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Abstract 

Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, 

are less studied than beams in shear or slab-column connections in punching. To predict the shear 

capacity for this case, the Bond Model for concentric punching shear was studied initially. 

Modifications to this model resulted in the Modified Bond Model, which takes into account the 

enhanced capacity from the direct transfer of the load to the support, is able to deal with moment sign 

changes as occurring near continuous supports, and can take into account the reduction in capacity, 

resulting from the geometry when the load is placed close to the edge. The model is then compared to 

the results of experiments on slabs subjected to concentrated loads close to supports. As compared to 

the Eurocode and the ACI code, the Modified Bond Model leads to a significantly better prediction of 

the experimental results. The Modified Bond Model is one of the few models available to describe the 

shear capacity of slabs subjected to concentrated loads close to supports and can be used for design 

and assessment.  
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1 Introduction 

The shear problem is typically addressed by studying two well-defined cases: 1) the one-way shear 

capacity of beams (beam shear), and 2) the two-way shear capacity of slabs (punching shear). One-

way shear in beams is most often studied on small, heavily reinforced, slender beams, tested in four 

point bending (Collins & al. 2008, Reineck & al. 2013), resulting in the semi-empirical expressions as 

given in NEN-EN 1992-1-1:2005 (CEN 2005) and ACI 318-11 (ACI Committee 318 2011) for the 

beam shear capacity. Two-way shear in slabs is studied on slab-column specimens (ASCE-ACI Task 

Committee 426 1974). These experiments form the basis of the semi-empirical punching shear 

provisions as given in NEN-EN 1992-1-1:2005 and ACI 318-11. 

Besides these two standard cases of the shear problem that have been widely studied over the past 

decades, other loading cases, often at the intersection of beam shear and punching shear, arise in 

practice. An example is the shear capacity of existing reinforced concrete solid slab bridges, subjected 

to concentrated live loads, that result in large shear stresses at the support when the loads are located 

close to the support (Lantsoght & al. 2013). The available code provisions are not fully suitable to 

determine the shear capacity of slabs subjected to concentrated loads close to supports, a problem at 

the intersection between one-way and two-way shear.  

To describe the behaviour of reinforced concrete slabs subjected to concentrated loads close to the 

support, a new model is proposed. This model is a combination of load-bearing quadrants and strips, 

and is based on the Bond Model (Alexander 1990, Alexander & Simmonds 1992). The resulting 

Modified Bond Model can be considered a mechanical model, in which the concept of a limiting one-

way shear stress is incorporated. Where most beam shear and punching shear models make a strict 

distinction between these two modes of failure, the Bond Model considers the shear-carrying 

behaviour as an action of two-way quadrants and one-way strips in arching action. As such, it is the 
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most suitable model for the considered case that is a combination of one-way shear and two-way 

shear. 

2 Bond Model for concentric punching shear 

The Bond Model for concentric punching shear (Alexander 1990, Alexander & Simmonds 1992) is a 

mechanical model for slab-column connections that combines radial arching action and the concept of 

a critical shear stress, as used for beam shear. Shear, V, (moment gradient) results where the 

magnitude of the force T or lever arm z varies along the length of the member. As such, shear is 

carried by a combination of beam action and arching action: 

( ) ( ) ( )d Tz d T d z
V z T

dx dx dx
  

      (1) 

For slabs, arching action is the dominant mechanism in the radial direction. It is assumed that the 

load is distributed in the radial directions from the column by strips working in arching. Four strips 

branching out from the column and parallel to the reinforcement are considered, Fig. 1. The strips 

separate the column from the slab quadrants. The length of the strips, lstrip, is determined from the 

column to a remote end, a position of zero shear.  

 

 
Fig. 1 Slab-column connection: division into radial strips and quadrants (Alexander & Simmonds 1992). 

 

The strips are loaded in shear on their side faces only and are considered as cantilever beams, fixed 

into the column (Fig. 2). These cantilevers have negative and positive moment capacities of Mneg and 

Mpos that are summed into Ms, the total flexural capacity of the strip. The length lw is the loaded length 

of the strip, and q the uniformly distributed load. The loading term q is an estimate of the shear that 

can be delivered by the adjacent quadrant of the slab to one side face of the strip.  For a strip with two 

side faces, the total uniformly distributed load on the strip is 2q. Using force and moment equilibrium 

of the cantilever strip (Fig. 2) results in the following expressions for the total flexural capacity Ms and 

the concentrated load at the column PAS,1: 
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Fig. 2 Loading of strip over loaded length lw and resulting moment diagram (Alexander & Simmonds 1992). 

