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Abstract

Although significant strides have been made with regards to increasing the fuel economy of commercial pas-
senger aircraft, the reduction of the environmental footprint remains of the utmost importance. The flow
development over an aero-engine spinner will affect the velocity distribution over the fan of the engine and
this affects the estimation of the losses generated in the fan and consequently the performance of the engine
itself. Several theoretical and experimental studies have been conducted over different spinner geometries.
The experimental studies have shown the existence of spiral vortices formed due to boundary layer insta-
bilities over a rotating cone under axial and non-axial inflow. To study the effects of hub-corner separation
in detail, it is first important to check the efficacy of existing commercial numerical simulation tools in the
prediction of this boundary layer transition development of flow over a rotating nose-cone.

The objective of the thesis was thus to simulate using Unsteady Reynolds Averaged Navier Stokes (URANS)
and Large Eddy Simulations (LES), the formation of the counter rotating vortices over the rotating cone. To
this end. ANSYS DesignModeler and ICEM CFD were used to generate a meshed computational domain and
ANSYS CFX was used as the solver.

With axis-symmetric cones considered as an idealised geometry for the spinner of an aircraft engine, a 15° half
angle cone with a diameter of 47 mm was chosen. The tip of this cone was blunted by a factor of 1/100th of the
cone diameter. The domain diameter was set to 10 times the diameter of the cone so as the reduce the impact
of the flow over the side walls. Two structured hexahedral meshes were generated with different refinements.

The Baseline Explicit Algebraic Reynolds Stress Model was chosen for the URANS simulation and the Wall
Adapting Local Eddy Viscosity Model for the LES run. To check if the simulations were able to capture the
vortices, the footprint left behind by them were visualised using the instantaneous wall shear values. This
was non-dimensionalised using the free stream dynamic pressure. The variable was named the wall friction
coefficient.

The magnitude of the inlet flow velocity given was 2.46 m/s. A 2° incidence is given to the flow for the non-
axial case. The effect of mesh refinement was studied for the axial case using both meshes and the finer mesh
was used for the non-axial case. The axial case was studied using both the URANS and LES runs, while the
non-axial case was studied using only the LES run.

In addition to the footprint by the vortices, the variation of local Reynolds number (defined using boundary
layer edge velocity) with local rotation ratio (defined using local radius, boundary layer edge velocity, and
rotation velocity of the cone) was also studied and compared with available experimental data. The wall
parallel velocity profiles over the length of the cone were also studied. Using the contours of the wall parallel
velocity, the momentum mixing in the boundary layer due to the vortices was visualised and compared with
the results from the experiments.

To characterise the spatial development of the spiral vortices, a critical point was defined using the wall fric-
tion coefficient. This critical point was then compared to the one obtained through the experiments. The
number of counter rotating vortices formed over the length of the cone was also checked and the trend be-
tween the simulations and experiments were compared.
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1
Introduction

Intuitively, the first thing which comes to mind upon encountering the word vortices, is something akin to
the spirals seen in "The Starry Night" (figure 1.1), a famous painting by Vincent van Gogh. Such motions are
seen across every aspect of mother nature. From the rotating motion of plasma over the surface of a star to
the water spiralling into the drain of a sink. Understanding the various traits of vortices has been a topic of
intensive study throughout history.

Figure 1.1: "Starry Night" - Vincent van Gogh1

Somewhere in between these two extremes, laboratory experiments using air (details in chapter 2) have found
the formation of vortices over rotating cones under the influence of still flows (Kobayashi et al. [1]), axial
inflows (Kobayashi et al. [2], Tambe et al. [3],Tambe et al. [4]) and non-axial inflows (Tambe et al. [5]). The
formation of these observed vortices is yet to be seen through numerical experiments and research into this
has potential industry impacts, explained in the following paragraphs.

Although significant strides have been made to increase the fuel economy in aircraft using modern technolo-
gies, the room for improvement remains large. Modern turbofan engines implement a higher bypass ratio to

1https://www.vangoghgallery.com/painting/starry-night.html

1
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reduce specific fuel consumption. The flip side is the increase in the nacelle weight and drag. If the nacelle
length is reduced to compensate, the performance of the fan is compromised due to the losses generated by
the non-axial inflow and separation at the blade hub junction [6]. To overcome such issues many aircraft
design innovations have been suggested. One such example is by the National Aeronautics and Space Admin-
istration (NASA) which would use the boundary layer formed over the fuselage of an aircraft as inflow. This
is known as a Boundary Layer Ingestion (BLI) engine. Various vehicle concepts such as STARC-ABL, D8 and
N-3X amongst others have been proposed (Hendricks [7]).

Urunga et al. [8], worked on providing a good initial sense of the advantages gained by using BLI engines for
civil aviation. Their experimental work on the D8 configuration (figure 1.2) shows promise even though the
research is in its primitive stage.

Figure 1.2: D8 Configuration2

The rotating cone referred to in the title, can be considered to be an idealised model of an aero-engines spin-
ner (Tambe et al. [5]). The boundary layer profile formed over the spinner affects the velocity distribution
over the fan and thus affects the evaluation of the losses generated.

For flow to transition from laminar to turbulent, small perturbations grow rapidly in time leading to unpre-
dictability in the flow. This behaviour is called deterministic chaos and is a trait of turbulent motion (Wester-
weel et al. [9]). For an initial analytical study of the transition process, a common method is the linear stability
analysis (theory in appendix B). Flows along curved surfaces are subjected to centrifugal forces due to changes
in direction and this displaces the particles from their equilibrium position.

Experiments in the past have been conducted over rotating cones with varied half angles, rotating speeds
and inflow conditions. These counter-rotating small wavelength perturbations have been observed in the
transition region over the rotating cones (Figure 1.3) and the above mechanism has been studied in great
detail by previous researchers. The spatial distribution of these vortices have also been studied (details in
chapter 2). Recent experiments on non-axial inflow over rotating cones have also been undertaken by Tambe
et al. [5] (detailed discussion in chapter 2). The need for numerical simulations arises due to the application
area of this research field.

To study the hub-corner separation in detail, it is important to check the capability of existing numerical
simulation techniques in the prediction of the boundary layer transition and flow development over a rotating
nose-cone.

Numerical studies also provide multiple advantages over an experimental one. The essence of numerical sim-
ulations lies in its principle. A computer code being capable of capturing complex flow phenomena makes
its use accessible remotely as well. In addition to this, studying the various effects of mother nature is also
easier. As an example, to study the different effects of laminar and turbulent flow, the user in a numerical

2https://www.nasa.gov/content/the-double-bubble-d8-0

https://www.nasa.gov/content/the-double-bubble-d8-0
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Figure 1.3: Transition process observed over cone rotating at 700 rpm and axial inflow of 2.9 m/s (Image source: [2])

simulation need only switch between the different available turbulence models and the laminar model. In
the case of experiments, studying this is tricky. CFD simulations provide the user to study different effects of
different initial and boundary conditions while keeping all other parameters constant with remarkable accu-
racy. Maintaining such consistency will require a great deal of skill from the experimentalist and even then
achieving this would be extremely difficult. Successful CFD simulations will motivate studies in this field to
move beyond academia and provide real-world applications.

1.1. Report Structure
The thesis is structured as follows. A theoretical background along with some of the early and recent work
covered in the field of flow over axis-symmetric bodies are given in chapter 2. Following the literature review,
chapter 2 also states the research question and objectives. Chapter 3 provides the reader with an introduction
into turbulence modelling and various techniques available in the numerical simulation of turbulent flows.
The methodology applied in this thesis to model the flow phenomenon over rotating cones under axial and
non-axial inflows is given in chapter 4. This chapter includes the geometry creation, meshing and model
setup. The results from the Unsteady Reynolds Averaged Navier Stokes (URANS) simulations for an axial in-
flow are presented in chapter 5. The results from the subsequent Large Eddy Simulation (LES) for the axial in-
flow is discussed in chapter 6. The final set of results from the non-axial simulations are discussed in chapter
7. Completing the report, the conclusions derived from the simulations and the suggested recommendations
by the author are provided in chapter 8.





2
Literature Review

This chapter can be broken down into two parts. This begins with a brief description of general equations
governing the flow over axis-symmetric bodies, followed by a general discussion on the instabilities involved
in such flows. The effect of an engine operating under BLI on the flow is also discussed (section 2.1).

The second part delves into the description of previous experimental, numerical and analytical work carried
out to study the flow over axis-symmetric bodies along with defining the research question for this thesis
(section 2.2 - 2.5).

2.1. Theoretical Background
2.1.1. Flow over Axis-symmetric bodies
The inflow conditions for spinners in BLI engines will be highly viscous and involve transition from laminar
to turbulent flow over the body itself. Thus, it is important to gain an understanding of how the general flow
would develop over it. The contents of this section are based on the book by Schlichting et al. [10].

A generic axis-symmetric geometry is shown in figure 2.1. As shown, the x coordinate, in this case, is the arc
length measured from the tip (stagnation point). y coordinate is therefore the wall-normal direction and z the
circumferential direction. A function rw (x)1 may be used to define the shape of the body.

Figure 2.1: Generic axis-symmetric geometry (Image source: [10])

The velocity components over this cone will likewise be, u, v and w , where, u is the velocity along the merid-
ian, v is the wall normal velocity and w is the velocity in the wall circumferential parallel direction. The
potential flow velocity above the boundary layer is considered to be U (x).

1rw (x) is the radius of an arbitrary section of the body normal to the axis

5
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Assuming that the boundary layer formed over the body is thin compared to the radius (i.e. δ<< rw ) and for
the Reynolds Number (Re) →∞ (Re =Ul/νwhere l is the radius of curvature near the stagnation point and ν
is the kinematic viscosity of the fluid) and there are no thermal effects, the boundary layer equations may be
written,

∂(rwρu)

∂x
+ ∂(rwρv)

∂y
= 0

ρ(u
∂u

∂x
+ v

∂u

∂y
) =−ρg si n(α)− d p

d x
+ ∂

∂y
(µ
∂u

∂y
)

(2.1)

Here, α represents the angle of inclination with respect to the horizontal at a certain position x. In this coor-

dinate system, α= θ+π/2. The pressure gradient ( d p
d x ) is given by :

d p

d x
=−ρeU

dU

d x
(2.2)

e indicates the outer edge of the boundary layer. For this case U (x) = ue (x).

To appreciate the salient features of equation 2.1, a comparison should be made to the plane boundary layer
equations (plane flows refer to flows in which all streamlines are in parallel planes),

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0

ρ(u
∂u

∂x
+ v

∂v

∂y
) =−ρg si n(α)− d p

d x
+ ∂

∂y
(µ
∂u

∂y
)

(2.3)

The derivation for equation 2.3 is provided in appendix A.

When equation 2.1 and 2.3 are compared, it is evident that they are very similar and indeed only the continuity
equation has changed. The introduction of the geometrical parameter (rw (x)) for the axis-symmetric body is
the only difference between those two equations. This leads to the requirement of having both the geometry
and the velocity functions to define the boundary layer equations as given in equation 2.1.

Rewriting the continuity equations of 2.1 and 2.3 in a generic form :

∂(r j
wρu)

∂x
+ ∂(r j

wρv)

∂y
= 0 (2.4)

If j = 1, equation 2.4 refers to the continuity equation from the axis-symmetric case and the plane case for
j = 0.

For a rotating body, there is an additional flow component in the azimuthal direction due to the no-slip
boundary condition. This velocity component reduces within the boundary layer in the wall-normal direc-
tion. The flow will remain axis-symmetric as depicted in figure 2.1. The effect of this additional component is
seen when re-writing equation 2.1:

∂(rwρu)

∂x
+ ∂(rwρv)

∂y
= 0

ρ(u
∂u

∂x
+ v

∂v

∂y
− w2

rw

drw

d x

w2

rw

drw

d x

w2

rw

drw

d x
) =−ρg si n(α)− ∂p

∂x
+ ∂

∂y
(µ
∂u

∂y
)

ρ(u
∂w

∂x
+ v

∂w

∂y
+ uw

rw

drw

d x
) = ∂

∂y
(µ
∂w

∂y
)

(2.5)

The bold term in equation 2.5 refers to the "coupling term" added to equation 2.1.
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2.1.2. Flow Instabilities
The previous section introduced the boundary layer equations defining the flow over axis-symmetric bodies.
It is also important to gain an insight into the types of instabilities one might encounter when dealing with
such complex flows. This section will thus give a short background into the theory of those different flow
instabilities defining this study.

Flows along curved surfaces are subjected to centrifugal forces due to the change of direction of fluid motion.
On account of these forces, a particle is displaced from its equilibrium position. Such instabilities were first
shown in 1923 by Taylor [11] between two concentric rotating cylinders and for certain cases, the flow between
these two cylinders turned unstable and formed pairs of counter-rotating vortices.

The centrifugal effects are broadly categorised as :

• Wall curvature induced changes in the turbulent flow structures

• Longitudinal vortices formed (secondary flow)

• Secondary flows generated affecting the turbulent flow structures

The note begins with the Görtler instabilities, i.e. the longitudinal secondary flow.

Görtler Instability
Görtler [12] first showed these types of instabilities which would occur in the boundary layer over curved walls.
Such instabilities were shown to occur when the Görtler number, defined as,

G = U∞δr

ν
(
δr

Rg
)1/2 (2.6)

was greater than a critical value. δr is the boundary layer thickness, U∞ is the free stream velocity, Rg
2 is the

radius of curvature of the wall and ν is the kinematic viscosity.

Görtler instabilities are phenomena induced by geometry and thus depend on the complete flow rather than
just the geometry of the body. The study of these instabilities remains an active area. Floryan [14] gives an
excellent review of the work carried out up to 1991, on this subject.

Streamline Curvature Effects
Turbulent flows are highly affected by the curvature in the geometry and any rotational effects for rotating
bodies. This extra rate of strain has a greater impact than any other extra terms appearing in the equations of
motion. In a comprehensive review of the work carried out on longitudinal curvature effects, Patel et al. [15]
mention that experiments have shown there to be a direct impact of curvature on the Reynolds stresses.

The focus here is however on transverse curvatures. These are basically wall curvatures in planes perpendic-
ular to the direction of oncoming flow. With a boundary layer not subjected to pressure gradient in the axial
direction, the transverse curvature effects remain isolated.

An excellent review on this was done by Piquet and Patel [16] in 1999. Their review revolved around experi-
ments conducted on axial flows over a cylinder. The review concluded that the effect of curvature is minimal
when the Reynolds number is large and the boundary layer formed over the cylinder is thin. However, at
smaller Reynolds number and thicker boundary layer, the effects of transverse curvature are present across
the entire boundary layer along with the relaminarisation of the flow.

Figure 2.3 represents the longitudinal vorticity contours obtained from a Direct Numerical Simulation (DNS).
Large scale structures are seen wrapped around the body. One other fundamental case which comes up in
such studies, is the presence of large boundary layers under high Reynolds number condition, Piquet et al.
[16] mentions that there has been little study in that area and recommends Large Eddy Simulations (LES) to
gain further knowledge of the interaction between the smaller wall-bounded eddies with the larger eddies
seen in figure 2.3.

2Here the subscript g is used to prevent confusion with Karp et al [13] having used R without the subscript
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Figure 2.2: Disturbances in the boundary layer of flow over curved surfaces (Image source: [14])

2.1.3. Secondary Flow Structures
The presence of three dimensions significantly affects the flow structures and simple extrapolation of 2D the-
ory does not depict accurately the three dimensional turbulent structures formed.

Consider a cartesian coordinate system, with x in the streamwise direction, y being normal to the wall and z
being in the spanwise direction. Vorticity may be generated via different mechanisms (Bradshaw [17]) :

• Quasi inviscid deflection of existing mean vorticity

• Reynolds stresses generating stress induced vorticity

Cross flows (axial vorticity in the gradient of spanwise velocity normal to the wall) and streamwise vorticity
can be generated by either mechanisms. Presence of significant effects of Reynolds stresses when identifiable
vortices are formed. Bradshaw [17] in 1987 reviewed these turbulent flows having mean streamwise vorticities
and concluded that numerical simulations of eddy motions may provide the detailed pressure fluctuation
statistics and reproduce these complex flow phenomena.

Chang and Tavoularis [18] worked on Unsteady Reynolds Average Navier Stokes (URANS) simulations of an
axial flow over a cylinder inside a rectangular domain. Figure 2.4 depicts the resolved velocity fields (which
are strongly time dependant) using Q criterion (section 2.4.3) showing the quasi periodic vortical coherent
structures on either side of the rod.

2.1.4. Effect of Boundary Layer Ingestion
The primary application area of this research work is for its use in Boundary Layer Ingestion. It is thus impor-
tant to discuss the effect of an engine operating under this concept, on the flow upstream of the spinner and
fan.

A boundary layer ingestion engine, as the name suggests, operates using the boundary layer as its inflow. This
is different from conventional engines which are placed away from the fuselage and work only with clean air
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Figure 2.3: Normalised streamwise vorticity fluctuations (negative vorticity represented using bold) [16]

Figure 2.4: Coherent vortex structures over a rod (Image source: [18])

inflow. The boundary layer over a fuselage is an energetic and viscous zone and this detail affects the flow
development.

The flow upstream would result in a non-axial flow over the spinner. This process is explained in the following
way. Consider figure 2.5a, the shaded region represents the small distorted boundary layer zone as inflow
through the inlet of the engine. The rest of the region can be represented as being non-distorted.

Under the influence of clean flow, the stagnation point over the spinner would have been at the centre. Due to
the presence of distortion, this would change. The reason for this is that the clean part of the flow (nonshaded
region) would have a higher static pressure compared to the distorted section. Thus, this induces some of
the clean flow to migrate towards the distorted section (Fidalgo et al. [19]). Figure 2.5b illustrates this using
streamlines. It is easier to model flow with non-axial inflow than imposing a distorted section and thus this
study will hope to serve as a starting point for future numerical studies on non-axial flows over rotating axis-
symmetric bodies.

2.2. Early Studies
Kohama and Kobayashi worked on the formation of spiral vortices over rotating disks [20]. Their work fo-
cused on both theoretical and experimental studies. Experiments on rotating disks involved still fluids and for
the theoretical approach, they included the effects of Coriolis force and streamline curvature into the linear
stability analysis (a description of the general method involved in linear stability analysis is given as part of
appendix B) to obtain the critical Reynolds number at the onset of instabilities. For their analytical study, the
Reynolds number was defined as:
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(a) Front view of domain
with shaded region repre-
senting distorted section

(b) Side view with streamlines showing non-axial flow over spinner

Figure 2.5: Illustration of generic upstream section for an engine operating under Boundary Layer Ingestion

Re = r0ωδ
∗

ν
(2.7)

Here, δ∗ is the displacement thickness of the laminar boundary layer based on the circumferential boundary
layer. They evaluated this to be:

δ∗ = 1.271

√
ν

ω
(2.8)

ω is the rotational velocity of the plate, ν is the kinematic viscosity and r0 is the distance from the origin to a
new proposed orthogonal coordinate system. The origin (O’) of this is fixed relative to the rotating plate with
x’ and y’ set along with a pair of logarithmic spirals. This coordinate system is shown in figure 2.6.

