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Abstract

Advances in data science have caused an increase in the use of Artificial Intelligence (AI), specifically
Machine Learning (ML), throughout various fields. Not only in research but in the industry as well, has
ML been receiving increasing amounts of interest. Many companies rely on ML models to increase
the efficiency of existing processes or offer new services and products. The industry, however, is
facing several additional challenges compared to the academic context. One of those challenges is
applying the Development Operations (DevOps) model to an ML application, also referred to as MLOps.
This thesis sets out to find the specific challenges that practitioners encounter while operationalising
ML models. To do so, we perform a single-case case study on an ML pipeline built by the Trade &
Communication Surveillance team at the ING bank. This case study consists of conducting a set of
interviews and performing amanual code inspection of the pipeline. The team faces challenges ranging
from having insufficient time for operationalising each ML project individually to operating in the highly-
regulated fintech context. Their pipeline is able to deploy a single ML model but it does not generalise
well to other projects. We present the first version of an application that mitigates these challenges. The
application is able to deploy ML models to the development environment at ING and can be operated
by data scientists to reduce the effort of operationalising an ML model.
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1
Introduction

Advances in data science have caused an increase in the use of Artificial Intelligence (AI), specifically
Machine Learning (ML), throughout various fields [7, 16, 6]. Not only in research but in the industry
as well, has ML been receiving increasing amounts of interest [14, 10]. Many companies rely on ML
models to increase the efficiency of existing processes [21] or offer new services and products [9].
Davenport describes how companies can achieve a substantial competitive advantage by leveraging
data sources through analytical tools [8].

The industry, however, is facing several additional challenges compared to the academic context.
One of those challenges is applying the Development Operations (DevOps) model to an ML application,
also referred to as MLOps. For traditional software applications, DevOps means combining develop-
mental and operational tasks within one workflow. For MLOps, several additional challenges make it
more complex than traditional DevOps [3]. ML models often require large amounts of data to optimise
performance. This data needs to be stored, managed and consumed, which poses a common chal-
lenge in ML projects. Another complex MLOps-specific challenge is setting up a so-called feedback
loop. The purpose of a feedback loop is to improve the performance of the model while it is being
consumed already. The loop feeds validated scoring data back into the training stage of the model.

These challenges can hinder practitioners in operationalising ML models. This, in turn, ”can easily
jeopardise the success of an entire project” [3]. This means that failing to overcome MLOps challenges
results in ML projects being unable to be utilised in actual production systems. This would be a huge
waste of the time and effort that were already put into the projects. It is therefore of great significance
to further analyse these challenges and experiment with solutions to overcome them.

With the large amounts of data that ING has, it has the perfect basis for developing ML models.
People often think of using customer data for ML applications. However, the team that is being ex-
amined in this study, is concerned with Trade & Communication Surveillance. This team is tasked
with maintaining the first and second lines of defence regarding monitoring trade and communication
within the bank. They aim to flag suspicious behaviour such as insider trading and other forms of fraud.
Their current setup consists of a system that automatically flags emails that contain some form of fraud.
This system currently uses the following process: it simply runs the emails by a list of keywords and if
there is a match, it will flag them. This process identifies numerous messages as potentially indicating
suspicious behaviour. However, most of them are false positives: during the period between January
- August 2021 a total of 157k false positives were reported. These flagged emails are then manually
checked by a team to filter all the false positives. According to the team, a minimum of 45 seconds is
required to manually process a single alert.

After performing some statistical analysis on the reported alerts, the team discovered that during
that same period 47% of all alerts were so-called mailing lists. A mailing list is simply an email that is
sent to a collection of people at the same time. In the team’s experience, this often means the email will
not contain the type of fraud they are surveying. This is the reason why they invested time in building
an ML model that aims to predict whether an email can be classified as a mailing list. While this model
might not directly be able to disregard alerts, it would, as a first step, be able to aid the manual checkers
in their decision. The team managed to implement this ML model and built a pipeline around it that was
able to deploy the model.

1
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This mailing list model was just one of many ideas for ML models they had to improve the process
of reporting fraudulent emails. For instance, they had also already started developing a model that
would be able to classify a paragraph as a disclaimer. This could be used to filter certain paragraphs
from flagged emails and thereby reducing manual work. While the team had already set up a pipeline
for the mailing list model, they wanted to avoid simply copying that code to this project. Therefore,
they were searching for a solution that would avoid this duplication. Since these ML projects were not
task obligated by regulations but rather of innovative nature, only limited time would be available. This
required the application to be low in maintenance with a minimal learning curve as well.

1.1. Research Questions
This thesis sets out to answer the following research questions:

RQ1 What are the challenges of operationalising ML models?
RQ2 What does an industry solution to operationalising ML models look like?
RQ3 Can we have a deployment solution for ML models in a highly-regulated context that can be

operated by data scientists?

We start by performing a case study on the Trade & Communication Surveillance team to answer
RQ1. By conducting interviews with members of the team, we can identify the challenges that this team
experienced while operationalising their ML model. Some of these challenges are operational, such
as prioritising innovation to educating team members on MLOps practice. Others are more practical,
such as dealing with confidential data in the highly-regulated fintech sector.

To answer RQ2, we analyse and document an industry-built ML pipeline. We inspect the pipeline
code and its design in general. The pipeline is able to deploy the model but it does not generalise well
to other projects.

Finally, we build a custom application that is able to deploy various ML models, as an answer to
RQ3. This application serves as a first version and lays the groundwork for various features.

1.2. Contributions
This thesis contributes to existing research by documenting an ML pipeline that is used in practice.
Due to the infancy of MLOps, it is valuable to document as many practical examples as possible. This
provides examples to experts and other researchers, who can learn and extend these works. One of
the main findings of this study is that while MLOps on its own poses a challenge, applying MLOps in
a highly regulated sector such as fintech complicates the process even more. An example of such a
fintech-specific challenge is the absence of tools for managingMLmodel workflows within such a highly-
regulated context. Finally, due to the limitations of these available tools, a custom solution is required
to be able to operationalise ML models. We present an initial version of such a custom solution.

1.3. Thesis Outline
This thesis starts by discussing related work in Chapter 2. Chapter 3 describes the case study on the
team at ING. In Chapter 4, we describe the solution application that aims to mitigate the challenges
found in the case study. Finally, Chapter 5 concludes the thesis and makes suggestions for future
work.



2
Related work

Even though MLOps is still a relatively young field of research, there have already been several case
and empirical studies performed. This chapter will take a look at some of the existing work on MLOps
specifically and ML development in general.

Zhou et al. [25] describe their case study of an ML pipeline platform. Whereas this thesis looks at
an existing pipeline, they have specifically created a pipeline from scratch for their study. They do not
consider a custom ML model. Instead, they use several approved models such as GoogleLeNet. Their
setup employs the tools Kubeflow, Gitea and Drone. The focus of their study mainly lies on the time
and resource consumption of certain tools and stages of the model lifecycle. While these aspects are
of great significance for ML projects, they lie outside of the scope of this thesis.

