, 2011; van Asselen et al., 2020). However, the deployment 
of extensometers is limited by the high costs associated with their 
construction and operation, resulting in a sparse network of monitoring 
stations (Galloway and Burbey, 2011; Maliva and Missimer, 2012; 
Burbey, 2020). The advent of space geodetic instruments has enabled 
Earth surface observation without the need for direct field measure-
ments. The repeat period of satellites has the advantage of monitoring 
the same area periodically. Synthetic aperture radar (SAR), in par-
ticular, can be applied to estimate relative elevation changes of the 
Earth’s surface using the interferometric (InSAR) technique (Hanssen, 
2001). InSAR performs effectively for objects such as buildings due to 
their persistent surface characteristics, which ensure consistent radar 
signal reflections over time. In contrast, applying this technique to 
areas dominated by vegetation or farmland is more challenging, as the 
dynamic nature of these surfaces reduces signal coherence (Tampuu 
et al., 2020; Conroy et al., 2023b; Bhogapurapu et al., 2024).

To address these challenges, InSAR time series analysis has been 
developed to extract vertical displacement over natural land cover 
areas such as peat pastures (Morishita and Hanssen, 2015; Alshammari 
et al., 2018; Tampuu et al., 2020; Liu et al., 2022; Jiang and Lohman, 
2021; Conroy et al., 2023b). Nevertheless, the precision, accuracy, and 
representativity of InSAR in such environments are often compromised 
by highly dynamic peat soil movement and temporal decorrelation, 
i.e., the loss of coherence due to changes in the scattering mechanisms 
over a particular area over time. Moreover, loss-of-lock events caused 
by an irrecoverable loss of coherence disrupt the time series and 
introduce arbitrary unintelligible phase offsets (Conroy et al., 2023b). 
Identifying these events is essential to prevent misinterpretation of 
phase offsets as displacements. Additionally, ambiguous InSAR observa-
tions and imperfect functional models could lead to estimation errors. 
To mitigate these issues, several strategies have been tested, includ-
ing multilooking to improve the signal-to-noise ratio (SNR) (Hanssen, 
2001; Ferretti et al., 2011; Parizzi and Brcic, 2011; Jiang et al., 2015), 
selecting only small temporal baseline subsets to reduce decorrelation 
noise (Berardino et al., 2002; Pepe et al., 2015), and introducing 
a new functional model called SPAMS (simple parameterization for 
the motion of soils) by incorporating meteorological data (Conroy 
et al., 2023b,a). Notably, the latter approach obtained a root mean 
square difference (RMSD) between InSAR estimates and extensometer 
measurements in the range of 5–7 mm (Conroy, 2025).
2 
Conventionally, InSAR is used to obtain relative surface elevation 
changes, which is limited to the period of InSAR data acquisitions. 
The introduction of the SPAMS model has shifted the focus of InSAR 
analysis from displacement estimation to the estimation of the driving 
parameters, which enables forecasting past and future surface motion 
dynamics. Yet, while the initial studies demonstrating the efficacy of 
the SPAMS methodology were performed over areas that could be vali-
dated with localized multi-year ground truth time series, most areas of 
interest do not have such extended in-situ infrastructure. Moreover, the 
main driver of using spaceborne observations lies in the applicability 
over wide areas, including archive data, and thus the current challenge 
shifts to those areas, and to alternative means of quality control.

This study evaluates InSAR analysis with the SPAMS model in 
unsupervised contexts. We analyze relative surface elevation changes 
in the Midden-Delfland region, the Netherlands, where ground truth 
is not available. We assess the results through spatio-temporal anal-
ysis, considering meteorological data, soil profiles, and elevation. By 
adopting this approach, this study provides a practical framework for 
interpreting surface displacement estimates, providing new insights and 
supporting more informed decision-making where ground truth data 
are unavailable.

2. Materials and methods

2.1. Study area

The Midden-Delfland region, see Fig.  2, is an open agricultural 
area with traditional peaty meadows, cows and windmills, used for 
dairy farming and recreation. It covers an area of ∼160 km2, with 
elevations ranging between −6.4 and + 3 m NAP (Dutch ordnance da-
tum). Grasslands or pastures for dairy farming dominate the rural parts, 
whereas only a few farmlands are used for various crop types, such as 
corn, wheat, and beets. They are divided into parcels with ditches in 
between to channel water. These ditches are interconnected within the 
same water management zone (peilgebied in Dutch), where the phreatic 
groundwater table (𝐻GW) within a zone is maintained between certain 
levels according to the groundwater stages described in de Vries et al. 
(2003). These stages specify the average highest (𝐻GW,max) and lowest 
(𝐻GW,min) groundwater level classes in centimeters below the local 
ground level (maaiveld (mv) in Dutch), thus [cm−mv], i.e., ‘centimeters 
below ground level’. Our study area contains two main classes, i.e.,

• class II: 𝐻GW,max < 40 [cm−mv] & 50 <𝐻GW,min < 80 [cm−mv], 
and

• class III: 𝐻GW,max < 40 [cm−mv] & 80 <𝐻GW,min < 120 [cm−mv].

