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Abstract  
Objective: This study introduces a novel deep-learning-based orientation recognition approach for 

detecting intraoperative lung orientation during robot-assisted anatomical resections, including 

lobectomy and segmentectomy. This method can potentially aid in anatomical structure 

identification, facilitate training and education, improve procedural efficiency, and enhance 

intraoperative imaging navigation.  

 

Methods: We developed a unique dataset encompassing various pulmonary procedures, being the 

first to report on recognition of intraoperative orientation. The TeCNO model, initially developed for 

laparoscopic cholecystectomies, was adapted for this study. Model performance was evaluated using 

accuracy, precision, recall, and F1-score, and we explored the influence of dataset composition, 

intraoperative factors such as 3D model presence, and visual impairments. 

 

Results: The model achieved an overall accuracy of 70%, indicating potential in recognizing lung 

orientation. High performance was achieved in recognizing non-surgical sequences, ‘Fissure’, and 

‘Inferior’ views. ‘Posterior’ and ‘Anterior’ views showed inferior performance. Variability in 

performance was attributed to the heterogeneity of orientation transitions and increased complexity 

compared to more standardized procedures. The limited dataset size and imbalances in label 

distribution potentially impacted model performance.  

 

Conclusion: This study demonstrates the feasibility of applying phase recognition to detect 

orientation of the lung and exploring how the unique characteristics of our dataset affect model 

performance opposed to surgical phase recognition. The results suggest promising applications for 

intraoperative imaging guidance and automated adjustment of 3D models, particularly for complex 

orientations like the interlobar ‘Fissure view’. Future research should focus on enhancing model 

performance and assessing its clinical implementation in diverse surgical settings. 

 

Keywords: Artificial Intelligence, Deep-Learning, Phase Recognition, Orientation Recognition, Lung 

Lobectomy, Lung Segmentectomy 
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I. Introduction 
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer, leading to cancer-

related death worldwide, since advanced-stage diagnosis often results in limited treatment options 

[1, 2]. Earlier diagnosis permits surgical resection which has become the standard of care. Within 

pulmonary surgery, minimally invasive surgery (MIS) procedures are procedures are widely 

performed and both video- and robot-assisted thoracic surgery (VATS/RATS) show improved surgical 

outcomes compared to the equivalent open procedure [3]. MIS provides a three-dimensional (3D) 

operating view, assisting surgeons in identifying essential anatomical structures [2, 3]. Nevertheless, 

MIS presents challenges, such as limited control over intraoperative bleeding and restricted flexibility 

of surgical instruments. The introduction of RATS has addressed some of these limitations, reducing 

surgeons’ discomfort, increasing precision through wristed instrumentation, and providing improved 

3D depth perception [2, 4]. While RATS has shown improvement regarding safety, cost-effectiveness 

and surgical outcomes, the significant learning curve remains a limiting factor [2, 5, 6]. In addition, 

proximity of the thoracoscope to target structures can impose limited visibility, presenting additional 

challenges in recognizing anatomical structures [7]. 

 

Given patient-specific anatomical variations of bronchovascular anatomy, lobectomy and 

segmentectomy procedures can be complex, further limiting intraoperative recognition of anatomy 

[8]. This emphasizes the importance of pre-operative planning, for which computed tomography (CT) 

imaging currently is the gold standard [9, 10]. Artificial Intelligence (AI)-enhanced surgical planning 

tools are emerging that use CT images to automatically generate 3D reconstructions and enable 

visualization through extended reality methods [9, 11]. These tools create a pre- and intraoperative 

environment that provides surgeons with 3D anatomical understanding [8, 11, 12].  

 

Hence, MIS lobectomy and segmentectomy procedures can be guided by patient specific 3D models, 

providing improved spatial orientation and insight to the complex bronchovascular anatomy, 

including intrathoracic vessels, bronchi and the tumor [10, 13]. Currently, the orientation of the 3D 

lung model is manually adjusted to correspond to the intraoperative situation. Lack of associative 

connection between the 3D model and intraoperative surgical view requires manual input from 

either the surgeon or an assistant, relying on their anatomical and technical expertise. This remains a 

major limitation [14]. To improve intraoperative guidance, there is a need to develop a method to 

automatically adapt the orientation of the patient-specific 3D models. Achieving this requires 

identification and detection of intraoperative anatomy and orientation during lobectomy and 

segmentectomy procedures [15]. An imaging analysis method to do so is phase recognition [16].  

 

Automated phase recognition uses AI to identify different surgical phases, by employing deep-

learning (DL) algorithms that have been trained on annotated datasets of surgical videos [16, 17]. 

Current algorithms are designed to match video segments to specific surgical procedure steps. 

Previous work typically utilized a two-stage modelling methodology including the feature extraction 

capability of a Convolutional Neural Network (CNN) combined with a model leveraging the temporal 

relationship between current and prior/future video frame [18, 19]. To effectively train these models 

and perform research on the best approaches for phase recognition, access to high-quality 

annotated datasets is essential. Due to the time-intensive and expertise-dependent nature of surgical 
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video annotation and the privacy concerns regarding medical data, there is a scarcity of open-source 

datasets [20]. To the best of our knowledge, no open-source datasets are available for MIS 

lobectomy or segmentectomy procedures. 

I.I. Goals & Objectives 
This study aims to implement a DL surgical phase recognition algorithm for automatic detection of 

the intraoperative orientation of the lung during RATS, hereafter referred to as orientation 

recognition. Our objective is to understand how the unique characteristics of our dataset impact the 

performance of this approach. 

II. Methods 

II.I Study Design 
A retrospective single-centre cohort study was conducted at the Cardiothoracic Surgery Department 

of the Erasmus Medical Centre (EMC), the Netherlands. We curated a dataset of 27 available RATS 

videos, collected between December 2022 and December 2023. All patients underwent a robot-

assisted lobectomy or segmentectomy procedure for NSCLC. Patients were included after obtaining 

informed consent, approved by the Institutional Medical Ethical Committee (MEC-2023-008/MEC-

2023-0397) and all data was anonymized and handled according to the EMC privacy guidelines. 

Procedures were performed by two experienced cardiothoracic surgeons and one senior 

cardiothoracic resident. 

II.II Orientation Definition 
Distinct orientations were defined based on intraoperative views encountered during 

lobectomy/segmentectomy procedures. Throughout these procedures, lung orientation varies across 

actions and phases and differs between left and right-sided resection of the lungs. In collaboration 

with a cardiothoracic surgeon, five orientations of the lung parenchyma or pulmonary hilar/arterial 

structures were identified as crucial for 3D model orientation (Fig 1.).  

1. Anterior view: the lung parenchyma is retracted posteriorly. Left-sided resections include 

visibility of pericardial tissue and the thoracic wall on the left side, and the lung parenchyma 

visible on the right. Right-sided resections are characterized by the appearance of the lung 

parenchyma on the left, with the pericardial tissue often visible on the right.  

2. Posterior view: the lung parenchyma is retracted anteriorly. For resections of the left lung, 

the aorta is prominently visible on the right and the lung parenchyma on the left. For right 

lung resections the thoracic wall is apparent on the left, and the lung parenchyma on the 

right. The pericardial tissue may become visible on the left/inferior aspect of the video view.  