John et al. [13] present an MLOps framework that details the activities involved in the continuous
development of ML models. They do so by first performing a literature review on MLOps. Secondly,
they present a maturity model in which they outline the different stages that companies go through in
evolving their MLOps practices. Finally, they validate their framework in three case companies and
apply their maturity model to those companies.

Tamburri [22] describes his research into trends and challenges regarding sustainable MLOps. He
argues that the more MLOps platforms penetrate the day-to-day activities of software operations, the
more AI Software will face the risk of becoming unsustainable from a social, technical or organisational
perspective. By analysing the operations of his research institution, the author extracts several chal-
lenges. The challenges he identifies mainly originate from the operational side of MLOps and can be
categorised into the following four categories: explanation, fairness, accountability and sustainability.

Ruf et al. [20] present their study on MLOps tools. They examine a set of tools available for MLOps
workflows and compare these tools to one another. The main focus during these comparisons is the
inter-connectivity of specific tools. They draw the conclusion that no single tool has the capability of
realising a fully automated MLOps workflow. They also conclude that different tools have overlapping
features, which should be taken into consideration during the initial setup of future projects. Several of
these tools will be further discussed in Section 4.2.

Arpteg et al. [2] perform a set of seven case studies to identify software engineering challenges in
ML, specifically Deep Learning (DL). The seven projects that they analyse, are from companies that
range from start-up size to large multinational companies. In their study, they identify 12 challenges
that can be grouped into developmental, productional and organisational challenges. The main focus
of the paper is not to provide solutions, but rather to outline problem areas. They conclude that there is
still a significant need for further research into how to easily and efficiently build production-ready ML
systems.

Breck et al. [5] express the importance of testing and monitoring in real-world production ML sys-
tems. Based on the years of experience of using ML at Google, they have developed a set of best
practices for using ML systems. Their rubric covers a range from a team just starting out with ML up to
tests that even a well-established team may find difficult. Similar to previous studies, this study focuses
mainly on the operational aspects of MLOps.

Both Paleyes et al. [18] and Baier et al. [3] describe their surveys of case studies on challenges in
deploying ML applications. They perform literature reviews on case studies and reports to extract prob-
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4

lems and concerns practitioners face. Both studies discuss various challenges, both developmental
and operational. Paleyes et al. also briefly discuss some potential solutions to these issues. They men-
tion several commonly used tools but don’t go into further detail on them. Finally, both conclude that a
poor deployment experience can severely hinder the further growth of ML adoption. While both studies
perform research on MLOps challenges, neither address the additional challenges in a highly-regulated
setting.

Ananth et al. [1] present their white paper on the deployment of AI models in banking. They touch
upon both developmental and operational challenges, some specific to the banking context. One of
their main banking-specific challenges is dealing with strict regulations. These strict regulations are,
for instance, closely related to the explainability of AI, which is a whole sub-research field of its own.
While this thesis similarly focuses on the banking context, it additionally focuses on the challenges of
transdisciplinary teams. The application presented in this thesis is specifically designed to make sure
non-technical stakeholders are also part of the operations.

A variety of case studies has been performed, but very few also describe the actual solutions. This
prevents both academics and practitioners from learning from in-use systems. While a single system
might not yet be the perfect solution, documenting designs and the reasoning behind them will help
experts iterate over solutions and build new and improved solutions. The studies that do present the
design of an MLOps solution tend to focus on deploying a single ML project. While this approach works
on an individual project basis, these solutions do not generalise well to multiple projects as they require
extensive configuration. This thesis aims to prevent that limitation by presenting an application that
does generalise well to multiple projects.



3
Case study

To identify the challenges of operationalizing ML models and to analyse an industry solution, we per-
form a single-case case study. By looking at a concrete situation, we can define new research and
shed empirical light on existing concepts and principles [23]. This chapter starts by describing the
methodology for this case study. It follows by presenting the results of this study. Finally, the chapter
discusses these results.

3.1. Methodology
This case study closely investigates an industry-built ML pipeline. Although the pipeline is not yet being
utilised in a production environment at the time of writing, analysing the approach will bring useful
insights into some of the challenges that MLOps faces. Besides an in-depth analysis of the pipeline
code, interviews have been conducted with some of the engineers that actually developed the pipeline,
as well as members of the same team that did not contribute to this pipeline.

3.1.1. Interviews
The main data source for this study is a set of interviews. These interviews were semi-structured; there
was no predefined set of questions for each interview, but rather a flowing discussion was held. The
interviews took approximately one hour and were conducted with the help of another researcher to
prevent cognitive bias. The approach used to extract and collect information from the interviews is
based on the guidelines proposed by Halcomb and Davidson [11]. The process is as follows:

1. Audio taping of the interview and concurrent note-taking.
2. Reflective journaling immediately post-interview.
3. Listening to the audiotape and revising notes.
4. Content analysis.

Participants
We selected five participants, based on their roles, for the interviews. All the participants were members
of the Trade & Communication Surveillance team at ING. By including participants with varying roles,
we were able to obtain different perspectives on the subject. In total, 5 participants were interviewed.
An overview of the participants can be seen in Table 3.1.

3.1.2. Manual Code Inspection
Besides the interviews, we performed a manual code inspection of the ML pipeline that was imple-
mented by the team. The inspection was intended to confirm the results of the interviewers and possi-
bly provide additional insights as well. In the inspection, both the code for the ML model itself and the
CI/CD setup was considered, to get a good grasp on all MLOps aspects of the pipeline.

5



3.2. Results 6

ID Role
P1 Dev Engineer
P2 Compliance Specialist
P3 Data Scientist
P4 Chapter Lead
P5 IT Risk Manager

Table 3.1: Overview of the participants.

3.2. Results
After conducting the interviews, we analysed the notes and extracted several concepts by grouping
related notes together. These concepts are discussed in the following subsections. While discussing a
concept, we will note the participants’ IDs that talked about that concept. Finally, Section 3.2 describes
the pipeline itself in detail.

Motivation
One of the first topics discussed in the interviews was themotivation for concentrating efforts on building
an ML pipeline. All of P1, P2 and P4 mentioned the desire for automation as one of the key motivations
for developing the initial ML model for this pipeline. The motivation for building the pipeline itself arose
from the aspirations to build additional models. The idea of the pipeline was that models could be
plugged in with little effort and would then be automatically deployed to various environments to finally
be used in production. This would reduce the manual work associated with deploying an ML model
and would thus improve the speed at which ML models can be developed.

Even though there was enough motivation for building the ML models and the pipeline, something
that P1, P2 and P4 talked about was the challenge of prioritising innovation. Also for companies that
strive for innovation, like ING, there are always certain tasks that will have to be completed and dead-
lines to be met. This makes it difficult to prioritise projects that are not ”required”; they might probably
only provide benefit in the long run.

