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ABSTRACT: Mol-scale oxyfunctionalization of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) using an unspecific
peroxygenase is reported. Using AaeUPO from Agrocybe aegerita and simple H2O2 as an oxidant, cyclohexanol concentrations of
more than 300 mM (>60% yield) at attractive productivities (157 mM h−1, approx. 15 g L−1 h−1) were achieved. Current limitations
of the proposed biooxidation system have been identified paving the way for future improvements and implementation.
KEYWORDS: biocatalysis, peroxygenase, oxyfunctionalization, cyclohexane, upscaling, bulk chemical

■ INTRODUCTION
Biocatalysis is increasingly considered as an alternative to
traditional chemical methodologies. In particular, the high
selectivity of many enzymes is especially valued for the
synthesis of chiral, value-added products.1−3 As a consequence,
the overwhelming majority of biocatalytic processes in the
chemical industry deals with the synthesis of fine or specialty
chemicals or pharmaceutical intermediates. Bulk chemical
applications such as the synthesis of acrylamide are scarce.4

The biocatalytic oxyfunctionalization of cycloalkanes, for
example, is occasionally addressed in the literature5−9 but so
far has not been considered as an alternative to existing
industrial practice. Especially in the case of this transformation,
high chemoselectivity would be highly desirable.10 The main
issue for the chemical oxidation of cyclohexane lies with the
increasing reactivity of the oxidation products. In other words,
the rate of overoxidation of products is faster than the rate of
desired oxidation of starting materials, thereby making
isolation of intermediate products such as cyclohexanol or
cyclohexanone challenging. Today, the technically imple-
mented solution to this problem is to limit conversions to
less than 10% and thereby minimize reagent loss in undesired
overoxidation products (Scheme 1).10 Obviously, the un-
reacted starting material is recycled, which however also adds
complexity to the production system.
Selective enzyme catalysts may represent a solution to this

selectivity issue. In the past, especially cytochrome P450
monooxygenases (P450 MOs)11,12 have been considered as
catalysts for the selective oxyfunctionalization of cyclo-
alkanes.13−20 Though excellent results with full conversion
and high selectivity have been achieved, the space time yields
tend to be low, in the range of a few millimolar product
formations per hour and low final product titers generally in
the range of 5−10 mM.21 Next, the complex molecular
architecture of many P450 MOs22 and also their dependency
on molecular oxygen challenge their practical application at
scale.23−25 So-called unspecific peroxygenases (UPOs, E.C.

1.11.2.)26,27 also catalyze the oxyfunctionalization of (cyclo)-
alkanes at high selectivity28 but at the same time only need
hydrogen peroxide as the stoichiometric oxidant instead of the
complex electron transfer chain to reductively activate
molecular oxygen. Particularly, the UPO from Agrocybe aegerita
(AaeUPO, PaDa-I variant)29,30 is an attractive biocatalyst for
the oxyfunctionalization of, for example, cyclohexane.
Previously, we31 and the group of Hofrichter28 reported the

selective, peroxygenase-catalyzed oxidation of cyclohexane
yielding only cyclohexanol and cyclohexanone [i.e., ketone-
alcohol (KA) oil] as products. However, in these studies, the
substrate loading and consequently the product concentrations
were in the lower millimolar (μmol) range and thus far too low
for any preparative application.
Given the extraordinary stability and activity of AaeUPO,32

we set out to evaluate whether this enzyme may enable multi-
mol-scale synthesis of KA-oil (Scheme 1).

■ MATERIALS AND METHODS
Preparation of the Recombinant UPO from Agrocybe

aegerita (AaeUPO, PaDa-I). The biocatalyst (expression-
engineered variant of the peroxygenase from Agrocybe aegerita,
AaeUPO PaDa-I mutant) originated from a 2500 L pilot-scale
cultivation of recombinant Pichia pastoris X-33.33 The
concentrated supernatant was lyophilized at 0.1 mbar and
−28 °C using a Christ Alpha 2−4 lyophilizer (Martin Christ
Gefriertrocknungsanlagen GmbH, Osterode am Harz, Ger-
many). For the 11 L reactions, 536 g of lyophilized enzyme
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with a total AaeUPO-amount of 456 μmol (0.85 μmolAaeUPO
g−1

lyophilisate) was used.
CO-Difference Spectra. AaeUPO concentrations were

determined from carbon monoxide (CO)-difference spectra
using the extinction coefficient at 445 nm of ε445 = 107 mM−1

