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Abstract The ultimate isolation offered by levitation
provides new opportunities for studying fundamental
science and realizing ultra-sensitive floating sensors.
Among different levitation schemes, diamagnetic lev-
itation is attractive because it allows stable levitation
at room temperature without a continuous power sup-
ply. While the dynamics of diamagnetically levitating
objects in the linear regime are well studied, their non-
linear dynamics have received little attention. Here, we
experimentally and theoretically study the nonlinear
dynamic response of graphite resonators that levitate
in permanent magnetic traps. By large amplitude actu-
ation, we drive the resonators into nonlinear regime and
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measure their motion using laser Doppler interferome-
try. Unlike other magnetic levitation systems, here we
observe a resonance frequency reduction with ampli-
tude in a diamagnetic levitation system that we attribute
to the softening effect of the magnetic force. We then
analyze the asymmetric magnetic potential and con-
struct a model that captures the experimental nonlin-
ear dynamic behavior over a wide range of excitation
forces. We also investigate the linearity of the damp-
ing forces on the levitating resonator, and show that
although eddy current damping remains linear over a
large range, gas damping opens a route for tuning non-
linear damping forces via the squeeze-film effect.

Keywords Nonlinear dynamics - Diamagnetic
levitation - Magnetic force - Nonlinear damping

1 Introduction

Gaining control over the dynamics of levitating objects
has been a long-sought after goal, both because contact-
less levitation provides extreme isolation from external
sources of heat and friction and because it allows six
degrees-of-freedom rigid body motion. Recently, the
interest in the field of levitodynamics [1] has surged,
stimulated by the demonstration of quantum ground
state cooling [2,3] and the use of extremely high-Q
levitating resonators for highly-sensitive sensors [4—6].
Among different levitation schemes, diamagnetic levi-
tation has the advantage of being the only passive one
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that does not require continuous energy supply or cryo-
genic temperatures to realize levitation [5,7-10], thus
differentiating it from other kinds of levitation mecha-
nisms including optical, superconducting and electrical
levitation [1, 11]. Interestingly, the passive, zero power
nature of diamagnetic levitation does not incur heating
and noise that can be limits in optical and electrical
schemes [4,12,13]. Moreover, suitably designed mag-
netic traps from permanent magnets allow stable dia-
magnetic levitation in high vacuum without active feed-
back [8], enabling levitation of high-mass macroscopic
objects, that provide increased sensitivity in inertial
sensors [ 14], accelerometers [ 15] and gravitational field
sensors [16,17].

The low-amplitude rigid body dynamics of diamag-
netically levitating resonators in the linear regime is
pretty well-known [5,7,18]. However, the linearity of
the response in these devices cannot be sustained indef-
initely due to the nonlinear nature of the magnetic field.
Since damping forces are small in these levitating sys-
tems, small forces are often sufficient to drive them
into the relatively uncharted nonlinear regime [19,20].
Although several studies have already explored the
nonlinear dynamics of magnetically levitating objects
[21-23], these investigations primarily focused on sys-
tems where the levitation force arises from magnet-to-
magnet interactions. In contrast, the nonlinear behav-
ior of magnet-to-diamagnet interactions, that allow sta-
ble levitation without active feedback, has received
comparatively little attention. Therefore, a good under-
standing of the nonlinear effects that govern the dynam-
ics of diamagnetically levitating resonators in the high-
amplitude regime is of importance, especially in appli-
cations like levitating mirrors, translation stages, and
rotors [8,24-27]. Moreover, this understanding can
provide a route for using nonlinear dynamics to ana-
lyze levitation force fields.

Here, we study the nonlinear dynamics of diamag-
netic graphite plates that stably levitate in a magnetic
trap formed by four permanent magnets. By measur-
ing the frequency response of the plates in vacuum
and driving their motion by base excitation, the non-
linearity of the resonant motion is determined and ana-
lyzed. By characterizing the magnetic force that main-
tains the levitation we show that the magnetic poten-
tial is the largest source of nonlinearity. By fitting the
experimental data we further highlight that the non-
linear dynamics of diamagnetically levitating objects
deviates from the common Duffing oscillator response
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and is best described by a nonlinear stiffness func-
tion of quintic order. Finally, we discuss the sources
of nonlinear damping in our measurements, and show
that even though eddy current damping remains lin-
ear, squeeze-film effect contributes significantly to the
observed dissipation. However, the model quickly devi-
ates from experiments as the amplitude of oscillations
increases, thus suggesting that the squeeze-film formu-
lation for nonlinear dynamics of levitating objects shall
be revisited.