This team specifically was also dealing with developer retention during the development process of
the pipeline, which both P1 and P4 described. This of course makes prioritising innovation even more
difficult. Unfortunately, this is also not something for which a lot can be done in the short run and is still
difficult to manage in the long run.

For most ML projects one of the hardest challenges is collecting and cleaning data. Fortunately, this
team had the advantage that they were already in possession of large amounts of data, as confirmed
by both P1 and P4. This data was also easily accessible through an API. While this data was also in
fact labelled, it was labelled by humans, which means there is human error possible in those labels.
Considering the amount of available data, however, this did not pose a significant problem.

Regulations
As a bank, ING has to obey numerous regulations set by organisations all over the world. These
regulations influence the way developers at ING have to approach developmental tasks in general,
but even more so for ML tasks since those rely heavily on data. At the time of writing, there are
no regulations set for the Trade & Communication Surveillance domain within the bank regarding ML
applications specifically. This meant that the team had to step into the role of the regulator while
developing the ML models, as mentioned by P2 and P4. By looking at existing non-ML regulations
as well as envisioning strict rules during their development, the team aimed to make the model and
pipeline ready for future regulations.

To comply with all regulations, the team was forced to partially implement the pipeline on a Virtual
Private Cloud (VPC), hosted by ING. By using this VPC, all sensitive data is only stored and processed
on servers that are managed by ING, meaning that the risk of a leak or breach is far lower than on public
servers. Fortunately, the Continuous Integration/Continuous Deployment (CI/CD) part of the pipeline
was allowed to run on public servers, meaning that the team was able to use existing tools for the
CI/CD.

Because the team maintained and envisioned strict rules for both the models and the pipeline, they
included a manual step in the pipeline. This was mentioned by P2, P4 and P5. Although this limits the
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extent to which the pipeline can be automated, the team felt it was required to always be able to ensure
a certain performance of the pipeline.

Collaboration
A recurring topic during the interviews was the collaboration on ML projects. In traditional software
projects, there could already exist a slight knowledge gap between software engineers and DevOps
experts. For ML projects, however, the gap is even larger as most ML experts are not familiar with
standard DevOps practices. Analogously, DevOps experts are generally not familiar with ML practices.
P1, P3, P4 and P5 all mentioned the value of educating both sides with some of the basics of the fields.

With collaboration also comes responsibility. During the interviews, both P3 and P5 talk about
managing responsibilities in an ML pipeline project. In the initial phases of developing an ML model, it
is clear that the responsibilities lie with the ML experts. Once the model is part of a deployment pipeline,
however, one person might still hold ML experts accountable for any sorts of unexpected results but
another might hold the DevOps experts accountable. P5 advocates that the entire team should be
responsible for the deployment of the model, which also highlights the value of educating both sides.

The Pipeline
The pipeline makes use of MLflow [17] to define the different stages of the model pipeline. These
stages are: fetching data, cleaning data, training model, scoring data and pushing scores. While those
stages can be called individually from the command line, the pipeline uses the approach suggested
by one of the official MLflow tutorials for orchestrating multi-step workflows1. This approach defines
one main python file that executes the right stages in the right order, depending on whether the user
wants to train or score the model. Additionally, it checks with the running MLflow instance whether a
particular stage has already been executed and if so, it will reuse its results. This prevents the pipeline
from doing unnecessary duplicate work. An overview of the pipeline can be found in Figure 3.1.

MLflow has built-in support for the Python package manager Conda2. This allows the pipeline to
easily define dependencies for the project and package the dependencies as one environment for
deployment.

The CI/CD pipeline consists of several stages for Azure DevOps3: build, deploy, train and score.
Figure 3.2 displays an overview of the stages and what they consist of. The build stage verifies that
the model is still runnable without any errors. The deploy stage actually uploads the model to a Linux
server and starts the MLflow tracking server. The training stage retrains the model on the Linux server.
Finally, the scoring stage re-scores the data with the updated model. Each of the stages includes a
”prepare environment” step, which ranges from collecting secrets to downloading packages. The tasks
that require connecting to the Linux server are performed by using Ansible, which is an open-source
deployment tool.

3.3. Discussion
This section discusses the results obtained from the interviews and the manual code inspection.

Challenges
Most of the results obtained by the interviews are not unique to the banking domain. For a large part,
the challenges related to motivation and collaboration can also be found in related works that do not
focus on banking specifically. While strict regulations are not unique to banks either, they are only
rarely discussed in any of the related works (cf. Chapter 2). The interviews did not go into detail on
the regulations themselves, but banks will likely have to adhere to extremely strict regulations, often
perhaps even more so than other types of organisations. It is interesting to note that this team currently
has no regulations or guidelines to follow for their tasks. While ML and AI in general have been get-
ting increasing attention in recent years, apparently some fields have yet to keep up with these new
technologies.

We can now answer RQ1What are the challenges of operationalising ML models? Some of these
challenges are organisational, such as prioritising innovation and working on ML projects with transdis-
ciplinary teams. Others are more practical, such as operating in the highly-regulated fintech context.

1https://github.com/mlflow/mlflow/tree/master/examples/multistep_workflow
2https://docs.conda.io/en/latest/
3https://azure.microsoft.com/en-us/services/devops/

https://github.com/mlflow/mlflow/tree/master/examples/multistep_workflow
https://docs.conda.io/en/latest/
https://azure.microsoft.com/en-us/services/devops/
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Figure 3.1: An overview of the setup of the pipeline.
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Figure 3.2: A flow diagram of the CI/CD part of the pipeline.
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The Pipeline
The first remarkable aspect of the pipeline is the stage-invocation structure. Apparently, MLflow pro-
motes the use of one main Python file that manually checks cached runs and invokes stages of the
model pipeline. It is interesting that MLflow recognises the need for multi-stage model pipelines, but
has not incorporated functionality that avoids having to duplicate boilerplate code. Also, while their
proposed solution allows ignoring cached runs, it only does so for the entire run, i.e. you are not able to
invalidate the cache of a single stage. This limits the development process as, for instance, a developer
might only alter the training stage but will then have to wait for the data collection stage to complete
even though that will simply return the same result as the cached run. MLOps frameworks ought to be
designed in a way that promotes best practices and prevents technical debt.

Another notable aspect of the pipeline is the absence of a performance check before deployment.
While the pipeline makes sure that the model can be trained successfully in the build stage, there
is no validation of the performance of the model present. This means that a change of the model
could be detrimental to the performance of the model but it would be deployed nonetheless. Once
someone notices the decrease in performance, they would have to manually revert the change. A
simple performance validation in the pipeline could prevent this performance drop and manual work.
MLOps frameworks have an important opportunity to enable more efficient development approaches.

Next to the absence of a pre-deployment performance check, the pipeline is also missing a stage
that performs data quality testing. With large amounts of data, it is important to regularly assess the
quality of the data that is being processed by an ML model.