3. Inferior view: the lung parenchyma is retracted superiorly, with the lung parenchyma visible 

at the top of the video view. This lung orientation is commonly related to the surgical release 

of the pulmonary ligament.  
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Figure 1. Examples of Pulmonary Orientation Definitions. a. Anterior View (left lower lobe resection. b. Posterior View (left 

lower lobe resection). c. Fissure View (left lower lobe resection). d. Anterior View (right upper lobe resection) e. Posterior View 

(right lower lobe resection). f. Fissure View (right lower lobe resection). g. Inferior View (left lower lobe resection). h. Superior 

View (left upper lobe resection). i. 3D Model use during Fissure View j.  Inferior View (right lower lobe resection). k. Superior 

View (right lower lobe resection). l. 3D Model use during fissure view. m. Transition between two orientation n. View that is 

not recognized as one of the predefined orientations and labelled as “Other”. o. The thoracoscope is retracted from the 

patient, labelled as “Non-Surgical”.  
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4. Superior View: the lung parenchyma is retracted inferiorly, visualizing the lung parenchyma 

in the bottom of the video view. Left-sided resections may specifically include visibility of the 

vessels of the aortic arch.  

5. Fissure view: characterized by the separation of two lung lobes, revealing the interlobar 

fissure. 

Three supplementary categories are defined: ‘Transition’, ‘Other’ and ‘Non-surgical’. ‘Transition’ 

involves all video sequences with an extended transition between orientations, defined by the 

moment when an instrument starts manipulating the lung parenchyma into a new orientation. 

‘Transition’ concludes when a new orientation can be distinctly identified. Video sequences labelled 

as ‘Other’ are more heterogeneous, encompassing blurred vision preventing orientation 

identification or any orientation of the lung parenchyma that defies classification within the 

predefined orientations. ‘Non-surgical’ pertains to any video sequence where no clear surgical 

perspective is identifiable due to the retraction of the thoracoscopic video scope outside of the body. 

The start and end of the Non-Surgical’ is defined by the instrument port (increasingly) becoming 

(in)visible. 

II.III Pre-processing  

The surgical videos were recorded with an 8mm robotic endoscope camera (Da Vinci Xi plus, 30-

degree angle) with a frame rate of 60 frames per second (fps) and a resolution of 1440x900 or 

1280x1024 pixels. Pre-processing of the video data consisted of shortening the videos by defining 

new start and end-times, converting the frame rate to 25 fps and resizing the videoframes to 

1125x900 pixels. Detailed steps are provided in Appendix A. 

II.IV Labelling 
Labelling was performed through the Anvil video annotation tool [18]. Annotations included 

framewise annotation of the intraoperative orientation of the lung. 3D model presence, using the 

TilePro extension of the DaVinci Robot, and instrument port visibility, was annotated to analyze 

intraoperative use of the 3D model and potential visual impairment. To guarantee the 

standardization and reproducibility of annotations, and to mitigate potential sources of error, explicit 

rules for annotation were established in discussion with a cardiothoracic surgeon, which are provided 

in Appendix B.  

 

A MSc Technical Medicine thesis candidate (MCD) of the Department of Cardiothoracic Surgery at 

the EMC, the Netherlands, labelled videos of lobectomy and segmentectomy procedures of the 

varying lung lobes as instructed. Three feedback sessions (after 40%, 80% and 100%) with a 

Cardiothoracic Surgeon (AS) and a Technical Physician (QM), both experienced in performing RATS 

lobectomy and segmentectomy procedures, were conducted for revision of the labelling method on 

five randomly selected videos. An inter-rater orientation transition agreement and a Cohen’s Kappa 

score [21] per category, similar to annotation revision in the HeiChole challenge [20], expressed the 

variability between annotator and experts. Intra-observer variability was investigated for three 

videos, one of each revision session, after a period of 4-6 weeks, using Cohen's Kappa score. 

Following the completion of all feedback sessions, a thorough error correction was carried out across 

all videos. Concurrently, the experts were consulted for consensus on complex or challenging video 

sequences. 
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II.V Orientation Recognition Model 
The Temporal Convolutional Networks for the Operating room (TeCNO) [22] was adopted as a two-

stage modelling approach for surgical orientation recognition. This approach utilizes a CNN to extract 

features from individual frames, without any temporal context, followed by the implementation of a 

Multi-Stage Temporal Convolutional Neural network (MS-TCN), that captures sequential dynamics 

[18].  

 

Stage 1: CNN Feature Extraction 

For visual feature extraction, without temporal context, the deep residual convolutional neural 

network architecture of ResNet50 [23] was employed as a single-task network for orientation 

recognition [22]. For each frame, the model estimated probability distributions across all possible 

orientations, to indicate the probability of the frame belonging to each catagory [18]. 

 

Stage 2: MS-TCN Temporal Aggregation 

Frames before and after a given frame may provide useful information to predict the likelihood of 

that frame belonging to a certain orientation [24]. A MS-TCN can establish the relationship between 

current and prior/future frames of a surgical video [18, 22]. We have utilized the MS-TCN of TeCNO, 

since this approach has recently achieved state-of-the art results for surgical phase recognition in the 

Cholec80 dataset [22, 24] and showed best performance compared to Trans-SVNet (transformer-

based architecture) on real-world data [18, 25]. The output of the MS-TCN is an orientation 

prediction for each frame in the input sequence [24]. TeCNO only relies on future frames, enabling 

potential intraoperative use. Furthermore, TeCNO allows for a significant reduction in computational 

cost compared to other models [22]. The complete TeCNO model for our dataset can be found in 

figure 2.  

II.VI Model Training 
Our dataset was split in a train-validation-test ratio of 50:20:30, following a previously described 

method [26], ensuring representation of both types of procedures (segmentectomy/lobectomy) and 

the different sides (left/right) in each group. All hyperparameters were tuned during experimental 

runs to select the model that performed best on the test set. We implemented our method in 

PyTorch [27], training our models on a NVIDIA Quadro RTX 6000 24GB GPU.  

II.VII Evaluation Methods 
To comprehensively measure the performance of the model on our specific dataset, we employ 

various evaluation metrics common for surgical phase recognition, including Accuracy, Precision, 

Recall and F1 score [26]. Accuracy is defined as the proportion of correct predictions in each video. 

The overall accuracy is determined by computing the average across all orientations and videos, to 

ensure each orientation and video is weighted equally, independent of the occurrence rate of the 

orientation or video length [24]. Precision is the positive predictive value (PPV) and checks if the 

orientation is recognized incorrectly. Recall is the true positive rate (TPR) which checks whether parts 

of an orientation sequence are missed. Subsequently, a F1 score is employed to measure both how 

accurately and comprehensively an orientation is recognized. The F1 score can be computed by 

taking the mean of the mean precision and mean recall, considering false positives and negatives  
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[26]. Precision and Recall are computed per orientation per video and subsequently averaged over all 

videos. Final scores are obtained by averaging the orientation-wise scores. 

 

III. Results  
III.I Annotation 
A total of 27 procedures were annotated. Inter-rater agreement (between student and expert) and 

intra-rater agreement, evaluated across three revision sessions, is presented in Appendix C and figure 

3. For inter-rater agreement, the orientation transition agreement score varied from 62.5% for a 

video in the first revision session to 94.74% for a video of the final revision session. The Cohen’s 

Kappa Scores ranged from 0.81 to 1, indicating a strong to nearly perfect level of agreement Intra-

rater agreement, evaluated with a Cohen’s Kappa score, varied from 0.75 (moderate) for a video 

from the first revision session to 0.96 (almost perfect) for a video of the second revision session. 

