
Dimitrios Theodoropoulos

Custom Architecture for

Immersive-Audio Applications

Custom Architecture for
Immersive-Audio Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 9 mei 2011 om 10:00 uur

door

Dimitrios THEODOROPOULOS

Master of Science in Computer Engineering
Technical University of Crete

geboren te Athene, Griekenland

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. H.J. Sips

Copromotor:
Dr. G.K. Kuzmanov

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. H.J. Sips, Technische Universiteit Delft, promotor
Dr. G.K. Kuzmanov, Technische Universiteit Delft, copromotor
Prof. dr. W. Najjar, University of California Riverside, USA
Prof. dr. D. Pnevmatikatos, Technical University of Crete, GR
Prof. dr. E. Charbon, Technische Universiteit Delft
Dr. ir. D. de Vries, Technische Universiteit Delft
Dr. ir. G. N. Gaydadjiev, Technische Universiteit Delft
Prof. dr. ir. P. M. Sarro, Technische Universiteit Delft, reservelid

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Dimitrios Theodoropoulos

Custom Architecture for Immersive-Audio Applications

Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica - III

Ph.D. Thesis Technische Universiteit Delft.

Met samenvatting in het Nederlands.

ISBN 978-90-72298-16-4

Subject headings: reconfigurable, immersive-audio, GPGPU, multi-core processors.

Copyright c⃝ 2011 Dimitrios Theodoropoulos
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

Printed in The Netherlands

To my family back home...

Custom Architecture for
Immersive-Audio Applications

Dimitrios Theodoropoulos

Abstract

I n this dissertation, we propose a new approach for rapid development of
multi-core immersive-audio systems. We study two popular immersive-
audio techniques, namely the Beamforming and the Wave Field Synthesis

(WFS). Beamforming utilizes microphone arrays to extract acoustic sources
recorded in a noisy environment. WFS employs large loudspeaker arrays to
render moving audio sources, thus providing outstanding audio perception and
localization. Research on literature reveals that the majority of such exper-
imental and commercial audio systems are based on standard PCs, due to
their high-level programming support and potential of rapid system develop-
ment. However, these approaches introduce performance bottlenecks, exces-
sive power consumption and increased overall cost. Systems based on DSPs
consume very low power, but performance is still limited. Custom-hardware
solutions alleviate the aforementioned drawbacks, but designers primarily fo-
cus on performance optimization without providing a high-level interface for
system control and test. To address the aforementioned problems, we propose a
custom platform-independent architecture that supports immersive-audio tech-
nologies for high-quality sound acquisition and rendering. An important fea-
ture of the architecture is that it is based on a multi-core processing paradigm.
This allows the design of scalable and reconfigurable micro-architectures, with
respect to the available hardware resources, and customizable implementations
targeting multi-core platforms. To evaluate our proposal we conducted two
case studies: We implemented our architecture as a heterogeneous multi-core
reconfigurable processor mapped onto FPGAs. Furthermore, we applied our
architecture to a wide range of contemporary GPUs. Our approach combines
the software flexibility of GPPs with the computational power of multi-core
platforms. Results suggest that employing GPUs and FPGAs for building
immersive-audio systems, leads to solutions that can achieve up to an order of
magnitude improved performance and reduced power consumption, while also
decrease the overall system cost, when compared to GPP-based approaches.

i

Preface

I still remember how it all started back in July 2006 when I was doing my
military service at the Hellenic Air Force in Crete, Greece. It was during my
midnight guarding shift, when my cell phone rung. Normally I was not sup-
posed to pick it up, but a strange long number appeared on my phone’s screen.
It was my friend Christos Strydis from the Netherlands, who told me that soon
there would be new Ph.D. positions available at the Computer Engineering
laboratory of the Delft University of Technology, and encouraged me to ap-
ply. After a few days, I arranged to get an official permission and flew to the
Netherlands to visit him. During this visit, I met for the first time Professor
Dr. Stamatis Vassiliadis and had the one and only chat with him at his office.
It didn’t take long to convince me to apply...

Four and a half years later, where Professor Vassiliadis is not any more with
us, still I would like to express my gratitude to him for accepting me as his
Ph.D. student at the Computer Engineering laboratory. The fact that such great
scientist gave me the opportunity to work at his group, always inspired and
motivated me to push myself for the best.

The work presented in this dissertation was partially sponsored by ”hArtes”, a
project (IST-035143) of the Sixth Framework Program of the European Com-
munity under the thematic area ”Embedded Systems”. From this point, I want
to thank my supervisors Dr. Georgi Kuzmanov and Dr. Ir. Georgi Gaydadjiev
who considerably helped and guided me during my Ph.D. research over the
last four and a half years. As an original student of Professor Vassiliadis, Dr.
Kuzmanov always tried to guide me based on his research principles, and I am
grateful for that. I would like also to thank Professor Dr. Ir. Henk Sips for
serving as a promotor, and all committee members for their valuable feedback
and comments on this dissertation. Furthermore, I want to explicitly thank
Lars Hörchens and Jasper van Dorp Schuitman from the Laboratory of Acous-
tical Imaging and Sound Control at the Delft University of Technology for
providing valuable help to accomplish this work.

iii

I would like to thank Lidwina Tromp and Monique Tromp for their adminis-
trative assistance, and Erik de Vries, Eef Hartman and Bert Meijs for their fast
and reliable technical support. In addition, I am grateful to my officemates
Yi Lu, Thomas Marconi and Fakhar Anjam for their help and all interesting
discussions we had, and Roel Meeuws for translating the dissertation abstract
in Dutch. Finally, I want to thank all my colleges at the Computer Engineering
laboratory for making it an enjoyable working environment.

”It’s not only the place, but also the company that makes a moment unique”
they say, and I completely agree. I feel grateful to all my friends here in the
beautiful city of Delft for the amazing time we had. I would like to thank (Dr.
by now) Christos Strydis for his support and help in every aspect. We had an
amazing time living next to each other inside the same almost-collapsed house
in Vlamingstraat. Also, I want to thank Carlo Galuzzi and Niki Frantzeskaki
for their true support and care. I will never forget the never-ending dinners
at their house. The combination of Italian and Greek cuisine always made it
a unique gastronomical experience. I really enjoyed also the time I had all
these years with my friends Sebastian Isaza, Diomidis Katzourakis, Daniele
Ludovici, Lotfi Mhamdi and Yannis Sourdis. Thanks to Sebastian and Aleja
for always willing to help me improve my pathetic skills in speaking Spanish.
Finally, a very special thank you goes to Kamana Sigdel.

This dissertation is dedicated to my parents Nikolaos and Artemis, and my
brother George, who supported me all these years from when I left home for
the first time in 1998 to study in Crete, Greece. From this point, I want to truly
thank them for their unconditional love and care for me.

Dimitris Theodoropoulos Delft, The Netherlands, May 2011

iv

Table of contents

Abstract . i

Preface . iii

List of Tables . vii

List of Figures . ix

List of Algorithms . xiii

List of Acronyms and Symbols . xv

1 Introduction . 1
1.1 Sound Acquisition and Rendering Techniques 2
1.2 Problem Definition . 5
1.3 Research Questions . 9
1.4 Dissertation Contributions 10
1.5 Dissertation Organization . 11

2 Background and Related Work . 13
2.1 Background of the Delay-and-Sum BF technique 13
2.2 Background of the WFS technique 15
2.3 Commercial and Experimental Systems 18

2.3.1 Systems that utilize the BF technique 18
2.3.2 Systems that utilize the WFS technique 21
2.3.3 Systems that utilize both BF and WFS techniques . . . 23

2.4 Related Work Evaluation . 24
2.5 Conclusions . 27

3 Architecture for Immersive-Audio Applications 29
3.1 Instruction Set Architecture Definition 29
3.2 r-MCPs Implementation . 33

v

3.3 nr-MCPs Implementation . 39
3.4 Programming Paradigm for r-MCPs 41
3.5 Programming Paradigm for nr-MCPs 45
3.6 Conclusions . 49

4 Reconfigurable Micro-Architectures 51
4.1 Reconfigurable BF Micro-Architecture 51

4.1.1 Multi-Core BF Micro-Architecture 51
4.1.2 BF Instruction Implementation 55

4.2 Reconfigurable WFS Micro-Architecture 58
4.2.1 Multi-Core WFS Micro-Architecture 58
4.2.2 WFS Instruction Implementation 63

4.3 Conclusions . 67

5 Architecture Implementation on nr-MCPs 69
5.1 Contemporary GPUs organization 70
5.2 BF Instructions Implementation to GPUs 73
5.3 WFS Instructions Implementation to GPUs 79
5.4 Conclusions . 82

6 Experimental Results . 83
6.1 BF Experimental Results . 84
6.2 WFS Experimental Results 97
6.3 Conclusions . 109

7 Conclusions and Future Work . 113
7.1 Outlook . 113
7.2 Conclusions . 115
7.3 Open Issues and Future Directions 117

Bibliography . 129

List of Publications . 131

Samenvatting . 135

Curriculum Vitae . 137

vi

List of Tables

2.1 Related work summary for BF and WFS implementations. . . 25

3.1 Instructions for BF and WFS applications. 32
3.2 Instructions parameters for architecture application on r-MCPs. 36
3.3 Special Purpose Registers mapping for BF. 36
3.4 Special Purpose Registers mapping for WFS. 37
3.5 Instructions parameters for architecture application on nr-MCPs. 40

5.1 Sample, coefficient and output indices for the BF application. . 76

6.1 Resource utilization of each module 84
6.2 Maximum number of BeamFormers that can fit in different

FPGAs . 84
6.3 GPUs specifications for all experiments. 87
6.4 Platform costs in Euros. 95
6.5 GPU- and FPGA-based implementations comparison against

related work. 96
6.6 Resource utilization of each module 97
6.7 Maximum number of RUs that can fit in different FPGAs . . . 97
6.8 GPU- and FPGA-based implementations comparison against

commercial products under a 128-loudspeaker setup 108

vii

List of Figures

1.1 Maximum number of utilized microphones among different
sound acquisition techniques. 6

1.2 Maximum number of utilized loudspeakers among different
sound rendering techniques. 7

2.1 A filter-and-sum beamformer. 14
2.2 Linear interpolation of a moving sound source. 15
2.3 Proper choice of the delayed sample. 17
2.4 The MIT LOUD microphone array consisting of 1020 ele-

ments [97]. 20
2.5 Cinema in Ilmenau, Germany that utilizes the WFS technique

equipped with 192 loudspeakers. 22

3.1 Memory organization for BF applications when utilizing r-
MCPs. 34

3.2 Memory organization for WFS applications when utilizing r-
MCPs. 35

3.3 Memory organization for immersive-audio applications when
utilizing an nr-MCP. 40

4.1 Multi-core implementation of the BF system. 52
4.2 The Beamforming processing element (BF-PE) structure. . . . 53
4.3 The source amplifier structure. 53
4.4 Flowchart of the BF data processing among all BeamFormers. 54
4.5 BF instruction where the GPP reads from SPRs. 55
4.6 BF instructions where the GPP writes to SPRs. 56
4.7 BF instructions where the GPP reads and writes to SPRs. . . . 57
4.8 BF instruction where the GPP does not access any SPRs. . . . 58
4.9 Detailed implementation of the WFS multi-core system. . . . 59
4.10 The WFS-PE structure. 60

ix

4.11 The WFS Preprocessor organization 61
4.12 WFS Engine organization . 61
4.13 SSC organization . 62
4.14 Flowchart of the WFS data processing among all RUs. 63
4.15 WFS instruction that the GPP reads from SPRs. 64
4.16 WFS instructions that the GPP writes to SPRs. 64
4.17 WFS instructions that the GPP reads and writes to SPRs. . . . 66
4.18 WFS instructions where the GPP does not access any SPRs. . 67

5.1 Number of processing cores integrated to contemporary nr-
MCPs. 70

5.2 Contemporary NVidia GPUs organization. 71
5.3 Contemporary AMD GPUs organization. 72
5.4 Decimation, source extraction and interpolation filters onto

GPU threads. 75
5.5 Grid of thread blocks that are dispatched during the FIR filter

calculations onto the GPU. 76
5.6 Grid of thread blocks that are dispatched during the WFS cal-

culations to the GPU. 81

6.1 Microphone array setup and source position inside aperture A4. 85
6.2 Difference between software and hardware values for an

acoustic source in dBs inside aperture A4. 86
6.3 Execution time on all platforms under an 8-microphone setup. 88
6.4 Execution speedup of all platforms against the Core2 Duo un-

der an 8-microphone setup. 89
6.5 Execution time on all platforms under a 16-microphone setup. 90
6.6 Execution speedup of all platforms against the Core2 Duo un-

der a 16-microphone setup. 91
6.7 Required and actual memory bandwidth achieved by the MC-

BFP16-V4 design. 92
6.8 Processing time comparison between the optimized GTX275

and MC-BFP approaches for the BF. 93
6.9 Energy consumption of all platforms under an 8-microphone

setup. 94
6.10 Energy consumption of all platforms under a 16-microphone

setup. 95
6.11 Loudspeaker array setup and source trajectory behind the array. 98
6.12 Difference between software and hardware values for a loud-

speaker signal in dBs. 99

x

6.13 Execution time on all platforms under a 32-loudspeaker setup. 100
6.14 Execution speedup of all platforms against the Core2 Duo un-

der a 32-loudspeaker setup. 101
6.15 Execution time on all platforms under a 64-loudspeaker setup. 102
6.16 Required and actual memory bandwidth achieved by the MC-

WFSP7-V4 design. 103
6.17 Execution speedup of all platforms against the Core2 Duo un-

der a 64-loudspeaker setup. 104
6.18 Processing time comparison between the optimized GTX275

and MC-WFSP approaches for the WFS. 105
6.19 Energy consumption of all platforms under a 32-loudspeaker

setup. 106
6.20 Energy consumption of all platforms under a 64-loudspeaker

setup. 107

7.1 Teleconference scenario using the WFS technology. 118
7.2 Guidance to emergency exit using virtual acoustic sources. . . 119

xi

List of Algorithms

3.1 Pseudocode for BF when mapped onto r-MCPs. 43
3.2 Pseudocode for WFS when mapped onto r-MCPs. 45
3.3 Pseudocode for BF when mapped onto nr-MCPs. 47
3.4 Pseudocode for WFS when mapped onto nr-MCPs. 48
5.1 Beamforming implementation to GPU 75
5.2 Wave Field Synthesis implementation to GPU 81

xiii

List of Acronyms and Symbols

ASIC Application Specific Integrated Circuit
BF BeamForming
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DSP Digital Signal Processor
DMA Direct Memory Access
DOA Direction Of Arrival
IF InterFace
ISA Instruction Set Architecture
FIFO First In First Out
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSB Front Side Bus
FSB Filtered Samples Buffer
GPGPU General Purpose Graphics Processor Unit
GPU Graphics Processor Unit
GPP General Purpose Processor
GFLOP Giga Floating Point Operations
LFE Low Frequency Enhancement
MADI Multichannel Audio Digital Interface
MC − BFP Multi-Core BeamForming Processor
MCP Multi-Core Processors
MC − WFSP Multi-Core Wave Field Synthesis Processor
nr − MCP non-reconfigurable Multi-Core Processors
r − MCP reconfigurable Multi-Core Processors
RISC Reduced Instruction Set Computing
RF Register File
SNR Signal-to-Noise Ratio
SPR Special Purpose Register
SDRAM Synchronous Dynamic Random Access Memory
VLIW Very Long Instruction Word
WFS Wave Field Synthesis

xv

1
Introduction

R ecording and recreation of an accurate aural environment has been
studied for many decades. The first stereophonic transmission was
done by Clement Ader at the Paris Opera stage in 1881, while the

first documented research on directional sound reproduction was done at AT
& T Bell Labs in 1934 [28]. During 1938 and 1940, Walt Disney studio de-
signed the Fantasound stereophonic sound technology, the first one that intro-
duces surround loudspeakers, with audio channels derived from Left, Center
and Right. In 1943, William Snow reported in one of his most famous pa-
pers regarding stereophonic sound [78] the fundamental principles of sound
recording and stereophonic reproduction.

An improved audio rendering technology was designed in 1976 by Dolby Lab-
oratories that introduced the quadraphonic surround sound system. It was
called Dolby Stereo (or Dolby Analog) and consisted of four separate chan-
nels (left, center, right and mono surround) [52]. During the next two years
the surround channel was split into two distinct channels (left surround and
right surround), while the idea of a low frequency enhancement (LFE) was
also established to properly convey special sound effects. In 1994 the Interna-
tional Telecommunication Union (ITU) specified the 775 standard regarding
the loudspeaker layout and channel configuration for stereophonic sound sys-
tems [35]. Although most material is recorded and distributed based on this
standard, many manufacturers produce loudspeaker setups consisting of more
channels. Normally, such systems employ built-in effects-processing to gener-
ate all signals for the additional loudspeakers. In 2000 the THX company [19]
introduced the 10.2 loudspeakers setup, which is the first one among the sur-
round systems that adds height information on sound localization. An even
more elaborated system, was proposed in 2003 by the NHK Science and Tech-
nical Research Laboratories in Japan, named 22.2 [36]. The latter consists
of three loudspeaker layers positioned to different heights, thus it can deliver

1

2 CHAPTER 1. INTRODUCTION

elevation and depth information regarding the acoustic sources localization.

Over the last century, researchers from the audio domain have proposed and
applied many different techniques for sound acquisition and rendering. This
chapter aims to provide a short introduction to this research field and identify
the challenges that arise, in order to build efficient audio systems. Moreover,
we provide our research contributions that can help overcome such challenges,
and assist to develop quality audio systems.

The chapter organization is as follows: Section 1.1 provides an overview to
the sound acquisition and rendering techniques, and identifies their advantages
and shortcomings. In Section 1.2 we discuss the major problems that pre-
vent researchers and developers from implementing advanced audio systems
on different processing platforms. Section 1.3 presents the key-research ques-
tions that we address in this thesis, while in Section 1.4 we present the goals
of our research. Finally, Section 1.5 provides the dissertation overview.

1.1 Sound Acquisition and Rendering Techniques

Sound acquisition techniques: Nowadays, there are different techniques for
sound acquisition. Efficient microphones placement has been well studied,
because it directly affects the signal-to-noise ratio (SNR). In principle, sound
recording techniques can be divided into four major approaches:

1. Acquire the speech signal directly from the source. This approach is
suitable for applications where carrying a close-talk recording device is
acceptable, like music concerts and live TV broadcastings.

2. Surround recording. This technique is followed when carrying record-
ing devices is not acceptable solution. An exemplary case is the actors
from movies, where microphones should not be visible.

3. Recording of the signals that reach the ears (binaural signals). This
method implies putting two microphones facing away from each other at
a distance equal to human ears (approximately 18 cm). It is applicable in
cases where the recorded signals will be rendered through headphones.

4. Utilize microphone arrays to amplify the original acoustic source.
This solution is applicable in cases where distant speech signals need to
be extracted and attenuate any ambient noise. An example application is
surveyance systems inside public areas (like airports or public stations),
where the security personnel can record and acquire the speech signals
of suspects.

1.1. SOUND ACQUISITION AND RENDERING TECHNIQUES 3

The first three techniques have been used for many decades, because they re-
quire the least complex hardware setup. However they introduce particular
shortcomings. In the first technique for example, although it is well-established
for performers and presenters to carry a wired recording device, still requires
complex cable setups within the performance area. Even in the case of a wire-
less microphone, it is considered uncomfortable to constantly carry it. The
second approach employs a small number of microphones to record ”sound
images” [78] of the area and not directly speech signals. Thus, there can be
cases where the Signal-to-Noise Ratio (SNR) is low, leading to poor audio
quality. The binaural recording method [52] offers high sound localization
and perception quality, however it requires that the listener wears headphones.
Although there are systems, called Ambiophonics [7], that address this short-
coming, still there are movement restrictions imposed within a small listening
area [62].

The last technique is called beamforming (BF) [93] and has already been
widely used for many decades in different application fields, like the
SOund Navigation And Ranging (SONAR), RAdio Detection And Ranging
(RADAR), telecommunications and ultra-sound imaging [96]. Over the last
years, the BF technique has been also adopted by the audio research society,
mostly to enhance speech recognition. The main advantage is that any sta-
tionary or moving audio source within a certain noisy area can be efficiently
isolated and extracted with high SNR. Furthermore, there is no need for carry-
ing any recording device. The BF technique requires the utilization of micro-
phone arrays, which capture all emanating sounds. All incoming signals are
then combined to amplify the primary source signal, while at the same time
suppressing any environmental noise. However, due to the increased number
of input channels compared to other approaches, its main shortcoming is that
requires substantial signal computations, thus powerful processing platforms.

Sound rendering techniques: As it was mentioned in the beginning of the
chapter, sound reproduction techniques have been studied for many decades.
These approaches can be split into three fundamentally different categories
[90]:

1. Stereophony. This is the oldest technique for audio rendering. Exam-
ples are the majority of home theater and cinema sound systems that
utilize the ITU 5.1 or even more advanced loudspeaker setups.

2. Generation of the signals that reach the ears (binaural rendering).
As it was mentioned before, this approach is suitable for applications
that utilize headphones for sound reproduction. Contemporary binaural

4 CHAPTER 1. INTRODUCTION

products integrate noise cancellation and, in a few cases, head-rotation
detectors, in order to realistically adjust the source location perceived by
the listener.

3. Wavefronts synthesis that are emitted from sound sources. This ap-
proach is considered to be the most advanced among all sound rendering
techniques, since it tries to synthesize the original wavefronts emitted
from virtual sources.

Stereophony is the oldest and most widely used audio technology. The major-
ity of home theater and cinema sound systems are nowadays based on the ITU
5.1 standard [37]. This is mainly caused by the fact that such systems are easy
to be installed due to their rather small number of loudspeakers. However, the
ITU 5.1 standard requires a specific loudspeaker configuration in the azimuthal
plane, which unfortunately cannot be satisfied in most cases. Furthermore, var-
ious tests have shown that sound perception on the sides and behind the listener
is poor, due to the large distance between the loudspeakers. Another important
drawback of stereophony is that phantom sources cannot be rendered between
the loudspeakers and the listener [8] [52]. Binaural systems can deliver a high
quality of sound perception and localization, and are suitable only in applica-
tions where headphones are acceptable. However, this limitation has already
been addressed by many researchers, who have proposed systems that render
binaural signals through loudspeakers. These systems apply additional signal
filtering to cancel the crosstalk between the left binaural signal reaching the
right ear and vice versa [52]. Unfortunately, as it happens with the stereo-
phonic systems, the listening area is size-constrained.

Finally, as we mentioned, an additional way of delivering a natural sound en-
vironment is audio technologies that can synthesize wavefronts from virtual
sources. The most important benefit of these technologies is that they do not
constrain the listening area to a small region, as it happens with stereophonic
systems and binaural setups without headphones. On the contrary, a natural
sound environment is provided within the entire room, where every listener
experiences an outstanding sound perception and localization. However, their
main drawback is that they require large amount of data to be processed and
many loudspeakers to be driven simultaneously.

Two main technologies that try to synthesize the wavefronts of virtual sources
are the Ambisonics and Wave Field Synthesis (WFS). The Ambisonics was
proposed by the Oxford Mathematical Institute in 1970 [32]. Researchers fo-
cused on a new audio system that could recreate the original acoustic envi-
ronment as convincingly as possible. In order to achieve this, they developed

1.2. PROBLEM DEFINITION 5

a recording technique that utilizes a special surround microphone, called the
Soundfield microphone [26]. The recording equipment generates a 4-channel
format, called B-Format, that includes all the appropriate spacial information
of the sound image. B-Format consists of left-right, front-back and up-down
data, plus a pressure reference signal, providing the capability to deliver sur-
round audio with height information. A major advantage of Ambisonics sound
systems is that they can utilize an arbitrary number of loudspeakers that do not
have to be placed rigidly.

The WFS acoustic algorithm was initially proposed by Berkhout [11] in 1993.
It is based on Huygens’ principle, which is applied by stating that a primary
source wavefront can be created by secondary audio sources, i.e. plane of
loudspeakers, that emit secondary wavefronts. The superposition of all sec-
ondary wavefronts creates the original one. However, some limitations arise in
real world systems. For example, a plane of loudspeakers is not practical, so
a linear loudspeaker array is used, which unavoidably introduces a finite dis-
tance between the loudspeakers. This fact introduces artifacts such as spatial
aliasing, truncation effects, and amplitude and spectral errors of the emitted
wavefront [24].

However, the WFS algorithm alleviates many problems that are inherent to
other audio systems, like stereophony. For example, it allows the production of
sources moving behind and up to a limited distance in front of the loudspeaker
array [38]. Furthermore, it allows the production of plane waves which have a
stable direction throughout the entire listening area. Finally, a major advantage
is that there is no ”sweet spot” area restriction. In contrast to stereophonic and
Ambiophonic systems that require a fixed placement of the loudspeakers and
the listeners remain at the center of the listening area, the WFS allows people to
move freely inside the entire acoustic area and still experience an outstanding
audio environment perception [89]. Unfortunately, due to the large number of
loudspeakers, the WFS requires an excessive amount of signal computations
compared to other approaches.

1.2 Problem Definition

As it can be observed from the previous section, over the last decades, re-
searchers from the audio domain have developed new audio acquisition and
rendering algorithms to significantly improve sound quality compared to pre-
vious methods. These technologies offer an immersive-aural experience to
the audience compared to other approaches, thus called immersive-audio tech-

6 CHAPTER 1. INTRODUCTION

1

10

100

1000

10000

close-talk surround recording binaural beamforming

sound acquisition techniques

#
 o

f
m

ic
ro

p
h

o
n

e
s

Figure 1.1: Maximum number of utilized microphones among different sound acqui-
sition techniques.

nologies. A common specification among them is that they utilize microphone
or loudspeaker arrays. For comparison reasons, Figure 1.1 shows the differ-
ent number of microphones that each recording technique may require. As it
is depicted, surround recording techniques employ no more than five micro-
phones, one of each recorded channel [35]. Binaural recordings use only two
microphones, one for each ear, while in the case of a close-talk recording, each
speaker uses a single device. In contrast, nowadays there are commercial and
experimental systems that utilize the BF technique and employ from tens to
more than 1000 microphones [97].

Similarly, for the sake of comparison, Figure 1.2 indicates the number of
loudspeakers that may be used under each of the aforementioned sound ren-
dering techniques. Contemporary stereophonic surround systems employ up
to 24 loudspeakers. Binaural recordings that are not reproduced through
headphones, are normally rendered through two loudspeakers. Experimental
Ambisonics-based systems have also been presented in the literature that em-
ploy up to 16 loudspeakers [56]. In contrast, as discussed in Section 2.3.2, over
the last years, many WFS-based systems have been implemented that employ
loudspeaker arrays that range from a few tens up to hundreds of elements [55].

As it was discussed in the previous section, the BF technology alleviates the
majority of the shortcomings that other recording techniques introduce, at the

1.2. PROBLEM DEFINITION 7

1

10

100

1000

stereophony binaural ambisonics WFS

sound rendering techniques

#
 o

f
lo

u
d

s
p

e
a
k

e
rs

Figure 1.2: Maximum number of utilized loudspeakers among different sound ren-
dering techniques.

expense of an increased number of input channels. At the same time, the
WFS algorithm removes many problems that are inherent to stereophonic sys-
tems, at the cost of employing from small to very large loudspeaker arrays.
Both technologies are highly scalable, thus can be applied to future consumer
and professional multimedia and telecommunication products, ranging from
portable devices and home theater systems, to high-quality teleconference sys-
tems and large cinema rooms. Consequently, because of their inherent par-
allelism, the most suitable implementation hardware platform domain is the
one of Multi-Core Processors (MCPs), which integrate a large number of pro-
cessing modules that can be either fixed or reconfigurable. We refer to them
as non-reconfigurable Multi-Core Processors (nr-MCPs) and reconfigurable
Multi-Core Processors (r-MCPs) respectively. Examples of the former are con-
temporary Graphic Processor Units (GPUs) or other multi-core solutions, that
can be even heterogeneous, like the Cell Broadband Engine [34] [33], and of
the latter custom multi-core reconfigurable processors that could scale accord-
ing to the number of input/output channels.

However, research on literature reveals that the majority of experimental and
commercial BF and WFS systems are based on standard Personal Computers
(PCs), due to their high-level programming support and potential of rapid sys-

8 CHAPTER 1. INTRODUCTION

tem development. It is well accepted that today’s software languages provide
a very intuitive development environment that allows rapid systems prototyp-
ing and implementation. However, these approaches introduce the following
drawbacks:

∙ Performance bottlenecks. General Purpose Processors (GPPs) provide
limited computational power, thus in many cases additional PCs are re-
quired to efficiently drive all input/output channels.

∙ Excessive power consumption. Contemporary high-end GPPs consume
tens to hundreds of Watts of power when they are fully utilized. Further-
more, when additional PCs are employed to drive all required channels,
the total system power consumption may easily exceed the kWatt scale.

∙ Increased overall system cost. Utilization of many PCs leads to an ap-
proximately linear overall system cost increase, which constrains the
employment of such systems only to professional applications or large
academic projects.

To partially address the aforementioned problems, researchers have considered
alternative hardware platforms to implement immersive audio systems. Re-
garding the BF technique, various systems have been developed based on Dig-
ital Signal Processors (DSPs), in order to reduce power consumption, however
performance is still limited. In contrast, recent GPU-based BF approaches pro-
vide a significantly better performance compared to PC-based systems, how-
ever a considerable effort is required, in order to efficiently analyze and map
the application onto the available processing resources. Custom-hardware so-
lutions alleviate both of the aforementioned drawbacks. However, in the ma-
jority of cases, designers are primarily focused on just performing all required
calculations faster than a GPP. Such approaches do not provide a high-level
interface for testing the system that is under development. For example, in
many cases, the designers should try what the SNR of an extracted source is
under different filter sizes and coefficient sets. Such experiments can easily
be conducted using a standard PC with a GPP and a high-level programming
language, but they would take long time to be re-designed in hardware, and
cannot be performed on the field at post-production time.

Regarding the WFS algorithm, research on literature reveals that all exper-
imental and commercial WFS systems are implemented also using desktop
PCs, again due to the support of very high-level software programming lan-
guages. However, as it is discussed in Section 2.3.2, GPPs can not cope with
the processing requirements of WFS systems that utilize large loudspeaker ar-
rays and render simultaneously many acoustic sources. Furthermore, up to

1.3. RESEARCH QUESTIONS 9

now, there are no GPU- or Field Programmable Gate Array (FPGA)-based
WFS systems reported in the literature, rather only articles that present simu-
lation results under different loudspeaker and source scenarios. As it was in
the case of the BF technique, the lack of a high-level interface for the afore-
mentioned hardware platforms, refrains researchers and developers from im-
plementing systems to them, and thus choose mainstream GPPs.

Main research problem: Define a custom high-level and platform-independent
architecture for immersive audio systems, which will allow performance and
power efficient implementations on different contemporary multi-core tech-
nologies, such as FPGAs and GPUs.