Even though the pipeline makes use of an API to retrieve data and push scores, this API does not
support data versioning. This makes it difficult to track down which version of the model pushed a
certain score of a data entry. Also, it makes it difficult to figure out which data exactly was used for
training a certain version of the model.

The pipeline currently does not generalise or extend well to other models. There is some config-
urability present for the current model, but not enough to actually run another model alongside the
current one. Fortunately, there are aspirations to revise the pipeline to make it more extendable for
other models and possibly even more generalised for other teams as well.

We can now answer RQ2 What does an industry solution to operationalising ML models look like?
The solution built by the team at ING is able to deploy a single model to IPC by using the Azure DevOps
CI/CD and makes use of MLFlow for model management.

3.4. Threats to Validity
The main limitation in this case study is the number of interviews held. Although we noticed some
recurring concepts in the five interviews, having more interviews would have strengthened the results
and possibly added additional conclusions as well. The size of the team that was investigated was
rather small, so not a lot of participants could have been selected from that team. However, by scouting
participants from other teams, we would have managed to achieve a higher number of participants. We
chose to limit the scope of this study to this one particular team due to the following reasons. The main
reason was that part of this thesis was to provide a solution that would work for this particular team.
Hence, by including participants from other teams there would be first- and second-class participants
which could change the overarching goal of the thesis. Since this thesis has a predefined duration, the
available time was limited which was also a factor in limiting the scope. The procedure of this study is
reported in a way that promotes reproducibility. Therefore, this work paves the way for a solution that
generalises to other teams as well.



4
Metis

Now that we have established the challenges that this team at ING experienced whilst operationalising
an ML model, we will try to mitigate these challenges. To do so, we will build an application calledMetis.
This name was chosen by the team at ING and originates from the Greek myth Metis which refers to a
creature that represents ”wisdom” or ”skill”. This chapter describes the application in detail. It will start
by listing all the requirements and limitations that were imposed on the application. This is followed
by a thorough analysis of available MLOps tools. Afterwards, the development process is described,
followed by the application design. The following section presents the evaluation methodology and
results. Finally, these evaluation results are discussed.

4.1. Requirements
Before diving into the development phase, we first collected all the requirements from the stakeholders.
The stakeholders consisted of the Trade & Communication Surveillance team at ING. These require-
ments can be split up into functional and non-functional requirements.

4.1.1. Requirements Collection
To meet the stakeholders’ wishes as best as possible, several brainstorming sessions were held with
several members of the team at ING together with the help of another researcher. The first brainstorm-
ing session took place online was held with two members of the team. To facilitate the brainstorming,
the session made use of Google Jamboard1. The session was structured as follows:

1. Introduction: The session started with a general introduction. This introduction included the
session agenda and the goals of the session. The goals of the session were to collect the team’s
wishes for the application and to think about possible solutions.

2. Problem description: Next came a short problem description. This made sure all participants
were on the same page regarding the problem at hand. The problem was formulated as ”what
does a generalisable ML pipeline look like”.

3. Word web: The first task of the session consisted of creating a word web. All participants were
told to try and come up with as many features as possible that would fit an ML pipeline. Everyone
used a unique colour for their ideas so it was easy to identify from whom the idea originated. To
give the participants the freedom to think, everyone muted their microphone. After approximately
10 minutes everyone reconvened to continue the session.

4. Proposing solutions: Proposing solutions was the final task of the session. During this task, the
participants held an open discussion on different possible approaches.

Figure 4.1 shows the final word web. Since all the entries were scattered around the Jamboard
page, the participants grouped the entries on similarity. A total of 10 clusters can be extracted from the
word web:

1https://workspace.google.com/products/jamboard/
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Figure 4.1: The word web from the brainstorming session.

Figure 4.2: The solutions from the brainstorming session.
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1. Version
2. Monitoring
3. Access control
4. Invocation/configuration
5. Hosting
6. Data retrieval
7. Data storage
8. Staging
9. Maintainability

10. Generalisability

The final discussion boiled down to the three main solutions depicted in Figure 4.2. Firstly, MLFlow
was mentioned not as a full solution, but as a possible solution for a subset of the features such as
versioning and monitoring. Secondly, the idea was proposed to implement a custom Azure DevOps
task2 that would deploy the model. Finally, RedHat’s OpenShift container orchestration platform was
suggested as a way to run a pipeline in containers.

After the initial brainstorming session, several unstructured discussions took place to further refine
the application design. In the interest of time, we scoped this study to build a first version with a subset
of the features. Together with the results of the case study, we formulated a set of requirements.

4.1.2. Functional
The main purpose of the application is to deploy ML models. The goal is to make this a straightforward
process that requires little manual work. As can be traced back to Section 3.2, the team’s original idea
was to build a pipeline in which models can be plugged in with little effort. This would reduce the manual
work associated with deploying an ML model and would thus improve the speed at which ML models
can be developed.

Section 3.2 discusses the knowledge gap between data scientists and operations engineers. By
making sure the steps required to set up a new project for this application are doable by data scientists,
we can further improve the speed at which ML models can be developed. This will allow data scientists
to deploy their models to remote environments themselves.

4.1.3. Non-functional
Some of the non-functional requirements do not originate from the team itself but are set by ING for all
teams. One of the main ING-wide requirements is that the application is fully hosted within ING VPC.
The reason for this requirement is that these models will be consuming highly confidential data. This
data is under no circumstances allowed to leave the ING network. This is also why all servers hosted in
IPC are, by default, not allowed to access the internet. Only through rigorous procedures is it possible
to allow a server to connect to specific parts of the internet. The inability to access the internet directly
poses a significant limitation on the application: it is not possible for the application to download project
dependencies dynamically.

One of the non-functional requirements from the team itself is the programming language of the
application. They require that the application is written in Python, version 3.8 or higher. Since almost
all ML projects are written in Python, it makes sense to write the deployment application in the same
language.

Within ING, there are four environment levels that an application can be deployed: Development,
Testing, Acceptance and Production (DTAP). Each level comes with increasing amounts of regulations
and requirements. In the interest of time, this study focuses only on deploying the application to the
development environment for now. The team has access to several servers in these environments.
Each of these services is running version 7.9 of the Red Hat Enterprise Linux (RHEL) OS.

4.2. Available Tools
There are already several well-known tools out there that aid both academics and practitioners in de-
veloping ML applications. Examples of those tools are Keras, scikit-learn and Tensorflow. Within the

2https://docs.microsoft.com/en-us/azure/devops/pipelines/process/tasks
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field of MLOps, there are also several open-source tools available already, where some of which were
developed by well-known teams like Google.