III.II Dataset 
The annotated dataset, consisting of 27 annotated RATS lobectomy and segmentectomy procedures, 

is visualized in Figure 4. The distribution of the dataset split can be found in Appendix D. The videos 

in our dataset had a median duration of 127 minutes. The shortest video in our dataset was 30 

minutes and the longest video was 285 minutes. These durations consider the adjusted start and end 

times. 

 

 
             a            b               c                       d          e 

Figure 2. Overview of the proposed neural network, using a Multi-Stage Temporal Convolution Network [28] a. The 

lobectomy and segmentectomy videos are split into video frames using a frame rate of 25 frames per second (fps). b. 

Feature extraction is performed using a deep convolutional neural network (CNN), ResNet50 [23]. For each frame the 

predicted feature vector, expressing the visual information content of the video frame, is compared to the original frame. 

c. All feature vectors are combined into a sequence of feature vectors, serving as input to the MS-TCN model. d. The MS-

TCN captures the temporal information in between video frames. The multiple stages of TCN’s allows refinement of 

previous stage predictions at every step [22, 29]. e. The MS-TCN model provides orientation phase predictions for each 

video frame. 
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Figure 5a. shows how the orientation annotations are distributed across the complete dataset. The 

exact number of frames and percentages are incorporated in Appendix E. The orientation with a 

‘Fissure view’ appeared most in our data as 41.8% of all video frames were annotated with this label. 

‘Posterior view’ and ‘Anterior view’ follow at 25.4% and 15.4%. Of the five identified orientations, 

‘Inferior view’ appeared least with 3.2% of all video frames annotated with this label. 12.0% of the 

dataset is annotated as ‘Other’ and 2.2% as ‘Non-Surgical’.  

 
Figure 4. Annotated orientation per video plotted over the relative progress in the procedure in % 

  

 

a b 

  
c d 

Figure 3. Timeline plots of inter- and intra-rater agreement, illustrating orientation transition errors. Each phase is encoded by a 
different color explained in the legend. a. Video 08 (revision session 2): lowest inter-rater agreement. b. Video 16 (revision session 3): 
highest inter-rater agreement. c. Video 02 (revision session 1): lowest intra-rater agreement. b. Video 20 (revision session 2): highest 
intra-rater agreement. 

True Labels 

Expert Annotation Video 8 

Initial Annotation Video 8 Initial Annotation Video 16 

Expert Annotation Video 16 

True Labels 

Expert Annotation Video 2 

Initial Annotation Video 2 Initial Annotation Video 20 

Expert Annotation Video 20 
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The variability in the lengths and occurrences of orientation are shown in Figure 5b. The 'Anterior 

view' orientation had the longest median duration in the dataset at 2.84 (0.02–43.27) minutes, 

followed by 'Superior view' at 2.27 (0.01–23.35) minutes, 'Posterior view' at 1.39 (0.01–36.54) 

minutes, 'Fissure view' at 1.29 (0.06–21.71) minutes, and 'Inferior view' at 0.28 (0.00–38.43) 

minutes. The median duration for the 'Other' label was 1.57 (0.01–36.54) minutes, while 'Non-

Surgical' and 'Transition' had median durations below 1 minute, with 0.52 (0.10–2.12) minutes and 

0.11 (0.00–1.95) minutes, respectively. The 3D model was used in 4.3% of all annotated frames, 

primarily (52.4%) during the ‘Fissure view’. The duration of the 3D model usages was a minimum of 

0.1 minutes and a maximum of 27 minutes (median of 0.13 minutes) (Appendix E). 

 

Finally, we analyzed the orientation transitions in our dataset. Table 1. shows in what proportion a 

transition is observed from one orientation to another. 

 Next Phase [%]   

Labels Anterior  

View 

Posterior  

View 

Fissure 

View 

Inferior 

View Superior View Transition Other Non-Surgical 

Anterior View - 0 0.85 2.56 0 47.01 41.03 8.55 

Posterior View 0 - 0 0 0 34.88 48.84 16.28 

Fissure View 0.47 0.47 - 1.42 0 55.45 31.75 10.43 

Inferior View 0 0 0 - 0 43.33 50.00 6.67 

Superior View 0 0 0 0 - 34.21 47.37 18.42 

Transition 23.26 16.28 42.86 4.65 4.98 - 7.97 0 

Other 8.09 21.32 19.49 3.31 4.41 21.32 - 22.06 

Non-Surgical 18.03 17.21 23.77 3.28 9.02 0 28.69 - 

Table 1. Phase transitions in our dataset. The numbers indicate the relative (in percent) transitions from one phase (row-

axis) to another (column-axis). 

III.III Orientation Recognition 
The complete distribution of the dataset split, corresponding feature visualisations and distribution 

of cross-validation are provided in Appendix D and an elaborate description of the hyperparameter 

tuning and eventual selection is presented is presented in Appendix F.  

 

Table 2. provides the performance of feature extraction and the three-stage temporal approach of 

TeCNO on our dataset. Accuracy, Precision, Recall and F1-score are provided for the final used 

dataset and averaged over all folds of cross validation. Additionally, accuracies for different subsets of 

our dataset were extracted, displaying the influence of certain characteristics of the dataset on 

model performance. 

  
      a b 

Figure 5. Orientation & Duration throughout the complete dataset a. Distribution of Orientation [%]. b. Distribution of 
orientation sequence duration across videos (in second) throughout the complete dataset. Duration (y-axis) is presented 
in log-scale 
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Figure 6. provides evaluation of the comparative analyses of the per-orientation performance 

reached by the two-stage TCN model, through a confusion matrix and variations in key performance 

metrics precision and recall. The diagonal line of the confusion matrix indicates TPR, ranging from 

0.00 for the label ‘Other’ and ‘Transition’ to 0.97 for the ‘Non-Surgical’ category. The TPR for 

orientations ranges from 0.00 for the prediction of the ‘Posterior view’ to 0.89 for the ‘Fissure view’.  

 

  
     a        b 

Figure 6. Comparative orientation phase-specific model performance analysis. a. Normalized confusion matrix (NCM), 
showing phase-specific accuracy. Rows in the NCM correspond to the annotated actual phase label (ground truth), 
whereas columns correspond to the predicted phase labels. The diagonal elements of the NCM present the proportion of 
correct predictions per phase. The color of the heat map indicates the proportion of frames that is allocated to each 
phase label, dark blue signifying a high proportion and light blue a low proportion. b. Orientation phase-specific Precision 
and Recall across our test set. 

To visualise the predictive accuracy of our approach, we provide the models predictions for the 

videos that show best and worst performance, compared to the initial annotations that are 

considered ground truth (figure 7).  