1.3 Research Questions

To solve the above research problem, we have to address the following impor-
tant research questions:

∙ How to map rapidly and efficiently immersive-audio technologies onto
Multi-Core Processors (MCPs)? The main challenge is to provide a ver-
satile architecture1 to researchers, in order to enhance productivity and
shorten testing and development time. This architecture should be at a
high-level of abstraction, in order to make it applicable to different types
of MCPs. Furthermore, such an approach would provide the benefit of
portability and ease of application code reuse among the different hard-
ware platforms.

∙ Which instructions should be supported by the architecture for
immersive-audio systems? It is very important to provide a set of instruc-
tions that will allow easy customization of many vital system parame-
ters, efficient audio-data processing, and system debugging through a
high-level interface. Furthermore, they should be platform-independent
and hide any platform-specific implementation details, thus allowing the
same program to be executed to different hardware devices with minimal
software changes.

∙ How to enhance performance and efficiently support small- and large-
scaled immersive-audio systems? Nowadays, there are many different

1Throughout this dissertation, we adopt the terminology from [31], according to which, the
computer architecture is termed as the conceptual view and functional behavior of a computer
system as seen by its immediate viewer - the programmer. The underlying implementation,
termed also as micro-architecture, defines how the control and the datapaths are organized to
support the architecture functionality.

10 CHAPTER 1. INTRODUCTION

multi-core platforms. A key-issue is to choose the correct one, based on
the application requirements. A direct selection of a powerful MCP for
developing small-scaled systems, would lead to excessive power con-
sumption and overall cost, while a cheap platform that integrates few
processing cores could result to a poor solution that does not cope with
the real-time constraints.

∙ How to choose the most energy- and power-efficient approach for such
complex systems? As it was mentioned before, immersive-audio systems
employ many input/output channels, thus requiring a lot of processing
power. For example, contemporary WFS PC-based systems may utilize
a PC-network to drive all loudspeakers, thus requiring many hundreds of
Watts for powering only the GPPs. By choosing a suitable MCP to sub-
stitute the PC-network, future immersive-audio systems can consume
orders of magnitude less power compared to current approaches.

Addressing the above questions would be an important step to achieve rapid
development of immersive-audio systems based on MCPs. Furthermore, care-
ful selection of the utilized processing platform would result to more efficient
approaches that could support many real-time sources under a large number
of input/output channels. Ultimately, an excessive amount of energy can be
saved, since fewer, more efficient, processing units would consume less power.

1.4 Dissertation Contributions

In this dissertation, we addressed all research questions mentioned in the pre-
vious section. Our main contributions are the following:

∙ High-level architecture for immersive-audio applications. We propose a
high-level architecture that consists of 14 instructions, which allow cus-
tomization and control of BF and WFS immersive-audio systems im-
plemented on MCPs. Our proposal considers a globally-shared, locally-
distributed memory hierarchy and allows a high-level interoperability
with different MCPs. This means that the same program, with slight
modifications, can be mapped onto different platforms, thus providing
a versatile and portable solution that is applicable to a wide range of
immersive-audio systems.

∙ Micro-architectural support for r-MCP- and nr-MCP-based immersive-
audio algorithms. The architecture implementation allows the utiliza-
tion of a wide number of processing elements, thus making it suitable

1.5. DISSERTATION ORGANIZATION 11

for mapping onto r-MCPs and nr-MCPs. With respect to the available
resources, different implementations with different performance charac-
teristics are possible, where all of them use the same architecture and
programming paradigm. In this dissertation we present two case studies
of our architecture implementation, namely on a set of r-MCPs, and a
wide range of off-the-shelf GPUs.

∙ Extensive performance experiments under different input/output scenar-
ios. We conducted various tests for both BF and WFS applications, rang-
ing from small- to large-scaled setups. Furthermore, we investigated the
maximum number of real-time sources that each processing platform
can support under different sizes of input/output channel arrays. Based
on our experimental results, we propose the most suitable platform for
each case, in order to build efficient immersive-audio systems.

∙ Platform evaluation regarding energy consumption and system cost.
Based on the processing time and the power consumption of all plat-
forms, we suggest their energy consumption. Immersive-audio systems
utilize a large number of input/output channels, thus consume an exces-
sive amount of energy. A good platform selection can help on reducing
energy and consequently the overall system economic cost.

1.5 Dissertation Organization

The dissertation structure is organized as follows: In Chapter 2, we provide the
theoretical background of the BF and WFS techniques. We also present many
software and hardware implementations of them that are mapped onto differ-
ent platforms, in order to build experimental and commercial immersive-audio
systems. Furthermore, we provide an evaluation of many immersive-audio
systems that utilize the BF and WFS techniques with respect to performance,
power consumption and ease of use.

In Chapter 3, we present the proposed architecture for both BF and WFS al-
gorithms that comprises custom memory hierarchy and instruction set. We de-
scribe its memory and register organization, and its application to r-MCPs and
nr-MCPs. Moreover, we analyze each instruction and elaborate on the func-
tionality of every input/output parameter. In addition, we demonstrate how
our architecture can be used to develop programs for BF and WFS immersive-
audio systems.

In Chapter 4, we present the underlying multi-core micro-architecture when

12 CHAPTER 1. INTRODUCTION

utilizing r-MCPs for both BF and WFS techniques. We also describe two
custom-designed hardware accelerators for BF and WFS-oriented data pro-
cessing. Furthermore, we show each instruction’s micro-architecture imple-
mentation, in order to allow a high-level user interaction with the custom ac-
celerators. Finally, we present the complete hardware prototypes of a Multi-
Core Beamforming Processor (MC-BFP) and a Multi-Core WFS Processor
(MC-WFSP) that were used to evaluate our proposal in Chapter 6.

In Chapter 5, we conduct a nr-MCPs case study for our architecture, by apply-
ing it to a wide range of GPUs. We provide a brief description of contemporary
GPUs organization. We also describe how we implemented each high-level
instruction by hiding all GPU-specific code annotations details from the user.
Furthermore, we explain how we use important system parameters, like the
number of input/output channels and filter sizes, to develop GPU BF and WFS
kernels that are efficiently mapped onto the GPU processing cores.

In Chapter 6, we describe the experimental setup that we applied, in order to
test our FPGA and GPU-based implementations regarding performance for the
BF and WFS applications. We compare the results accuracy of our hardware
approaches against a Core2 Duo approach, since the former employ a fixed-
point format for all internal calculations. We also provide a comparison of
the two multi-core systems against the Core2 Duo and related work. In addi-
tion, we investigate the architectural prospectives of high-end GPUs and latest
generation FPGA families by comparing their execution times under many in-
put/output channels and real-time sources scenarios. Finally, we discuss each
system’s energy consumption and overall cost.

Finally, in Chapter 7, we present our conclusions from our research. We also
present a few open issues for future work. Such issues encounter the enhance-
ment of our proposed architecture with more customizing options and addi-
tional immersive-audio technologies support, like the Ambisonics. Further-
more, an additional issue is its applicability to additional nr-MCPs, like the
Cell Broadband Engine.

2
Background and Related Work

I n this chapter we provide the theoretical background of the beamform-
ing (BF) and Wave Field Synthesis (WFS) techniques in Section 2.1 and
Section 2.2 respectively. In Section 2.3 we present many software and

hardware implementations of them that are mapped onto different platforms,
in order to build experimental and commercial immersive-audio systems. Sec-
tion 2.4 provides an evaluation of many immersive-audio systems that utilize
the BF and WFS techniques with respect to performance, power consumption
and ease of use. Finally, in Section 2.5 we conclude the chapter.

2.1 Background of the Delay-and-Sum BF technique

The term of beamformer refers to a processor that performs spatial filtering,
in order to estimate a signal arriving from a particular location. Thus, even in
the case where two signals contain overlapping frequencies, a beamformer is
able to distinguish each one of them, as long as they originate from different
locations.

Generally, there are two different types of BF, non-adaptive (or time-invariant
or non-blind) and adaptive (or blind) [9], [93]. Non-adaptive methods are
based on the fact that the spatial environment is already known and tracking de-
vices are used to enhance speech recognition. In contrast, adaptive approaches
do not utilize tracking devices to locate the sound source. In fact, the received
signals from the microphones are used to calibrate properly the beamformer, in
order to improve the quality of the extracted source. In the audio domain, in the
majority of the cases a non-adaptive delay-and-sum approach is utilized [93],
due to its rather simple implementation and because a tracking device (such as
a video camera) is almost always available.

13

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: A filter-and-sum beamformer.

Figure 2.1 depicts a schematic overview of a beamformer utilizing the filter and
sum approach [93]. As we can see, the system consists of an array of micro-
phones sampling the propagating wavefronts. Each microphone is connected
to a FIR filter Hi (z), while all filtered signals are summed up to extract the
desired audio source. In many cases, the input data channels are downsampled
by a factor D in order to reduce the data rate:

xDi[n] = xi[n ⋅ D] (2.1)

where xi is the input signal, xDi is the downsampled signal, i=0...C-1 and C
is the number of input channels (microphones). Each downsampled signal is
filtered using a particular coefficient set based on the source location:

yDi[n] =

H−1∑
j=0

hi[j] ⋅ xDi[n − j] (2.2)

where H is the number of filter taps and h are the filter coefficients. The beam-
former output is given by the sum of all yDi signals:

yD[n] =

C−1∑
i=0

yDi[n] (2.3)

where yD is the downsampled extracted source. Then, yD is upsampled by a
factor L (normally L=D) according to equation (2.4) to acquire the upsampled
extracted source y:

2.2. BACKGROUND OF THE WFS TECHNIQUE 15

A (x1, y1)

B (x2, y2)

(xli, yli)

initial source

distance

original source

trajectory

loudspeaker array

n

di
1

d
i
2

...
linearly

interpolated

trajectory �

Figure 2.2: Linear interpolation of a moving sound source.

y[n] =

{
yD[n

L
] , if n

L
∈ Z

0 , otherwise
(2.4)

The idea behind this structure is to use the FIR filters as delay lines that
compensate for the introduced delay of the wavefront arrival at all micro-
phones [13]. The combination of all filtered signals will amplify the desired
one, while all interfering signals will be attenuated. However, in order to ex-
tract a moving acoustic source, it is mandatory to reconfigure all filters coeffi-
cients according to the source current location. For example, as it is illustrated
in Figure 2.1, a moving source is recorded for a certain time inside the aperture
defined by the µ2 − µ1 angle. A source tracking device is used to follow the
source trajectory. Based on its coordinates all filters are configured with the
proper coefficients set. As soon as the moving source crosses to the aperture
defined by the µ3 − µ2 angle, the source tracking device will provide the new
coordinates, thus all filter coefficients must be updated with a new set. This
process is normally referred to as ”beamsteering”.

2.2 Background of the WFS technique

As it was mentioned in Section 1.1, the WFS technique utilizes loudspeaker
arrays, in order to generate the wavefronts of virtual sources. Figure 2.2 illus-

16 CHAPTER 2. BACKGROUND AND RELATED WORK

trates an example of a linear array loudspeaker setup. Each loudspeaker has its
own unique coordinates (xli , yli) inside the listening area. In order to drive
each one of them so as the rendered sound source location is at A(x1, y1), the
so called Rayleigh 2.5D operator [91] needs to be calculated:

Qm(!, ∣
−→
d i
1 ∣) = S(!)

√
jk

2¼

√
Dz

z + Dz

z

∣−→d i
1 ∣

exp(−jk ∣−→di
1 ∣)√

∣−→d i
1 ∣

(2.5)

where k = !
c

is the wave number, c is the sound velocity, z is the inner prod-

uct between −→n and
−→
d i
1 , Dz is reference distance, i.e. the distance where the

Rayleigh 2.5D operator can give sources with correct amplitude, S(!) is the

acoustic source,
√

jk
2¼ is a 3dB/octave correction filter,

√
Dz

z+Dz
⋅ z

∣−→di
1 ∣

is the

source amplitude decay (AD) and e−jkr is a time delay that has to be applied
to the particular loudspeaker. According to Figure 2.2, since z is the inner prod-
uct between −→n and

−→
d i
1 with angle µ, the AD can be calculated by the following

formula:

AD =

√
Dz

(Dz + z) ⋅ ∣−→d i
1 ∣

⋅ cos(µ) (2.6)

In order to render a moving source from a point A to a point B behind the
loudspeaker array, a linearly interpolated trajectory is calculated [91]: Distance
∣−→d2∣ − ∣−→d1∣ is divided by the samples buffer size bs, in order to calculate the
distance difference (DD) in meters of the source from loudspeaker i between
two consecutive audio samples:

DD =
∣−→d i

2 ∣ − ∣−→d i
1 ∣

bs
(2.7)

Based on the DD, the source distance ∣−→d i
1 ∣ from loudspeaker i with coordinates

(xli, yli) is updated for every sample by the formula:

∣−→d ∣ ⇐ ∣
−→
d i
1 ∣ + DD (2.8)

According to the current distance ∣−→d i
1 ∣ from loudspeaker i, an output sample is

selected based on the formula:

2.2. BACKGROUND OF THE WFS TECHNIQUE 17

previous buffer current buffer

1024 samples 1024 samples

source

samples

loudspeaker buffer

1024 samples

loudspeaker

samples

if delayed sample <0 if delayed sample 0

out_index

Figure 2.3: Proper choice of the delayed sample.

delayedsample = −(l + (df ⋅ ∣
−→
d i
1 ∣)) + (out index + +) (2.9)

where df = fs/c is the distance factor (fs is the sampling rate, c is the sound
speed), out index is the current output audio sample, and l is an artificially
introduced latency, in order to allow sources to be rendered in front of the
loudspeaker array. Finally, the selected delayed sample is multiplied by the
AD and the system master volume.

Figure 2.3 illustrates how the delayed sample is calculated. The source sam-
ples are divided into bs source segments (for example bs=1024-sample seg-
ments). In each iteration a source segment is used to select the proper audio
samples for each loudspeaker. However, there are cases where the evaluated
delayed sample does not belong to the current source segment, but instead, to
the previous one. Thus, in every iteration, two source segments are needed,
the current and the previous one, to cover both cases where the evaluated de-
layed sample is positive or negative respectively. Further details can be found
in [14], [16], [94], [38] and [91].

18 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Commercial and Experimental Systems

2.3.1 Systems that utilize the BF technique

Over the last years, various systems that utilize GPUs under different applica-
tion domains have been published in the literature. In [96] the authors describe
a hybrid approach that utilizes 14 Virtex4 LX25 FPGAs [106] and a GPU con-
nected to a desktop PC to perform 3D-parallel BF and scan conversion for
real-time ultrasonic imaging. Input data are received from 288 channels that
are connected to Analog-to-Digital Converters. Digitized data are forwarded
to the FPGAs, which calculate the signal delay, interpolation and apodiza-
tion. All processed data are transferred though the PCI from the FPGAs to
the GPU. In [63], the authors utilize a GeForce 8800 GPU [65] to design a
delay-and-sum beamformer in the time and frequency domain. To evaluate
their designs they perform experiments under different number of input chan-
nel setups ranging from 79 to 1216. According to the results, a time-domain
and a frequency-domain beamformer can achieve speedup up to 12x and 15x
respectively compared to a Xeon Quad-core processor.

In the audio domain, the BF technique is widely used in handheld devices, like
cell-phones and Personal Digital Assistants. Such embedded systems intro-
duce many constraints regarding computational resources and power consump-
tion. To alleviate these problems, the authors in [77] designed a time-invariant
beamformer tailored to small devices that consists of two microphones. Ac-
cording to the paper, results suggest a signal to noise ratio (SNR) improvement
of 14.95 dB when using two microphones, instead of one. A data driven beam-
former for a binaural headset is presented in [47]. The authors integrate two
microphones to the headphones and employ a Head and Torso Simulator to
acquire the source signal for BF. The improvement of SNR is in the range
between 4.4 and 6.88 dBC.

Commercial products for audio BF have been developed by various compa-
nies. For example, Squarehead [83] develops the Audioscope, a dual core
PC-based system, that employs 300 omnidirectional microphones for audio
capturing. Another company, called Acoustic Camera [2], develops PC-based
BF systems, that utilize sound acquisition arrays ranging from few tens to more
than hundred elements. Polycom and Microsoft presented the CX5000 unified
conference station [75], which is the latest version of the Roundcam, originally
presented in [76]. Roundcam consists of five built-in cameras that offer a 360o

panoramic view of the conference room and eight microphones to capture the
speech signals. It connects to a dual CPU 2.2 GHz Pentium 4 workstation

2.3. COMMERCIAL AND EXPERIMENTAL SYSTEMS 19

through a Firewire bus. All image and sound processing is done to the worksta-
tion. For computational efficiency and low latency, the authors utilize a delay-
and-sum beamform approach. Lifesize is another company that produces high
quality communication systems. For example the LifeSize Focus teleconfer-
encing camera supports high definition video and uses two omni-directional
microphones to capture audio sources using BF. A small set of these cameras
is utilized in the company’s advanced communication systems, like the Life-
Size Room series, to record image and transmit it to the remote location. Sound
sources are rendered to the remote location using high definition audio.

In [18], [71], the authors present the NIST Mark-III Microphone array that
can be used for speech enhancement and recognition. The proposed platform
utilizes 64 input channels that are connected to a Spartan II FPGA [105] via
Analog-to-Digital converters. The FPGA is connected through Ethernet to a
host desktop PC that runs the NIST Smart Flow II software platform [30] [27].
The latter employs a web-camera that identifies a speaker’s face and steers
accordingly the BF, in order to enhance the speech signal and attenuate any
ambient noise.

The authors of [48] present a hardware accelerator that utilizes microphone
array algorithms based on the use of calibrated signals together with subband
processing. The proposed design utilizes a frequency domain modified recur-
sive least squares adaptive algorithm and the SNR maximization of the BF
algorithm. Up to 7 instances of the proposed design can fit in a Virtex4 SX55
FPGA [106], achieving a speedup of up to 41.7x compared to the software
implementation.

A similar approach is chosen in [1] where a real-time beamformer mapped
onto an FPGA platform is presented. The BF engine is based on the QR matrix
decomposition (QRD). In each update of the beamformer, new input samples
are generated by a Matlab [58] host application and forwarded to the FPGA,
where the QRD engine processes them. Once processing is done, the new
weight vector is returned back to the host processor and a new chunk of data
is forwarded to the FPGA. The complete design occupies 3530 Virtex4 [106]
slices and requires 56.76 ¹sec to decompose a 10x10 matrix at 250 MHz.

A Digital Signal Processor (DSP) implementation of an adaptive subband BF
algorithm, is presented in [114], known as the Calibrated Weighted Recursive
Least Squares (CWRLS) beamformer. The authors utilize an Analog Devices
ADSP21262 DSP processor [5] to perform CWRLS-based BF over a two mi-
crophone array setup. According to the paper, results indicate that there is an
up to 14 dB SNR improvement, but the computational load of the DSP proces-

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: The MIT LOUD microphone array consisting of 1020 elements [97].

sor can be up to 50% with two input channels. The presented implementation
is also energy efficient, since it was predicted to have an operation time of up
to 20 hours, under the aforementioned processor utilization.

An experimental video teleconferencing system is presented in [57]. The au-
thors combine an omnidirectional video camera and an audio BF array into
a device that is placed in the center of a meeting table. Non-stationary par-
ticipants are identified with computer vision algorithms and their speech is
recorded from circular 16-microphone array. Audio processing is done using
a TMS320C6201 DSP processor [88] at 11.025 kHz sampling rate.

Finally, nowadays there are many projects that utilize different microphone ar-
ray sizes and setups. One of the most famous implementations is the Large
AcOUstic Data (LOUD) [97], shown in Figure 2.4, which was part of the MIT
Oxygen project [60]. The LOUD microphone array consist of 1020 elements
arranged into a 2D planar setup and produce data at a rate of 50 MB/sec. All
data are streamed to a custom-designed tiled parallel processor, based on the
Raw ISA [85], [84], [86]. Experimental results suggest that utilizing such a
large microphone array can dramatically improve the source recognition accu-
racy up to 90.6%.

2.3. COMMERCIAL AND EXPERIMENTAL SYSTEMS 21

2.3.2 Systems that utilize the WFS technique

One of the earliest and most important research efforts that exploited the WFS
technology was the European project CARROUSO [15]. Its purpose was to
provide a new technology that transfers a generated sound field to another re-
mote location by exploiting the MPEG-4 standard. The sound field could be
generated at a specific real or virtual space. The project also supported the
combination of the spatial and perceptual properties of the sound field with
visual data. During recording, only dry sources were captured, while room
impulse response and source locations were also recorded separately. These
data were encoded using the MPEG-4 standard and the encoded audio stream
could optionally be multiplexed with video and transmitted to a remote loca-
tion. The received data were de-multiplexed back to audio and video. The
user had the option to further process the audio signals and then perform WFS
rendering.

In [61] the authors describe a 840-loudspeaker channel setup that is installed
to one of the lecture rooms at the Technical University in Berlin, Germany.
Fifteen desktop PCs are utilized to drive the loudspeaker array. Moreover, in
order to provide an efficient software platform that controls the WFS-based au-
dio system, the authors presented the sWonder software in [55]. The latter was
divided into submodules that can be mapped to multiple PCs, which exchange
data using the OpenSoundControl communication protocol [6].

SonicEmotion [80] and Iosono [46] are two companies that produce audio sys-
tems based on the WFS technology. SonicEmotion deploys its unit on Intel
Core2 Duo-based WFS setup, which requires a total power of 360 Watt for
the entire system. It supports rendering up to 64 real-time sound sources,
while driving a 24 loudspeaker array. Moreover, in [73], two employees of
this company proposed a complete signal processing network for distributed
WFS systems. Iosono also follows a standard PC approach that supports up
to 64 real-time sources while driving 128 speakers. In both cases, when more
loudspeakers are required, additional rendering units have to be cascaded.

An experimental WFS system has been developed at the Delft University of
Technology [92]. The presented system is based on a desktop PC and utilizes
14 multi-actuator panels, thus acoustic sources are rendered through a 114
loudspeaker array. Another sound system that was built in IRT in Munich,
called the Binaural Sky [59], actually combines both binaural [52] and WFS
technologies. The Binaural Sky concept is based on the avoidance of Cross
Talk Cancelation (CTC) filters calculation in real time, while the listener head
is rotated. Instead of using two loudspeakers, the authors utilize a circular

22 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.5: Cinema in Ilmenau, Germany that utilizes the WFS technique equipped
with 192 loudspeakers.

loudspeaker array that synthesizes focused sound sources around the listener.
The system uses a head tracking device and, instead of real time CTC filter
calculation, it adjusts the loudspeaker driving functions such as delay times
and attenuations. The loudspeaker array consists of 22 broadband elements
and a single low frequency driver. All real-time processing is done on a Linux
PC with a 22 channel sound card.

A GPU-based WFS implementation that utilizes the NU-Tech software frame-
work [64] is discussed in [53]. The authors have developed a NU-Tech plug-in
that uses the CUDA libraries for the required data calculations, and run it on
a GeForce GTX285 [66] and a Tesla C1060 GPU [67]. The presented im-
plementation is compared against an Core i7-based approach based on the In-
tel Integrated Primitives (IIP) by the same authors. Results suggest that the
GTX285-based solution can process data more than 3.5 times faster than the
Core i7.

In [81], the authors apply the WFS technology to a multi tiled hardware archi-
tecture called ”Scalable Software Hardware computing Architecture for Em-
bedded Systems” (SHAPES). Each of these tiles consists of a Distributed Net-
work Processor for inter-tile communication, a RISC processor and one mAg-
icV VLIW floating point processor. According to the paper, a WFS system
capable of supporting 32 sound sources while driving up to 128 speakers with
the MADI interface [79], would require 64 such tiles.

In [3], the authors propose an immersive-audio environment for desktop appli-
cations. Their system also utilizes the WFS technology. Small loudspeakers
are placed around the computer display, which allows the listener to move

2.3. COMMERCIAL AND EXPERIMENTAL SYSTEMS 23

freely inside the listening area. Again, the system is based on a standard 2
GHz PC.

In [82], the authors developed a system that combines WFS technology with
a projection-based multi-viewer stereo display. The system hardware setup
consists of 4 standard PCs and 32 loudspeakers. One PC is used to control
2 cameras that are tracking movements of a user. A second PC drives 4 LCD
projectors that generate images on a perforated screen. A third PC is used as an
audio player and is connected to a fourth PC, which is an older Iosono render-
ing unit [46]. The latter drives 32 loudspeakers divided into 4 8-loudspeaker
panels.

Finally, in Ilmenau, Germany a cinema has already been equipped with 192
loudspeakers since 2003 [29], as illustrated in Figure 2.5. More specifically,
the loudspeaker array consists of 24 panels, each equipped with 8 two-way
loudspeakers. In order to efficiently drive all array elements, the cinema is
also equipped with six rendering PCs.

2.3.3 Systems that utilize both BF and WFS techniques

In [10], the authors describe an immersive-audio system that consists of 12
linearly placed microphones. The sound source is tracked through audio and
video tracking algorithms, while the beamformer is steered accordingly. The
audio signal is extracted through BF and encoded using the MPEG2-AAC or
G722 encoders. The encoded signal is received from a second remote PC
and the audio signal is rendered using the WFS technology through a 10-
loudspeaker array.

A similar system is presented in [87]. The authors describe a real-time
immersive-audio system that exploits the BF technique and the WFS technol-
ogy. The system performs sound recording from a remote location A, transmits
it to another one B, and renders it through a loudspeaker array utilizing WFS.
The complete system consists of 4 PCs out of which, one is used for the WFS
rendering, one for BF, one for the source tracking and one as a beamsteering
server.

Finally, the work presented in [17] addresses the problem of echo cancellation
that is inherent to contemporary multimedia communication systems. The au-
thors propose a strategy to reduce the impact of echo while transmitting the
recorded signal to a remote location. The idea is to to apply the proposed
acoustic echo cancellation (AEC) to the ”dry” source signals that will be ren-
dered through the loudspeaker array. Then, the AEC output signals are sub-

24 CHAPTER 2. BACKGROUND AND RELATED WORK

tracted from the output signals of the beamformer’s time invariant components.
In order to test their approach, the authors develop a real-time implementation
using a standard desktop PC that consists of 11 microphones and 24 loudspeak-
ers.

2.4 Related Work Evaluation

Table 2.1 provides a summary of the majority of the references mentioned in
Section 2.3. The Technique column provides the algorithm that each system
utilizes, that is BF for beamforming and WFS for Wave Field Synthesis. The
Channels column shows how many input / output channels each system sup-
ports. We should note that in [63], [53] and [81] the authors conducted only
experiments to each underlying hardware platform, assuming different array
setups. The Platform column indicates the hardware platform that each system
utilizes to perform data calculations.

We evaluated each of the presented systems based on three major specifica-
tions, namely performance, power consumption and the ability to provide a
high-level interface (IF) to the user / developer. Our evaluation for each of the
aforementioned parameters to every system is represented by the following
symbols, ✓ - good, ↕ - medium, and x - bad. We use the Performance, Power
and High-level IF columns to grade each of the presented immersive-audio
systems.

Lines 1 to 9 present the systems that utilize the BF technique. As we can
observe, there is a variety of hardware platforms that have been employed over
the last years, in order to build BF systems. The reason is because BF is a
well established technique for many decades, thus researchers have presented
various systems based on either off-the-shelf products or custom solutions.
For example, in [48] and [1], the authors have used FPGAs to accommodate
their systems, thus providing good application performance and low power
consumption. On the other hand, such custom approaches do not provide a
high level IF to the user, in order to parameterize the system based on the
desired requirements, thus recustomizing usually take long time.

In contrast, DSP-based solutions almost always provide a high-level environ-
ment for application development, while at the same time they require very
low power consumption. However, as it was described in Section 2.3, such
hardware platforms usually lack of performance and they cannot be used to
accommodate systems with high number of input channels.

2.4. RELATED WORK EVALUATION 25

Table 2.1: Related work summary for BF and WFS implementations.

Line Reference Technique Channels Platform Performance Power High-level IF
1 [48] BF 4 FPGA ✓ ✓ x
2 [1] BF up to 10 FPGA ✓ ✓ x
3 [114] BF 2 DSP x ✓ ✓
4 [57] BF 16 DSP x ✓ ✓
5 [63] BF 79 to 1216★ GPU ✓ x ↕
6 [77] BF 2 x86 x x ✓
7 [47] BF 2 x86 x x ✓
8 [97] BF 1020 Raw [84] ↕ ↕ ✓
9 [83] BF 300 x86 ↕ x ✓
10 [59] WFS 22 x86 x x ✓
11 [92] WFS 114 x86 ↕ x ✓
12 [53] WFS 128 to 1024★ GPU ✓ x ✓
13 [29] WFS 192 x86 ↕ x ✓
14 [61] WFS 832 x86 ↕ x ✓
15 [81] WFS 128★ RISC & DSP ↕ ✓ ✓
16 [3] WFS 16 x86 x x ✓
17 [82] WFS 32 x86 ↕ x ✓
18 [80] WFS 24 x86 ↕ x ✓
19 [46] WFS 128 x86 ↕ x ✓
20 [10] BF, WFS 12, 10 x86 x x ✓
21 [17] BF, WFS 11, 24 x86 x x ✓
22 [87] BF, WFS 26, 24 x86 x x ✓
★ The reference provides only experimental results for these number of channels.

It is well accepted that GPU-based approaches provide very good application
performance. Furthermore, as it was also mentioned in Chapter 1, they can
be programmed using high-level languages that require certain extensions and
code annotations, in order to efficiently map the most computationally inten-
sive parts of an application to all available GPU resources. Unfortunately,
GPUs, like CPUs, consume hundreds of Watts power [66]. Thus under certain
scenarios where power consumption is constrained (e.g. handheld or battery-
operated devices), GPUs are not a suitable solution.

The LOUD BF system is an ASIC-based approach and its primary objective
is to provide a source signal quality that approximates the one of close-talking
microphones. The Raw chip that performs all data calculations requires ap-
proximately 25 Watts of power, which makes it suitable only for stationary
scenarios. However, the project researchers provide a high-level programming
environment, in order to efficiently map the BF application to the Raw re-
sources.

Finally, the solution from Squarehead presented in [83] is also based on a stan-
dard PC approach and can extract up to 5 acoustic sources. Its primary focus
is on live events, like TV broadcasts or teleconferences. For this reason, the
company provides a very intuitive configuration environment to the user. Un-

26 CHAPTER 2. BACKGROUND AND RELATED WORK

fortunately, since it is based on a 3.2 GHz quad-core PC, it requires excessive
power consumption.

In lines 10 to 19 of Table 2.1 we provide many of the WFS systems that have
been already developed from commercial companies and researchers in the
audio domain. As it can be observed, the majority of these systems is based
on standard PCs, which provide a high-level of programming and customizing
environment, however their main drawbacks are the limited performance and
excessive power consumption.

For example, six PCs are required to drive the 192 loudspeakers that have been
installed inside the cinema listening area in Ilmenau, Germany. Moreover, as
it is mentioned in [61] [55], the authors employed 15 WFS PCs to drive the
840 loudspeaker channels that are installed inside a lecture hall at the Techni-
cal University of Berlin, Germany. Consequently, such system setups require
many kWatts of power to efficiently process data for every output channel.