Tensorflow Extended (TFX) [4] is an ML platform based on Tensorflow. It provides a configuration
framework to express ML pipelines consisting of TFX components. TFX pipelines can be orchestrated
using other third-party tools such as Kubeflow pipelines. Both the components themselves as well
as the integrations with orchestration systems can be extended. TFX is an end-to-end platform for
deploying production-ready ML pipelines. It has relatively high integration costs which makes it less
ideal for smaller projects. Additionally, it requires the use of the Tensorflow (TF) framework libraries to
make use of TFX.

Kubeflow [15] is a specialised toolkit for orchestrating ML workflows. The goal of the tool is to
make deployments of ML workflows simple, portable and scalable on Kubernetes. This dependency
on Kubernetes requires a detailed configuration before being able to actually deploy a model. This in
turn makes Kubeflow also less ideal for smaller projects.

MLflow [17] is an ML toolkit that focuses mainly on model and lifecycle management. It allows users
to register and track models and model runs. This tracking includes reporting custom metrics, viewing
logs and managing the model’s artifacts. While it requires less effort than the other discussed tools to
configure a basic setup with MLflow, the configuration is very specific to the project and thus does not
generalise well to other projects. This means manual work is required for each new project. A large
part of this manual work consists of repeating the same steps and should thus be automated.

ZenML [24] is a lightweight tool for creating ML pipelines. It provides a UI for visualising pipelines
and comparing pipelines from different projects in one ZenML repository. It uses Apache Beam3 to
allow the user to construct a pipeline through a combination of steps. However, it does not contain
built-in support for deploying models to remote environments. Instead, it relies on tools like Kubeflow
to do so. Since Kubeflow itself is not a suitable solution for this study, ZenML is also not.

All these tools have in common that they require the user to intertwine ML code with ”Operations”
code. To use the tools, you will need to configure them using both Python and non-Python files, which
makes projects more cluttered.

These tools have been developed to be as generalizable as possible. This makes sense since the
tools want to be able to support as many projects as possible, but this means they can only assume
very little about the project itself. For the case of this team at ING, we still want to make as few as-
sumptions as possible, but we do have the ability to set some requirements if the benefits outweigh
the consequences. Additionally, we have some foreknowledge on the possibilities of the available in-
frastructure. We can use this knowledge to make the application fit as best as possible to the available
infrastructure.

A team within ING has been working on an MLOps application called the Machine Learning Platform
(MLP) which is currently only available for internal use. It is solely designed for hosting ML models and
therefore requires users to train their models beforehand. This still leaves users with the task to set
up some form of pipeline that is able to run the necessary commands to train the model. Since these
commands generally cannot be executed on the Azure DevOpsCI/CD servers due to security measures
at ING, a user would have to build some form of system that allows running these commands within
IPC. This still leaves the user with substantial manual work and is thus not a suitable solution for this
study.

One of the most significant limitations is the prohibition of internet access. While most tools can
also be installed manually on servers without internet access, none of them has built-in support for mit-
igating this limitation when it comes to downloading the projects’ dependencies. A user could mitigate
this manually by creating custom docker images which contain the dependencies. However, this is a
cumbersome process with several manual tasks and is therefore not a suitable solution for this study.

4.3. Development Process
Since none of the available open-source tools is a suitable solution, we chose to build a custom appli-
cation. To avoid the common pitfalls of the waterfall model [19], we implemented an Agile development
method. This method consisted of notifying the stakeholders twice a week through chat. These chat
messages contained straightforward updates on the development progress. Additionally, bi-weekly
meetings were held with the stakeholders. During these meetings, the progress of the application

3https://beam.apache.org/
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Figure 4.3: An overview of the setup of the pipeline.

would be presented and discussed. Often, these meetings also included a demo which gave the stake-
holders clear insights into the progress of the application. The application was designed iteratively as
well. The next section describes the final design.

4.4. Application Design
An overview of the final design is depicted in Figure 4.3. The application is fully hosted in IPC. This
means that users are only able to connect to the application when they are connected to the ING net-
work, through ING’s VPN for example. Although this is obligatory by ING, it also provides an additional
layer of security around the application. The application can be split up into two components: the front-
and back-end.

4.4.1. Front-end
The front-end is the component that the user interacts with. It consists of an NGINX4 server that serves
a Django5 application. The Django application contains both a User Interface (UI) and an Application
Programming Interface (API). While users will often only interact with the UI, they are able to use the
API directly as well.

The UI can be used to manage and upload models. To upload a model, a project has to be created
first. Projects only consist of a name and the list of runs that have been uploaded for that project.
Figure 4.4 shows a screenshot of the dashboard page where users can create a project. When a
model is uploaded by the user, the API stores the uploaded content on disk and queues a background
process to execute the model. Figure 4.5 shows a screenshot of a project-specific page. The Status
section shows some general information on the most recently completed run. Next to that is the Upload
section. This section is used to upload models. The UI also contains a help page that provides useful
information to aid users in using the application. Finally, Figure 4.6 shows a screenshot of a run-
specific page after the run has been completed. The top left Status section contains similar information
as the project-specific page. Additionally, it includes a button to copy a cURL command to the user’s
clipboard to invoke the model, which will be described in more detail in Section 4.4.2. The Manage

4https://www.nginx.com/
5https://www.djangoproject.com/

https://www.nginx.com/
https://www.djangoproject.com/
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Figure 4.4: A screenshot of the dashboard page.

Figure 4.5: A screenshot of a project-specific page.

storage section below displays some information on the storage size of certain aspects of the run and
allows the user to delete those individual aspects. The Run logs section on the right shows all the logs
from the executed commands as well as application logs such as building the Docker images. Section
4.4.2 further describes the process of uploading and executing a model.

4.4.2. Back-end
The back-end performs the heavy-lifting of the application. Executing the ML lifecycle commands will
often require significant time and resources, and are therefore performed in the background. The
Python package Celery6 is used to simplify running background tasks. By making use of Docker7, we
can run projects in an isolated and reproducible manner. The following sections will go further into
detail about some of the design choices.

Python Environment
One of the most significant limitations is the prohibition of internet access. There are several options
for mitigating this limitation:

1. Predefined dependencies Manually install a set of dependencies and make these available to
the projects.

2. Docker Ask users to prepare their own Docker image which has the right environment configured
already and use this image to run the projects.

6https://docs.celeryq.dev/en/stable/index.html
7https://www.docker.com/

https://docs.celeryq.dev/en/stable/index.html
https://www.docker.com/
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Figure 4.6: A screenshot of a run-specific page.

3. Conda-Pack Ask users to download and export their Python environment and send it along with
the project code. A common way to do this is to use the Conda-Pack tool8.

The first option significantly limits the generalisability of the application; users would be restricted to
a limited set of dependencies and their versions. Therefore, while the second and third options require
more operations-like work from the user, they are still a far better choice than the first option.

While option two provides the user more freedom to configure their environment and possibly addi-
tional required tools, it requires some level of expertise and manual work to set this up for each project,
defeating the purpose of creating a deployment solution that can be operated by data scientists.