2 Results
2.1 Experimental methods

The magnetic levitation system used in our experi-
ments consists of a pyrolytic graphite plate and four
permanent magnets, as shown in Fig. 1b. The graphite
is purchased from MTI Corporation and cut into a
10 x 10 x 0.28 mm? plate using a Optec micro laser
cutter, after which its surface is polished using a sand
paper with 5pm grains to improve the surface qual-
ity for optical measurements. The plate levitates stably
above four cubic NdFeB magnets in a checkerboard
arrangement with alternating out-of-plane magnetiza-
tion (Fig. 1b). In the minimum magnetic and gravita-
tional potential, the plate edges have a 45° angle with
the magnet edges naturally. The natural levitation gap
where the gravitational force of the plate equals the
magnetic force is Hy = 1.18 mm, as measured by a
Keyence digital microscope (VHX-6000).

To drive the levitating plate into motion, we use a
mini shaker (B&K 5810) which we attach under the
magnets as shown in Fig. 1a. To detect the motion of the
levitating plate, we then use a Polytec Laser Doppler
Vibrometer and measure the out-of-plane velocity of
the plate. The spectral response of the plate is obtained
by sweeping the excitation frequency around the plate’s
resonance using a Zurich Lock-in Amplifier. To elim-
inate effects [7] of air damping, we conduct our mea-
surements in a vacuum chamber at a pressure below
10~* mbar. Figure 1c shows the frequency response of
the levitating plate when sweeping the excitation fre-
quency downward from 20 to 14 Hz, for different driv-
ing voltages. When the driving voltage is small V,. =
0.05 V, the frequency response of the plate is linear with
a resonance frequency of f; = 16.9Hz and a qual-
ity factor Q1 = 48 obtained by fitting the measured
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Fig. 1 Measurement setup and nonlinear frequency response
of a diamagnetically levitating plate. a Schematic of the exper-
imental setup consisting of a Polytec Laser Doppler Vibrome-
ter MSA400 for velocity readout and a Bruel and Kjaer shaker
4810 for base excitation. The excitation voltage is generated by a
Zurich lock-in amplifier HF2LI that drives the levitating plate to
vibrate in the vertical direction. The vibration signal is recorded
by the MSA vibrometer and transferred to the lock-in amplifier

linear frequency responses of the levitating resonator
with a Lorenzian function. With the excitation volt-
age increasing from 0.05 to 1.8 V, the peak frequency
decreases and the displacement amplitude increases.
Since the natural levitation gap is Hy = 1.18 mm, the
plate almost touches the magnets when driving with
1.8V at the peak frequency, obtaining a displacement
amplitude close to Hy (see Fig. 1c). In the following
we keep the driving voltage on the shaker below 1.8V,
to prevent impact of the plate on the magnets. The
observed dynamics of the diamagnetic plate is clearly
nonlinear, resembling a Duffing resonator with nega-
tive nonlinear stiffness. To analyze the origin of this
nonlinear dynamics, characterization of the magnetic
forces is needed.

2.2 Nonlinear magnetic force

To analyze the nonlinear dynamic behaviour of the levi-
tating plate, we first determine the stiffness of the mag-
netic force using experimental and analytic methods.
As shown in the inset of Fig.2a, only two forces are
acting on the plate when it is levitating in static equi-
librium: the magnetic force and the gravitational force.
Since the gravitational force is independent of the lev-
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for signal analysis. b Image of a 10 x 10 x 0.28 mm?> plate lev-
itating over four 12mm cubic NdFeB magnets with alternating
magnetization, where N stands for north pole and S stands for
south pole. Included is the defined coordinate system with x as
the vertical direction. ¢ Frequency response curves of the levi-
tating plate excited by different driving voltage when backwards
sweeping the frequency from 20 to 14 Hz

itating object’s displacement, only the magnetic force
influences the plate’s stiffness.