In addition, as it can be observed from Table 2.1, there are very few non PC-
based approaches to the literature that describe WFS systems. For example,
in [53], the authors utilize the NU-Tech software framework [64], to experi-
ment with loudspeaker arrays ranging from 128 to 1024 elements. The main
benefit of this approach is that it combines the GPU performance with the NU-
Tech high level environment, thus the user is shielded from the CUDA-specific
software annotations [22]. However, the main drawback is the excessive power
consumption of the GTX285 GPU that performs all required computations.

Similarly, the work presented in [81], does not use a desktop PC. Instead, it
uses the SHAPES tiled hardware architecture approach, where each tile inte-
grates an Atmel mAgic VLIW DSP [21] and a RISC processor. Unfortunately,
the power consumption of a single tile is not reported, thus, in order to perform
an estimation, we used the Atmel Diopsis D940HF datasheet [20], which cou-
ples an ARM926 processor with a mAgic DSP. Based on the specification, a
single D940HF chip consumes P = Current ⋅ Voltage = 0.302 A ⋅ 1.2 V ≃ 0.36
Watts. Thus, we can safely assume that a 16-tile implementation consumes ap-
proximately 16 Tiles ⋅ 0.36 Watts

Tile
= 5.76 Watts. An interesting observation is

that, to the best of our knowledge, there is no implementation in the literature
that maps the WFS technique to reconfigurable hardware.

Finally, in lines 20 to 22 of Table 2.1 we present three experimental multimedia
communication systems that utilize immersive-audio technologies for source
extraction and rendering. As we can observe, they are solely based on standard
PC platforms, due to their ease of development and testing. However, there is a
limitation on the employed number of input/output channels due to processing

2.5. CONCLUSIONS 27

bottlenecks. Furthermore, power consumption is also high, since in certain
cases more than a single PC are connected through Ethernet to perform all
data computations.

To summarize, as it can be observed, the majority of today’s commercial and
experimental immersive-audio systems utilize GPPs as their main processing
platform, due to their high-level programmability. As it was mentioned in Sec-
tion 1.2, these approaches introduce performance bottlenecks, excessive power
consumption and increased overall system cost. Reported solutions that con-
sider alternative processing platforms, like DSPs and FPGAs, address only part
of the aforementioned problems. In contrast, with our proposal it is possible to
combine the software flexibility of GPPs with the high performance of multi-
core platforms, while at the same time providing to the developer the choice
between a low-system-cost or reduced-power-consumption approach.

2.5 Conclusions

In this chapter we presented the theoretical background for both BF and WFS
techniques. Moreover, we presented various commercial and experimental au-
dio systems that utilize them, in order to efficiently extract acoustic sources
using microphone arrays and/or render them through loudspeaker arrays con-
sisting of hundreds of elements. Various software and hardware platforms have
been proposed for both techniques, each having its own benefits and draw-
backs.

The primary observation is that x86-based systems provide a high-level in-
teraction environment to the user, but they also introduce performance limi-
tations and excessive power consumption. DSP-based solutions alleviate the
problem of power while keeping the advance of an intuitive user interface,
however they lack of adequate processing resources that would allow a high
number of sources to be extracted and/or rendered in real-time under complex
input/output setups. On the other hand, GPU-based approaches provide also
a rather versatile software platform and a much better performance than x86-
based systems, however they require hundreds of Watts power. Regarding the
BF technique, previous FPGA-based proposals are mainly micro-architectural
ones, thus focusing on improving performance compared to x86 software im-
plementations. Unfortunately, in case specific parameters need to be recus-
tomized, like the number of input channels or any filter coefficients, the user
needs to re-design the circuit and map it again onto the FPGA. In addition,
there is no work that implements the WFS technique to reconfigurable hard-

28 CHAPTER 2. BACKGROUND AND RELATED WORK

ware. Consequently, based on the above observations, we can conclude that an
ultimate solution would be an approach which combines the high-level IF and
flexibility of GPP-based systems with the unmatched performance of GPUs
and FPGAs, while at the same constraining power consumption.

3
Custom Architecture for

Immersive-Audio Applications

I n this chapter, we propose a processor architecture for BF and WFS appli-
cations. The supporting programming paradigm considers a distributed
memory hierarchy and allows a high-level interaction with reconfigurable

Multi-Core Processors (r-MCPs) and off-the-shelf non-reconfigurable Multi-
Core Processors (nr-MCPs), like GPUs. This means that the same program,
with slight modifications, can be mapped onto different platforms, thus provid-
ing a versatile solution that is applicable to various immersive-audio systems.

The chapter has been organized as follows. In Section 3.1 we present the pro-
posed architecture. Section 3.2 describes the application of our architecture
to reconfigurable devices, while in Section 3.3 we present its application to
multi-core processors. Section 3.4 and Section 3.5 demonstrate how the pro-
posed architecture can be used to develop programs using a high-level interface
for BF and WFS applications mapped onto r-MCPs and nr-MCPs respectively.
Finally, Section 3.6 concludes the chapter.

3.1 Instruction Set Architecture Definition

The design of BF and WFS systems requires various tests before their final
implementation. Regarding the BF, based on the size of the recording area and
the hardware costs limitations, the designer has to evaluate the SNR quality
of the extracted sources under different number of microphones. Furthermore,
internal signal calculations, except filtering, may also require decimation and
interpolation. Based on the available hardware resources, the designer should
carefully evaluate the size and the filtering coefficients of each one of these
modules. For example, one coefficient set can provide a better filtered signal

29

30 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

than another set, under the same number of filter taps. It is important for the
designer to have the option to rapidly change and evaluate each filter coeffi-
cients set. In addition, many tests should be conducted to decide the number
of source apertures that the recording area should be divided into. Such tests,
when developing a software beamformer, are easily applicable, however it is
not the case when custom hardware solutions are required. In the latter case,
the designers should also be able to perform easily tests under different source
apertures.

Similarly, the design and implementation of a WFS-based audio system re-
quires many tests before it can be properly used. Based on the size of the
listening area, the designer has to conduct experiments under different loud-
speaker setups and evaluate the proper localization of the rendered sources. A
larger loudspeaker array can approximate more precisely the original sound
waves than a smaller one, however it requires additional processing resources.
Based on the available hardware resources, the designer should carefully de-
cide the size of the loudspeaker array. Furthermore, a source signal quality
is directly affected by the selected filter coefficients, thus the designer should
have the option to rapidly perform trials under different filter sizes and coeffi-
cient sets.

The main goal of the proposed architecture is to provide a certain instruction
set that will allow easy customization of many vital system parameters, effi-
cient audio data processing, and system debugging through a high-level inter-
face. Furthermore, these instructions should be platform-independent and hide
any platform-specific implementation details, thus allowing the same program
to be executed to different hardware devices with minimal software changes.
After studying both BF and WFS applications, we concluded to the following
requirements regarding the kind of instructions that the programmer should
have access to.

1. Enable or disable input/output channels. In order to allow easy and
fast input/output channels tests, we decided to provide instructions that
would allow the programmer to disable/enable them in any arbitrary
way. Consequently, they would assist on rapidly fine-tuning and decid-
ing the number of required input/output channels for the entire system.

2. System configuration. It is very important to provide instructions to the
user that would allow a high-level configuration of many key system pa-
rameters. This way, all implementation details for system customization
can be hidden, thus assisting on easy and rapid development. Examples
of these parameters can be the size and coefficient sets specification for

3.1. INSTRUCTION SET ARCHITECTURE DEFINITION 31

various digital filters, and the loudspeaker coordinates inside the listen-
ing area.

3. Efficient audio data processing. A specific instruction subset is required
to control data processing of audio samples. Although all computations
will be performed in parallel from many processing elements, the user
should be completely isolated from any platform-specific details. More-
over, a simple high-level interface should provide all required parame-
ters, which internally will initiate massively parallel audio data process-
ing.

4. Debugging capabilities. Efficient system debugging considerably assists
on rapid development. For this reason, an instruction that would allow
the user to check important system parameters should be supported by
our architecture.

Taking into account the aforementioned requirements, the proposed architec-
ture consists of 13 high-level instructions that can be used to configure an
immersive-audio system, and start, manage or stop processing of input and
output data. Furthermore, there is an additional 14th instruction that can be
used for debugging purposes. In order to support many system setups, we pro-
vide a versatile environment that allows the adjustment of various parameters.
For example, an audio acquisition module that utilizes the BF technique, may
have any number of source apertures that can be identified. Furthermore, the
BF FIR filters can consist of any number of taps. Similarly, an audio rendering
module that utilizes the WFS technique, may support different sizes of loud-
speakers arrays. In addition, the WFS FIR filter can consist of any number of
taps. For these reasons, the proposed programming architecture was designed
in such a way, that the programmer can conveniently change these vital system
parameters.

Table 3.1 shows the 14 instructions, divided into four categories, namely I/O,
system setup, data processing and debug. The I/O instructions are used to
enable or disable audio streaming to input/output processing units. The sys-
tem setup instructions are used to customize system parameters and configure
the filter coefficients. The data processing instructions are used to process in-
put/output audio samples. Finally, the instruction that belongs to the debug
category, provides an interface to the programmer to read all system parame-
ters, which are stored to a Special Purpose Register File (SPR), as described in
Section 3.2.

In the following, we describe each of the instructions. Throughout our descrip-
tion, we consider the utilization of multiple BF and WFS processing units that

32 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

Table 3.1: Instructions for BF and WFS applications.

Instruction type Full name Mnemonic Platform Algorithm

I/O
Input Stream Enable InStreamEn r-MCP, nr-MCP BF

Output Stream Enable OutStreamEn r-MCP, nr-MCP WFS

System setup

Clear SPRs ClrSPRs r-MCP BF, WFS
Declare FIR Filter DFirF r-MCP, nr-MCP BF, WFS

Set Samples Addresses SSA r-MCP BF, WFS
Clear RU buffers ClrRUBuf r-MCP WFS
Store coordinates StC r-MCP, nr-MCP WFS

Buffer Coefficients BufCoef r-MCP BF, WFS
Load Coefficients LdCoef r-MCP, nr-MCP BF, WFS

Configure loudspeakers ConfL r-MCP, nr-MCP WFS
Configure microphones ConfC r-MCP, nr-MCP BF

Data processing
Beamform Source BFSrc r-MCP, nr-MCP BF

Render Source RenSrc r-MCP, nr-MCP WFS
Debug Read SPR RdSPR r-MCP BF, WFS

process data concurrently. The Platform column provides the platform that an
instruction can be applied, namely r-MCPs and nr-MCPs. The Algorithm col-
umn shows the algorithm that each instruction is applicable, namely BF and
WFS.

InStreamEn: Enables or disables streaming of audio samples from input chan-
nels to the BF processing units.

OutStreamEn: Enables or disables streaming of audio samples from the WFS
processing units to the output channels.

ClrSPRs: Clears the contents of all Special Purpose Registers (SPRs) that are
used in r-MCP-based approaches.

DFirF: Declares the size of a filter to the system.

SSA: Regarding the BF, it specifies the addresses from where the input samples
are read. Regarding the WFS, it specifies the addresses from where the source
samples are read and where the output data are written.

ClrRUBufs: Applicable to r-MCP-based approaches; clears the contents of all
on-chip buffers that are currently configured to the system.

StC: Transfers the loudspeakers coordinates from external memory to local
memory.

BufCoef : Applicable to r-MCP-based approaches; regarding the BF, it fetches
all decimator and interpolator coefficients from external memory to on-chip
buffers. Regarding the WFS, it fetches all WFS filter coefficients from the

3.2. R-MCPS IMPLEMENTATION 33

external memory to an on-chip buffer.

LdCoef : Regarding the BF, it distributes all required coefficients to the cor-
responding filters in the system. Regarding the WFS, it loads the WFS filter
coefficients to the 3dB/octave correction FIR filter of the system.

ConfL: Regarding the r-MCP-based approaches, it defines the number of loud-
speakers that will be processed from a single WFS processing unit. Regarding
the nr-MCP-based approaches, it defines the total number of loudspeaker chan-
nels.

ConfC: Defines the number of input channels that are available to the system.

BFSrc: Processes a 1024-sample chunk of streaming data from each input
channel, in order to extract an audio source.

RenSrc: Processes a 1024-sample chunk of streaming source data and gener-
ates 1024 samples for each loudspeaker channel.

RdSPR: Applicable to r-MCP-based approaches; used for debugging purposes
and allows the programmer to read any of the SPRs.

3.2 r-MCPs Implementation

The application of our proposal to reconfigurable devices comprises dedicated
register organization and distributed memory buffers. An important feature of
the architecture is that it is based on a multi-core processing paradigm. This
allows the design of scalable micro-architectures, with respect to the available
hardware resources, which makes the architecture suitable for reconfigurable
implementations and multi-core hardware platforms.

Memory and registers organization for r-MCP-based applications: Fig-
ure 3.1 illustrates the logical organization of the memory and the registers of
the proposed architecture when utilizing the BF technique. It is assumed that
it operates as an architectural extension of a GPP in a co-processor paradigm.
The architecture assumes multi-core processing, distributed among C process-
ing modules that process data from C input channels. The C parameter can
be determined both at design-time and at run-time. The latter option makes it
suitable for implementations on platforms with partial configuration capabil-
ities. The host GPP and the Multi-Core BeamForming Processor (MC-BFP)
exchange synchronization parameters and memory addresses via a set of SPRs,
shown in Table 3.3. Each BeamFormer module has an on-chip BF buffer and
memory space for the decimator and H(z) filters coefficients. Furthermore,

34 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

Figure 3.1: Memory organization for BF applications when utilizing r-MCPs.

there is also an on-chip source buffer, where samples of an extracted source
are stored, and a memory space for the currently active coefficients set of the
interpolator.

The globally-shared and locally-distributed memory organization that is con-
sidered by the proposed architecture is the user-accessible memory space, as
illustrated in Figure 3.1. The non-user addressable space is annotated with the
stripe pattern. In order to provide a high-level programming environment, the
programmer has read and write access to the BF buffers, the source buffer, the
external memory and the GPP on-chip memory. Furthermore, the programmer
can only read from the SPRs for debugging purposes. There is no direct access
to the memory space for the coefficients, since our architecture provides the
functionality to reload all required coefficients from on-chip BF buffers to the
decimators, H(z) filters and interpolator. This way the user avoids completely
any low-level interaction with the hardware platform.

A similar approach has been followed for the WFS memory organization. Fig-
ure 3.2 shows the logical organization of the memory and the registers. In
this case, the architecture assumes multi-core processing, distributed among R
Rendering Units (RUs), each processing data for L/R output channels, where L
is the total number of loudspeakers. As it was in the case of BF, the R param-
eter can be also configured both at design-time and at run-time, thus makes it
suitable for implementations on platforms with partial configuration capabili-

3.2. R-MCPS IMPLEMENTATION 35

Figure 3.2: Memory organization for WFS applications when utilizing r-MCPs.

ties. The host GPP and the Multi-Core WFS Processor (MC-WFSP) exchange
memory addresses and synchronization parameters using a set of SPRs, as
depicted in Table 3.4. Each RU has its own on-chip RU buffer and memory
space for the loudspeakers coordinates and filtered source samples, namely
loudspeakers coordinates buffer (LCB) and filtered samples buffer (FSB) re-
spectively. Furthermore, there is also an on-chip source buffer, where samples
of an acoustic source are stored, and a memory space for the currently active
coefficients set of the WFS filter.

Immersive-audio instruction set for r-MCPs: Table 3.2 shows the param-
eters of each instruction when applying our architecture to r-MCPs. In the
following, we describe how these instruction parameters can be used to access
the aforementioned memory organization.

InStreamEn: Its parameter is a binary mask b mask equal to the number of
input channels C. Within the mask, each bit can be used from the programmer
to disable or enable channel streaming by setting 0 or 1 to its value respectively.
The binary mask is stored in SPR0, as shown in Table 3.3.

OutStreamEn: Its parameter is a binary mask b mask equal to the number of
RUs R. Within the mask, each bit can be used from the programmer to disable
or enable RU streaming by setting 0 or 1 to its value respectively. The binary
mask is stored in SPR0, as shown in Table 3.4.

ClrSPRs: Does not require any parameters.

DFirF: Writes the size of a filter to the corresponding SPR. Its parameters are
the filter size FSize and its type FType. The latter is used to distinguish among
the four different filter types, which are decimator (FType = 1), interpolator
(FType = 2), H(z) filter (FType = 3) and WFS filter (FType = 4). Based on

36 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

Table 3.2: Instructions parameters for architecture application on r-MCPs.

Instruction type Mnemonic Parameters Algorithm

I/O
InStreamEn b mask BF

OutStreamEn b mask WFS

System setup

ClrSPRs NONE BF, WFS
DFirF FSize, FType BF, WFS
SSA buf sam addr BF, WFS

ClrRUBuf RUs addresses WFS
StC xmem spkr coordinates, buf spkr coordinates WFS

BufCoef xmem coef addr, buf coef addr BF, WFS
LdCoef buf coef addr BF, WFS
ConfL spkr num WFS
ConfC C BF

Data processing

BFSrc aper, xmem read addr, xmem write addr BF

RenSrc
Srcx1y1, Srcx2y2,

WFSRUs addresses, source id num,
xmem read addr, xmem write addr

Debug RdSPR SPR num BF, WFS

Table 3.3: Special Purpose Registers mapping for BF.

SPR Description
SPR0 InStreamEn binary mask
SPR1 Decimators FIR filter size
SPR2 Interpolators FIR filter size
SPR3 H(z) FIR filter size
SPR4 LdCoef start/done flag
SPR5 aperture address offset
SPR6 BFSrc start/done flag
SPR7 source buffer address
SPR8 interpolator coefficients address
SPR9 number of input channels (C)

SPR10 - SPR[9+C] channel i coefficients buffer address, i=0...C-1
SPR[10+C] - SPR[9+2⋅C] channel i 1024 samples buffer address, i=0...C-1

the value of FType, this instruction writes the filter size to the appropriate SPR
ranging from SPR1 to SPR3 for the BF and only to SPR1 for the WFS, as
shown in Table 3.3 and Table 3.4 respectively.

SSA: Regarding the BF, it specifies the addresses from where the MC-BFP will
read the input samples. Its parameter is an array of pointers buf sam addr to
the starting address of all on-chip BF buffers. SSA writes from SPR[10+C] to
SPR[9+2⋅C] the on-chip buffers starting addresses. Furthermore, it writes to
SPR7 the source buffer address, where 1024 samples of the extracted source
signal are stored, as shown in Table 3.3. Regarding the WFS, it specifies the ad-

3.2. R-MCPS IMPLEMENTATION 37

Table 3.4: Special Purpose Registers mapping for WFS.

SPR Description
SPR0 OutStreamEn binary mask
SPR1 WFS filter size
SPR2 Loudspeakers per RU
SPR3 StC start/done flag
SPR4 LdCoef start/done flag
SPR5 x1, y1 source coordinates
SPR6 x2, y2 source coordinates
SPR7 source buffer address
SPR8 WFS filter coefficients address
SPR9 RenSrc start/done flag

SPR10 source ID number

SPR11 - SPR[10+R]
loudspeakers coordinates address

inside RUi buffer, i=0,...,R-1

SPR[11+R] - SPR[10+2⋅R]
loudspeakers samples address
inside RUi buffer, i=0,...,R-1

dresses from where the MC-WFSP will read the source samples and write the
output data. Its parameter is an array of pointers buf sam addr to the starting
address of the source buffer and all RU buffers. SSA writes from SPR[11+R]
to SPR[10+2⋅R] the RU buffers starting addresses. Also, it writes to SPR7 the
source buffer address, where 1024 samples of the source signal are stored, as
shown in Table 3.4.

ClrRUBufs: Clears the contents of all RU buffers that are currently configured
to the system. Its parameter is an array RUs addresses of pointers to each RU
buffer. No SPR is modified during its execution.

StC: Reads the loudspeakers coordinates from the external memory, re-
arranges their order based on the number of RUs at the system, and writes
them to each RU buffer. Its parameters are the external memory address
xmem spkr coordinates where the loudspeakers coordinates are stored, and an
array of pointers buf spkr coordinates to the on-chip RU buffers. The instruc-
tion uses SPR3 to communicate with the MC-WFSP and writes to SPR11 -
SPR[10+R] the address within each RU buffer where the arranged coordinates
will be stored, as shown in Table 3.4.

BufCoef : Regarding the BF, it fetches all decimator and interpolator coef-
ficients from external memory to on-chip BF buffers. Its parameters are an
array xmem coef addr of pointers to the off-chip memory starting addresses
of the coefficients sets, and an array buf coef addr of pointers within the on-
chip BF buffers, where all coefficients will be stored. BufCoef does not write

38 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

any values to SPRs. Regarding the WFS, it fetches all WFS filter coefficients
from the external memory to the source buffer. Its parameters are a pointer
xmem coef addr to the off-chip memory starting addresses of the coefficients
set, and a pointer buf coef addr within the source buffer where all coefficients
will be stored. As before, BufCoef does not write any values to SPRs.

LdCoef : Regarding the BF, it distributes all decimator and interpolator coef-
ficients to the corresponding filters in the system. Its parameter is an array
buf coef addr of pointers within the on-chip buffers where all coefficients are
stored. These addresses are written from SPR10 to SPR[9+C], as explained
in Table 3.3. The instruction also writes to SPR8 the on-chip address of the
interpolator coefficients from where the MC-BFP can read them. The coef-
ficients distribution is initiated when a start flag is written to SPR4. Once
all filter coefficients are transferred, LdCoef writes a done flag to SPR4, as
shown in Table 3.3. Regarding the WFS, it loads the WFS filter coefficients to
the 3dB/octave correction FIR filter of the system. Its parameter is a pointer
buf coef addr within the source buffer where all coefficients are stored. This
address is written to SPR8. As soon as all coefficients are transferred to the
source buffer, their distribution is initiated when a start flag is written to SPR4.
Once all coefficients are reloaded to the filter, LdCoef writes a done flag to
SPR4, as shown in Table 3.4.

ConfL: Its parameter is the number of loudspeakers per RU spkr num that will
be enabled using OutStreamEn. The instruction writes the value of spkr num
to SPR2, as shown in Table 3.4.

ConfC: Its parameter is the number of active input channels C that will be
enabled using InStreamEn. The instruction writes the value of C to SPR9, as
shown in Table 3.3.

BFSrc: It requires as parameters the current source aperture aper, the starting
read address from the external memory xmem read addr of the current chunk,
and the write address to the external memory xmem write addr, where 1024
samples of the source signal will be stored. Based on aper, BFSrc writes to
SPR5 an on-chip BF buffer address offset that allows the correct selection of
Hi(z) coefficients sets. In order to initiate processing, the instruction writes
a start flag to SPR6. This flag is read by each BeamFormeri module, where
i=0,..., C-1, thus channel processing is performed concurrently. Once all data
calculations are finished, a done flag is written to SPR6, as shown in Table 3.3.

RenSrc: It requires as parameters the source coordinates (x1,y1) and (x2,y2),
which designate the initial and final source location within the listening
area respectively for a 1024

fs
time interval (fs is the sampling frequency),

3.3. NR-MCPS IMPLEMENTATION 39

and are stored to variables Srcx1y1 and Srcx2y2. Also it requires an ar-
ray RUs addresses of pointers to each RU buffer, the source identification
number source id num, the starting read address from the external memory
xmem read addr of the current chunk, and the write address to the external
memory xmem write addr, where 1024⋅L output samples will be stored. In or-
der to initiate processing, the instruction writes a start flag to SPR9. This flag is
read by each RU, thus loudspeaker processing is performed concurrently. Once
all data calculations are finished, a done flag is written to SPR9, as shown in
Table 3.4.

RdSPR: It requires as parameter the number of SPR SPR num that needs to be
read.

3.3 nr-MCPs Implementation

In this section, we describe the logical memory organization and the instruc-
tions parameters that can be used, in order to apply our architecture to nr-
MCPs. We assume that an nr-MCP is connected to a host GPP via a standard
bus (e.g. PCI express [12]), and that it has its own memory hierarchy.

Memory and registers organization for nr-MCP-based applications: Fig-
ure 3.3 illustrates the logical organization of the memory when applying the
proposed architecture to an nr-MCP-based platform. Again, the architecture
assumes multi-core processing, distributed among a fixed number of process-
ing modules that process data from C input channels and render audio through
L loudspeakers. The host GPP and the nr-MCP exchange synchronization pa-
rameters and data via a standard bus. Furthermore, the host GPP and nr-MCP
memory spaces are accessible by the programmer. However, the proposed ar-
chitecture provides a high-level interaction with the nr-MCP, thus hiding any
implementation details from the user on how to efficiently map the application
onto the processing cores of the nr-MCP.

Immersive-audio instruction set for nr-MCPs: Table 3.5 shows the instruc-
tion parameters when applying our architecture to nr-MCPs. In the following,
we describe each instruction parameter functionality.

InStreamEn: Its parameter is a mask b mask equal to the number of input chan-
nels C. Within the mask, each digit can be used from the programmer to disable
or enable input channel streaming by setting 0 or 1 to its value respectively.

OutStreamEn: Its parameter is a mask b mask equal to the number of output
channels. Within the mask, each digit can be used from the programmer to

40 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

different WFS

coefficients

different BF

decimator coefficients

different BF H(z) filter

coefficients

for all channels and all

apertures

host GPP memory

general

purpose addressable

space

nr-MCP memory

GPP architecture and

other resources

BF and WFS custom

instruction set

active WFS

coefficients

active BF

decimator coefficients

active BF H(z) filter

coefficients

for all channels and all

apertures

general

purpose addressable

space

nr-MCP architecture and

other resources

Figure 3.3: Memory organization for immersive-audio applications when utilizing an
nr-MCP.

Table 3.5: Instructions parameters for architecture application on nr-MCPs.

Instruction type Mnemonic Parameters Algorithm

I/O
InStreamEn b mask BF

OutStreamEn b mask WFS

System setup

DFirF FSize, FType BF, WFS
StC host spkr coordinates, dev spkr coordinates WFS

LdCoef coef addr BF, WFS
ConfL spkr num WFS
ConfC C BF

Data processing
BFSrc aper, coef addr, dev read addr, dev write addr BF

RenSrc
source coord, coef addr, spkr addresses,

WFS
dev read addr, dev write addr

disable or enable output channel streaming by setting 0 or 1 to its value re-
spectively.

DFirF: Stores the filters size to internal program variables. Its parameters are
the filter size FSize and its type FType. The latter is used to distinguish among
the four different filter types, which are decimator (FType = 1), interpolator
(FType = 2), H(z) filter (FType = 3) and WFS filter (FType = 4).

StC: Reads the loudspeakers coordinates from the host GPP external mem-
ory and writes them to the nr-MCP external memory. Its parameters are

3.4. PROGRAMMING PARADIGM FOR R-MCPS 41

the GPP external memory address host spkr coordinates where the loud-
speakers coordinates are stored, and a nr-MCP external memory address
dev spkr coordinates to the nr-MCP external memory.

LdCoef : Regarding the BF, it transfers all decimator, H(z) and interpolator
coefficients from the host GPP external memory to the nr-MCP external mem-
ory. Its parameter is an array coef addr of pointers to the active coefficients
sets that will be used by the nr-MCP. These addresses are used to transfer the
coefficient sets to the external memory of the nr-MCP. Regarding the WFS,
it transfers all WFS coefficients from the host GPP external memory to the
nr-MCP external memory. Its parameter is an an array of pointers coef addr
to the host GPP memory that points to the active coefficients sets and to the
destination address of the nr-MCP external memory.

ConfL: Its parameter is the number of loudspeakers spkr num that are enabled
using OutStreamEn.

ConfC: Its parameter is the number of active input channels C that are enabled
using InStreamEn.

BFSrc: It requires as parameters the current sources aperture aper, the starting
read address from the external memory dev read addr of the current chunk, the
nr-MCP external memory coefficients addresses within the coef addr array of
pointers, and the write address to the external memory dev write addr, where
1024 samples of the source signal will be stored.

RenSrc: It requires as parameters an array source coord with the sources co-
ordinates, which designate the initial and final sources location within the lis-
tening area for every 1024-sample chunk. Also it requires the nr-MCP exter-
nal memory coefficients address within the coef addr array of pointers, the
starting read address from the external memory dev read addr of the current
chunk, and the write address to the external memory dev write addr, where
1024⋅L output samples will be stored.

3.4 Programming Paradigm for r-MCPs

BF programming paradigm: In Algorithm 3.1, we illustrate through pseu-
docode how to setup a BF system to extract an audio source when mapped
onto r-MCPs. The DISABLE INPUTS MASK and ENABLE INPUTS MASK
are binary masks that are used to disable or enable input channels, as de-
scribed above. The DECIMATOR SIZE, H SIZE and INTERPOLATOR SIZE
variables are used to configure the decimator, H(z) and interpolator FIR fil-

42 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

ter sizes. Moreover, the DECIMATOR TYPE, H TYPE and INTERPOLA-
TOR TYPE variables are used to specify the filter type. samples addr is an
array of pointers to each on-chip BF buffer, where a 1024-sample chunk is
stored. coef xmem addr is an array of pointers to the external memory where
all required decimator, H(z) filters and interpolators coefficients are stored, and
buf addr is an array of destination pointers to on-chip BF buffers, where all co-
efficients will be transferred. xmem rd addr and xmem wr addr are pointers
to the external memory that read input channels data and write source samples
respectively. INPUT DATA XMEM ADDR is an external memory address,
where input channels data are stored, while OUTPUT DATA XMEM ADDR
is an external memory address, where samples of extracted sources are written
back. Finally, aper is the current source aperture.

The pseudocode starts in line 2 by using the ConfC instruction to configure the
number C of currently available input channels to the BF system. In line 4, all
input channels are disabled from processing using the InStreamEn, since the
system is not yet properly setup. In line 6 all SPRs are initialized by clearing
their contents. In lines 8, 10 and 12, the DFirF instruction is used to configure
the decimator, H(z) and interpolator filter sizes. In line 14, the address of all
samples within the on-chip buffers are specified, using the SSA instruction. In
line 16, the BufCoef distributes all required decimator and interpolators coeffi-
cients from the external memory to on-chip BF buffers. Once it is done, in line
18, the LdCoef instruction is used to configure the decimators and interpolator
coefficients. In line 20, xmem rd addr is initialized pointing at the input data
stored in the external memory. In line 21, xmem wr addr points to the external
memory address, where the extracted source samples are stored. Once the sys-
tem is properly configured, all BeamFormers are enabled in line 23. Finally,
in each iteration of the while-loop in line 25, the current source aperture aper
is used and 1024⋅C samples are read to extract 1024 source samples using the
BFSrc, which are written to the external memory. The xmem rd addr and the
xmem wr addr pointers are increased by 1024⋅C and 1024 entries respectively
to properly point to the required input and output external memory locations
for the next iteration.

It should be noted that any time, the designer can use the RdSPR instruction for
debugging purposes. Also, if the user wants to perform additional experiments
under different number of microphones, it can be done by reconfiguring the
system using the ConfC instruction. Furthermore, in case the designer wishes
during run-time to test different coefficients sets or increase/decrease the total
number of source apertures, it can be done by just providing a new array of
pointers to the BufCoef instruction. The LdCoef can then be used to reload

3.4. PROGRAMMING PARADIGM FOR R-MCPS 43

Algorithm 3.1 Pseudocode for BF when mapped onto r-MCPs.