The third option still requires some manual work but unfortunately, this is unavoidable with the
current set of limitations. The manual work involved in option three is still significantly less than for the
second option. Therefore, the third option is preferable overall.

Project Configuration
To be able to generalise to different projects, the application needs to be flexible in terms of executing a
model’s lifecycle. To do so, the application requires users to create a configuration file. This file needs
to be written in the YAML9 language. YAML is a human-friendly data serialisation language commonly
used for configuration files. For simplicity, the name of this file is fixed to metis.yaml.

Listing 4.1 depicts the template configuration file that can be downloaded from the help page. The
file includes several comments to aid the user in setting up the project’s configuration. First of all, users
can specify a list of commands that need to be executed to train a model. This list can, for instance,
consist of commands to first retrieve data and then train the model. Users can also specify environment
variables that should be made available during the execution of a command. The following sections
will go into detail on other configurable aspects.

8https://conda.github.io/conda-pack/
9https://yaml.org/

https://conda.github.io/conda-pack/
https://yaml.org/
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1 # This is a template for a Metis configuration.
2

3 # Define your global environment variables here.
4 # These variables will be available during the execution of all commands.
5 environment:
6 GLOBAL_ENV_VAR: global_env_value
7

8 # Use this if you want o override the filename of your packed Anaconda environment.
9 # The default is conda_env.tar.gz (make sure the tar is in the zip you upload).

10 # conda_env: conda_env.tar.gz
11

12 # Here you can define the commands that need to be executed
13 # before the model can be served.
14 commands:
15 - command: python fetch_data.py
16 # Use this if you want to run the command from a subdirectory in the project.
17 # working_dir: some_dir
18 # These environment variables will only be available
19 # during the execution of this specific command.
20 environment:
21 COMMAND_ENV_VAR: command_env_value
22 # Specify the artifacts (files/directories)
23 # that should be saved after running this command.
24 outs:
25 - dataset
26 - command: python train.py
27 # Specify the artifacts of previous commands that this command depends on.
28 # The artifacts will be loaded before running this command.
29 deps:
30 - dataset
31 outs:
32 - model.pickle
33

34 # Here you can configure how your model should be served.
35 serve:
36 # You can provide a custom command that serves your model API.
37 command: python serve.py
38 # Or you can simply provide the path to a pickle of your model.
39 # The application will call your pickled model as follows: `model.predict(data)`,
40 # where `data` is a list of items that need to be predicted.
41 # model_path: model.pickle
42 environment:
43 SERVE_ENV_VAR: serve_env_value
44 deps:
45 - model.pickle

Listing 4.1: Template configuration file.

Uploading
Once a user has packed their Python environment and configured the metis.yaml file, they are ready
to upload everything to the application. To do so, they are required to compress the project code, the
packed Python environment and the metis.yaml file together in a zip archive. The help page in the
front-end UI provides instructions on creating the zip archive.
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Artifacts
For each command, the user can specify a list of dependency and output artifacts. Output artifacts,
configured with outs, are files or directories that need to be saved to a persistent storage after executing
a command, for example, a folder containing downloaded data. Analogously, dependency artifacts,
configured with deps, are files or directories that a command requires to execute successfully and thus
need to be retrieved from a persistent storage. In the current setup, the persistent storage consists of
a simple file storage that is directly mounted on the development server.

Isolated Command Executions
Each command that the user defines in the configuration file is run in a separate Docker container.
This provides several benefits. First of all, it isolates each command execution from other commands,
both from commands of the same model and from commands of different models running concurrently.
This way, a single failing command will not have any impact on other commands. Secondly, it lays the
groundwork for possible future work in terms of distributing the workload of certain commands.

Model Serving
Users can also configure how their model will be served once all commands have been executed
successfully. There are two options available. The first option is providing a custom command that will
start an API server that serves the trained model. The second option is providing a path to a pickle
of the model. Pickling10 is a process often used by ML experts to serialise and store an object. This
allows them to save a trained model for later use.

When a user chooses the second option, the application takes care of starting an API that serves
the model. The API consists of a single script that receives incoming HTTP requests, invokes the
model and returns the model’s output. This does require users to include a predefined method sig-
nature in their model so the API is able to invoke the model. The method signature is as follows:
def predict(data: list) -> list. By making use of this option, users are not required to imple-
ment their own model serving approach which will make the life of a data scientist easier. This option
also avoids duplicating code between projects to serve a model. The API currently consists of a single
socket and does therefore not scale to large amounts of invocations. However, this serves as a proof
of concept and calls for future work.

When users opt to let the application take care of serving the model, the application can make use
of the knowledge it has on the API. For instance, the application will know the API’s exact URL path that
the model will be hosted on. This allows the application to present a pre-configured cURL command to
the user that will invoke the model with some dummy data. This provides the user with a starting point
for invoking the model through the API.

Whichever option the user chooses for serving the model, a URL will be made available for the
project. This URL will directly point to the exposed port of the container that serves the model. This
gives users the freedom to implement a more complex API with multiple endpoints as well. The URL
structure is as follows: https://$HOST/model/$PROJECT_SLUG, where $HOST is the hostname of the
application and $PROJECT_SLUG is the slug of the project name. To reduce manual work when deploying
a new version, a project’s URL will always point to the most recently completed run. This avoids users
having to update any other systems that depend on the model.

Besides the latest version, older versions that have not yet been deleted will be kept running as well.
These older versions are accessible by using the following URL format:
https://$HOST/model/$PROJECT_SLUG-$RUN_ID, where $RUN_ID is the unique ID of the run. This al-
lows users to directly compare different versions. A more sophisticated use case would be to run A/B
testing setups where one group would get results obtained from version A of the model and another
group would get results obtained from version B. This would allow for a detailed analysis of the impact
of either version. Once a run is deleted, it can no longer be accessed through the URL.

4.4.3. Deployment
The application itself can currently only be deployed manually. The manual deployment process con-
sists of packing the Conda environment including the application’s Python dependencies, zipping the
application code together with the packed environment and uploading it to the development server that
the application is hosted on. Once uploaded, the application code and packed environment have to

10https://docs.python.org/3/library/pickle.html
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be extracted to the proper location and the front- and back-end services have to be restarted to make
sure none of the processes still use an old version.

4.5. Evaluation
To validate the application, we perform an evaluation. This section describes the evaluation method
and its results.

4.5.1. Methodology
The evaluation of the application consists of two one-on-one evaluation sessions with members of the
team at ING. Both sessions took approximately one hour. The sessions took place online and were
recorded to allow analysis afterwards. Both participants were also part of the interviews in the case
study.

The first session was with a data scientist from the team. During this session, the participant was
instructed to first get a basic understanding of the application, followed by uploading a small sample
project. After succeeding, the participant was asked to consume the uploaded model. Finally, a short
discussion was held regarding the value of the application for the participant and the general impression
of the application.