To determine the position dependent magnetic force
experimentally, we add non-magnetic polymer blocks
with different weights on top of the graphite plate and
measure the mass my, of the plate with blocks, from
which we determine the magnetic force in static equi-
librium from F;,,, = myg. For each mass value, we
measure the levitation gap H between the plate and
magnet using a Keyence digital microscope. To correct
for non-uniformities in plate height, we measure the
levitation gap on all four corners and obtain the aver-
age gap H. The results are shown in Fig. 2a, from which
a clear reduction of the magnetic force with increas-
ing gap H is observed. We also observe that the mea-
surement errors vary for different data points, which is
caused by the manual placement of the polymer blocks.
Since we cannot easily reduce the gravitational force on
the plate below mg, where m is the mass of the graphite
plate without polymer blocks, the levitation gap can-
not be raised above Hy, the equilibrium gap for which
Fin(Hp) = mg.

To determine the full F,,(H) curves, also for H >
Hj, we perform analytic and Finite Element Method
(FEM) calculations. The magnetic force of the four
magnets on the diamagnetic plate can be analytically
calculated using:

@ Springer
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Fig. 2 Position-dependent nonlinear magnetic force on the lev- |Fin| = motg. Hp stands for the natural levitation gap of the

itating plate. a The total mass my of the levitating pyrolytic
graphite plate is varied by adding non-magnetic polymer blocks.
For each datapoint the levitation gap H between the bottom of
the plate and the top of the permanent magnets is measured using
a Keyence digital microscope, while the magnetic force is deter-
mined from the static equilibrium with the gravitational force

FB=V/M~BdV
1%

1o
3 VV(xfoeryHszrszf)dV, (1

where V is the volume of the plate, H, y, . are the com-
ponents of the magnetic field vector (x represents the
vertical direction), M is the magnetization vector and
B the magnetic flux density vector. In this analysis it is
assumed that the plate does not significantly affect the
magnetic field, since its relative magnetic permeability
is close to 1. To calculate the magnetic force acting on
the plate, we model the magnetic field of the four per-
manent magnets analytically using the charge model
[28] and numerically using COMSOL Multiphysics
(see details of modelling in Supporting Information S1
and S2). In Fig. 2a the calculated magnetic force Fy, is
plotted as a function of the levitation gap H for both
methods. It can be seen that the COMSOL simulations
correspond well with the experimental data, while a
small discrepancy is observed for the analytical model,
especially for small values of H. This discrepancy is
attributed to the fact that the edges of the cube mag-
nets are not sharp, but slightly rounded, an effect that is
included in the FEM simulation but not in the analytical
model.

@ Springer

plate without adding polymer blocks. Experimental data are com-
pared to FEM and analytical simulations. b Potential energy of
the plate as a function of its displacement x (x = Hy — H) based
on the FEM Fy, — H curve in Fig.2a. The dot-dash line shows
its center of motion (midpoint between maximum and minimum
displacement) when the plate is in free vibration

In the linear regime, the magnetic stiffness around
the equilibrium position Hy is obtained from the slope
of the graph in Fig. 2a, k = % = 0.6625N/m.
Knowing the mass of the plate m = 5.88 x 107 kg,
the resonance frequency of the vertical rigid body mode

of the plate s found 10 be fies = 7= \/5 = 16.89 Hz,
which matches closely the measured value of frs =
17.0Hz (Fig. 1c).

However, for large amplitude motion, nonlinear
terms in the magnetic force-displacement curve need
to be taken into account. We describe the motion of
the plate in terms of its displacement x = Hy — H
with respect to the equilibrium position, for the total
restoring force given by F;, = Fp, — mg. Therefore,
F;(0) = 0, indicating that the gravitational force is can-
celed out in our following modeling and will not impact
the resonator’s natural frequency and nonlinear dynam-
ics. Figure 2b shows the potential energy obtained by
f F;dx using the simulated magnetic force (red circles
in Fig. 2a). Itis observed from Fig. 2b that interestingly,
the potential well is not symmetric around the axis
x = 0, in contrast with many non-levitating mechan-
ical systems that derive their nonlinear stiffness from
nonlinear geometric effects. As a consequence, the cen-
ter of motion (middle between maximum and mini-
mum displacement) will be amplitude dependent and
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Fig. 3 a Restoring force F; = Fy, — mg of the levitating plate
as a function of its displacement x when the plate is in free
vibration. The hollow circles stand for the data obtained from
FEM simulations and the lines are fits by polynomials from linear
to quintic degree. b Frequency response curves of the plate with a
driving voltage V,c = 1.5V obtained by experiments (dots) and
nonlinear dynamic simulations based on the polynomial stiffness
functions from Fig. 3a (solid lines)

will not coincide with Hy for large amplitude motion.
For the maximal free vibration amplitude that the plate
can sustain before colliding with the magnet, it dis-
plays a large asymmetry in its maximal displacement
(zero kinetic energy) positions xpax = 1.18 mm and
Xmin = —2.5mm, as shown in Fig. 2b.