1: {configure the number of input channels available}
2: ConfC (C);
3: {disable all BeamFormers until system is configured}
4: InStreamEn (DISABLE INPUTS MASK);
5: {clear the contents of all SPRs}
6: ClrSPRs ();
7: {configure decimators size}
8: DFirF (DECIMATOR SIZE, DECIMATOR TYPE);
9: {configure H(z) filters size}

10: DFirF (H SIZE, H TYPE);
11: {configure interpolator size}
12: DFirF (INTERPOLATOR SIZE,

INTERPOLATOR TYPE);
13: {configure the samples addresses}
14: SSA (samples addr);
15: {transfer all H(z) coefficients to on-chip buffers}
16: BufCoef (coef xmem addr, buf addr);
17: {load the coefficients to all decimators and interpolator}
18: LdCoef (buf addr);
19: {initialize external memory reading and writing pointers}
20: xmem rd addr=INPUT DATA XMEM ADDR;
21: xmem wr addr=OUTPUT DATA XMEM ADDR;
22: {enable BeamFormers}
23: InStreamEn (ENABLE INPUTS MASK);
24: {process streaming data}
25: while (1) do
26: BFSrc (aper, coef addr, xmem rd addr, xmem wr addr);
27: {update external memory pointers}
28: xmem rd addr=xmem rd addr+1024⋅C;
29: xmem wr addr=xmem wr addr+1024;
30: end while

all decimators and interpolator with the new coefficients sets, while the BFSrc
instruction will extract sources based on the new H(z) coefficients sets.

WFS programming paradigm: In Algorithm 3.2, we illustrate through pseu-
docode how to setup a WFS system to render an audio source when mapped
onto r-MCPs. The DISABLE RUS MASK and ENABLE RUS MASK are bi-

44 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

nary masks that are used to disable and enable the RUs that are present to the
system. The WFS FILTER SIZE parameter represents the size of the WFS FIR
filter. The samples addr array keeps the starting address of the source and all
RU buffers. coord xmem addr is the external memory address where the loud-
speakers coordinates are stored. speakers coord is an array of pointers to each
RU buffer. coef xmem addr is the external memory address where the filter
coefficients are stored. buf addr is a pointer to the source buffer. The x1y1
and x2y2 variables provide the source coordinates for a particular processing
iteration. RUs addr is an array of pointers to the RU buffers, while source id is
the acoustic source identification number. xmem rd addr and xmem wr addr
are pointers to the external memory that read source data and write loudspeak-
ers samples respectively. INPUT DATA XMEM ADDR is an external memory
address, where source data are stored, while OUTPUT DATA XMEM ADDR
is an external memory address, where loudspeakers samples are written back.

The pseudocode starts in line 2 by configuring the number of loudspeakers
that will be processed per RU. In line 4, all RUs are disabled until the system
is properly configured. In line 6, all SPRs are cleared, while in line 8 DFirF
is used to customize the filter size. In line 10, SSA specifies from which ad-
dress source samples are read and destination addresses where output data will
be written. In line 12, all loudspeakers coordinates are read from the external
memory and distributed accordingly to each RU buffer. In line 14, BufCoef
is used to load all filter coefficients from the external memory to the source
buffer, from the LdCoef in line 16 reads them to re-load the FIR filter. In line
18 and 19, both external memory read and write pointers are initialized. Once
the system is properly configured, in line 21, all RUs are enabled, and in line
24, the RenSrc instruction renders an acoustic source based on its current co-
ordinates. Both external memory read and write pointers are properly updated
in lines 26 and 27, in order to process new incoming samples.

As it was mentioned before, the designer can again use the RdSPR instruction
for debugging purposes. Also, if the user wants to perform additional exper-
iments under different number of loudspeakers, it can be done by reconfigur-
ing the system using the ConfL instruction. Furthermore, in case the designer
wishes to test different coefficients sets, it can be done by just providing a new
array of pointers to the BufCoef instruction. The LdCoef can then be used to
reload the WFS filter with the new coefficients sets, while the RenSrc instruc-
tion will render sources based on the new coefficients set.

3.5. PROGRAMMING PARADIGM FOR NR-MCPS 45

Algorithm 3.2 Pseudocode for WFS when mapped onto r-MCPs.

1: {configure the number of loudspeakers per RU}
2: ConfL (L/R);
3: {disable all RUs until system is configured}
4: OutStreamEn (DISABLE RUS MASK);
5: {clear the contents of all SPRs}
6: ClrSPRs ();
7: {configure WFS filter size}
8: DFirF (WFS FILTER SIZE);
9: {specify from where source samples are read and where output data will

be written}
10: SSA (samples addr);
11: {read the coordinates from SDRAM and distribute them to RU buffers}
12: StC (coord xmem addr,speakers coord);
13: {transfer all WFS coefficients to source buffer}
14: BufCoef (coef xmem addr,buf addr);
15: {load the coefficients to the WFS FIR filter}
16: LdCoef (buf addr);
17: {initialize external memory reading and writing pointers}
18: xmem rd addr=INPUT DATA XMEM ADDR;
19: xmem wr addr=OUTPUT DATA XMEM ADDR;
20: {enable RUs}
21: OutStreamEn (ENABLE RUS MASK);
22: {process streaming data}
23: while (1) do
24: RenSrc (x1y1, x2y2, RUs addr, source id,

xmem rd addr, xmem wr addr);
25: {update external memory pointers}
26: xmem rd addr=xmem rd addr+1024;
27: xmem wr addr=xmem wr addr+1024⋅R;
28: end while

3.5 Programming Paradigm for nr-MCPs

BF programming paradigm: In Algorithm 3.3, we illustrate through pseu-
docode how to setup a BF system to extract SOURCES audio sources
when mapped onto nr-MPCs. The DISABLE INPUTS MASK and EN-
ABLE INPUTS MASK are masks that are used to disable or enable input chan-

46 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

nels, as described above. The DECIMATOR SIZE, H SIZE and INTERPOLA-
TOR SIZE variables are used to configure the decimator, H(z) and interpo-
lator FIR filter sizes. Moreover, the DECIMATOR TYPE, H TYPE and IN-
TERPOLATOR TYPE variables are used to specify the filter type. coef addr
is an array of pointers to the host GPP external memory where all re-
quired decimator, H(z) filters and interpolators coefficients are stored. Fur-
thermore, it also includes the pointers where all aforementioned coefficient
sets will be stored inside the nr-MCP external memory. xmem rd addr and
xmem wr addr are pointers to the external memory that read input channels
data and write source samples respectively. INPUT DATA XMEM ADDR is
an external memory address, where input channels data are stored, while OUT-
PUT DATA XMEM ADDR is an external memory address, where samples of
extracted sources are written back. Finally, aper are the current source aper-
tures.

The pseudocode starts in line 2 by using the ConfC instruction to configure
the number C of currently available input channels to the BF system. In line
4, all input channels are disabled from processing using the InStreamEn, since
the system is not yet properly setup. In lines 6, 8 and 10, the DFirF instruc-
tion is used to configure the decimator, H(z) and interpolator filter sizes. In
line 12, the LdCoef instruction is used to copy the decimators, H(z) and inter-
polator coefficients to the PCM external memory. In line 14, xmem rd addr
is initialized pointing at the input data stored in the external memory. In line
15, xmem wr addr points to the external memory address, where all extracted
source samples are stored. Once the system is properly configured, all Beam-
Formers are enabled in line 17. Finally, in each iteration of the while-loop in
line 19, the current source apertures aper are used and 1024⋅C samples are read
to extract 1024⋅SOURCES source samples using the BFSrc, which are written
to the external memory. The xmem rd addr and the xmem wr addr pointers
are increased by 1024⋅C and 1024⋅SOURCES entries respectively to properly
point to the required input and output external memory locations for the next
iteration.

WFS programming paradigm: In Algorithm 3.4, we demonstrate through
pseudocode how to setup a WFS system to render SOURCES audio sources
when mapped onto nr-MCPs. The DISABLE OUTPUTS MASK and EN-
ABLE OUTPUTS MASK are masks that are used to disable and enable the sys-
tem output channels. The WFS FILTER SIZE parameter represents the size of
the WFS FIR filter. spkr addr is the external memory address where the loud-
speakers coordinates are stored. speakers coord is a pointer where the loud-
speakers coordinates will be stored in the nr-MCP external memory. coef addr

3.5. PROGRAMMING PARADIGM FOR NR-MCPS 47

Algorithm 3.3 Pseudocode for BF when mapped onto nr-MCPs.

1: {configure the number of input channels available}
2: ConfC (C);
3: {disable all BeamFormers until system is configured}
4: InStreamEn (DISABLE INPUTS MASK);
5: {configure decimators size}
6: DFirF (DECIMATOR SIZE, DECIMATOR TYPE);
7: {configure H(z) filters size}
8: DFirF (H SIZE, H TYPE);
9: {configure interpolator size}

10: DFirF (INTERPOLATOR SIZE, INTERPOLATOR TYPE);
11: {transfer the decimators, H(z) and interpolator coefficients to the nr-MCP

external memory}
12: LdCoef (coef addr);
13: {initialize external memory reading and writing pointers}
14: xmem rd addr=INPUT DATA XMEM ADDR;
15: xmem wr addr=OUTPUT DATA XMEM ADDR;
16: {enable BeamFormers}
17: InStreamEn (ENABLE INPUTS MASK);
18: {process streaming data}
19: while (1) do
20: BFSrc (aper, coef addr, xmem rd addr, xmem wr addr);
21: {update external memory pointers}
22: xmem rd addr=xmem rd addr+1024⋅C;
23: xmem wr addr=xmem wr addr+1024⋅SOURCES;
24: end while

is any array of pointers inside the external memory address where the filter
coefficients are stored, and the nr-MCP external memory address where the
filter coefficients will be stored. The source coord provides the sources co-
ordinates for a particular processing iteration. INPUT DATA XMEM ADDR
is an external memory address, where source data are stored, while OUT-
PUT DATA XMEM ADDR is an external memory address, where loudspeak-
ers samples are written back.

The pseudocode starts in line 2 by declaring the available number L of loud-
speakers to the system. In line 4, all output channels are disabled until the sys-
tem is properly configured. In line 6, the DFirF is used to customize the filter
size. In line 8, all loudspeakers coordinates are read from the external mem-

48 CHAPTER 3. ARCHITECTURE FOR IMMERSIVE-AUDIO APPLICATIONS

Algorithm 3.4 Pseudocode for WFS when mapped onto nr-MCPs.

1: {configure the number of loudspeakers of the system}
2: ConfL (L);
3: {disable all channels until system is configured}
4: OutStreamEn (DISABLE OUTPUTS MASK);
5: {configure WFS filter size}
6: DFirF (WFS FILTER SIZE);
7: {read the loudspeaker coordinates from the host GPP memory and copy

them to the nr-MCP memory}
8: StC (spkr addr, speakers coord);
9: {transfer all WFS coefficients to source buffer}

10: LdCoef (coef addr);
11: {initialize external memory reading and writing pointers}
12: xmem rd addr=INPUT DATA XMEM ADDR;
13: xmem wr addr=OUTPUT DATA XMEM ADDR;
14: {enable output channels}
15: OutStreamEn (ENABLE OUTPUTS MASK);
16: {process streaming data}
17: while (1) do
18: RenSrc (source coord, coef addr, speakers coord

xmem rd addr, xmem wr addr);
19: {update external memory pointers}
20: xmem rd addr=xmem rd addr+1024⋅SOURCES;
21: xmem wr addr=xmem wr addr+1024⋅L;
22: end while

ory and transferred to the nr-MCP external memory. In line 10, the LdCoef
reads the WFS filter coefficients form the external memory and transfers them
to the nr-MCP external memory. In line 12 and 13, both external memory read
and write pointers are initialized. Once the system is properly configured, in
line 15, all output channels are enabled, and in line 18, the RenSrc instruction
renders all acoustic sources based on their current coordinates. Both external
memory read and write pointers are properly updated in lines 20 and 21, in
order to process new incoming samples.

3.6. CONCLUSIONS 49

3.6 Conclusions

In this chapter, we have introduced a custom architecture for immersive-audio
applications. The proposed architecture consists of high-level instructions that
allow the configuration of many vital parameters of immersive-audio systems.
Moreover, it is applicable to both r-MCPs and off-the-shelf nr-MCPs, which
nowadays are considered the most efficient platforms for mapping applications
with inherent parallelism.

Furthermore, the major advantage of our proposal is that it hides any imple-
mentation details from the programmer on how to efficiently map the appli-
cations onto the considered hardware platforms. For example, one does not
have to map the design to r-MCPs for every new testing input/output chan-
nels setup, since the proposed architecture provides a high-level interface to
configure them. Furthermore, our proposal does not require any environment-
specific code annotations to efficiently execute the software program to the
available processing cores. These advantages can be translated to less error-
prone audio applications and shorter immersive-audio systems development
and implementation times, since the engineer can perform system tests easier
and much faster.

This chapter is based on the the following papers:

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Minimalistic Architec-
ture for Reconfigurable Audio Beamforming, International Conference on
Field-Programmable Technology (FPT), pp. 503-506, Beijing, China, Decem-
ber 2010

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Minimalistic Ar-
chitecture for Reconfigurable WFS-Based Immersive-Audio, International
Conference on ReConFigurable Computing and FPGAs (ReConfig), pp. 1-6,
Cancun, Mexico, December 2010

4
Immersive-Audio Reconfigurable

Micro-Architectures

I n this chapter, we present the underlying multi-core micro-architectures
that support the proposed architectures for the BF and WFS techniques
when mapped onto reconfigurable Multi-Core Processors (r-MCPs), or-

ganically presented in Chapter 3. The chapter is organized as follows. In
Section 4.1, we present the micro-architectural support of our proposed BF ar-
chitecture. Section 4.2 describes the micro-architecture of the proposed WFS
architecture. Finally, Section 4.3 concludes the chapter.

4.1 Reconfigurable BF Micro-Architecture

4.1.1 Multi-Core BF Micro-Architecture

Figure 4.1 illustrates the multi-core implementation of the proposed BF ar-
chitecture. As it was mentioned in Section 3.1, the proposed architecture
is assumed for operation as an architectural extension of a GPP using the
co-processor paradigm. The architecture assumes multi-core processing, dis-
tributed among C processing modules that process data from C input channels.
A GPP Bus is used to connect the on-chip GPP memory and external SDRAM
with the GPP via a standard bus interface (BUS-IF). Furthermore, in order to
accelerate data transfer from the SDRAM to on-chip buffers, we employ a Di-
rect Memory Access (DMA) controller, which is also connected to the same
bus. A partial reconfiguration controller is employed to provide the option of
reloading the correct bitstreams based on the currently available number of in-
put channels. All user-addressable memory spaces inside the Multi-Core BF
Processor (MC-BFP), like SPRs, BF buffers and the source buffer, are con-

51

52 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

m
a

in
 c

o
n

tr
o
ll

er

so
u

rc
e

a
m

p
li

fi
er

G
P

P

b

u
s

GPP

instruction

and data

memory

B
U

S
-I

F
BF-PE

BeamFormer0

DMA

controller

B
U

S
-I

F

B
U

S
-I

F

...

source

 buffer

B
U

S
-I

F
B

U
S

-I
F

S
P

R
s

SDRAM

B
U

S
-I

F

BF

buffer

BF-PE

BeamFormer1
B

U
S

-I
F

BF

buffer

BF-PE

BeamFormerC-1

B
U

S
-I

F

BF

buffer

B
U

S
-I

F

C = # of input channels

Multi-Core Beamforming Processor

reconfigu-

ration

controller B
U

S
-I

F

Figure 4.1: Multi-core implementation of the BF system.

nected to the GPP Bus. This fact enhances our architecture’s flexibility, since
they are directly accessible by the GPP. The main controller is responsible
for initiating the coefficients reloading process to all decimators and the inter-
polator. Furthermore, it enables input data processing from all channels, and
acknowledges the GPP as soon as all calculations are done.

Each BeamFormer module consist of a BF buffer and a Beamforming Process-
ing Element (BF-PE), which is illustrated in Figure 4.2. As it can be seen, there
is a LdCoef controller and a BFSrc controller. Based on the current source
aperture, the former is responsible for reloading the required coefficient sets

4.1. RECONFIGURABLE BF MICRO-ARCHITECTURE 53

Figure 4.2: The Beamforming processing element (BF-PE) structure.

LdCoefInt

controller

BeamFormer0

on-chip

buffer

main controllerSPRs

interpolator

coefficients

�
L

H0(z) filter
H1(z) filter...

HC-1(z) filter

+
samples

controller

source

buffer

interpolator

C = # of input channels

L = interpoLation rate

Figure 4.3: The source amplifier structure.

from the BF buffer to the decimator and H(z) filter. BFSrc controller reads
1024 input samples from the BF buffer and forwards them to the decimator
and the H(z) filter.

All BeamFormer modules forward the filtered signals to the source amplifier,
which is shown in Figure 4.3. The LdCoefInt controller is responsible for
reloading the coefficients set to the interpolator. As we can see, all Hi(z)
signals, where i=0,...,C-1, are accumulated to strengthen the original acoustic
source signal, which is then interpolated. Finally, the samples controller is
responsible for writing back to the source buffer the interpolated source signal.

BF Data processing flow: Figure 4.4 illustrates how BF data processing is
divided among C BeamFormers, under a C-sized microphone array setup. In
each iteration, 1024 ⋅ C samples are fetched from the SDRAM and stored to
the on-chip BF buffer of each BeamFormer. Once data transfer is done, all
BeamFormers start processing concurrently the audio samples. More specifi-
cally, each one of them downsamples the recorded signals by a factor D. The
downsampled signals are forwarded to the H(z) BF filters, and all outputs are
accumulated, in order to strengthen the original acoustic source. The latter

54 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

fetch 1024·C samples of source i

from SDRAM to C BF buffers

downsample by D

1024 samples

of channel 0

BeamFormer0 BeamFormerj

...
pass downsampled

data through

H0(z) FIR filter

downsample by D

1024 samples

of channel j

pass downsampled

data through

Hj(z) FIR filter

downsample by D

1024 samples

of channel C-1

pass downsampled

data through

HC-1(z) FIR filter

BeamFormerC-1

accumulate all filter outputs

upsample by L 1024

source samples

store 1024 samples of

source i to SDRAM

...

i = 0, … , S-1

S = # of sources

C = # of channels

D = Downsampling factor

L = upsampLing factor

i=S-1?
NO YES

i � i+1

proceed to a new

1024-sample

time frame

i � 0

start

i � 0

Figure 4.4: Flowchart of the BF data processing among all BeamFormers.

is upsampled by a factor L and the result is stored to the external memory.

4.1. RECONFIGURABLE BF MICRO-ARCHITECTURE 55

Figure 4.5: BF instruction where the GPP reads from SPRs.

The process is repeated for each i acoustic source within the recording area,
where i = 0, ..., S − 1 and S is the total number of sources. As soon as a
1024-sample chunk is extracted for all S sources, the recorded data of a new
1024-sample time frame is loaded from the SDRAM to the BF buffers for fur-
ther processing.

4.1.2 BF Instruction Implementation

All SPRs are accessible from the GPP, because they belong to its memory
addressable range. Thus, the programmer can directly pass all customizing
parameters to the MC-BFP. Each SPR is used for storing a system configura-
tion parameter, a start/done flag or a pointer to an external/internal memory
entry. For this reason, we have divided the instructions into four different cate-
gories, based on the way the GPP accesses the SPRs. The categories are: GPP
reads SPR, GPP writes to SPR, GPP reads and writes to SPR, GPP does not
access any SPR, and are illustrated in Figure 4.5, Figure 4.6, Figure 4.7, and
Figure 4.8 respectively. In each figure, a number highlights the correspond-
ing step that is taken during the entire instruction execution. All instruction
categories are analyzed below:

GPP reads SPR: As illustrated in Figure 4.5, RdSPR is the only instruction that
belongs to this category. The GPP initiates a GPP Bus read-transaction and,
based on the SPR num value (step 1), it calculates the proper SPR memory
address.

GPP writes to SPR: As illustrated in Figure 4.6, the InStreamEn, ClrSPRs,
DFirF, ConfC and SSA are the instructions that belong to this category. When
the InStream instruction has to be executed, the GPP initiates a GPP Bus write-
transaction and writes the b mask value to SPR0 (step 1). Similarly, in Clr-
SPRs the GPP has to iterate through all SPRs and write the zero value to them
(step 1). In DFirF instruction, the GPP uses the Ftype parameter to calcu-
late the proper SPR address to write the FSize value (step 1). In ConfC, the
GPP writes the C parameter to SPR9 (step 1), which is read from the partial

56 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

SPR0

SPR1

...

SPR[9+2C]

GPP

0

0

0

0

ClrSPRs

SPR0

SPR1

...

SPR[9+2C]

GPP

b_mask

InStreamEn

...

SPR9

...

SPR[9+2C]

GPP

C

ConfC

...

SPR1

SPR2

SPR[9+2C]

GPP

Fsize

DFirF

...

SPR7

SPR[10+C]

...

GPP

source

buffer

address

SSA

...

SPR[9+2C]

BFs’

samples

addresses

...

SPR3

1 1 1

1

1

2

Figure 4.6: BF instructions where the GPP writes to SPRs.

reconfiguration controller, in order to load from the external memory the bit-
stream that includes C BeamFormers. Finally, in SSA instruction, the GPP
iterates SPR[10+C] - SPR[9+2⋅C] and writes to them the on-chip BF buffer
addresses (step 1), where 1024 input samples will be written, which are read
from buf samp addr. Furthermore, it writes to SPR7 the source buffer address,
where 1024 samples of the extracted source signal are stored (step 2).

GPP reads and writes to SPR: As illustrated in Figure 4.7, the LdCoef and
BFSrc instructions belong to this category. In LdCoef, the GPP writes all dec-
imator coefficients addresses to SPR10 - SPR[9+C] (step 1), and the interpo-
lator coefficients address to SPR8 (step 2), which are read from buf coef addr.
As soon as all addresses are written to the proper SPRs, the GPP writes a Ld-
Coef start flag to SPR4 (step 3) and remains blocked until the MC-BFP writes
a LdCoef done flag to the same SPR. As soon as a LdCoef start flag is written to
SPR4, the main controller enables the LdCoef controller to start reloading the
decimators coefficients (step 4). Once this step is finished, the LdCoefInt con-
troller via the main controller initiates the interpolator coefficients reloading
procedure (step 5). As soon as all coefficients are reloaded, the LdCoefInt con-
troller acknowledges the main controller, which writes a LdCoef done flag to
SPR4 (step 6). This unblocks the GPP, which can continue further processing.

In BFSrc, based on the source aperture aper, the GPP calculates a BF buffer
address offset, called aperture address offset, in order to access the proper H(z)
coefficients sets. The GPP writes the aperture address offset to SPR5 (step 1).
Furthermore, it performs a DMA transaction, in order to read C 1024-sample

4.1. RECONFIGURABLE BF MICRO-ARCHITECTURE 57

Figure 4.7: BF instructions where the GPP reads and writes to SPRs.

chunks from the xmem read addr memory location and distribute them to on-
chip BF buffers of the C BeamFormer modules (step 2). As soon as all data are
stored, the GPP writes a BFSrc start flag to SPR6 (step 3). The MC-BFP reads
the start flag from SPR6 (step 4), while the GPP remains blocked until the
MC-BFP writes a BFSrc done flag to the same SPR. Within each BeamFormer
module, the LdCoef controller reads via the main controller the aperture ad-
dress offset from SPR5 and reloads to the H(z) filter the proper coefficients
set (step 5). Once all H(z) coefficients are reloaded, the LdCoef controller ac-
knowledges the BFSrc controller, which enables processing of input data that
are stored to the BF buffers. When all 1024 samples are processed, the main
controller writes a BFSrc done flag to SPR6 (step 6), which unblocks the GPP.
The latter performs again a DMA transaction, in order to transfer 1024 samples
from the source buffer to the xmem write addr memory location (step 7).

GPP does not access any SPR: As illustrated in Figure 4.8, BufCoef is the
only instruction that belongs to this category. The GPP reads all source and

58 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

Figure 4.8: BF instruction where the GPP does not access any SPRs.

destination addresses from the xmem coef addr and buf coef addr arrays re-
spectively. First, it performs a DMA transaction to transfer all decimator co-
efficients to the BF buffers (step 1). Next, based on the total number of source
apertures to the system, it performs a second DMA transaction to load all H(z)
coefficients and distribute them accordingly to the on-chip BF buffers (step 2).
Finally, with a third DMA transaction, the GPP fetches the active interpolator
coefficients set to the on-chip BF buffer of BeamFormer0 module.

4.2 Reconfigurable WFS Micro-Architecture

4.2.1 Multi-Core WFS Micro-Architecture

Figure 4.9 illustrates the multi-core implementation of the proposed WFS ar-
chitecture. A GPP bus is used to connect the on-chip GPP memory and exter-
nal SDRAM with the GPP via a standard bus interface (BUS-IF). Furthermore,
in order to accelerate data transfer from the SDRAM to RU buffers, a Direct
Memory Access (DMA) controller is employed, which is also connected to the
same bus. A partial reconfiguration controller is used to provide the option of
reloading the correct bitstreams based on the currently available RUs. All user-
addressable spaces inside the MC-WFSP, like SPRs, RU buffers and the source
buffer, are connected to the GPP bus. This fact enhances our architecture’s
flexibility, since they are directly accessible by the GPP. The main controller
is responsible for initiating the coefficients reloading process to the WFS fil-
ter and distributing the loudspeaker coordinates to all RUs. Furthermore, it
broadcasts all filtered data to each RU, enables output data processing from the
selected RUs and acknowledges the GPP as soon as all calculations are done.

Within each RU there is a WFS Processing Element (WFS-PE) module, illus-
trated in Figure 4.10. The StCoord controller is connected to the main con-

4.2. RECONFIGURABLE WFS MICRO-ARCHITECTURE 59

m
a
in

 c
o
n

tr
o
ll

e
r

G
P

P
 b

u
s

B
U

S
-I

F
B

U
S

-I
F

B
U

S
-I

F

B
U

S
-I

F
B

U
S

-I
F

S
P

R
s

B
U

S
-I

F

B
U

S
-I

F
B

U
S

-I
F

B
U

S
-I

F
B

U
S

-I
F

Figure 4.9: Detailed implementation of the WFS multi-core system.

troller and is responsible for transferring the loudspeaker coordinates from the
RU buffer to the internal Loudspeaker Coordinates Buffer (LCB). The Render
controller reads the coordinates of each loudspeaker from the LCB and for-
wards them to the Preprocessor. The latter reads the loudspeaker coordinates
and calculates the amplitude decay, source velocity and source distance from
a particular loudspeaker based on its current position inside the listening area.
The WFS Engine module integrates the Filtered Samples Buffer (FSB) to store
all filtered samples. Furthermore, it employs two cores that select the proper
samples, based on the source distance from the same loudspeaker, and multi-

60 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

StCoord

controller

Render

controller

SPRs main controller

loudspeakers

coordinates

buffer

RU

buffer

Pre

processor

WFS

Engine

Non user-accessible

memory space

correction

filter

Figure 4.10: The WFS-PE structure.

ply them with the amplitude decay. All output samples are written back to the
RU buffer.

WFS Preprocessor: Figure 4.11 illustrates the WFS Preprocessor organiza-
tion. Targeting a minimalistic design, we decided to utilize only 1 adder/sub-
tractor, 1 multiplier, 1 square root unit and 1 fractional divider. Furthermore,
as mentioned before, the WFS Preprocessor always finishes execution before
the WFS Engine does. Thus, spending additional resources to accelerate its
execution, would eventually make the WFS Preprocessor just being idle for a
longer time.

Current loudspeaker coordinates along with source header are stored into local
registers. Since there is direct data dependency among many of these opera-
tions, the WFS Preprocessor controller issues them serially to the correspond-
ing functional unit. Results are stored again to local registers and reused for
further calculations. The WFS Preprocessor requires 142 clock cycles to com-
plete data processing and the final results are forwarded to the WFS Engine.

WFS Engine: The WFS engine is the core computational part of the design,
sketched in Figure 4.12. As stated above, once the WFS Preprocessor is done,
it acknowledges the Render controller. The latter starts the WFS Engine, which
reads from the WFS Preprocessor local registers the unit distance, amplitude
decay and distance with respect to the current loudspeaker. These data are
forwarded to two Sample Selection Cores (SSC), SSC1 and SSC2, which select
the appropriate filtered sound samples from the FSB, according to equation
(2.9). Each SSC consists of one multiplier, one subtractor, two accumulators
and one adder, as illustrated in Figure 4.13.

4.2. RECONFIGURABLE WFS MICRO-ARCHITECTURE 61

Pre-processor

Controller

Adder /

Subtractor

Multiplier

Divider

Sqrt

Local

registers

Local

registers

FCM

controller

signals

WFS

engine

Speaker

coordinates

and source

header

Figure 4.11: The WFS Preprocessor organization

SSC1

SSC2

WFS

Engine

controller

PORTA

Filtered

Samples

Buffer

PORTB

Multipliers
Data

assembler

RU

buffer

correction

filter

Preprocessor

data

Render

controller

Figure 4.12: WFS Engine organization

All selected samples from SSC1 and SSC2 according to equation (2.9), are mul-
tiplied by the system master volume level and amplitude decay and forwarded
through a FIFO queue to the Data Assembler. The latter checks whether the
input samples belong to the source with ID=0, in order to perform a data accu-
mulation with the previous samples stored to the RU buffer or not. Afterwards,
it generates a 64-bit word consisting of four 16-bit audio samples that are writ-
ten back to the RU buffer. The WFS Engine repeats the above process for 1024
samples, processing 2 samples per clock cycle, thus a total of 512 cycles. Also
there are 11 more cycles spent on communication among internal modules,
which results in a total of 523 required cycles for all samples.

The number of used SSCs was based on the tradeoff between performance
and available resources. The RU performance versus the SSCs number for
processing 1024 samples, is calculated according to the following formula:

62 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

Figure 4.13: SSC organization

cc = 11 + 8 +
buffersize

SSC
(4.1)

where 11 cycles are the aforementioned communication overhead among the
WFS Engine internal modules, and 8 cycles are required for communication
among the WFS Engine, the WFS Preprocessor and the Render controller.
Formula (4.1) gives a performance of 1043, 531 and 275 clock cycles for 1,
2 and 4 SSCs respectively. Utilizing more SSCs would cause a BRAM write-
back bottleneck, since its current width is 64 bits.

An approach of 2 and 4 SSCs would increase the RU performance
1043/531=1.96x and 1043/275=3.79x respectively compared to a single SSC
approach, however, it would require 2x and 4x resources. Based on this anal-
ysis, we decided to utilize two SSCs which offer a good tradeoff between per-
formance increase and occupied resources.