Figure 2.6: Coordinate system used in the analytical study of rotating disk by Kobayashi et al. (Image source: [20])

To validate the findings, a hot wire probe was used as the experimental tool. Kobayashi et al. [20] also studied
the effects of variation of the rotation rate (disk rotation speed was varied constantly up to 1880 RPM). An
example of the flow over such a geometry visualised in their experiments is shown in figure 2.7. The spiral
vortices are observed to be in the transition regime.

For the experiments by Kobayashi et al. [20], flow patterns were observed using radially applied TiCl4 applied
over black painted rotating disk. The motion of white gas would would then be used to visualise the flow. The
Reynolds number from the experiments, Re1 was defined as Re1 = r 2ω/ν and thus, Re =p

1.616Re1.

The findings from the experiments conducted by Kobayashi et al. [20] can be listed below:

• Critical Reynolds Number (Re1,i ) was around 8.8×104 and the transition Reynolds number (Re1,t ) was
3.2×105

• Average of 31 to 32 spiral vortices developed over the disk and increased radially
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• The critical Reynolds number obtained using the theoretical approach was 6.8×104

Vortex branching was given as the cause for this increase in the number of vortices. The reason behind the
approximately 22 % difference between the theoretical and experimental value was not given, but may be
attributed to the shortcomings of the linear stability theory. The authors (Kobayashi et al. [20]), however,
mention that this difference is 15 % lower than the difference in previous studies.

Figure 2.7: Flow over a disk rotating at 1800 RPM (Image source: [20])

Kohama [21] conducted experiments to study the transition process involved in the above research. The main
conclusions he drew from his study are listed below:

• Co-rotating spiral vortices with respect to its neighbours

• Structure similar to ones observed on a rotating sphere (Kohama and Kobayashi [22] worked on rotating
spheres)

Kohama [21] showed the cross-sectional image of the vortices in the transition region, for a lower angular
velocity of the disk (figure 2.8).

Figure 2.8: Cross section of spiral vortices for disk rotating at 1200 rpm (Image source: [21])

The above study is a special case for flow over conical geometries (cones with half angle 90°). Some early the-
oretical work on rotating cones was carried out by Kobayashi [23]. Linear stability theory was used to develop
the perturbation equations for an incompressible boundary layer over a cone under axial inflow rotating at a
constant velocity. The small perturbations were assumed to be spiral vortices. The coordinate system used
for this study is shown in figure 2.9. A curvilinear coordinate system (x’, y’ and z’) was used, where x’ is aligned
in the direction of propagation of the spiral vortices and y’ aligned along the axis of the vortices, making them
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orthogonal to each other (a similar coordinate system will be found later in many studies). A local rotational
speed ratio (S) was defined as,

S = R0ω

Ue
(2.9)

where, R0 is the radius at the origin o’ ,ω is the rotational velocity of the cone and Ue is the meridional velocity
at the outer edge of the boundary layer over the cone. This was seen to have an important influence on the
instabilities.

Conclusions drawn from the study by Kobayashi [23] were :

• Perturbation equations developed include velocity components in both x’ and y’ directions for the ro-
tating case as compared to the Orr-Sommerfeld equations governing the non-rotating cone‘

• The critical and transition Reynolds number obtained for a test case (total cone angle: 30° and S = 3)
were consistent with experiments

Figure 2.9: Geometry used for the theoretical work carried out by Kobayashi (Image source: [23])

Experimental work were carried out on a conical geometry by Kobayashi and Izumi in 1983 [1] under con-
ditions of still flow. The critical and transitional positions (x̃c

3, x̃t
4) were measured and based on that the

critical and transitional Reynolds numbers were calculated. Defined in their research as, Rex,c =ωx̃c
2sin2θ/ν

and Rex,t = ωx̃t
2sin2θ/ν. A parametric study of the cone angle was undertaken (varied from total included

angle of 30° to 150°). They concluded the following :

• Counter rotating pair of spiral vortices for cones of half angle 15° whereas co-rotating vortices observed
for rotating disks

• The critical and transitional Reynolds number increases with the increase in the cone angle

• The average number of spiral vortices increases from 22 - 23 for a cone with half angle of 45° to one with
90° (case of rotating disk) as shown in figure 2.10

.
Kobayashi and Izumi [1] found the spiral vortices change constantly with increasing half angle of the cone. The
reason for this change was not given. They also conducted a theoretical analysis (using linear stability theory)
and found differences in the critical and transitional Reynolds number with those found in experiments. The
difference was chalked down to complicated flow disturbances not accounted for in the former.

3Critical position for the experiments by Kobayashi et al. [1] was the point where periodical signals from the hot-wire probe were detected
at a certain frequency in a frequency spectrum

4Transitional position for the experiments by Kobayashi et al. [1] was the point where velocity fluctuations gave a frequency spectrum for
the turbulent boundary layer
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Figure 2.10: Variation of number of spiral vortices (n) against half angle of cone (θ) (Image source: [1])

Figure 2.11 shows the flow pattern developed over one such cone (half angle 15° rotating at 3500 RPM). Figure
2.11a shows the general flow pattern developed over the cone and figure 2.11b shows the cross sectional view
of the spiral vortices developed over the same cone.

(a) General flow pattern (b) Cross sectional view of the vortices

Figure 2.11: Flow pattern and vortices over a 15° half angle cone rotating at 3500 RPM in still fluid (Source of images: [1])

Kobayashi et al. [2] continued the experimental work on flow over conical bodies to study the transition lami-
nar to turbulent transition regime. This work made an increment on the previous work by Kobayashi et al. [1]
having included an external axial flow in the setup.

The experiments by Kobayashi et al. [2] involved a 15° half angle rotating cone with the study using the co-
ordinate system defined in figure 2.11b. Similar to previous studies, the theoretical approach involved linear
stability analysis and the small scale disturbances were assumed to be spiral vortices. The turbulence intensity

(I =
√

ū′2/U∞), u′ is the longitudinal velocity perturbations and U∞ is the free stream velocity) in the inflow
varied from 0.05 % to 0.15 % for U∞ from 1 m/s to 14 m/s.

The experiments by Kobayashi et al. [2] visualised the flow (figure 2.12a) using TiCl4 spread over the surface of
a black painted cone. The spiral vortices are observed in the transition region. The experiments also showed
that increasing the rotational speed of the cone, shifts the transition region closer to the tip. A cross section of
the spiral vortices for the same rotation rate and inlet flow is shown in figure 2.12b.

The study concluded the following :

• The theoretical work showed the importance of the rotation ratio, S (defined earlier in equation 2.9) on
the critical Reynolds number

• The critical and transitional Reynolds number decrease with increasing S (figure 2.13)

• Their theoretical approach under-predicted the Reynolds number values
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(a) General flow pattern [2] (b) Cross sectional view of the vortices [2]

Figure 2.12: Flow pattern and vortices over a 15° half angle cone rotating at 670 RPM and an inflow velocity of 1.7 m/s
(Source of images: [2])

• The number of spiral vortices (n) reduce with increasing S (figure 2.14)

Figure 2.13: Variation of Reynolds number (both critical, Rex,c and transitional, Rex,t ) with rotation ratio (S) (Image
source: [2])

Kobayashi et al. [2] showed that at higher rotation ratios, the major instability factor is the centrifugal instabil-
ities (Taylor instability is an example). This was concluded by examining figure 2.13 and the known fact that
theoretical predictions of critical Reynolds number tend to agree with those with experiments for the centrifu-
gal instabilities. Figure 2.13 shows that the difference between the theoretical and experimental prediction of
the Reynolds number decrease with increasing S.

Kohama, Y. [24] experimentally studied the behaviour of these vortices observed in the above mentioned work.
Another 15° half angle cone was taken and rotated under an axial inflow. The coordinate system employed in
this case is once again similar to the one shown in figure 2.9. This work aimed to study the transition process
and the development of the observed vortices during this process. These vortices were observed in a time
dependant series of frames to aid the visualisation of the growth and breakdown process.

This transition process studied by Kohama [24] can be summarised in the following phases :

• Curling Period: Steep velocity profiles observed in the laminar boundary layer wherein these spiral vor-
tices grow under centrifugal forces of certain frequency



2.2. Early Studies 15

Figure 2.14: Variation of number of spiral vortices (n) with rotation ratio (S) (Image source: [2])

• Prominence Period: Rapid growth in all three directions. Average growth rate (wrt the mean veloc-
ity field) of 6 %, 1.4 % and 14 % in the z, y and x direction respectively. It was suspected that the vor-
tices affect the mean velocity profiles forming Tollmien-Schlichting type instabilities. These vortices are
strongly decelerated in the curling period and the head portion of the vortex is stretched in the down-
stream direction

• Decay Period: The vortices are torn off and the boundary layer completes its transition to a turbulent
one

Figure 2.15 shows a series of photographs taken by Kohama [24] and illustrates in wonderful detail the process
described above.

Kohama [24] also concluded that the boundary layer turns unstable due to the following actions of the vortices
in addition to the mixing of fluids due to the inflow of flow from outside the boundary layer :

• Curling motion of the vortices accelerating the mixing of fluids with different velocities in a narrow
space

• Rapid growth in the z direction during the second phase promoting mixing of high and low velocity
fluids in the shear layer

• Horse-shoe type vortices towards the end of the second phase extending the mixing region in the z
direction

Kobayashi et al. [25] further worked (experimentally) on these rotating cones under axial inflow with a para-
metric study of the cone angles and free stream turbulence intensity. They conducted experiments on three
different cones with total included angles of 15°, 30° and 60°. The meridian length of these cones were 172.7 mm
(for the 30° total angle) and 200 mm (for the other two). The default turbulence intensity (defined previously)
in the test section was 0.04 %.

The main take-aways from the experiments by Kobayashi et al. [25] :

• The turbulence intensity did not have any impact on the transition Reynolds number. The critical
Reynolds number, on the other hand, was highly sensitive to it and decreased with an increase in the
intensity. They found that this sensitivity only increased with an increasing cone angle

• They also found that the number of spiral vortices only increased with increasing cone angle (figure
2.16) and the trend of decreasing number of these spiral vortices with increasing rotation ratio for rotat-
ing cones as found in earlier studies continued

A thorough review of such experimental work on different rotating bodies of revolution was done by Wimmer,
M. [26] in 1988. This is an extensive review on the various experiments carried out on spheres, cones, disks
and cylinders till then. The review includes studies of the initialisation and development of different types of
instabilities (depending on the geometry) and is an excellent starting point for researchers wanting to gather
an initial understanding of different flow features over different geometries and the experimental techniques
used to visualise them.
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William S. Saric and Helen L. Reed [27] reviewed some of the work done on trying to understand the origins
of turbulent flow and transition over geometries such as swept wings, rotating disks, rotating cones and ellip-
soids. Saric [28] also studied the disturbances induced by wall curvatures and specifically the Görtler vortices.

Kobayashi [29] reviewed the work done on flow transition from laminar to turbulent over various axis-symmetric
bodies.

With all the studies noted above revolving around theoretical and experimental work, a related numerical
study carried out in the later years of the 20th century was carried out by Degani and Schiff [30].

Degani and Schiff [30] showed the steady asymmetric vortex patterns on slender bodies of revolution. This
study motivated by the yaw effects induced on slender bodies maneuvering at large angles of attack (under
subsonic flow conditions), led the researchers to use two ogive configurations as shown in figure 2.17

A circumferential numerical grid was used for the simulation which would cover the entire geometry (shown
in figure 2.18).

One of the most important factors in numerical modelling are the boundary and initial conditions imposed.
To this, Degani and Schiff [30] used a no slip adiabatic wall on the surface of the cone and an undisturbed
free stream inflow. Periodic boundary conditions were imposed at the circumferential edges of the mesh. The
downstream boundary condition used zero axial gradient extrapolation and even though it is not valid for
subsonic flow, as the wake generated behind the geometry will have a significant effect on the outlet, this was
minimised by placing the outlet far downstream.

The free-stream conditions were allowed to be the initial flow field or a previous solution was used as the initial
conditions and the solution was made to progress from that point. A constant global timestep was used. To
break the symmetry of the flow, two weak jets, perpendicular to the plane of the angle of attack was imposed
on the surface.

The results by Degani and Schiff [30] can be summarised in the following points:

• The computation study did not show the presence of asymmetry in the absence of symmetry breaking
perturbations (helicity contours for one such case is shown in figure 2.19) unlike those in the experi-
ments with which they compared their results

• To induce asymmetry in their computations, they introduced a jet with fixed strength of 0.1 % of the
total normal force downstream (x/D ≈ 1.2). Small asymmetry was observed (figure 2.20)

• They conducted an interesting numerical experiment in the above case. At a certain point of time during
the simulation, they first switched off the jet (which generated the perturbations) and their solution
regained symmetric flow conditions and in the other numerical experiment, they halved the jet strength
at the same point of time and the solution reached a smaller point of asymmetry

• A perturbation upstream resulted in highly asymmetric flow over the ogive (figure 2.21)

They thus concluded that the degree of asymmetry was dependant on the point of application of the perturba-
tions and the strength of the jets inducing these perturbations. They were successful in showing the existence
of asymmetry in the flow forced due to spatially and temporally fixed disturbances.

Large Eddy simulation (LES) of the laminar-turbulent breakdown in a boundary layer flow over a cylinder was
simulated by El-hady and Zang [31] in 1995. The flow considered was supersonic and validated using Direct
Numerical Simulation (DNS) data.

Details to some extent on turbulence modelling using DNS, LES and Reynolds Averaged Navier Stokes (RANS)
will be provided in chapter 3.

El-Hady and Zang [31] developed an LES model for such compressible flows and evaluated the model coef-
ficients using the dynamic eddy viscosity subgrid-scale (SGS) models developed by Germano et al. [32] and
Moin et al. [33].

The model developed was able to dynamically change the behaviour of the coefficients based on require-
ments, adjusting near the wall and capturing the asymptotic behaviour. To agree with DNS results, they used
a trial and error approach to select the energy transfer rate from the larger to smaller scales. They were also
successful in capturing the flow field over the transition regime using one-sixth of the grid resolution required
in DNS. Figure 2.22 shows the predictions of the flow structure using spanwise vorticity.
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2.3. Recent Studies
The previous section delved into the primary work done in this research field in the mid-late 20th century.
This section gives a small review on some of the work carried out in this field in this century.

Garrett and Peake [34] studied the presence of absolute instabilities (instabilities which amplify locally) in the
boundary layer over the outer surface of rotating cones under both still flow and axial flow conditions for a
wide range of cone angles. The analysis also included viscosity and streamline curvature effects and within
limitations of linear stability theory.

Their analysis revealed the following :

• Irrespective of still or non-zero axial inflow, the boundary layer is locally absolutely unstable over the
entire range of cone angles

• Presence of axial inflow stabilises these absolute instabilities by delaying the onset of these instabilities
to larger Reynolds numbers

On a more recent note (2019-2020), Tambe et al. [4], [3], [5] studied the formation of these boundary layer
instabilities over a rotating cone and an ellipsoid under both axial and non-axial inflow.

A cone of half angle 15° and with a diameter of 47 mm was chosen. They conducted the experiments in the
low speed W-Tunnel at the Aerospace faculty of TU Delft. The cone was rotated at 5000 RPM and a parametric
study with different inflow velocities were conducted. Using an infrared camera, surface temperatures were
measured. 2000 images were obtained at a rate of 200 Hz. This IRT setup (schematic shown in figure 2.23) was
verified using a time resolved Particle Image Velocimetry (PIV) setup.

The coordinate system (figure 2.9) and variables used to characterise the flow parameters were similar to the
ones defined in the theoretical and experimental studies by Kohama and Kobayashi (section 2.2). The local
Reynolds number (Rel) used in the experiment was:

Rel =
l Ue

ν
(2.10)

Here, Ue is the edge velocity of the boundary layer, given by Garrett and Peake [34] as Ue = C xm . The value
of C and m were established experimentally by them to be, 1.84U∞ and m as 0.23 [3] respectively. l is the
location of the point along the meridian.

Their study involved ReD (diameter based Reynolds number, ReD =U∞D/ν) ranging from 7.4×103 to 2×104

and Sb (diameter based rotation ratio, Sb = rω/U∞) varying from 0 to 5. The cone and ellipse are rotated at
5000 RPM.

With their results on the slender cone in line with the experimental and theoretical work carried out in the past
(with respect to the axial inflow), they extended the range from previous research by introducing non-axial in-
flow over the rotating cones (detailed flow physics study done by Tambe et al. [5]). The motivation behind this
particular study can go back to the description of flow development inside a boundary layer engine upstream
of the fan (chapter 2 section 2.1.4). For the non-axial inflow, the authors explained the spatial delay in the
formation of the coherent structures by taking into account the asymmetric distribution of the local Reynolds
number and local rotation ratio. The growth of vortices has already been established, in the earlier sections,
to be directly influenced by those two factors. Even though the boundary layer remains unstable at lower ro-
tation ratios, the asymmetry makes sure that they do not form coherent structures until downstream over the
cone where the influence of S on the instability characteristics such as the azimuthal number of vortices is
significantly lower. The following summarises the work doe by Tambe et al. [3] and [5].

• For the axial inflow case, the vortices appeared to undergo amplification through vortex pairing

• Asymmetry of non-axial inflow appeared to suppress the initial growth of the spiral vortices and were
detected at higher local rotation ratios and local Reynolds numbers

• The local Reynolds number varied azimuthally for the non-axial case and thus different stability char-
acteristics along the circumference caused the wavelengths and angles of most amplified perturbations
to vary along the circumference
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• At higher rotation ratios the local flow parameters do not affect the stability characteristics to a large
extent and thus the spiral vortices were found to grow under non-axial flow conditions

The experiments conducted by Tambe et al. [5], visualised the footprints of these vortices using Infrared
Thermography. Instantaneous snapshots of the axial and non-axial inflow cases are shown in figures 2.24
and 2.25.

To visualise individual vortices, a wall normal velocity fluctuation contour was plotted by Tambe et al. [5] for
both axial and non-axial inflow with a 4° incidence angle (including the windward and leeward sides). Figures
2.26 and 2.27 shows these contours. These fluctuations are obtained by subtracting the mean flow velocity
from the instantaneous velocity.