Before the wide-scale land reclamation, Midden-Delfland was part 
of the big Rhine-Meuse delta. These areas now have multi-purpose 
land use, including agriculture, residential, and recreation. The area is 

1 https://www.pdok.nl/introductie/-/article/basisregistratie-
gewaspercelen-brp-

2 https://www.ahn.nl

https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.ahn.nl
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Fig. 2. Midden-Delfland study area overlayed with parcel polygons1and surface elevation2. The inset map shows an overview of the Holocene and Pleistocene 
areas within the Netherlands (Van Lanen and Kosian, 2020), where the red star pinpoints our study site. Boxes A, B, and C locate three sample sites for deeper 
analysis and interpretation, see Figs.  3–5.
characterized by substantial peat and clay deposits, with an average 
peat thickness of approximately 1–3 m. In the eastern part of the 
research area, peat thickness can exceed 3 m, although some sections 
are dominated by clay soils. In the central region, peat thickness ranges 
from 1 to 3 m. In contrast, the western area has peat thicknesses of less 
than 1 m, with clay predominating in the soil composition. These values 
represent the total thickness within a 50 m soil profile, as indicated by 
the TNO Geological Survey model3.

Given the geological formation and reclamation history of this 
dynamic Holocene region — where much of the land was drained 
and converted into pasture, alongside typical wetland conditions — 
it is crucial to understand the long-term subsidence resulting from 
peat cultivation. This understanding is especially important for govern-
ment decision-making and the implementation of effective adaptation 
measures to address the persistent challenges associated with land 
subsidence.

2.2. Data

We used SAR observations from the Sentinel-1A/B satellites using 
the interferometric wide swath (IW) mode and a single VV polarization. 
These satellites operate in C-band with a 12-day repeat period. When 

3 https://www.dinoloket.nl/ondergrondgegevens
3 
Table 1
Summary of SAR Sentinel-1 data from January 2016 to December 2024.
 Orbit Track number Number of acquisitions 
 Ascending 88 406  
 161 424  
 Descending 37 419  
 110 426  

combined, the two-satellite constellation provides a six-day repeat cy-
cle. Our dataset includes data from four orbit tracks: two descending 
tracks (37 and 110) and two ascending tracks (88 and 161), see Table 
1. Collectively, these tracks yield a high revisit rate of 1 − 3 days. 
We analyzed a total of 1675 acquisitions spanning from 1 January 
2016 to 31 December 2024, considering both descending and ascending 
observations. All single look complex (SLC) SAR images were coregis-
tered and geolocated using the Doris software (Kampes and Usai, 1999; 
Kampes et al., 2004; Arikan et al., 2008).

Observations from satellite images were enriched with geospatial 
contextual information, as listed in Table  2. It includes parcel, soil, 
water table, and meteorological data, which are used during InSAR 
processing. Parcel, soil, and water table are vector datasets available 
through the Netherlands geospatial database website. Parcel data pro-
vides information on crop type and parcel geometry, while the soil 
map describes the spatial distribution of soil types and key soil profile 

https://www.dinoloket.nl/ondergrondgegevens
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Table 2
List of contextual information used in the relative surface elevation changes analysis.
 Data Information Source Data Type  
 Parcel Parcel geometry, crop type PDOK-BRP Vector polygon  
 Soil Shallow soil type (< 1.2 m depth) PDOK-BRO Vector polygon  
 Water table Water table zone PDOK-Peilgebied Vector polygon  
 Meteorological Precipitation, evapotranspiration KNMI Vector point and tabular 
 Elevation Terrain elevation AHN Raster 0.5 × 0.5 m  
 Lithology Soil class per 50 cm from the surface 

down to a depth of 50 m
DINOloket Vector point  
characteristics to a depth of 1.2 m. Water table data specifies zones 
where parcels share the same groundwater table. Meteorological data 
from the Royal Netherlands Meteorological Institute (KNMI) include 
daily precipitation and evapotranspiration records from their stations. 
To assign unique attributes of soil type and water table zone, a spatial 
join with a one-to-one relationship was performed, retaining only the 
attributes of the feature with the largest overlap. For meteorological 
data, the closest station within a maximum distance of 15 km from the 
parcel centroid was selected. In addition to these datasets, elevation 
and lithology data are used to analyze the results. The elevation model 
is derived from airborne laser scanning data acquired in 2022 and is 
provided in raster format with a resolution of 50 cm. Lithology data 
from the TNO Geological Survey model the lithology type for each 
50 cm increment from the surface down to a depth of 50 m.