WFS Data processing flow: Figure 4.14 illustrates how WFS data process-
ing is divided among R RUs, under a L-sized loudspeaker array setup. For
each acoustic source, 1024 samples are fetched from the external memory to
the source buffer. Once the samples transferring is finished, they are filtered
through the 3dB/octave correction filter and stored inside the FSB of each RU
buffer. Within each iteration i, where i = 0, ..., L

R
− 1, the j-th RU pro-

cesses all output samples of the i ⋅R +j loudspeaker. If for the particular time
frame that corresponds to 1024

fs
sec, the source with ID=0 is processed (i.e. is

the first source), then data are written directly to the RU buffers. Otherwise,
all data that were already stored to the RU buffers are accumulated with the
new ones, and the results are stored back to the RU buffers. If i ≤ L

R
− 1

then the same process is repeated for the next set of loudspeakers, otherwise
output data are stored back to SDRAM. If the source ID=S-1, where S is the
number of acoustic sources, then data processing starts for a new 1024-sample
time frame, otherwise 1024 samples of the next source, but for the current

4.2. RECONFIGURABLE WFS MICRO-ARCHITECTURE 63

i � 0

fetch 1024 samples of

the next source from

SDRAM to source buffer

store filtered samples to each

RU’s WFS-Engine FSB

source

ID=0?

NOYES

calculate data for

loudspeaker

i·R

...

i = 0, … ,

L = # of loudspeakers

R = # of RUs

source ID = 0,…, S-1

S = # of sources

RU0

store data to

RU0 buffer

i � i+1

accumulate

with data to

RU0 buffer

NO YES

source

ID=0?

NOYES

calculate data for

loudspeaker

i·R+j

store data to

RUj buffer

i � i+1

accumulate

with data to

RUj buffer

?

1
L

i
R

 !
NO YES

RUj

source

ID=0?

NOYES

calculate data for

loudspeaker

i·R+(R-1)

store data to

RUR-1 buffer

i � i+1

accumulate

with data to

RUR-1 buffer

?

1
L

i
R

 !
NO YES

RUR-1

?

1
L

i
R

 !

L
1

R
!

...

store output data to SDRAM

source

ID =

S-1?

NO YES

proceed to a new

1024-sample time frame

Figure 4.14: Flowchart of the WFS data processing among all RUs.

1024-sample time frame, are processed.

4.2.2 WFS Instruction Implementation

All SPRs are accessible from the GPP, because they belong to its memory
addressable range. Thus, the programmer can directly pass all customizing pa-

64 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

Figure 4.15: WFS instruction that the GPP reads from SPRs.

Figure 4.16: WFS instructions that the GPP writes to SPRs.

rameters to the MC-WFSP. Each SPR is used for storing a system configuration
parameter, a start/done flag or a pointer to an external/internal memory entry.
For this reason, we have divided the instructions into four different categories,
based on the way the GPP accesses the SPRs. The categories are: GPP reads
from SPR, GPP writes to SPR, GPP reads and writes to SPR, GPP does not
access any SPR and are illustrated in Figure 4.15, Figure 4.16, Figure 4.17 and
Figure 4.18 respectively. In each figure, a number highlights the correspond-
ing step that is taken during the entire instruction execution. All instruction
categories are analyzed below:

GPP reads from SPR: As illustrated in Figure 4.15, RdSPR is the only instruc-
tion that belongs to this category. The GPP initiates a GPP bus read-transaction
and, based on the SPR num value, it calculates the proper SPR memory address
(step 1).

GPP writes to SPR: As illustrated in Figure 4.16, OutStreamEn, ClrSPRs,
ConfL, DFirF, and SSA are the instructions that belong to this category. When
the OutStreamEn instruction has to be executed, the GPP initiates a bus trans-

4.2. RECONFIGURABLE WFS MICRO-ARCHITECTURE 65

action and writes the binary mask b mask to SPR0 (step 1). Similarly, in Clr-
SPRs the GPP performs consecutive bus transactions to access all SPRs and
writes the zero value to them (step 1). The ConfL instruction writes the L/R
parameter to SPR2 (step 1) and also forwards the R parameter to the partial
reconfiguration controller, in order to load from the external memory the bit-
stream that includes R RUs. The DFirF also performs a bus transaction to write
to SPR1 the WFS filter size. Finally, the SSA instruction accesses the GPP bus
to write the source buffer address to SPR7 (step 1) and all sample addresses
within each RU buffer to SPR[11+R] - SPR[10+2⋅R] (step 2).

GPP reads and writes to SPR: As illustrated in Figure 4.17, StC, LdCoef and
RenSrc instructions belong to this category. When the StC instruction is ex-
ecuted, the GPP performs a DMA transaction to read all loudspeakers coor-
dinates from the external memory address xmem spkr coordinates and store
them the GPP on-chip memory. The loudspeaker coordinates are re-arranged
based on the number of RUs of the system and stored to the RU buffers (step
1). The GPP writes a start flag to SPR3 and remains blocked until a done flag
is written to the same register (step 2). The start flag is read by the MC-WFSP
(step 3) and the main controller invokes the StCoord controller to load the
coordinates from the RU buffers to the internal LCBs (step 4). As soon as all
loudspeakers coordinates have been transferred, the MC-WFSP writes the done
flag to SPR3 (step 5), which is read by the GPP to continue further processing.

When the LdCoef instruction is executed, the GPP performs a bus transaction
to write to SPR8 the WFS coefficients address inside the source buffer (step
1). Furthermore, it writes to SPR4 the start flag and remains blocked until a
done flag is written to the same SPR (step 2). The MC-WFSP reads the start
flag (step 3) and the main controller starts the coefficients reloading to the FIR
filter (step 4). Once all coefficients are loaded, the MC-WFSP writes a done
flag to SPR4 (step 5), which is read by the GPP to continue further processing.

Finally, when the RenSrc is executed, the GPP writes to SPR5 and SPR6 the
(x1,y1) and (x2,y2) source coordinates (step 1). Furthermore, it writes to
SPR10 the source identification number (step 2) and performs a DMA transac-
tion to read a 1024-sample chunk from the external memory and store it to the
source buffer (step 3). The GPP then writes to SPR9 a start flag and remains
blocked until a done flag is written to the same register from the MC-WFSP
(step 4). The MC-WFSP main controller reads the start flag (step 5) and in-
vokes the Render controller within each RU to start data processing (step 6).
For every loudspeaker that is processed within a specific RU, the Render con-
troller reads its coordinates from the LCB, the source coordinates from SPR5

66 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

DMA

controller

SDRAM

RU0

buffer

RUR-1

buffer
...

xmem_spkr

_coordinates

buf_spkr

_coordinates[0]

buf_spkr

_coordinates[R-1]

StC

...

SPR3

...
GPP

start/done

flags

SPR11

...

SPR[10+R]

...

SPR4

...
GPP

start/done

flags

SPR8

...
buf_coef_addr

main

controller

source

buffer

WFS filter

coefficients

LdCoef

...

SPR5

SPR6
GPP

start/done

flags SPR9

...

Srcx1y1

Srcx2y2

SPR10

SPR[11+R]

...

SPR[10+2R]

main

controller

RUs

samples

addresses

source

ID

main

controller

RU0

LCB

RUR-1

LCB

...

SDRAM

RU0

RUR-1

...

RenSrc

loudspeakers

coordinates

addresses inside

RU buffers

1

1

1

2

3

4

4

4

4

5

5

1

2

3

4
4

4

5

5

1

2
source

buffer

DMA

controller

3

3

4 5

6

66

7

8

8

9 9

9

Figure 4.17: WFS instructions that the GPP reads and writes to SPRs.

and SPR6 (step 7) and 1024 samples from the source buffer, and forwards them
to the WFS Preprocessor to calculate the amplitude decay, source velocity and
source distance from the particular loudspeaker. Once these parameters are
computed, the Render controller invokes the SSCs which select the proper au-
dio samples, multiply them by the amplitude decay and store them back to the
RU buffers. As soon as all assigned loudspeakers to all RUs are processed, the
main controller writes a done flag to SPR9 (step 8), which is read by the GPP.
The latter then performs DMA transactions to store back all output samples

4.3. CONCLUSIONS 67

GPP

RU0

buffer

RUR-1

buffer

...

0

0

ClrRUBuf

DMA

controller

SDRAM

source

buffer

xmem_coef_addr

buf_coef_addr

BufCoef

1

1 1

1

Figure 4.18: WFS instructions where the GPP does not access any SPRs.

from the RU buffers to the SDRAM (step 9).

GPP does not access any SPR: As illustrated in Figure 4.18, BufCoef and Clr-
RUBufs are the instructions that belong to this category. When the BufCoef in-
struction is executed, the GPP reads all source and destination addresses from
the xmem coef addr and buf coef addr pointers respectively. Then it performs
a DMA transaction to transfer all WFS filter coefficients from the SDRAM to
the source buffer (step 1). The ClrRUBufs instruction performs DMA transac-
tions to initialize all available RU buffers with zeros (step 1).

4.3 Conclusions

In this chapter we presented the underlying micro-architecture that supports
the proposed instructions of both BF and WFS applications, originally pre-
sented in Chapter 2. A multi-core processing approach was chosen, in order
to exploit the inherent parallelism that both immersive-audio techniques offer.
The architecture implementation for both BF and WFS allows utilization of
various number of processing elements, therefore it is suitable for mapping on
reconfigurable technology. As it can be concluded, with respect to the avail-
able reconfigurable resources, different FPGA implementations with different
performances are possible, where all of them use the same architecture and
programming paradigm.

This chapter is based on the following papers:

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Reconfigurable Au-
dio Beamforming Multi-Core Processor, International Symposium on Ap-
plied Reconfigurable Computing (ARC), pp. 3-15, Belfast, Ireland, March
2011

68 CHAPTER 4. RECONFIGURABLE MICRO-ARCHITECTURES

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Minimalistic Architec-
ture for Reconfigurable Audio Beamforming, International Conference on
Field-Programmable Technology (FPT), pp. 503-506, Beijing, China, Decem-
ber 2010

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Minimalistic Ar-
chitecture for Reconfigurable WFS-Based Immersive-Audio, International
Conference on ReConFigurable Computing and FPGAs (ReConfig), pp. 1-6,
Cancun, Mexico, December 2010

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Reconfigurable
Beamformer for Audio Applications, IEEE Symposium on Application Spe-
cific Processors (SASP), pp. 80-87, San Francisco, California, USA, July 2009

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Reconfigurable Accel-
erator for WFS-Based 3D-Audio, IEEE Reconfigurable Architectures Work-
shop (RAW), pp. 1-8, Rome, Italy, May 2009,

5
Architecture Implementation on
nr-MCPs: Case Study on GPUs

N on-reconfigurable Multi-Core Processors (nr-MCPs) provide an at-
tractive solution for mapping applications with inherent parallelism.
Over the last years, a lot of research is conducted, in order to inte-

grate as many processing cores as possible within a single chip. As a result,
different multi-core architectures have emerged.

Figure 5.1 illustrates a chart with few examples of homogeneous and het-
erogenous hardware commercial platforms. For example, nowadays there are
mainstream GPPs that integrate up to six processing cores, like the Phenom
II X6 processor series from AMD [25]. Recently, Intel presented an exper-
imental ”Single-Chip Cloud Computer” (SCC) that integrates 48 cores [43].
Furthermore, there are various platforms that consider a heterogeneous ap-
proach, like the Sony Cell Broadband Engine, the Kilocore series from Rap-
port and IBM [44], and the picoChip PC200 series [74]. A third category of
nr-MCPs is the GPUs, which over the last years have evolved to massively
parallel processing platforms that offer a computational performance in the or-
der of GFLOPs. As it can be observed from Figure 5.1, GPUs cover a wide
range of implementations that integrate from a few tens up to hundreds of pro-
cessing cores. Moreover, GPGPU computing is increasingly evolving due to
the fact that major GPU companies like NVidia and AMD, provide high-level
programming environments that help the developers to harness the potential
processing power of GPUs. As a result, nowadays, GPUs can be utilized to
build fast and computationally powerful hardware systems that can be applied
to many scientific and commercial domains.

Based on these facts, we conducted a case study on the nr-MCP domain and
applied our proposed architecture to GPUs. More specifically, in this chap-
ter we preset how we mapped the instructions mentioned in Section 3.3 onto

69

70 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

#
 o

f
co

re
s

w
it

h
in

 a
 s

in
g
le

 c
h
ip

Figure 5.1: Number of processing cores integrated to contemporary nr-MCPs.

GPUs for both BF and WFS. Since contemporary GPUs consist of tens of on-
chip multiprocessors [68], they provide a huge potential of concurrent thread
execution, as long as the target application can be parallelized. Both BF and
WFS applications can be considerably parallelized, thus making the GPUs a
suitable target platform.

The rest of the chapter is organized as follows: In Section 5.1, we provide a
brief description of contemporary GPUs organization. Section 5.2 and Sec-
tion 5.3 describe how the BF and WFS instructions were mapped onto GPUs
respectively. Finally, Section 5.4 concludes the chapter.

5.1 Contemporary GPUs organization

In order for the developers to efficiently map general purpose kernels on the
GPU without using specific graphics terms, such as textures, vertices and frag-
ments, NVidia launched the Compute Unified Device Architecture (CUDA)
parallel software environment [68]. CUDA introduces a set of extensions to
the C programming language that exposes to the developers the parallel pro-
cessing capabilities of the GPU. Each kernel mapped on the GPU is executed
concurrently by many threads mapped on the multiprocessors. CUDA defines
a thread hierarchy based on a grid of thread blocks. Each block consists of up
to 512 threads in a 1-, 2- or 3-dimensional order, while the maximum dimen-

5.1. CONTEMPORARY GPUS ORGANIZATION 71

GPU main memory

multi

processor

0

multi

processor

1

multi

processor

M-1

G
P

U

co
n
st

an
t

ca
ch

e

sh
ar

ed
 m

em
o

ry

te
x
tu

re
 c

ac
h
e

Instruction

Dispatch

to
 G

P
U

 m
ai

n
 m

em
o
ry

RF

scalar

processor 0

RF

RF

scalar

processor 1

scalar

processor P-1

Figure 5.2: Contemporary NVidia GPUs organization.

sion size of a grid of thread blocks can be up to 216.

Contemporary NVidia GPUs architectures like the G80 and the GT200 [68]
consist of M multiprocessors, as illustrated in Figure 5.2, that can process data
concurrently. Each multiprocessor includes P scalar processors, each one con-
sisting of two integer and one floating point units (FPU). Furthermore, a mul-
tiprocessor integrates special function units for transcendental functions, like
sine and cosine, a multithreaded instruction unit and the following four differ-
ent types of on-chip memory:

∙ A shared memory among all processors in a multiprocessor. The shared
memory is used for data caching.

∙ A read-only constant memory used for caching reads of constants from
the GPU main memory.

∙ Another read-only memory, called texture memory, that is used for
caching textures read also from the GPU main memory.

72 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

image / constant data cache L2

compute

unit 0

compute

unit 1

compute

unit M-1

ultra-threaded dispatch processor

GPU global / constant memory

RF

stream

core 0
RF

stream

core 1

RF

stream

core 2
RF

stream

core 3

RF

stream

core P-2
RF

stream

core P-1

Figure 5.3: Contemporary AMD GPUs organization.

∙ P Register Files (RFs) distributed among all processors of a multipro-
cessor.

Recently, NVidia launched a new series of GPUs that incorporate the Fermi
architecture [70]. One of its main innovations is that introduces a true cache
hierarchy. More specifically, the shared memory among the CUDA process-
ing cores can be partially configured as an L1 cache memory, in order to en-
hance applications performance, especially for the ones that do not exploit the
shared memory [70]. In addition, the scalar processors, referred to the Fermi
architecture context as CUDA cores, have been significantly improved. More
precisely, the enhanced FPU supports the IEEE754 2008 standard [40] and a
fuzed multiply-add floating point instruction. Furthermore, the integer unit is
improved for multiply operations from 24 bits precision to 32 bits.

Similarly to NVidia, AMD has developed its own high-level parallel program-
ming environment for GPUs, which supports the OpenCL framework [49],
called Stream [4]. The latter can be used to map applications for parallel exe-

5.2. BF INSTRUCTIONS IMPLEMENTATION TO GPUS 73

cution onto AMD GPUs. Figure 5.3 depicts the organization of contemporary
AMD GPUs. As it can be observed, within a single GPU there are M compute
units. Each one of them integrates P stream cores, while a single core includes
five processing elements for single precision floating point and integer opera-
tions, and transcendental functions. Furthermore, there are the following types
of on-chip memory:

∙ A private memory, i.e. a RF, that is used from each stream core.

∙ A local memory including the L1 and the color buffer that is used from
each compute unit.

∙ A global memory that is accessible by all compute units.

∙ A constant memory that is accessible by all compute units and is used to
initialize data that do not change during kernel execution.

As it can be concluded, both companies follow a rather similar approach to de-
sign GPUs. Their excessive computational power relies on a multiprocessor-
based approach, where each processor comprises massive number of process-
ing elements. In our case study, we have selected the NVidia GPU platforms
to apply our proposed architecture, using the CUDA parallel programming en-
vironment. However, as it was mentioned in Chapter 3, all implementation
details, like proper code annotation for mapping the application to the CUDA
cores and threads scheduling of kernels are completely hidden from the user.
In the following sections we describe the BF and WFS instructions implemen-
tation to NVidia GPUs using the CUDA programming environment.

5.2 BF Instructions Implementation to GPUs

As a case study of the BF technique, we have followed the specifications and
processing steps of a BF application provided by the Fraunhofer Research In-
stitute [41], in the context of the hArtes European project [51], [50], [39].
However, we should note that the proposed architecture implementation is ap-
plicable for any BF application that performs the same processing steps, re-
gardless of any specifications, such as sampling frequency and different filters
size. In the following we describe the implementation of each instruction pre-
sented in Section 3.3 using the CUDA parallel programming environment.

InStreamEn: The mask b mask that controls the input channels streaming is
stored to internal (i.e. non accessible to to the user) variable. The latter is used
during the BFSrc execution, in order to enable or disable the corresponding
input channels.

74 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

DFirF: Based on the value of the FType parameter, it stores the filter sizes to
internal variables. The latter are used during the BFSrc execution, in order to
configure efficiently the threads scheduling to the GPU.

LdCoef: Uses the coef addr parameter and the decimator and interpolator sizes
that are already stored to internal variables. It transfers the active decimators
and interpolator coefficients sets to the GPU main memory. Since the coeffi-
cients number is a dynamic value, the instruction uses the cudaMemcpyToSym-
bol CUDA function [68] to transfer all data.

ConfC: Writes to an internal variable the number of system input channels.

BFSrc: As it was indicated in Section 2.1, BF is mainly based on FIR filters
that compensate for the introduced delay of the sound wavefront arrival at all
microphones [13]. The result is that the main sound source is strengthened
while any ambient noise is attenuated. However, in order to reduce the data
processing rate in this particular implementation, input signals are first deci-
mated by a certain factor. As soon as all decimated input signals are processed,
the extracted sound source is interpolated by the same factor that was used dur-
ing the decimation process, thus restoring the initial sampling frequency. To
summarize, the BF application consists of the following four phases:

1. Decimation of the input signal by a certain factor.

2. FIR filtering of each input signal with a specific set of coefficients.

3. Accumulation of all filtered signals to strengthen the main sound source.

4. Interpolation of the extracted source signal by the same factor that was
used during the decimation process.

It is observed that in three out of four of the above phases FIR filtering is re-
quired, thus it is the dominant operation of the BF application. FIR filtering has
the potential to be considerably accelerated when mapped onto GPUs, since
the latter provide hundreds of processing elements that can calculate data con-
currently. Based on this fact, we decided to develop a flexible computational
kernel that could be reused with minor changes to efficiently map the deci-
mation, FIR filtering and interpolation processes onto the GPU. Furthermore,
an additional GPU kernel was developed to perform the accumulation of all
filtered signals. Algorithm 5.1 illustrates how the BFSrc instruction is mapped
onto the GPU. Variable C represents the total number of input channels (mi-
crophones) available to the sound system, which can be configured using the
ConfC instruction. SOURCES is the number of present sources that need to be
extracted. We use the GPU annotation to designate the parts of the application
that are executed by the GPU.

5.2. BF INSTRUCTIONS IMPLEMENTATION TO GPUS 75

Algorithm 5.1 Beamforming implementation to GPU

Require: Input signals from C microphones
Ensure: Extracted SOURCES audio sources

1: Move input data to GPU main memory
2: Store H(z) filter coefficients to GPU main memory
3: for c = 0 to C − 1 do
4: GPU: Decimate channel c
5: end for
6: for s = 0 to SOURCES − 1 do
7: for c = 0 to C − 1 do
8: GPU: Extract source s from channel c
9: end for

10: GPU: Accumulate signals from all channels
11: GPU: Upsample source s signal
12: end for
13: Move all extracted sources signals back to CPU main memory

Figure 5.4: Decimation, source extraction and interpolation filters onto GPU threads.

Input signal decimation: The initial sampling frequency fs in the specific BF
application is 48 kHz and a downsampling factor D of 4 is used to decimate
the signal. However, before downsampling any signal, it is mandatory to filter
it in order to avoid any aliasing effects. Since D = 4, the resulting signal will
have fs = 12 kHz, which is its new sampling frequency. This means that if the
applied filter before downsampling eliminates all components above 12

2
kHz

= 6 kHz, which is the Nyquist frequency, then the final decimated signal will
have no aliasing effects. Therefore, a decimation FIR filter with size of 242
taps is applied to cut off any components above 6 kHz.

In order to efficiently filter and downsample a signal, the following formula is
used:

76 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

...

threads block

...

...

0 1 txdim-1

0,0

...

threads block

0 1 txdim-1

1,0

...

threads block

0 1 txdim-1

gxdim-1,0

...

threads block

...

0 1 txdim-1

0,1

...

threads block

0 1 txdim-1

1,1

...

threads block

0 1 txdim-1

gxdim-1,1

...

...
...

threads block

...

0 1 txdim-1

0,gydim-1

...

threads block

0 1 txdim-1

1,gydim-1

...

threads block

0 1 txdim-1

gxdim-1,gydim-1

dOut�0.0f;
x[tx]�mem[sample index];
c[tx]�mem[coefficient index];
tmp[tx]=c[tx]*x[tx];

synchronize threads;

for (i=0;i<txdim;i++)

dOut=dOut+tmp[i];

synchronize threads;

mem[output index]�dOut;
grid of thread blocksbx �� by

Figure 5.5: Grid of thread blocks that are dispatched during the FIR filter calculations
onto the GPU.

Table 5.1: Sample, coefficient and output indices for the BF application.

GPU kernel sample index coefficient index output index
decimation bx⋅D+by⋅gxdim-tx tx bx+by⋅gxdim
H(z) filter bx+by⋅gxdim-tx angle⋅NH ⋅C+C cur⋅NH bx+by⋅gxdim

interpolation bx
L

+by⋅gxdim-tx tx bx+by⋅gxdim

y[k] =

ND−1∑
tx=0

c[tx] ⋅ x[k ⋅ D − tx] (5.1)

where k is the current filter output sample, ND is the decimator filter size
provided by the DFirF instruction, tx=0...ND -1, c[] represents the filter co-
efficients, x[] represents the current status of the filter delay line, and D is
the downsampling factor. The first row of Figure 5.4 illustrates how (5.1) is
mapped onto different GPU threads, in order to calculate a single output sam-
ple of the decimated signal. Each multiplication is mapped onto a different
GPU thread and all of them are concurrently executed. As soon as all multipli-
cations are performed, all results are accumulated and stored back to the GPU
main memory. The second and third lines of Figure 5.4 are discussed in the
”Source extraction” and ”Source signal interpolation” subsections.

Figure 5.5 depicts the grid of thread blocks that was designed to efficiently
map the calculation of all decimated samples onto a GPU kernel. Input signals

5.2. BF INSTRUCTIONS IMPLEMENTATION TO GPUS 77

are divided into 1024-sample chunks. Since the decimator FIR filter size is
242, we launch the same number of GPU threads per block, that is txdim =
242 in Figure 5.5. This way we can map the calculation of each output sample
of the decimated signal to 1 thread block. Within each thread block variable
dOut is used to store the corresponding output sample. Each thread calculates
a proper sample and coefficient index to load the respective sample and filter
coefficient from the GPU external memory to x[] and c[] arrays inside the
shared memory of a GPU multiprocessor. We use the variables bx and by
as coordinates of every thread block within the grid, thus bx=0...gxdim-1 and
by=0...gydim-1. Since each thread block is responsible for calculating a single
sample of the decimated signal, the illustrated grid in Figure 5.5 can process
up to gxdim⋅gydim samples. Based on these variables, each thread calculates
the correct sample, coefficient and output indices that are shown in the second
row of Table 5.1. As soon as the two values are multiplied, all threads are
synchronized and data are accumulated to the dOut variable. Threads are then
again synchronized and the final result is stored to the main GPU memory
based on the output index that each thread calculates.

Source extraction: In order to efficiently map the FIR filter operations onto
the GPU, we used the same approach as in decimation. Each H(z) FIR filter is
represented by:

y[k] =

NH−1∑
tx=0

c[tx] ⋅ x[k − tx] (5.2)

where k is the current filter output sample, NH is the H(z) filter size provided
by the DFirF instruction, tx=0...NH -1, c[] represents the filter coefficients, and
x[] represents the current status of the filter delay line. The second row in Fig-
ure 5.4 illustrates how (5.2) can be separated into different GPU threads, where
each thread block is responsible for calculating a single output sample. As it
was in the case of decimation, each multiplication is assigned to a unique GPU
thread and all of them are executed concurrently. All results are accumulated,
and the final value is stored back to the GPU main memory.

We designed again a gxdim by gydim grid of thread blocks, as illustrated in
Figure 5.5, where bx=0...gxdim-1 and by=0...gydim-1 are the coordinates of
each thread block within the grid. Each FIR filter is 128 taps long. Therefore,
we use 128 GPU threads per block, thus txdim = 128 in Figure 5.5 for the
source extraction. Finally, the third row of Table 5.1 illustrates how the new
sample and coefficient indices are calculated within each GPU thread. The
angle variable designates the source aperture, C is the total number of input

78 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

channels, and C cur is the current channel that is being processed.

It has been noted in Section 2.1 that each decimated signal is filtered by an H(z)
FIR filter. In the case considered, the BF application can recognize 19 source
apertures. Furthermore, since each FIR filter consists of 128 taps, we need
to store 128 coefficients

aperture
⋅19apertures

channel
⋅C channels = 2432⋅C coefficients ,

where each coefficient is in single precision floating point format. Since cur-
rent GPUs constant memory is not enough to fit all coefficients, we decided to
store them to the GPU main memory.

Source signal interpolation: Signal interpolation consists of two consecutive
stages: signal upsampling and filtering. Upsampling a signal by a factor L
introduces undesired spectral images at multiples of the initial sampling fre-
quency, and for this reason, the upsampled signal needs to be filtered [54].
We upsampled the extracted source signal by inserting L-1 zeros between its
samples. Following a polyphase filter approach [54], we can use the follow-
ing equation to describe all L polyphase filters that are utilized to efficiently
upsample and filter the input signal:

y[k ⋅ L + p] =

NL
L
−1∑

tx=0

c[tx ⋅ L + p] ⋅ x[k − tx] (5.3)

where k is the current filter output sample, NL is the interpolator filter size
provided by the DFirF instruction, tx=0...NL

L
-1, c[] represents the filter coeffi-

cients, x[] represents the current status of the filter delay line, L is the upsam-
pling factor, and p=0...L-1 is the corresponding polyphase filter.

The third row in Figure 5.4 illustrates how (5.3) can be efficiently mapped
to different GPU threads. As it was in both cases of decimation and source
extraction, each multiplication is assigned to a different GPU thread, while all
threads are executed concurrently. Based on the polyphase filter approach [54],
the interpolation FIR filter length should be a multiple of L. The BF application
that we used during our experiments utilizes a FIR filter with NL=242 taps long,
while the upsampling factor L = D = 4. In order to make the FIR filter length
multiple of 4 we added two more taps at the end of its delay line with both
coefficients being equal to 0, thus increasing the FIR filter to 244 taps. Since L
= 4, we use p = 4 polyphase filters to upsample the extracted source signal, each
one being 244

4
=61 taps long. The multiplication results are accumulated, and

the computed value is stored back to the GPU main memory. As in the case of
decimation and source extraction, we designed a gxdim by gydim grid of thread
blocks, as depicted in Figure 5.5, to calculate gxdim⋅gydim output samples.

5.3. WFS INSTRUCTIONS IMPLEMENTATION TO GPUS 79

We use again the variables bx and by as coordinates of every thread block
within the grid, thus bx=0...gxdim-1 and by=0...gydim-1. Since each polyphase
filter is 61 taps long, we launch 61 GPU threads per block, thus txdim = 61 in
Figure 5.5 for the interpolation. The fourth row of Table 5.1 suggests how the
GPU kernel for the signal interpolation calculates the corresponding sample,
coefficient and output indices.

5.3 WFS Instructions Implementation to GPUs

As a case study of the WFS technique, we have followed the specifications and
processing steps of a WFS application provided by the TU Delft SoundCon-
trol department [92]. However, we should note that the proposed architecture
implementation is applicable for any WFS application that performs similar
processing steps, regardless of any specifications, such as sampling frequency
and different filters size. In the following we describe the implementation of
each instruction presented in Section 3.3 using the CUDA parallel program-
ming environment.

OutStreamEn: The mask b mask that controls the output channels streaming is
stored to internal (i.e. non accessible to to the user) variable. The latter is used
during the RenSrc execution, in order to enable or disable the corresponding
output channels.

DFirF: It stores the WFS filter size to internal variables. The latter is used dur-
ing the RenSrc execution, in order to configure efficiently the threads schedul-
ing to the GPU.

LdCoef: Uses the coef addr parameter and the WFS filter sizes that are already
stored to internal variables. It transfers the active coefficient sets to the GPU
main memory. Since the coefficients number is dynamic, the instruction uses
the cudaMemcpyToSymbol CUDA function [68] to transfer all data.

ConfL: Writes to an internal variable the number of output channels to the
system.

RenSrc: The WFS algorithm can be considerably parallelized. Once the source
distance from a loudspeaker and the source amplitude decay have been calcu-
lated, each sample for this particular loudspeaker can be processed concur-
rently (eq. 2.9). Furthermore, all calculations regarding each loudspeaker are
also independent. While mapping the WFS kernel onto the GPU, special atten-
tion was paid on the data transfers between the GPU main memory and the on-
chip shared memory. As recommended in [68], while a GPU kernel is running,

80 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

the GPU main memory accesses by the threads should be minimized, because
each one requires hundreds of cycles. For this reason, source and loudspeaker
coordinates are stored in the constant memory, because it is cachable and thus
will be faster to read them, instead of accessing the GPU main memory each
time they are required. When the WFS kernel starts execution, its first task is
to load all required data from the GPU main memory to the shared memory.
When data loading is done, all threads within a block are synchronized to make
sure that further shared memory readings will be valid. Once all threads are
synchronized, each one of them processes two loudspeaker samples as men-
tioned earlier. All results are temporarily stored in the shared memory and,
as soon as all threads are done, the kernel copies them back to the GPU main
memory. Following this approach regarding the data transfers, we managed to
minimize the memory access cost impact on the overall kernel execution time.

Overall, the processing steps of the WFS kernel for a source i rendered through
loudspeaker j can be summarized as follows:

1. Copy from the GPU main memory the next 2048 source samples to the
shared memory. For every 1024 loudspeaker samples to be calculated,
the algorithm requires to access the previous source buffer when the de-
layed sample is negative, or the current source buffer when the delayed
sample is positive (eq. 2.9).