In the experiments by Tambe et al. [5], streamwise transient mean velocity contours were plotted to visualise
the physical phenomena near the wall. They observed that with the amplification of the spiral vortices high
momentum fluid in the outer regions of the boundary layer are transported towards the wall leading to a
higher streamwise momentum near the wall.

Their study on the rotating ellipsoids showed similar results to the above mentioned case, but with pressure
gradient playing a greater role in such a geometry, Tambe et al. [4] advice the necessity for further work.

Michael Karp and M.J. Phillip Hack [13] in 2018, worked on the transition process of inviscid flows over convex
surfaces using DNS. Secondary instabilities and transient growth over convex surfaces was investigated.

Figure 2.28 shows the geometry used in their study. As part of their mathematical formulation, Karp and Hack
[13] used the non-dimensional curvature parameter, Görtler Parameter (G̃ö)

G̃ö = U∞δ
ν

√
δ

R
(2.11)

δ represents the boundary layer thickness, ν is the kinematic viscosity and R is the radius of the convex surface.
Equation 2.11 was re-written in non-dimensional form, using the well used, Reynolds Number and nor-
malised curvature (κc = δ/R) 5:

G̃ö = Re
p
κc (2.12)

They used Local stability analysis to study transient growth. Feeding DNS the optimal solution as inflow con-
ditions, they were able to study the non-linear and non-parallel effects.

Figure 2.29 shows the DNS results over the convex surface.

The following summarises the observations by Karp et al. [13]:

• Compared to flat plates, the stability analysis used showed negligible impact of curvature on secondary
instabilities

• The secondary instabilities alone do not ensure transition to turbulence and highly energetic or long
streaks are needed for the process to be completed. Thus, convex surfaces may be used to delay the
transition process

As mentioned in chapter 1, the primary motivation area for the work conducted in this master thesis was the
application area, namely, spinners used in engines operating under the concept of BLI. When it comes to this
field, there has been very few work, and any numerical research conducted has focused on the efficiency of
the fan blades. Lei et al. [6] worked on the development of a criterion for hub corner stall on axial compressors
in 2008. The criterion they developed was a function of the following parameters :

1. Mach Number

2. Reynolds Number

3. Aspect Ratio

5The subscript, c is used in this text for this parameter to separate it from the turbulence kinetic energy variable used later. This was not
in the original definition by the authors Karp and Hack [13]
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4. Ratio of incoming boundary layer thickness and chord length

5. Solidity

6. Flow inlet and exit angles

7. Blade stagger angle

8. Blade camber angle

9. Skewness of flow with respect to end wall boundary layer

A diffusion parameter was defined to show the flow diffusion limit associated with stall and is a factor of points
5 to 9 above. Figure 2.30 shows how the stall criterion varies with the diffusion parameter.

The plot shows the effects of aspect ratio, Reynolds number and boundary layer thickness. Corner stall was
observed for diffusion parameter above 0.4 (critical diffusion parameter) and a higher value represents flow
reversal on both the end wall and suction side. An interesting observation in this plot is the region of overlap
near the critical value of the diffusion parameter. A higher or lower value of the stall indicator may be obtained
for different combinations of blade passage geometry and flow conditions. The authors mention that the
reasons for this were yet to be solved.

For further details, the interested reader is directed to the works by Hah et al. [35] for the effects of inlet
distortion in a transonic compressor rotor. The works by Chen et al. [36] for the fan interaction with flow
in a specific design of a Boundary Layer Ingestion engine. Fidalgo et al. [19] also worked on fan distortion
interaction for the NASA Rotor 67 Transonic stage and Hall et al. [37] worked on an analysis of fan stage
conceptual design attributes for BLI.

2.4. Vortex Visualisation
Intuitively a vortex can be considered to be the rotating motion of a collection of particles around a central
point [38]. This definition being vague, methods were needed to be developed for visualising these motions
of fluid. There exist many different definitions of a vortex used to identify them in any numerical simulation
and there remains no consensus on any one particular method. The choice depends on the particular case.
This being said, a short note on the various existing methods will be explored in this section.

Before moving onto the methods, a couple of definitions is important at this point :

• Vortex Core: For inviscid flows, the centre of a fluid body about which it is rotating

• Vortex Core Line: The locus of the vortex core as it moves through a velocity field

2.4.1. Mathematics
Most of the techniques implement an eigen analysis on the velocity gradient tensor [39]. The velocity gradient
tensor can be written as,

D =∇U =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂y

 (2.13)

This can be decomposed into its symmetric and anti-symmetric parts,

Si j = 1

2
(
∂ui

∂x j
+ ∂u j

∂xi
)

Ωi j = 1

2
(
∂ui

∂x j
− ∂u j

∂xi
)

(2.14)

Here Si j is the symmetric part of the tensor and Ωi j is the anti-symmetric part. They are called, the rate of
shear strain tensor and vorticity tensor respectively.

The characteristic equation for the velocity gradient (equation (2.13)) is :
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λ3 +Pλ2 +Qλ+R = 0 (2.15)

Here, λ are the eigenvalues and the coefficients are :

• P =−tr(D); Note : "tr" represents the trace of the matrix

• Q = 1
2 (tr(D)2 − tr(D2)) = 1

2 ((||Ω||)2 − (||S||)2)

• NOTE : ||Ω|| = tr (ΩΩt )1/2 ; "t" representing the transpose of the matrix

2.4.2. λ2 Criterion
Jinhee Jeong and Fazle Hussain [40] introduced this criterion for visualising vortices. Their study identified
vortex cores and defined the following requirements for the existence of a vortex core:

• Presence of net circulation around the core (non zero vorticity)

• Vortex should be Galilean invariant (Galilean invariant quantities are independent of observers position
and velocity)

Intuitively, the pressure at the vortex core should be a point of minima, but there exist exceptions to this
condition,

• Unsteady straining in regions without vortices causing pressure minima

• Presence of high pressure regions in the vortex core due to viscous effects

The authors suggested taking the gradient of the Navier-Stokes equations,

ai , j =− 1

ρ
p,i j +νui , j kk (2.16)

Here, ai , j represents the acceleration gradient and p,i j represents the Hessian of pressure and is symmetric.
ai , j is decomposed as follows :

ai , j = [
DSi , j

Dt
+Ωi kΩkl +Si k Sk j ]+ [

DΩi , j

Dt
+Ωi k Sk j +Si kΩk j ] (2.17)

The term within the first "[]" represent the symmetric part and the second one, anti-symmetric.

The anti-symmetric part of equation (2.16) is the vorticity transport equation and the symmetric part can now
be written as :

DSi j

Dt
−νSi j ,kk +Ωi kΩk j +Si k Sk j =− 1

ρ
p,i j (2.18)

The first term above is the unsteady irrotational straining and the viscous effects are represented by the second
term, hence for the previously mentioned reasons, they will be ignored and thus only the term S2+Ω2 is taken.

For a local pressure minima to be present, two positive eigenvalues of the tensor p,i j are needed. The authors
define a vortex core as, "a connected region with two negative eigenvalues" of S2 +Ω2. This being symmetric,
provides 3 eigenvalues, which can be ordered such that, λ1 ≥ λ2 ≥ λ3. Which, according to the definition,
results in the requirement that λ2 < 0 within the core (hence the name).

Jiang et al. [41] worked on an extensive review of the various types of vortex identification methods available
and according to them, this method is not always suitable when distinguishing multiple vortices.

2.4.3. Q Criterion
Hunt, Moin and Wray [42] defined an eddy as a region having a second positive invariant (Q). For Q > 0,
the vorticity tensor exceeds the rate of strain tensor. To this, another condition set by the authors was the
requirement of pressure within the vortex core exceeds the ambient pressure.

Jeong et al. [40] had compared their definition for λ2 with other methods and mentioned that the Q criterion
is insufficient if non-uniform strain fields cause the vortex to expand locally but show better representation
when stretching and compression is significant.
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2.4.4.∆ Criterion
This is a Galilean Invariant criterion introduced by Dallmann et al. [43]. They defined vortices as flow fields
whose eigenvalues have complex conjugate pairs. Additionally, the streamlines should either be spiralling or
closed in a local reference frame. Mathematically, this can be represented as,

∆= (
Q

3
)3 + (

R

2
)2 > 0 (2.19)

For an incompressible flow P = 0 (defined in section 2.4.1) and critical point theory 6 is used to visualise the
points obtained through equation (2.19).

2.4.5. Swirling Strength Criterion
This method uses the imaginary part of the complex eigen values of the velocity gradient tensor to visualise the
vortices. The idea is to decompose the velocity gradient tensor into the imaginary and complex eigenvalues
and eigenvectors [44]. Mathematically,

∇u = [di , j ] = [
ν̄r ¯νcr ν̄ci

]λr 0 0
0 λcr λci

0 −λci λcr

[
ν̄r ¯νcr ν̄ci

]T
(2.20)

This represents the real part of the eigenvector (ν̄r ) and λr is the corresponding real eigenvalue. The complex
conjugate pair of eigenvalue is, λcr ± iλci and the corresponding eigenvector pair, ¯νcr ± ν̄ci . The streamlines
are expressed in a three dimensional coordinate system using the three eigenvectors and thus the flow can
be visualised as either stretched or compressed on the real plane and swirling in the complex plane. The
eigenvalue (λci > 0) will represent the strength of this swirling motion. This threshold is not well defined and
needs to be set based on user preference.

2.4.6. Helicity
Introduced by Levy et al. [45], works on normalised helicity to extract vortex core lines. this quantity, Hn is
defined everywhere, except at critical points,

Hn = v̄ · ω̄
|v̄ ||ω̄| (2.21)

Thus, Hn is basically the cosine of the angle between the velocity and vorticity vector. The sign of this will
indicate the direction of the swirl. The extracted core line, however, might not always correspond to an actual
vortex core line.

2.4.7. Swirl Parameter Method
Introduced by Berdahl et al. [46] in 1993. This swirl parameter is defined as,

τs = τconvec

τorbit
(2.22)

Here, τconvec is defined as the time taken for the fluid particle to convect through a region of complex eigen-
values and τorbit represents the time taken by the particle to make one revolution. Mathematically,

τconvec = 2π

|Im(λc )| (2.23)

τorbit =
L

Vconvec
(2.24)

|Im(λc )| is the imaginary part of the complex conjugate pair of the eigenvalues. L is the characteristic length
associated with the corresponding eigenvalues and Vconvec is the convective velocity in the direction of L.
Vconvec is calculated by projecting the velocity vector onto the planar normal to the vorticity or the real eigen-
vector. Mathematically,

Vconvec = v̄ − (v̄ · n̄)n̄ (2.25)

6Critical points are points in a function f(c) such that f’(c) = 0 or is undefined
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Observing the definitions of τs (equation (2.22)), τconvec (equation (2.23)) and τorbit (equation (2.24)), if τs → 0,
the fluid is convecting too fast to be captured by the vortex. Thus, non-zero τs , indicates presence of vortices.
Colormaps or isosurfaces are used to visualise them, using arbitrary (based on user requirements) thresholds.

2.4.8. Eigenvector Method
The eigenvalues and eigenvectors are evaluated at critical points in the flow-field and define the flow pattern
about that point.

If there are no critical points at the centre of a swirling flow, the velocity vectors are projected onto a plane
perpendicular to the eigenvector of the real eigenvalue and are checked if they are zero on that plane.

The evaluation involves creating tetrahedral cells. Contiguous line segments may not form.

2.4.9. Maximum Vorticity
Introduced by Strawn et al. [47], wherein, a vortex core is defined as the local maxima of the vorticity magni-
tude, |ω̄|. Applicable to free shear flows. Across a mesh cell, the absolute value is assumed to vary bilinearly.
However, setting the threshold remains arbitrary.

2.4.10. Streamline Method
Uses the winding angle method. This measures the amount of rotation of the streamline with respect to a
point (aw ). Sadarjoen et al. [48] measure the cumulative change in direction of streamline segments.

aw =ΣN−2
i=1 ∠(Pi−1,Pi ,Pi+1) (2.26)

Pi represents the N streamlines. A vortex is said to exist if aw ≤ 2π for at least one streamline. Cluttering
algorithm is used to group streamlines belonging to the same vortex.

2.5. Conclusions and Research Objective
The above sections described in brief the work done by previous researchers on this area. The studies have
focused primarily on using experimental techniques to understand the development of these vortices over the
cone. The two main divisions in this field can be stated as the study of flow under axial inflow and non-axial
inflow. There has been little to no work conducted using numerical techniques to study this phenomenon and
with the advent of modern computation power, this master thesis will attempt to fill the void. The research
question is thus stated as follows,

"Can numerical techniques model the spiral counter-rotating vortices observed over rotating cones under axial
and non-axial inflow?"

This leads the master thesis to work on the following sub-questions :

• How effective is the Baseline Explicit Algebraic Reynolds Stress (BSL EARSM) model of the Unsteady
Reynolds Averaged Navier Stokes (URANS) method, in the visualization of these vortices?

• Is the Large Eddy Simulation (LES), Wall Adapting Local Eddy Viscosity (WALE) an appropriate model
for simulating the counter-rotating vortices under axial and non-axial inflow?

• How do the azimuthal number of vortices vary along the length of the cone under axial and non-axial
inflow?

It is also important to set the scope of this project at this stage. The parameters not included in the study are
the turbulence models and the coefficients used for BSL EARSM and WALE.
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Figure 2.15: Development of spiral vortices in the transition regime. Rotation Rate : 785 RPM Inflow velocity : 1.85 m/s
(Image source: [24])
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Figure 2.16: Variation of number of spiral vortices with local rotation ratio for different cone apex angles (Image source:
[25])

Figure 2.17: Ogive configuration implemented by Degani and Schiff (Image source; [30])

Figure 2.18: Mesh used for the numerical simulation of the ogive (Image source: [30])
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Figure 2.19: Helicity density contours. Mach number = 0.8, angle of attack = 40◦ and diameter based Reynolds Number =
200,000. Jet = 0% (Image source: [30])

Figure 2.20: Helicity density contours. Mach number = 0.8, Angle of attack = 40°, Diameter based Reynolds Number =
200,000. Jet = 1.2 % at x/D ≈ 1.2 (Image source: [30])

Figure 2.21: Helicity density contours. Mach number = 0.8, Angle of attack = 40°, Diameter based Reynolds Number =
200,000. Jet = 1.2 % at x/D ≈ 0.12 (Image source: [30])
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Figure 2.22: Comparison of instantaneous spanwise vorticity (Image source: [31])

Figure 2.23: Experiment setup schematic (Image source: [3])
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Figure 2.24: Instantaneous surface temperature footprints of spiral vortices under axial inflow (Image source: [5])

Figure 2.25: Instantaneous surface temperature footprints of spiral vortices under non-axial inflow with incidence angle:
2° (Image source: [5])

Figure 2.26: Instantaneous contour plots of wall normal velocity fluctuations under axial inflow (Image source: [5])
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Figure 2.27: Instantaneous contour plots of wall normal velocity fluctuations under non-axial axial inflow (4° incidence
angle) for windward (left image) and leeward (right image) meridians (image source: [5])

Figure 2.28: Convex geometry used by Karp and Hack (Image source: [13])

Figure 2.29: Linear DNS showing streamwise streaks using isosurfaces of 0.01 times the maximum streamwise velocity
disturbance. Left to right flow. Red signifies positive disturbance and blue negative. (Image source: [13])
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Figure 2.30: Variation of Stall criterion with Diffusion parameter (Image source: [6])





3
Turbulence Modelling

Mechanism of the formation of observed spiral counter rotating vortices were discussed in the previous chap-
ter. It was found that these vortices form in the laminar to turbulent transition region of the flow over rotating
cones. Turbulence is a complex three dimensional unsteady phenomena with a wide range of length and time
scales. There does not yet exist a closed system of equations defining this complex flow for an analytical study.

In practice, turbulence is characterised with high Reynolds number flows and solving the Navier-Stokes equa-
tions numerically is not always practical as the smallest length scales associated with such conditions are
smaller than the smallest mesh volumes.

To predict the effects of turbulence, various Computational Fluid Dynamics (CFD) methods have been devel-
oped making use of models. This would be a workaround for the limitations due to mesh cells.

This chapter will provide a brief introduction to the theory involved in turbulence modelling. This begins
with an introduction to turbulence, its characteristics and then moves onto describing some of the modelling
techniques available.

3.1. Navier Stokes Equations
The discussion on turbulence must first begin with defining a mathematical model for fluid motion.

These equations describing the general fluid motion may be integral or differential in form and depends on
the fluid model chosen (whether it is a fluid volume or infinitesimally small fluid element). The reader will
obtain a more descriptive derivation of the equations from the highly informative book on CFD by John D.
Anderson [49].

Using the Eulerian model, wherein the equations are based on observing a fixed point in the fluid domain and
defining the following velocity components :

u = u(x, y, z, t )

v = v(x, y, z, t )

w = w(x, y, z, t )

ρ = ρ(x, y, z, t )

(3.1)

The velocity vector defining the direction of fluid may be written as,

V̄ = ūî + v̄ ĵ + w̄k̂ (3.2)

Here î , ĵ and k̂ represent the unit vectors in the x, y and z direction respectively and u, v and w represent the
velocity components in the x, y and z direction respectively. ρ represents the density.

Figure 3.1 shows an infinitesimally small fluid element along with the mass flow across through every face.
The continuity equation based on such a model is written as,

31
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Figure 3.1: Illustration depicting a fluid element (Image source: [49])

∂ρ

∂t
=∇· (ρV̄) (3.3)

The momentum equation is derived based on Newton’s 2nd Law. The equation in all three directions,

∂(ρu)

∂t
+∇· (ρuV) =−∂p

∂x
+ ∂τxx

∂x
+ ∂τy x

∂y
+ ∂τzx

∂z
+ρ fx

∂(ρv)

∂t
+∇· (ρvV) =−∂p

∂y
+ ∂τx y

∂x
+ ∂τy y

∂y
+ ∂τz y

∂z
+ρ fy

∂(ρw)

∂t
+∇· (ρwV) =−∂p

∂z
+ ∂τxz

∂x
+ ∂τy z

∂y
+ ∂τzz

∂z
+ρ fz

(3.4)

The term ρ fx represents the x component of the body forces acting per unit mass on the fluid element. Sim-
ilarly, ρ fy and ρ fz are the y and z components. τx x, τy y and τz z represent the normal stresses and τx y
components represent the shear stresses. Both are related to the velocity gradients. The normal components
are negligible in most wall bounded flows with the exception of high axial direction velocity gradient, such as
those across shock waves.