 

 Final Dataset  

Accuracy Precision Recall F1-Score  

Without TCN (TeCNO) 65.73 ± 23.69 42.79 ± 14.69 52.47 ± 12.28 35.98 ± 16.31  

TeCNO Stage I 66.71 ± 16.83 38.41 ± 38.62 47.48 ± 41.04 29.91 ± 12.95  

TeCNO Stage II 37.25 ± 13.99 51.26 ± 45.35 19.81 ± 31.99 16.32 ± 08.25  

TeCNO Stage III 35.91 ± 28.52 45.39 ± 30.61 15.94 ± 6.5 9.25 ± 6.46  

                                        a 
 

 Cross-Validation  

Accuracy Precision Recall F1-Score  

Without TCN (TeCNO) 63.22 ± 20.13 44.23 ± 13.59 59.36 ± 11.32 38.53 ± 13.76  

TeCNO Stage I 67.38 ± 18.25 56.08 ±38.64  33.2 ± 39.84 26.76 ± 9.34  

TeCNO Stage II 55.34 ± 29.24 45.65 ± 34.53 25.12 ± 41.16 17.57 ± 9.26  

TeCNO Stage III 54.77 ± 28.18 47.67 ± 24.98 24.34 ± 7.16 9.26 ± 9  

 b  

 Final Dataset Cross- Validation  

Accuracy CNN Accuracy TCN Accuracy CNN Accuracy TCN  

Left-Sided Resection 75.52 ± 14.01 79.08 ± 9.54 72.13 ± 15.87 65.45 ± 18.20  

Rights-Sided Resections 52.71 ± 25.71 58.68 ± 23.77 57.71 ± 18.81 60.50 ± 23.99  

Upper/Middle Lobe Resections 58.51 ± 30.31 63.01 ± 27.97 61.94 ± 25.61 50.34 ± 24.30  

Lower Lobe Resections 64.02 ± 19.24 69.65 ± 16.20 64.29 ± 10.50 74.37 ± 5.33  

 c 
 

Table 2. Model performance (mean ± std) using the evaluation metrics Accuracy, Recall, Precision and F1-score on our 

dataset. The std for accuracy is computed across all videos. The std for precision, recall and F1-score is computed across 

all orientation. a. Model performance of the final selected dataset. b. Model performance averaged over all 5 folds of 

cross-validations. c. Model performance for subsets of the dataset to interpreted performance for Left- vs. Right-sided 

lung restions and Upper/Middle Lobe vs. Lower Lobe Resections. 
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a b  
Figure 7. Timeplots of ground truth (top) and predictions (bottom), illustrating qualitative results for phase recognition 

with the TeCNO model on our own dataset. a. Video 16 for which the model achieved the highest accuracy of 89.23%.   

b. Video for which the model achieved the lowest accuracy of 16.39%. 

IV. Discussion  
Our study introduced a proof-of-concept DL-based orientation recognition approach [22], to 

automatically detect the intraoperative orientation of the lung during left- and right-sided Robot-

Assisted lobectomy and segmentectomy resections. These orientations are closely related to the 

surgical approach and the bronchovasculature encountered throughout different phases of the 

procedure. Automatic orientation recognition could aid in identifying anatomical structures, serve to 

train and educate, and provide insights into different surgical approaches to potentially improve 

procedural efficiency. Ultimately, this might enhance intraoperative imaging navigation by facilitating 

the automated orientation of 3D models.  

 

We have developed a unique dataset for orientation recognition, the first comprising pulmonary 

procedures and intraoperative orientation. Our model achieved an overall accuracy of 70% using 

two-stage TCN, indicating a reasonable ability to classify orientations correctly. However, the low 

precision, recall and F1-score indicate considerable inconsistency in its performance. Additionally, 

this study shows a steep learning curve for annotation, suggesting that relatively inexperienced 

raters can be adequately trained to perform orientation annotations. 

 

The TeCNO model [22] was initially developed for surgical phase recognition of laparoscopic 

cholecystectomies, using the Cholec80 [29] dataset (80 laparoscopic cholecystectomy videos). This is 

the most frequently referenced resource for surgical phase recognition, showing an accuracy of 

88.56% for two TCN stages [22]. The inferior performance of our dataset compared to Cholec80 was 

expected given the dissimilarity between intraoperative phases and orientation, the completely 

different procedure compared to a Cholecystectomy procedure and our small dataset.  

 

Surgical phase recognition models are trained to recognize the consecutive surgical steps of a 

procedure, such as preparation, dissection and cutting [16]. Given the predominantly linear 

workflow, cholecystectomy procedures exhibit highly deterministic phase transitions, allowing 

models to effectively utilize the temporal information between sequences [18]. Our dataset displays 

highly heterogeneous orientation transitions, due to orientations being present across various 

surgical phases (figure 4). Most lung orientations are succeeded by a ‘Transition’ or ‘Other’ 

True Labels 

Predicted Labels Predicted Labels 

True Labels 



 

17 

sequence, but no clear pattern can be distinguished for the orientation thereafter. Thus, the model 

can exploit less distinctive temporal information from our dataset, contributing to lower model 

performance. ‘Transition’ label can provide information on the ease of transitioning between 

orientations, potentially indicating the surgeon's expertise and the labeler-specific decision making 

regarding the initiating and conclusion of orientations [17]. However, the model has the tendency to 

predict ‘Transition’ sequences as ‘Other’, suggesting that combining these labels might enhance the 

predictive power. 

 

Pulmonary procedures are complex due to the granular subdivision of pulmonary anatomy [30]. 

Differences in right and left pulmonary anatomy and variation in surgical approach, e.g., anterior to 

posterior, fissure-first or -last, can add to the complexity of recognition [31]. Most current research 

on surgical phase recognition is primarily focused on more standardized general surgery procedures, 

such as laparoscopic cholecystectomy [17, 32]. A similar procedure is a thoracic robot-assisted 

minimally invasive esophagectomy procedure, for which recent research has achieved an accuracy of 

84% using the TeCNO model, suggesting opportunity for performance improvement using our 

dataset [32].  

 

The varying results for subsets of our dataset imply high influence of the composition of the dataset 

on model performance. For example, feature extraction performs better for left-sided resections, 

possibly aided by prominent anatomical landmarks such as the thoracic aorta and pericardial tissue, 

while the temporal model excels slightly for right-lung resection. Interestingly, lower lobe resections 

show notably higher performance than upper/middle lobe resections, which potentially correlates to 

the higher risk of intraoperative technical challenges and inconsistency of subsequent surgical steps 

[31, 33]. Furthermore, temporal model performance excels for lower lobe resections. These 

resections are more anatomically straightforward and therefore may entail a more standardized 

surgical approach [31].  

 

Furthermore, discrepancy in performance is observed between different orientations. The model 

shows high performance in detection of the non-surgical category, the ‘Fissure’ and the ‘Inferior’ 

view. More difficulty is observed in predicting the ‘Posterior’ and the ‘Anterior’ view. This is 

potentially related to our mixed dataset of right and left lung resection. Interestingly, this correlates 

to our analyses of two videos with persistent low accuracies (video 8 and 11), that show an 

overrepresentation of certain orientations, ‘Anterior view’ and ‘Posterior view’, and limited presence 

of the ‘Fissure view’. The categories ‘Superior view’ and ‘Transition’ are rarely classified correctly. 

Given the limited size of our dataset, imbalances in frequencies of labels potentially hinders the 

learning capability of the model [17].  

 

While the potential application of this orientation recognition approach seems promising, this study 

was subject to several limitations. The dataset utilized in this research is sourced from a single 

medical center, raising potential challenges in generalizing our findings. Our model is trained on a 

very small and heterogeneous dataset that presents a large variety in performance based on the 

specific dataset split. Bar et al. [34], show that increasing the amount of data highly influences the 

performance of recognition models. Thus, to investigate the full potential of orientation recognition, 

a larger dataset, spanning multiple institutions is needed to ensure adequate variability for training. 
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Despite clear annotation guidelines, annotation is time-consuming, and dependent on the 

annotator's expertise [17]. Involving expert annotators is necessary to enhance the quality of the 

dataset and approaches to reduce the burden of annotation can be considered, such as un-

supervised  [35], self-supervised learning [36, 37] or federated learning [38], soft tissue tracking [35] 

and more extensive data augmentation [37].  

