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Abstract

Creating GPS art on the map is an interesting way to make one’s outdoor activity more en-
gaging. Cyclists, runners and hikers can create impressive drawings on the map by travers-
ing the road/pedestrian network in a carefully planned way. Such planning, however, is
often tedious and time consuming, which makes the GPS artists have to meticulously de-
sign the routes with the complex road network in mind. The aim of our research is to
come up with a full process that can express a person’s initial idea (for example a contour
drawing) as a route, which the user can then follow to create their GPS art. This involves
transforming the input image to match the routing network in a selected area and generat-
ing a route which approximates the shape in the best possible way. In our work, searching
for patterns in the road network is cast to an image matching problem with template match-
ing as the solution. Generating routes is achieved using a graph routing algorithm with a
custom cost function, to make the resulting route as similar to the input shape as possible.
Finally, two ways of generating artistic routes are presented. First is an automatic GPS art
workflow, which attempts to find an optimal initial location of the route, then generates a
number of candidate routes and selects the best one according to various evaluation criteria.
The second method is an interactive browser application, where the user can select an initial
location for his shape on the map, move, scale or rotate it and get instant feedback in the
form of artistic routes displayed in real time.
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1 Introduction

In this chapter basic concepts in the scope of Global Positioning System (GPS) art are ex-
plained. Related scientific work is reviewed and the research questions are formulated.
Chapter 2 outlines the problems to be solved and the techniques that will be used. Chap-
ter 3 explains the engineering decisions and the details of implementation supported by
initial result visualizations to illustrate some ideas. Chapter 4 contains the results of testing
the developed solutions, along with a summary and discussion of advantages and limita-
tions. Chapter 5 presents the final conclusions and directions for future research.

1.1 What is GPS art?

GPS art is a term used to describe drawings created as a result of subsequent changes of
one’s location while tracking the movement, for example using device with a GPS receiver.
If executed with a specific plan in mind, the recorded route can become an elaborate artwork
(see Figure 1.1).

People create GPS art to make their movement routines more interesting. This is relevant
to the social aspect of movement tracking apps (Runtastic1, RunKeeper2, Strava3) which
encourage their users to share their activities. In this sense, the creative routes provide a
bigger value, since they are more appealing to the eye compared to a standard route without
any recognizable pattern. Making artistic routes is an additional motivation for people to
engage in physical activity, which can have a positive impact on health. Strava, the provider
of a widely used mobile app for tracking physical exercise, has created an online hub4 for
GPS art, where people can display their creativity and draw their inspirations. The GPS
art creator community consists mainly, but not exclusively, of hikers, runners and cyclists.
However, this is just the most common target group and not in any way a limitation. As an
example, there exist some GPS artworks created by plane pilots5 which just proves that in
this kind of activity all that matters is the continuous change of position and not the means
to achieve it. For the purpose of this thesis, we will be considering only the ground-based
movement activities.

Creating GPS art of your own is a cumbersome process. It all starts with an idea of what a
person wants to sketch on the map. The route plan has to consider various aspects. Since the
movement is done on the ground, the movement patterns are constrained by the specifics
of the surrounding environment, like road network layout and physical obstacles. Manual
planning of an artistic route requires a person to carefully study the roads in the concerned

1https://www.runtastic.com/
2https://runkeeper.com/cms/
3https://www.strava.com/
4Strava art: https://www.strav.art/home
5Plane GPS art:
https://www.huffpost.com/entry/flightradar24-plane-drawings_n_56e69bbce4b065e2e3d65fae

1

https://www.runtastic.com/
https://runkeeper.com/cms/
https://www.strava.com/
https://www.strav.art/home
https://www.huffpost.com/entry/flightradar24-plane-drawings_n_56e69bbce4b065e2e3d65fae


1 Introduction

Figure 1.1: Darth Vader drawn as GPS art. (link)

area and is therefore not a quick and simple process. An example article6 describes the
efforts of GPS artists at work. In practice, it involves importing a relevant section of a
road network map to a sketching tool and then sketching along the roads to obtain a route
representing what the artist had in mind. Such a route would then need to be verified
in terms of validity (traffic laws) and any potential false assumptions (for example roads
connecting in a different way than the artist had imagined while designing).

1.2 Related work

1.2.1 GPS art generation

There is relatively little documented scientific research in the specific field of GPS art gener-
ation and none of the publicly available results give a full solution to the problem of making
a GPS art route based on any input drawing.

Balduz [2017] describes a raster-based approach to generating GPS art. His idea was to
transform both the input drawing and a road network into binary images, where the lines
(street or drawing) are represented by ones and everything else as zeros. Then, an exhaustive
search algorithm was supposed to find the best possible placement of the drawing by placing
it in the position where the sum of the distances between the input drawing and the road
network was the lowest. The disadvantage of such a solution is that it merely works on the
rasterized version of the road network data and therefore cannot take into account the road
network topology and traffic rules. This can result in an invalid route, for example in cases
where the lines connect in the road network image, but in the actual road network data the
connection does not exist or it is forbidden by the traffic laws.

Waschk and Krüger [2018] propose a more versatile method which solves the transformation-
fixed (see Section 2.1) problem with a graph-based solution. In their work, they describe a
workflow which generates artistic routes using the Dijkstra algorithm and their own custom
cost function. Their approach assumes that the drawing is a single connected set of lines

6Designing artistic routes: https://www.runnersworld.com/runners-stories/a32433537/strava-art/
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1.2 Related work

Figure 1.2: Metric C3, used to measure the distance between a street segment and a drawing
segment. Source: Waschk and Krüger [2018]

with a predetermined starting point expressed in real-world coordinates. The algorithm vis-
its the drawing segments one by one, and for each segment it routes from its start point to its
end point. The end point of the previously visited segment then becomes the start point of
the next one, which means that the resulting GPS art route will be a valid, connected route.
The routing for each segment uses a cost function composed of different metrics defined
in a way that the final route should resemble the input drawing as much as possible. The
metrics used in the edge cost function are as follows:

• C1: distance from the edge end point to the final destination node

• C2: length of the edge

• C3: distance between the edge and the currently considered input drawing segment

While the first two metrics are straightforward, the third metric can have many interpreta-
tions, because there are many ways to measure a distance between two lines. To measure
the distance between a given graph edge and a drawing segment, Waschk and Krüger [2018]
propose a function that calculates a sum of distances from a number of points, spaced evenly
on the drawing segment, to the graph edge (see Figure 1.2). The details of how many points
should be used for the C3 metric are omitted. This metric is further explored in the course
of this thesis (Section 3.1.1).

The paper by Waschk and Krüger [2018] does not describe what weights should be assigned
to the metrics and how changing them impacts the artistic routes. Another unresolved prob-
lem is the transformation-agnostic approach (described in Section 2.1), since their solution
assumes that the user should define the coordinates of the starting point of the GPS art
route.

The mentioned research serves as a good theoretical foundation and a starting point for
further improvements in the course of this thesis.

1.2.2 Quality assessment of artistic routes

Zhang [2021] describes the implementation of a Convolutional Neural Network for the pur-
pose of doodle sketch recognition. Although implementing a classifier for human-made

3



1 Introduction

drawings is out of scope of this thesis, some ideas may be useful when using existing ma-
chine learning models for the evaluation of the quality of the results. The GPS art routes
are mostly based on a simplistic set of lines, since the real-life road network layout rarely
enables creating something complex. For this reason, a doodle sketch dataset can be a good
reference base for comparisons with GPS art routes. The certainty with which the machine
learning model evaluates the resulting artistic routes can be used as a fuzzy measure of its
quality.

Another approach for quality evaluation is to use perceptual similarity algorithms. Although
implementing such an algorithm is out of scope of this thesis, there are sources which can
be used in our work. Zhang et al. [2018] describe an algorithm which uses deep features
as a metric of perceptual similarity between images. Such a metric can be calculated from
the source drawing and the output artistic route to determine how perceptually similar they
are.

1.3 Research questions

In this thesis, we will explore ways to automate the process of designing a GPS art route
from any drawing. The aim is to translate the user input (for example contour lines) to a
valid route in the road network, while retaining the intended semantic meaning. Additional
user requirements can also be considered, for example a desired starting point or a desired
route length. A solution for this problem could be valuable for the developers of physical
activity tracking apps widely available on the market.

The main research question can be defined as:

How to automatically generate artistic routes based on any input drawing?

The resulting sub-questions are as follows:

• How to define measures of quality and how to evaluate them for an obtained GPS art
route?

• What priorities / compromises should the designed algorithm have in order to pro-
duce optimal output considering the user’s preferences?

The scope of research will include designing, implementing and testing an automated work-
flow, capable of producing artistic routes from source drawings. To improve the workflow
and tune its parameters, a framework for quality evaluation of the results will also be im-
plemented.

4



2 Methodology

In this chapter the research methodology is described. The research problems and the plan
to solve them is presented.

2.1 Problem statement

There are two separate approaches in solving the GPS art problem which are based on these
two assumptions for the source drawing:

• transformation-fixed input

• transformation-agnostic input

The transformation-fixed (Figure 2.1a) input refers to an input drawing which has real-world
coordinates and can be placed on the map as is, with no geometric transformation required.
Such a drawing can be obtained by sketching with Coordinate Reference System (CRS) aware
software on top of a map overlay of the area of interest. The solution then is to use a standard
routing algorithm in combination with a custom edge cost function to optimize the route for
maximum similarity to the source drawing. The method described by Waschk and Krüger
[2018] is a good starting point for further improvements.

The transformation-agnostic (Figure 2.1b) input assumes that the real-world position of the
drawing is unknown initially. This could mean that the drawing was simply drawn on
a blank piece of paper and has no relation to real-world coordinates. The problem then
becomes more complex, since the transformation properties of the drawing have yet to be
determined. The drawing would have to be subject to an affine transformation to spa-
tially relate to the road network in the area of interest. To achieve this, an image matching
algorithm can be used to search for patterns in the road network and select a potential
fixed location, size and rotation of the drawing. Once that is done, the problem becomes
transformation-fixed and the solution is as described for the transformation-fixed input.

Solving the transformation-agnostic approach has some significant obstacles. One of them
is the fact that there are infinite possibilities of transforming the input shape and countless
ways of representing it using a real-world route. Another issue is that for any given input
drawing and the obtained artistic route there is no clear reference solution. The standard
approach would be to verify the outputs of the algorithm by comparing it to a manually
prepared reference solution. However, having a complex route network and an artistic route
calculated by the algorithm, it is a challenge to manually confirm whether this particular
route is the globally optimal solution.

Additionally, looking at the GPS art algorithm from a user’s perspective introduces some
extra demands for the algorithm. Proximity to a chosen starting location (e.g., the user’s
home from where he starts the hike/jog) or a specific route length (e.g., a half-marathon)
are important requirements for a real-world use case. These extra constraints require some
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(a) Transformation-fixed drawing overlaid on
top of a road network map.

(b) Transformation-agnostic drawing. Note
that this kind of a drawing cannot be over-
laid on a map, since it has no CRS.