Using the stress tensor relation,

τi j =−Pδi j +µ(
∂Vi

∂x j
+ ∂V j

∂xi
) (3.5)

P represents the pressure and µ is the constant dynamic pressure.

The equation set 3.4 can be re-written using the substantial derivative and equation 3.5. The momentum
equation for a constant density divergence free (∇·V = 0) flow can thus be given by,

DV

Dt
=− 1

ρ
∇p +ν∇2V (3.6)

Here, p is the modified pressure and ν is the kinematic viscosity (ν=µ/ρ).
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The energy equation based on the conservation of energy, i.e. the first law of thermodynamics, is written in
the following form,

∂

∂t
[ρ(e + V 2

2
)]+∇· [ρ(e + V 2

2
)V̄)] = ρq̇ + ∂

∂x
(k
∂T

∂x
)+ ∂

∂y
(k
∂T

∂y
)+ ∂

∂z
(k
∂T

∂z
)

− ∂(up)

∂x
− ∂(v p)

∂y
− ∂(w p)

∂z

+ ∂(uτxx )

∂x
+ ∂(uτy x )

∂y
+ ∂(uτzx )

∂z

+ ∂(vτx y )

∂x
+ ∂(vτy y )

∂y
+ ∂(vτzx )

∂z

+ ∂(wτxz )

∂x
+ ∂(wτy z )

∂y
+ ∂(wτzz )

∂z

+ρ f · V̄

(3.7)

In the above equation, e + V 2

2 represents the total energy and q̇ is the rate of volumetric heat addition per unit

mass. V 2

2 represents the kinetic energy due to the translation of the fluid. The above equations ((3.3), (3.4) and
(3.7)) are not applicable for chemically reacting flows which would need the additional mass diffusion term.
If these equations are to be further simplified, the assumption of inviscid flow may be made, which would
further neglect the viscous transport phenomena terms (shear and normal stresses), dissipation and thermal
conductivity terms, leading to the Euler equation. There does not yet exist any closed form solution to the set
of 3 equations, collectively termed as the Navier - Stokes equation [49].

3.2. Characteristics and Effects
The characteristics for any turbulent flow may be listed as follows :

• Three dimensional

• Unsteady

• High Reynolds Number flow

• Rotational

• Viscous

• Chaotic

• Wide range of length and velocity scales of the turbulent structures

• Coherent structures

Before delving into the mathematical description, it is important to detail some of the effects of turbulence:

• Turbulence enhances mixing. This is most evident in the combustion chambers of engines

• Delays flow separation. As an example, consider the flow over a wing, due to the geometry of the wing,
the flow particles over the surface would lose momentum since it is faced with an adverse pressure gra-
dient. This will cause the fluid particle to separate from the surface and lead to pressure drag. Turbu-
lence can minimise this, as turbulent flows have highly energetic particles, thus having higher momen-
tum and more likely to overcome the gradient. Vortex generators on wing surfaces induce turbulence
and delay flow separation. Dimples on golf balls serve the same purpose.

• Turbulence is also responsible for increasing wall friction, as wall friction is proportional to the Reynolds
Number

Modelling such a process involves complex mathematics and the following few sections will delve into the
different models used for this purpose over the many years.
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3.3. Energy Cascade
The discussion in this section is based on the book by Pope [50].

It was mentioned in subsection 3.2 that turbulent flows have a wide range of length and velocity scales. The
flow thus have high kinetic energy and anisotropy. Richardson in 1922, introduced the concept of Energy
Cascade. The basic principle here is that kinetic energy is transferred inviscidly from larger (more energetic)
scales to successively smaller scales till viscous dissipation takes over the energy transfer model. Kolmogorov
in 1941, quantified this process by defining the smallest scales (named as the Kolmogorov scales).

Consider moderately coherent structures localised within a region of length scale, l, these structures can be
named as eddies. According to the Energy Cascade theory, the largest eddies are unstable and break into
smaller and smaller eddies, transferring their energy. The largest eddies have length scales comparable to the
length scale of the flow, L . When the eddies are small enough to be stable, viscosity is responsible for the
dissipation of this kinetic energy.

This dissipation rate, ε is based on the energy transfer from the largest eddies. From experimental and analyt-
ical studies of free shear flows (for high Reynolds number flows), the dissipation rate is found to scale with the
velocity and length scales of the largest eddies (u0 and l0) as,

ε∝ (u0)3

l0
(3.8)

The quantification of the smallest scales determines when the breakdown process comes to a halt. Kol-
mogorov stated that at high Reynolds numbers, the smallest scales can be assumed to be statistically isotropic
and defined those scales using ε and ν (kinematic viscosity) :

η≡ (
ν3

ε
)

1
4

uη ≡ (εν)
1
4

τη ≡ (
ν

ε
)

1
2

(3.9)

η, uη and τη represent the length, velocity and time scales of the smallest eddies. The Reynolds number
associated with these scales equals unity and is thus consistent with the energy Cascade Theory (as viscous
dissipation dominates for lower Reynolds numbers). To understand the cascade process better, the range of
scales can be divided as illustrated in figure 3.2.

Figure 3.2: Division of length scales for High Reynolds Number flows

The inertial subrange have motions defined by the inertial effects with negligible viscous dissipation and thus
ε determines the dissipation rate in this range. lDI and lEI are the demarcations in the range segregating the
"inertial subrange" from the "dissipation range" and the "energy containing range" from the "inertial range".

As these structures are in motion, the lengthscales can be associated with wavenumbers, κ, defined as,

κ= 2π

λ
(3.10)

Here,λ is the wavelength of the turbulent fluctuations. The net turbulent kinetic energy (k) within a wavenum-
ber range of κa and κb is thus,

k(κa,κb) =
∫ κa

κa

E(κ)dκ (3.11)
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3.4. Reynolds Averaged Navier Stokes (RANS)
The Navier-Stokes equations (equation (3.3) - (3.7)) model the velocity field, V̄(x, t ). The following discussion
contains only the inviscid form of the continuity and momentum equations.

This velocity field is decomposed (Reynolds Decomposition) into its mean and fluctuating components,

V̄(x, t ) =< V̄(x, t ) >+v̄(x, t ) (3.12)

Using this decomposition the incompressible form of the continuity equation can be re-written as,

∇· V̄ =∇· (< V̄ >+v̄) = 0

=∇· < V̄ >= 0 and

∇· v̄ = 0

(3.13)

Using tensor notations, the Left Hand Side of the momentum equation may be re-written as,

∂< V̄ j >
∂t

+ ∂

∂xi
< V̄i V̄ j > (3.14)

Implementing the Reynolds decomposition on this will yield,

< V̄i V̄ j >=< V̄i >< V̄ j >+< v̄i v̄ j > (3.15)

The velocity covariances, < v̄i v̄ j > are termed as the Reynolds Stresses. The equation (3.15) can be written
using the mean substantial derivative (non-conservation form), i.e. using the relation,

D

Dt
= ∂

∂t
+< V̄ > ·∇ (3.16)

Equation (3.6) can be re-written with the application of the mean quantities,

D < V̄ >
Dt

= ν∇2 < V̄ >−∂< v̄i v̄ j >
∂xi

− 1

ρ

∂< p >
∂x j

(3.17)

The only difference between the non-conservation form of the RANS equation and the non-conservation form
of the base form of the momentum equation is the presence of the Reynolds stress terms, < v̄i v̄ j >. To solve
these terms, further equations are needed. For this, the Reynolds stress tensors are approximated using either
Eddy Viscosity or Reynolds Stress Models. The Reynolds stress terms represent the mixing phenomena by the
convective transport as a result of the velocity fluctuations.

The mean turbulent kinetic energy per unit mass is defined here as the half of the trace of the Reynolds stress
tensor, i.e.

k = 1

2
< vi v̄ j > (3.18)

For the interested reader, a statistical description of turbulence can be found in chapter 5 of the book on
Turbulence by Westerweel et al [9] and chapter 3 of the book on Turbulent Flows by Pope [50].

3.5. Large Eddy Simulations (LES)
Different numerical simulations have different types of accuracy levels. This accuracy is determined by the
degree of approximations made in the system of equation describing the flow. These approximations can be
made in the form of grid size (∆ x), time steps (∆ t), or any other assumption made in the flow parameters to
reduce the level of complexity. Large Eddy Simulation (LES) has a level of accuracy and computational power
requirement in between that of RANS (section 3.4) and DNS (section 3.6).

The reader would recall the discussion on the energy cascade, wherein the energy from the larger scales are
transferred to the smaller scales. LES is responsible to resolve these large scales (RANS resolves only the mean
flow scales and models all other scales) and a filter is set up such that it acts as a cutoff. All scales below this
cut-off are modelled while the larger ones are resolved.

The following few steps govern the development of LES:
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• Filtering the Navier Stokes equations in physical space to represent the largest scales (through the fil-

tered components). The velocity field will be decomposed into the resolved, V̄ 1 and the residual Subgrid
Scales (SGS) v̄ ′ components

• The set of equations are "closed" using algebraic equations for the Sub-Grid Scale (SGS) eddy viscosity
to model the residual stress-tensors

• Numerically solve the equations for the filtered velocity to obtain an approximation for the large scale
turbulent flow

These smaller scales are responsible for the development of the turbulent flows. Resolving all the scales is the
ideal requirement, but requires immense computational costs and in today’s world is limited to flows with
lower Reynolds numbers. LES models these small scales and as these scales are dominated by viscous effects,
there exists many algebraic eddy viscosity models.

Any such viscosity model should satisfy the following requirements:

• Maintain computational stability and provide appropriate energy drain

• LES should tend towards DNS when the filter width is in the order of the small scale structures

• Stress tensors obtained using the model should show good correlation with validated results

The simulations in this master thesis are carried out on ANSYS CFX and as the current version has three such
LES models, those will be discussed in the following paragraphs. The details are based on the documentation
in ANSYS CFX [51] and the book on Turbulent flows by Pope [50].

3.5.1. Smagorinsky Eddy Viscosity Model
Smagorinsky [52] defined an algebraic relation for the unresolved (SGS) viscosity. using dimensional analysis,

µSGS ∝ ρl v̄ ′
SGS (3.19)

Here, l is the length scale associated with the unresolved motions which can be approximated as the cube root
of the mesh volume, i.e. the mesh size (∆= 3pVol).

Using the Prandtl mixing length model, the velocity scales for the unresolved motion can be related to the
filtered velocity gradient tensor, Sij (introduced in chapter 2 section 2.4.1) as,

v̄ ′
SGS =∆|S| (3.20)

Here, |S| =
√

2(Si j Si j ). The final Smagorinsky Eddy Viscosity model is therefore,

νSGS = (Cs∆)2|S| (3.21)

Cs is the Smagorinsky constant and this is where one of the major disadvantages of the model arises. The
value for this constant is dependant on the flow and mesh resolution. For an isotropic turbulent flow, it has a
value of 0.18. The constant is found to vary from 0.065 to 0.25. Another disadvantage is the need for damping
functions near the wall.

The no slip wall condition produces strong gradients in the flow dependant variables. Viscosity is the major
driving force for the transport processes and how well different models simulate this, determines how well a
specific model will perform when the flow near the wall is the subject of investigation.

To capture this gradient, the turbulent viscosity near the wall needs to be damped using a mixing length min-
imum function and viscosity damping function (fµ). The mixing length minimum function is defined as,

lmix = κ · ywall (3.22)

The constants can be set by the user on CFX 19.2. ywall is the distance from the wall.

1The smaller bar (V̄) over the variables define vector quantities as opposed to the longer bar (V) defining resolved quantities
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On CFX, the default value of the damping function is set to 1 but can be modified based on the function
preferred (either Van Driest or Piomelli). For the Van Driest function,

fµ = 1−exp(−ỹ/A) (3.23)

Here, A = 25 by default and ỹ is the normalized wall distance given by, ỹ = (ywall) · ũ/ν. ũ is the local velocity
scale.

For the Piomelli function (A = 25 by default for this as well),

fµ =
√

1−exp(−ỹ/A)3 (3.24)

3.5.2. Dynamic Smagorinsky-Lilly Model
To account for the issues faced due to the varying Smagorinsky constant (Cs) in the previous model, Germano
et al. [32] in 1991, introduced a model to evaluate the constant using the resolved turbulent velocity scales.
Lilly [53] modified this the following year.

The interaction between the smallest resolved scales and the largest unresolved scales is responsible for the
stress tensor in the subgrid scales. Two different filters were used relating the subgrid scale stresses on both
the filters of different widths. The mesh width acts as the smaller filter width and an explicit filter is added for
the larger one (test filter). Figure 3.3 illustrates this (κ is the wavenumber and E(κ) is the energy associated at
that wavenumber).

Figure 3.3: Use of two different filters for the Germano model

The filtered velocity is filtered once again using the larger filter width (∆̂). The width of the test filter is usually
twice the width of the smaller ones. The same model constant is used for SGS stress tensor (τi j ) and that for
the sub-filtered SGS stress tensor (Ti j ).

The SGS stress tensor forms on both filters can be given as,

τi j = ui u j −ui u j = 1

3
δi jτkk −2(Cs∆)2|Si j |Si j

Ti j = ˆui u j − ûi û j = 1

3
δi j Tkk −2(Cs∆̂)2|Ŝi j |Ŝi j

(3.25)

The Germano identity can be written as,

Li j = Ti j − [τi j ] (3.26)

Here, Li j is the Leonard stress and this identity is used to connect the model on the filter and that on the test
filter. The Leonard stress is given by,
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Li j = �ui u j − ûi û j (3.27)

Substituting the tensors described in equation (3.25) to equation (3.26),

Ld
i j =−2Cd∆̂

2|Ŝi j |Ŝi j +
^︷ ︸︸ ︷

2Cd∆
2|Ŝi j |Ŝi j (3.28)

Comparing equation (3.28) with (3.21) and concluding that Cd = (Cs)2 will be incorrect, since the model coef-
ficient, Cd, is a function of space and time. Neglecting the spatial variation of the model coefficient will yield
an over-determined system and this was worked on by Lilly [53]. A new form for the model coefficient was
proposed,

Cd =
Ld

i j Mi j

Mi j Mi j
(3.29)

Here, Mi j =−2∆̂2|Ŝi j |Ŝi j +
^︷ ︸︸ ︷

2∆2|Ŝi j |Ŝi j .

CFX implements an upper and lower bound for the model coefficient since it varies over a wide range which
may lead to numerical instability.

Clower
d = max(Cd,Cmin

d ), Cd = 0

Cupper
d = min(Cd,Cmax

d )
(3.30)

The value for Cmax
d is calibrated on CFX using decaying homogenous isotropic turbulence and is set to 0.04

as default. It should vary between 0.04 and 0.09. The coefficient varies in time according to the following
relation,

C̃d
n =αCn

d + (1−α)C̃d
n-1

here α= 0.01 (3.31)

3.5.3. Wall Adapted Local Eddy-Viscosity Model (WALE)
Nicoud et al [54] proposed to replace the traceless symmetric part of the velocity gradient tensor (Si j ) by its
square. Thus mathematically,

Sd
i j =

1

2
(G

2
i j +G

2
i j )− 1

3
δi j G

2
kk (3.32)

Here, G i j = ∂u j

∂xi
. The model is thus formulated as,

νsgs = (Cw∆)2
(Sd

i j Sd
i j )

3
2

(S
d
i j S

d
i j )

5
2 + (Sd

i j Sd
i j )

5
2

(3.33)

The WALE model implements the correct wall asymptotic variation (y+3) of the SGS viscosity without the
need for an additional filter. The model is also capable of reproducing the laminar to turbulent transition.
The model constant (Cw) in CFX is calibrated using freely decaying homogeneous isotropic turbulence and is
given a default value of 0.5.

3.6. Direct Numerical Simulation (DNS)
The previous sections gave an introduction into the wide range of length and velocity scales characteristic of
turbulent flows. Direct Numerical Simulations (DNS) resolve all the scales across the spectrum (in both space
and time), from the smallest Kolmogorov scales to the largest. DNS does not rely on modelling the effects of
the smaller scales (in contrast to LES).

Resolving all these scales come at a high cost. The numerical grid required is extremely fine and time steps
should likewise be small to maintain numerical stability. As an example, consider a grid with number of mesh
cells, Nx, Ny and Nz in the x, y and z direction respectively. Consider the Kolmogorov relations,
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(3.34)

This leads to,

N = NxNyNz =O (Rel)
9/4 (3.35)

Here, Rel represents the Reynolds number based on characteristic length l .

The penalty paid for in time, scales as follows,

T ∼O (Rel)
3 (3.36)

Such high computational time requirement makes DNS highly unfavourable to use for realistic flow condi-
tions and complex geometries.





4
Numerical Methodology

This chapter will delve into the geometrical design adopted for the study along with the meshing technique
and details of the numerical methodology implemented to attempt and obtain the answers to the questions
stated in chapter 2 section 2.5.

4.1. Workflow
The first step in setting up a simulation is to identify the workflow. The process followed in this thesis is shown
in the flow chart 4.1.

The process involved setting up the geometry using ANSYS DesignModeler and then moving onto the meshing
process using ANSYS ICEM CFD and setting up the simulation with ANSYS CFX. If the results obtained were
not in line with expectations/requirements, previous steps were revisited. Thus, the setup was checked and
if no problems were found then the meshing was improved and finally changes in the geometry were made if
the mesh quality was found to be acceptable but the solutions were still not improving.

4.2. Geometrical Model
The geometry was designed using ANSYS DesignModeler and an illustration of this is shown in figure 4.2. The
following are the considerations taken while designing the geometry:

• To avoid the introduction of negative volume elements and singularities during the meshing process,
the tip of the cone was blunted by a factor of 1/100th of the cone diameter. This factor was also kept in
line with the physical cone used in the experiments by Tambe et al. [5]

• The domain diameter was set to 10 times the diameter of the cone (and motor)

• The domain outlet was kept at a considerable distance from the corner of the cone so that the flow
downstream of the cone has enough distance to stabilize and not impact the upstream flow develop-
ment

• The cone and motor are solid non-deformable surfaces

• The motor surface is considered as a shroud with the actual motor inside and with this assumption the
surface is not rotated. This assumption was made for two reasons:

– Save computational time and power

– The upstream flow should not be affected by any rotational effects on the flow due to the motor

The process of designing the geometry followed the workflow described in figure 4.1. The initial geometry
designs included a shorter length of the motor (shorter H3, i.e. 2 times the cone diameter) and a shorter
inlet/outlet diameter (V1, 5 times the cone diameter). This was seen to cause backflow problems at the outlet
and divergence in the linear solver of CFX. To circumvent this, the domain diameter and motor length were
increased to approximately 10 times and 5 times the cone diameter respectively.