 

2AS,1 wP ql         (3) 

Solving Eq. (2) for the unknown loaded length lw and substituting this into Eq. (3) results in: 

2AS,1 sP M q        (4) 

To find the maximum column axial load PAS, the capacity of all four strips can be summed: 

8AS sP M q         (5) 

The maximum value of the loading term q is based on the equivalence between the maximum value 
of beam action shear and a limiting nominal one-way shear stress as prescribed by the codes. Using 
the one-way shear capacity from ACI 318-11, empirically defined as the inclined cracking load 
(Morrow & Viest 1957), was found to lead to the best results (Alexander & Simmonds 1992). When 
the maximum value of the loading term is limited by beam action shear, it is expressed as follows: 

'0.1667ACI cq d f        (6) 

In Eq. (6), qACI is given in [kN/m] with the concrete compressive strength fc‘ in [MPa] and the 
effective depth d in [mm]. 
 

3 Development of the Modified Bond Model 

3.1 Loads close to the support 

To apply the Bond Model to the case of slabs subjected to concentrated loads close to supports, it is 

necessary to take into account direct load transfer. For one-way slabs, the different properties in the 

span direction and in the transverse direction need to be taken into account. The four cantilevering 

strips branching out from the load can be studied together to sketch the assumed moment distribution, 

Fig. 3, showing the geometry and layout from the slab shear experiments carried out at Delft 

University of Technology (Lantsoght & al. 2013). 

For the x-direction strip between the concentrated load and the support, direct transfer of the load 

from its point of application to the support needs to be taken into account. Regan described the 

punching capacity of slabs under concentrated loads close to supports by considering the 4 sides of the 
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punching perimeter separately (Regan 1982). To take into account the beneficial influence of direct 

load transfer, the capacity of the side of the punching perimeter parallel and closest to the support was 

enhanced with a factor 2dx / av, in which dx is the effective depth to the reinforcement in the x-direction 

and av is the face-to-face distance between the load and the support. Similarly, it is proposed to 

increase the capacity of the strip between the load and the support by enhancing the capacity with 2dx / 

av for 0.5dx < av < 2dx and 4 for av ≤ 0.5dx.  

 

 
Fig. 3 Application of Bond Model to case of a slab under concentrated load. 

 

The original Bond Model considered a slab of infinite dimensions. For the application to bridge 

deck slabs with finite sizes and given support conditions, it is necessary to take into account the 

difference in amount of shear that flows to the two supports bordering the studied span. A sketch of 

this situation with a load placed at a distance a < L/2 from the support on a slab of span length L is 

given in Fig. 4. If the load is increased from 0 to Pmax, failure is induced following the cruciform shape 

outlined in Fig. 4. At the moment of failure, more load will be transferred to the closest support than to 

the farthest support. As such, it can be estimated that the interface shear between the strips and the 

quadrants v2,x towards the closest support will be larger than the shear v1,x facing the farthest support. 

 

 
Fig. 4 Idea behind unequal loading of the strips. 

 

If v2,x reaches the inclined cracking load qACI failure of the section is reached. At that moment, the 

shear at v1,x will be less. The ratio between the shears v1,x and v2,x at the strip is given as: 
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When v2,x reaches the inclined cracking load qACI, v1,x will have reached only a fraction of this load: 

'

1, 0.1667x c

a
v f d

L a



      (8) 

As a result, the total load on the y-direction strip at failure is: 

' '

1, 2, 1 0.1667 0.1667x x c c

a L
v v f d f d

L a L a

 
    

  
   (9) 

The capacity of the strips (as sketched in Fig. 4) can then be expressed as: 

'

1 2 1, 2, , 1, 2, ,( ) 2 ( ) 2 0.1667y y x x w neg y x x neg y c x

L
P P v v l M v v M f d

L a
     


  

 (10) 

, ,2x neg x ACI xP M q        (11) 
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a
   (12) 

 
'

, 0.1667ACI x y cw d f  (13) 

 
'

, 0.1667ACI y x cw d f  (14) 

3.2 Loads close to a continuous support 

A first extension of the model deals with loads applied close to the continuous support, in which the 

hogging moment reinforcement can increase the total flexural capacity. As the sagging and hogging 

moment capacities are not activated in the same cross-sections of the strips and because yielding of the 

hogging reinforcement is not assumed in the model, the following expression is proposed to take into 

account the effect of the hogging moment reinforcement: 

 s neg moment posM M M   (15) 

The factor λmoment ranges from 0 (for simply supported edges) to 1 (for fully restrained cases) and 

equals (Fig. 5): 

  1
sup

moment

span

M

M
    (16) 

 

 
Fig. 5 Support and span moment for continuous beam. 