2.3. InSAR parameter estimation with the SPAMS model

Time series analysis of InSAR has been performed to model ground 
motion using a stack of SAR data in the same area. The coherence 
level plays an important role in determining how many targets can be 
detected for analysis. Two classes of targets can be distinguished based 
on their scattering mechanisms: point scatterers (PS) and distributed 
scatterers (DS) (Hu et al., 2019). PS targets appear when a strongly 
reflecting object dominates the pixel in each radar image in the stack, 
which usually comes from man-made features in the built environment. 
On the other hand, DS occur when many small objects contribute to 
the pixel reflection. They often correspond to natural targets, such as 
bare or vegetated surfaces, which exist primarily in rural regions. Since 
our focus is on peatland displacement, this study used the InSAR DS 
parameter estimation workflow as implemented in DECADE (TU Delft, 
2024). For comprehensive methodological details, readers are referred 
to Conroy (2025). Here, we briefly outline the key aspects relevant to 
the analysis.

Three main steps are necessary to retrieve relative elevation changes 
from InSAR observations. First, parcel-based multilooking was per-
formed using the coregistered SAR stack to estimate the coherence 
matrix from all possible interferometric combinations. Based on this 
matrix, the Eigendecomposition-based Maximum-likelihood-estimator 
of Interferometric phase (EMI) (Ansari et al., 2018) was applied, reduc-
ing the complete set of interferometric combinations to a single set of 
phases. The results are equivalent to when computing interferometric 
combinations with one reference image (Samiei-Esfahany et al., 2016). 
Subsequently, each parcel was treated as a virtual PS, represented by 
its centroid, and integrated with available PS within the study area 
for atmospheric phase screen filtering. This process results in a set of 
observed phases for each track.

Loss-of-lock events, which occur during incoherent periods, causing 
gaps within the time series data. These events introduce an unknown 
vertical displacement that is specific to each parcel and observation 
epoch. To address this, we employed the SPAMS (Simple Parameter-
ization for the Motion of Soils) model developed by Conroy et al. 
(2023a). SPAMS estimates surface motion parameters based on physical 
processes and distinguishes between reversible and irreversible subsi-
dence. The model uses precipitation 𝑃 (𝑡) and evapotranspiration 𝐸(𝑡)
data from nearby meteorological stations, assuming that these factors 
4 
primarily drive soil movement. The model is expressed as (Conroy 
et al., 2023a):

𝐻(𝑥, 𝑃 (𝑡), 𝐸(𝑡)) = [
∑

𝜏
(𝑥P𝑃 (𝑡) − 𝑥E𝐸(𝑡))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reversible

+ [
𝑡

∑

−∞
𝑥𝐼 ⋅ 𝑓 (𝑥, 𝑃 (𝑡), 𝐸(𝑡))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
irreversible

, (1)

where 𝑓 (𝑥, 𝑃 (𝑡), 𝐸(𝑡)) =

{

0, for reversible > 0.
1, for reversible ≤ 0.

(2)

SPAMS includes four parameters: (i) the scaling factor of precip-
itation 𝑥P, (ii) the scaling factor for evapotranspiration 𝑥E, (iii) the 
integration time 𝜏 in days, and (iv) the subsidence rate 𝑥I in mm/day. 
The first two contribute to the reversible component (e.g., shrinkage 
and swell), with the integration time representing the accumulation 
time or latency of the reversible effects. The last parameter 𝑥I repre-
sents the irreversible component (e.g., oxidation) and is assumed to be 
only active during dry periods, i.e., when evapotranspiration exceeds 
precipitation (ibid.).

The SPAMS model becomes the functional model used in the final 
step, focusing on estimating displacement model parameters as well as 
the phase ambiguities. The estimation was performed on both parcel-
based and group-based levels. Initially, the segmented phase time series 
per parcel, along with a set of initial displacement parameters, were 
used to optimize the SPAMS model parameters. The segmentation is 
based on the coherence threshold and the number of consecutive ob-
servations exceeding that threshold. Specifically, a coherence threshold 
of 0.19 with a minimum of five consecutive epochs above this threshold 
was used.