2. Calculate the amplitude decay and distance of source i from loudspeaker
j. A single thread per block calculates the source i distance from loud-
speaker j and the corresponding amplitude decay. The reason that we
use a single thread is because the distance and the amplitude decay are
common for a specific 1024-sample segment.

3. Process loudspeaker samples 0 to 511. Each thread processes one sam-
ple, and stores the results back to the shared memory.

4. Process loudspeaker samples 512 to 1023. Again each thread processes
a second sample and stores the results back to the shared memory.

5. Copy processed loudspeaker samples to the GPU main memory. As
soon as all loudspeaker samples are processed, the threads are again
synchronized and each one stores two loudspeaker samples back to the
main GPU memory.

Algorithm 5.2 sketches how the WFS is mapped onto the GPU. The variable
L represents the number of loudspeakers of the audio system. The variable
SOURCES is the number of audio sources that need to be rendered through
the L loudspeakers. Again, we use the GPU annotation to designate the GPU

5.3. WFS INSTRUCTIONS IMPLEMENTATION TO GPUS 81

Algorithm 5.2 Wave Field Synthesis implementation to GPU

Require: SOURCES audio sources to be rendered to L loudspeakers
Ensure: L audio signals to drive all loudspeakers

1: Move input data to GPU main memory
2: for s = 0 to SOURCES − 1 do
3: GPU: Apply FIR filtering to source s
4: GPU: Calculate all L signals for source s and accumulate with pre-

vious ones
5: end for
6: Move all L signals back to CPU main memory

...

threads block

...

...

0 1 511

0,0

...

threads block

0 1 511

1,0

...

threads block

0 1 511

SAMPLES/1024-1,0

...

threads block

...

0 1 511

0,1

...

threads block

0 1 511

1,1

...

threads block

0 1 511

SAMPLES/1024-1,1
...

...

...

threads block

...

0 1 511

0,SPEAKERS-1

...

threads block

0 1 511

1,SPEAKERS-1

...

threads block

0 1 511

SAMPLES/1024-1,SPEAKERS-1

copy filtered samples to

shared memory;

copy previous output data

to shared memory;

synchronize threads;

calculate inner product and

velocity;

synchronize threads;

calculate delayed sample;

update output data with

delayed sample;

calculate delayed sample + 512;

update output data with

delayed sample + 512;

grid of thread blocks

Figure 5.6: Grid of thread blocks that are dispatched during the WFS calculations to
the GPU.

kernels developed. In order to filter all audio sources, we used the same FIR
filter GPU kernel that was described in BF. However, in this case the FIR fil-
ter consists of 64 taps, so 64 threads are launched within each thread block.
Figure 5.6 illustrates the WFS implementation to the GPU. Input signals are
divided into chunks of 1024 samples. We designed a 2D-grid of thread blocks,
where each block consists of 512 GPU threads. Each thread within a block is
responsible for calculating 2 output samples, thus when a thread block is exe-
cuted, 1024 samples are calculated. Assuming there are SAMPLES input sam-
ples to be processed and rendered through L loudspeakers, we need SAMPLES

1024
⋅L

thread blocks for each loudspeaker. Therefore, we designed the 2D-grid with
dimensions SAMPLES

1024
by L .

82 CHAPTER 5. ARCHITECTURE IMPLEMENTATION ON NR-MCPS

5.4 Conclusions

In this chapter we conducted a case study on mapping the proposed immersive-
audio instructions onto GPUs, one of the most popular contemporary nr-MCP
platforms. Although we used NVidia’s CUDA parallel programming environ-
ment to develop the instructions implementation, as it was mentioned in Chap-
ter 5.1, all CUDA-specific code annotation details are hidden from the user.
More specifically, our architecture implementation uses efficiently the high-
level parameters that are provided by the programmer using the instructions
presented in Section 3.3, in order to schedule the grid size of the thread-blocks,
when a kernel is executed to the GPU. Finally, specific attention was paid to
preserve a dynamic GPU memory allocation, in order to support various filter
sizes and coefficients sets.

This chapter is based on the following paper:

D. Theodoropoulos, CB Ciobanu, G. Kuzmanov, Wave Field Synthesis for
3D Audio: Architectural Prospectives, ACM International Conference on
Computing Frontiers, pp. 127-136, Ischia, Italy, May 2009

6
Experimental Results

I n this chapter, we present our experimental results for both beamforming
(BF) and Wave Field Synthesis (WFS) architectures when mapped onto
FPGAs, GPUs and compared against GPP-based approaches. As it was

mentioned in the previous chapter, the software BF application was provided
to us by the Fraunhofer Research Institute, Germany. Moreover, the WFS
implementation was provided to us by the Sound Control Department of the
Delft University of Technology, The Netherlands. The BF algorithm has been
already used as an evaluation application for a custom-made hardware plat-
form under the hArtes European project [51]. The WFS algorithm has been al-
ready used to develop and test a real WFS-based audio system that is presented
in [92]. We selected the Xilinx Virtex4 and Virtex6 families for our multi-
core reconfigurable hardware prototypes. Regarding the GPUs that were used
during our experiments, we chose NVidia chips that represent a wide range
of the market, namely a low-end Quadro FX1700, a slightly faster GeForce
8600GT [65], a high-end GeForce GTX275 [66], and the newest GTX460 [69]
that utilizes the Fermi architecture [68]. Finally, we employed an Intel Core2
Duo processor at 3.0 GHz to run both OpenMP-annotated [72] BF and WFS
applications, which are considered as the two baseline implementations.

The rest of the chapter is organized as follows: In Section 6.1 we describe the
experimental setup that we applied, in order to test our FPGA and GPU-based
implementations regarding performance for the BF application. Furthermore,
we compare the results accuracy of our hardware approach against the Core2
Duo, since the former employs a fixed-point format for all internal calcula-
tions. In the same section, we provide a comparison of the two multi-core
systems against the Core2 Duo and related work. In addition, we discuss each
system energy consumption and overall cost. The same structure is also ap-
plied in Section 6.2, where we report our experimental results for the WFS
application. Finally, Section 6.3 concludes the chapter.

83

84 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.1: Resource utilization of each module

Module Slices DSP Slices Memory(bytes)
Single BeamFormer 598 2 8192

Source Amplifier 2870 0 2048
MC-BFP 14165 32 133120

System infrastructure 6650 0 317440
Complete system with C=16 20815 32 450560

Table 6.2: Maximum number of BeamFormers that can fit in different FPGAs

FPGA # of BeamFormers fit
V4FX60 19
V4FX100 54
V4FX140 89
6VLX75T 78
6VLX760 360

6VSX315T 352
6VSX475T 532
6VHX250T 252
6VHX565T 432

6.1 BF Experimental Results

FPGA prototype: We used the Xilinx ISE 9.2 [103] and EDK 9.2 [101] CAD
tools to develop a VHDL hardware prototype of our Multi-Core Beamforming
Processor (MC-BFP). The latter was implemented on a Xilinx ML410 board
[102] with a Virtex4 FX60 FPGA [106] and 256 MB of DDR2 SDRAM. As
host GPP processor, we used one of the two integrated PowerPC processors
[100]. Furthermore, we used the Processor Local Bus (PLB) [110] to connect
all peripherals, which are all on-chip BF buffers, the source buffer, all SPRs,
and the DMA [104] and SDRAM controllers. For the partial reconfiguration
we have used the Xilinx Internal Communication Access Port (ICAP) [111],
which is also connected to the PLB. The PowerPC runs at 200 MHz, while the
rest of the system is clocked at 100 MHz when mapped onto a Virtex4 chip.
When the design is mapped onto a Virtex6 FPGA, we utilize the Microblaze
soft-core processor and the hardware is clocked at 200 MHz. Our prototype is
configured with C=16 BeamFormer modules, thus it can process up 16 input
channels concurrently. Also, within each BF-PE and the source amplifier, all
decimators, H(z) filters and the interpolator were generated using the Xilinx
Core Generator [99] [98].

6.1. BF EXPERIMENTAL RESULTS 85

Figure 6.1: Microphone array setup and source position inside aperture A4.

Table 6.1 displays the resource utilization of each module. The first two lines
provide the required resources for a single BeamFormer and the source ampli-
fier modules. The third line shows all hardware resources occupied by the MC-
BFP. In the fourth line, we show the resources required to implement the PLB,
DMA, ICAP and all memory controllers with their corresponding BRAMs.
Finally, the fifth line provides all required resources for the entire BF system.

As it can be observed, a single BeamFormer requires less than 600 slices, 2
DSP slices [107] and 8 Kbytes of Block RAM (BRAM), which makes it fea-
sible to integrate many such modules within a single chip. Table 6.2 shows
how many BeamFormers could fit into different V4FX FPGA chips. More-
over, even a medium-sized FPGA can support up to 19 channels, while larger
chips, like the V4FX100 and V4FX140, could accommodate up to 54 and 89
input channels respectively. Of course, newer FPGA families, like the Xilinx
Virtex6 [108], integrate much more resources, thus can fit more BeamFormer
modules. In order to investigate how many input channels a single Virtex6
could accommodate, we used the Xilinx ISE 11.4 [109] and mapped our MC-
BFP onto different chips of the FPGA family. As we can observe from Ta-
ble 6.2, a 6VLX75T FPGA chip, which is the smallest of the Virtex6 family,
could fit up to 78 input channels. Moreover, the 6VSX475T chip, which is
the largest one, could support setups that consist up to 532 microphones. We
should note that during our calculations we took into account the required area
to also map a Microblaze processor [112] onto the reconfigurable hardware,
since the Virtex6 families do not integrate any hard-core processor.

Data accuracy: In order to evaluate the data accuracy of our GPU and FPGA

86 CHAPTER 6. EXPERIMENTAL RESULTS

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 4000 8000 12000 16000 20000 24000

samples

S
W

 a
n

d
 H

W
 v

a
lu

e
s
 d

if
fe

re
n

c
e
 i

n
 d

B

sample #4485

Figure 6.2: Difference between software and hardware values for an acoustic source
in dBs inside aperture A4.

implementations, we compared their output results against the ones from a
Core2 Duo-based approach. As stimulation input, we used recorded signals
from up to 16 microphones that consist of 24576 samples in a 16-bit signed
format. However, the Core2 Duo BF application performs all calculations us-
ing the IEEE 754 standard single precision floating point format, which is also
the case with all GPUs that were used for our experiments. In contrast, our
MC-BFP follows a fixed-point format approach, in order to reduce area uti-
lization and increase performance. However, due to the fixed-point format,
a calculation error is introduced, which results in a reduced output accuracy
compared to the IEEE 754 single precision floating point format.

In order to verify that the reduced accuracy does not affect the extracted source
quality, we compared the software and hardware sample values, in the exem-
plary case of a source being located within source aperture A4, as illustrated in
Figure 6.1. We used the following formula to estimate the introduced error for
each calculated signal sample:

DdB = 10 ⋅ log(sSW
sHW

)dBs (6.1)

6.1. BF EXPERIMENTAL RESULTS 87

Table 6.3: GPUs specifications for all experiments.

GPU Core CUDA core Memory BW # of CUDA FF-XIV
chip (Mhz) (Mhz) (GB/s) cores Score

FX1700 207 414 12.8 32 694
8600GT 540 1190 22.4 32 898
GTX275 633 1404 127 240 3817
GTX460 675 1350 115.2 336 3716

where sSW and sHW are the software and hardware sample values respectively.
Figure 6.2 shows the introduced error for an extracted source signal consisting
of 24576 16-bit samples. In the ideal case, the difference between the two
values should be zero. As it can be observed, almost all introduced errors do
exceed a +/-0.01 decibels (dBs) boundary. The few exceptional cases where
the difference is large, are because the absolute sample value is very low. For
example, as depicted in Figure 6.1, the sample #4485 has a value difference of
10 dBs. This happens because the correct value sSW is 1, however the sHW is
10. In practise however, this would not introduce any loss in quality, since both
values are very close to 0. In total, by taking into account these exceptional
cases, we measured that the hardware output extracted source signal of our
MC-BFP is 99.6% accurate to the software one.

Hardware prototypes performance evaluation: Regarding the GPUs that
were used during our experiments, we chose chips that would represent a wide
range of the market. Table 6.3 presents the specifications of the GPUs con-
sidered. It can be observed that the 8600GT has the same number of CUDA
cores comparing to the FX1700 chip. However, the 8600GT has higher mem-
ory bandwidth (BW) and faster Core and CUDA core clocks compared to the
FX1700. Furthermore, the GTX275 and the GTX460 consist of 240 and 336
CUDA cores respectively, an order of magnitude higher memory bandwidth,
and faster clocks compared to the other two GPUs. In order to test the process-
ing capabilities of each GPU, we installed each one of them as a secondary
GPU to our system and ran the official Final Fantasy XIV (FFXIV) bench-
mark for NVidia GPUs1 on low resolution. The achieved benchmark score of
each GPU is shown to the rightmost column of Table 6.3. As we can observe,
the 8600GT scored ∼30% higher than the FX1700, while the GTX275 per-
formed 2.7% better than the GTX460. We should note than, while running the
FFXIV benchmark and our experiments, no over-clocking was applied to any
of the GPUs considered.

In order to test the performance of all platforms, we provided input signals
1http://www.finalfantasyxiv.com/media/benchmark/na/#1

88 CHAPTER 6. EXPERIMENTAL RESULTS

1

10

100

1000

10000

100000

4 8 12 16

of sources

e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
e
c

)

Core2 Duo 8600GT FX1700 GTX275 GTX460 MC-BFP8-V4 MC-BFP8-V6

Figure 6.3: Execution time on all platforms under an 8-microphone setup.

consisting of 540672 audio samples, divided into 528 1024-sample chunks.
Assuming a sampling frequency of 48000 kHz, each iteration should be calcu-
lated in 1024

48000
samples

samples/sec ≈ 21.33 msec. Since there are in total 528 iterations,
every hardware platform that is considered for a real-time audio system must
complete all data calculations within 528 iterations ⋅ 21.33 msec

iteration
≈

11.264 sec.

To evaluate our approach, we conducted experiments for all hardware plat-
forms with 8 and 16 channels and up to 16 sources. Regarding the different
FPGA implementations, we use the ”MC-BFPx-Vy” naming rule, where x de-
fines the number of input channels the design uses and y refers to the utilized
Virtex FPGA family, that is y=4 for Virtex4 and y=6 for Virtex6. Figure 6.3
depicts the execution times for setups consisting of 8 input channels, mapped
onto all platforms considered. It can be observed that all platforms can pro-
cess all data in real time, thus within 11.264 sec, for up to 8 sources. In the
case of 12 sources, the Core2 Duo and the FX1700, which is the simplest of
all GPUs, fail to process data faster than the actual source length, thus making
these devices not suitable for such real-time implementations. The 8600GT
cannot also process all data fast enough when there are 16 sources. In contrast,
the Virtex4-based MC-BFP with 8 BeamFormer modules (MC-BFP8-V4), the
Virtex6-based MC-BFP with 8 BeamFormer modules (MC-BFP8-V6), and the
GTX275 and GTX460 implementations could be used to build real-time sys-
tems that are capable to extract up to 16 sources. An interesting observation

6.1. BF EXPERIMENTAL RESULTS 89

0.10

1.00

10.00

100.00

4 8 12 16

of sources

s
p

e
e
d

u
p

 a
g

a
in

s
t

C
o

re
2

 D
u

o

8600GT FX1700 GTX275 GTX460 MC-BFP8-V4 MC-BFP8-V6

Figure 6.4: Execution speedup of all platforms against the Core2 Duo under an 8-
microphone setup.

that can be made from the execution times shown in Figure 6.3, is that the
GTX275 performs equally well to the GTX460.

Figure 6.4 illustrates the obtained speedup of each platform against the Core2
Duo. As we can observe, under an 8-source scenario the FX1700 GPU is actu-
ally slower than the software solution. In contrast, although the 8600GT inte-
grates the same number of CUDA cores as the FX1700, it achieves a speedup
up to 1.58 against the Core2 Duo. Regarding the FPGA implementation, we
investigated the ratio of the overall execution time that was spent on accessing
the external memory, which was up to 40%. The reason is because all periph-
erals are connected to the same PLB, thus leading to a slow external memory
access time. Moreover, as we can observe from Figure 6.4, although the MC-
BFP8-V6 implementation functions at double frequency compared to the one
of MC-BFP8-V4, the overall execution time is improved by approximately
42%.

In Figure 6.5 we provide the results of our experiments when utilizing a 16-
microphone setup. Apparently the FX1700 fails to process data in real-time
for all cases. The Core2 Duo and 8600GT could be used for a real-time BF
system when there are up to 4 sources to be extracted. The Virtex4-based
MC-BFP with 16 BeamFormer modules (MC-BFP16-V4), could be used for
a BF system that supports up to 14 sources, while the Virtex6-based MC-BFP
with 16 BeamFormer modules (MC-BFP16-V6) can support up to 16 sources.
As it was in the case of 8 microphones, the slow SDRAM interface through

90 CHAPTER 6. EXPERIMENTAL RESULTS

1

10

100

1000

10000

100000

4 8 12 16
of sources

e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
e

c
)

Core2 Duo 8600GT FX1700 GTX275 GTX460 MC-BFP16-V4 MC-BFP16-V6

Figure 6.5: Execution time on all platforms under a 16-microphone setup.

the PLB affects significantly the achieved FPGA performance, since its access
time occupies up to 55% of the overall application execution time. Finally,
the GTX275 and GTX460 implementations could be used to build a real-time
system that is capable to extract up to 16 sources.

In addition, Figure 6.6 suggests the achieved speedup of all platforms against
the Core2 Duo implementation. As it was in the case of the 8-microphone
setup, the FX1700 processes data slower than the software approach. Fur-
thermore, the 8600GT again is slightly faster than the Core2 Duo under every
source scenario. The MC-BFP16-V4 and MC-BFP16-V6 FPGA prototypes
performs only up to 3.5 and 4.5 times better than the software implementa-
tion, because of the currently used slow external memory interface. Finally,
the two high-end GPUs are an order of magnitude more efficient compared to
the Core2 Duo processor.

From the experiments conducted, we can draw the main conclusion that the
external memory interface through the PLB can significantly affect the perfor-
mance of reconfigurable BF systems. Since there are many microphone input
signals to be read from the external memory, a slow interface severely affects
the overall performance. Figure 6.7 shows the required and actual MC-BFP16-
V4 memory bandwidth in each processing iteration under different source sce-
narios, when there are 8 and 16 input channels. As we can observe, the MC-
BFP16-V4 provides the required memory bandwidth in every source scenario
under an 8-channel setup. However, when there are 16 input channels and 16

6.1. BF EXPERIMENTAL RESULTS 91

0.10

1.00

10.00

100.00

4 8 12 16

of sources

s
p

e
e
d

u
p

 a
g

a
in

s
t

C
o

re
2
 D

u
o

8600GT FX1700 GTX275 GTX460 MC-BFP16-V4 MC-BFP16-V6

Figure 6.6: Execution speedup of all platforms against the Core2 Duo under a 16-
microphone setup.

sources, the MC-BFP16-V4 does not meet the external memory requirements,
thus failing to successfully extract all sources in real-time.

GPU and FPGA BF architectural prospectives: All execution times re-
ported above, include the external memory access delays. However, each
platform has its own memory hierarchy, thus memory overhead impacts the
overall execution time differently. For example, the Core2 Duo has to access
the external memory through the Front Side Bus (FSB) and the motherboard
chipset (usually referred to as North Bridge), while GPUs and FPGAs have
direct connection with their own external memory. Since the GTX275, the
GTX460 and the FPGA implementations performed much better than the other
platforms, we decided to measure the memory impact, exclude it from the to-
tal execution time, and compare them in terms of processing speed. However,
each platform is fabricated using a different technology. More specifically,
the Virtex4 FPGA families are fabricated using a 90-nm technology, while the
GTX275 and GTX460 use a 55-nm and 40-nm one respectively. In order to
use a common comparison technology, we decided to use the advanced 40-nm
one. Moreover, in the context of the platform evaluation, we used our MC-
BFP16-V6 prototype with its maximum operating frequency at 285 MHz.

In order to normalize the technology factor for the GTX275, we referred to
the International Technology Roadmap for Semiconductors (ITRS) 2005 re-

92 CHAPTER 6. EXPERIMENTAL RESULTS

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

4 8 12 16

of sources

M
B

/s
e
c

required mem BW - 8 channels required mem BW - 16 channels

actual mem BW - 8 channels actual mem BW - 16 channels

Figure 6.7: Required and actual memory bandwidth achieved by the MC-BFP16-V4
design.

port [45] to calculate the percentage ratio of the GPU processing time reduc-
tion, assuming that the chip would be fabricated using a 40-nm technology.
Throughout this thesis, we refer to it as optimized GTX275. Based on the ITRS
report and aware of all the odds of such estimation, we could safely assume
that the 40-nm technology has potentials for 30% lower execution time than
the 55-nm one. Furthermore, since we know exactly how much data needs
to be accessed during the GPU kernel execution, we used the CUDA Visual
Profiler 3.1 to measure the achieved memory throughput, and based on that,
subtract the external memory access time from the total execution time. For
the GTX275, we calculated that an average of 54.1% of the total execution time
throughout our experiments was spent on accessing the GPU external memory.
The remaining time, which is the actual GPU processing time, was multiplied
by a factor of 0.7, in order to be normalized to the 40-nm hypothetical GPU
fabrication. Regarding the GTX460, the CUDA Profiler 3.1 unfortunately pro-
vides the L1 cache hits % per kernel, and not the achieved memory throughput.
Thus, the aforementioned GPU has been excluded from our comparison of the
processing times.

Figure 6.8 summarizes the comparison between the optimized GTX275 and
the MC-BFP-V6 processing times. On the Y-axis, if the ratio is smaller than

6.1. BF EXPERIMENTAL RESULTS 93

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

4 8 12 16

of sources

o
p

ti
m

iz
e
d

 G
T

X
2
7
5
 /

 M
C

-B
F

P
 e

x
e
c
u

ti
o

n

ti
m

e
 r

a
ti

o

8C 16C 32C 64C 128C

Figure 6.8: Processing time comparison between the optimized GTX275 and MC-
BFP approaches for the BF.

1.0, the GPU is faster, otherwise the FPGA performs better. We performed
additional experiments with up to 128 channels. The reason that we can fit so
many BeamFormer modules is because a minimal resource utilization strategy
was followed in the current BF implementation. As it was already indicated in
Table 6.1, because each BeamFormer module occupies very few resources, we
can accommodate systems that utilize microphone arrays consisting of hun-
dreds of elements. In Figure 6.8, it can be observed that, when there are up
to 32 input channels, the optimized GTX275 performs all data calculations
faster than the FPGA. However, when the input channels are more, the FPGA
processes data faster than the optimized GTX275, because all BeamFormer
modules work concurrently on all input channels. In other words, when there
are more than 32 input channels, the GTX275 processing resources are satu-
rated, while the MC-BFP can still process concurrently all input channels up
to 3.8 times faster than the GPU-based approach. This observation, leads us to
the conclusion that high-end GPUs can support more efficiently microphone
setups up to a certain number of input channels. When this number of chan-
nels is exceeded, a MC-BFP-V6 approach has the potential to process data
more efficiently than high-end GPUs.

Energy consumption: Performance is not the only parameter to be considered
when choosing a hardware platform for a BF system. Energy consumption is

94 CHAPTER 6. EXPERIMENTAL RESULTS

1

10

100

1000

10000

Core2 Duo FX1700 8600GT GTX275 GTX460 MC-BFP8-V4

processing platforms

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

4 sources 8 sources 12 sources 16 sources

Figure 6.9: Energy consumption of all platforms under an 8-microphone setup.

an additional parameter that should also be taken into account. In order to
evaluate the consumed energy from each platform, we used the formula:

P =
E

t
⇔ E = P ⋅ t (6.2)

where E is the energy consumed during the time t, while applying P power.
The primary Y-axis in Figures 6.9 and 6.10 suggest the energy consumption
by each processing platform under an 8- and 16-microphone setup for different
number of sources. As it can be observed, in every case the Core2 Duo-based
system consumes the most energy. Even though its peak power consumption
is 65 Watts [42], the fact that it requires much more time to process all data,
results to the maximum energy consumed among all tested platforms. The
FX1700-based system consumes less energy than the Core2 Duo, because it
requires only 42 Watts of power. Moreover, the 8600GT-based approach, not
only calculates data faster than the Core2 Duo, but it also consumes less en-
ergy. This observation, leads to the conclusion that utilizing a 8600GT GPU as
processing platform for simple BF with few acoustic sources, would result to
a more energy-efficient BF solution than employing a Core2 Duo GPP. Even
better solutions can be provided by high-end GPUs. Although the GTX275
and GT460 consume 219 and 160 Watts respectively, they can process data
very fast, thus consume lower energy than middle-ranged GPUs and the Core2

6.1. BF EXPERIMENTAL RESULTS 95

1

10

100

1000

10000

Core2 Duo FX1700 8600GT GTX275 GTX460 MC-BFP16-V4

processing platforms

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

4 sources 8 sources 12 sources 16 sources

Figure 6.10: Energy consumption of all platforms under a 16-microphone setup.

Table 6.4: Platform costs in Euros.

Platform Cost (Euros - Nov. 2010)
Core2 Duo 116

FX1700 165
8600GT 55
GTX275 117
GTX460 114
ML410 2198

Duo GPP. Ultimately, the MC-BFP16-V4 prototype, according to the Xilinx
XPower utility [113], requires approximately 8.6 Watts, thus resulting to the
lowest energy consumption among all tested platforms.

Platform cost: The platform cost is also another parameter that should be
considered when building a BF system. Table 6.4 shows the unit price of each
platform in Euros (November 2010). As we can see, the FX1700 is more ex-
pensive than the Core2 Duo GPP. Consequently, by taking also into account its
poor performance, we can conclude that the FX1700 is not an effective plat-
form for implementing a BF system. In contrast, the 8600GT is cheaper, more
energy- and performance-efficient than the Core2 Duo and the FX1700, which
makes it an attractive solution for implementing simple BF systems. Regard-
ing the high-end GPUs, the GTX275 and GTX460 cost slightly more than the
Core2 Duo. However, provided that they process data very fast, they make an

96 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.5: GPU- and FPGA-based implementations comparison against related work.

Design # of channels # of supported sources Sampling frequency (kHz)
[114] 2 4 48
[48] 4 19 16

optimized GTX275 GPU 16 174 48
MC-BFP16-V6 16 65 48

efficient solution for building energy- and performance-efficient complex BF
systems, which could not be supported by the Core2 Duo and middle-ranged
GPUs. Finally, since FPGA platforms are targeted only by a much more lim-
ited group of people compared to off-the-shelf GPPs and GPUs, they have a
high cost. Thus, an MC-BFP-based approach can be considered for ultra-low
energy consumption solutions that can also accommodate complex BF sys-
tems.

Comparison against related work: Table 6.5 provides a comparison of the
optimized GTX275 approach and the MC-BFP16-V6 design against related
work. In both cases we assume a 16-microphone setup and an ideal mem-
ory bandwidth utilization, which is 127 GB/sec and 6.4 GB/sec for the GPU-
and FPGA-based BF systems respectively. Direct comparison against related
work is not straightforward, since each system has its own design specifica-
tions. Moreover, to our best knowledge, we provide the first architectural pro-
posal for reconfigurable BF. Previous proposals are mainly micro-architectural
ones. In [114], the authors utilize an ADSP21262 DSP, which consumes up
to 250 mA. Furthermore, the voltage supply of ADSP21262 is 3.3 V [5], thus
we can assume that the design requires approximately 3.3 V⋅0.25 A = 0.825
W. In addition, according to the paper, the ADSP21262 is 50% utilized when
processing data from a two-microphones array at 48 KHz sampling rate, or
alternatively 48000 samples/sec/input⋅2 inputs = 96000 samples/sec. Based
on this, we can assume that 192000 samples/sec can be processed in real-time
with 100% processor utilization, which means ⌊192000/48000⌋ = 4 sources
can be extracted in real-time. Finally, in [48] the authors use four microphones
to record sound and perform Beamforming using an FPGA. They have mapped
their design onto a V4SX55 FPGA and, according to the paper, every instance
of the proposed beamformer can process 43463 samples/sec, with up to seven
instances fitting into the largest V4SX FPGA family. Since the sampling fre-
quency is 16 KHz, ⌊(43463⋅7)/16000⌋ = 19 sources could be extracted in real-
time.

6.2. WFS EXPERIMENTAL RESULTS 97

Table 6.6: Resource utilization of each module

Module Slices DSP Slices Memory(bytes)
Single RU (100 MHz) 3566 26 36864

Common modules among all RUs 6734 0 2048
MC-WFSP with 4 RUs 20998 104 149504
System infrastructure 3213 0 227328

Complete system with R=4 RUs 24211 104 376832

Table 6.7: Maximum number of RUs that can fit in different FPGAs

FPGA # of RUs fit
V4FX40 1
V4FX60 4

V4FX100 6
V4FX140 7
6VLX75T 9
6VLX760 33

6VSX315T 50
6VSX475T 77
6VHX250T 22
6VHX565T 33

6.2 WFS Experimental Results

FPGA prototype: As it was in the case of the BF application, we used the
Xilinx ISE 9.2 and EDK 9.2 CAD tools to develop a VHDL hardware proto-
type of our Multi-Core WFS Processor (MC-WFSP), and implement it on a
Xilinx ML410 board. Again, as host GPP processor, we used one of the two
integrated PowerPC processors and the PLB to connect all peripherals, which
are all RU buffers, the source buffer, all SPRs, and the DMA and SDRAM con-
trollers. For the partial reconfiguration we have used the Xilinx ICAP, which is
also connected to the PLB. Regarding the Virtex4-based prototype, the Pow-
erPC runs at 200 MHz, while the rest of the system is clocked at 100 MHz.
The Virtex6-based implementations utilize a Microblaze soft-core processor
and the hardware is clocked at 200 MHz. Our prototypes were configured with
R=4 Rendering Units (RUs).

Table 6.6 displays the resource utilization of each module. The first line pro-
vides the required resources for a single RU. The second line shows all required
resources to implement the common modules among all RUs. The third line
shows all hardware resources occupied by the MC-WFSP. In the fourth line,
we show the resources required to implement the PLB, DMA, ICAP and all
memory controllers with their corresponding BRAMs. Finally, the fifth line

98 CHAPTER 6. EXPERIMENTAL RESULTS

loudspeaker

array

......

0.15

m

O (0,0)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

0.25 0.40 0.55 0.70 0.851.00 1.15 1.30 1.45

source

trajectory

starting

point

y

x

meters

Figure 6.11: Loudspeaker array setup and source trajectory behind the array.

provides all required resources from the entire WFS system.

As we can observe, a single RU requires 3566 slices, which makes it feasible
to integrate more such modules within a single chip. Table 6.7 suggests how
many RUs could fit into different V4FX FPGA chips. Based on our estima-
tions, even a medium-sized FPGA, like the V4FX40, can host a complete WFS
system with 1 RU. Moreover, larger Virtex4 chips, like the V4FX60, V4FX100
and V4FX140, could accommodate up to 4, 6 and 7 RUs respectively. We also
investigated how many RUs could fit in newer FPGA chips, like the Virtex6
family. Again, we used the Xilinx ISE 11.4 to map our MC-WFSP to different
chips. Table 6.7 suggests the number of RUs that can fit into different FPGAs.
As we can observe, the 6VSX475T chip, which is the largest one, can fit up to
77 RUs, thus allowing the realization of very fast and complex WFS systems.
As before, we should note that during our calculations we took into account
the required area to also map a Microblaze processor onto the reconfigurable
hardware, since the Virtex6 families do not integrate any hard-core processor.