Figure 2.1: Two kinds of input to the GPS art problem

compromises in the algorithm, thus making the solution deviate even more from the global
optimum.

In the course of this thesis, solutions for both the transformation-fixed and the transformation-
agnostic approach will be presented. Finally, the results will be combined into a single
workflow for automatic artistic route generation. As an alternative solution, an interactive
GPS art application will be developed as well. Its purpose is to generate artistic routes with
real-time feedback for the user.

2.1.1 Template matching

Template matching is a known method for detecting the location of a certain pattern (tem-
plate) in a bigger image. One idea for solving the transformation-agnostic approach is to
convert the input drawing and the road network in the area of interest to a raster format
(e.g., GeoTIFF1). Such files can then be used as inputs to a template matching algorithm
where the input drawing is considered the template and the road network is the larger im-
age where we expect to find it. The expected result is that the drawing can be placed on
the map in a location where it matches the road network in the optimal way in accordance
with the criteria used in the template matching algorithm. A significant challenge comes
from the fact that there is little probability of a perfect match existing in the road network,
because of the irregular pattern of the street segments. Knowing this, the aim is to find the
most matching location, even if it is not really a close match.

Template matching is a well-researched problem in computer vision. Many techniques have
been developed over the years to solve complex problems like object detection, facial recog-
nition, pattern detection. Two main approaches can be listed as a high-level overview of the
existing techniques:

• Template-based

• Feature-based
1https://en.wikipedia.org/wiki/GeoTIFF
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2.1 Problem statement

Figure 2.2: Example template matching solution to detect a person’s face. Source: OpenCV
tutorial

The most basic form of template matching relies on the use of known templates. It searches
for the optimal location of the template by sliding it along the entirety of the target image
and quantifying in each location the difference between the intensity (pixel) values of the
template and the searched image (Brunelli [2008]).

Instead, feature-based approach uses features like shapes, textures, corners, colors. The fea-
tures can be extracted using deep neural networks (example research by Lei et al. [2021]).
This approach can make use of rotation-invariant and scale-invariant feature descriptors to
find a solution across multiple scales and rotations. On the other hand, it is more difficult to
apply this to the GPS art case. This is because most of the feature descriptors are designed
to work on texture-rich images with either RGB or at least grey-scale color information. Im-
ages of real life objects usually satisfy these criteria (see Figure 2.2), whereas binary images
representing sets of line segments do not. The lack of diverse pixel intensity means that the
feature descriptor algorithms have problems detecting distinct key points and the matching
result can be irrelevant.

In the scope of this thesis, we focused on the simpler template-based approach. The de-
tails of the experiments are presented in Section 3.2.2. The main idea is to use a template
matching algorithm to compare two grey-scale images of the input drawing and the target
road network. The template is therefore a binary image with positive values representing
the drawing’s lines and zero values being everywhere else. The goal is to match the input
drawing lines with the road network street segments. For this reason, when quantifying the
difference between the template and the target, an important point is to use a mask made
up of positive values in the template. This means that when sliding the template along the
target image, the difference in each position is calculated considering only the pixels that
make up the lines of the input drawing or road segments. Without using such a mask the
proposed template matching method would not work correctly, because it would match us-
ing also the empty (zero values) spaces in the input drawing with the empty spaces in the
target road network.

Figure 2.3 demonstrates the relevance of this idea to the GPS art use case with several
examples. The simplest case is presented in Figure 2.3a. In this case the template is a small
cross (red) and the target image is the big cross (white). If considered in a single-scale setup,
this case has only one best solution, with the template cross being placed in the center. If
considered in multi-scale set up, this particular case has infinitely many solutions, because
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the cross can be scaled to any size and still have a perfect match with the target image in its
center.

The next example (Figure 2.3b) presents a small square (red) as the template and an un-
bounded tic-tac-toe board (3x3 square board without a boundary) as the target image. In
this case, there exists only one best solution across all possible (aspect ratio locked) scales,
and that is in the middle of the board, where the scaled template can have 100% overlap
with the target image. This is the ideal case because it introduces no ambiguity and allows
for a single choice of the location of the template. The template-based template matching ap-
proach can be augmented by generating multi-scale pyramids of the template and running
the algorithm multiple times to obtain the best match across multiple scales.

Another example (Figure 2.3c) illustrates the case when no single solution can be found.
The template here is a square (red) and the target is a bounded tic-tac-toe board (3x3 square
board with a boundary). There are 9 possible solutions in this case and no way of determin-
ing which one is the best, since all the 9 potential positions of the template will have 100%
overlap with the target image.

Another challenge of template matching is the relative rotation between template and the
target. Cases like these cannot be handled when using the template-based template match-
ing in its most basic form. An example is given in Figure 2.3d. The template here is a cross
rotated by 45°. The template-based template matching method is not rotation-invariant. To
solve this specific case with this method, it would require generating multiple variations of
the rotated template and running the algorithm multiple times. This approach still does not
guarantee that the optimal template position will be found, because it is possible that none
of the rotated variants matched the exact rotation of the template in the target image.

Comparison with other methods

We chose template matching as a method for pattern recognition. The advantage of template
matching in the GPS art case is that its result can be clearly explained as the position where
the overlap between the input shape and the road network is the highest. There are also
other ways to approach this problem.

One alternative approach to the problem is to use deformable shape matching. Kim and
Shontz [2010] propose a method which represents a shape as a triangular mesh and uses an
energy function to compare the source and the target shape. Their solution is invariant to
rotation, translation and uniform scaling. However, such a method is not easily applicable
for the GPS art case. To begin with, it operates on closed shapes with a clearly defined
interior, a pre-condition that is not always met by single-line drawings. Figure 2.4 shows
an example of a shape that is not closed and does not have an interior. On top of that, the
distinct shapes have to be pre-defined, so that the source shape can be compared to them
to select the best match. This is not the case with a street network image, where there are
no clearly distinguishable shapes, and the detection of any candidate shapes is a separate
problem on its own.

An alternative way is to skip the image-based technique and try exhaustive search with the
transformation-fixed approach, by iteratively transforming (scale, translate, rotate, shear)
the input and running the routing algorithm multiple times to select the optimal GPS art
route by trial and error. This idea is further explored in Chapter 3.
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(a) Basic cross (b) Tic-tac-toe board

(c) Ambiguous case (d) Rotated cross

Figure 2.3: Different basic examples of template matching

Figure 2.4: Example of a single-stroke drawing with no clearly-defined interior
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Figure 2.5: Examples of different routing results for a given segment of the input drawing
(white). The red route is the shortest one. The green route is optimized to be as close to
the drawing segment as possible.

2.1.2 Cost function

In the routing part of the solution, the A* algorithm is used for each segment of the input
drawing. The road network is loaded as a connected graph consisting of edges (road seg-
ments) and nodes (start points and end points of road segments). Each edge is given a cost
and the algorithm computes the least expensive path from the start of the currently pro-
cessed drawing segment to the end of this given segment. Standard routing solutions define
the cost as the length of an edge or the time it takes to traverse an edge. However, GPS
art routing has a different goal and therefore should use a different cost definition which
should be dependent on the input drawing. For this purpose, a custom cost function is
developed, which aims to make a route as close to the input segment as possible, while also
still reaching the target node. The resulting route is therefore not necessarily the shortest one
(see Figure 2.5). The custom cost function can be composed of several metrics, for example
based on graph edge to drawing segment distance. The metrics used in our experiments are
described in detail in Section 3.1.1.

2.1.3 Evaluation

Having metrics for measuring the quality of results will be crucial in tuning the final solu-
tion. Since the solution will be algorithmic, there will be ways to obtain a numeric evaluation
of the resulting artistic routes. However, taking into account the artistic aspect, evaluating
the aesthetic value of a resulting route is also important. One way of achieving this could be
to use a machine learning algorithm trained to recognize human-made drawings. If the algo-
rithm can recognize with high certainty the semantic meaning of a given GPS art route, then
it can be assumed that the result can also be meaningful to human eyes. The implementation
of a machine learning model for this purpose is out of scope of this thesis.

Another idea for measuring the quality of the resulting GPS art is to compare it with the
input drawing using a perceptual similarity metric proposed by Zhang et al. [2018]. In this
approach, we try to measure the perceptual loss between the resulting GPS art and the source
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drawing, using a method that is meant to resemble human perception. Implementation of a
perceptual similarity metric is out of the scope of this thesis. Zhang et al. [2018] share their
source code2 for the perceptual distance function.

The overall assessment of quality will be composed of:

• Total sum of the metrics used in the routing algorithm cost function

• Results of machine learning object recognition for the resulting GPS art

• Perceptual loss distance between the input image and the output GPS art

2.1.4 Automatic GPS art workflow

The automatic GPS art workflow is based on the multiple techniques and solutions devel-
oped in the course of this thesis. A combination of image-based and routing-based ap-
proaches is used to find an optimal artistic route considering a given input drawing and
user-defined parameters. The workflow is summarized with the diagram in Figure 2.6.

The user can specify:

• input shape in a vector format (e.g., Well-known text (WKT) format)

• area of interest (e.g., a certain city district)

• starting point of the route (e.g., the user’s home) and an allowed threshold (e.g., no
more than 150m from the user’s home)

• desired route length (e.g., a half-marathon)

The area of interest and starting point parameters are mutually exclusive. Only one of them
can be used at a time. Real-life use cases require the possibility of defining extra require-
ments for the route. For example, a user may want to run an artistic route half-marathon
(21 kilometers in length), starting from a location within 150 meters of their home. Alterna-
tively, they may accept a route that does not start at their home, but is still located within
a certain neighborhood within a desired area of interest. Requirements like these introduce
some constraints for the result of the algorithm and require a separate implementation.

The process starts by converting the vector format input drawing to an image format which
can be used in the next steps. The template matching step attempts to find a location of
the drawing where its overlap with the road network is the highest. After finding such
a location, the transformation parameters for the input drawing are obtained. This trans-
formation is used to shift the input vector drawing to the position determined by template
matching. The shape is also simplified (see Section 3.4) before the next steps. With the shape
in the starting position, the exhaustive search is run, calculating routes for many different
transformations of the input. The numerous artistic route candidates are then cleaned in a
postprocessing step (see Section 3.4). The number of possibilities depends on the number
of different transformations defined. The hundreds or thousands of candidates get initially
filtered using RTMV (explained in 3.3.1) to narrow down the choices. It is the fastest way
to efficiently filter out the results that are of low quality. The RTMV, which is a metric
of geometric distortion from the source shape, cannot be used by itself to select the best
route candidates but it can be used to filter out the worst ones. The remaining candidates

2Github repo: https://github.com/richzhang/PerceptualSimilarity
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Figure 2.6: Automatic GPS art workflow diagram
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are evaluated using the complete evaluation framework consisting of RTMV and the ma-
chine learning based methods (described in Section 3.3.2). The final score is calculated as
a weighted average of the RTMV, object recognition certainty and perception loss distance.
The top-3 results with the best score are presented to the user who can then make a visual
assessment himself, pick a route and export it to a GPS Exchange Format (GPX) file.