Following per-parcel estimation, displacement parameters, partic-
ularly 𝑥I, were re-estimated for contextually homogeneous groups of 
parcels, assuming that parcels within the same category behave simi-
larly (Conroy et al., 2023b). The grouping is necessary to address loss-
of-lock events between parcels due to temporal decorrelation, thereby 
reducing segment shift noise, which occurs more frequently when only 
using per-parcel observations. This contextual group was determined 
based on the land cover, soil type, and groundwater management 
zone. Here, we only include grassland parcels to avoid non-Lagrangian 
processes due to crop cycles and ploughing. We only include parcels 
that can form a group with a minimum of ten parcels.

In both procedures, the unknown shift between segments as well 
as the integer phase ambiguity were estimated using the displacement 
model, facilitating the phase ambiguity resolution and reconnection of 
observations. Finally, the final displacement model was then fitted to 
the unwrapped phase data, projected onto the vertical, and used to 
estimate a set of final displacement parameters for each parcel. The 
estimated model parameters were used to generate realizations of rel-
ative elevation changes using Eqs. (1) and (2), with daily precipitation 
and evapotranspiration as inputs.

To evaluate model suitability and identify whether an error is 
present in the mathematical model, the 𝜎̂2-statistic is computed based 
on the weighted sum of squared residuals between InSAR and SPAMS, 
normalized by the degrees of freedom for each parcel (Teunissen, 
2024). Values close to one suggest model adequacy, while values larger 
than one indicate either model imperfections or an overly optimistic 
stochastic model. Conversely, values significantly smaller than one im-
ply either an overly pessimistic stochastic model, i.e., underestimating 
the quality of observations, or an over-parameterized functional model.

https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-
https://www.pdok.nl/basisregistratie-ondergrond
https://www.pdok.nl/introductie/-/article/waterschappen-waterbeheergebieden-imwa
https://daggegevens.knmi.nl/klimatologie/daggegevens
https://www.ahn.nl
https://www.dinoloket.nl/ondergrondgegevens
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Table 3
Estimated displacement model parameters (𝑥P, 𝑥E, 𝑥I, and 𝜏) with its uncertainty (1-sigma), 𝜎̂2-statistic , number of InSAR data 
above the specified threshold used during the estimation process (𝑁obs), estimated annual irreversible rate (𝑣I), and contextual 
information for each parcel at Sites A, B, and C. Soil codes are elaborated in Table  4.
 Location Area Soil 𝑥P 𝑥E 𝑥I 𝜏 𝜎̂2- 𝑁obs 𝑣I  
 m2 codea (mm/day) (days) statistic (mm/y) 
 Site A  
 Parcel a 12,793 hVc 0.070 ± 0.003 0.106 ± 0.004 −0.0279 ± 0.0007 74 0.75 375 −5.0  
 Parcel b 19,110 hVc 0.068 ± 0.003 0.159 ± 0.004 −0.0265 ± 0.0006 70 0.87 429 −5.9  
 Parcel c 18,673 hVc 0.071 ± 0.003 0.173 ± 0.004 −0.0270 ± 0.0006 70 0.77 443 −6.1  
 Parcel d 15,254 hVc 0.071 ± 0.003 0.204 ± 0.005 −0.0272 ± 0.0005 70 0.85 428 −6.5  
 Site B  
 Parcel a 21,970 Mv41C 0.070 ± 0.002 0.112 ± 0.003 −0.0256 ± 0.0005 69 0.91 579 −4.8  
 Parcel b 18,908 kVc 0.071 ± 0.002 0.150 ± 0.003 −0.0280 ± 0.0004 70 1.09 585 −6.0  
 Parcel c 9,343 kVc 0.068 ± 0.003 0.097 ± 0.003 −0.0278 ± 0.0005 70 1.15 355 −4.9  
 Parcel d 17,035 kVc 0.070 ± 0.002 0.121 ± 0.003 −0.0266 ± 0.0004 70 0.96 616 −5.2  
 Site C  
 Parcel a 38,025 hVd 0.070 ± 0.002 0.153 ± 0.003 −0.0286 ± 0.0004 67 1.03 657 −6.2  
 Parcel b 16,092 Wo/pMn85C 0.072 ± 0.003 0.166 ± 0.002 −0.0275 ± 0.0004 68 1.09 552 −6.1  
 Parcel c 35,062 Wo/pMn85C 0.066 ± 0.002 0.118 ± 0.002 −0.0263 ± 0.0004 71 1.01 625 −5.3  
 Parcel d 9,688 hVd 0.074 ± 0.003 0.109 ± 0.003 −0.0303 ± 0.0007 70 1.10 377 −5.4  
a https://legenda-bodemkaart.bodemdata.nl/bodemclassificatie.
3. Results and discussion

3.1. Estimated time series surface displacements

This study estimates a time series of relative surface elevations 
for 1127 parcels covering Midden-Delfland using InSAR data from 1 
January 2016 to 31 December 2024. To illustrate soil motion variability 
within our study area, cross sections of three locations (see boxes on 
Fig.  2) were generated, together with the estimated time series surface 
motion at the parcel level. Additionally, we present sample soil profiles 
within each parcel based on the lithology data, showing that peat, clay, 
and sand materials are present within the soil profiles at these three 
locations.