6.2. WFS EXPERIMENTAL RESULTS 99

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

0 4000 8000 12000 16000 20000 24000

samples

S
W

 a
n

d
 H

W
 v

a
lu

e
s
 d

if
fe

re
n

c
e
 i

n
 d

B
s

sample #20571

Figure 6.12: Difference between software and hardware values for a loudspeaker
signal in dBs.

Data accuracy: In order to evaluate the data accuracy of our GPU and FPGA
implementations, we compared their output results against the ones from a
Core2 Duo-based approach, which is considered the baseline. As stimulation
input to each implementation, we used the source signal that was extracted
from the corresponding platform by using the BF technique. For example, for
the GPUs we used the BF output source signal as input to the WFS imple-
mentation. Consequently, the input signal consisted of 24576 source samples
in a 16-bit signed format and all calculations were done using the IEEE 754
single precision floating point format. Regarding the MC-WFSP implemen-
tations, we used a fixed-point format, in order to save area utilization and
increase performance compared to a floating-point approach. However, due
to the fixed-point format, a calculation error is introduced, which results in a
reduced output accuracy compared to the IEEE 754 floating point format.

In order to verify that the reduced accuracy does not affect the loudspeaker
signals quality, we compared the software and hardware sample values, in the
exemplary case of a source moving behind a loudspeaker array, as illustrated
in Figure 6.11. The loudspeaker array consisted of 32 elements, each having
a 0.15 m distance between them. The array is located 2 m away from the
listening area center. We applied the formula (6.1) to estimate the introduced

100 CHAPTER 6. EXPERIMENTAL RESULTS

1

10

100

1000

10000

100000

16 32 48 64

of sources

e
x
e
c
u

ti
o

n
 t

im
e

 (
m

s
e
c
)

Core2Duo 8600GT FX1700 GTX275

GTX460 MC-WFSP4-V4 MC-WFSP7-V4 MC-WFSP32-V6

Figure 6.13: Execution time on all platforms under a 32-loudspeaker setup.

error for each loudspeaker output signal. Figure 6.12 shows as an example, the
introduced calculation error to the rightmost loudspeaker signal that consists
of 24576 16-bit samples. In the ideal case, the difference between the two
values should be zero. As we can observe, almost all introduced errors do
exceed a +/-0.01 decibels (dBs) boundary. In the few exceptional cases where
the difference is large, is because the absolute sample value is very low. For
example, as depicted in Figure 6.12, the sample #20571 has a value difference
of -4.7 dBs. This happens because the correct value sSW is -1, however the
sHW is -3. In practise however, this would not introduce any loss in quality,
since both values are very close to 0. In total, by taking into account these
exceptional cases, we measured that the hardware output loudspeaker signal
of our MC-WFSP is 99.4% accurate to the software one.

Hardware prototypes performance evaluation: For the purposes of our
GPU experiments, we used again the chips that have already been discussed in
Section 6.1 and presented in Table 6.3. Regarding the MC-WFSP, we consid-
ered an improved implementation from the one presented Table 6.6. The en-
hanced prototype utilizes a 128-bit wide PLB, the PowerPC runs at 300 MHz
and the MC-WFSP uses 150 MHz clock. Moreover, based on the fact that
our MC-WFSP can integrate different number of RUs, for our experiments we
considered the largest number that each FPGA family could fit.

In order to test the performance of all platforms, we provided source signals

6.2. WFS EXPERIMENTAL RESULTS 101

1.00

10.00

100.00

16 32 48 64

of sources

s
p

e
e
d

u
p

 a
g

a
in

s
t

C
o

re
2
 D

u
o

8600GT FX1700 GTX275 GTX460

MC-WFSP4-V4 MC-WFSP7-V4 MC-WFSP32-V6

Figure 6.14: Execution speedup of all platforms against the Core2 Duo under a 32-
loudspeaker setup.

consisting of 540672 audio samples, divided into 528 1024-sample chunks.
Assuming a sampling frequency of 48000 kHz, each iteration should be calcu-
lated in 1024

48000
samples

samples/sec ≈ 21.33 msec. Since there are in total 528 iterations,
every hardware platform that is considered for a real-time audio system must
complete all data calculations within 528 iterations ⋅ 21.33 msec

iteration
≈

11.264 sec. Regarding the different FPGA implementations, we use the ”MC-
WFSPx-Vy” naming rule, where x defines the number of RUs the design uses
and y refers to the utilized Virtex FPGA family, that is y=4 for Virtex4 and y=6
for Virtex6.

Figure 6.13 shows the execution times for all considered platforms under a
32-loudspeaker setup. As we can observe, all systems can support rendering
up to 32 real-time sources when driving 32 loudspeakers. However, the Core2
Duo implementation fails to meet the real-time constraints when the number
of real-time sources increases to 48. When there are 64 sources to be ren-
dered the FX1700 fails to meet the timing constraints, while the 8600GT, the
MC-WFSP32-V6 and the two high-end GPUs can support such complex WFS
systems. Regarding the FPGA implementations, the Virtex4-based designs
with 4 RUs (MC-WFSP4-V4) and 7 RUs (MC-WFSP7-V4) can support up
60 sources, and the reason is again the slow external memory interface. The
Virtex6-based design with 32 RUs (MC-WFSP32-V6) also suffers the same
low memory access time, however due to the increased functioning frequency
can support up to 64 sources.

102 CHAPTER 6. EXPERIMENTAL RESULTS

1

10

100

1000

10000

100000

16 32 48 64

of sources

e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
e
c

)

Core2Duo 8600GT FX1700 GTX275

GTX460 MC-WFSP4-V4 MC-WFSP7-V4 MC-WFSP64-V6

Figure 6.15: Execution time on all platforms under a 64-loudspeaker setup.

Figure 6.14 compares the WFS application execution speedup on all platforms
against the Core2 Duo baseline approach. As we can observe, the MC-WFSP7-
V4 and MC-WFSP32-V6 approaches are up to 57% and 81% faster than the
Core2 Duo. In addition, the FX1700 and 8600GT GPUs achieve an application
execution speedup up to 2.2 times, while the high-end GPUs process data at
least an order of magnitude faster than the GPP-based system.

Figure 6.15 shows the execution times of every considered platform under a
64-loudspeaker setup. As it can be observed, when there are 16 sources to be
rendered, all platforms meet the timing constraints, thus can be used for imple-
menting real-time WFS systems. When the number of sources is increased to
32, the Core2 Duo and the MC-WFSP4-V4 exceed the 11.264 sec time limit.
In contrast, the MC-WFSP7-V4, the Virtex6-based design with 64 RUs (MC-
WFSP64-V6) and all GPUs perform all calculations within the required time
window. Under a 48-source scenario, the FX1700 also fails to process all data
fast enough, while when there are 64 sources only the GTX275 and GTX460
could be used to implement a real-time WFS system. As it was explained be-
fore, the slow SDRAM interface severely affects the overall WFS execution
time of reconfigurable systems, resulting to a poorer performance compared to
the high-end GPU-based approaches.

Finally, regarding the application speedup against the Core2 Duo baseline
system, we observed the same platform classification as in the case of a 32-

6.2. WFS EXPERIMENTAL RESULTS 103

0.00

5.00

10.00

15.00

20.00

25.00

16 32 48 64

of sources

M
B

/s
e
c

required mem BW - 32 loudspeakers required mem BW - 64 loudspeakers

actual mem BW - 32 loudspeakers actual mem BW - 64 loudspeakers

Figure 6.16: Required and actual memory bandwidth achieved by the MC-WFSP7-
V4 design.

loudspeaker setup. Figure 6.17 suggests the application speedup for every plat-
form against the software approach. As it can be seen all platforms are always
faster than the Core2 Duo under every real-time source scenario. Moreover,
the two high-end GPUs are again more than an order of magnitude faster than
the GPP-based approach.

From the above experiments, we can draw the conclusion that a slow external
memory interface can considerably affect the performance of reconfigurable
WFS systems. Since there are many source input signals and loudspeaker
output signals to be read and written to the external memory respectively, a
slow interface severely affects the overall performance. Figure 6.16 shows
the required and actual MC-WFSP7-V4 memory bandwidth in each process-
ing iteration under different source scenarios, when there are 32 and 64 output
channels. As we can observe, the MC-WFSP7-V4 provides the required mem-
ory bandwidth when there are up to 60 sources under an 32-channel setup.
However, when there are 64 loudspeakers and more than 32 sources, the MC-
BFP16-V4 does not meet the external memory requirements, thus failing to
successfully render all sources in real-time.

GPU and FPGA WFS architectural prospectives: In order to have a more
accurate evaluation of each platform’s processing potentials, we followed the

104 CHAPTER 6. EXPERIMENTAL RESULTS

1.00

10.00

100.00

16 32 48 64

of sources

s
p

e
e
d

u
p

 a
g

a
in

s
t

C
o

re
2
 D

u
o

8600GT FX1700 GTX275 GTX460

MC-WFSP4-V4 MC-WFSP7-V4 MC-WFSP64-V6

Figure 6.17: Execution speedup of all platforms against the Core2 Duo under a 64-
loudspeaker setup.

same approach that was described in Section 6.1. More specifically, we de-
cided to measure the memory impact, exclude it from the total execution time,
and compare the platforms in terms of processing speed. Once again, we took
also into account the fact that each chip is fabricated under a different tech-
nology, thus we decided to use the 40 nm as common comparison technology.
In the context of the platform evaluation, we used our Virtex6-based prototype
that utilizes the maximum available number of RUs and its operating frequency
at 235 MHz.

Regarding the GPUs, we selected the GTX275, since in most of the cases
achieved the best performance among all tested GPU chips. We used again the
ITRS 2005 report to cancel out the difference between the original and hypo-
thetical fabrication technologies. Thus for the GPU architectural prospectives
evaluation, we used the optimized GTX275 version that was described in Sec-
tion 6.1. We should note that, as it was mentioned before, we did not consider
the GTX460, because the CUDA Profiler 3.1 unfortunately provides the L1
cache hits % per kernel, and not the achieved memory throughput. Thus, the
aforementioned GPU was excluded from our comparison of the processing
times.

In Figure 6.18 we summarize the comparison between the optimized GTX275
and the FPGA processing times. On the Y-axis, if the ratio is smaller than 1.0,
the GPU is faster, otherwise the FPGA performs better. We performed addi-

6.2. WFS EXPERIMENTAL RESULTS 105

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

16 32 48 64

of sources

o
p

ti
m

iz
e
d

 G
T

X
2
7
5
 /
 M

C
-W

F
S

P
 e

x
e
c
u

ti
o

n
 t

im
e

ra
ti

o

32L 64L 96L 128L

Figure 6.18: Processing time comparison between the optimized GTX275 and MC-
WFSP approaches for the WFS.

tional experiments with up to 128 loudspeakers. As it was already indicated
in Table 6.6, each RU occupies very few resources, thus we can accommo-
date systems using a single FPGA that can drive loudspeaker arrays consisting
of hundreds of elements. In the ideal case, each RU can drive a single loud-
speaker, and all RUs can process data concurrently. However, in case where
there are more loudspeakers than RUs, output signals processing is distributed
among them.

As it can be observed from Figure 6.18, the optimized GTX275 processes data
up to 3.8 times faster compared to the MC-WFS32-V6 implementation, when
there are 32 loudspeakers to be driven. The same applies even under a 64-
element array with less than 32 sources, where the GTX275 is up to 39% faster
than the MC-WFSP64. However, when there are 32 or more sources to be ren-
dered under the same loudspeaker setup, the MC-WFSP64-V6 achieves a bet-
ter performance than the GPU, because its processing resources are saturated.
In contrast, the FPGA chip fits as many RUs as the number of loudspeakers,
thus all output signals can be concurrently processed. When the loudspeak-
ers array is increased to 96 elements, a Virtex6-based implementation with
77 RUs (MC-WFSP77-V6) still processes data 40% more efficiently than the
GTX275. However, a performance saturation is observed, since the number

106 CHAPTER 6. EXPERIMENTAL RESULTS

1

10

100

1000

10000

Core2 Duo FX1700 8600GT GTX275 GTX460 MC-WFSP4-V4

processing platforms

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

16 sources 32 sources 48 sources 64 sources

Figure 6.19: Energy consumption of all platforms under a 32-loudspeaker setup.

of RUs is less than the loudspeakers, thus not all of the output signals can be
processed concurrently. This performance saturation is more clear when there
are 128 loudspeakers to be driven, where the ratio between the GTX275 and
MC-WFSP77-V6 execution times remains approximately the same with the
ratio of a 96-element array. This observation, leads us to the conclusion that
high-end GPUs can support more efficiently loudspeaker setups up to a cer-
tain number of output channels. When this number of channels is exceeded,
a MC-WFSP-based approach can process data more efficiently than high-end
GPUs.

Energy consumption: As it was mentioned before, performance is not the
only parameter to be considered when choosing a hardware platform for a
WFS system. Energy consumption is an important parameter that should also
be taken into account. We used again formula (6.2) to evaluate the consumed
energy from each platform. Figures 6.19 and 6.20 suggest the energy con-
sumption by each processing platform under a 32- and 64-loudspeaker setup
for different number of sources. As we can be observe, in every source sce-
nario the Core2 Duo GPP consumes the most energy, thus making it unsuitable
for energy-efficient solutions. In contrast, the middle-ranged GPUs consume
less energy because they require less power and process data faster than the
Core2 Duo. The GTX275 and GTX460 require 219 W and 160 W respec-
tively, but since they process data very efficiently, they consume less energy

6.2. WFS EXPERIMENTAL RESULTS 107

1

10

100

1000

10000

Core2 Duo FX1700 8600GT GTX275 GTX460 MC-WFSP4-V4

processing platforms

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

16 sources 32 sources 48 sources 64 sources

Figure 6.20: Energy consumption of all platforms under a 64-loudspeaker setup.

even than the FX1700 and 8600GT GPUs. Regarding the FPGA-based ap-
proach, according to the Xilinx XPower utility, our MC-WFSP4-V4 prototype
requires approximately 12 Watts, thus resulting in most of the cases to the
lowest energy consumption among all tested platforms.

Platform cost: The platform cost is also another parameter that should be
considered when building a WFS system. As it was mentioned in Section 6.1,
Table 6.4 shows the unit price of each platform in Euros (November 2010).
As we can see, the FX1700 is more expensive than the Core2 Duo GPP.
However, by taking into account its better performance, we can conclude that
the FX1700 can provide an attractive platform for implementing small-scaled
WFS systems. Even better choice for building such WFS systems would be
the 8600GT, since it is cheaper, more energy- and performance-efficient than
the Core2 Duo and the FX1700. Regarding the high-end GPUs, as we can see
from Table 6.4, the GTX275 and GTX460 cost slightly more than the Core2
Duo. However, provided that they process data very efficiently, they make an
attractive solution for building energy- and performance-efficient large-scaled
WFS systems, which could not be supported by the Core2 Duo and middle-
ranged GPUs. Finally, FPGA platforms cost higher, because they are targeted
only by a much more limited group of people, compared to off-the-shelf GPPs
and GPUs. Thus, an MC-WFSP-based approach can be considered for low
energy consumption solutions that can also accommodate large-scaled WFS

108 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.8: GPU- and FPGA-based implementations comparison against commercial
products under a 128-loudspeaker setup

Platform maximum # of real-time sources
Iosono Spatial Audio Processor 64
6 Sonicemotion Sonic Wave I 64

MC-WFSP77-V6 1335
optimized GTX275 GPU 871

systems.

Comparison against related work: As it was mentioned in Section 2.3.2,
there are very few commercial WFS products that are based only on GPPs.
Furthermore, all experimental WFS systems reported in the literature also uti-
lize GPPs. For example, in [59], the authors employ an array of 22 loudspeak-
ers and all data processing is done by a standard Linux PC. The paper mostly
focuses on experiments regarding the correct sound localization and does not
provide data regarding the maximum number of real-time sources that can be
rendered. Two commercial systems are built from SonicEmotion and Iosono
companies and based also on GPPs. A single SonicEmotion system support up
to 64 sources when driving 24 loudspeakers. A single Iosono system supports
up to 64 sources when driving 128 loudspeakers. In case a larger loudspeaker
array is required, then additional such units must be cascaded. For example,
as it shown in Table 6.8, six SonicEmotion systems are required to drive a
128-loudspeaker array and support 64 real-time sources.

Regarding the optimized GPU- and FPGA-based solutions, in Table 6.8 we
show the maximum number of real-time sources that each one would support
under a 128-loudspeaker setup. We note that in both cases the data memory
access time is included, assuming a peak bandwidth of 127 GB/sec and 6.4
GB/sec for the GPU and FPGA systems respectively. Moreover, regarding the
GPU implementation, we exclude the time spent on data transfer between the
GPP and the GPU memories, since we want to focus only on the GPU perfor-
mance evaluation and not the complete PC infrastructure. As it can be con-
cluded, these platforms have the potential to drive equal or larger loudspeaker
arrays than desktop PCs, while rendering more real-time sources. Thus, the
total number of processing platforms would be much less, leading to more
energy- and performance-efficient solutions.

Regarding power consumption, as indicated in Section 2.3.2, in the cinema of
Ilmenau, Germany, six desktop PCs are employed to drive a 192-loudspeaker
array. Since a Core2 Duo-based PC consumes approximately 65 Watts of

6.3. CONCLUSIONS 109

power when fully utilized, following the aforementioned example, a system
with 6 such PCs would require approximately 6⋅65 = 390 Watts of power just
for the processors. In contrast, a single GTX460 consumes a maximum power
of 160 Watts. However, in this case, a less powerful host processor would suf-
fice, since it would not be used for data processing of the algorithms. Based
on this fact, the host GPP would require much less power compared to a Core2
Duo-based system. Thus a GTX460-based platform has the potential to reduce
power consumption by ∼2.4 times. Furthermore, the entire system cost would
be also reduced, since it would substitute six PCs with one GPU-based unit.
Ultimately, employing an FPGA-based system would reduce power consump-
tion even further, thus providing the best solution regarding performance and
power consumption at the expense of a higher system cost.

6.3 Conclusions

In this chapter we presented results of the BF and WFS applications from
experiments that were conducted using a GPP, middle-ranged and high-end
GPUs, and FPGA-based implementations. We evaluated each processing plat-
form based on various parameters, namely performance, energy consumption
and cost. Base on the results, we can draw the following conclusions:

∙ GPP-based approaches are not suitable for building cost- and
energy-efficient immersive-audio systems. As we observed from
the results reported in the previous sections, the Core2 Duo-based ap-
proaches were in most cases performing data calculations slower than
any other tested platform. This fact leads to the utilization of additional
processing elements, when there are large-scaled BF or WFS systems,
thus increasing the overall system cost. Furthermore, they consume the
most energy among all considered platforms, which makes them unsuit-
able for energy-efficient solutions. Their main benefit is the support of
high-level programming environments, thus allowing the rapid develop-
ment of immersive-audio prototypes.

∙ Middle-ranged GPUs are suitable for small-scaled immersive-audio
systems. Based on the performance figures presented in Section 6.1 and
Section 6.2, we can conclude that the 8600GT GPU processed data faster
than the Core2 Duo. Furthermore, it consumes less energy, while it costs
half the price of a contemporary GPP. These facts lead to the conclusion
that small-scaled immersive-audio systems are realizable using middle-
ranged GPUs, thus leading to energy- and cost-efficient solutions.

110 CHAPTER 6. EXPERIMENTAL RESULTS

∙ High-end GPUs can support large-scaled immersive-audio systems.
According to our experiments, high-end GPUs can be used to build
very large-scaled immersive-audio systems, thus resulting to the overall
system cost reduction. Furthermore, although they require the highest
power, efficient BF and WFS implementations lead to very fast execu-
tion times, thus requiring less energy even than contemporary GPPs to
process the same amount of data.

∙ FPGA-based approaches provide performance- and low energy-
and power-efficient solutions. Contemporary FPGA chips require the
lowest power than any of the considered processing platforms. Combing
the fact that a large number of processing elements can fit within a single
chip that process data concurrently, it results to immersive-audio sys-
tems that are very energy-efficient. The Virtex4- and Virtex6-based pre-
sented prototypes process data slower than the GTX275 and GTX460,
due to the high-latency external memory interface. However, based
on our architectural prospectives evaluation, we concluded that newer
FPGA families can perform computations more efficiently than high-
end GPUs, because they can fit a large number of parallel processing
elements. Thus, by employing an efficient external memory connection
strategy, FPGA-based systems can support very large-scaled immersive-
audio systems with the lowest power and energy consumption, at the
price of a higher overall system cost.

To summarize, based on the presented experiments, we can conclude that it is
very important to choose the correct implementation platform for immersive-
audio systems. Although both GPUs and FPGAs can efficiently support large-
scaled input/output channel arrays, it is very important to choose the most suit-
able platform based on the current power and economic cost budgets. High-
end GPUs have the benefit that cost much less compared to contemporary large
FPGAs, but their main drawback is that they require at least an order of mag-
nitude more power. In case multiple GPUs are cascaded to drive complex
channel setups, the total power consumption increases to the kWatt range. On
the other hand, high-end FPGAs can also support large input/output channel
arrays, while consuming much less power compared to GPU- and GPP-based
immersive-audio systems. Consequently, an FPGA-based approach that uti-
lizes many chips would require much less power compared to a multi-GPU
solution, at the expense of a higher overall system cost.

6.3. CONCLUSIONS 111

This chapter is based on the following papers:

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Reconfigurable Au-
dio Beamforming Multi-Core Processor, International Symposium on Ap-
plied Reconfigurable Computing (ARC), pp. 3-15, Belfast, Ireland, March
2011

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Multi-Core Platforms
for Beamforming and Wave Field Synthesis, IEEE Transactions on Multi-
media, pp. 235-245, Volume 13, No. 2, April 2011

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Minimalistic Architec-
ture for Reconfigurable Audio Beamforming, International Conference on
Field-Programmable Technology (FPT), pp. 503-506, Beijing, China, Decem-
ber 2010

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Minimalistic Ar-
chitecture for Reconfigurable WFS-Based Immersive-Audio, International
Conference on ReConFigurable Computing and FPGAs (ReConfig), pp. 1-6,
Cancun, Mexico, December 2010

D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A 3D-Audio Re-
configurable Processor, ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 107-110, Monterey, California, USA,
February 2010

7
Conclusions and Future Work

I n this dissertation, we proposed a new custom architecture for Beamform-
ing (BF) and Wave Field Synthesis (WFS) immersive-audio applications
targeting contemporary Multi-Core Processors (MCPs). The proposed

architecture consists of 14 application specific instructions, while the support-
ing programming paradigm employs a distributed memory organization. The
instructions allow customization and control of many system parameters, like
the number of input/output channels and the filter sizes. We proved the ar-
chitecture applicability on MCPs by conducting two case studies, namely on
multi-core BF and WFS reconfigurable processors and a wide range of off-the-
shelf GPUs. Furthermore, we compared our FPGA- and GPU-based hardware
prototypes against OpenMP-annotated approaches running on a Core2 Duo
processor. Results suggested that contemporary GPUs can be used to support
more complex immersive-audio setups compared to traditional GPPs, while at
the same time consume less energy. Furthermore, in certain cases, the latest
FPGA families can be used for more performance- and energy-efficient solu-
tions compared to high-end GPUs and GPPs.

The rest of the chapter is organized as follows: In Section 7.1 we provide
an overview of each chapter. Section 7.2 outlines all major conclusions of
this dissertation and addresses the research questions discussed in Section 1.3.
Finally, Section 7.3 provides a few open issues for future work.

7.1 Outlook

In Chapter 2, we provided the theoretical background of the BF and WFS tech-
niques. Furthermore, we presented various software and hardware implemen-
tations of them mapped onto different platforms, in order to build experimen-
tal and commercial immersive-audio systems. As it was presented, nowadays

113

114 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

there are BF experimental systems that utilize from few tens to more than 1000
microphones. In addition, there are commercial products that also employ up
to hundreds of input channels for efficient source extraction. Regarding the
WFS algorithm, there are few experimental and commercial systems that are
based only on GPPs. Finally, we provided an evaluation of many immersive-
audio systems that utilize the BF and WFS techniques with respect to perfor-
mance, power consumption and ease of use.

In Chapter 3, we proposed our architecture that supports both BF and WFS
algorithms. As it was presented, our proposal considers a distributed memory
hierarchy and allows a high-level interaction with reconfigurable (r-MCPs) and
non-reconfigurable Multi-Core Processors (nr-MCPs). Moreover, we analyzed
the functionality of each instruction and demonstrated how our architecture
could be used to develop programs for BF and WFS immersive-audio systems.

In Chapter 4, we presented the underlying multi-core micro-architecture when
utilizing r-MCPs for both BF and WFS techniques. We also described our
custom-designed hardware accelerators for sound acquisition and rendering
based on the BF and WFS respectively. Furthermore, we showed each in-
struction’s micro-architecture implementation, which allows a high-level user
interaction with the custom accelerators. Finally, we presented the complete
MC-BFP and MC-WFSP hardware prototypes that were used to evaluate our
proposal in Chapter 6.

In Chapter 5, we conducted a nr-MCP case study for our architecture, by ap-
plying it to middle-ranged and high-end GPUs. First, we provided a brief
description of contemporary GPUs organization. We also presented how we
implemented each high-level instruction, in order to hide all GPU-specific code
annotations details from the user. Furthermore, we explained how we used im-
portant system parameters, like the number of input/output channels and filter
sizes, to develop BF and WFS GPU kernels that are efficiently mapped onto
the processing cores.

Finally, in Chapter 6, we described our experimental setup that we applied,
in order to test our FPGA- and GPU-based implementations regarding perfor-
mance for the BF and WFS applications. We compared the results accuracy
of our fixed-point format hardware approaches against a Core2 Duo floating
point implementation. We also provided a comparison among the two multi-
core systems, the Core2 Duo and related work. Furthermore, we investigated
the architectural prospectives of high-end GPUs and latest generation FPGA
families; we compared their execution times under many input/output channels
and real-time sources scenarios. Finally, we discussed each system’s energy

7.2. CONCLUSIONS 115

consumption and overall cost.

7.2 Conclusions

Below we summarize the general conclusions that are drawn from our work:

∙ GPP-based approaches perform data calculations slower than any other
tested platform. This fact leads to developers on employing a large num-
ber of processing units, when there are complex BF or WFS systems,
thus increasing the overall system cost. Furthermore, they consume the
most energy among all considered platforms. However, their main bene-
fit is the support of high-level programming environments, thus allowing
the rapid development of immersive-audio prototypes.

∙ Middle-ranged GPUs can efficiently support small-scaled immersive-
audio systems. Our tests suggest that a 8600GT GPU can process data
faster than the Core2 Duo when implementing immersive-audio sys-
tems. Furthermore, it consumes less energy, while it costs half the price
of contemporary high-performance GPPs. These facts lead to the con-
clusion that small-scaled immersive-audio systems are realizable using
middle-ranged GPUs, thus leading to energy- and cost-efficient solu-
tions.

∙ High-end GPUs are suitable for large-scaled immersive-audio systems.
Thus, for the same number of input/output channels, less overall num-
ber of processing units are required compared to the case of employing
GPP-based modules. In addition, although high-end GPUs require more
power compared to GPPs, they can process the same amount of data an
order of magnitude faster, thus requiring less energy.

∙ FPGA-based approaches provide performance- and power-efficient so-
lutions. Contemporary FPGA chips require the lowest power than any
of the considered processing platforms. Combing the fact that a large
number of processing elements can fit within a single chip that pro-
cess data concurrently, it results to immersive-audio systems that are
the most energy-efficient. Based on our architectural prospectives eval-
uation, we concluded that newer FPGA families can perform compu-
tations for the BF up to 3.8 times and for the WFS up to 60% faster
than high-end GPUs, because they can fit a large number of parallel
processing elements. Thus, by employing an efficient external mem-
ory interface, FPGA-based systems have the potential to support very

116 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

large-scaled immersive-audio systems with very low energy and power
consumption, at the price of a higher overall system cost.

Based on the above conclusions we can answer the research questions posed
in Section 1.3:

∙ How to map rapidly and efficiently immersive-audio technologies onto
Multi-Core Processors (MCPs)? We addressed the difficulty of rapid
immersive-audio systems development that are based on MCPs, by
proposing a custom architecture for the BF and WFS technologies. Our
proposal is completely platform-independent, thus can be applied in a
variety of multi-core processors.

∙ Which instructions should be supported by the architecture for
immersive-audio systems? We proposed an instruction set that allows
easy customization of many vital system parameters, efficient audio
data processing, and system debugging through a high-level interface.
This way, the programmer can easily develop and test a wide range of
immersive-audio systems that can be mapped onto different processing
platforms.

∙ How to enhance performance and efficiently support small- and
large-scaled immersive-audio systems? We implemented the micro-
architectural support of our architecture that allows utilization of various
number of processing elements, therefore it is suitable for mapping onto
MCPs. With respect to the available resources, different r-MCP and nr-
MCP implementations with different performances are possible, where
all of them use the same architecture and programming paradigm. In
this dissertation, we presented two case studies of our architecture im-
plementation, namely on a set of multi-core reconfigurable processors
and a wide range of off-the-shelf GPUs. We used our reconfigurable and
GPU-based prototypes to conduct various tests for both BF and WFS ap-
plications, ranging from small- to large-scaled setups. Furthermore, we
investigated the maximum number of real-time sources that each pro-
cessing platform can support under different sizes of input/output chan-
nel arrays. Based on our experimental results, we proposed the most
suitable platform for each case, in order to build efficient immersive-
audio systems.

∙ How to choose the most energy- and power-efficient approach for such
complex systems? Based on the processing time and the power con-
sumption of all platforms, we suggested their energy consumption un-
der a variety of setups. Since immersive-audio systems utilize a large

7.3. OPEN ISSUES AND FUTURE DIRECTIONS 117

number of input/output channels, it is important to select the most suit-
able processing platform that complies to any power constraints and cost
limitations. Moreover, developers can consider our results to select the
most energy- and cost-efficient solution based on their requirements.

7.3 Open Issues and Future Directions

In this dissertation, we presented a custom architecture for immersive-audio
applications. In the current section, we provide a few future research directions
to improve it.

∙ Additional instructions for improved system configuration. New in-
structions that would allow a more fine-grained system configuration
can significantly enhance the entire development. For example, in the
current version of our immersive-audio architecture, the decimation/in-
terpolation rates have to be configured off-line. Especially in the case
of reconfigurable processors, this limitation requires the synthesis and
implementation of the design based on the new resampling rates. New
instructions that support updating the resampling rates, would enhance
even more the rapid development of reconfigurable immersive-audio
systems. These instructions require the design of custom FIR filters that
can have customizable resampling rates.