 

The considerable accuracy standard deviation suggests a big performance gap between videos. Such 

high variability of accuracy across videos might suggest overfitting [17]. Especially the performance 

of the temporal model is highly influenced by the composition of the dataset and may even decrease 

the models predictive power opposed to results from feature extraction. Our study uses a TCN as 

temporal model, however, while a particular model may be effective for one purpose or type of 

procedure, it may not be suitable for another [16, 17]. Other temporal methods that may be 

employed are e.g., dynamic time warping [39, 40], hidden Markov models [41], Long Short-Term 

Memories (LSTM) networks [42, 43] or transformers [25].  

 

Furthermore, our method consists of an independent spatial and temporal stage. Future work could 

explore integrated models to preserve temporal information during feature extraction and enhance 

context aggregation [44]. Performance might also benefit from further hyperparameter optimization 

[37]. Latest innovations including dynamically adaptable weights to handle class imbalance, a 

Moment Loss function that penalizes undesirable transitions to prevent overfitting and a dual dilated 

layer that combines different receptive fields to improve model performance could be investigated to 

improve model performance [28, 45, 46]. Finally, future work could study the influence of 3D model 

presence, visibility of the instrument port or presence of a significant amount of blood or smoke on 

predictive performance.  

 

Intraoperative orientation recognition can have diverse applications. It can offer a valuable tool for 

training and education in understanding the diverse surgical approaches, aid surgeons in refining 

surgical techniques and enhance intraoperative decision making and procedural efficiency. 

Additionally, it may support students and young residents to recognize the correlation between lung 

orientation, surgical steps and essential anatomical landmarks. Hence, it may contribute to automatic 

intraoperative anatomy recognition [15]. A persistent challenge in this area remains detection 

restriction to exposed anatomical structures, lacking information on the underlying anatomy. 

Leveraging knowledge of intraoperative orientation can inform on the probability of the presence of 

concealed structures being present. Similarly, it can complement the recognition of surgical steps. 

These advancements can be implemented concurrently, mutually reinforcing one another by 

providing supplementary information for decision-making. 

 

Ultimately, orientation detection could enhance intraoperative imaging navigation by enabling 

automatic adjustment of intraoperative 3D models. This can be specifically relevant in the ‘Fissure 

view’, where our data shows frequent use of 3D model assistance. Interestingly, we observed highest 

occurrence and model performance in the ‘Fissure view’ as well. Automatic ‘Fissure view’ orientation 

of a dynamic 3D model like PulmoSR (MedicalVR, Amsterdam, The Netherlands) [12] is specifically 

relevant, as interlobar 3D simulation involves substantial adjustments, beyond simple translation and 

rotation. Automation could eliminate the need for manual input by surgeons or remote assistants 
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and improve intraoperative workflow. Detailed steps to enable automated 3D model orientation are 

outlined in Appendix G. Finally, automatic orientation detection could contribute to the growing 

research topic of Augmented Reality registration [47] in surgery, facilitating initial 3D model 

positioning to simplify subsequent registration steps.  

V. Conclusion 
In conclusion, our study introduced a proof-of-concept orientation recognition approach to 

automatically identify intraoperative lung orientation during RATS lobectomy/segmentectomy 

procedures. We developed and utilized a unique dataset with intraoperative orientations of the lung 

and evaluated the performance of an existing surgical phase recognition model, TeCNO, in this 

context. Despite the challenges of adapting this model to our distinctive dataset, which is small and 

features less predictable orientation transitions, results show potential to enhance intraoperative 

guidance and 3D model alignment, particularly in the most often used interlobar ‘Fissure view’. 

Further developments are necessary to improve performance of orientation recognition and 

prospective studies should be performed to assess the clinical implementation. 
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VII. Supplementary Files 
 

Appendix A. Technical Details 

Short Technical Introduction 
AI is a broad-based field of computer science that provides the ability to imitate intelligent human 

behaviour [16, 48]. It can handle and optimize highly complex systems consisting of very complex 

data sets, through the application of algorithms [49]. Within AI, Machine Learning (ML) algorithms 

are capable of automatically learning from experience and therefore, modify and improve processing 

upon newly acquired information. Given enough data, a ML algorithm is able to extract complex 

patterns that are invisible to humans and accurately classify unseen data [50-52]. A subset within ML 

is Deep Learning (DL), which can imitate human brain processing through a Convolutional Neural 

Network (CNN), a mathematical model that is inspired by the neural networks of the human brain, 

considering multiple datasets simultaneously throughout different layers [48, 50, 51]. In the review 

of Garrow et al., [16] it became apparent that most ML algorithms used for surgical phase 

recognition are based on supervised learning [17]. A supervised learning algorithm is a prediction 

model for unlabelled data developed through analysis of a labelled dataset [51].  

 

Pre-processing 
To address variations in video frame dimensions and aspect ratios of the video in our dataset, a 

preprocessing methodology utilizing the FFmpeg multimedia processing tool [53] was used, 

considering both spatial and temporal transformation. Spatial transformation involved a series of 

operation including cropping, padding, and scaling. A spatial cropping operation was employed to 

standardize the spatial dimensions of the video frames. The frames were cropped to a resolution of 

1125x900 pixels, ensuring consistency in the region of interest (ROI). The choice of 900 pixels as the 

height was determined by selecting the shortest pixel height encountered in the dataset. To maintain 

the aspect ratio observed in the 1280x1024 pixel video frames (0.8 ratio), the width was adjusted 

accordingly. For frames originally sized at 1440x900 pixels, the presence of black edges allowed for 

the safe cropping of the width to 1125 pixels without resulting in information loss.Subsequently, a 

symmetric padding operation was executed to preserve the original aspect ratio. This step ensures 

that subsequent analyses are not biased by variations in the original frame dimensions. Additionally, 

scaling was performed, reducing the frames to a width of 375x300 pixels. This adjustment proved 

essential for efficient data handling during the process of splitting videos in individual frames, 

minimizing storage demands that could potentially impede or slow down the overall process. 

 

A temporal transformation was applied by adjusting the frame rate to 25 fps. This modification was 

crucial for both the annotation process, automatically facilitated in Anvil [54], and the subsequent 

splitting of video frames, optimizing the computational efficiency of these processes.Videos were 

shortened by defining a new start and end time. The start times were manually selected after the 

insertion of all instruments upon the first movement. For lobectomy procedures the end time of the 

video was determined upon the complete detachment of the to be resected lung lobe from the 

remaining part of the lung. Regarding segmentectomy procedures the end time of the video was 

determined by the initiation of the lung parenchyma stapling, given the anatomically disrupted view 

that follows this resection. 
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Appendix B. Orientation Definition and Annotation Rules 

Orientation Definition 
Multiple methods were scrutinized to get familiarized with the surgical steps of a lobectomy and 

segmentectomy RATS procedure. Initially, various surgeries were observed to understand lung 

orientation and identify key structures like pulmonary veins, arteries, and bronchi. Theoretical 

research on lung anatomy, particularly bronchovasculature, was conducted online. Additionally, four 

videos of surgeries were thoroughly analyzed, focusing on lung orientation, surgical steps, and 

corresponding time stamps. This highlighted the importance of pulmonary orientation during 

lobectomy and segmentectomy surgery.  