Figs.  3–5 provide a comprehensive overview of Site A, B, and 
C, respectively, each displaying parcel shapes and sizes overlay on 
elevation models, cross-section elevation profiles and water table con-
figurations, modeled surface motion time series, and sample-based 
subsurface lithology. Across all sites, the elevation profiles indicate 
generally uniform terrain, except for parcels B.a and C.c, where an 
elevation inversion is observed. The elevation model suggests that these 
elevated areas were originally riverbeds, but prolonged land subsidence 
has altered this condition, causing the riverbed to become elevated 
relative to the surrounding terrain. Parcels with this type of terrain 
typically have mixing of soil types, which impacts the representability 
of the estimated displacement parameters.

Within this context, Site A presents results from parcels belonging 
to a single contextual group, all classified as cultivated peat soils and 
share the same water management zone. As shown in Table  3, the 
displacement parameter estimates for these parcels are comparable, 
except for the scaling factor for evapotranspiration 𝑥E, which is lowest 
for parcel A.a. It suggests that, given equivalent precipitation and evap-
oration, parcel A.a is less susceptible to precipitation deficit, resulting 
in a lower annual subsidence rate (𝑣I)—approximately 1 mm/year less 
than the other parcels. Soil mapping further reveals that, unlike the 
other parcels, the western portion of parcel A.a consists of a mix of 
chalk-poor sea clay or boggy soil and clay. The presence of different soil 
types within parcel A.a may explain its different behavior compared to 
neighboring parcels.

In contrast, parcel A.d exhibits an annual subsidence rate 0.5 mm/
year higher than parcel A.b and A.c, attributed to its exposed peat top 
layer, which makes it more prone to rapid oxidation than neighboring 
parcels covered by clay or sand. This pattern of subsidence associated 
with exposed organic layers is likewise observed at Site B, where 
parcel B.b lacks clay cover despite having the same soil classifications 
as its adjacent parcels. Consistently, both parcel A.d and B.b have 
5 
larger scaling factors for evapotranspiration, resulting in higher annual 
subsidence rates than the surrounding peat parcels.

While Site A and B represent a group of peat parcels situated next to 
each other, Site C is differentiated by the presence of two peat parcels, 
C.a and C.d, separated by peaty/clay parcels in between. Although the 
initial hypothesis considered that surface motion within a group would 
be comparable, analysis of the estimated surface motion time series 
reveals otherwise: parcel C.a shows displacement patterns similar to 
C.b, as do parcels C.c and C.d, despite differences in soil type and 
water management. Soil mapping clarifies that the western section of 
parcel C.d shares the same soil types as parcel C.c, likely explaining its 
similarity in displacement behavior to parcel C.c than C.a. Similar soil 
mixing also occurs in parcel C.b, where parts of it have the same soil 
class as C.a.

The estimated time series surface displacement at these three sites 
indeed suggests a correlation with meteorological data, revealing a 
consistent seasonal pattern: winter uplift is driven by precipitation 
surplus and reduced evapotranspiration, while summer subsidence is 
caused by water deficit. The oscillations between the summer and 
winter periods typically range in magnitude from ∼30 to 50 mm. 
Extreme drought events, such as those in 2018 and 2022, amplified 
these dynamics, causing subsidence peaks of ∼50 to 70 mm over six 
months. This subsidence peak strongly coincides with periods of very 
low rainfall and high evapotranspiration compared to other years.

Additionally, Table  3 depicts the 𝜎̂2-statistic across all parcels for 
these three sample sites, which range between 0.75 and 1.15. The upper 
bound falls slightly above 1, which could indicate minor model fit 
incompatibility or slightly overestimated measurement uncertainties, 
while the lower bound reflects a moderate estimate of observational 
uncertainty. Yet, both extremes remain within a reasonable range. 
Although these site-specific results indicate no significant evidence of 
model deficiencies or errors, the overall 𝜎̂2-statistic across the study 
area exceed these intervals, which is analyzed further in Section 3.4.