cm−1.34 950 μL of protein sample, diluted in 100 mM KPi-
buffer, was filled into plastic cuvettes, placed in a photometer,
and blank recorded (base subtraction). After zeroing, the
sample was exposed to CO for a few seconds. Next, 50 μL of 1
M sodium dithionite stock solution was added, and a difference
spectrum between 400 and 500 nm was recorded. The
measurements were continued until a constant absorption
maximum was obtained.
H2O2 Quantification Assay. The concentration of H2O2

in the reactor was measured at different time points using a
Pierce quantitative peroxide assay kit (catalog number 232802,
Thermo Scientific Pierce, Rockford, IL, USA). The working
reagent (WR) was prepared by mixing 100 μL of reagent A
with 10 mL of reagent B as described in the kit. Samples were
withdrawn every 15 min from the reactor for H2O2 analysis.
Two dilutions were prepared for each sample, and the analysis
of each dilution was performed in duplicate. 20 μL of sample
was incubated with 200 μL of premixed WR in a 96-well plate
and incubated at 25 °C for 15 mins.

The H2O2 concentration was determined by measuring the
absorbance at 240 nm using a molar extinction coefficient of
43.6 M−1 cm−1.35 A standard curve was made with H2O2
concentrations ranging from 0 to 130 μM. The absorbance of
standards and samples was measured at 595 nm using a
microplate reader (SPECTRO star Nano; BMG LABTECH,
Germany). The slope of the standard curve was used for
quantification of the H2O2 concentration.
100 mL Scale Reactions. The AaeUPO-mediated

hydroxylation of cyclohexane on a 100 mL scale was performed
in a SYSTAG jacketed lab reactor (250 mL operational
volume) at 25 °C and 300 rpm mixing speed. 100 mL of
reaction solution contained 100 mM KPi buffer (pH 6), 50 vol
% acetonitrile, 10−20 μM rAaeUPO (concentrated super-
natant), and 500 mM cyclohexane. H2O2 solutions were freshly
prepared prior to the experiment and continuously fed from a
4.5 M or 50 wt % stock solution with a H2O2-dosing rate of 50
and 200 mM h−1, respectively. The amount of added H2O2 per
hour was kept constant at 1.2 g which corresponds roughly to
1.1 mL. The reaction was monitored for up to 48 h. At
different time points, samples from the aqueous phase were
withdrawn, extracted with 500 μL of ethyl acetate containing 5
mM of the internal standard n-dodecane (IS), and analyzed via
achiral GC. Reaction mixtures were also qualitatively analyzed

Scheme 1. Oxidation of Cyclohexanea

aOutlined are the established aerobic oxidation procedures (upper) and the proposed biocatalytic alternative (lower).

Figure 1. 35 L-reactor used for the reaction on 10 L scale. (a) Process flow diagram (T1: temperature sensor, pH 01: pH sensor and display, P1:
pump, HT in/out: hot water in/out, R-01: reactor). (b) Photograph of the reactor setup. (c) Photograph of the pump setup.
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for H2O2 accumulation by color change using Quantofix
peroxide 100 test strips (Macherey-Nagel, Düren, Germany).
AaeUPO-Mediated Oxidation at 11 L Scale under

Preparative Scale Conditions. The UPO-mediated oxida-
tion of cyclohexane was upscaled to a 11 L scale in a 35 L
jacketed glass reactor (Figure 1). In total, two runs were
performed.
Fed-Batch 1. 258 g of lyophilized AaeUPO (PaDa-I variant)

was dissolved in a total volume of around 5 L of 100 mM KPi,
pH 6 and added to a 35 L jacketed glass reactor. Afterward, 5.5
L of acetonitrile was pumped at 0.5 L per min using a Watson
Marlow peristaltic pump 503 S (Watson-Marlow, Falmouth,
UK). The agitation speed was set at 225 rpm to maintain the
same power input of 2 W/L as the 100 mL batches. Then, 600
mL of cyclohexane was added using the same pump (total
volume 10.7 L). The reaction was started by pumping H2O2
from a 12.75 M solution with a flow rate of 120 mL/h using a
Watson-Marlow peristaltic pump 520 S (Watson-Marlow,
Falmouth, UK). Every 15 min, a 5 mL sample was taken and
analyzed for H2O2 concentration via a photometric assay. The
product concentration was analyzed every hour for the first 2 h
and subsequently every 30 min via GC-FID. The reaction was
stopped after 3.75 h.
Fed-Batch 2. 278 g of lyophilized AaeUPO (PaDa-I variant)