Specific implementation aspects of the automatic GPS art workflow are described in Chap-
ter 3.

2.1.5 Interactive web application

To integrate interactive user inputs, a GPS art web application with a graphical interface
will be developed. Some of its functionality will be based on the same solutions as in the
automatic GPS art workflow (Section 2.1.4). The main idea is to rely on the user’s intuition
for the initial placement of the input shape on the map. The user will be given the possibility
to load his own input shape, apply affine transformations (via the use of clickable controls)
and view the artistic routes as they are generated in real-time. To allow integration with
modern activity tracking apps, the export of a route to GPX will also be possible. The
application should be tuned for high responsiveness to be enticing for its users.
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3 Implementation details

This chapter provides an overview of various implementation aspects of the chosen ap-
proach. The solutions to the problems presented in Chapter 2 are presented first as separate
components and then in the form of complete products. Some implementation ideas are
supported with preliminary visualizations of the results.

3.1 Transformation-fixed approach

3.1.1 Cost function

The core of the solution to a transformation-fixed problem is based on the algorithm pre-
sented by Waschk and Krüger [2018]. The idea is to iterate each segment of the input
drawing and perform routing with a custom cost function from its start point to its end
point. The end point of the previously visited segment becomes the starting point for the
next one. Repeating the process for all input drawing segments allows us to obtain a single
connected route. This solution assumes that the drawing is a single connected set of lines
with a predetermined starting point expressed in real-world coordinates.

The following pseudo code represents the algorithm used for generating artistic routes:

Algorithm 3.1: Generate GPS art (D, G)
Input: D: input drawing as an ordered set of line segments, G: road network graph
Output: Path in the road network approximating the input drawing

1 foreach segment ABi ∈ D do
2 Si, Ei ← get nodes of graph G which are the closest to the start and end of ABi
3 Routei ← get route from Si to Ei in graph G using the A* algorithm with custom

cost function
4 Result← connect the paths for all the segments to make a single connected route

The custom cost function used in each routing algorithm run is meant to optimize the route
to match the drawing segment. As a result, the final artistic route should resemble the input
drawing as much as possible in accordance with the defined similarity metrics. Making this
algorithm work for the GPS art case requires defining the cost function and selecting the
weights for its components.

The version of the cost function proposed in this thesis uses two metrics which constitute
the cost of a given edge in the context of the currently routed drawing segment:

• C2: Edge length
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Figure 3.1: A visualization of the metric function. Two shortest distances d1 and d2 (green)
are calculated from the end points of the graph edge (orange) to the drawing segment
(white). The background shows the street network for reference.

• C3: Similarity metric between the graph edge and the current drawing segment

The metric C1, proposed by Waschk and Krüger [2018], has not been included in our version
of the cost function. Its value comes from the euclidean distance between the current graph
edge end point and the drawing segment endpoint. The researchers justify its choice by the
need to minimize the distance to the route’s end. However, the path length minimization
is already provided by the metric C2, which results in finding the shortest path if used as
the only component of the cost function. The only other requirement for the route, except
being as short as possible, is that it also has to be spatially close to the drawing segment.
This is satisfied by the C3 metric. The C1 metric brings no additional value, while adding
more computational overhead, and was therefore removed. The aspect of directing the route
towards the final goal is solved by using A* algorithm with an euclidean distance heuristic
function (described in Section 3.1.2).

In most common routing scenarios we would only be interested in using either an edge
length or the time it takes to go from its start point to its end point. With the cost of an
edge defined in this way, the routing algorithm optimizes for the shortest or the fastest path.
In the case of GPS art, the aim is to have the path run as close to the input drawing as
possible.

As mentioned earlier, the routing algorithm is run for each segment of the input drawing.
The similarity metric is a function dependent on the graph edge and the input drawing
segment. It can be defined as:

M(Sg, Eg, Sd, Ed) =
distance(Sg, SdEd) + distance(Eg, SdEd)

2

where:
Sg - graph edge start point
Eg - graph edge end point
Sd - drawing segment start point
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Ed - drawing segment end point

The entire cost function can be defined as:

C(Sg, Eg, Sd, Ed) = α ∗ distance(Sg, Eg) + β ∗M(Sg, Eg, Sd, Ed)

where:
α - weight of the edge length
β - weight of the similarity metric

The C3 metric has been revised in this thesis. Its value is based on the knowledge that
the two compared lines (graph edge, drawing segment) are always simple segments. It
is therefore not necessary to deploy complex curve comparison methods like Hausdorff
distance or Fréchet distance. The metric function calculates the average of the shortest
distances from the end points of the graph edge (road network segment) to the drawing
segment. This is illustrated in figure 3.1. Comparing it to the similarity metric proposed by
Waschk and Krüger [2018], the metric introduced in this thesis is simpler and needs only two
distance calculations (from the street segment end points) instead of numerous calculations
for many points.

Using the Algorithm 3.1 with a custom cost function allows us to obtain a route approximat-
ing the input drawing (as shown in Figure 3.2). Figure 3.2a shows the resulting artistic route
overlaid on top of the input drawing (white). Figure 3.2b also shows what the route would
look like if it was optimized for the shortest distance for each routed segment. Without spe-
cific metrics for segment closeness, the shortest route can often deviate significantly from the
source drawing segments and is therefore not a correct solution to the GPS art problem.

It should be mentioned that the local layout of the road network, as well as a relatively
smaller scale of the input drawing, can be significant limiting factors for the obtained artistic
route solution. The route presented in Figure 3.2a has a total length of 46 kilometers. Scaling
down the input shape or moving it to a place with less dense street network will at some
point result in a lower aesthetic value of the generated artistic route. The example route in
Figure 3.2c has a length of 24 kilometers and already has significant visual obstacles like
road segments significantly deviating from the source drawing. Scaling down even more
to a 10 kilometer route (Figure 3.2d), the approach cannot approximate the input drawing
with a reasonable street graph anymore and it is impossible to recognize what the artistic
route is meant to represent. A similar problem can occur even without down-scaling the
input shape, but just simply by changing its position. The resulting artistic route is highly
dependent on the characteristics of the underlying street network. In general, a location with
a dense street network in the area is more likely to produce a better artistic route output than
a location with fewer streets. This does not always apply, because the input drawing can be
any kind of shape. For example, a certain area of interest with a sparse street network can
have its road segments laid out in a way that suits this particular shape better than some
other area despite having more street segments.

3.1.2 Choice of the routing algorithm

Waschk and Krüger [2018] propose the usage of Dijkstra’s algorithm1 for the routing tasks.
1https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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(a) Input shape (white) and resulting artistic
route (green).

(b) Input shape (white) and resulting artistic
route (green). The red line represents the
output of the same algorithm without using
the custom cost function.

(c) Input shape (white) and resulting artistic
route (green). The smaller scale of the in-
put makes the generated route less visually
similar to the source.

(d) Resulting artistic route (green) for an even
smaller scale of the input. The visual qual-
ity is degraded.

Figure 3.2: Different examples of artistic routes of an elephant obtained using Algorithm 3.1.
Green color represents the route and white color represents the input drawing.
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As a slight performance improvement, the Dijkstra’s algorithm was replaced with the A* al-
gorithm2. The principle of the solution remained unchanged, but the performance increased
slightly, in some cases up to 15%. This aspect has not been benchmarked in this thesis,
since the performance gain from switching Dijkstra’s algorithm to A* for certain scenarios
has been proven in many publications over the years. Example research by Rachmawati and
Gustin [2020] or Santoso et al. [2010] present the advantages of using A* in road network
routing problems. It is proven that the A* algorithm is more efficient in cases when the route
search needs a fuzzy direction (e.g., towards the target node), not to explore the nodes that
have no chance of being in the final route (e.g., nodes in the opposite direction from the
target node). In road network graphs, the A* algorithm with an euclidean distance heuristic
function allows the target point to be reached in fewer steps over the graph nodes.

The result of routing from node A to node B is guaranteed to be identical as in Dijkstra’s al-
gorithm as long as the heuristic function is admissible. Knowing the cost function (explained
in Section 3.1.1) as:

C(Sg, Eg, Sd, Ed) = α ∗ distance(Sg, Eg) + β ∗M(Sg, Eg, Sd, Ed)

We can define the heuristic function as:

H(Ni, Ne) = α ∗ distance(Ni, Ne)

where:
Ni - currently visited graph node in the A* search
Ne - target graph node (route end)
α - weight of the edge length in the cost function

This way, it is certain that the heuristic will never overestimate the cost, therefore satisfying
the admissibility criterion. At the same time, it will give the A* search a direction heading
towards the route’s goal.

3.2 Transformation-agnostic approach

3.2.1 Exhaustive transformation-fixed search

One approach for solving the transformation-agnostic approach is to use an exhaustive
transformation-fixed approach. It is assumed that any input drawing can be expressed
as an artistic route in many possible variations which can still preserve its semantic meaning
or aesthetic value. This method starts with a source shape that is placed in an approximate
position on the map, within a given area of interest. Then, combinations of affine transfor-
mations (see Figure 3.3) are used to warp this shape into many variations. Algorithm 3.1 is
run for each of these transformed shapes, which results in many candidate artistic routes.
These routes then need to be evaluated using some criteria which will allow to choose the

2http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
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Figure 3.3: Affine transformations used to warp the input shape. Source: link

overall best result. Combining this method with an automatic scoring system described in
Section 3.3 gives an effective method of choosing an optimal GPS art solution automati-
cally.

The main advantage of this method is its effectiveness. It determines the best artistic route
location by comparing the properties of actual route candidates (see Figure 3.4) based on
road network data. This is important, because some route properties, like the length or its
exact shape, become only available after the routing itself is done. For example, an image
(raster) based solution like template matching has no way of telling the exact shape of the
route, because it only works on image representations of the roads and not the actual road
network graph.

The expected disadvantage of this exhaustive search method is its efficiency. While the
routing algorithm itself is efficient, it has to be run hundreds to tens of thousands of times
(depending on the granularity of the applied transformations) which is time-consuming.
The quality of results is also dependent on the granularity of the different transformation
variations. This introduces the risk of skipping a potentially good route candidate if the
transformation variations are too sparse. For example, if the shape is only checked in one
position every 200 meters, then the optimal position can be missed and not included in the
final solution.