 

Annotation Rules 

In the following, additional details on the annotation protocol for Orientation, 3D Model and Port 

Visibility Annotation as described in the ‘Methods’ section of the main article are presented.  

 

Orientation Annotation 

The orientation annotation encompasses eight labels, including five orientations of the lung: 

‘Anterior View’ (P1), ‘Posterior View’ (P2), ‘Fissure View’ (P3), ‘Inferior View’ (P4), ‘Superior View’ 

(P5). Additionally, three labels – ‘Transition’ (P6), ‘Other’ (P7) and ‘Non-Surgical’ (P8), are included to 

categorize all video frames/sequences not fitting the defined orientations. The orientations do not 

necessarily occur in a fixed order. Identified orientations (P1 – P5) are typically preceded or followed 

by a ‘Transition’ or ‘Other’ sequence. The ‘Transition’ label includes sequences where the lung 

parenchyma is being reoriented, beginning with the movement of tissue by surgical tools and ending 

when a new orientation is clearly established. ‘Other' covers sequences not identifiable as specific 

orientations or clear transitions, including frames obscured by blood, smoke, or with the lung 

parenchyma completely out of view. 

 

3D Model Annotation 

The 3D model, displayed beneath intraoperative video footage using the Tilepro extension of the Da 

Vinci robot, is annotated irrespective of the orientation. The Tilepro functionality is manually 

activated by the operating surgeon and can be active across all types of orientations. The annotation 

starts and ends with frames showing any activation of the Tilepro functionality, even if the 3D model 

itself is not immediately visible. It is not a default label for every video frame; thus, frames without 

port-visibility are marked as 0, while those with a visible instrument port are marked as 1. 

 

Port-Visibility Annotation 

This annotation applies to all frames where the instrument port is even marginally visible, during one 

of the five orientations (P1 – P5) or within the ‘Other’ label. The ‘Port-visibility’ label is always 

annotated concurrently with another orientation and is represented by a distinct label. Again, this is 

not a default label for every video frame, assigned with 0 or 1. Port visibility and the 'Non-Surgical' 

(P6) label are mutually exclusive. The transition between 'Port-Visibility' and 'Non-Surgical' is defined 

by the frame in which the instrument port becomes more visible compared to preceding frames. 
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Annotation Platform 
Several annotation methods were considered and explored. Initially three videos of lobectomy 

procedures of the lower left lobe were analyzed through the SuperAnnotate software [55] provided 

by Orsi Academy (Ghent, Belgium). An example of the annotation platform is visualized in figure 8. 

This software allows for guided annotation through the magic polygon option. With more easily 

identifiable structures, placing a considered number of points towards the edges of the target 

structure provides the software with enough information to identify the complete structure. 

Subsequently, each polygon can manually be adjusted. For these three videos annotation of all 

instruments was performed, to explore the potential added value of instrument detection for phase, 

orientation or anatomy recognition. Furthermore, three major anatomical structures were 

annotated: the pericardial tissue (heart), the lung parenchyma and the aorta. These structures were 

selected since they can be identified relatively easily and appear in most of the video frames. 

Annotation of these structures was performed to familiarize myself with the pulmonary anatomy and 

assess the possibility of structure annotation for potential anatomic structure detection. Additionally, 

these three videos were thoroughly analyzed regarding pulmonary orientation and surgical steps, to 

better understand the lobectomy procedure and anatomy of the left lung. In general, The 

SuperAnnotate software provides an intuitive platform for anatomical structure annotation, however, 

remains labor intensive due to the limited quality of automation and lack of in between frame 

interpolation. In addition, this platform was not open source, disqualifying this platform for further 

use.  

 

 
Figure 8. Left: IMAS video platform to access and visualize intraoperative videos obtained in the Erasmus Medical Center. 

Right: SuperAnnotate annotation platform interface 

Consequently, various other open-source annotation platforms were considered, including LabelMe 

[8], CVAT [9] and ANVIL (Annotation of Video and Language Data) [10]. Both LabelMe and CVAT 

provide user-friendly interfaces for the annotation of anatomical structures, with the option for a 

local download to enable data privacy. An example of both annotation platform interfaces is 

provided in figure 9. In LabelMe, users have the ability to draw polygons around objects within 

images, facilitating the creation of labeled datasets for object detection and segmentation tasks. 

However, LabelMe does not support frame-by-frame labeling, a feature vital for tasks such as 

orientation labeling. CVAT is designed for annotating both images and videos for computer vision 
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projects, supporting the annotation on video sequences. This platform provides enhanced features 

like shape interpolation between video frames and automatic annotation using deep learning 

models. Despite these capabilities, the local installation of CVAT lacked some of these functions, 

resulting in a more labor-intensive process for frame-to-frame labeling. 

 

a. 

 
 

b. 

 
Figure 9. Exploration of annotation platforms. a. LabelMe annotation platform interface. b. CVAT annotation platform 

interface (local version). 

ANVIL annotation platform 

ANVIL is an annotation platform specifically designed for the analysis of multimedia content. Due to 

the flexibility of the feature set it can be adapted for a wide range of annotation tasks, including 

sequence annotation of surgical videos since it allows users to mark and label segments over time. In 

addition, ANVIL is highly customizable, enabling users to define their own coding schemes. Figure 10 

provides an example overview of ANVIL’s annotation platform interface, consisting of four separate 

windows. A project specific coding scheme was prepared for the purpose of orientation detection, as 

presented in figure 11.  
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Installation of ANVIL 

To download ANVIL, the right version of Java and the ANVIL software are required.  

• Download Java: Index of java-local/jdk/9.0.1+11 (huaweicloud.com) 

• Download Anvil: http://www.anvil-software.de/download/index.html 

For further instruction, please be referred to ANVIL’s own website: http://www.anvil-

software.de/download/index.html# 

 

 
Figure 10. ANVIL annotation platform interface. Blue: Main window to open and save files, display video Information 

including frame rate, video duration, current frame and timestamp & navigate through the video. Yellow: Video footage. 

Orange: Tracking window to assign attributes/comments to a selected video sequence. Green: Video timeline with specified 

annotation categories, to assign color-coded elements on multiple tracks in time-alignment. 

Open documents 

• To open a document, click the ‘folder’ icon in the upper left corner (blue section figure 10) or 

select ‘file’ from the menu bar. 

• When opening a new video, choose the appropriate specification file. 

• For existing ANVIL files, the specification file loads automatically. Ensure the video and ANVIL 

file are in the same folder, or manually select the video file if they are located separately. 

 

Labelling 

1. Navigate through the video using either the cursor on the video timeline (green section 

figure 10) or the navigation arrows (blue section figure 10). 

2. Initiate a video sequence by clicking ‘Start’ in the tracking section (orange section figure 10), 

which will show a green line marking the starting point. 

3. Progress the video by clicking ‘Play’ (▷) or manually moving the red line on the timeline. 

4. The selected video sequence is indicated in red, between the green and red line. 

5. To label a section, click ‘Create & Edit’ in the tracking section (orange section figure 10) or 

right-click on the selection and choose ‘Create & Edit’ (figure 12a). 

6. Select a label from the predefined options and add comments if necessary (figure 12b). 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmirrors.huaweicloud.com%2Fjava%2Fjdk%2F9.0.1%2B11%2F&data=05%7C01%7Cm.doornbos%40erasmusmc.nl%7C546fa7fc9def4409624908dbe505164e%7C526638ba6af34b0fa532a1a511f4ac80%7C0%7C0%7C638355582306731544%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2FozBtdYW1gftrcPKWyU81%2FI2vT9EGSz3Auw0dqgCHrk%3D&reserved=0
http://www.anvil-software.de/download/index.html
http://www.anvil-software.de/download/index.html
http://www.anvil-software.de/download/index.html
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7. For adjustments to existing labels, use the ‘edit’ button (figure 12a). 