41
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Figure 4.1: Workflow in setting up simulations

A list of all the dimensions and its corresponding dimensionless factors are given in table 4.1.

The global coordinates implemented has its positive x direction from the left to right and the positive y going
from the bottom to the top. The positive z direction normal to both x and y is in the out of plane direction
facing the reader. The origin of this system is at the tip of the cone.

4.3. Mesh Methodology
The essence of numerical simulation lies in the discretisation process. Meshing is a process to discretize
the domain and this has a direct influence on the accuracy of the simulation. Meshing involves striking a
balance between the required level of accuracy from the simulation and the available computational time
and resources. To this end, the domain was divided into three different sections, upstream, cone region and
downstream. The meshing process was undertaken using ICEM CFD.

Keeping in mind the quality requirement of the mesh and that of the solver, in this case, ANSYS CFX, a hexa-
hedral structured meshing technique was used with the blocking represented in figure 4.3. The critical reader
would point towards the shape of the domain in the meshing process, this shape does not affect the simula-
tions since each edge is associated with the geometry imported from DesignModeler and thus the final mesh
incorporates the shape of the domain.

Another potential comment might be directed towards the edges joining the tip of the cone and the inlet
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V1

(a) Front view of domain

H1 H2

V1 V2

H3
Inlet

Wall Cone Motor

Outlet

X

Y

.z

(b) Side view

Figure 4.2: Illustration of geometry considered

Geometry Data
Property Value Non-Dimensionalised (wrt cone diameter)

Cone Half Angle (◦) 15 N/A
Cone Base Diameter: V2 (m) 0.047 1

Cone tip (m) 4.7×10−4 0.01
Domain Length (m) 0.78 16.59

Domain Diameter: V1 (m) 0.47 10
Motor Length: H3 (m) 0.25 5.31

Upstream Length: H1 (m) 0.4429 9.42

Table 4.1: Dimensional and non-dimensional parameters used to define the numerical model

(seen in figure 4.3b). This was chosen to maintain a high quality mesh and keep the Aspect Ratio1 of the mesh
elements below 1000 as the CFX solver introduces significant numerical errors for meshes with a maximum
aspect ratio above this [51].

To generate the mesh an O-grid was created which would wrap around the cone and the motor and run across
the entire length of the cylindrical domain. Two factors were taken into consideration for an acceptable mesh,
Quality and Aspect Ratio. For ICEM, these are defined as follows (the details mentioned are taken from the
ICEM CFD manual [55]):

• Quality: For hexahedral elements, this factor is weighted between Determinant, maximum orthogls 2

and maximum warpgls 3

• Aspect Ratio: This is the ratio of the longer element edge to the shorter element edge.

AR = Longer edge length

Shorter edge length
(4.1)

The factors which play a role in these metrics include the association (i.e. linking the edges of the blocks to the
curves of the geometry), the distribution of nodes along the edges of the blocks and the blocking technique
itself. The two meshes generated have 95 %+ of their elements above a quality factor of 0.8 and a maximum
of 12 elements are within the minimum quality range of 0.01 to 1. These could not be avoided due to the
incredibly small diameter of the cone tip. This was the primary reason for the block edges to be diverging
from the tip to the inlet. This reduced the number of poor elements significantly. The maximum aspect ratio
of the elements was calculated to be 875, with 8 elements between the ratio of 850 to 875 and 88 %+ of the
elements between 1 and 50. Histograms in figure 4.6 shows the number of elements within different ranges of
quality (figure 4.6a) and aspect ratio (figure 4.6b).

Figures 4.4 and 4.5 show the planar views of the front and side view respectively.

1Defined as the ratio of the longer element edge length to the shorter element edge length [55]
2Evaluates the maximum deviation of the internal angles from 90◦ of the elements
3This is the maximum warp of the quad faces
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(a) Front view

(b) Side view

Figure 4.3: Illustration of blocking method implemented

4.4. Case Setup
Figure 4.7 shows an overview of the boundary conditions used across the domain, common for all the cases
studied. The flow was from left to right as shown. The shear stress on the far wall was set to 0 Pa, thus a free
slip wall. The cone and motor were given no-slip boundary conditions. In addition, a pressure outlet and
velocity inlet were used to complete the boundary condition setup. All walls were given adiabatic boundary
conditions, thus a thermal study was not conducted.

The setup of the case is based on the objectives defined earlier. The first case, thus, is the setup of the URANS
simulation. For this, an axial inflow was used and the cone was rotated. Since running all the possible RANS
models to check the one best suited for simulating these spiral vortices is time consuming, the Baseline Ex-
plicit Algebraic Reynolds Stress Model (BSL EARSM), based on the work by Wallin and Johansson [56], was
chosen since the model formulation is such that it captures both the secondary flows and any streamline cur-
vatures with rotating bodies. CFX Pre manual [51] details the implementation of this model in the CFX solver
(a small introduction on this model is given in appendix C).

The second case deals with Large Eddy Simulations (LES) of these vortices under axial inflow and rotating
cone using the WALE model to this end. Two different meshes were used for this purpose. The point to note
here is that none of the meshes provide a y+ of less than 1 and although it is recommended for LES, this is
not done here keeping in mind the exponential requirements in time and computation power. The reader is
reminded here of the CFX limitation on the maximum aspect ratio of the mesh of 1000 and having a y+ of less
than 1 requires excessive refinement in the near wall region making the mesh exponentially large.

The final case is the non-axial inflow, implementing an incidence angle of 2° with respect to the x axis. LES
WALE is used to study this case as well.

An adaptive time stepping scheme is used to maintain the maximum CFL number of less than 1 for every time
step.

CFL = U∆t

∆x
(4.2)
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(a) Front view of the inlet

(b) Front view of a plane over one section
of the cone

Figure 4.4: Front views of the mesh

(a) Side view of the mesh across the domain

(b) Zoomed in side view over the cone

Figure 4.5: Side views of the mesh

Here U is the instantaneous velocity in one mesh element, ∆x is the size of the mesh and ∆t is the time step.
CFX provides the option for adaptive time stepping scheme where the time step adjusts based on a specified
maximum CFL Number (it was set as 1 for all simulations). The difference between the timesteps for all cases
varied only for the initial few timesteps but remained constant after that. The average time step for all cases
are provided in the details section of the cases.

The simulations were run for around 0.2 s which corresponds to the flow rotating around the cone a little
over 16 times. To check if this time is sufficient for a reasonable convergence of the transient statistics, two
probes over the cone (figure 4.8) were placed and the variations in the velocity components and pressure were
monitored.

The location of the probes:

• Probe 1: X = 0.02; Y = 0.015; Z = 0

• Probe 2: X = 0.02; Y = -0.015; Z = 0

The probes are thus placed at diametrically opposite locations over the cone close to the edge of the boundary
layer. To confirm this, the monitor data from Mesh 1 for the LES axial flow case was taken. u component of the
velocity being in the order of 2.2 m/s which is close to the free stream axial velocity of 2.46 m/s. Figures 4.9,
4.10, 4.11 and 4.12 show that the parameters are approximately stationary by the time they reach 0.2 s. The
sharp fluctuations observed at time locations of 0.04 s, 0.09 s and 0.15 s are a result of restarting the simulations
from the last backed up file. These are observed at the first iteration of the restart points which die out within
2 to 3 iterations.

Details of each case are given in the following paragraphs.
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(a) Quality

(b) Aspect Ratio

Figure 4.6: Mesh metric histograms

Figure 4.7: Overview of boundary conditions

4.4.1. Case 1
As mentioned earlier, this case uses URANS in an attempt to simulate the vortices over the rotating cone and
understand its efficacy. In order to achieve this and validate the results, the flow conditions at the setup were
kept the same (to the best possible degree) with those used in the experiments by Tambe et al. [4], [3] and [5].
The parameters used to set up this case on CFX Pre are itemised below:

• Time stepping:

– Adaptive time stepping scheme based on maximum Courant number of 1

– Average time step: 9.25×10−7 s

• Reference Pressure: 1 atm

• Turbulence intensity: 1 %

• Initialisation:

– u (x direction) velocity = 2.46 m/s

– v (y direction) velocity = 0 m/s

– w (z direction) velocity = 0 m/s
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Figure 4.8: Probes for measurement of variations in velocity components and pressure

(a) Pressure variation at probe 1 (b) Pressure variation at probe 2

Figure 4.9: Case 2 - Mesh 1 - Pressure variation at both probe locations

Choice of initialisation made, keeping in mind the diameter based Reynolds number 4 of 7.4×103, used
in the experiments by Tambe et al. [3].

• Boundary Conditions:

– Inlet:

¦ Velocity inlet: u = 2.46 m/s, v = 0 m/s and w = 0 m/s

¦ Low intensity turbulence (1 %)

– Cone:

¦ No slip wall

¦ Rotating wall: 5000 RPM (clockwise)

¦ Adiabatic Wall

– Motor:

¦ No slip wall

4ReD = Dia×U∞
ν here, Dia is the diameter of the cone, U∞ is the inflow velocity and ν is the kinematic viscosity
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(a) U component variation at probe 1 (b) U component variation at probe 2

Figure 4.10: Case 2 - Mesh 1 - U component velocity variation at both probe locations

(a) V component variation at probe 1 (b) V component variation at probe 2

Figure 4.11: Case 2 - Mesh 1 - V component velocity variation at both probe locations

¦ Non rotating wall

¦ Adiabatic wall

– Outlet:

¦ Static Pressure outlet: 0 atm

– Far Wall:

¦ Free slip wall

The solver settings are itemised below:

• High Resolution Advection scheme

• Second order backward Euler Transient scheme

• Convergence criteria: 2×10−6

4.4.2. Case 2
This case involved numerical simulation using LES for an axial inflow under similar conditions. There were
two different mesh sizes implemented. The coarser mesh here is named Mesh 1 and the finer one is named
Mesh 2. The input details for both meshes remain the same, the difference lies in the average time stepping.

For the LES cases, the initialisation was done by first running a laminar case with the same boundary con-
ditions used in Case 1 (except for the introduction of turbulent intensity) and the results were used as initial
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(a) W component variation at probe 1 (b) W component variation at probe 2

Figure 4.12: Case 2 - Mesh 1 - W component velocity variation at both probe locations

conditions for the LES model. A RANS case was not used as initial conditions since based on the research
conducted on the phenomena, the vortices appear in the transition region over the cone, using the turbulent
boundary layer generated from a RANS simulation as initial conditions would not be suitable for a flow which
originates from a laminar boundary layer. The fluctuations were imparted on this initial condition in CFX Pre.

The parameters for the LES cases are detailed below:

• Time stepping:

– Adaptive time stepping scheme based on maximum Courant number of 1

– Average time step:

¦ Mesh 1: 1.319×10−6 s

¦ Mesh 2: 9.567×10−7 s

• Reference Pressure: 1 atm

• Initialisation:

– Result file from Laminar run

– Velocity fluctuation: 1% of inlet velocity

• Boundary Conditions:

– Inlet:

¦ Velocity inlet: u = 2.46 m/s, v = 0 m/s and w = 0 m/s

– Cone:

¦ No slip wall

¦ Rotating wall: 5000 RPM (clockwise)

¦ Adiabatic Wall

– Motor:

¦ No slip wall

¦ Non rotating wall

¦ Adiabatic wall

– Outlet:

¦ Static Pressure outlet: 0 atm

– Far Wall:

¦ Free slip wall
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The solver settings are itemised below:

• Central Difference Advection scheme

• Second order backward Euler Transient scheme

• Convergence criteria: 1×10−5

– For each iteration, continuity, U and W momentum reaches order of 10−6

4.4.3. Case 3
For the final case, the conditions were kept the same as in case 2, except that the finer mesh (Mesh 2) was
considered and an incidence angle of 2° was given as inflow conditions. The incidence angle (α) is represented
in figure 4.13.

Figure 4.13: Representation of angle of attack (α)

To implement the incidence in the flow, the velocity components from the previous cases were modified such
that, U = U∞cos(α) and v = U∞sin(α). With, U∞ = 2.46 m/s, the respective components are, 2.458 m/s and
0.0858 m/s. The remaining parameters were kept the same as case 2.

The average time step for the non-axial case was: 6.904×10−7 s.



5
URANS: Axial Inflow

This chapter will delve into the results obtained as a result of running the Baseline Explicit Algebraic Reynolds
Stress Model (BSL EARSM), one of the Unsteady Reynolds Averaged Navier-Stokes (URANS) models available
in ANSYS CFX.

5.1. Analysis
The URANS model selected for the simulation was based on the Reynolds Stress Model developed by Wallin
and Johansson [56], named the Explicit Algebraic Reynolds Stress Model (EARSM). This was selected for the
following reasons [51]:

• Due to higher order terms in the formulation, many flow phenomena are included in the model and
does not require solving transport equations of the Reynolds stresses. The Baseline EARSM is used to
capture the following flow effects ([51]):

– Secondary flows

– Streamline curvature and system rotation

Further detail on this model is attached in Appendix C.

The first step in validating whether the selected URANS model was able to capture the formation of these
vortices is to check the footprint over the cone left behind by them. Prior to this, a small note on the defining
parameters for model setup in ANSYS CFX is given next.

As the name suggests, URANS is an unsteady RANS simulation and thus a transient setup was done. To main-
tain solver stability, a maximum Courant number of 1 for every iteration was set as a parameter. The CFX
solver would then adapt the time step between each iteration based on this parameter and the mesh spacing.
For this simulation, Mesh 2, was selected. Although this is a finer mesh, it was chosen so that a direct com-
parison can be made with the results from the LES case (subsection 6.3). The time steps between iterations
remained constant at 9.26×10−7 s, making the simulations computationally expensive.

Since the exact turbulence intensity at the inlet was not known, for this model of URANS, a low intensity
turbulence setting (1 %) was given as inlet conditions. The longitudinal turbulence intensity, defined as,p
<U ′2 >/U∞, was evaluated to be less than 3 %.

To visualise the footprint left behind by these vortices, a wall friction coefficient (Cf) was defined as,

Cf =
Wall Shear

1
2ρ∞U2∞

(5.1)

Here, U∞ is the inlet flow velocity, 2.46 m/s and ρ is the density.

A similar contour plot to that obtained by Tambe et al. [5] (figure 2.24) of Cf would be expected if the turbu-
lence model is successful in simulating this phenomena. Unfortunately, the URANS model selected, Baseline

51
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(a) Instantaneous Cf contour at t = 0.1s (b) Instantaneous Cf contour at t = 0.16s

Figure 5.1: Instantaneous contour plots of Cf

Explicit Algebraic Reynolds Stress Model (BSL EARSM) was unable to model this footprint. Two instantaneous
contour plots of Cf is shown in figure 5.1.

It is observed that the BSL EARSM model fails to capture these counter-rotating vortices observed in the ex-
periments. The following sections attempt to find an answer to this.

5.2. Potential Cause
There are many potential reasons for why the BSL EARSM was unable to model this phenomena. Two main
causes are discussed here.

The first probable cause might be a low turbulence intensity level at the inlet which dampens by the time the
flow reaches the cone. To check this, a plot of the turbulent intensity variation with respect to the mean flow
was made.

To check the variation, the mean turbulent intensity is defined as,

I =
p
<U ′2 >
< U > (5.2)

<U> is the transient mean flow velocity. Figure 5.2 shows the variation along a line across the domain. The
line is positioned at Y/D = 0.85 (figure 5.2a).

(a) Line across which Tu is measured (b) Tu variation

Figure 5.2: Tu (%)

In figure 5.2b, the tip to corner of the cone is between X/D = 0 and X/D = 1.87. This corresponds to the slight
increase near the tip and a gradual decrease over the length of the cone. The reason for the increase in intensity



5.2. Potential Cause 53

near X/D = 0 is due to the effect of the tip and the rotation of the cone, inducing fluctuations to the upstream
flow. Over the length of the cone, this intensity is seen to reduce and this is attributed to the increase in the
mean flow velocity as the flow "sees" the section converging.

The intensity is seen to be roughly constant from the inlet and thus a damping of upstream intensity can be
ruled out as a potential cause.

Another potential error may be the intensity set was low to begin with, however, experiments by Tambe et al.
[5] and Kohama [24] have shown that these counter rotating vortices form even at low inlet turbulence levels
(<1 %).

As has been looked into in chapter 3, the foundation of the RANS model is based on splitting the flow into two
components, the time averaged component and the fluctuating one. The averaged quantities are then used
in the Navier-Stokes equations, to achieve the RANS formulation1. Upon formulating the RANS equations,
unknown terms crop up in the momentum transport equations, known as the Reynolds stress components.
Leading to the well known closure problem in turbulence. Additional equations model these Reynolds stresses
thus closing the system of equations. RANS models are therefore based on statistical averaging and individual
fluctuations are not obtained by simply subtracting the mean from the instantaneous velocity fields. This puts
URANS at a disadvantage in visualisation of the vortices and forms the crux of the difference with LES.

As has been touched upon in chapter 3, Large Eddy Simulations are based on scale separation, where the
velocity field, instead of separating based on mean and fluctuating component, are separated based on the
resolved and residual (unresolved/modelled) scales (illustrated through figure 5.3).

ζ

E(ζ)

Resolved
Scales

Residual
Scales

Figure 5.3: Illustration of LES scale separation2

The sub-grid scales (unresolved scales) are modelled in LES. This allows the visualisation of fluctuations by
subtracting the mean from thee instantaneous flow field.

This thus forms the most likely cause for the URANS model not being able to show the vortices formed over
the surface and thus not showing the effects of it over the surface through the Cf contours.

As an ANSYS CFX user, to account for the first cause discussed above:

• A low turbulent intensity setting was chosen at the inlet, since the exact intensity was unknown. If this is
not the case for future work and the exact intensity and eddy viscosity ratio is known, then the "Intensity
and Eddy Viscosity Ratio" can be selected as the turbulence setting.

1To model transient simulations, the equations are ensemble averaged, thus obtaining the URANS formulation
2ζ here is the wave-number and E(ζ) is the energy associated with the scales





6
LES: Axial Inflow

This chapter describes the results from the Large Eddy Simulation of an axial inflow over the cone. Two meshes
were built using ICEM CFD, named here as Mesh 1 and Mesh 2. For details, the reader is directed to section
4.4.2. In this chapter, the results obtained using LES will be compared with those obtained in the experiments
by Tambe et al. [3] and [5].