3.2.2 Template matching

An implementation of template-based template matching is available in the OpenCV library
(Bradski [2000]). The quantification method for the difference between the template and the
target can be one of the following as per the documentation3:

• Sum of squared differences (TM SQDIFF)

• Cross correlation (TM CCORR)

• Mean-shifted cross correlation (TM CCOEFF)

3OpenCV Docs: https://docs.opencv.org
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Figure 3.4: Example two GPS art route candidates for an input sailboat drawing. These
particular candidates have different scale, rotation and shear

Additionally, normalized versions of these metrics are available, to be used for comparisons
of results for templates in different scales. For the experiments in this thesis, we chose the
sum of squared differences and used our own normalization formula to be able to compare
the results for the templates in different scales and choose ultimately the best one. The
formula relies on the prior knowledge that the input images are binary, so in the context
of OpenCV workflow, all the values are either 0 or 255. This allows retrieving the metric
that can be compared between the templates in all scales to determine the best one: the
percentage of pixels of the input drawing that overlap with the road network. Figure 3.5
demonstrates the usage of template matching for the GPS art case. The determined location
(red rectangle) is characterized by the highest overlap of the input image and the road
network image. Figure 3.6 shows the same case from a more zoomed in perspective. It is
visible that the sailboat is placed in a location where it has many overlapping road segments.
If the drawing was moved slightly to the side, the central part of the ship would no longer
have significant overlap with the long straight road segment (visible in the centre of the left
picture in Figure 3.6) and the total overlap would be lower. It is generally a challenge to
verify the correctness of template matching results for GPS art cases, because it is known
that the perfect result does not exist. The overlap values are usually quite low, so the final
choice is the best of many suboptimal options. In the presented case, the overlap is only
around 35%. If there was a sailboat of this exact shape hidden somewhere in the street
layout then the overlap in such a location would be equal to 100%.

This works with the assumption that the template has reasonable scale range. If it is made
really small, it can easily have 100% overlap with the roads, although it will be too small to
create meaningful GPS art out of it.

A disadvantage of this approach is that it does not give a complete solution. The result of
template matching in this context is just a position of the drawing in the road network. To
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Figure 3.5: Example of a template matching result for a drawing of a boat. The red rectangle
marks the area where the drawing overlaps the most with the road network.

Figure 3.6: Closer look at the case illustrated in Figure 3.5. In this example 35% of the
drawing image positive pixels overlap with the road network image positive pixels.
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complete this, the GPS art routing algorithm still has to be run for the drawing placed in this
position. Template matching is good for initial placement of the drawing where it overlaps
the most with the roads - usually the area with the most dense street network. In reality, the
best artistic route can be located somewhere else, since its final shape depends on the road
layout and accessibility of some streets.

Another limitation is the fact that template matching does not support elastic matching,
which could be desirable in the GPS art case. The template search only considers the tem-
plate variations based on affine transformations and is therefore not suitable for non-rigid
shape deformations.

3.3 Evaluation of route quality

One thing to discuss when assessing multiple artistic route candidates for the same input is
normalization for fair comparison. If the input to the algorithm was transformed in any way
(translated, scaled or rotated - see Section 3.2.1) then for an objective evaluation its resulting
GPS art candidates should be transformed using the reverse of this transformation.

While translation and scale (up to some extent) mostly do not impede a person’s perception
of an artistic route, one could argue that rotation and shear introduce an impediment in
recognizing its meaning (see Figure 3.8). As an example, a person can easily recognize a
rabbit in a drawing even if the rabbit is moved or changes its size (maintaining its length to
width ratio and within reasonable scale). However, it is undeniable that a person can have
a harder time recognizing a drawing of a rabbit that is presented upside down. Ultimately,
the rotation of the GPS art is irrelevant, because the map can be presented in any arbitrary
orientation. While the assumption of the north direction making up the vertical axis is
the most common, in reality the map in the final visualization can be rotated to match the
rotation of the artistic route. An adjustable axis orientation is a feature of most modern
applications dealing with interactive maps. Figure 3.7 shows an example of such orientation
adjustment using Strava4.

To include the impact of shear on the perception of the GPS art, the shear will not be taken
into consideration when reversing the transformation for the purpose of evaluation.

Section 3.3.1 describes a metric to evaluate geometric distortion of an artistic route relative to
its source drawing. Section 3.3.2 describes learning-based methods of GPS art evaluation.

3.3.1 Accumulated cost metric

The previously mentioned numerical way of evaluating the quality of the artistic routes is
explained below. The main idea behind it, is that if the routing algorithm uses a cost function
to optimize the routing locally for each segment of the input drawing, then the best possible
route should have the lowest cost in total. This simple assumption needs to be improved in
order to be able to compare the quality of artistic routes based on inputs in varying scales.

It is known that the cost function for a single graph edge consists of:

4https://www.strava.com/
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Figure 3.7: A GPS art of a dinosaur, with the map rotated upside down to match the orien-
tation of the presented object. The inverted orientation of the map can be recognized by
the text labels which are upside down. Source: link

Figure 3.8: Comparison of 2 artistic routes for a drawing of a rabbit. The left image shows
a route with no rotation/shearing of the input drawing. The right image shows a route
calculated from a rotated and sheared drawing.
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3.3 Evaluation of route quality

Figure 3.9: Comparison of 2 artistic routes for a drawing of a sailboat. The left image has a
low RTMV, while the right image’s value is high.

• length of the edge

• similarity metric between the road (graph) edge and the drawing segment

For the quality evaluation, the total length of the resulting GPS art route has no relevance.
Therefore, the similarity metric should be the only thing to be considered. The sum of all
the metric values for every edge in the resulting route is referred to as the Total Metric Value.
This is a relevant numeric measure of how similar the resulting route is to the input drawing
based on the similarity metric used in the cost function. To account for the scale factor and
enable scale-invariant comparisons, the metric is divided by the total route length to obtain
the Relative Total Metric Value (RTMV). Figure 3.9 displays the RTMV in practice. It shows
two resulting artistic routes chosen from many candidates. One of them has one of the
best metric values, while the other one has one of the worst. A high RTMV means that the
generated route has some significant deviations from the source drawing, which in most of
the cases also decreases the GPS art quality.

RTMV is one of the components of the evaluation framework. It cannot be used as the only
method for assessing artistic route quality. While low RTMV usually means that the route is
a good fit to the input drawing, it does not mean that the candidate route with the lowest
RTMV is always objectively the best. Considering the aesthetic aspect of GPS art, there are
some cases when the best route candidate may not necessarily have the lowest RTMV.

Examples include:

• the route has a significant shear which decreases its perceptual clarity, despite a low
RTMV (see figure 3.8).

• the deviation from the input drawing does not decrease its perceptual clarity. For
example, a route deviation in the GPS art of an animal can make its tail longer. While
the RTMV is increased because of this, the deviation itself does not negatively impact
the perceptual clarity.

• there are some outlier segments, but the route is a good fit in general. The outlier
segments can be caused by the local layout of the road network. A single outlier
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Figure 3.10: Input sailboat drawing and the resulting GPS art route. The result is a good
match in general, despite having 2 outlier segments that increase its RTMV

segment introduces a significant increase in the RTMV but by itself it does not visually
disqualify the route candidate (see figure 3.10).

Because of the mentioned cases, additional learning-based methods for route quality evalu-
ation are also used (explained in Section 3.3.2).

3.3.2 Learning-based evaluation

Object classifier metric

As mentioned before, using a machine learning based object classifier is one of the options
for quality assessment. Since designing and training a convolutional neural network is out
of scope of this thesis, we had to find a model that would demonstrate its applicability to
the GPS art case. The idea is to rasterize (convert to image) a candidate artistic route and see
how the classifier recognizes it. The resulting class labels and their probabilities can serve
as an indicator of the art’s quality.

To make this work, the classifier has to have been trained on human-made contour-based
drawings. Google ”Quick, Draw!”5 is a research project tailored specifically to this purpose.
They set up a web application to collect doodle sketches drawn by people, with an explicitly
stated goal: to later use it in neural network training. The users of the app were tasked with
sketching their own representations of different kinds of objects. The crowdsourced data6

was made publicly available, which meant that a database of around 50 million hand drawn
sketches with 345 different labels could be used by anyone to create a powerful doodle
sketch classifier.

Such a dataset is invaluable for research, because every drawing is unique and includes
man-made imperfections, as well as different ideas that people have for representations of
certain objects. Figure 3.11 shows how much the artists’ imagination and skill expression
can vary. GPS art is similar in that sense, as it is also often imperfect and meant to express its
creator’s idea of the object, regardless of how distant it may be from a commonly understood
representation.

5https://quickdraw.withgoogle.com/
6Google ”Quick, Draw!” data: https://quickdraw.withgoogle.com/data
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3.3 Evaluation of route quality

Figure 3.11: Some of the drawings created by users when tasked with drawing a rabbit

Previous investigations by Lars Wachter7 describe the use of the Google ”Quick, Draw!” data
to train a deep learning based doodle sketch classifier and provide code8 to reproduce the
results. The provided model is used in the evaluation framework and is responsible for
labelling the artistic route candidates. An example image classification result is shown in
Figure 3.12.

One limitation of using a machine learning method for any task is that it is limited by its
training data. The Google ”Quick, Draw!” dataset could not possibly include all common
drawing representations of all objects. In our case, some artistic route candidates could not
be recognized properly despite being quite clear.

Other limitations are specific to the GPS art case. One incompatibility with the training
dataset is caused by the fact that GPS art drawings are supposed to be single stroke, since
we want the route’s start and end to be connected by a continuous route. On the other hand,
the training dataset does not have such a limitation, which means that the training drawings
can be more complex when made up of multiple disconnected components. Another issue is
that GPS art drawings can never be perfectly smooth. In real-world scenarios, the underlying
road network will only allow for irregular, jagged shape of the drawing. For these reasons,
there is a slight disparity between the training dataset and the images that it is meant to
label. Perfecting a doodle sketch recognition model is a separate research challenge out of
scope of this thesis. An additional challenge would be finding a GPS art dataset of sufficient
volume and quality to be used for neural network training.

The usage of the machine learning model for recognition complements the evaluation frame-
work in cases when the RTMV is not sufficient as a metric of quality. For example, if the
candidate route has been sheared, the visual impact of such a transformation needs to be
assessed. The RTMV value is transformation invariant, meaning that a drawing that is sig-
nificantly deformed by a shear transformation can still have a good value of this indicator.
Using the trained object classifier, a lower label certainty is returned for highly deformed
objects.

7Lars Wachter’s blog: https://larswaechter.dev/blog/recognizing-hand-drawn-doodles/
8Github repo: https://github.com/larswaechter/quickdraw-cnn
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Figure 3.12: Artistic route of a bike displayed next to its classification results. In this case the
object classifier returned a 92.1% certainty on the match.

Perception loss metric

One thing that neither of the previously mentioned evaluation methods covers is the per-
ceptual difference between the input drawing and the output route. Assessing the similarity
between two images is a trivial task for humans, but the underlying processes are known to
be quite complex in terms of a software implementation. The scientific research by Zhang
et al. [2018] explores the use of deep features as a metric of perceptual loss between two
images. Their work focuses on recreating something resembling human perception. A
summary of their results in their project’s website9 states that their deep feature approach
outperforms most of the commonly used perception loss algorithms to date.

In our case, we used the Learned Perceptual Image Patch Similarity (LPIPS) Python library
from the project’s Github10 repository. The code allows computing a distance between any
pair of images. In our case, those are the image representations of the input drawing and the
result artistic route. Since our algorithm outputs the route as a graph, it has to be converted
to an image format first. Once that is done, the LPIPS loss function can be used to obtain the
distance between the two images. This metric of perception loss allows for a comparison of
multiple candidate GPS art routes for the input drawing, to select the optimal choice.