The second session was with the chapter lead. In this session, the host described all the features
of the application and performed a short demonstration of uploading and managing projects in the
application. Both during and after the demonstration, a discussion was held on the value of certain
features and the prospects of the application.

4.5.2. Results
Both participants made remarks on several aspects of the application. This section will go through each
of these aspects and discuss the feedback provided by the participants.

Python Environment
Section 4.4.2 describes the design choice for dealing with the prohibition of internet access. Unfor-
tunately, Conda environments that have been packed on a Windows-based OS do not transfer to a
Unix-based OS11. Since the server that this application is hosted on is running RHEL, this approach
works fine for users running a Unix-based OS (macOS, Linux, WSL, etc.) but it does not work for users
running a Windows-based OS. The first participant was running Windows 10 on his local machine and
was therefore not able to pack the required Conda environment. This means that he will not be able to
upload projects with ease himself with the current setup of the application.

This issue was also discussed with the second participant. He proposed the idea of making sure
all his team members are running the same setup, i.e. everyone running a Unix-based OS. While this
would avoid the problem, it was quickly decided that this is not a feasible solution.

Azure DevOps
The evaluation meetings only included a demonstration of manually uploading a project to the applica-
tion. Both participants expressed the value they see in making the connection between Azure DevOps
and the application. This connection would be able to integrate the application into the CI/CD of an
ML project. Once a change is pushed to a project, the project would automatically be deployed to the
application. With this connection in place, they foresee several additional features that can be added
to the application, such as linking project runs to their respective version in the source code.

Data
The first participant brought up the concern of how the application handles large amounts of data, i.e.
several 100GB of data. While the application has access to approximately 300GB of storage, there
is currently no method in place to manage this data efficiently nor is the application able to prevent a
project from downloading too much data. The second participant showed less concern for a storage
shortage since the storage can easily be extended, but he did see a lot of potential in optimising stored
data.

11https://conda.github.io/conda-pack/#caveats
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The original pipeline project that was analysed in Chapter 3 downloaded data from an on-premise
instance of Relativity12. The models that this team at ING creates often make use of data coming
from Relativity. Both participants saw great value in creating built-in support for downloading data from
Relativity to simplify that process.

Other Environments
The original requirements stated that the application would first only be deployed to the development
environment. Nonetheless, both participants expressed their interest in seeing the application being
deployed to the acceptance and finally production environments in future work as well. The main
reason for this was that the acceptance environment is a direct replica of the production environment
and therefore allows for testing the application with real customer data.

Access Control
The second participant brought up the subject of access control. In the current application, there is
no functionality for restricting access or limiting a user’s permissions. The participant suggested that
a Role-Based Access Control (RBAC) system would be a good addition to the application. With this
system in place, managers would be able to decide which team member is allowed to perform specific
actions within the application. Especially when this application would be deployed to the production
environment, additional security measures should be implemented, such as Multi-Factor Authentication
(MFA).

Model Versions
Section 4.4.2 describes how older versions of the model are still accessible after a more recent run has
been completed successfully. While the second participant acknowledged the benefits of that design
choice, he explained that another approach would suit their use case better. He suggested always only
having one active version of a model and allowing the user to choose which version should be active.
This approach would have an advantage over the current one when a user would want to roll back to
a previous version. In this approach, a user would only have to switch the currently active version to
an older one. Whereas in the current approach a user would have to delete the most recent run and
re-upload that version manually again when they want to use that version anyway.

User Experience
Although this was not the main goal of the sessions, there were some remarks about the User Expe-
rience (UX) of the application. The first participant mentioned some minor details on the UI that could
have improved the overall UX of the application and he did not find the configuration file to be very
intuitive.

Final Verdict
The final verdict of both participants was positive towards the application. The first participant specif-
ically saw the value of the application in his daily workings. He mentioned that this application would
”fix the deployment challenges” he encounters during his work. While both participants saw value in
the current set of features, they foresee a lot of possibilities with the application.

4.6. Discussion
The results section described the feedback obtained from the evaluation. This section discusses these
results and some of the application design choices.

Python Environment
The results section describes how a Windows user is currently unable to pack a Conda environment
with relative ease. Section 4.4.2 talks about two different approaches for allowing users to upload their
Python environment manually. For Windows users, while still being more complex and time-consuming,
the approach of requiring them to create their own Docker image would not have resulted in any im-
pediments. Future work could include supporting both approaches. Fortunately, since CI/CD pipelines
are almost always run on Linux-based servers, this limitation will not present as an issue for CI/CD
pipelines.

12https://www.relativity.com/

https://www.relativity.com/


4.6. Discussion 21

A workaround for this issue would be to instruct Windows users to download and pack the Python
environment in a local Docker container and store this packed environment on disk. A detailed expla-
nation of this process could be added to the application’s help page to simplify this process for users.
This would allow all users to make use of the application. Unfortunately, this would add an additional
requirement for the user of having Docker installed.

Another approach to dealing with this issue is implementing the second Python Environment option
described in Section 4.4.2 as well. This could be implemented by letting users push custom images
to ING’s container registry and make the application download the images from there. By having both
options implemented, users could choose whether they want the freedom of their own Docker image
or the low effort of simply packing their Conda environment. Additionally, the application could support
uploading and using a tar of a custom image. This would avoid users having to publish their image to
ING’s container registry and would thus be a quicker solution for users wanting to quickly get a project
up and running.

Azure DevOps
During the evaluation, both participants talked about Azure DevOps with respect to the application. It
was originally planned to connect the application to Azure DevOps. However, the application is hosted
in the development environment and the connection between Azure DevOps and the development
environment was broken during the development stages of this study. It was considered out of scope
to repair the connection between Azure DevOps and the development environment. This is the reason
why the application is currently still being deployedmanually and the evaluation did not include a sample
project that got deployed to the application through Azure DevOps. Once the application gets deployed
to the acceptance environment or the development environment is repaired, both these issues will be
resolved.

Data
The way data is currently managed in the application is not ideal for extremely large amounts of data.
For instance, there is currently no way to reuse data that has already been downloaded once before.
Consecutive runs will simply re-download and store the data they require. This will quickly lead to the
application running out of available storage. Due to limited time, the decision was made to focus on
exploring other features, rather than further optimising the management of data.

A first step in mitigating this limitation would be to implement a more sophisticated approach to
managing data. An example tool that could be of great help in this task is Data Version Control (DVC)13.
DVC is designed to handle large files and data sets. Similar to this application, DVC requires users
to specify what data each step of the pipeline depends on and outputs. Additionally, it requires users
to configure a storage location where data can be stored and retrieved from. When commands are
executed, DVC will upload and download the required data if necessary. Since one of the main goals
of this application is to make it accessible for data scientists, it would have a contradicting effect to
require users to fully understand and configure DVC for their project as well. Therefore, a suitable
solution would be to have the general DVC configuration contained within the application and only
require users to specify the dependency and output data for each command.