6.1. Coordinate System
A wall bounded coordinate system is defined for the analysis of some of the results. This coordinate system
was defined by rotating the cartesian coordinate system by 15° (half angle of the cone) with respect to the X
axis. With the origin of the cartesian system at the tip of the cone, the origin of the local system remains the
same.

The X axis is now wall parallel (X’) and the Y axis is wall normal (Y’). Figure 6.1 shows the new coordinate
system. This will be used to obtain the wall parallel velocity profiles.

X'Y'

Z'

Figure 6.1: User defined local coordinate system

6.2. Mesh 1
This section will describe the results obtained using Mesh 1. This is the coarser of the two meshes with a total
node count of 1636710. To recap, the inflow velocity is 2.46 m/s, a no slip, adiabatic rotating wall (5000 RPM)
is set for the cone. The motor wall is also set to no slip, adiabatic conditions, but to save computation time,
the wall is not rotated and the physical component rotating the cone is assumed to be inside it. Thus, the wall
of the motor is acting as a casing. A static outlet pressure of 0 atm is set and the far wall has zero shear stress,
thus acting as a free slip wall.
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6.2.1. Vortex Footprint
Previous parametric experimental studies have shown that for rotating cones with half angles less than 30°,
counter rotating pairs of vortices are formed in the transition region (Kohama [24]). The vortices formed will
have a direct impact on the stresses over the surface of the cone. To visualise the footprint left by these vortices,
a series of instantaneous wall friction coefficient (Cf) contours were created using ANSYS CFD Post. Figures
6.2 and 6.3 shows the footprints left by the vortices over the surface at different time instants. This coefficient
was determined using equation 5.1.

A series of alternating bright and dark spiral patches of wall friction coefficient is observed over the cone.
There are black dots observed over the surface of the cone along the azimuthal direction. These are formed
due to an insufficient number of contour levels chosen. The choice for the number of contour levels shown
using ANSYS CFD Post was made based on the best visual description of the effect of flow over the surface.
The brighter patches represent a higher wall friction coefficient which corresponds to alternating up-wash
and down-wash (counter-rotating vortices). To confirm this, a contour plot of instantaneous wall normal
velocity fluctuations with respect to the mean flow in the meridional plane was made as shown in figure 6.4.
The vectors indicate a pair of counter rotating vortices, corresponding to the lighter and darker regions of the
contour over the surface.

Both figures (6.2 and 6.3) show a gradual increase in the wall shear from the tip, before reaching an alternating
spiral structure at around x/D of 0.6 and reaches its maximum value at the corner of the cone. This high value
is expected as the flow reaches a sharp corner where the stresses over the surface will be high, exacerbated
due to the rotation of the cone.

6.2.2. Wall Parallel Velocity Profiles
To observe the development of the flow over the surface, the transient mean1 (over a time period of 0.2 s) wall
parallel velocity profiles were taken at different locations. The locations (wall normal lines shown in figure
6.5) are taken at X/D = 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8. Figure 6.6 shows these profiles.

The hollow circles on the various profiles represent the mesh nodes over the cone. The velocities in the profiles
are normalised using the inflow velocity, U∞ = 2.46 m/s. The transient mean values of velocity were taken after
the simulation was made to run for 0.2 s.

It can be observed from the profiles, the wall parallel velocity gradient initially is quite low (X/D = 0.8, 1.0
and 1.2), i.e. the change in velocity data between two successive mesh points. This gradient keeps increasing
progressively and this results in higher net wall shear values.

The profile at axial location, X/D = 0.8, shows a smooth transition from being near zero at the wall (the value
is not exactly zero since CFD Post provides conservative values 2)

For X/D = 1, the profile indicates the addition of wall parallel momentum. At around Y’/D = 0.01, i.e. very near
the wall, a region of disturbance is observed. The boundary layer region at this location can be said to extend
till Y’/D = 0.06 as the velocity is significantly less than the inflow velocity.

Replicating the addition of momentum near the wall, observed in the experiments by Tambe et al. [5] was
attempted through the simulations. To this end, the wall parallel transient mean (over a time period of 0.2 s)
velocity contour was plotted.

Figure 6.7 shows the contour in the region within X/D = 0.8 to 1. The contour shows a region of higher velocity
near X/D = 1 as was observed through the profile (figure 6.6). The mesh being a coarse one, does not fully
capture this momentum increase in detail. To further resolve the boundary layer, the maximum y+ value
should be ∼ 1 which was not the case for either of the meshes in this thesis.

6.2.3. Wall Friction Coefficient Variation
Sub section 6.2.1 showed the footprint left by these vortices over the surface. A series of planes (every 5°)
were created in the circumferential direction and wall shear values were taken along the lines intersecting
between the plane and the wall of the cone. To characterise the growth of the spiral vortices, a circumferential

1ANSYS CFX provides the transient average of the velocity data for LES
2Conservative values in CFD Post are those obtained on the boundary vertices. They are representative of the control volume over which

the equations are solved rather than the boundary itself and thus may not exactly be zero on no-slip walls
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mean was taken and subtracted from the wall shear values for every plane, thus providing a fluctuating wall
shear profile. This wall shear value was then normalised by the free stream dynamic pressure to obtain the
fluctuating Cf. This process was then repeated for a few available time steps and the RMS was taken to obtain
one final profile along the meridian of the cone, shown in figure 6.8.

The profile (figure 6.8) shows a dramatic increase in Cf fluctuations from X/D = 0.5. This dramatic increase
in the fluctuations represents the point at which the vortices start to have a higher impact over the surface
of the cone. This is called the critical point and was also studied by Tambe et al. [3] using the IRT setup
with the physical process explained by Tambe et al. in [5]. The profile of RMS values of the digital pixel
intensity fluctuations (I’RMS) obtained in the experiments are shown in figure 6.9. The reader is directed to the
experiments conducted by Tambe et al. [3] to know more about the methodology.

To define a criterion for the critical point, a spatial moving mean (sliding window length: 25) of the fluctua-
tions were taken to smoothen the curve. This leads to two regions of linear curve in the plot, the initial stage
before the formation of the coherent structures and the other is the rise in fluctuations over the transition
region. The intersection provides the critical point. This is shown through figure 6.10.

Mesh 1 under predicts the critical point when compared with experiments by Tambe et al. [5]. This can be
explained by the following:

• Mesh points over the surface are not fine enough, i.e. the spatial distance between the nodes is large thus
the location of the rise can be under-predicted. In general, for numerical simulations, variable data is
evaluated for the entire cell, i.e. one value is obtained across the cell region. Thus, in this case, each wall
shear data obtained would span a larger area over the surface and thus the rise is under-predicted with
respect to the experiments by Tambe et al. [5]

• To obtain the profile for the simulations, only a few time steps were taken. This is not ideal and RMS
profiles are obtained by taking all the available timesteps. In the experiments by Tambe et al. in [3] and
[5], 2000 images were taken at a rate of 200 Hz, thus giving ample data points for an accurate analysis

The experiment profile (figure 6.9) shows a clear peak, depicting the point of maximum amplification of the
vortices. This peak is not clear in the numerical simulations (figure 6.10), which can again be attributed to,
a) The same reason as the second point above and b) The corner of the cone impacting the accuracy of the
results.

6.2.4. Local Reynolds Number Variation
A local Reynolds number was defined to study the variation of Reynolds number along the meridional plane
of the cone.

To be consistent with the experiments by Tambe et al. [5], this local Reynolds number was defined as,

Rel =
uel

ν
(6.1)

ue is the transient mean streamwise velocity of the flow at the edge of the boundary layer. To evaluate this,
the velocity corresponding to the location where the out of plane vorticity approached zero, was taken as the
reference. In this case, the vorticity value taken was 0.015 % of the maximum vorticity. l is the distance along
the meridian measured from the tip of the cone. ν is the kinematic viscosity.

This local Reynolds number was measured against the local rotation ratio, S. This is defined as,

S = rω

ue
(6.2)

Here, r is the local radial location and ω is the rotational velocity of the cone.

Using this, figure 6.11 shows the local Reynolds number plot against S.

The profile obtained by the experiments covering the entire length of the cone is based on the power-law fit,
defined, ue = CU∞lm. C and m are constants. The measurement area for the experiments were between l/D =
0.8 to 1.8.
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The initial discrepancy in the profile can be attributed to the use of a power law fit for the experiments. This
has more credence when the profile between S = 2.5 and S = 4.5, where the profile shows a good match, since
the experimental data was collected between those regions.

There are some outliers present in the data collected from the numerical simulation, leading to the jagged
appearance of the profile between S = 2 and S = 4.5.

The critical local Reynolds number (Rel,c)3, obtained through the simulations was 3.356×103 and that ob-
tained from the experiments was 5.692×103. This under-prediction is explained by the under-predicted crit-
ical point described in the previous section.

The critical Reynolds number through the simulations is located at a local rotation ratio of 1.407 and for the
experiments (by Tambe et al [5]) it was at around 2.40. Here too the under-prediction can be associated with
the under-predicted critical point since the local rotation ratio is a factor of the local radius. The impact of the
boundary layer edge velocity is not significant, since the out of plane vorticity taken was minuscule and thus
the velocity associated with it was close to free stream conditions.

6.3. Mesh 2
The section will look into the results obtained by the finer mesh, named in this thesis as Mesh 2. For details
the reader is directed to chapter 4 section 4.3. The total node count for this mesh was 2777465. The boundary
conditions and initial conditions were kept the same as described in the previous section.

6.3.1. Vortex Footprint
As with the previous section 6.2.1, the vortex footprints left over the surface of this mesh were also observed.
Figure 6.12 and 6.13 shows the instantaneous Cf contour over the surface.

There is no significant change observed in the general pattern of the wall friction coefficient. As with the
previous section, the development of the spiral vortex distribution is observed through the four instantaneous
snapshots. The interesting difference between this and the other mesh is the predicted maximum wall friction
coefficient, which is higher for Mesh 2. This can be attributed to the lower spatial distribution of mesh nodes
along the surface of the cone, thus providing more accurate results. This may be corroborated through future
experiments measuring the wall friction coefficient values or by completing this simulation run, using all
the time step data and obtain a correlation between the surface temperature fluctuations (represented using
digital pixel intensity) measured in the experiments by Tambe et al. [5] and the wall friction data obtained in
the simulations.

To visualise the counter rotating vortex simulated using Mesh 2 for this case, the wall normal velocity fluc-
tuation contour was plotted between X/D = 1.45 and 1.6. Figure 6.14 shows the resulting counter rotating
vortex.

6.3.2. Wall Parallel Velocity Profiles
As with sub section 6.2.2, the wall parallel velocity profiles at different axial locations was studied for this
mesh. The locations were kept the same, i.e. X/D = 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 (as shown in figure 6.5).

Figure 6.15 shows the transient mean wall parallel velocity profiles obtained through the simulations.

The impact of the finer mesh is prominent through figure 6.15. The first thing which stands out is the greater
number of mesh points within the boundary layer providing a more detailed profile.

At X/D = 0.8, the previous mesh showed a smooth shape in wall parallel velocity from the wall to the outer
edges of the boundary layer (figure 6.6), this indicates that the momentum addition phase has already oc-
curred before X/D = 0.8, this is expected since the vortices have already been deemed to start forming at
around X/D = 0.5 (sub section 6.2.3).

The boundary layer region obtained using Mesh 2 is also extended with respect to Mesh 1 and this too will
be expected since there are more number of mesh nodes near the wall, thus modelling the near wall region
to greater detail. The velocity predicted by the finer mesh is also greater and this agrees with the greater wall
friction coefficient values obtained earlier, as an increased flow over the surface will generate higher stresses.

3Reynolds number at the critical point (lc)
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To compare how Mesh 2 performed in replicating the near wall momentum addition, transient mean wall
parallel velocity contour between X/D = 0.6 - 1 was plotted. This is shown through figure 6.16 With the refine-
ment in the near wall region, the increase in the momentum is clearly visible (increase in the area of higher
wall parallel velocity).

6.3.3. Wall Friction Coefficient Variation
The procedure for obtaining the fluctuating wall friction coefficient distribution along the meridian of the
cone is the same as described for the previous mesh (subsection 6.2.3). Figure 6.17a shows this profile.

As observed there are multiple corners along with the profile as a result of using an insufficient number of
time steps. To overcome this and have a holistic study, a moving mean in space (sliding window length: 25)
was taken to obtain the profile shown in figure 6.17b.

In figure 6.17b, the RMS digital pixel intensity fluctuation (I’RMS) profile obtained by Tambe et al. [5] is over-
lapped. This is done to compare the location of the critical point, i.e. the point at which the vortices are
deemed to start to grow.

As seen, this location is under-predicted by the simulation and the same reasoning as with Mesh 1 follows for
the finer mesh.

The predicted critical point is also lower for Mesh 2 (X/D = 0.4010) when compared with Mesh 1 (X/D = 0.4511).
This indicates that the spatial mesh refinement may not be the major determining factor in the critical point
calculation. A potential contributing factor in the critical point is the SGS viscosity modelled in the near wall
region by the turbulence model. This prediction is based on the model constant used (Cw, for the WALE
model). For the simulations, the CFX default value for Cw was taken, 0.5. This value is set based on a cali-
bration using freely decaying homogeneous isotropic flow [51]. If the SGS viscosity is under-predicted, the
critical point would occur earlier and thus a possible suggestion is to increase the value of Cw and re-calculate
this point.

The following section provides a comparison of the critical Reynolds number obtained through Mesh 2 and
compares it to that obtained from Mesh 1.

6.3.4. Local Reynolds Number Variation
Using the critical point found in the previous section, figure 6.18 shows the variation of the local Reynolds
number with the local rotation ratio.

Figure 6.18 shows that with Mesh 1 (figure 6.11), there remains quite a few outliers at various mesh points for
higher S, but there is a qualitative agreement in the trend of the local Reynolds number variation with that in
experiments conducted by Tambe et al. [5]. The difference lies in the critical local Reynolds number (Rel,c).

The simulations indicate (based on the criterion defined previously) that the critical Reynolds number is
3.095×103 and occurs at a rotation ratio of 1.404. This when compared to the results obtained through Mesh
1, wherein the critical Reynolds number was 3.356×103 at S = 1.407.

Mesh 2 shows an earlier point for the critical Reynolds number (compared to Mesh 1), with all other parame-
ters having kept constant, the finer mesh seems to have shown an earlier point for the growth of the coherent
vortical structures. Although the rotation ratio difference is not large (compared to Mesh 1 and this difference
is attributed to the lower local radius, since the X/D location of the critical point was seen to be 0.4010 as com-
pared to 0.4511 for Mesh 1), the reason for the larger difference in Reynolds number is seen when examining
the logarithmic variation in Reynolds number from figure 6.18.

The difference with the experiments by Tambe et al. in [5] is once again attributed to the under-predicted
critical point.

6.4. Spatial Distribution of Vortices
The next part of the study involved analysing the distribution of these spiral vortices along the circumference
(azimuthal direction) and how the number of vortices developed along the length of the cone.

The reader is taken back to subsections 6.2.1 and 6.3.1 where the contour plot of the instantaneous wall fric-
tion coefficient was used to visualise the imprint of these vortices, i.e. its spiral distribution.
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Using the same principle, several axial locations were chosen in between X/D = 0.6 and X/D = 1.8. The choice
of these two endpoints followed the following reasoning:

• The number of vortex pairs (n) along the entire circumference was counted based on the number of
peaks in the fluctuating wall friction coefficient (wrt the mean flow) values (one pair of maxima and
the minima in the wall friction were counted as one pair of vortices). Analysing the data, the peaks were
prominent between these two regions. As the vortices were still in the process of formation in the region
before X/D = 0.6, uncertainty may have crept into the analysis. After X/D = 1.8, the corner of the cone
plays a role in the shape of these vortices and thus data points in that region were not taken.

As an example, figure 6.19 shows the entire circumferential variation of Cf for Mesh 2 at X/D = 0.9 (with the
maxima marked), here there are 6 peaks and thus concluding that the simulation captured 6 pairs of spiral
vortices.

This process was repeated on all the axial locations for both meshes. Figure 6.20 shows the result of this
analysis compared with those obtained in the experiments by Tambe et al. [5].

The experiments by Tambe et al. [5] measured the surface temperature fluctuations in the azimuthal direction
and used the same method in extracting the number of pair of azimuthal vortices.

Best fit for the simulations were made using the power law with the equation of the form, y = f (n) = aSb + c.
Here, a, b and c are constants. The equation, defining the variation for both meshes (and the polynomial form
used in the experiments by Tambe et al. [5]) were:

• Mesh 1: n = (49.17S)−4.538 +4.224

• Mesh 2: n = (103.1S)−5.906 +5.937

• Experiment: n = 138.96exp{−1.25S}+8.3 [5]

The captured number of vortex pairs in the simulation depends on the spatial distribution of mesh nodes
along a) the circumference and b) along the wall normal direction. The effect of a finer mesh (Mesh 2) in
capturing these vortices is seen through figure 6.20. Mesh 2 captured more number of vortex pairs in general
compared to Mesh 1.

To quantify the above statement, table 6.1 shows the azimuthal spacing and the first cell height used for Mesh 1
and Mesh 2 respectively. The number of vortex pairs simulated at 3 different axial locations (X/D) is also shown
to highlight the difference in the number of small wavelength perturbations (small scale vortices) simulated
by the two meshes.

Axial Location (X/D) Azimuthal spacing (m) First cell height (m)
0.7 1.25 1.7

Mesh 1 6 4 4 0.00079 9.20E-05
Mesh 2 6 6 8 0.00066 6.94E-05

Table 6.1: Discretization Effect

Figure 6.20 clearly shows that neither of the currently used meshes is fine enough to provide results close to the
experiments. The difference between the simulations and experiments being at least one order of magnitude
in the initial rotation ratios.

6.5. Conclusions
A 15° half angle cone, rotated at 5000 rpm under an axial inflow of 2.46 m/s was simulated using the WALE
model of LES. Two meshes were chosen to study the formation of counter-rotating vortical structures ob-
served over the rotating cone through experiments.

A wall friction coefficient (Cf) was defined using the wall shear normalised by the free stream dynamic pres-
sure. This was used to visualise the footprint left by the vortices over the surface cone, as they would have a
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direct impact over the cone through wall shear stresses. WALE was able to capture this for both meshes with
varying accuracy. The finer mesh (Mesh 2) predicted a higher Cf.

To study the development of the spiral vortices over the surface, a set of 36 planes were created on CFD Post
and the wall shear data was extracted after which the mean was subtracted from individual planes to obtain
a fluctuating Cf data, and RMS was taken to obtain a single profile for the entire cone. This was repeated for
several time steps (between 0.1 s and 0.2 s) and another RMS was taken (in time) for analysis.