In the visualizations shown in this thesis, we label this metric as Perception Loss Distance.
There are two versions of this metric, as shown in Figure 3.14. One of them uses images
with preserved rotation relative to the input drawing. This is to measure the visual impact
introduced by rotation relative to the input shape. The second metric (with the ”ignoring
rotation” label) measures the rotation-invariant perception loss distance. Figure 3.13 shows
the example metric outputs for a route variant with no rotation relative to the input drawing.
In this case both the perception distances are equal. Figure 3.14 shows a different case, where

9https://richzhang.github.io/PerceptualSimilarity/
10Github: https://github.com/richzhang/PerceptualSimilarity
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3.4 Automatic GPS art workflow

Figure 3.13: Example evaluation result for an artistic route candidate with no rotation relative
to the source drawing

Figure 3.14: Example evaluation result for an artistic route candidate with a rotation of 15
degrees counter-clockwise relative to the source drawing

the GPS art has slight relative rotation. This has a major impact on the perceptual similarity
metric, as we see that the rotation itself causes an increase from 0.204 to 0.499 distance as
computed by the LPIPS library.

The total evaluation score uses only the rotation-invariant perception loss metric, since it is
known that the final visualization of any GPS art can be displayed on a map with arbitrary
orientation.

3.4 Automatic GPS art workflow

Area of interest

Choosing an area of interest is the simplest constraint and it is done at the preprocessing
stage. Once a spatial extent is defined, the road network data can be clipped and the input
drawing can be positioned anywhere within it. The transformation parameters in the ex-
haustive search should ensure that none of the transformed input drawings fall outside of
the area of interest. The area should be large enough to contain sufficient street segments
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Figure 3.15: Two distinct routes which satisfy the constraint of a starting point (red marker)
within a 70-meter threshold

for creating the desired artistic route. This parameter acts as a filter for the routing data but
does not introduce any constraints on the route itself.

Starting point

If a specific starting point, specified by geographic coordinates, is desired, there are two
ways to handle it. The first is to use a closed input drawing by connecting the first and last
vertex of the drawing segments. When the shape is closed, any of its points can be used as
the starting point, and the resulting route will still end up as a single closed component.

The second method uses an unclosed input drawing as-is. This limits the starting point
options to only the first or last vertex of the drawing, as any other choice would result in a
route that covers only a part of the drawing rather than the entire shape.

To implement the starting point as a soft constraint we allow an additional threshold pa-
rameter. All the road network graph nodes which are within the specified distance of the
user-selected starting point become the potential starting nodes for the artistic route. The
exhaustive search is therefore limited to the routes that pass through one of those nodes, in
this context referred to as the starting node of the route. Figure 3.15 shows an example of
two different routes which satisfy the starting point requirement with a 70-meter distance
threshold.

The route search starts by first applying transformations other than translation. Then, trans-
lation is used to anchor the input shape onto the starting node. This operation is performed
for each of the shape’s points and for each of the candidate starting nodes. The routing
algorithm runs for each of these variations, generating NxM new route candidates that are
guaranteed to visit one of the starting nodes for the N points that make up the input shape
and M graph nodes that are within a specified distance of the user-selected point. This
happens for each exhaustive search transformation, so overall there are NxMxT candidates,
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Figure 3.16: Example two distinct artistic route candidates which satisfy the constraint of a
starting point (red marker)

where T denotes the number of non-translation transformations in the exhaustive search.
Figure 3.16 illustrates two example routes that satisfy the starting point constraint. If there
are no streets within the specified distance, then the algorithm uses the street node which is
the closest to the selected starting point. This is shown in Figure 3.17, where the resulting
route goes through the closest point in the street network, which is at the same time more
than 70 meters away from the selected starting location.

Desired route length

Route length acts as a soft constraint because it is not always possible to guarantee an
exact artistic route length. Enforcing a hard constraint for this would limit the number of
candidate routes to very few choices, making it difficult to find within a reasonable time.
Instead, a certain difference between the desired and obtained route length is allowed. All
the generated candidate routes have a length that does not deviate from the desired length
by more than a defined threshold value.

To handle the route length requirement, the exhaustive search is enhanced with a slight
modification. The first step is to determine the proper scale of the input drawing. It is known
that for a given transformation-fixed input drawing, the generated routes can have different
lengths depending on the layout of the underlying road network. Therefore, it is not possible
to determine a single size of the input shape that will result in routes of consistent length.
Instead, we look for a certain scale that is expected to return routing results with the route
length close to the required value. This is achieved by first generating the artistic route with
an arbitrary initial scale of the drawing. If the route length is greater than required, the input
is scaled down; otherwise, it is scaled up. Then the route is generated again. This process
is repeated until the output route length is within the specified threshold of the required
length. If the threshold value is set too low, the result may never converge if it does not find
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Figure 3.17: A starting point (red marker) and the resulting route (pink) in a case when the
chosen starting point is further than 70 meters from any roads.

an appropriate scale for the shape. Table 3.1 demonstrates the number of iterations needed
to find a proper scale for 42 kilometer routes with a 500 meter threshold value.

Once the scale value has been determined, the exhaustive search can proceed with affine
transformations and generating the artistic route candidates. The scaling factor is then fixed
for all the applied transformations, with the expectation that the lengths of the generated
routes will be close to the required value. This is not always the case, because of the natural
irregularity of the road network. Figure 3.18 illustrates one such case, where two routes
generated for equally scaled input in the same area of interest have significant differences
in length. The inputs have different rotation and placement, which is enough to introduce
a length disparity in the resulting routes. If the user requires extra precision in the route
length, the previously described length refinement method can be reused on the generated
candidate routes. This will ensure that the route length stays within a certain threshold for
all the candidates, at a cost of lower efficiency because of more routing tasks needed to refine
each route’s length.

As a final consideration, the evaluation framework can be extended to enable better route
selection based on specific length requirements. When evaluating potential artistic routes,
the proximity to the desired length is added as a component of the overall score. This means
that the score will slightly favor routes that are closer to the desired length, while still taking
into account the visual quality of the route.

Generalization of the input drawing

In the GPS art workflow, the routing component (which is explained in Section 3.1.1) is re-
sponsible for identifying a path for each segment of the input shape. However, in certain
situations, such as when a drawing segment is extremely short, the routing algorithm may
select the same road network node as the starting and ending point of the route if that node
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Test input Iterations to find
proper scale

Bike 14

Dolphin 4

Elephant 7

Hand 20

Lightning 6

Rabbit 7

Sailboat 27

Average 12.1

Table 3.1: Number of iterations needed to find a scale of the drawing which gives a desired
route length of 42 kilometers (+- 500 meters) in the Tokyo road network.

Figure 3.18: Two artistic routes generated from an input drawing with a constant scale. The
route to the left is 25.5 kilometers long. The route to the right is 23.2 kilometers long.
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(a) Original drawing (red) overlaid with its simplified version (blue)
with a threshold value of 150 meters.

(b) GPS art results. Red - without simplification of the input, green -
simplification threshold of 150 meters. Thin blue line is the original,
non-simplified input.

Figure 3.19: Figures demonstrating the impact of input shape simplification.

happens to be the closest option to both ends of the drawing segment. Furthermore, when
the granularity of the drawing is high, the GPS art workflow may experience reduced effi-
ciency due to the large number of routing tasks required for each small segment of the input
shape. To address this issue, an additional generalization step can be introduced during the
preprocessing stage. This involves reducing the resolution of the input shape by simplifying
its geometry to remove any segments that are shorter than a certain threshold value. The
simplification is done using Douglas-Pecker algorithm11. Selecting an appropriate threshold
value ensures that the generalized drawing retains its visual meaning as much as possible,
while avoiding the inclusion of any redundant data in the routing algorithm. Figure 3.19a
shows an example of an input drawing that was oversimplified and lost too much of its vi-
sual quality. Figure 3.19b shows the impact of simplification on the resulting artistic routes.
It can be observed that the route generated with a simplified input deviates more from the
original non-simplified shape. The route itself does not become more simplified, because it
simply follows the segments of a simplified shape using the underlying road network. The
purpose of simplification in this case is not to achieve a simpler result, but to make sure that
the input is as simple as possible for the sake of efficiency of the GPS art algorithm.

11https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
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(a) Before removing U-turns (b) After removing U-turns

Figure 3.20: Example of a routing scenario when a U-turn occurs. Input drawing segments
are colored orange. Output artistic route is colored pink. A topographic map is shown in
the background.

Removing U-turns on dead ends

The GPS art algorithm introduced by Waschk and Krüger [2018] served as a solid foundation
for the GPS art workflow presented in this thesis. Any route generated from an input single
stroke drawing is made up of a single connected component. One point of improvement is
the handling of frequently occurring U-turns, which significantly impact the visual clarity
of artistic routes. A U-turn is created between two routes that come from two subsequent
segments when the first route shares more than one node with the second one. This case
is illustrated in Figure 3.20a. The full artistic route is still valid, but the U-turn introduces
some undesired effects. It creates a visual dead-end segment that decreases the quality of
the GPS art. Furthermore, it is inconvenient for the person traveling along the route.

To address this issue, an extra cleaning step is added after generating an artistic route. The
final route is stored as a list of node pairs (segments), and we identify all the repeated pairs.
Repetitions are counted regardless of the pair order, meaning that segments AB and BA are
considered the same. All repeated pairs are removed, thus removing the route parts that look
like dead ends (see Figure 3.20b). Because of this change, the route is no longer guaranteed
to visit the nodes closest to the ends of the drawing segments. Additionally, removing some
route segments after routing itself means that the overall route cost is changed. The RTMV
has to be updated accordingly for the purpose of score evaluation. Another consequence is
that the route length will decrease because of the removed segments. Since this step can be
applied only after the routing is done, it may happen that the route will no longer meet the
length requirements and the process would have to be restarted with different parameters.

GPX export

GPX is a format used to describe routes supported by most physical activity tracking appli-
cations. In our experiments we mostly used WKT as a format for outputting and displaying
the GPS art routes. To allow easier integration with mobile apps (e.g., Strava, Runkeeper) the
final route is converted from WKT to GPX using ogr2ogr from the GDAL software suite.