The restoring force F; of the plate as a function of
its displacement x between —3.0mm < x < 1.2mm,
as simulated by FEM, is plotted in Fig.3a. A lin-
ear fit of the data at x = 0 is shown as a black
solid line. It is interesting to note from Fig.3a that,
unlike conventional mechanical spring structures like
double-clamped beams that have symmetric force-
displacement curves for reflection around x = 0 and
other magnetic levitation systems [21,23], the force-
displacement curve of the levitating plate is asymmet-
ric. Whereas asymmetries induced by external forces

in nonlinear resonators [29,30] have recently received
interest from the community for affecting nonlinear
parameters and inducing nonlinear phenomena like
frequency combs, this asymmetry is intrinsic in the
diamagnetically levitating plates, due to the strongly
nonlinear magnetic field distributions above the per-
manent magnets in the vertical direction. As a conse-
quence of the asymmetry, the force-displacement curve
in Fig.3a shows spring-hardening when x > 0 and
spring-softening when x < 0, and this leads to an over-
all softening effect as seen in Fig. 1b, in contrast to other
magnetic levitation systems reported in [21-23].

The asymmetry also implies that the magnetic force
may not be fully described by a third order polyno-
mial with Duffing-type nonlinear stiffness. To illustrate
this, and determine the minimal degree of polynomial
needed to capture the magnetic nonlinearity, we fit the
FEM data around x = 0 with polynomials from first
to fifth degree in Fig.3a, and list the fit parameters
in Table 1. The functional form of the polynomials is
Fr = kpix + kmox? + km3x> + kmax® + km5x5. We
conclude from the fits that only the quintic, fifth degree
polynomial fits well to the FEM data and thus we will
use this function to construct the plate’s equation of
motion and analyze its nonlinear dynamics.

2.3 Dynamic modelling

After having determined the restoring force F;(x), the
equation of motion of the plate under base excitation
can be written as:

mx + cex + Fr(x —y) =0. 2)

where c. is the linear damping coefficient due to eddy
currents [7,31], and ¢, = % =13 x 107*N s/m
in this study; y = d cos(wt) is the motion of the base as
driven by the shaker. Cy = 1.58 x 1072 mm/V is the
conversion factor between the input voltage and base
motion, such that the motion amplitude is given by d =
Cvy Vac (see also S3 for more details). For the quintic
polynomial stiffness function, the nonlinear equation
of motion is:

mi + cex 4 kmi (x — ¥) + kma(x — y)?
k3 (x — ¥)° + kma(x — 2)* + kms(x — y)° = 0.
3)
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Table 1 Fit parameters of the polynomial restoring force obtained from Fig. 3a

Function km1 (N/m) kmo (N/m?) km3 (N/m?) kma (N/m*) kms (N/m®)
Linear 0.6625 - - - -

Duffing 0.3732 - -2.571 x10* - -

Cubic 0.8110 479.4 9.381 x10* - -

Quartic 0.7338 564.0 2.315 x10° 3.549 x 107 -

Quintic 0.6625 530 3.25 x10° 1.114 x108 1.474 x10'0

Next, we nondimensionalize the system using the natu-
ral levitation gap Hy and the natural period 7. In terms
of the nondimensional variables x = Hio and f =
the nondimensional equation of motion becomes:

L
T°

X420k 4+ £ — fi cos()
+o (¥ - fi COS(Qﬂ)2 + B(% — fi cos(Q1))?
+a (£ fi 005(95))4+ﬂ2(f—f1 cos(Q21))° = 0,