was dissolved in a total volume of around 5 L of 100 mM KPi,
pH 6 and placed in 35 L jacketed glass reactor. Afterward, 5.5
L of acetonitrile was pumped at 0.5 L per min using a Watson
Marlow peristaltic pump 503 S (Watson-Marlow, Falmouth,
UK). The agitation speed was set at 225 rpm to maintain the
same power input of 2 W/L as the 100 mL batches. Then, 630
mL of cyclohexane was added using the same pump (total
volume 10.7 L). The reaction was started by pumping H2O2
from a 12.75 M solution with a flow rate of 120 mL/h. Every
15 min, a 5 mL sample was taken and analyzed for H2O2
concentration via a photometric assay. The product concen-
tration was analyzed every hour for the first 2 h and
subsequently every 30 min via GC-FID. The reaction was
stopped after 3.75 h.
Product Analysis. For GC analysis, a Shimadzu GC-2010

plus/FID equipped with an Agilent CP-Wax 52GB column (50
m × 0.53 mm × 2.0 μm) with N2 as the carrier gas was used.
The temperature gradient was described in key points as
follows: (Split 10): 90 °C hold 3 min, 10 °C/min to 180 °C
hold 1 min, 30 °C/min to 230 °C hold 1 min, retention times:
10.4 min cyclohexanol, 9.1 min cyclohexanone, 6.7 min n-
dodecane (IS).

■ RESULTS
To test the feasibility of the proposed AaeUPO-catalyzed
oxidation of cyclohexane, we used a previously reported batch

of AaeUPO produced at pilot scale.33 We envisioned an initial
cyclohexane concentration of 0.5 M. Since AaeUPO exhibits an
exceptional stability toward acetonitrile,32 we decided using
acetonitrile (50% vol/vol) as the cosolvent to improve the
solubility of the reagents. H2O2 was added continuously (fed-
batch mode) from a concentrated stock solution (Table 1). We
deem potential safety issues to be low (at least in the small-
scale experiments presented here) as the H2O2 is constantly
consumed by the enzymatic reaction.
In the first experiment, we used 10 μM (ca. 0.45 g L−1)

AaeUPO and a H2O2 feed rate of 50 mM h−1 (Table 1, entry 1,
Figure S1). The initial product formation rate was approx. 37
mM h−1 corresponding to 74% of the nominal H2O2 addition
rate. However, the reaction rate dropped significantly over time
and after approx. 5 h essentially ceased. This was accompanied
by the accumulation of H2O2 in the reaction mixture. As a
result, only 70 mM cyclohexanol: cyclohexanone (11.2:1) were
found after 24 h. We reasoned that the H2O2 addition rate may
have exceeded the catalytic activity of AaeUPO for cyclohexane
hydroxylation resulting in a steady increase in the H2O2
concentration. The accumulation of H2O2 inactivates the
enzyme, decreasing further the catalytic rate and thereby
increasing the rate of accumulation of H2O2. This escalates the
rate of enzyme inactivation leading to the cessation of the
reaction. Therefore, in the next experiment, we doubled the
enzyme concentration to 20 μM while maintaining all other
conditions the same (Table 1, entry 2, Figure S2). Indeed, this
resulted in a significantly more robust reaction with linear
product accumulation (40.5 mM h−1 corresponding to >80%
H2O2 yield) for at least 6 h.
This result encouraged us to increase the H2O2 feeding rate

even more to 200 mM h−1 (Table 1, entry 3, Figure S3).
Within 4 h, 373 mM product (332 mM cyclohexanol and 41
mM cyclohexanone) was formed corresponding to a
productivity of 93 mM h−1 (9.3 g L−1 h−1). The reaction
completely ceased after 4 h indicating complete inactivation of
the biocatalyst. It is worth mentioning that in this experiment
after completion, trace amounts (estimated less than 10 mM)
of dual hydroxylation products (1,3- and 1,4-cyclohexanediol)
were observed (Figure S8).
The reaction so far is limited by the still comparably low

substrate concentration and the poor mass balance (mostly
due to evaporation of the starting material), which in the
current reactor setup is difficult to resolve. Initial attempts to
address the loss of starting material in a fed-batch approach
(Table 1, entry 4, Figure S4) largely failed as no improvement
of the reaction robustness or overall product formation rate
was achieved. Possibly, the occurrence of a liquid−liquid
interface caused AaeUPO inactivation or reduced mass
transfer. Further investigations aiming at understanding and
resolving this issue are currently underway.