35

https://gdal.org/index.html


3 Implementation details

3.5 Interactive web application

To consider interactive inputs from the user, a GPS art web application with a graphical
interface has been developed in the scope of this thesis. It uses some of the solutions de-
veloped for the automatic GPS art workflow (Section 2.1.4). The template matching step is
skipped, because a user can visually assess the road network layout to decide where to put
the shape. The user is given a possibility to transform (scale, rotate, translate) the shape and
get instant feedback in the form of the displayed artistic route, generated in real time after
each change to the input drawing is applied. Figure 3.21 shows the state of the app after
the transformation is applied. An overlay of the generated artistic route is visualized on top
of the input. The control panel (see ”Layer controls” in Figure 3.22) gives the possibility to
disable visibility of the input shape and have an unbiased look at the artistic route. The user
can also refine the result using exhaustive search and some extra requirements like a starting
point or desired route length. Results of such a query are visible on the map in Figure 3.22.
The application displays the best route that it could find to match the requirements of the
starting point (red dot with blue outline) and the length of 21 kilometers. For the user inter-
active approach, the exhaustive search transformation parameters are tuned to only search
close to the location where the drawing was placed on the map. The aim is to return the
best artistic route in the vicinity, considering the user’s requirements. For efficiency reasons,
the candidate routes are not evaluated using the evaluation framework. Instead, the scoring
uses a method based only on the metric value (RTMV) and how close the result route length
is to the desired length. This results in a quicker response time and consequently more
satisfaction from using the app. The user can inspect the visual quality of the results and
choose to continue modifying the route parameters or the input shape properties. Once all
the processing is done and the results approved, the route can be downloaded as a GPX file
(see ”Export” button in Figure 3.22).

An advantage of this solution, is that it gives the opportunity for a smart choice of the
drawing location taking into account the distinct characteristics of the area. The user can
inspect the topographic map and immediately see which locations have a higher potential
than others. For example, areas with big farm fields and a sparse road network can be
avoided. As a comparison, the automatic GPS art workflow (Section 2.1.4) does not have
any external knowledge, apart from the road network data, which means that it will exclude
bad results only after obtaining them.

One limitation of this solution is that it is not fully automatic and requires user input.
Because of the added manual work, the number of route options explored will usually be
lower than in the case of the automatic GPS art workflow.

3.6 Datasets and tools used

3.6.1 Data sources

Having road network data from various locations was crucial for the development and tests.
Two open road network datasets were used in the end:

• OpenStreetMap (Wiki [2022])
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Figure 3.21: View of the GPS art application after a transformation to the input shape (or-
ange) is applied. The application instantly displays the artistic route (pink) generated for
the current form of the input.

Figure 3.22: Graphical user interface of the GPS art app. The control panel is visible on
the right. The red dot with a blue outline marks the starting point. The input drawing
is colored orange and the output artistic route is colored pink. Upon hovering over the
route, a text is displayed with the route’s length and its metric value.
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Figure 3.23: Example of a disconnected street segment (red) which causes a routing failure.
The routing start and end node are labelled. The input shape segments are colored purple.

• Urban Road Network Data (Networks [2016])

OpenStreetMap was slightly more challenging to use, since it is not strictly a road network
dataset, but rather a comprehensive topographic one. Additional data cleaning was re-
quired, for example to get rid of disconnected components in the road network graph to
be used for routing. Figure 3.23 illustrates an example that causes the routing algorithm
to fail. Fixing these cases was made possible by the pgr connectedComponents function from
the PgRouting software package (see Table 3.3). This function enables finding disconnected
graph components, which can then be deleted or merged, depending on the case.

3.6.2 Software tools

The presented solutions were implemented using a variety of programming languages and
libraries, summarized in table 3.2. Other software tools used in the development phase are
shown in table 3.3.

The exhaustive search method, routing and the backend for the interactive application were
implemented in C++. Boost library provides data types and functions for routing. It also
has useful functionality to manipulate geometric types. CGAL library serves to construct a
k-d tree of the road network nodes. For each routing task (for each segment of the input
drawing) the start and end nodes are efficiently selected using a nearest neighbor search
from the end points of the drawing segment. Libpqxx is used to fetch road network data
stored in a PostgreSQL database. Finally, CROW library is used to build the REST API
and the backend server of the interactive application. The C++ functions for generating
GPS art are exposed as API endpoints to be consumed by the frontend component of the
application.

Template matching, automatic GPS art workflow and evaluation framework were imple-
mented using Python and its libraries. Shapely library is used for manipulating geomet-
ric types, for example by applying affine transformations. OpenCV is used for operations
on images and template matching. Pandas is used for data filtering and processing in the
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evaluation framework. Tensorflow enables object recognition in images with the pre-trained
machine learning model. LPIPS library provides a perceptual loss function for calculating a
visual distance between input images and the images of the output routes. All the developed
components were integrated using standard Python functionality to complete the automatic
GPS art workflow.

The interactive application frontend was developed using Javascript. Leaflet serves as a base
for the interactive map and allowed visualization of input geometries and the resulting
routes. A separate Leaflet plugin called L.Path.Drag is used to enable interactive transforma-
tion of the shapes on the map. It provides a useful functionality of dragging, scaling and
rotating equipped with an event API that allows real-time route generation after any kind
of transformation is applied by the user. Each change of the input shape emits an event
followed by a request to the C++ application backend, which returns the route geometry
in WKT format. After a conversion to another format using WKX library, the route can be
displayed on the map.

Other software tools were also used in the development and test phase. QGIS was use-
ful for visualizations of all the spatial data that appeared at various stages. ogr2ogr tool
enabled converting geometries in vector format to raster (image) and GPX format. A Post-
greSQL database served as a storage and processing tool for the road network datasets used
in tests. Import of OpenStreetMap routing data for the test locations was achieved using
Osm2pgrouting
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Components Programming
language

Library Used functionality

• Exhaustive
search

• Interactive
application
backend

C++

Boost Graph data types, ge-
ometric types, routing
functions

CGAL K-d tree type, nearest
neighbor search

libpqxx Querying road network
graph data stored in a
PostgreSQL database

CROW Rest API and server for
the interactive applica-
tion

• Template
matching

• Automatic
GPS art
workflow

• Evaluation
framework

Python

Shapely Geometric types, basic
geometric operations

OpenCV Image operations, tem-
plate matching

Pandas Manipulation of data for
the evaluation framework

Tensorflow Object recognition in im-
ages using a pre-trained
model

LPIPS Perceptual loss function

• Interactive
application
frontend

Javascript Leaflet Interactive map, visual-
ization of data on the
map

L.Path.Drag Leaflet plugin for trans-
forming shapes interac-
tively by dragging, scal-
ing, rotating

WKX Conversions between dif-
ferent geometry formats
(GeoJSON, WKT)

Table 3.2: Overview of the programming languages and libraries used in the experiments
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Software package Usage

QGIS Visualizations of geometric data
in the development phase

ogr2ogr Exporting routes to GPX for-
mat, converting vector geome-
tries to rasters (images)

PostgreSQL Storage and processing of road
network data

PgRouting PostgreSQL extension for pro-
cessing graph data

osm2pgrouting Import of OSM routing data to
a PostgreSQL database

Table 3.3: Overview of the software packages used in the experiments

41

https://qgis.org/en/site/
https://gdal.org/programs/ogr2ogr.html
https://www.postgresql.org/
https://pgrouting.org/
https://github.com/pgRouting/osm2pgrouting




4 Results and discussion

This chapter presents the research results in a summarised manner. Many illustrations will
be used, because they are crucial to conveying most of the results related to generating GPS
art. Automatic GPS art workflow and user interactive approach are also compared in terms
of their strengths and weaknesses considering various scenarios. In the last section, the
performance and innovative aspects of the products of this thesis are discussed.

4.1 Test datasets

The automatic GPS art workflow (described in Chapter 3) has been tested with 3 chosen
input drawings in different locations around the world, mostly in urban and suburban areas.
One location (Delft) contains some rural areas to show what impact they have on artistic
routes.

The chosen locations are:

• Tokyo, Japan. Map projection: EPSG:3100

• Paris, France. Map projection: EPSG:32631

• New York City, USA. Map projection: EPSG:32618

• Delft, Netherlands. Map projection: EPSG:28992

• Amsterdam, Netherlands. Map projection: EPSG:28992

The chosen input drawings (Figure 4.1) are:

• bike

• elephant

• hand

4.2 Test results

Visual test results are displayed in the figures below (Figure 4.2, Figure 4.3, Figure 4.4,
Figure 4.5, Figure 4.6). The full results in tabular format are shown in Table 4.1.
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Figure 4.1: Input drawings chosen for the tests. The diagram above them shows reference
labelling given by the object classifier.

4.2.1 Visual analysis

A general conclusion is that the chances of finding a suitable artistic route are higher as the
route length increases. This is expected and has a simple explanation. Assuming that the
resolution (density) of the road network is comparable for the entire region, the deviations
from the road network are also always comparable. As the GPS art is scaled up, these
deviations appear proportionately smaller and thus their negative impact on the art’s quality
is decreased. This is why longer artistic routes appear to be more smooth than their shorter
versions, where the deviations from the source drawing are relatively bigger. A visual
example is shown in Figure 4.7 which shows routes for the same shape in 4 varying scales.

Because of the combination of various quality metrics, the algorithm is capable of choosing
a route that is not deformed by topographic obstacles. An example of this behaviour is
visible in Figure 4.3b in the GPS art of an elephant. The street network in the centre of Paris
is split by a wide barrier formed by the river Seine. This creates a substantial area with
lower street density and choke points wherever the river is crossed by a bridge. The artistic
route has to properly fit the roads that cross the river, otherwise they would introduce too
much of a detour that would lower the route quality. The result looks successful, with the
route navigating around the river and still representing something that resembles a rotated
elephant.

Another observation is based on the visual disparity in the same kinds of objects depend-
ing on the city. Differences in the spatial layout of the road networks in the test locations
becomes apparent. Tokyo’s road network (Figure 4.2) seems to be the most dense out of the
test datasets, providing visually acceptable solutions even for the 10-kilometer routes. In
the rest of the locations, the 10-kilometer routes are less visually appealing, with significant
deviations from the original shape. Results from New York City (Figure 4.4) are the most
distinguishable, because of the characteristic square grid street layout typical for the cities
of North America. This property results in more horizontal and vertical straight line seg-
ments in the artistic routes. For example, the elephant in Figure 4.4b has almost perfectly
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(a) Results for Tokyo - 10 kilometer route

(b) Results for Tokyo - 21 kilometer route

(c) Results for Tokyo - 42 kilometer route

Figure 4.2: Visualized test results for Tokyo
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(a) Results for Paris - 10 kilometer route

(b) Results for Paris - 21 kilometer route

(c) Results for Paris - 42 kilometer route

Figure 4.3: Visualized test results for Paris
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(a) Results for New York - 10 kilometer route

(b) Results for New York - 21 kilometer route

(c) Results for New York - 42 kilometer route

Figure 4.4: Visualized test results for New York
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(a) Results for Delft - 10 kilometer route

(b) Results for Delft - 21 kilometer route

(c) Results for Delft - 42 kilometer route

Figure 4.5: Visualized test results for Delft
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(a) Results for Amsterdam - 10 kilometer route

(b) Results for Amsterdam - 21 kilometer route

(c) Results for Amsterdam - 42 kilometer route

Figure 4.6: Visualized test results for Amsterdam
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Figure 4.7: Routes of different lengths generated for the same input shape in the area of
Tokyo. As the length increases, the meaning of the route becomes clearer.

straight legs, which in this case is a positive occurrence. Figure 4.8 captures the different
characteristics of the same objects represented by GPS art in different cities.