3.2. Implications

Interactions between soil composition, hydrological parameters, and 
elevation-driven exposure primarily drive the variability in surface 
displacement rates among parcels with similar contextual conditions. 
Assigning unique soil type attributes to each parcel by retaining the 
attributes from the largest overlap during the spatial join results in 
mixed soil types within a parcel, which in turn affects the estimation 
and interpretation. Further algorithm adjustments could involve inter-
secting soil map boundaries with parcel geometries to partition mixed 
soil areas. However, this approach risks reducing multilooking quality 

https://legenda-bodemkaart.bodemdata.nl/bodemclassificatie
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Fig. 3. The overview of Site A includes the elevation model and parcel geometry (a), the cross-section profile of the parcels showing surface elevation and water table level setup (b), the estimated time series 
of surface motion from the SPAMS model together with cummulative precipitation and evapotranspiration (c), and sample lithology layers, illustrating subsurface composition (d).
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Fig. 4. The overview of Site B includes the elevation model and parcel geometry (a), the cross-section profile of the parcels showing surface elevation and water table level setup (b), the estimated time series 
of surface motion from the SPAMS model together with cummulative precipitation and evapotranspiration (c), and sample lithology layers, illustrating subsurface composition (d).
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Fig. 5. The overview of Site C includes the elevation model and parcel geometry (a), the cross-section profile of the parcels showing surface elevation and water table level setup (b), the estimated time series 
of surface motion from the SPAMS model together with cummulative precipitation and evapotranspiration (c), and sample lithology layers, illustrating subsurface composition (d).
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Table 4
Soil code taxonomy, based on Dutch soil classification system, and their interpretation (de Bakker and Schelling, 1989).
 hVc Dutch: ‘‘Koopveengronden op zeggeveen, rietzeggeveen of (mesotroof) broekveen’’  
 Cultivated peat soils (former natural peat soils that have been reclaimed and used for agriculture or other human 

purposes) on sedge peat (Peat formed mainly from sedges, i.e., Carex species), reed-sedge peat (peat composed of 
a mixture of reeds (Phragmites) and sedge vegetation) or (mesotrophic) fen peat (‘‘broekveen’’ refers to fen peat, 
typically found in low-lying areas; mesotrophic indicates a moderate nutrient status).

 

 kVc Dutch: ‘‘Waardveengronden op zeggeveen, rietzeggeveen of (mesotroof) broekveen’’  
 Low peat soils (i.e., peat soils that have subsided significantly due to drainage, oxidation, and agricultural use, 

typically found in low-lying floodplains or reclaimed peat areas.) on sedge peat, reed-sedge peat or 
(mesotrophic) fen peat.

 

 hVd Dutch: Koopveengronden op bagger, verslagen veen, gyttja of andere veensoorten  
 Cultivated peat soils on dredged material (‘‘bagger’’ refers to soft, organic-rich sediment often found in drained or 

dredged water bodies), decomposed peat  (highly degraded or amorphous peat, where original plant structures are 
no longer recognizable due to decomposition), gyttja  (a fine, organic-rich sediment formed in freshwater lakes, 
composed of decomposed aquatic organisms and mineral matter) or other types of peat.

 

 Mv41C Dutch: Kalkarme drechtvaaggronden in zeeklei, zware klei, profielverloop 1  
 Calcium-poor (soils with low calcium carbonate content) dredged vaag soils  (‘‘vaaggronden’’ are young, weakly 

developed mineral soils with limited horizon development. The prefix ‘‘drecht’’ indicates formation under influences 
of water management or dredging, typically in reclaimed or modified landscapes) developed in marine clay  (clay 
deposited in a marine (i.e., saltwater) environment, common in the Dutch coastal plains) (heavy clay: clay soils 
with a high percentage of fine particles, making them dense and difficult to work), profile type 1 (a classification 
referring to the vertical development of the soil profile; in this case, a very weakly developed profile with minimal 
horizon differentiation).

 

 Wo Dutch: Plaseerdgronden; gronden met een moerige bovengrond of moerige tussenlaag op niet-gerijpte zavel of klei  
 Plaseerd soils  (a Dutch soil type term used in soil classification for transitional soils, often found in areas with 

artificial drainage or sedimentation. The term is often kept untranslated in scientific Dutch-English contexts, but 
can be described as "transition soils with peaty layers over young mineral material.); soils with a peaty topsoil
(‘‘Moerig’’ refers to a top layer that contains a significant proportion of partially decomposed organic matter, i.e., 
peat-like) or peaty interlayer  (an organic-rich layer within the soil profile, not necessarily at the surface) over 
unripe loam or clay (‘‘unripe’’ refers to young, water-saturated, unconsolidated mineral soil that has not yet 
undergone ‘ripening’—a process of soil structure development and consolidation).