The profile indicated a spatial delay in the formation of these coherent structures as they were relatively small
in the initial stages before increasing at around X/D = 0.4. Based on this, a critical point (lc) was defined. To set
a criterion for this point, a spatial moving mean (sliding window size: 25) was taken to smooth the curve. This
led to two regions of linearity over the curve and a first order polynomial fit was taken over the two regions.
The intersection of the two fits provided the critical point.

With the geometrical parameters, inflow conditions, and cone rotation rate the same as used in the experi-
ments by Tambe et al.[5], Mesh 1 predicted the critical point at around X/D = 0.45 and Mesh 2 at around X/D =
0.40. The experiments conducted by Tambe et al. [5] predicted this at around X/D - 0.8 (although the vortices
were seen at around X/D = 0.5). This under-prediction can be attributed to the spatial distribution of the mesh
nodes along both the axial and azimuthal direction. The under-prediction by Mesh 2 with respect to Mesh 1,
however, indicates that mesh spacing might not be the major determining factor in the calculation. The SGS
viscosity (modelled by WALE) in the near wall region plays a critical role and if under-predicted, the critical
point will be under-predicted as well. The model constant plays an important role in this, and increasing Cw

from the CFX default of 0.5 might bring the critical point calculation closer to the experiments.

The need for a spatial moving mean profile (sliding window length: 25) arose because the RMS profiles of
Cf fluctuations showed constant corners along with it. This is a consequence of not having taken enough
timesteps for the RMS data analysis. Due to limitations in the data collection, all the timesteps could not be
taken, this is addressed in chapter 8.

A critical local Reynolds number was defined, as the local Reynolds number (Rel, equation 6.1) at the critical
point. This local Reynolds number was plotted against local rotation ratio (S, equation 6.2). Mesh 1 predicted
this critical Reynolds number at 3.356×103 with the corresponding local rotation ratio at 1.407. In contrast
Mesh 2, predicted the critical Reynolds number to be earlier, 3.095×103 and thus at a lower rotation ratio
of 1.404. The experiments by Tambe et al [5] on the other hand observed this critical Reynolds number to
be further along at 5.692×103 with a local rotation ratio of 2.40. The reason for the under-prediction by the
simulations in comparison to the experiments may be chalked down to the simulations having not yet run
to completion and thus as the simulation progresses, this location may vary. A possible method to check
this would be to check the monitor data at different probe locations (in this case, two probes were used as
discussed in chapter 4). The u velocity component data for both probes shown through figures 4.10a and
4.10b shows a gradient and thus implies that the simulation has not run for sufficient timesteps.

To study the distribution of these vortices along the axial length of the cone, the number of vortices was
checked. For this, several axial locations between X/D = 0.6 and X/D = 1.8 were chosen. This range was taken,
as the Cf variation showed the formation of vortices from X/D = 0.4. The corner of the cone at just more than
X/D = 1.87 can affect the vortex structures and thus a maximum of X/D = 1.8 was taken.

To count the vortices, the peaks of fluctuating Cf (wrt the mean flow) along the azimuthal direction were
counted and the best fit was taken along the length (for corresponding local rotation ratio).

The general trend does not seem to agree with the experiments. With the simulated number of vortex pairs
not changing after a local rotation ratio of 3. The reason for this is currently unclear and further investigation
is needed. The number of vortex pairs was also under-predicted and this can be explained by the azimuthal
spacing of mesh nodes. To verify this, the finer mesh showed a slightly higher number of vortex pairs than the
coarser one but not nearly fine enough to quantitatively agree with the experiments.
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(a) Instantaneous Cf contours at 0.1 s

(b) Instantaneous Cf contours at 0.13 s

Figure 6.2: Mesh 1 - Instantaneous (Cf) contours (Instantaneous physical time = 0.1 s and 0.13 s)
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(a) Instantaneous Cf contours at 0.15 s

(b) Instantaneous Cf contours at 0.2 s

Figure 6.3: Mesh 1 - Instantaneous (Cf) contours (Instantaneous physical time = 0.15 s and 0.2 s)
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Figure 6.4: Mesh 1 - Wall normal velocity fluctuation Contour

Figure 6.5: Axial locations for velocity profiles
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Figure 6.6: Mesh 1 - Velocity Profile

Figure 6.7: Mesh 1: Wall parallel transient average velocity contour
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Figure 6.8: Cf fluctuation profile

Figure 6.9: Meridional Trace of I’RMS [5]
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Figure 6.10: Critical point Mesh 1

Figure 6.11: Mesh 1 - Local Reynolds Number variation with local rotation ratio
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(a) Instantaneous physical time - 0.1 s

(b) Instantaneous physical time - 0.13 s

‘

Figure 6.12: Mesh 2 - Instantaneous Wall Friction Coefficient Contours (t = 0.1 s and 0.13 s)



6.5. Conclusions 69

(a) Instantaneous physical time - 0.15 s

(b) Instantaneous physical time - 0.2 s

Figure 6.13: Mesh 2 - Instantaneous Wall Friction Coefficient Contours (t = 0.15 s and 0.2 s)
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Figure 6.14: Mesh 2 - Wall normal velocity fluctuation Contour

Figure 6.15: Mesh 2 - Wall Parallel Transient Mean Velocity Profile
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Figure 6.16: Mesh 2: Wall parallel transient average velocity contour
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(a) Cf fluctuation profile

(b) Moving mean Cf fluctuations

Figure 6.17: Wall normal velocity fluctuations
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Figure 6.18: Mesh 2: Local Reynolds Number Variation with local rotation ratio (Rel Vs S)

Figure 6.19: Cf variation in Y/D
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Figure 6.20: n vs S



7
LES: Non-Axial Inflow

The previous chapters (chapter 5 and 6) deal with an axial inflow over the cone. The application area of this
research is in the use of similar axis-symmetric geometries as spinners in Boundary Layer Ingestion (BLI)
engines. As described in chapter 2 the distorted inflow generates an incidence angle to the flow over the cone
(chapter 2 sub section 2.1.4).

For setting up the simulation run with a 2° incidence angle with respect to the X axis (global coordinate sys-
tem), the velocity components were changed at the inlet for the laminar case, (the results of which were used
as the initial conditions for the LES run). These changes are quantified in the following way:

U = U∞×cos(2) = 2.46×cos(2) = 2.458m/s

V = 2.46× sin(2) = 0.0858m/s

W = 0m/s

(7.1)

Here, U, V and W are the velocity components in the X, Y and Z directions respectively.

Figure 7.1, 7.2 and 7.3 represent velocity magnitude vectors (in red) over the cone, near the inlet and near the
outlet respectively. These were plotted to visualise the difference of applying a 2° incidence angle on the flow
direction.

(a) Axial Inflow (b) Non-axial inflow (2° incidence angle)

Figure 7.1: Velocity magnitude vectors (in red) showing effect of incidence of flow upstream over cone

The difference in the flow direction over the cone is clearly visualised through figure 7.1. This non incidence
implies that one side of the cone will be the windward and the other the leeward side (figure 7.5 illustrates this).
Tambe et al. [5] found that this asymmetry causes the formation of the observed small scale perturbations to
be delayed in space (figure 2.25).

75
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(a) Axial Inflow (b) Non-axial inflow (2◦ incidence angle)

Figure 7.2: Velocity magnitude vectors (in red) showing effect of incidence of flow near the inlet

(a) Axial Inflow (b) Non-axial inflow (2° incidence angle)

Figure 7.3: Velocity magnitude vectors (in red) showing effect of incidence of flow near the outlet

The flow direction at the inlet (figure 7.2) also shows the effect of the 2° incidence. The primary difference
between the simulations and the experiment is the direction of flow at the side walls.

The experiments by Tambe et al. [5] was conducted in the open jet wind tunnel facility (W Tunnel) at the
Aerospace faculty in TU Delft, The Netherlands. In the numerical simulations, the flow is bounded by the
domain walls and cannot exit it. With the domain far walls having set to free slip conditions, i.e. the shear
stress on the wall was set to 0. Under these conditions, the flow would follow the direction of the wall (figure
7.4b). This forms the fundamental difference in the implementation of the incidence angle between the ex-
periments and the simulations. With the flow following the wall at the far surface, the velocity vectors would
be affected near the surface and this will change the development of the flow over the cone surface.

Mesh 2 was selected for this study. The following sections will delve into the analysis of this case and compare
with the experiments by Tambe et al. [5] (for this reason, the basic conditions, like rotation velocity of cone,
inflow velocity and geometry of cone were kept the same as in the experiments) to validate if this was indeed
successful and recommend any potential changes.

7.1. Vortex Footprint
Studies on non-axial flows over cones have only recently been conducted by Tambe et al. [5] in 2020. The
experimental study used surface temperature measurements as the footprint for these vortices. Figure 2.25
shows an instantaneous image of the surface temperature footprint for a non-axial inflow (2° incidence angle).
When compared to figure 2.24, it is observed that the development of the coherent vortical structures over the
cone are delayed in space.
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(a) Axial Inflow (b) Non-axial inflow (2° incidence angle)

Figure 7.4: Velocity magnitude vectors (in red) showing effect of incidence of flow at the side walls

Figure 7.5: Illustration of windward and leeward side of cone

Figure 7.6 is used for visualising the footprints of these vortices, using instantaneous Cf contours.

Tambe et al. [5] in their studies, found that the asymmetry in the flow due to the incidence (causing varying
stability characteristics along the circumference), suppressed the growth of these counter-rotating vortices.

The simulation was unable to capture, through instantaneous Cf contours, the delay in the formation of the
coherent structures. To visualise the small counter rotating vortices due to the non-axial inflow, instantaneous
wall normal velocity fluctuation contours were plotted for both the axial and non-axial cases at the same
physical time step, i.e. 1.5 s (figure 7.7).

A zoomed in contour plot within locations of X/D = 1.3 - 1.6 and Y/D = 0 - 0.5 (shown in figure 7.8) was also
made to visualise the difference in the shape of these counter rotating vortices and compare it with those
obtained in the axial case.

Figure 7.6 failed to show the spatial delay in the development of the coherent vortical structures over the cone,
to check if this delay is captured through the simulations, a meridional profile of the Cf fluctuations was made
and defining the same criterion used in chapter 6 the critical point was calculated for this case. Figure 7.9
shows the profile obtained using the limited number of available timesteps.

The critical point calculated for the non-axial case (using the above criterion) was at X/D = 0.47. Before com-
paring it with that obtained using Mesh 2 for the axial case, it is important to note that the axial case simulation
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Figure 7.6: Instantaneous Cf contours (physical timestep = 0.15s)

ran for a physical time of 0.2 s, while the non-axial case for 0.15 s (constraints involved extremely small time
steps and limitations in job wall time on cluster). This would thus not be a fair comparison at the onset. To
overcome this, the time steps between 0.1 s and 0.15 s for the axial case was taken and using the same criterion,
the critical point was calculated to be at X/D = 0.4413. Figure 7.10 shows both critical point locations.

With all the other parameters in the setup of the simulation being constant (other than the introduced in-
cidence flow angle), it can be concluded that the spatial delay due to the non-axial inflow was qualitatively
captured by the simulations. It should be noted here that the simulations (for non-axial case in particular and
axial case in general) should be made to run for further time steps (the evidence for this is provided in the
following section).

7.2. Reynolds Number
As mentioned earlier, the experiments by Tambe et al.[5] found that the asymmetry in the flow due to the
incidence angle spatially delayed the formation of the vortices. This asymmetry thus induces changing flow
conditions across the azimuth of the cone.

Figure 7.11 and 7.12 characterises the simulated flow asymmetry. The local rotation ratio and local Reynolds
number, which are a function of the edge velocity is used to characterise this asymmetry. The edge velocity1

will vary in the windward and leeward side and this is visible in the two figures.

The experiments by Tambe et al. [5] found that the edge velocity for the windward case is reduced and in-
creased for the leeward side. Through figures 7.11 and 7.12 the simulations show a qualitative agreement with
this. A closer match with the experiments by Tambe et al. [5] was found for the leeward side than for the
windward meridian.
1The definition of edge velocity kept the same as for the previous case
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(a) α= 0◦ (b) α= 2◦

Figure 7.7: Wall normal velocity fluctuations

(a) α= 0◦ (b) α= 2◦

Figure 7.8: Counter rotating vortices for axial and non-axial case at intantaneous physical time of 0.15s

There are multiple outliers in the initial values of S (for both windward and leeward side) and may be ex-
plained by the simulation not having run for enough timesteps. With a non-axial inflow having an additional
velocity component in the vertical direction (Y direction), the v component of the velocity is deemed as the
determining factor. Figure 7.13 shows the running average2 variation of the v velocity component at the two
probe locations. As is seen, this is a still developing flow and needs further iterations before the data exported
can be studied in further detail.

7.3. Wall Parallel Velocity Profile
The previous sections showed the simulated asymmetry between the windward and leeward side of the cone
under the non-axial incident flow.

Figure 7.14 shows the wall parallel transient averaged (over a total physical time of 0.15 s) velocity profile ob-
tained at the leeward meridian (the locations are the same as taken in the previous case, represented through
figure 6.5) and figure 7.15 shows the locations (X/D = 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8) over the windward meridian
of the cone. The corresponding profiles are shown in figure 7.16.

For ease of comparison, the windward side plot was mirrored. The velocity profiles further indicate the asym-
metry between the windward and leeward meridian.

To further visualise the asymmetry between the two meridians, transient mean wall parallel velocity contours
are made for both the leeward (figure 7.17) and windward meridians (figure 7.18).
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Figure 7.9: Fluctuating Cf v/s X/D for non axial inflow

The velocity profiles, figures 7.16, 7.14, 6.6 and 6.15, indicate that the momentum mixing process for both the
windward and leeward sides is gradual in comparison to the axial flow case. The simulations also show that
the momentum mixing is much more gradual in the leeward side as compared to the windward edge. Both
observations qualitatively agree with the experiments.

7.4. Spatial distribution of Vortices
The next objective was to study the spatial distribution of the vortices. Figure 7.19 shows the trend of the
number of counter rotating pairs of vortices against the local rotation ratio. The trend for the axial cases
through both the simulation and experiments is added to the plot for ease in comparison.

As with the previous axial case, the number of pairs of counter rotating vortices were calculated using the same
methodology, and thus the predicted number is dependant on the azimuthal distribution of mesh nodes.

The formation of the vortices being delayed, i.e. they were detected at higher rotation ratios compared to the
axial case, which is in agreement with the experiments by Tambe et al [5]. They also found that the trend in
the observed number of vortex pairs remained the same for both the axial and non-axial cases (the similarity
in trend through the simulations is seen in figure 7.19). As with the axial flow case, the trend, however, is not
similar when comparing the simulations with the experiments. The non-axial case showed no change after a
local rotation ratio of 3.5. The reason for this is not clear at this moment and further investigation is needed.

The equations defining the best fit are the following:

• Experiment ([5]): n = 138.96exp(−1.25S)+8.3

• Simulations (Axial case): n = (103.1S)−5.906 +5.937

• Simulations (Non axial case): n = (1.28×105S)−12.98 +5.278

To quantify the number of vortex pairs simulated for the non-axial case, the same three locations as with the
previous case were taken and table 7.1 shows the predicted number of vortex pairs.

7.5. Conclusions
The WALE model of LES was chosen to study the effects of a non-axial inflow over the cone (half angle 15°)
rotating at 5000 RPM. Only Mesh 2 (finer mesh) was used for this case.

2Average taken using cumulative sum
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Figure 7.10: Fluctuating Cf (moving mean) profile v/s X/D for both axial and non axial inflow

Mesh 2
Axial Location (X/D) Azimuthal Spacing (m) First Cell Height (m) n

0.7 0.00066 6.94E-05 6
1.25 0.00066 6.94E-05 5
1.7 0.00066 6.94E-05 7

Table 7.1: Non-Axial case - Spatial distribution of n (α= 2◦)

A 2° incidence angle (α) was given to the system. To make this change in the simulation setup, the velocity
components were changed. The horizontal velocity component was set to U∞×cos(α) and the vertical com-
ponent was set to U∞× sin(α). All other settings in the simulation setup was kept the same from Mesh 2 in
chapter 6.

The instantaneous Cf contours failed to show the experimentally observed spatial delay in the formation of
the vortex structures. To check if the setup captured the delay, the Cf fluctuations over the cone surface was
obtained using the same method explained in chapter 6.

The obtained critical point with the axial and non-axial cases were compared after the same physical time
interval (0.15 s), The non-axial case showed a slight spatial delay (X/D = 0.47) compared to the axial case (X/D
= 0.44). With all other parameters in the setup having kept constant, other than the incidence angle given
to the flow, it was concluded that the non-axial flow does indeed delay the formation of vortices in space. It
should be noted that this simulation is still in its development stage and the vertical velocity component plays
an important role in this. Through running averages of monitor plots, this component was seen to not have
stabilised, and thus the simulation needs to run for a longer time span.

Experiments by Tambe et al. [5] found that the non-axial flow induced asymmetry in the flow over the cone.
To characterise this asymmetry, local Reynolds number and local rotation ratio were used. Both quantities
dependant on the edge velocity3. The edge velocity was simulated to be lower in the windward meridian
compared to the leeward meridian. This qualitatively agreed with those obtained in the experiments. The
variation of the local Reynolds number in the windward region did not seem to quantitatively match with the
experiments and this might be because the simulations have not yet run for enough timesteps. A non-axial
inflow would have a normal component of the velocity (v component) and the running average of this was
taken over the entire range of timesteps at two probe locations. This showed that the v component of velocity
is currently varying in time thus giving credence to the previous statement. Asymmetry was also shown using
the wall parallel transient mean velocity profiles on both the leeward and windward meridian.

3Definition kept the same as the axial case
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Figure 7.11: Non Axial - Rel vs S (Windward Meridian)

The momentum mixing was visualised using both the transient mean wall parallel velocity profiles and the
respective contours on both the windward and leeward side. The momentum mixing process was seen to be
gradual in both the leeward and windward side when compared to the axial case. Further, the mixing process
was gradual at the leeward side in comparison to the windward edge. Both the observations, qualitatively
agreeing with the experiments by Tambe et al. [5].