 

When the concentrated load is placed close to a continuous support, two quadrants experience the 

change in moment from hogging moment Msup to sagging moment Mspan. As a result, the combined 
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effect of the top and bottom reinforcement should be taken into account on the three strips that border 

these two quadrants: the two y-direction strips as well as the x-direction strip between the load and the 

support. The resulting strip capacities are then: 

 
'

1 2 ,2 0.1667y y s y c x

L
P P M f d

L a
  


 (17) 
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P M q

a
       (19) 

3.3 Loads close to a free edge 

For loads applied right at the edge, only 2 quadrants and 3 strips can develop. For this case, the strips 

in the x-direction are loaded from one side only and the strip in the y-direction is loaded from both 

sides. As the load is placed farther away from the free edge, a small y-direction strip develops, 

influenced by the presence of the edge. 

 

 

Fig. 6 Modified Bond Model for loading close to a free edge: (a) resulting strips and quadrants, and loading in 

the quadrants; (b) loading on y-direction strip between load and free edge. 

 

To describe the edge effect, the loaded length of the y-direction strip between the load and the edge 

is studied. When the y-direction are loaded with αq(L/L-a) (Fig. 6) the loaded length will be:  
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The distance between the edge and the face of the load, ledge (Fig. 6) is expressed as (with br the 

distance between the centre of the load and the edge and lload the length of the load): 

2

load
edge r

l
l b 

        (22) 

 

If lw from Eq. (21) is larger than ledge from Eq. (22), the model would be assuming a loaded length 

of the strip that is longer than what is physically possible. Therefore, for those cases the edge effect 

needs to be taken into account: the loaded length lw needs to be limited to the edge length ledge. Not the 
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full load q will be transferred to the strip between the load and the edge when the edge effect is 

present. Let’s now assume that only a fraction α×q with α < 1 can be carried off in the quadrants 

instead of q. The value of α can be expressed as:  

edge

w

l

l
  for ledge ≤ lw        (23) 

Torsion was neglected in the original Bond Model, as the influence of the torsional moments is 

small when loads are placed on infinitely large slabs. However, when the load is placed close to the 

edge of a slab, torsional distress influences the capacity. As a result of the influence of torsion, a 

smaller capacity than predicted by the (Modified) Bond Model is found. The influence of torsion was 

studied based on experimental results (Lantsoght & al. 2014), and a simplified method suitable for 

hand calculations was proposed (Fig. 6a). The influence of torsion is taken into account by using the 

factor β ≤ 1. Because the influence of torsion is related to the edge effect, this influence is assumed to 

act only in the quadrants between the load and the edge. Moreover, it is assumed that this influence 

acts only in the y-direction, the weaker direction in which a lower amount of reinforcement is 

provided. As such, it is assumed that the capacity of the x-direction strips, which carry the larger part 

of the load in one-way slabs, is reduced and are loaded with (1 + β)q. The value of the factor β, which 

takes torsion into account, can be expressed based on the resulting bending moment m1 and the 

resulting torsional moment mt,max at the position of the load. Since the goal of the Modified Bond 

Model is to provide a design method which can be used without the need of finite element programs, a 

simplification is to use β = 0 for loading cases where the maximum bending moment and maximum 

torsional moment in a slab coincide, such as the case of loads close to the edge, and to use β = 1 when 

the maximum bending moment coincides with a small torsional moment, such as for loading in the 

middle of the slab width.  

Moreover, the effect of the unequal loading on the y-direction strips due to the finite span length of 

the studied situation (Fig. 4) needs to be taken into account. The capacity of the strips is then: 

   , ,

2
2 1x

sup s x ACI x

v

d
P M q

a
   (24) 

   , ,2 1x neg x ACI xP M q   (25) 

'
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P M f d
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


     (26) 

'0.1667edge gov c x

L
P l f d

L a



     (27) 

The following symbols are used: 
Psup  capacity of the strip between the load and the support 

Px   capacity of the x-direction strip from the load towards the span of the slab 