 

 pMn85C Dutch: Kalkarme leek-/woudeerdgronden in zeeklei, klei, profielverloop 5  
 Calcium-poor leek/woudeerd soils (a compound term combining two Dutch soil classifications: (i) leekeerdgronden, 

i.e., soils influenced by drainage, often in marine clay, typically developed under grassland, and (ii)
woudeerdgronden, i.e., similar soils developed under forest or woodland. Together, these are ripened marine clay 
soils with significant profile development, often influenced by long-term land use, i.e., grassland or forest) in 
marine clay  (Soils developed in marine-deposited clay, typically heavy in texture ), profile development 5
(indicates strongly developed soil horizons, often with clear differentiation and structure due to long-term 
soil-forming processes).

 

due to fewer number of looks within smaller parcel sizes. This trade-
off highlights the importance of balancing spatial resolution and data 
reliability in heterogeneous soil environments.

Sensitivity to subsidence is influenced by differences in soil layering, 
such as the presence or absence of clay or peat at the surface. Even 
when slight, elevation differences alter the extent of peat surface expo-
sure to air, thereby influencing oxidation and subsidence rates. Querner 
et al. (2008) recommends that water management focus on methods 
to keep the water level in summer as high as possible to reduce the 
subsidence rate. Soil stratigraphy further contributes to differential 
responses among parcels. As demonstrated by Brouns (2016), peat 
soils lacking clay covers are more prone to accelerated subsidence due 
to increased oxygen intrusion and oxidation. The clay layers reduce 
water deficit susceptibility by maintaining higher soil saturation. As 
described in Section 3.1, the estimated SPAMS parameters, particularly 
the scaling factor for evapotranspiration 𝑥E, clarify these mechanisms 
by affecting precipitation deficit sensitivity and the timescale of re-
versible displacement. Parcels with clay covers exhibit lower 𝑥E values, 
reflecting reduced sensitivity to evapotranspiration-driven water loss.

In contrast, bare peat parcels exhibit higher 𝑥E values, amplifying 
evapotranspiration effects and accelerating reversible shrinkage. This 
trend aligns with findings by Van Den Akker et al. (2012), where 
parcels with a clay layer on top showed reduced subsidence levels 
compared to bare peat, as clay impedes drainage and maintains higher 
soil saturation. The water-retention properties of clay can clog water 
drainage, keeping the overlying peat more saturated and thereby re-
ducing peat consolidation (Dawson et al., 2010). Collectively, these 
findings underscore the necessity of integrating both spatial and tempo-
ral factors — soil lithology, SPAMS parameters, elevation gradients, and 
meteorological extremes — into predictive models for land subsidence. 
Such holistic approaches enable targeted management strategies for 
site-specific geotechnical heterogeneity and climatic variability.
9 
3.3. Estimated linear subsidence rates

Linear subsidence rates are estimated by least squares on the results. 
Fig.  6 displays the spatial distribution of these rates, ranging from 
−2.3 mm/year to −8.2 mm/year, with an overall mean subsidence 
of −5.4 ± 0.7 mm/year for the region. These ranges are comparable 
with findings from other studies on peatlands in other regions within 
the Netherlands, such as −5 to −10 mm/year near Gouda (Conroy 
et al., 2024) and −8 mm/year in the polder near Amsterdam (Hoogland 
et al., 2012). Similar subsidence rates are also observed in neighbor-
ing countries characterized by peatlands, including Sweden (−5 to 
−25 mm/year) (Berglund and Berglund, 2010) and Norfolk, UK (−9 
to −18 mm/year) (Dawson et al., 2010).

3.4. SPAMS parameters and estimation quality

Excluding the cropped parcels, approximately 68% of parcels are 
included in the analysis, while the remaining 32% are omitted due 
to insufficient neighboring parcels to form contextual groups. The 
heterogeneous distribution of soil types within the study area compli-
cates the identification of parcels with similar soil characteristics and 
groundwater management zones, resulting in contextual groups of only 
5–7 parcels. Temporal data gaps from loss-of-lock events are mitigated 
using neighboring parcel data within the same group. However, groups 
with fewer than ten parcels are inadequate for reliable analysis. With 
a minimum of ten parcels per contextual group, SPAMS parameters 
exhibit spatial variability, see Fig.  7a–c, with ranges of 0.060–0.132 
(𝑥P), 0.093–0.294 (𝑥E), and −0.031 to −0.0234 (𝑥I), and medians of 
0.070, 0.116, and −0.0273, respectively.