Using the same method as the previous chapter to calculate the number of vortex pairs, the predicted delay
in the start of the formation of the vortices with local rotation ratio was in agreement with the experiments.
The lower number of vortices is attributed to the high spatial distance between mesh nodes in the azimuthal
direction. The general trend however did not agree with the experiments by Tambe et al. [5]. The reason for
this is currently unknown and needs further investigation.
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Figure 7.12: Non Axial - Rel vs S (Windward Meridian)

(a) Probe 1

(b) Probe 2

Figure 7.13: V velocity variation in time at 2 probe locations
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Figure 7.14: Leeward meridian: Wall parallel velocity profile (α= 2◦)

Figure 7.15: Windward meridian locations for velocity profile
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Figure 7.16: Windward meridian: Wall parallel velocity profile (α= 2°)

Figure 7.17: Leeward transient velocity contour
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Figure 7.18: Windward transient velocity contour

Figure 7.19: N vs S



8
Conclusions and Recommendations

The objective of this master thesis was to numerically simulate the counter rotating vortices observed over a
rotating cone.

A cone of 15° half angle was rotated at 5000 RPM and was given an axial inflow (U∞ = 2.46 m/s) as one of the
cases and a non-axial inflow (2° incidence angle) as the other case.

The Baseline Explicit Algebraic Reynolds Stress Model (BSL EARSM) model was chosen to attempt the simu-
lation using URANS and the Wall Adapting Local Eddy Viscosity (WALE) model was chosen for the LES study.
ANSYS CFX was chosen as the solver. The geometry was created and meshed using the ANSYS Packages
namely, DesignModeler, and ICEM CFD.

This chapter will summarise the conclusions derived from the different cases studied. The various limitations
during the course of this study will also be mentioned and finally, recommendations for a mesh study and
future work will be given.

8.1. Conclusions
• Using the setup explained in chapter 5, the BSL Explicit Algebraic Reynolds Stress Model was unable to

simulate the counter rotating vortices. The main cause attributed to this:

– RANS models are based on statistical averaging and individual fluctuations are not obtained by
simply subtracting the mean from the instantaneous velocity fields. This puts URANS at a disad-
vantage in visualisation of the vortices.

• Two meshes were used to study the axial inflow case using LES. Mesh 1 being coarser and Mesh 2 the
finer one. The results of the various study undertaken in this case are listed below:

– Instantaneous wall friction coefficient (Cf, equation 5.1) contours (at different time instants) were
used to visualise the spiral vortex distribution over the cone. It showed qualitatively good agree-
ment with the experiments for both meshes.

– To check the point at which the spiral vortices started growing, a net meridional profile of fluc-
tuation Cf was made. Comparing with the experiments, both meshes under-predicted this point.
The possible reason for this is the high spatial distance between two mesh nodes in the axial and
azimuthal direction.

– Referring to the above statement, the critical point simulated by Mesh 2 was lower than that by
Mesh 1. This indicates that the mesh spatial refinement might not be the dominant factor. The
SGS viscosity (modelled by WALE) plays an important role in this critical point and if a smaller
SGS viscosity is under-predicted in the near wall region, it would under-predict the critical point.

– The local Reynolds number (Rel, equation 6.1) distribution with local rotation ratio (S, equation
6.2) showed good agreement with the experiment.

– For both meshes, the associated critical Reynolds number was under-predicted as a result of the
under-predicted critical point.
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– To study the spatial distribution of the vortices along the length of the cone, the Cf variation in Y/D
at different axial locations were taken and the trend was analysed using a power law fit (as the best
fit). The vortex pairs were counted by the number of peaks of Cf as the number of pairs distributed
around the circumference of the cone.

– The effect of the mesh sizes was visible by observing the simulated number of vortex pairs. The
finer mesh, as expected, showed more vortex pairs but neither of the meshes was fine enough to
quantitatively agree with the experiments by Tambe et al. [5].

• A non-axial inflow of 2° incidence was given as the final case to study. Mesh 2, the finer one, was chosen
for this. To set up the simulation, the velocity components were changed. The horizontal velocity com-
ponent was set to, U∞cos(2°) and the vertical component was set to U∞sin(2°). The simulation is still in
its development stage, as could be seen by the running average of the vertical velocity component. The
results of this preliminary study are itemised below:

– The instantaneous Cf contours failed to show the experimentally observed (by Tambe et al. [5])
stark spatial delay in the formation of the vortex structures. To check if the setup captured the
delay, the Cf fluctuations were obtained. A slight spatial delay was indeed observed.

– The obtained critical point with the axial and non-axial cases were compared after the same phys-
ical time interval (0.15 s), The non-axial case showed a slight spatial delay (X/D = 0.47) compared
to the axial case (X/D = 0.44). With all other parameters in the setup being constant, other than the
incidence angle given to the flow, it was concluded that the simulation of the non-axial flow does
indeed capture the spatial delay in the formation of the vortical structures.

– Experiments by Tambe et al. [5] found that the non-axial flow induced asymmetry in the flow
over the cone. To characterise this asymmetry, local Reynolds number and local rotation ratio
were used. The variation of the local Reynolds number in the windward region did not seem to
quantitatively match with the experiments and this might be because the simulations have not yet
run for enough timesteps.

– Asymmetry was also shown using the wall parallel transient mean velocity profiles on both the
leeward and windward meridian.

– The momentum mixing was visualised using both the transient mean wall parallel velocity pro-
files and the respective contours on both the windward and leeward side. The momentum mixing
process was seen to be gradual in both the leeward and windward side when compared to the axial
case. Further, the mixing process was gradual at the leeward side in comparison to the windward
edge. Both the observations, qualitatively agreeing with the experiments by Tambe et al. [5].

– The same method as the axial case was used to calculate the number of vortex pairs. The simula-
tions, like the experiments, predicted delay in the start of the formation of the vortices with local
rotation ratio. The lower number of simulated vortices is attributed to the high spatial distance
between mesh nodes in the azimuthal direction. The trend through the simulations, however, for
both the axial and non-axial cases, did not agree with the experiments and further investigation
into this is needed.

8.2. Limitations
A few of the limitations in this thesis are mentioned below:

• The mesh could not be refined further as it would have been computationally expensive since main-
taining the CFL number to less than 1 was important to maintain solver stability and accuracy of results.
This CFL number is directly related to the mesh size and time-step chosen.

• Another limitation regarding the refinement of the mesh was related to the metrics. In particular, the
Aspect Ratio (equation 4.1). The solver, ANSYS CFX can handle a maximum Aspect Ratio of 1000 and
further refinement, using the current blocking technique, would affect this.

• The simulations were undertaken using the TU Delft HPC cluster setup. The maximum wall time for
each job (simulation setup) was 3 days. Due to this and the limited storage allocated to every user, all
the backup files needed for a more thorough analysis could not be taken.
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• Due to an issue with some of the available backup files, for a few cases, the monitor data could not be
extracted from them. Thus the thesis could not include those to provide further evidence concerning
the required simulation time.

8.3. Recommendations
Various recommendations for meshing will be given next along with some recommendations into the future
work which could be undertaken in this area.

8.3.1. Meshing
• The blocking technique involved generating an O-Grid and splitting the domain into three different

sections, generating 13 blocks around the cone. A better blocking technique might involve generating
more blocks, such that more sections would be used to wrap around the cone surface (excluding the
cone tip) and thus another few blocks would be used for the region outside the boundary layer.

• Further near wall mesh refinement would allow for the boundary layer to be resolved. This would
thus allow the momentum mixing phenomena to be captured in much greater detail and also resolve a
greater number of vortices along the length of the cone. The trend through the simulations would then
be much closer to the experiments by Tambe et al. [5].

• Using another block covering the cone would allow for a more refined mesh near the boundary layer
while overcoming the limitation due to the Aspect Ratio.

• The limitation in the above mentioned method lies in the extremely small radius of the cone tip (1/100th

of the base radius). This would need another extremely small block around the tip of the cone and an
interface linking the block around the tip and the block around the cone.

8.3.2. Future Work
• To further study the development of the spiral vortices over the cone, the angle the vortices make with

the meridional line can be studied. A potential way to do this would be to study the angle, the out of
plane vorticity vectors near the surface makes with the meridional plane.

• The critical point was simulated to be under-predicted in comparison to the experiments by Tambe et
al. [5]. The finer mesh under-predicted this point in comparison to the coarser one, thus indicating that
mesh refinement may not be the major determining factor in the prediction of this point. The viscosity
might be under-predicted in the boundary layer thus triggering the vortices to form earlier. To remedy
this, increasing the model constant is recommended (the constant used in the simulations was the CFX
default of 0.5).

• The practical application of this study lies in its use as spinners for engines operating under the concept
of Boundary Layer Ingestion (BLI). To link the two areas, the research on hub stall indicator by Lei et al.
[6] can be used. The fan blades are attached at the intersection of the cone corner. If the velocity vectors
are studied near this corner, the angle at which it exits can be used to study how the skewness of this
flow affects the stall criterion developed by them.

• Once the simulations are run to completion, the result files of CFX provide the data for all the time steps
and a transient analysis would then be more effective. This would lead to the RMS profile of Cf fluctu-
ations to be smooth by itself and the spatial moving mean would not be needed. This would allow the
researcher the capture the maximum amplification point of the vortices observed in the experiments.





A
Plane Boundary Layer Equation

Plane flows or planar flows are two dimensional flows, wherein the streamlines lie in parallel planes. This
section will derive the boundary layer equations for a general planar flow with variable properties. Thermal
properties will also be looked into so as to provide a more generic study of the behaviour of various fluid
properties such as density, viscosity, isobaric specific heat capacity and thermal conductivity. This chapter
follows the derivation provided by Schlichting et al [10].

The derivation starts with the Navier-Stokes equations (Note: Although traditionally only the set of momen-
tum equation is considered as the Navier Stokes equation, here the entire collection of continuity, momentum
and energy equations are taken as the Navier Stokes equation, as introduced by John D. Anderson Jr. [49]) :

Dρ

Dt
=−ρdiv(−→v )

ρ
D(−→v )

Dt
=−→

f −grad p +Div[µ(2ε̇̇ε̇ε− 2

3
δδδdiv(−→v ))]

ρcp
DT

Dt
= div(λgradT )+βT

Dp

Dt
+Φ

(A.1)

Here,
−→
f is the body force per unit volume. cp andβ represents the isobaric specific heat capacity and the coef-

ficient of thermal expansion respectively. λ is the thermal conductivity. Dm
Dt represent the material derivative

of a general function "m". If m is either density (ρ), Temperature (T) or pressure (p), then,

Dm

Dt
= ∂m

∂t
+−→v ·gradm (A.2)

If m is the velocity field (−→v ),

D−→v
Dt

= ∂−→v
∂t

+grad(
1

2
−→v 2)−−→v ×curl−→v (A.3)

To non-dimensionalise the above equations, various referece parameters are taken, l (length), V (velocity , eg.
mean flow velocity), TR (temperature), pR (pressure). Other reference properties include, ρR , µR , cpR , λR and
βR . The non-dimensional forms are :
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x∗ = x

l
, y∗ = y

l
, z∗ = z

l
,

t∗ = tV

l
,
−→
v∗ =

−→v
V

, p∗ = p −pR

ρRV 2 ,

T ∗ = T

TR
, ρ∗ = ρ

ρR
, µ∗ = µ

µR
,

c∗p = cp

cpR
, λ∗ = λ

λR
, β∗ = β

βR
,

ε̇∗ = l

V
ε̇, grad∗ = l grad, div∗ = l div,

Div∗ = lDiv, curl∗ = l curl, Φ∗ = Φ l 2

µRV 2

(A.4)

Equation A.1, can now be rewritten by substituting the variables defined in equation A.4,

Dρ∗

Dt∗
=−ρ∗ div∗(

−→
v∗)

ρ∗ D(
−→
v∗)

Dt
= 1

Fr2 ρ
∗−→eg −grad∗p∗+ 1

Re
Div∗[µ∗(2ε̇∗− 2

3
δδδdiv∗

−→
v∗)]

ρ∗c∗p
DT ∗

Dt∗
= 1

Re Pr
div∗ (λ∗grad∗ T ∗)−Kρ Ecβ∗T ∗ Dp∗

Dt∗
+ Ec

Re
Φ∗

(A.5)

Equation A.5 introduces many non dimensional physical quantities, they are defined as follows :

• Reynolds Number : Ratio of inertial to viscous forces, given by :

Re = ρRV l

µR
(A.6)

• Froude Number : Indicates the effect of gravity on the flow. Given by :

Fr = V√
g l

(A.7)

g represents the acceleration due to gravity

• Prandtl Number : Ratio of momentum to thermal diffusivity.

Pr = µR cpR

λR
(A.8)

• Eckert Number : Helps to understand the relative importance of kinetic energy to the enthalpy in a flow
with heat tranfer.

Ec = V 2

cpR TR
(A.9)

• Thermal Expansion Number : Defined here as the product of the reference temperature and coefficient
of thermal expansion.

Kρ =−βR TR (A.10)

Beginning with equation A.5, the flow domain is broken into an inviscid outer layer and viscous inner bound-
ary layer. Using the boundary layer transformations :

ȳ = y∗pRe, v̄ = v∗pRe (A.11)

Assuming high Reynolds number (Re → ∞, equation A.5 break down to the dimensionless version of the
boundary layer equations (sans the Reynolds Number).
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Figure A.1: Coordinate system following the body profile [10]

To obtain these equations back in its dimensional form, the gravitational force can first be broken into two
components (from figure A.1, representing the coordinate system following the body contour) :

gx =−g sin(α), g y =−g cos(α) (A.12)

The boundary layer equations are thus :

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0

ρ(u
∂u

∂x
+ v

∂v

∂y
) =−ρg si n(α)− d p

d x
+ ∂

∂y
(µ
∂u

∂y
)

ρcp (u
∂T

∂x
+ v

∂T

∂y
) = ∂

∂y
(λ
∂T

∂y
)+βTu

d p

d x
+µ(

∂u

∂y
)2

(A.13)





B
Linear Stability Theory

This chapter will give a small description of the linear stability theory, which has been used multiple times
by various authors as has been seen in chapter 2. The contents of this chapter has been generally referenced
from the work of Frank M White [57].

Laminar flows are highly susceptible to changes in Reynolds number. Order of magnitudes as small as O (3),
will trigger the beginning of the end for laminar flows (the Reynolds number at that point is known as the
Critical Reynolds Number), thus making turbulent flows much more common in the real world.

Since, to date the concept of turbulence has never mathematically proven to be the final stable state at higher
Reynolds number, the discussion of the transition from laminar to turbulent flows (occurring within a range
of Reynolds Number) can be done using an empirical prediction of based on spatial amplification rates of
linearised stability theory. White [57] provides an excellent outline of the steps involved in stability analysis, it
is summarised below :

1. To check the stability of any solution to a physical problem (for example v0), add a disturbance and
substitute the resulting variable in the original governing equation. In this case, consider v ′ to be the
disturbance, the resulting variable will be, v0 + v ′

2. The tern, v0, is subtracted from the original equation obtained in (1) in such a way that the result-
ing equation satisfies the original governing equations identically. This leaves behind the disturbance
equation

3. An assumption that the disturbances are small which would neglect the higher order disturbance terns
and thus linearise the equations obtained in (2) . Further assumptions to reduce the complexity of the
resulting equation can be made at this step

4. The equations obtained in (3) needs to be homogeneous and thus would need homogeneous boundary
conditions thus resulting in an eigenvalue problem

5. The eigenvalues obtained in (4) will be analysed to determine its stability and thus resulting in stability
diagrams
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C
Baseline Explicit Algebraic Reynolds Stress

Model

The contents of this chapter is based on the theory provided in [51], [56] and [58].

The EARSM model first formulated by Wallin and Johansson [56], is an extension of the standard two equation
model. The EARSM is implemented with the Baseline (BSL) model in CFX. The BSL model is formulated by
first considering the problems faced in the standard κ−ω model, which is its sensitivity to free stream condi-
tions. To rectify this, a blending function was added by [59], such that the model equations are transformed
to function as κ−ω near the surface and κ−ε away from it. After transforming the κ−εmodel and adding the
κ and ε equations to it, the BSL formulation is obtained.

For the EARSM, the Reynolds stresses are evaluated using the anisotropy tensor (aij) and is mathematically
written as,

uiuj = k(aij + 2

3
δij) (C.1)

The anisotropy tensor is calculated using the implicit algebraic matrix equation:

N a =−A1S+ (aΩ−Ωa)− A2(aS−Sa− 2

3
tr (aS))

N = A3 + A4(
Pk

ε
)

(C.2)

Table C.1 lists the values for the Ai coefficients (they depend on the Ci coefficients of the pressure-strain term
in the underlying Reynolds stress transport model ) used in ANSYS CFX.

A1 A2 A3 A4

1.245 0 1.8 2.25

Table C.1: Ai coefficients in ANSYS CFX [51]

Si j andΩi j are the non-dimensional strain-rate and vorticity tensors. The equations defining these are given
in 2.14 but defined here with a time scale, τ. τ= κ

ε = 1
Cµω

. Here, Cµ = 0.09.

The strain rate and vorticity tensors are used to describe the anisotropy tensors in a polynomial,

ai j =β1Si j +β3(Ωi kΩk j −
1

3
I IΩδi j )+β4(Si kΩk j −Ωi k Sk j )+β6(Si k SklΩi j +Ωi kΩkl Si j −2

3
IV δi j −I IΩSi j ) (C.3)

The various coefficients are defined as:
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β1 =−N /Q

β3 =−12 · IV /(N ·Q · (2N 2 − I IΩ))

β4 =−1/Q

β6 =−6 ·N /(Q · (2N 2 − I IΩ))

(C.4)

Here,

Q = (N 2 −2I IΩ)/A1 (C.5)

The terms, I IΩ, IV are invariants defined as,

I IΩ =ΩklΩlk

IV = SklΩl mΩmk
(C.6)

In three dimensional cases, to solve for N , a sixth order function is needed and an explicit relation is not
derived.

The vorticity tensor is modified to add streamline curvature effects,

Ωi j = 1

2
τ(
∂Ui

∂x j
− ∂U j

∂xi
)−Cscale· τ

A0
Ωcc

i j
(C.7)

Ωcc
i j is responsible for the curvature correction and is defined as,

Ωcc
i j = εi j kω

S−S
k (C.8)

Here,

ωss
k =

Spl Ṡ′
l qεpqk

2I IS
(C.9)

The invariant I IS = Skl Sl k . The term Ṡ′
l q is given as,

Ṡ′
l q = DSi j

Dt
+ (εi mnS j n +ε j mnSi n)Ωr ot

m (C.10)

εi j k is the Levi-Chivata factor and is equal to 0 if i,j,k are equal and 1 if they form an even/odd permutation.

The coefficient A0 needs to be calibrated (default calibration value in CFX is -0.4). The scaling coefficient
(Cscale) is present to influence the effects of the curvature correction term ( τ

A0
Ωcc

i j ) for specific flows. Default

value is set to 1.
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