Table 1. Influence of H2O2 Feeding Rate and Enzyme Concentration on a 100 mL Scalea

experiment
[AaeUPO]
[μM]

[cyclohexane]
[mM]

H2O2-feeding rate
[mM h−1]

time
[h]

total product
concentration [mM]

productivity
[g L−1 h−1]

turnover number
(TN = molProduct × molrAaeUPO−1)

1 10 500 50 24 70.7 0.3 7000
2 20 500 50 24 390 1.6 19,500
3 20 500 200 4 373 9.3 18,650
4 20 3 × 500

(0, 6, 28 h)
20 24 269 1.1 13,450

aReaction conditions: [substrate] = 500 mM, [KPi, pH 6] = 100 mM, [ACN] = 50 vol %, [AaeUPO] = 10−20 μM, [H2O2-feeding rate] = 20−200
mM h−1 (4−17.6 M aqueous stock solution) starting volume 100 mL, 25 °C, 300 rpm, duplicate measurements. The detailed time courses are
listed in the Supporting Information (Figures S1−S4).
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To demonstrate the scalability of the proposed AaeUPO-
catalyzed oxyfunctionalization of cyclohexane, we performed
two reactions with a working volume of 10.7 L in a 35 L
reactor adopting the reaction conditions of Table 1, entry 3
(Figure 2). The average initial (1 h) product formation rate

was at least 157 mM h−1 (approx. 15 g L−1 h−1). This
corresponds well to the formal H2O2 addition rate (ca. 150
mM h−1) indicating that the H2O2 utilization was complete
(close to 100% yield in H2O2). Hence, the H2O2 yield was
significantly higher than in the smaller scale experiments
(Table 1) with H2O2 yields ranging between 70 and 80%. In
the latter case, the well-known catalase-activity of AaeUPO
may account for the observation.36 Currently, we are lacking a
plausible explanation for this upscaling effect. Interestingly
within this initial period, practically only cyclohexanol was
formed (cyclohexanol: cyclohexanone <25), whereas later
cyclohexanone formation became more dominant (final ratio
of cyclohexanol: cyclohexanone was approx. 10). However, the
rate of product formation reduced in the next hour. As noted
previously, this may be attributed to the depletion of the
cyclohexane starting material (boiling point: 81 °C), which
could not be quantified with our present analytical setup [due
to similar boiling points of acetonitrile (boiling point: 82 °C)
and the extraction solvent ethyl acetate (boiling point: 77
°C),37 separation of cyclohexane from the cosolvents on GC
was not possible]. After 2 h, the product formation rate
decreased considerably concomitant with the accumulation of
H2O2.
Overall, 290 mM (average of two experiments) cyclo-

hexanol/cyclohexanone was obtained corresponding to approx.
520 g of product and a yield of 58% (based on 500 mM initial
starting material concentration). Hence, a product to catalyst
ratio of 30.6 gproduct g−1

AaeUPO can be estimated (TTNAaeUPO =
13,000 mol mol−1).
Admittedly, the reaction presented here is not (yet)

applicable for commercial-scale synthesis of the bulk chemical

KA-oil. Significant improvements in process analytics (such as
the quantification of the starting material and in situ H2O2
quantification to adjust the H2O2 dosing), substrate loading
(e.g., by using two-liquid phase systems of ideally achieving
solvent-free reaction conditions),38−40 and improving the
catalyst usage (e.g., by further improving the H2O2-addition
strategy) to minimize its cost contribution41 will be necessary
to render the proposed biocatalytic oxyfunctionalization of
cyclohexane industrially relevant. However, we are convinced
that simple measures such as an adjusted ratio of H2O2 feed
rate and AaeUPO concentration and in situ product removal42

will enhance the productivity and catalyst usage significantly.
Furthermore, engineered variants of AaeUPO43 and suitable
immobilization strategies44 will further improve the economic
attractiveness.
It is, however, also worth mentioning that the oxy-

functionalization rates and product titers achieved in this
study, to the best of our knowledge, surpass those reported for
P450 MO-catalyzed pendants by orders of magnitude, thereby
demonstrating the synthetic potential of the proposed
peroxygenase technology.

■ CONCLUSIONS
Overall, in this contribution, we have demonstrated the mol-
scale biocatalytic hydroxylation of cyclohexane using the
peroxygenase from Agrocybe aegerita (AaeUPO, PaDa-I). To
the best of our knowledge, this is the first time an unspecific
peroxygenase has been used at this scale. The promising results
obtained in this preliminary study underscore the potential of
peroxygenases as industrial catalysts.
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