These parameters enable subsidence prediction under consistent 
contextual conditions and estimate peat volume loss due to subsidence 



Y. Lumban-Gaol et al.

Fig. 6. Estimated linear subsidence rates in Midden-Delfland shows the spatial distribution ranging from −2.3 to −8.2 mm/year, with an overall mean subsidence 
of −5.4 ± 0.7 mm/year.

Fig. 7. Estimated SPAMS model parameters: spatial distributions of the scaling factor of precipitation 𝑥P (a), the scaling factor of evapotranspiration 𝑥E (b), and 
the subsidence rate 𝑥I in mm/day (c) highlight regional variability. Panel (d) shows the distribution of the 𝜎̂2-statistic, with values around ‘1’ indicating generally 
good model performance across most parcels.
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associated with the irreversible component. The SPAMS model suggests 
that irreversible subsidence is directly linked to climatic conditions. 
The average annual irreversible contribution to total subsidence reveals 
that parcels subside more in certain years, particularly during drought 
episodes, such as the prolonged dry period in 2018 and 2022. A com-
parison between mean annual irreversible subsidence and annual SPEI 
(standardized precipitation evapotranspiration index) (Vicente-Serrano 
et al., 2010) yields a Pearson correlation of 0.79 with a 𝑝-value of 0.01. 
The annual SPEI from 2016 to 2024 remains within the normal range 
(indices between −1 and 1), except for 2018 and 2022, which display 
values of −2.3 and −1.4, indicating extremely and moderately dry 
conditions, respectively. These findings enhance our understanding of 
climate-peatland-water system interactions and subsidence dynamics.

The SPAMS displacement model parameters are designed to capture 
local water balance processes, including soil infiltration, groundwater 
storage, and transpiration, in relation to surface height variations. 
Notably, when the scaling factor for evapotranspiration is higher than 
precipitation, it suggests that irreversible processes dominate when 
precipitation is approximately equal to or less than the amount of 
evapotranspiration. It is important to acknowledge that the model 
estimation relies on meteorological data from a station ∼3–15 km away, 
so irregular conditions within the study area may not be observed and 
affect the accuracy of its estimates.

The SPAMS model currently takes precipitation and evapotranspi-
ration data to represent the in- and out-flow of water. This approach, 
while accounting for natural hydrological processes, does not fully 
capture the complexity introduced by drainage systems through the 
pumping of water in or out of ditches. Despite the relatively rapid na-
ture of these drainage processes, the potential effects of such pumping 
activities on surface motion dynamics require further investigation to 
ensure comprehensive model accuracy.

Additionally, the calculated 𝜎̂2-statistic as in Fig.  7d ranges from 
0.45 to 9.04, where larger values are primarily located in the eastern 
part of the study area. These are the locations where former peat ex-
traction zones are identified based on the elevation data. Values larger 
than 2.0 are associated with outliers from low coherence thresholds. 
Meanwhile, values between 1.2 and 2.0 predominantly occur in natural 
grassland parcels with agricultural functions, distinct from permanent 
grasslands, warranting further investigation.

4. Conclusions

This study comprehensively assesses relative surface elevation cha-
nges across 1127 parcels in Midden-Delfland from 2016 to 2024, uti-
lizing InSAR data and contextualized by detailed soil, lithology, and 
water management information. The analysis demonstrates that the soil 
composition, hydrological parameters, and elevation-driven exposure 
primarily drive spatial and temporal variability in surface displace-
ment. Notably, the presence or absence of clay layers, subtle elevation 
differences, and parcel-specific SPAMS model parameters collectively 
influence the rates and mechanisms of subsidence. Seasonal oscillations 
in surface elevation during drought periods amplify subsidence rates. 
The observed linear subsidence rates, averaging −5.4±0.7 mm/year, are 
consistent with findings from other peatland regions in the Netherlands 
and neighboring countries, underscoring the broader applicability of 
these results.

The SPAMS model effectively captures local water balance processes 
and their impact on surface elevation dynamics despite limitations 
related to meteorological data resolution and contextual group size. 𝜎̂2-
statistics further support the model’s adequacy for most parcels, though 
some variability remains in areas with low coherence or distinct land 
use. Importantly, the irreversible component of subsidence is closely 
linked to climatic extremes, particularly during drought episodes, high-
lighting the vulnerability of peatlands to ongoing climate variability. 
These findings emphasize integrating soil stratigraphy, hydrological 
11 
management, and climatic data into predictive models to inform tar-
geted subsidence mitigation strategies. Overall, this work advances 
understanding of the complex interactions between climate, soil, and 
water management in driving peatland subsidence, providing a founda-
tion for improved land and water resource management in vulnerable 
lowland regions.
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