∙ Unified BF and WFS systems. Many applications require real-time
sound acquisition and rendering. For example, during video telecon-
ferencing, all locations require equipment that records the local speaker
and also renders the voice of any remote meeting participant. Another
example is music concerts where the performers and/or their music in-
struments are recorded using a microphone array. At the same time, all
extracted signals are rendered to the audience through large loudspeaker
arrays. In the first example, the BF and WFS processors can be inte-
grated within a single system, where they work in parallel. The output
of the BF processor is sent to any remote location, where the local WFS
processor renders every source signal. However, in the second scenario,
the output signals of the BF processor are used as input to the WFS pro-
cessor, which renders the source signal through the loudspeaker array.

∙ Faster external memory interface. As it was discussed in Sections 6.1
and 6.2, a considerable amount of the MC-BFP and MC-WFSP proto-
types total execution time was spent on accessing the external memory.
In order to improve this processing bottleneck, a more efficient interface

118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

HD-LCD HD-LCD HD-LCD

Loudspeaker

array

Local meeting participants

Local meeting area

Audio sources of remote meeting participants

Figure 7.1: Teleconference scenario using the WFS technology.

is required. A possible solution could be the avoidance of the central bus
and the design of a controller that would connect all BeamFormers and
RUs directly to the off-chip memory.

∙ Tests with real microphone and loudspeaker setups. Finally, a very
interesting and important research direction would be the implementa-
tion of actual BF and WFS systems that employ different number of
input/output channels. This fact would help on evaluating more pre-
cisely the performance and sound quality of every hardware platform
considered.

Providing to the audio engineering community an architecture for rapid devel-
opment of immersive-audio systems that utilize MCPs, introduces their poten-
tial application to new fields and every-day activities:

∙ Next generation consumer and professional audio products. In the
majority of the cases, contemporary sound equipment utilizes stereo-
phonic or surround approaches. The latter suffer from poor audio quality
thus decreasing the source localization accuracy and the overall acoustic
experience. Our approach has the potential to provide scalable and effi-
cient immersive-audio audio systems that can be applicable to consumer
products, like home theater systems and computer gaming industry, and
professional installations, like cinemas, amusement parks and concert
halls. These days 3D-vision becomes very popular not only into cine-
mas, but also to home/office equipment like TVs, computer screens and
game consoles. Consequently, it would be very interesting to combine
them with immersive-audio solutions and provide a 3D audio-visual out-

7.3. OPEN ISSUES AND FUTURE DIRECTIONS 119

Legend:

 Acoustic

 source that

 indicates the

 path to exit

Figure 7.2: Guidance to emergency exit using virtual acoustic sources.

standing experience.

∙ High-quality teleconference systems. Nowadays, people perform tele-
conference meetings more than ever before. Unfortunately, in most
cases, the utilized equipment is regular phone devices or computers
with small and low quality loudspeakers. Professional video teleconfer-
ence systems, although they provide High Definition (HD) video quality
through Liquid Crystal Displays (LCDs), still employ stereophonic ap-
proaches for the audio reproduction, which has a significant impact on
the overall teleconference experience. In contrast, a WFS sound sys-
tem will provide an outstanding audio perception, since it would be
able to position within the audience area a virtual acoustic source of
every remote speaker, thus local meeting participants would literary per-
ceive a ”tele-presence” of the person, as illustrated in Figure 7.1. It is a
well-established fact that major companies spend annually hundreds of
thousands of dollars for their employees to travel around the globe for
meeting purposes. However, a WFS teleconference system with such re-
alistic audio experience, would make feasible excellent-quality remote
meetings, thus significantly reducing a company’s travel expenses.

∙ Improved safety to critical environments. Over the last years, re-
searchers have proposed techniques that are based on auditory cues,
in order to improve warnings in commercial aircraft and military avi-
ation [95]. In the majority of the cases, they utilize monaural or binaural
approaches, which do not always provide the best solutions [23]. We be-

120 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

lieve that medium-scaled WFS sound systems can significantly enhance
the sound alarms perception from the pilots, by alleviating the neces-
sity for them to wear headphones to hear the sound cues, thus actively
contribute to improved overall safety during the flight. A similar ap-
proach can also be applied to other critical environments like hospitals
and nuclear power plants. For example, in case of fire, the smoke limits
visibility considerably, thus the paths to emergency exits are extremely
difficult to be found. As illustrated in Figure 7.2, a solution would be
to render specific audio sounds at certain locations that would form an
”audio-path” that people can follow to the nearest emergency exit.

Bibliography

[1] Implementing a Real-Time Beamformer on an FPGA Platform. In XCell
journal, pages 36–40, Second Quarter 2007.

[2] Acoustic Camera. http://www.acoustic-camera.com.

[3] Robert Höldrich Alois Sontacchi, Michael Strauß. Audio Interface for
Immersive 3D-Audio Desktop Applications. In International Sympo-
sium on Virtual Environments, Human-Computer Interfaces, and Mea-
surement Systems, pages 179–182, July 2003.

[4] AMD Corporation. ATI Stream Computing OpenCL Programming
Guide. August 2010.

[5] Analog Devices Inc. SHARC Processor ADSP-21262. May 2004.

[6] Andrew Schmeder, Adrian Freed, David Wessel. Best Practices for
Open Sound Control. In Linux Audio Conference, 2010.

[7] Angelo Farina, Ralph Glasgal, Enrico Armelloni, Anders Torger. Am-
biophonic Principles for the Recording and Reproduction of Surround.
In AES 19th International Conference, June 2001.

[8] Enrico Armelloni, Paolo Martignon, and Angelo Farina. Compari-
son Between Different Surround Reproduction Systems: ITU 5.1 vs
PanAmbio 4.1. In 118th Convention of Audio Engineering Society, May
2005.

[9] Benny Sallberg and Mikael Swartling and Nedelko Grbic and Ingvar
Claesson. Real-time implementation of a blind beamformer for sub-
band speech enhancement using kurtosis maximization. In Interna-
tional Workshop on Acoustic Echo and Noise Control, pages 485–489,
September 2006.

[10] J.A. Beracoechea, S. Torres-Guijarro, L. Garcı́a, and F.J. Casajús-
Quirós. On building Immersive Audio Applications Using Robust
Adaptive Beamforming and Joint Audio-Video Source Localization.
In EURASIP Journal on Applied Signal Processing, pages 1–12, June
2006.

[11] A.J. Berkhout, D. de Vries, and P. Vogel. Acoustic Control by Wave
Field Synthesis. In Journal of the Acoustical Society of America, vol-
ume 93, pages 2764–2778, May 1993.

[12] Ajay V. Bhatt. Creating a PCI Express Interconnect. Intel Corporation.

[13] Bill Kapralos and Michael Jenkin and Evangelos Milios. Audio-visual

121

122 BIBLIOGRAPHY

localization of multiple speakers in a video teleconferencing setting.
In International Journal of Imaging Systems and Technology, volume
13(1), pages 95–105, October 2003.

[14] M.M. Boone, E.N.G. Verheijen, and P.F. van Tol. Spatial Sound Field
Reproduction by Wave Field Synthesis. In Journal of the Audio Engi-
neering Society, volume 43, pages 1003–1012, December 1995.

[15] S. Brix, T. Sporer, and J. Plogsties. CARROUSO - An European ap-
proach to 3D-audio. In 110th AES Convention. Audio Engineering So-
ciety, May 2001.

[16] Werner Paulus Josephus De Bruijn. Application of Wave Field Synthesis
in Videoconferencing. PhD thesis, TU Delft, The Netherlands, October
2004.

[17] H. Buchner, S. Spors, W. Kellermann, and R. Rabenstein. Full-duplex
communication systems using loudspeaker arrays and microphone ar-
rays. In IEEE International Conference on Multimedia and Expo, pages
509–512, November 2002.

[18] Rochet Cedrick. Documentation of the Microphone Array Mark III.
2005.

[19] THX company. http://www.thx.com/.

[20] Atmel Corporation. DIOPSIS 940HF. July 2008.

[21] Atmel Corporation. mAgic DSP architecture document. December
2008.

[22] NVidia Corporation. CUDA programming guide version 3.2. August
2010.

[23] C.W Johnson and W. Dell. The Limitations of 3D Audio to Improve
Auditory Cues in Aircraft Cockpits. In International Systems Safety
Conference, pages 990–999, 2003.

[24] Jérome Daniel, Rozenn Nicol, and Sébastien Moreau. Further Investi-
gations of High Order Ambisonics and Wave Field Synthesis for Holo-
phonic Sound Imaging. In 114th Convention of Audio Engineering So-
ciety, pages 58–70, March 2003.

[25] Advanced Micro Devices. http://www.amd.com.

[26] Angelo Farina and Emanuele Ugolotti. Software Implementation of B-
Format Encoding and Decoding. In 104rd AES Convention, 1998.

[27] Antoine Fillinger, Lukas Diduch, Imad Hamchi, Stephane Degre, and

BIBLIOGRAPHY 123

Vincent Stanford. Nist smart data flow system ii: speaker localization.
In Proceedings of the 6th international conference on Information pro-
cessing in sensor networks, pages 549–550, 2007.

[28] H. Fletcher. Auditory perspectiveBasic requirements. In Electrical En-
gineering, volume 53, pages 12–17, 1934.

[29] Fraunhofer Institute for Digital Media Technology.
http://www.idmt.fraunhofer.de/eng/about us/facts figures.htm.

[30] Gang Mei, Roger Xu, Debang Lao, Chiman Kwan. Real-Time Speaker
Verification with a Microphone Array. Technical report.

[31] Gerrit Blaauw and Frederick Brooks. Computer Architecture: Concepts
and Evolution. February 1997.

[32] Michael A. Gerzon. Periphony: With-Height Sound Reproduction. In
Journal of the Audio Engineering Society, volume 21, pages 2–10, 1973.

[33] Michael Gschwind. The cell broadband engine: exploiting multiple
levels of parallelism in a chip multiprocessor. International Journal of
Parallel Programming, pages 233–262, June 2007.

[34] Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins,
Yukio Watanabe, and Takeshi Yamazaki. Synergistic processing in cell’s
multicore architecture. pages 10–24, March 2006.

[35] Günther Theile. Multichannel Natural Music Recording Based on Py-
choacoustics Principles. In AES 19th International Conference, May
2001.

[36] Kimio Hamasaki, Wataru Hatano, Koichiro Hiyama, Setsu Komiyama,
and Hiroyuki Okubo. 5.1 and 22.2 Multichannel Sound Productions
Using an Integrated Surround Sound Panning System. In Audio Engi-
neering Society Convention 117, October 2004.

[37] T. Holman. 5.1 Surround Sound Up and Running. Focal Press, Decem-
ber 1999.

[38] Edo Hulsebos. Auralization using Wave Field Synthesis. PhD thesis,
TU Delft, The Netherlands, October 2004.

[39] R. Tripiccione I. Colacicco, G. Marchiori. The hardware application
platform of the hartes project. In Field Programmable Logic and Appli-
cations, pages 439–442, September 2008.

[40] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
August 2008.

124 BIBLIOGRAPHY

[41] Fraunohfer IGD. http://www.igd.fraunhofer.de/.

[42] Intel Corporation. http://ark.intel.com/Product.aspx?id=33910.

[43] Intel Labs. The SCC Platform Overview. Technical report, Intel Cor-
poration, 2010.

[44] International Business Machines Corporation. http://www-
03.ibm.com/press/us/en/pressrelease/19508.wss.

[45] International Technology Roadmap for Semiconductors. Process Itegra-
tion, Devices and Structures. 2005.

[46] Iosono Company. http://www.iosono-sound.com.

[47] Ivan Tashev and Michael L. Seltzer. Data driven beamformer design for
binaural headset. In International Conference on Acoustice, Echo and
Noise Control, September 2008.

[48] Ka-Fai Cedric Yiu and Chan Hok Ho and Yao Lu and Xiaoxiang Shi
and Wayne Luk. Reconfigurable acceleration of microphone array al-
gorithms for speech enhancement. In Application-specific Systems, Ar-
chitectures and Processors, pages 203–208, 2008.

[49] Khronos OpenCL Working Group. The OpenCL Specification v1.10.
June 2010.

[50] E. Moscu Panainte G. N. Gaydadjiev Y. D. Yankova V.M. Sima K Sigdel
R. J. Meeuws S. Vassiliadis K.L.M. Bertels, G. Kuzmanov. Hartes
toolchain early evaluation: Profiling, compilation and hdl generation. In
Proceedings of 17th International Conference on Field Programmable
Logic and Applications, pages 402–408, August 2007.

[51] K.L.M. Bertels, G. Kuzmanov, E. Moscu Panainte, G. N. Gaydadjiev,
Y. D. Yankova, V.M. Sima, K Sigdel, R. J. Meeuws, S. Vassiliadis. Pro-
filing, Compilation, and HDL Generation within the hArtes Project. In
Design Test and Automation in Europe Workshop.

[52] Chris Kyriakakis. Fundamental and Technological Limitations of Im-
mersive Audio Systems. In Proceedings of the IEEE, volume 86, pages
941–951, May 1998.

[53] A. Lattanzi, E. Ciavattini, S. Cecchi, L. Romoli, and F. Ferrandi. Real-
Time Implementation of Wave Field Synthesis on NU-Tech Framework
Using CUDA Technology. In Audio Engineering Society Convention
128, May 2010.

[54] Richard G. Lyons. Understanding Digital Signal Processing. Pearson

BIBLIOGRAPHY 125

Education, November 1996.

[55] Marije Baalman and Simon Schampijer and Torben Hohn and Thilo
Koch and Daniel Plewe and Eddie Mond. Renewed architecture of the
sWONDER software for Wave Field Synthesis on large scale systems.
In 5th International Linux Audio Conference, pages 76–83, 2007.

[56] Mark F. ODwyer, Guillaume Potard, Ian Burnett. A 16-speaker 3d
audio-visual display interface and control system. In International Con-
ference on Auditory Display, July 2004.

[57] Mark Fiala and David Green and Gerhard Roth. A panoramic video and
acoustic beamforming sensor for videoconferencing. In IEEE Interna-
tional Conference on Haptic, Audio and Visual Environments and their
Applications, pages 47–52, October 2004.

[58] Mathworks Corporation. http://www.mathworks.com/.

[59] Daniel Menzel, Helmut Wittek, Gnther Theile, and Hugo Fast. The
Binaural Sky: A Virtual Headphone for Binaural Room Synthesis. In
International Tonmeister Symposium, October 2005.

[60] MIT CSAIL: MIT Project Oxygen. http://oxygen.lcs.mit.edu/. 2004.

[61] Moldrzyk C, Goertz A, Makarski M, Feistel S, Ahnert W, Weinzierl
S. Wellenfeldsynthese für einen groSSen hörsaal. In Fortschritte der
Akustik, DAGA Stuttgart, 2007.

[62] Athanasios Mouchtaris, Panagiotis Reveliotis, and Chris Kyriakakis. In-
verse of Filter Design for Immersive Audio Rendering Over Loudspeak-
ers. In IEEE Transactions on Multimedia, volume 2, pages 77–87, June
2000.

[63] Carl-Inge Colombo Nilsen and Ines Hafizovic. Digital Beamforming
using a GPU. In IEEE International Conference on Acoustics, Speech
and Signal processing, pages 609–612, May 2009.

[64] NU-Tech Framework. http://www.leaff.it/content.php?id=31.

[65] NVidia Corporation. http://www.nvidia.com/page/geforce 8800.html.

[66] NVidia Corporation. NVIDIA GeForce GTX 200 GPU Datasheet.

[67] NVidia Corporation. Tesla C1060 Computing Processor Board. 2008.

[68] NVidia Corporation. CUDA programming guide version 3.1.1. Techni-
cal report, July 2010.

[69] NVidia Corporation. NVIDIA GeForce GTX 400 GPU Datasheet.
2010.

126 BIBLIOGRAPHY

[70] NVidia Corporation. NVIDIAs Next Generation CUDA Compute Ar-
chitecture: Fermi. 2010.

[71] National Institude of Standards and Technology.
http://www.nist.gov/smartspace/mk3 presentation.html.

[72] OpenMP Architecture Review Board. OpenMP Application Program
Interface v3.0. May 2008.

[73] Renato S. Pelegrinni and Matthias Rosenthal. Wave Field Synthesis
With Synchronous Distributed Signal Processing. In 6th IEEE Work-
shop on Multimedia Signal Processing, pages 227–230, 2004.

[74] picoChip. http://www.picochip.com/.

[75] Polycom Inc. Polycom CX5000 Unified Conference Station. March
2009.

[76] Ross Cutler and Yong Rui and Anoop Gupta and JJ Cadiz and Ivan
Tashev and Li-wei He and Alex Colburn and Zhengyou Zhang and
Zicheng Liu and Steve Silverberg. Distributed meetings: A meeting
capture and broadcasting system. In International Conference on Mul-
timedia, pages 503–512, December 2002.

[77] Slavy G. Mihov and Tyler Gleghorn and Ivan Tashev. Enhanced sound
capture system for small devices. In International Conference of Infor-
mation, Communication and Energy Systems, June 2008.

[78] William Snow. Basic principles of stereophonic sound. pages 42 – 53,
March 1955.

[79] Audio Engineering Society. AES10-2003: AES Recommended Prac-
tice for Digital Audio Engineering – Serial Multichannel Audio Digital
Interface (MADI). In Rev 2003, May 2003.

[80] SonicEmotion Company. http://www.sonicemotion.com.

[81] Thomas Sporer, Michael Beckinger, Andreas Franck, Iuliana Bacivarov,
Wolfgang Haid, Kai Huang, Lothar Thiele, Pier S. Paoloucci, Pier-
giovanni Bazzana, Piero Vicini, Jianjiang Ceng, Stefan Kraemer, and
Rainer Leupers. SHAPES - a Scalable Parallel HW/SW Architecture
Applied to Wave Field Synthesis. In International Conference of Audio
Engineering Society, pages 175–187, September 2007.

[82] Jan P. Springer, Christoph Sladeczek, Martin Scheffler, Jan Hochstrate,
Frank Melchior, and Bernd Fröhlich. Combining Wave Field Synthesis
And Multi-viewer Stereo Displays. In IEEE Virtual Reality Conference,
pages 237–240, 2006.

BIBLIOGRAPHY 127

[83] Squarehead Technology. Audio Scope Zoom Audio.

[84] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,
and A. Agarwal. The raw microprocessor: a computational fabric for
software circuits and general-purpose programs. In Micro, IEEE, pages
25–35, March 2002.

[85] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff,
Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim,
James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt
Frank, Saman Amarasinghe, and Anant Agarwal. The Raw Processor, A
Composeable 32-Bit Fabric for Embedded and General Purpose Com-
puting. In MIT Student Oxygen Workshop, 2001.

[86] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff,
Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim,
James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt
Frank, Saman Amarasinghe, and Anant Agarwal. Evaluation of the
Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP
and Streams. In International Symposium on Computer Architecture,
pages 2–13, 2004.

[87] H. Teutsch, S. Spors, W. Herbordt, W. Kellermann, and R. Rabenstein.
An Integrated Real-Time System For Immersive Audio Applications.
In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, pages 67–70, October 2003.

[88] Texas Instruments Inc. TMS320C62x/C67x Power Consumption Sum-
mary. July 2002.

[89] Günther Theile and Helmut Wittek. Wave field synthesis: A promising
spatial audio rendering concept. In Acoustical Science and Technology,
pages 393–399, 2004.

[90] Gunther Theile, Helmut Wittek, and Markus Reisinger. Potential Wave-
field Synthesis Applications in the Multichannel Stereophonic World. In
24th International Conference on Multichannel Audio, the New Reality,
pages 43–57, May 2003.

[91] Jasper van Dorp Schuitman. The Rayleigh 2.5D Operator Explained.
Technical report, Laboratory of Acoustical Imaging and Sound Control,
TU Delft, The Netherlands, June 2007.

[92] Jasper van Dorp Schuitman, Lars Hörchens, and Diemer de Vries. The

128 BIBLIOGRAPHY

MAP-based wave field synthesis system at TU Delft (NL). In 1st DEGA
symposium on wave field synthesis, September 2007.

[93] B.D. Van Veen and K.M. Buckley. Beamforming: a versatile approach
to spatial filtering. In IEEE ASSP Magazine, volume 5, pages 4–24,
April 1988.

[94] Peter Vogel. Application of Wave Field Synthesis in Room Acoustics.
PhD thesis, TU Delft, The Netherlands, 1993.

[95] W. Dell. The Use of 3D Audio to Improve Auditory Cues in Air-
craft. Technical report, Department of Computing Science, Univeristy
of Glasgow, 2000.

[96] Kieran Wall and Geoffrey R. Lockwood. Modern implementation of
a realtime 3d beamformer and scan converter system. In 2005 IEEE
Ultrasonics Symposium, pages 1400–1403, September 2005.

[97] Eugene Weinstein, Kenneth Steele, Anant Agarwal, and James Glass.
LOUD: A 1020-Node Modular Microphone Array and Beamformer for
Intelligent Computing Spaces. In MIT/LCS Technical Memo MIT-LCS-
TM-642, April 2004.

[98] Xilinx Inc. Distributed Arithmetic FIR Filter v9.0. April 2005.

[99] Xilinx Inc. MAC FIR v5.1. April 2005.

[100] Xilinx Inc. PowerPC 405 Processor Block Reference Guide. July 2005.

[101] Xilinx Inc. Embedded System Tools Reference Manual, EDK 9.2i.
2007.

[102] Xilinx Inc. ML410 Embedded Development Platform. September 2007.

[103] Xilinx Inc. Xilinx ISE 9.2i Software Manuals and Help. 2007.

[104] Xilinx Inc. XPS Central DMA Controller. September 2007.

[105] Xilinx Inc. Spartan-II FPGA Family Data Sheet. June 2008.

[106] Xilinx Inc. Virtex-4 FPGA User Guide. December 2008.

[107] Xilinx Inc. XtremeDSP for Virtex-4 FPGAs. 2008.

[108] Xilinx Inc. Virtex-6 Family Overview. February 2009.

[109] Xilinx Inc. Xilinx ISE 11.1i Software Manuals and Help. 2009.

[110] Xilinx Inc. LogiCORE IP Processor Local Bus (PLB) v4.6. 2010.

[111] Xilinx Inc. LogiCORE IP XPS HWICAP. 2010.

[112] Xilinx Inc. The Simple MicroBlaze Microcontroller Concept. 2010.

BIBLIOGRAPHY 129

[113] Xilinx Inc. XPower Estimator User Guide. October 2010.

[114] Zohra Yermeche and Benny Sallberg and Nedelko Grbic and Ingvar
Claesson. Real-time implementation of a subband beamforming algo-
rithm for dual microphone speech enhancement. In IEEE International
Symposium on Circuits and Systems, pages 353–356, May 2007.

List of Publications

International Journals (this thesis)

1. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Multi-Core Plat-
forms for Beamforming and Wave Field Synthesis, IEEE Transac-
tions on Multimedia, Volume 13, No. 2, April 2011

International Conferences (this thesis)

1. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Recon-
figurable Audio Beamforming Multi-Core Processor, International
Symposium on Applied Reconfigurable Computing (ARC), pp. 3-15,
Belfast, Ireland, March 2011

2. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Minimalistic
Architecture for Reconfigurable Audio Beamforming, International
Conference on Field-Programmable Technology (FPT), pp. 503-506,
Beijing, China, December 2010

3. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Minimalistic
Architecture for Reconfigurable WFS-Based Immersive-Audio, In-
ternational Conference on ReConFigurable Computing and FPGAs (Re-
Config), pp. 1-6, Cancun, Mexico, December 2010

4. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A 3D-Audio
Reconfigurable Processor, ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), pp. 107-110, Monterey, Cal-
ifornia, USA, February 2010

5. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, A Reconfig-
urable Beamformer for Audio Applications, IEEE Symposium on Ap-
plication Specific Processors (SASP), pp. 80-87, San Francisco, Califor-
nia, USA, July 2009

6. D. Theodoropoulos, G. Kuzmanov, G. N. Gaydadjiev, Reconfigurable
Accelerator for WFS-Based 3D-Audio, IEEE Reconfigurable Archi-
tectures Workshop (RAW), pp. 1-8, Rome, Italy, May 2009,

7. D. Theodoropoulos, CB Ciobanu, G. Kuzmanov, Wave Field Synthesis
for 3D Audio: Architectural Prospectives, ACM International Confer-
ence on Computing Frontiers, pp. 127-136, Ischia, Italy, May 2009

131

132 LIST OF PUBLICATIONS

International Conferences (not related to this thesis)

1. T. Marconi, D. Theodoropoulos, K.L.M. Bertels, G. N. Gaydadjiev, A
Novel HDL Coding Style to Reduce Power Consumption for Recon-
figurable Devices, International Conference on Field-Programmable
Technology (FPT), pp. 295-299, Beijing, China, December 2010

2. C. Galuzzi, D. Theodoropoulos, R. J. Meeuws, K.L.M. Bertels, Algo-
rithms for the Automatic Extension of an Instruction-Set, Design,
Automation and Test in Europe (DATE), pp. 548-553, Nice, France,
April 2009

3. D. Theodoropoulos, A Siskos, D.N. Pnevmatikatos, CCproc: A custom
VLIW cryptography co-processor for symmetric-key ciphers, Inter-
national Workshop on Applied Reconfigurable Computing (ARC), pp.
318-323, Karlsruhe, Germany, February 2009

4. C. Galuzzi, D. Theodoropoulos, R. J. Meeuws, K.L.M. Bertels, Auto-
matic Instruction-Set Extensions with the Linear Complexity Spiral
Search, IEEE International Conference on ReConFigurable Computing
and FPGAs (ReConfig) , pp. 31-36, Cancun, Mexico, December 2008

5. D. Theodoropoulos, I Papaefstathiou, D.N. Pnevmatikatos, CCproc:
An Efficient Cryptographic Coprocessor, IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 160-163,
Rhodes, Greece, October 2008

6. C. Galuzzi, D. Theodoropoulos, K.L.M. Bertels, A Clustering Method
for the Identification of convex Disconnected Multiple Input Mul-
tiple Output Instructions, International Conference IC-SAMOS VIII
(SAMOS), pp. 65-73, Samos, Greece, July 2008

7. A Dollas, K Papadimitriou, E Sotiriadis, D. Theodoropoulos, I Koidis,
G Vernardos, A Case Study on Rapid Prototyping of Hardware Sys-
tems: the Effect of CAD Tool Capabilities, Design Flows, and Design
Styles, International IEEE Workshop on Rapid Prototyping (RSP), pp.
180-186, Geneva, Switzerland, June 2004

LIST OF PUBLICATIONS 133

Local Conferences

1. D. Theodoropoulos, Y. D. Yankova, G. Kuzmanov, K.L.M. Bertels, Au-
tomatic hardware generation for the Molen reconfigurable architec-
ture: a G721 case study, ProRisc Conference, pp. 380-387, Veldhoven,
The Netherlands, November 2007

Reports

1. T. Marconi, D. Theodoropoulos, K.L.M. Bertels, G. N. Gaydadjiev, A
Novel HDL Coding Style for Power Reduction in FPGAs, CE-TR-
2010-02, Computer Engineering Lab, TU Delft, January 2010

Samenvatting

I n dit proefschrift presenteren we een nieuwe aanpak voor de snelle on-
twikkeling van multi-core immersive-audio systemen. We bestuderen
twee populaire immersive-audio technieken, namelijk Beamforming en

Wave Field Synthesis (WFS). Beamforming maakt gebruik van microfoon-
arrays om akoestische bronnen te extraheren die opgenomen zijn in een
lawaaierige omgeving. WFS past grote luidspreker-arrays toe om bewe-
gende geluidsbronnen na te bootsen, zodoende vertstrekt het uitstekende
geluidswaarneming en -lokalisatie. Uit literatuuronderzoek blijkt dat de
meerderheid van dergelijke experimentele en commerciele audio-systemen
zijn gebaseerd op standaard PC’s, vanwege hun high-level programmeeron-
dersteuning en de mogelijkheden voor snelle systeemontwikkeling. Deze
benaderingen introduceren echter prestatieknelpunten, overmatig energiever-
bruik en hogere totale kosten. Systemen op basis van DSP’s verbruiken
zeer weinig stroom, maar hebben nog steeds beperkte prestaties. Custom-
hardware oplossingen verlichten de bovengenoemde nadelen, maar ontwerpers
zijn vooral gericht op het optimaliseren van de prestaties, zonder een high-level
interface voor systeem-controle en testen te bieden. Om de bovengenoemde
problemen aan te pakken, stellen wij een aangepaste platform-onafhankelijke
architectuur voor, die immersive-audio technologieen voor hoge-kwaliteit
geluidopname en -rendering ondersteunt. Een belangrijk kenmerk van de ar-
chitectuur is dat het is gebaseerd op een multi-core processing paradigma. Dit
maakt het ontwerp van schaalbare en herconfigureerbare micro-architecturen
mogelijk, met betrekking tot de beschikbare hardware resources, en aanpas-
bare implementaties gericht op multi-core platforms. Om ons voorstel te kun-
nen evalueren, voerden we twee case studies uit: We hebben onze architec-
tuur geimplementeerd als een heterogene multi-core herconfigureerbare pro-
cessor gemapped op FPGA’s. Verder hebben we onze architectuur toegepast
op een breed scala van hedendaagse GPU’s. Onze aanpak combineert de flex-
ibiliteit van software inherent aan GPP’s met de rekenkracht van multi-core
platforms. De resultaten suggereren dat het gebruik van GPU’s en FPGA’s
voor het bouwen van immersive-audio systemen leidt tot oplossingen die ver-
beterde prestaties kunnen verwezenlijken van wel een orde van grootte, en een
laag stroomverbruik, als ook een daling van de totale kosten voor het systeem
in vergelijking met GPP-gebaseerde benaderingen.

135

Curriculum Vitae

Dimitris Theodoropoulos (S’06) was born in Athens,
Greece. In 2003 and 2006 he obtained his Diploma
(5-year degree) and M.Sc degree respectively from the
Electronic and Computer Engineering department at the
Technical University of Crete, Greece. In 2007 he joined
the Computer Engineering department of the Delft Uni-
versity of Technology, where he worked towards his Ph.D
with scientific advisors dr. Georgi Kuzmanov and dr.

Georgi Gaydadjiev.

During his M.Sc. he worked for the ”InMoreTech” spin-off company on de-
signing a 4-layer PCB prototype of an input device for disabled people. Fur-
thermore, he was a teacher in the fields of computer usage, network access and
e-commerce for the Go-Online action line of the Operational Programmes,
Information Society and Competitiveness funded by the 3rd European Union
Support Framework. Also, he was a teaching assistant for the ”Real-time Sys-
tems Development” and ”Computer Architecture” courses of the Computer
Engineering Department bachelor program in Technical University of Crete.
In addition, he worked as private teacher for the 3rd class high school course
”Applications development using programming languages”.

During his Ph.D, he worked as a researcher for the ”hArtes”, a project (IST-
035143) of the Sixth Framework Programme of the European Community un-
der the thematic area ”Embedded Systems”. In addition, he served as a peer
reviewer for many international conferences and journals. He also provided
teaching assistance for many courses of the Computer Engineering M.Sc. pro-
gram at the Delft University of Technology.

Dimitris Theodoropoulos is a member the Technical Chamber of Greece
from 2003. His current research interests include: reconfigurable computing,
immersive-audio applications, embedded systems, cryptography and computer
architecture.

137