The results for Delft look visually the worst. The main reason for this is the size of the city,
which is comparably smaller than all the other test subjects. Its street network occupies a
smaller space and the longer routes (see Figure 4.5c) lead out of the city into rural areas,
where fewer roads are available. An example of an artistic route in a rural area is shown in
Figure 4.9. Additionally, Delft has many small topographic barriers in the forms of canals,
which cause many detours and result in more significant shape distortions of the GPS art
results.

4.2.2 Quantitative analysis

Analyzing the numeric values from Table 4.1, the actual route length deviated from the
desired length by 1.7% on average. The perception loss distance of 42-kilometer routes is
generally lower than that of a 10-kilometer route, except for Delft, which can be explained
by routes having to leave urban areas and take significant detours in rural roads.

When it comes to the label certainty given by the object classifier, many artistic routes have
not been labelled correctly. Out of the 42-kilometer routes, only 13% of the cases were
labelled inaccurately. For the 21-kilometer routes, it was 40% of the cases, and for the 10-
kilometer routes, it was 80%. This is exposes the weaknesses of the object classifier. Firstly,
it does not properly recognize most of the 10 kilometer routes. This is expected, because the
model was not trained on GPS art data and most of these routes are significantly deformed
compared to the input drawing. To overcome this issue, the neural network model should
be trained at least partly using GPS art data, making it less sensitive to the jagged edges
present in the routes.

Summarized results, with mean metric values per each city, are displayed in Table 4.2a.
Artistic routes generated in Delft have the highest average RTMV and perceptual distance
metric. These metrics have the lowest values for New York and Tokyo, which means that
these cities had GPS art of the highest quality out of the tested cases. Both of them are
metropolises spanning large areas with a dense road network.

Summarized results with mean metric values per each desired route length are displayed
in Table 4.2b. In general, the combination of all the metrics favors longer routes, which
have comparable RTMV, but generally lower perceptual distance metric. They are also more
easily recognized by the object classifier, most likely because their size makes them appear
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Figure 4.8: Comparison of 21-kilometer artistic routes for the same object (bicycle), generated
in New York (top) and Paris (bottom).

Figure 4.9: Result of the algorithm when the drawing is overlaid on top of a sparse road
network. The resulting artistic route is colored red. The input drawing is a white line
with black outline.

51



4 Results and discussion

Figure 4.10: Result GPS art of a bike using the interactive approach in Paris. The river can
be seen flowing north of the artistic route.

smoother than shorter routes. If there is a big enough area covered with a dense street
network, then longer artistic routes will look better in most cases.

Another summary of test results in Table 4.2c, shows the average metric values when the
Dutch cities (Delft, Amsterdam) are excluded. Including only the bigger cities (Paris, New
York, Tokyo) causes the RTMV to drop by 46% on average, which means that the road net-
works in these cities allow for lower geometric deviation between the GPS art and an input
shape.

4.3 Comparison

The test results show that the automatic GPS art workflow can be used to generate artistic
routes. An alternative way would be to use the interactive web application (Section 3.5)
which can achieve similar goals, but with the user’s real-time interaction. At the same time,
both of these methods can give unreliable results in certain cases. It is important to highlight
under what circumstances these methods excel and what their pitfalls are.

One significant difference between these methods is the way in which they use the exhaus-
tive search. The fully automatic workflow has a wider search space, with more transfor-
mation variations and more generated route candidates overall. Meanwhile, the interactive
approach is limited by the desired quick response time in the user interface of the GPS art
application. The exhaustive search in this case is used with a narrowed search space and is
designed to function as a refinement of the route using the location picked by the user. As a
result, the interactive approach explores fewer GPS art options which lowers the chance of
finding the best one.

The route quality scoring system is also slightly different. To achieve faster response time,
the interactive approach uses only the RTMV and the closeness of the length of the route to
the desired length. The automatic workflow uses both these methods and also utilizes the
more advanced, machine learning based techniques. This allows for a more comprehensive
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automatic evaluation of the route quality before serving the results to the user. On the
other hand, the interactive approach does not necessarily need a machine learning algorithm
telling the user how well it recognizes a drawing. The user is meant to do this part of the
evaluation himself.

Another difference lies in the initial placement of the input drawing on the map. The au-
tomatic approach tries to determine an optimal position using template matching. In the
interactive approach, the user places the drawing in an initial position according to his own
preference and knowledge of the terrain. That extra knowledge of the area’s topography
is crucial to obtaining satisfying artistic routes in difficult scenarios, for example when the
road network is sparse or there are many topographic barriers in the vicinity. The automatic
workflow has no knowledge of such phenomena, therefore it cannot move its search space
to where the road network is more favorable. A visual example is shown in Figure 4.10 for
a route in Paris. Knowing the topographic barrier in the form of the river Seine, the user
can move the drawing to a place where the route configuration is more dense. Keeping
the old location would still give correct results, but in the presence of topographic barriers
some of the artistic route segments may have to deviate significantly from the input drawing
shape.

Comparing the automatic and interactive approaches in real world cases, the following con-
clusions arise. The interactive method gives better tools for dealing with difficult cases in
the road layout. Additionally, it provides a way of handling user’s individual preferences in
real time. The automatic method finds the best of many good options in a dense road net-
work. It explores more possibilities and uses more extensive methods of result evaluation,
allowing it to find a more refined solution at the cost of lower efficiency.

4.4 Discussion

In this section we interpret and analyze the research findings, relating them back to the
original research questions. New improvements to the existing methods are highlighted.
Finally, the limitations of the solutions are discussed based on the challenges encountered
in the course of this thesis.

A reminder of the previously posed research questions:
How to automatically generate artistic routes based on any input drawing?

Sub-questions:

• How to define measures of quality and how to evaluate them for an obtained GPS art
route?

• What priorities / compromises should the designed algorithm have in order to pro-
duce optimal output considering the user’s preferences?

To summarize, in this thesis we present a workflow that can automatically generate artistic
routes based on certain input shapes. New methods of evaluating the quality of the gen-
erated routes were designed and implemented. The designed workflows were augmented
with a number of improvements to produce optimal output, given the characteristics of the
source data and specific user requirements.
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4.4.1 Artistic route generation

The products of this thesis present two ways that artistic routes can be generated. The
first one is the fully automatic GPS art workflow. It uses a combination of an image based
technique (template matching) and a routing algorithm (A* algorithm) to find the solution.
The other method is the semi-automatic user-centered interactive approach. It reuses some
of the techniques developed for the automatic workflow, while also giving real-time feedback
in the form of a responsive web application.

4.4.2 Measures of quality

To automatically measure the quality of artistic routes, distinct metrics were integrated into
the evaluation framework. The GPS art scoring system uses a numeric description of the
route’s closeness to the input drawing in accordance with the metric used in the routing
algorithm cost function. Considering a broader look at the aesthetic value of artistic routes,
machine learning methods have been used to evaluate the quality in other aspects. An object
classifier is used to check how easy it is to recognize what a route is meant to represent, while
a perception loss algorithm returns a metric of visual difference between the input and the
result, in an attempt to mimic human perception.

4.4.3 Innovation

The core part of our GPS art workflows is based on research done by Waschk and Krüger
[2018]. A number of improvements have been added to their method, referred to as the core
method. Additionally, the method has been integrated with supporting functionalities, like
automatic quality evaluation and user-defined parameters.

Using A* for routing

The proposed Dijkstra algorithm for routing tasks has been replaced by A* with an euclidean
distance heuristic function. This is a simple yet effective efficiency improvement, since A*
is effective in start-to-end routing scenarios in street graphs. More of this is explained in
Section 3.1.2.

Route positioning

The core method only solved the transformation-fixed approach, which assumes that the
input drawing has an initial placement on the map. However, the goal was to implement
a solution that can work without such a precondition for the input data. To achieve this,
template matching is used to find an initial real-world location for the drawing depending
on the street network layout. Then, the exhaustive search is used to further refine the draw-
ing’s position by exploring many route options and selecting the one that has the highest
evaluation score.
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Figure 4.11: Artistic route of a dolphin (green) after removing the repeated segments (red).

User preferences

A significant improvement for real-world scenarios is the consideration of the user’s pref-
erences. Requirements such as a certain route length or a starting point are handled by the
improved algorithm, thus making the solution more practical. The user can also express his
individual preferences by using the interactive GPS art application. The instant feedback,
with quickly generated and displayed artistic routes, allows for tailoring the final result
according to one’s needs.

Postprocessing

An extra postprocessing step was added to clean the artistic routes and improve their vi-
sual clarity. Repeated route segments, caused by U-turns, introduce visual irregularities.
They are sometimes created by the core method as a side effect of some particular street
graph configuration. The U-turns (and repeated segments) are removed, while keeping
the final route’s integrity as a single connected component. A visual example is shown in
Figure 4.11.

4.4.4 Limitations

General

Although an image based method has been used to some extent, the final products are based
on a path finding algorithm. This is because an image based approach can never provide
enough information to solve a routing-based problem. The algorithm prioritizes routes that
stick as close to the input shape as possible, in an attempt to recreate an input drawing in
the street network. It does not consider the input shape as a whole, but rather solves a
separate routing problem for each of the input shape’s segments. One limitation is that the
routing algorithm is not smart enough to make creative decisions. An example of such a
decision could be to purposely deviate from the input drawing knowing that it will improve
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the GPS art quality. For example, if a person is manually designing an artistic route of an
elephant, they can elongate its tusks or tail, if it is more fitting for the underlying street
configuration.

When searching for the optimal artistic route, some compromises in the algorithm are intro-
duced by the user-defined parameters. Choosing a certain starting point narrows down the
search space to the routes passing via the nodes within a certain distance that point. The
route length requirement also decreases the number of potential routes to choose from.

An important consideration when using any exhaustive search method is the inverse pro-
portionality between its speed and the quality of its results. Increasing the resolution of
the exhaustive search, by adding more transformation variations, allows it to explore more
routing options at the cost of higher computational expense. Having more artistic route
candidates increases the chance of finding the best possible route, but this comes with the
mentioned trade-off.

One of the encountered limitations concerns the input data. Relating this back to the main
research question, the solutions we worked on cannot generate artistic routes based on any
input drawings. The designed workflow has specific requirements for the input data. Each
drawing has to be represented by a single set of connected line segments. Moreover, the
chosen scale of the drawing cannot be too small, otherwise it will not be possible to make
a route that represents it in a meaningful way. Another data based limitation concerns the
road network. As mentioned before, there are cases when the underlying street layout does
not enable generating a route of sufficient quality. In an ideal case, the road network should
densely cover a significant area in space.

Among other limitations is the fact that the algorithm has no knowledge of the semantic
meaning of the figure. It merely follows the segments of the input shape. In this sense, it is
a narrow representation of the user’s idea in the road network graph. A broader approach
would also consider the fact that in the end, the user is not interested in obtaining a route
tightly fitted to his drawing, but a route that expresses it as clearly as possible.