8. Ensure continuity in labeling, particularly for orientation tracking elements, by placing labels 

sequentially without gaps. 

 

Export annotations 

• Once all necessary frames are labeled, export the annotations on a frame-by-frame basis. 

• Go to ‘file’ in the menu, click ‘export’, then choose ‘Annotation Frame-By-Frame’. 

• In the export menu (figure 12c), make sure ‘Exclude end frame’ is unchecked. 

• Click ‘OK’ to save the annotations and a summary of the labels used (figure 13). 

 

 
Figure 11. Specification file for Anvil annotation 

   

 

         
Figure 13. Left: Example of frame-by-frame annotation file. Right: Example of annotation labels file. 

 

  
a b 

 
c 

Figure 12. a. Selection menu right-mouse click. b. Selection menu to add 

element/label to the selected section. c. Export menu 
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Appendix C. Revision Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Video Total # of transitions Correct # of Transitions Transition Score Cohen's Kappa Cohen’s Kappa Interpretation 

1st revision  

 05 56 35 62.50% 0.96 Almost Perfect 

 13 14 11 78.57% 0.97 Almost Perfect 

2nd revision  

 04 25 18 72.00% 0.98 Almost Perfect 

 08 48 41 85.42% 0.83 Strong 

3rd revision  

 16 19 18 94.74% 1 Almost Perfect 

Figure 14. Results inter-rater agreement revision sessions 1, 2 and 3, including inter-rater transition agreement scores, 

Cohen's Kappa scores and Cohen's Kappa score interpretation [21]. 

 Video Cohen's Kappa Cohen’s Kappa Interpretation 

1st revision  

 02 0.75 Moderate 

2nd revision  

 20 0.96 Almost Perfect 

3rd revision  

 25 0.95 Almost Perfect 

Figure 15. Results intra-rater agreement revision sessions 1, 2 and 3, including Cohen's Kappa scores and Cohen's Kappa 

score interpretation [11]. 
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Appendix D. Dataset Distribution, Dataset Split & Feature Maps 

 

 
 

 

 

 

 

 

 

 

 

 

 

Video ID Lung Lobe 
Type of 

Resection 

     

1 RLL Lobectomy      

2 RUL Lobectomy      

3 LLL Segmentectomy      

4 RLL Segmentectomy      

5 RUL Segmentectomy      

6 LUL Lobectomy      

7 RLL Lobectomy      

8 RUL Lobectomy      

9 LLL Lobectomy   Lobectomy Segmentectomy Total 

10 RUL Lobectomy  Left 7 3 10 

11 RLL Lobectomy  Left Upper Lobe (LUL) 3 3 6 

12 LUL Lobectomy  Left Lower Lobe (LLL) 4 0 4 

13 LUL Segmentectomy  Right 12 5 17 

14 RLL Lobectomy  Right Upper Lobe (RUL) 4 2 6 

15 RUL Segmentectomy  Right Middle Lobe (RML) 1 0 1 

16 LUL Lobectomy  Right Lower Lobe (RLL) 7 3 10 

17 RUL Lobectomy      

18 LLL Lobectomy      

19 LLL Lobectomy      

20 LLL Lobectomy      

21 RLL Lobectomy      

22 RLL Segmentectomy      

23 RLL Lobectomy      

24 LUL Segmentectomy      

25 RLL Segmentectomy      

26 RML Lobectomy      

27 RLL Lobectomy      

Figure 16. Distribution of the type of lung resections across our dataset 

Fold 1   

Training set 3, 6, 9, 18, 12, 1, 2, 4, 5, 7, 23, 10, 25, 26  

Validation set 24, 20, 15, 27, 21  

   

Fold 2   

Training set 15, 12, 24, 4, 23, 21, 26, 10, 6, 2, 20, 3, 9, 27   

Validation set 18, 7, 5, 1, 25  

   

Fold 3   

Training set 27, 6, 9, 12, 26, 18, 4, 5, 23, 21, 2, 15, 24, 1  

Validation set 20, 10, 7, 25, 3  

   

Fold 4 (Final dataset)  

Training set 12, 7, 2, 9, 23, 25, 24, 3, 26, 5, 15, 27, 20, 6  

Validation set 21, 10, 1, 4, 18  

   

Fold 5   

Training set 5, 7, 26, 24, 21, 27, 12, 18, 2, 4, 25, 10, 9, 1  

Validation set 6, 20, 3, 23, 15  

Figure 17. Randomized dataset splits for cross-validation 
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Figure 18. Orientation distribution across videos of the training, validation and test set of our Final Dataset  

  

 

  
Figure 19. t-Distributed Stochastic Neighbor Embedding (t-SNE) Feature Maps illustrating the diverse distribution of lung 
orientation labels across the complete final dataset, the training set, the validation set and the test set. The color-codes 
differentiate among various labels, offering a visual representation of the dataset’s complexity. Each point of the maps 
corresponds to a specific feature, plotted according to the feature similarities. It provides information about the clustering 
tendency and the ability to distinguish different lung orientations.  
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Appendix E. Orientation Distribution, Sequences & 3D Model Usage 
 

Label Percentage 

Anterior 15.4% 

Posterior 25.4% 

Fissure 41.8% 

Inferior 3.2% 

Other 12.0% 

Non-Surgical 2.2% 

Total 100% 

3D Model 4.2% 

Figure 20. Distribution of orientations & 3D model usage across all video's 

  Min. Duration Max Duration Median Duration Average Duration 

Label Sequences Frames Minutes Seconds Frames Minutes Seconds Frames Minutes Seconds Frames Minutes Seconds 

Other 460 1 0.00 0.04 57646 38.43 2305.84 376 0.25 15.02 1359 0.91 54.37 

Anterior 115 22 0.01 0.88 54814 36.54 2192.56 2282 1.52 91.28 7007 4.67 280.28 

Posterior 145 28 0.02 1.12 64895 43.26 2595.80 3297 2.20 131.88 9162 6.11 366.49 

Fissure 219 29 0.02 1.16 145947 97.30 5837.88 2036 1.36 81.44 9979 6.65 399.15 

Inferior 32 88 0.06 3.52 32489 21.66 1299.56 2165 1.44 86.58 5204 3.47 208.16 

Non-Surgical 122 144 0.10 5.76 4215 2.81 168.60 781 0.52 31.22 948 0.63 37.93 

3D Model 102 18 0.01 0.72 40032 26.69 1601.28 225.5 0.15 9.02 2208 1.47 88.32 

Figure 21. Sequences & sequence duration of orientations & 3D model usage across all videos 

 
Figure 22. Distribution of 3D model usage across all orientations 
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Appendix F. Hyperparameter Tuning 
 

Hyperparameter Definition Experiments 

Data augmentation To increase the diversity of your training dataset by applying 

various transformations (like rotation, scaling, cropping) to the 

original data. This helps in reducing overfitting and improves 

model generalization. 

Rotation, scaling and shifting 

Weights Refers to the importance assigned to each label in the dataset, 

The Median Frequency Method extracts the median frequency 

of the occurrence of each label in a specified dataset and 

assigns weights accordingly. This approach can help to address 

class imbalance by assigning higher weights to less frequent 

labels, ensuring that the model pays more attention to these 

during training. 