Py  capacity of the y-direction strip not affected by the edge 

Pedge  capacity of the y-direction strip between the load and the free edge 

dl   effective depth to the longitudinal reinforcement 

av  face-to-face distance between the load and the support 

Ms,x   Mneg,x + λmomentMpos,x : the moment capacity in the x-direction 

Ms,y   Mneg,y + λmomentMpos,y : the moment capacity in the y-direction 

Mneg,x  hogging moment capacity of the x-direction reinforcement 

Mpos,x  sagging moment capacity of the x-direction reinforcement 

Mneg,y  hogging moment capacity of the y-direction reinforcement 

Mpos,y  sagging moment capacity of the y-direction reinforcement 

λmoment as given in Eq. (16) 

L  span length 

a  centre-to-centre distance between the load and the support 
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fc‘  specified concrete compressive strength 

dx  effective depth to the x-direction reinforcement 

qACI,x  as given in Eq. (13) 

α  the edge effect factor as given in Eq. (23) 

lgov  the governing length: lw or ledge if ledge ≤ lw 

4 Comparison to experiments 

To study the performance of the Modified Bond Model, all results of the experiments on slabs S1 to 

S10, tested at Delft University of Technology (Lantsoght, van der Veen & al. 2013) are compared to 

the results obtained with the Modified Bond Model. The maximum concentrated load in the 

experiment, Pexp, is compared to the maximum capacity obtained with the Modified Bond Model, 

PMBM. Mean values are used for the material properties. The evaluation showed an average ratio 

Pexp/PMBM = 1.33 with a standard deviation of 0.14 and a coefficient of variation of 10.8%. Considering 

that the problem under study is a shear problem with a large number of parameters that have been 

varied in the experiments, the statistical results are in agreement with the experiments. The results are 

shown graphically in Fig. 7a.  

 

 
Fig. 7 Comparison between experimental results and (a) Modified Bond Model, (b) ACI 318-11 code, (c) 

NEN-EN 1992-1-1:2005. 

 

Next, these experimental results are compared to the shear capacities according to ACI 318-11 

(ACI Committee 318 2011) and NEN-EN 1992-1-1:2005 (CEN 2005), to evaluate the performance of 

the Modified Bond Model as compared to existing code provisions. Note that the code provisions 

predict a maximum sectional shear force, while the Modified Bond Model predicts a maximum 

concentrated load. The values of the experimental sectional shear force Vexp compared to the shear 

capacity according to ACI 318-11, VACI, are shown in Fig. 7b. The reduced sectional shear force Vexp,EC 

is compared to the shear capacity according to NEN-EN 1992-1-1:2005, VR,c, in Fig. 7c. The reduced 

sectional shear force Vexp,EC takes into account a reduction of the contribution of the loads close to the 

support (0.5dx ≤ av ≤ 2dx) to the shear force by β = av / 2dx as prescribed by NEN-EN 1992-1-1:2005 

§6.2.2 (6). The ratio of Vexp/VACI has an average value of 2.67, with a standard deviation of 1.00 and a 
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coefficient of variation of 37%. For Vexp,EC/VR,c the average value is 1.99, with a standard deviation of 

0.27 and a coefficient of variation of 13%. The statistical results show that the Modified Bond Model 

gives a better prediction of the experiments. The 45o line in Fig. 7a, b and c indicates experimental 

shear capacities that are as predicted by the method under consideration. When using ACI 318-11 and 

NEN-EN 1992-1-1:2005 to compare to the experimental results, an increasing conservatism with 

increasing shear capacities is seen. The Modified Bond Model, on the other hand, shows more 

consistent results, as the cloud of test results lies above and parallel to the 45o line. 

5 Summary and conclusions 

To study the transition zone between one-way and two-way shear, a new mechanical model is 

presented: the Modified Bond Model. This model is based on the Bond Model for concentric punching 

shear.  

The following changes have been made to the original Bond Model so that it can be applied to one-

way slabs subjected to concentrated loads: 

 The geometry of the slab is taken into account. The difference in reinforcement ratios in the 

span and transverse directions is taken into account. The enhancement in the capacity for 

loads close to the support is built into the model. The unequal stresses that occur in a slab 

of finite dimensions are taken into account. 

 For loads close to the continuous support, the effect of the change in sign of the moment is 

taken into account for the strips bordering the quadrants over which the sign of the moment 

changes. 

 For loads close to the edge, it needs to be understood that sometimes not the full loaded 

length can develop, and then the physical length of the strip needs to be taken into account. 

For loads close to the edge, torsion starts to play a role. 

When comparing the proposed model to experimental results from shear tests on one-way slabs 

subjected to a single concentrated load, it is found that the Modified Bond Model gives a significantly 

better estimate of the capacity than the shear capacity as prescribed by ACI 318-11 or NEN-EN 1992-

1-1:2005.  
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