Another limitation is that data that has to be retrieved from outside the ING network, has to be
retrieved beforehand and uploaded along with the project code and dependencies. A workaround for
this issue could be to host the data somewhere within the ING network so the application can reach
and download it. However, when this is not possible, a user would have to include the data with every
run upload. An improved data management system should also take this use case into account.

Most models from this team retrieve their data from Relativity. Unfortunately, it was not possible
to include one of these models in the evaluation. The reason for this is that each Relativity instance
is hosted in one of the DTAP environments and can thus only be accessed from servers within that
environment. During the development phase of this study, the Relativity instance in the development
environment was broken and could therefore not be used. Since the original pipeline project was
hosted in the acceptance environment it was able to download data from Relativity. This means that
once either this application gets deployed to the acceptance environment or the development Relativity
instance is repaired, this application should be able to retrieve data from Relativity as well.

13https://dvc.org/

https://dvc.org/
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MLOps solutions need to be prepared to be integrated with different data orchestration solutions.
This will be challenging since each data platform will likely require its own specific way of interacting
with data. Generalising this to other organisations will be even more challenging. To try and mitigate
this challenge, it is important that organisations strive to conventionalise data interaction within their
organisations.

Model Versions
The discussion on model versions during the evaluation shows that model versioning in ML is important
not only in terms of artifacts but also at the hosting level. MLOps solutions need to be prepared to
provide hosting solutions that are able to incorporate the user’s wishes on a per-version basis.

ICHP
During the design phase of the application, the use of Kubernetes14-like tools was also investigated.
ING hosts an instance of RedHat OpenShift15 within IPC, called INGContainer Hosting Platform (ICHP).
OpenShift is a container platform that works on top of Kubernetes. ICHP would have provided a lot
of interesting opportunities for the application. However, ING requires rigorous procedures to be able
to use ICHP and this team did not yet complete these procedures and was thus not able to use it.
Therefore, it was considered out of scope to integrate ICHP into the application.

Research Question
We can now answer RQ3 Can we have a deployment solution for ML models in a highly-regulated
context that can be operated by data scientists? By building a custom application, we have shown that
we can have such a solution. This application is able to deploy ML models to an environment at ING
and through evaluation, we have shown that it can be operated by data scientists.

4.7. Threats to Validity
One of the main threats to the validity of building the application is the limited evaluation. Only one of
two models developed by the team could be deployed successfully to the application. The other model
required data from Relativity and was therefore not able to retrieve data due to the Relativity instance
not being set up properly in the development environment. A small ML project that was not developed
by the team was used as additional evaluation but this has less significance than one developed by
the team itself. The missing link between Azure DevOps and the application also contributes to the
limited evaluation possibilities. This can also be traced back to the improperly configured development
environment.

Additionally, although the thesis was intentionally scoped to this team only, we can only theorise
about applying the results to other departments or companies in general. Future work should include
performing similar evaluations with other teams within ING and possibly other companies as well. A
member of the Global Data Integration Layer (GDIL) team at ING has already expressed their interest
in this application.

14https://kubernetes.io/
15https://www.redhat.com/en/technologies/cloud-computing/openshift
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5
Conclusion

MLOps faces several additional challenges compared to the traditional DevOps model. The goal of
this thesis is to shed light on MLOps challenges encountered by practitioners. To do so, we performed
a case study on one of the teams at ING. By conducting interviews and inspecting code manually,
we managed to extract several challenges and document the approach that the team took for their
ML pipeline. According to the interviews, some of the challenges were organisational, ranging from
prioritising innovation to educating team members on MLOps practices. Others were more practical,
such as by operating in the fintech domain, the team at ING had to deal with strict regulations, which
complicates, among other things, the handling of confidential data. After this case study, we built the
first version of an application that aims to mitigate those MLOps challenges. The application is able to
deploy ML models to one of the servers in ING’s development environment.

This research aids practitioners in their future decisions by providing an example of an ML pipeline
and the challenges that came with developing this pipeline. Additionally, this thesis provides a de-
tailed design of an ML pipeline application. While the scope of this thesis was to build an application
specifically for this team, the design is not restricted to this team. Other teams, possibly even at other
companies with similar restrictions, should be able to employ this application in their environment as
well. The design of the application can aid practitioners in general in building similar applications for
different use cases.

5.1. Future Work
This thesis was intentionally scoped to only include a subset of the features that were collected in the
initial design phase of the application. This section will suggest directions for future work.

To get an even more refined understanding of the challenges of MLOps, future work should include
more MLOps case studies. Even within ING, there are likely more teams that are dealing with similar
problems. Analysing and documenting what specific challenges they run into and specifically how they
handle them will provide both researchers and practitioners with more insights on MLOps challenges
in the industry. These additional challenges and solutions could in turn also be applied to improve this
application.

As mentioned in Section 4.6, there are several aspects of the application that can be extended.
First of all, the current setup for letting the application take care of serving a model provides several
possibilities. While the API currently servesmodels using a primitive approach, the API can be extended
to be more scalable by, for instance, distributing workloads. This would make the API more suitable
for production use. By maintaining that code centrally in the application, any improvements on the API
would directly improve all projects that make use of this option.

Improving the API is not the only way to make the served models more production-ready. By mi-
grating from the Docker instance that is being run on the server itself to ICHP, several adjustments
could be made to improve different aspects of the application. Most importantly, ICHP would allow the
application to run and manage several containers, that run a single model API in a model, in a more
structured manner. This would require some form of load balancing between the different containers
that serve a model but, fortunately, RedHat OpenShift has built-in support for load balancing. Addition-
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ally, ICHP could be utilised to distribute intermediate commands. However, this would likely make the
configuration of the application more complex and might therefore surpass the team’s requirements.

During the evaluation of the application, it turned out that the application is currently not optimised
for large amounts of data. Future work should include taking steps to improve the data management
capabilities of the application, such as utilising the tool DVC.

Besides storing and managing data, future work could also include implementing common data
retrieval methods. Most models from this team at ING retrieve data from the Relativity API. By imple-
menting this step within the application and allowing users to configure what data they need, we can
avoid duplicate code between the projects. Similar to implementing a model API within the application,
several opportunities arise for extending this functionality in a general place. For instance, since mod-
els often require large amounts of data, it makes sense to distribute the downloading and processing
of this data.

By making the application operable by data scientists, we reduce the effort it takes to operationalise
an ML model, which was one of the challenges found in the case study. When common data retrieval
methods are implemented, the application could incorporate data quality tests, which were lacking in
the case study pipeline. Additionally, future work could look into metric reporting and monitoring to
implement some form of quality assurance, which was not present in the original pipeline either.

Currently, the application only allows for invoking models through an API. This could be extended
by other types of invocations, such as on a scheduled basis. Tools such as Apache Airflow1 could be
of assistance here.

1https://airflow.apache.org/

https://airflow.apache.org/
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