“)
2 3
_ kmpHp _ kmBHO _ km4H0 _
wherf a = = , B = ol = p , B =
kmSHO _ Ce _d o
km1 > é‘e = zm, f] = H and Q = e The

linear resonance frequency of a resonator depends on

its mass m and stiffness kpy1, given by wres = \/% .
In a system with only two stiffness terms kp,1 and kp;,
the frequency response curve will always bend to the
left due to the softening effect of kX2 no matter the
sign of k> [32]. In contrast, if the stiffness terms are
km1 and k3, the nonlinear behavior will depend on the
sign of kp3: k3 > Oresults in a hardening effect, while
km3 < 0 leads to a softening effect. When the stiffness
involves more terms than the three cases mentioned
above as in this study, the nonlinear behavior becomes
more complex, resulting from the combined effect of
all those terms.

Using the stiffness parameters in Table 1, we solve
equation Eq. (4) using a pseudo arc-length continua-
tion technique [33] and obtain the amplitude-frequency
curves for the 5 polynomial stiffness functions deter-
mined from Fig. 3a and plot them in Fig. 3b, comparing
it to the experimental data (Fig. 1c) for a driving voltage
Vac = 1.5V. We thus confirm that the quintic polyno-
mial stiffness function corresponds well to the experi-
mental response curve at this driving force, in contrast
to lower order polynomial stiffness terms. We note that,
even though the quartic function can capture the stiff-
ness reasonably well (see Fig. 3a), it deviates substan-
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tially from the experimental frequency response curve
at amplitude greater than 0.2 mm (see Fig. 3b).

In Figs. 4a—d the experimental data for different driv-
ing voltages are compared to simulations based on the
equation of motion (4) and the quintic polynomial non-
linear magnetic force. It is noted from Fig. 4d that
the plate motion nearly spans the full levitation gap
of Hy = 1.18mm, which demonstrates that our model
captures the motion over this range with good accu-
racy. We also observe a slight discrepancy between the
modeled and measured frequency response curves at
frequencies near the bifurcation points. One possible
reason for this is our assumption of a constant driving
force in the model, whereas the experimental driving
force is slightly frequency-dependent, as seen in Figure
S5. Fig. 4e shows the experimental frequency response
curves for all the curves shown in Fig. 1¢c which corre-
spond well to the modelled curves in Fig. 4f over a large
range of displacement. This correspondence provides
confidence that nonlinear dynamics might also prove
to be a useful tool for determining the nonlinear stiff-
ness in levitating systems where no analytical models
for the trap potential are available.

2.4 Gas-induced nonlinear damping

After characterizing the nonlinear stiffness, we next
study the nonlinearity of the damping in the levitating
plate. It is known that eddy current forces dominate
the damping mechanism in vacuum [7,31] and deter-
mine the ¢, in Eq.2. The fact that we obtained close
agreement between experiment and model in Fig. 4
while using only a single quality factor Qy, = 48, indi-
cates that the eddy current damping force is quite lin-
ear, and proportional to the plate velocity. This can also
be seen from Fig. 5a, where the normalized amplitude
of motion xpy,x/d is almost independent of the driv-
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Fig.4 Comparison between the measured and modelled nonlin-
ear frequency response of the levitating plate. a—d Experimental
and modelled frequency response curves at four different driving
voltages. The dots represent the experimental data and the lines

ing amplitude d, a signature that nonlinear terms in the
eddy current damping force are small.

Since operating in air is favorable for many types
of sensors, we next measure the levitating plate’s fre-
quency response in open air to study the influence of
air damping on nonlinear dynamics. The experimental
procedure is similar to Fig. la, except that the experi-
ments are conducted at atmospheric pressure at room
temperature without the vacuum chamber. In Fig. 5b,
we show normalized frequency response curves for
four excitation forces. In contrast to the results mea-
sured in vacuum (Fig. 5a), a clear reduction in the nor-
malized amplitude is observed when driving at higher
voltages. This reduction is a clear signature of nonlin-
ear damping, which originates from air damping [34].
Because the air gap between the levitating plate and
the magnets is relatively small (Hy = 1.189mm), it
is likely that the major source of nonlinear damping is
from the squeeze-film effect [35], that is proportional
to x/H?, and leads to the following equation of motion:

. . C .
mx + cex + & 3% + Fr(x —y) =0, ®))
| — X2y

Hy

Excitation frequency (Hz)