Without weights 

Median Frequency Weighting - Training 

Set 

Input Height x Width The dimensions of the input images fed into the model. 

(resolution), which affects the amount of detail the model can 

extract. 

224 x 224 

900 x 900: model becomes too slow and 

GPU cannot handle a batchsize > 50. 

450 x 450:  

Batch Size The number of training samples processed before the model's 

internal parameters are updated. A larger batch size provides a 

more accurate estimate of the gradient, but requires more 

memory and computational power. 

20, 40, 50, 80, 450 

Learning Rate The step size at each iteration of the training process, 

controlling how much the model's weights are adjusted during 

training and is crucial for convergence and performance. 

CNN: 0.0005 

MS-TCN: 0.0007  

Early Stopping Metric To stop training process if the model stops improving on a 

designated validation metric. This prevents overfitting and 

ensures that the model stops training when it achieves optimal 

performance. 

Validation accuracy 

Min Epoch The minimum number of complete passes through the entire 

training dataset. It sets a lower bound to ensure that the 

model is exposed to the data sufficiently. 

CNN: 1, 5-16, 20 

MS-TCN:  

Max Epoch The maximum number of complete passes through the entire 

training dataset allowed for the Convolutional Neural Network. 

It prevents excessive training time and potential overfitting 

CNN: 2, 7-20, 30 

MS-TCN:  

MSTCN Layers The number of layers in the Multi-Stage Temporal 

Convolutional Network. Each layer contributes to the model's 

ability to learn and represent temporal features in the data. 

8, 15 

MSTCN Feature Maps The number of distinct feature maps generated by each layer 

in the Multi-Stage Temporal Convolutional Network. Feature 

maps are the outputs of the convolutional layers and represent 

learned features. 

32 

64 

MSTCN Feature 

Dimensions 

The size of the feature representations in each layer of the 

Multi-Stage Temporal Convolutional Network. This affects the 

model's capacity and computational requirements. 

2048 

MSTCN Stages The number of sequential stages in the Multi-Stage Temporal 

Convolutional Network. Each stage is designed to capture 

temporal relationships at different scales or complexities. 

0, 1, 2, 3 

Dataset The collection of data samples used for training, validating, 

and testing the model. The quality, size, and diversity of the 

dataset significantly influence the model's performance. 

Initial dataset 

5-fold Cross Validation 

Best dataset Cross Validation 

Table 3. List of Hyperparameters 

For model training, all videos were processed at 1 fps. The ResNet50 model was pretrained on 

ImageNet and finetuned on our dataset. For actual training, videos were downsized to 224x224 

pixels and data augmentation was performed including shifting, scaling and rotation. The learning 

rate was set to 0.0005 and the batch size was set to 80 frames. An early stopping metric was 
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determined as an unchanging validation accuracy for 3 epochs. The training process of the feature 

extraction stage was extended over a minimum of 15 and a maximum of 16 epochs, for all 5 folds of 

cross-validation. Given the imbalanced multi-class problem that orientation recognition involves, 

softmax activations were employed and a weighted cross-entropy loss was applied. The class weights 

were initially determined through median frequency balancing, to alleviate the imbalance between 

orientations [22]. However, this proved to give inferior results due to the difference in dataset 

composition of the train and test set and was therefore not continued with. Resnet50 requires a 

squared input., for which enlarging the input height and width to increase resolution was considered 

but didn’t show improved results while prolonging the training process. The best combination of 

minimum and maximum epochs, was based on several experimental runs, mainly observing whether 

the loss function was still decreasing.  

 

For the TeCNO model, the number of MS-TCN stages was set to 3, each stage including 8 layers of 

TCN’s and each layer resulting in an output of 64 feature maps. The MS-TCN model is trained with a 

maximum number of 16 epochs and a learning rate of 0.0007. The early stopping metric was based 

on an unchanging validation accuracy, with a persistence of 3 epochs. Several experiments were 

performed with the number of layers, the feature maps and the stages of the MSTCN stage. The best 

combination was based on the performance on the test dataset. Most important hyperparameters 

were chosen among the options provided in the table, with our final selection in bold. 

 

After cross validation results were interpreted both as an average over all folds as for the model 

showing best performance. Selection of the final model is based on the best performance in test 

results observed during the testing phase.  
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Appendix G. 3D model orientation – Clinical workflow 

 
The intraoperative use of the dynamic 3D model by PulmoSR (Medical VR, Amsterdam, the 

Netherlands) offers surgeons intraoperative patient-specific visualizations. These 3D models are 

increasingly being utilized for both preparation and intraoperative guidance in lobectomy or 

segmentectomy lung surgeries at Cardiothoracic Surgery Department of the EMC (Rotterdam, the 

Netherlands). 

 

During surgery, the 3D model guides surgeons in gaining a better understanding of intraoperative 

anatomy, especially of the initially invisible bronchovascular anatomy which divide the lung into its 

various lobes and segments. Hence, the 3D model can aid in anatomy recognition, assist in the 

selection of surgical approaches, and serve as a verification step before dissection and stapling. 

Currently, transformation of the 3D model's orientation to match the intraoperative orientation of 

the lung is performed manually. This often required an additional medical specialist with experience 

in this subject, since these adjustments require clinical insight to recognize the current orientation 

and can be time-consuming. Extensice transformation of the 3D model, to e.g., the interlobal fissure 

view, is iterative process consisting of multiple steps. 

 

Therefore, the automatic recognition of intraoperative orientation and the subsequent automatic 

adjustment of the 3D model could significantly enhance surgical guidance. However, the actual 

implementation of this requires extensive research in both medical and technical fields. An 

interesting area for further exploration is whether actual real-time automatic orientation detection is 

necessary for continuous model adjustment. Our study results show that the 3D model is used in 

only 4.2% across all videos, suggesting that real-time application may not be essential. Instead, rapid 

rapid orientation detection and subsequent model adjustment upon request could be sufficient for 

improved intraoperative guidance. The implementation of such an application could be in two 

development steps. We conceptualize both steps below.  
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NEXT STEP  - Automatic Intraoperative Orienatation Detection & Preset 3D Model Views 
1. Automatic intraoperative detection of lung orientation. 

2. Based on a large dataset of intraoperative images in five different lung orientations, for each 

type of pulmonary lobectomy/segmentectomy resection, an average transformation of the 

3D model for each orientation is determined serving as the starting orientation. 

3. The 3D model is automatically transformed to this standard orientation. 

4. Manual adjustments of the 3D model orientation can be performed to fully correspond to 

intraopertive anatomy.  

An example of this development phase is provided in figure.  

 

 

 

 
Figure 23. Future implementation of automatic intraoperative orientation detection for dynamic 3D model adjustment 
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Future  - Automatic Intraoperative Orienatation Detection & Automatic 3D Model Registration 
1. Automatic intraoperative detection of lung orientation, e.g., through generation of a point 

cloud or detection of anatomical landmarks such as the lung parenchyma, pericardial tissue, 

thoracic aorta and exposed bronchovasculare.  

2. Automatic registration of the intraoperative orientation to the 3D model. 

3. Automatic dynamic adjustment of the 3D model, for real-time intraoperative registration. 

An example of this development phase is provided in figure  

 

 

 
Figure 24. Implementations of automatic intraoperative orientation detection & subsequent automatic dynamic 3D model 
registration 
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