Component specific

The separate components of the GPS art workflow serve different purpose and as such, they
have their own limitations. The first image matching step is based on simple template-
based template matching. It compares the spatial properties of the input shape and the road
network in a finite number of positions, to determine the one with the highest overlap. This
method is not transformation-invariant, meaning that in its purest form it can only detect
the template if its size and rotation are aligned with the pattern that is expected to be found
in the target image. To overcome this, the search is repeated with the template in many
variants of scale. This approach has limitations similar to those highlighted in the case of
the exhaustive search method. It has a discrete search space that depends on the granularity
of the used transformation variants. Because of this, its efficiency is suboptimal and the
best result can be accidentally omitted. Using one of the more advanced template matching
techniques may solve the mentioned issues, but it is not that straightforward.

The evaluation framework in its current form is not suitable for evaluating all kinds of GPS
art. The object classifier uses a convolutional neural network, which is known to work
well on inputs highly similar to the datasets used in its learning process. This means it
can fail to recognize some artistic routes, if they represent something in a less conventional
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way that was perhaps not included in the training data. In such cases, the total evaluation
score is heavily impacted by the low certainty or even false labels returned by the object
classifier. Additionally, the training dataset does not share the GPS art workflow’s limitation
of working with only single-stroke drawings. For these reasons, the RTMV and perception
loss metrics are more reliable in such cases. The former is a numeric description of the
route’s closeness to the input drawing. The latter is a metric of perceptual distance between
any two images, in this case the input drawing and the output route. They are more robust
and are not influenced by any kind of bias, as opposed to the metric that comes from the
object classifier. However, they fail to capture the semantic meaning of the art, a crucial
aspect which is covered by the object classifier instead.

Another consideration for the evaluation framework is related to how the total score is
calculated. It is a weighted sum of its components: the RTMV, the perception loss metric
and the object classifier metric. These weights should be tuned according to one’s own
preferences. Giving more significance to the RTMV will mean the highest rated routes will be
geometrically closer to the input shape, while increasing the weight of the perception loss
metric will give priority to routes that are deemed as visually closer. Tuning the weights to
obtain a sufficient quality of results has to be done by trial and error.

City Object Desired
length
[km]

Result
length
[km]

RTMV Perceptual
distance

Label
cer-
tainty

Tokyo

Bike
10 10.7 1.25 0.277 26%

21 21 1.24 0.369 70%

42 42.1 1.14 0.212 93%

Elephant
10 10 1.44 0.444 N/A

21 21.1 1.18 0.293 74%

42 42 1.15 0.26 64%

Hand
10 10.3 1.30 0.301 50%

21 21.3 1.08 0.209 99%

42 42 1.29 0.353 96%

Paris

Bike
10 10.5 1.78 0.434 N/A

21 21.1 1.55 0.399 N/A

42 41.8 1.93 0.439 78%

Elephant
10 10.6 1.83 0.47 N/A

21 21.3 1.53 0.33 N/A

42 43.7 1.80 0.299 66%

Hand
10 10.4 1.46 0.425 N/A

21 21.1 1.71 0.268 N/A

42 42.2 1.56 0.289 99%
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New York
City

Bike
10 9.9 0.98 0.405 N/A

21 21.4 1.00 0.34 59%

42 41.9 1.60 0.260 78%

Elephant
10 10.2 1.01 0.477 N/A

21 21.6 1.11 0.329 N/A

42 42.4 1.07 0.230 66%

Hand
10 10.2 1.033 0.392 N/A

21 21 1.47 0.301 N/A

42 41.6 1.13 0.222 89%

Delft

Bike
10 10.5 3.93 0.498 N/A

21 21.7 5.32 0.447 70%

42 42.1 6.26 0.428 N/A

Elephant
10 10.4 3.61 0.534 N/A

21 21.3 4.09 0.322 56%

42 42.3 6.44 0.445 N/A

Hand
10 9.9 3.03 0.318 N/A

21 21.2 3.72 0.301 N/A

42 42 6.54 0.287 61%

Amsterdam

Bike
10 10.3 2.79 0.5 N/A

21 21.1 3.70 0.299 43%

42 42.6 4.61 0.396 90%

Elephant
10 10.2 3.9 0.349 29%

21 21.3 3.73 0.312 57%

42 42.3 4.35 0.329 76%

Hand
10 10.2 4.11 0.313 N/A

21 21.1 4.31 0.321 64%

42 42 4.11 0.268 70%

Table 4.1: All test results in tabular format. For cases with an incorrect label given by the
object classifier the label certainty is marked as N/A (not applicable).
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City RTMV Perceptual
distance

Accurate
labels

Label cer-
tainty

Tokyo 1.23 0.30 89% 72%

Paris 1.68 0.37 33% 81%

New York 1.16 0.33 44% 73%

Delft 4.77 0.40 33% 62%

Amsterdam 3.96 0.34 78% 61%

(a) Summary of results. Metric values are average per city.

Desired
route
length

RTMV Perceptual
distance

Accurate
labels

Label cer-
tainty

10 2.23 0.41 20% 35%

21 2.45 0.32 60% 66%

42 3.00 0.31 87% 79%

(b) Summary of results. Metric values are average per desired route length.

Desired
route
length

RTMV Perceptual
distance

Accurate
labels

Label cer-
tainty

10 1.34 0.4 13% 38%

21 1.32 0.32 27% 76%

42 1.41 0.28 60% 81%

(c) Summary of results without the Dutch cities (Delft, Amsterdam). Metric values
are average per desired route length.

Table 4.2: Summary of test results
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This chapter summarizes main findings and conclusions of this thesis. Potential tasks for
future work are also described.

5.1 Summary

In this thesis we present work in the topic of designing and implementing a solution for
generating artistic routes from input drawings. The results include two routing-based prod-
ucts that can be used for the mentioned purpose: the automatic GPS art workflow and the
interactive GPS art application. The presented solutions are capable of generating shape-
guided artistic routes when certain conditions regarding the input and the road network
data are met. Each of the solutions has its own advantages and limitations. The automatic
GPS art workflow, supported by a comprehensive evaluation framework, excels in finding
the best routes out of many possibilities in a dense road network. It requires more time to
generate all the options, evaluate them and choose the one with the highest score. The inter-
active application is more user-focused and gives better tools for dealing with more difficult
scenarios, for example when the road network has more topographic barriers (farm fields,
rivers, railways). Additionally, it has some efficiency adjustments and is more pleasing to
use with its instant feedback in the form of displayed routes. As a trade-off, it only uses a
limited capability of the designed evaluation framework.

Test results prove that GPS art is generally not well-suited for short routes. As the route
length increases, its representation of the source drawing also becomes more visually pleas-
ing. Another limitation is encountered in rural areas, where there are fewer routing options,
because of lower street density.

As a final consideration, it should be mentioned that the quality of GPS art is difficult to
measure. For the complex real world cases, a reference solution that is 100% identical to
the input drawing almost never exists. Because of this, there is a permanent uncertainty,
whether the best obtained result is actually the best within the searched road network.

5.2 Future work

In the course of this thesis we discovered many new paths towards the improvement of the
solution. The GPS art workflow in its current form can be made smarter and more efficient.
The routing component is irreplaceable, since it is crucial to obtaining the final solution as a
subset of the road network graph. Other components and auxiliary tools can be developed
to further improve the GPS art workflow.

Future work could be more focused on preserving the semantic meaning of the art, instead
of only trying to preserve its geometric properties. There can be many potential ways to
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move closer towards this goal. One of them would be to recognize what the user wants to
express in the first place. Then, an algorithm could be used to generate semantically mean-
ingful deformations that would lead to exploring new artistic route options. Semantically
meaningful deformations are understood as changes which modify a drawing’s geometry
without changing its meaning. An example of such a deformation would be elongating an
elephant’s tusks or its tail. Designing such an algorithm would be an innovative challenge.
Similar research, although without the semantic meaning aspect, has been done by Igarashi
et al. [2005].

Another idea is to design an application that stores many variations of semantically labelled
drawings. After learning the kind of the object that the user wants to express, the application
could suggest many potential routes that can express the user’s idea in distinct ways.

Another point for future work is related to the template matching step in the GPS art work-
flow. In our methods, we only used the simpler template-based template matching tech-
nique, which is not invariant to scale and rotation. Successfully applying a feature-based
technique will result in faster and more robust pattern detection in the road network, but
it is not without challenges. The features used in most existing methods are designed for
texture-rich images with color information, and are therefore not effective for the textureless,
binary images that are derived from geometric shapes. Kim and Araújo [2007] describe a
method which can be further explored to make it work for the GPS art case.

An alternative method of template matching proposed by Lee et al. [2016] enables finding
similar objects, even when the deformation between the source and target is not due to an
affine transformation. Finding a way to elastically match input shapes to the patterns of the
road network could bring a revolution in the GPS art problem.

The template matching step could also be replaced with a different technique for pattern
detection in images. More research needs to be done to check if learning-based object de-
tection can give better results in locating shapes in the road network. Challenges similar to
those described in the context of feature-based template matching are expected to lie ahead.
The pattern detection problem could also be treated as a shape matching problem. Takase
and de Sales Guerra Tsuzuki [2009] present a method for matching 2-dimensional shapes
which is invariant under translation, rotation and scaling transformations of the compared
shapes.

The learning-based object classifier has room for improvement, which was shown in the
tests (Section 4.2). The model that we used was a generic one, meant for doodle sketch
recognition. With some adjustments in the learning datasets, a new model for the GPS art
case can be designed to provide better object recognition for the evaluation framework.

5.3 Reflection

Throughout the course of this thesis, we have encountered many challenges which enabled
us to gain new knowledge in a variety of topics. The goal of making automatic GPS art
generation possible required focusing on software development. As highlighted in Table 3.2
and Table 3.3, we ended up using a broad technological stack consisting of multiple pro-
gramming languages (C++, Python, Javascript) and software packages for the different tasks.
Some of the used software libraries required a significant input of time to be able to use them
efficiently and tailor their functionality to the challenges of this thesis. A significant amount
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of time was spent on figuring out various C++ libraries like Boost (graph data types, routing)
and CGAL (geometry processing, nearest neighbor search). We were also able to improve
the knowledge of graph theory, routing algorithms and image matching techniques.

Another challenge was related to the quality of the road network data. The used datasets,
while freely available, had their flaws. Disconnected components, often present in the road
network, complicated the work, because extra time had to be spent cleaning up the graph.
Maintaining a valid, up-to-date and production-ready routing data is a service done com-
mercially by specialized companies.

We knew from the beginning that automatically generating GPS art may not have a flawless
solution, due to the nature of the problem. We did our best to explore different paths that
could lead to satisfactory results. Still, the visual quality of GPS art is often insufficient in
cases where the data or the specific user requirements do not allow for better options.

After working with GPS art for a long time, we developed a bias allowing us to recognize
GPS art more easily, but causing our perception of the art’s quality to become more subjec-
tive. We leave the judgment of visual satisfaction with the presented results up to the reader
of this thesis. After all, beauty is in the eye of the beholder.
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