Excitation frequency (Hz)

represent the modelled data with stable (solid line) and unstable
(dashed) solutions. Experimental (e) and modelled (f) frequency
response curves with a wide range of driving voltages from 0.1
to 1.8V, where the color represents the vibration amplitude

where ¢;, is the nonlinear squeeze-film damping coeffi-
cient. Using Reynold’s equation, the nonlinear damp-
ing coefficient of a square plate can be written as [36]:

0.42u(L + AL)*

13 ; (6)

Cair =

where ;1 = 1.825 x 1072 kg/(ms) is the viscosity of
air under atmospheric conditions, L = 10mm is the
side length of the square plate and AL = 1.3H is the
effective elongation of the plate taking into account the
border effects.

Solving Eq. (5) using the damping coefficient in (6),
the modeled frequency response matches quite well
with the measurement when the driving force is small,
as shown in the red solid line in Fig. 5c. When the driv-
ing force is small and the plate is in linear regime, the

theoretical Q factor is Q = Cﬂ = 29.6, which
is close to the measured linear Q = 24.8. However, at
high diving forces, the modeled results using the damp-
ing coefficient in Eq. (6) deviate from the experimental
data significantly (see the dashed line in Fig. 5¢). There-

fore, to understand the variations of the squeeze-film
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Fig.5 Air-induced nonlinear damping. a Normalized frequency
response curves with different excitation voltages measured in
vacuum at a pressure below 5 x 10~*mbar where air damping
is insignificant [7,31]. b Normalized frequency response curves
with different excitation voltages measured in air. ¢ Frequency
response curves with two excitation voltages measured in air and
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damping coefficient as a function of drive amplitude,
we take the nonlinear damping coefficient ¢, as a fit
parameter (see the dash-dot line in Fig. 5c). We do the
fitting for different drive levels and obtain the fitted
nonlinear damping ¢, = 3 «/2217 as a function of exci-
tation voltage, as shown in Fig. 5d (the fitting is shown
in Fig. S7). We note from Fig. S7 that with air damp-
ing present, the dynamic range is limited to 0.57 mm.
Beyond this range, the model fails to fully capture the
frequency response curve of the resonator. We can also
see from Fig. 5d that with increasing driving force, the
normalized damping ratio increases from 0.01 to 0.03,
deviating from the theoretical value more with increas-
ing amplitude. The discrepancy is mainly due to the
fact that the squeeze model in Egs. (5) and (6) is only
valid for relatively small motion amplitudes [34], while
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the motion of our levitating resonator is at such a high
amplitude that can cover the whole air gap. Another
influencing factor is that the surface of the magnets
is not perfectly flat with trenches between the mag-
nets (see Fig. 1b), which will make a difference in the
boundary condition of the squeeze-film model. There-
fore, to capture the whole nonlinear damping of the
levitating plate in large amplitude vibrations in open
air, more sophisticated nonlinear damping models or
finite element methods shall be employed.

3 Conclusions

In conclusion, we have explored the nonlinear dynam-
ics of a milli-scale diamagnetically levitating graphite



Nonlinear dynamics of diamagnetically

plate. Using gravitational force, we characterize the
nonlinearity of the magnetic force field in which the
plate is trapped. With dynamic measurements, we
observe that the intrinsic nonlinearity of the repulsive
magnetic force in the diamagnetic levitation system
causes a spring-softening effect that leads to lower peak
frequency for increased driving, differentiating it from
other magnetic levitation systems. Due to asymmetries
in the magnetic-gravitational potential, it is found that
a quintic polynomial is needed to describe the force-
displacement function with sufficient accuracy. Thus
good agreement between experimental and simulated
nonlinear dynamic frequency response is obtained in
vacuum. Finally, we compare the normalized frequency
response of the plate in air at atmospheric conditions,
concluding that the eddy current damping is nearly lin-
ear and the squeeze film effect leads to strong non-
linear damping. This study of the nonlinear dynamics
of levitating systems provides insight into the effects
of the nonlinear stiffness of a magnetic trap and air
damping forces on the nonlinear motion of levitating
objects in the presence of base excitation. Moreover, it
demonstrates an approach for analyzing the nonlinear
dynamics of other levitating systems that will likely
become of increasing relevance considering the grow-
ing interest in the field of levitodynamics and levitated
optomechanics [1,10,37,38].
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