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BRIDGE: Bundle Recommendation via
Instruction-Driven Generation

Tuan-Nghia Buia,1, Huy-Son Nguyenb,1, Cam-Van Thi Nguyena, Hoang-Quynh Lea and Duc-Trong Le a,*

aVNU University of Engineering and Technology, Hanoi, Vietnam
bDelft University of Technology, Netherlands

Abstract. Bundle recommendation aims to suggest a set of in-
terconnected items to users. However, diverse interaction types and
sparse interaction matrices often pose challenges for previous ap-
proaches in accurately predicting user-bundle adoptions. Inspired by
the distant supervision strategy and generative paradigm, we propose
BRIDGE, a novel framework for bundle recommendation. It consists
of two main components, namely the item-sensitive instruction gen-
eration and the pseudo bundle generation modules. Inspired by the
distant supervision approach, the former is to generate more auxil-
iary information, e.g., sampled item-sensitive instruction, for train-
ing without using external data. This information is subsequently ag-
gregated with collaborative signals from user historical interactions
to create pseudo ‘ideal’ bundles. This capability allows BRIDGE
to explore all aspects of bundles, rather than being limited to ex-
isting real-world bundles. It effectively bridging the gap between
user imagination and predefined bundles, hence improving the bun-
dle recommendation performance. Experimental results and analy-
ses validate the superiority of BRIDGE over state-of-the-art methods
across four benchmark datasets. Our implementation is available at
https://github.com/Rec4Fun/BRIDGE.

1 Introduction

Beyond item-level recommendation, bundle recommendation cap-
tures a more nuanced understanding of user behavior in recommend-
ing a set of cohesive items for an exclusive intention. The under-
standing is often built upon leveraging historical user-item, user-
bundle interactions, and bundle-item affiliations to learn user pref-
erences [30, 16]. This task has gained significant attention in recent
years due to its complexity. Exploring user preferences in recom-
mendation systems, especially in the context of bundle recommen-
dation, is a critical and complex challenge. It plays a vital role in
improving user experiences across diverse domains [6]. Most effec-
tive graph-based models [3, 15, 32] employ Bayesian Personalized
Ranking (BPR) [24] as the primary objective. These models differ-
entiate between unseen user-bundle interactions (negative samples)
and observed user-bundle interactions (positive ones) to rank recom-
mendations by classifying true negatives. Regardless of the success
of ranking-based methods across various recommendation domains,
there exist several serious limitations, which call into question their
ability to fully capture and respond to the complexities of user be-
havior. As highlighted by [31], one of the primary concerns is the
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Figure 1. An example of item-sensitive instruction-driven bundle
recommendation.

oversimplification of human behavior in adopting bundles of items.
On the other hand, these methods often lack robustness in the face
of data sparsity and noise. In diverse real-world scenarios, user-item
interaction data is incomplete, noisy, and sparse, which poses urgent
challenges for ranking models in deriving reliable inferences. This
issue is even more pronounced in the context of bundle recommenda-
tions, where the user-bundle interaction data tends to be even sparser
and less consistent. The complexity of bundles, which involve mul-
tiple items rather than single ones, adds another layer of difficulty
in accurately modeling user preferences. When confronted with such
limited data, ranking models are prone to over-fitting, relying too
heavily on the small amount of available information.

Inspired by the distant supervision strategy [5, 17], we seek to
leverage auxiliary resources to generate silver-standard labeled data
for model training. However, the effectiveness of distant supervi-
sion in bundle recommendation remains largely unexplored due to
the scarcity of relevant knowledge bases. Bundle recommendation
datasets typically consist of user, bundle, and item IDs, but the lack
of information to identify common objects across different datasets.
Therefore, it is more challenging to leverage multiple external data
sources to enhance recommendation performance.

To address these challenges, we propose a novel framework named
BRIDGE for Bundle Recommendation using Instruction-Driven
GEneration, which is inspired by the strategy of distant supervi-
sion [5, 17] and generative retrieval [31, 23]. Unlike traditional dis-
tant supervision methods that rely on external data sources, BRIDGE
generates silver-standard data through determining sampled rough

ECAI 2025
I. Lynce et al. (Eds.)
© 2025 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA251063

2219



item set of high-similarity items from user-item associations using
the Item-Sensitive Instruction Generation module. Leveraging his-
torical interacted items of a given user, these sets are jointly exploited
as ‘instructions’ to produce the pseudo ‘ideal’ bundle that aligns with
the user preference via the Pseudo Bundle Generation module. The
pseudo bundle helps retrieve relevant bundles from predefined op-
tions for personalized recommendation within the Retrieval & Rank-
ing module. Figure 1 illustrates an example how BRIDGE works.

To summarize, our main contributions are as follows:

• We enhance the training process for the bundle recommendation
task with auxiliary instructions, i.e, item-sensitive instruction, us-
ing a distant supervision-based approach without using any exter-
nal data sources.

• We propose BRIDGE, which uses instructional guidance from his-
torical user interactions and item sampled sets to generate pseudo
’ideal’ bundles to discover relevant candidates from existing bun-
dles for recommendation. To the best of our knowledge, we are
the first to present an end-to-end generative approach for bundle
recommendation.

• We conduct extensive experiments on four publicly-available
datasets and achieve significant improvements over all baseline
methods on various metrics.

The remainder of the paper is organized as follows: Related studies
for the bundle recommendation task are literally discussed in the sec-
tion 2, which is followed by the methodology section to thoroughly
described the proposed model BRIDGE. We investigate its effective-
ness in the section 4 before summarizing findings in the final section.

2 Related Work

Bundle Recommendation. Research on bundle recommendation
typically focuses on three main approaches: factorization methods
decompose interaction matrices into latent factors to predict and en-
hance bundle recommendations; graph-based methods utilize graphs
to capture complex relationships between users, items, and bundles,
refining recommendations through graph-based techniques; and gen-
erative methods employ generative models to create pseudo ideal
bundles from historical interactions, addressing limitations of tradi-
tional ranking approaches by exploring new configurations aligned
with user preferences. Unlike next-basket recommendation [27, 13],
this approach often neglects temporal orders and exploits the whole
history at once [26].

Factorization Methods. Early bundle recommendation methods,
based on the BPR framework [24], use user-bundle interactions as
positive pairs and sample negative pairs from unobserved interac-
tions. DAM [4] is a multi-task framework that recommends both
items, bundles using an attention mechanism and shared weights to
capture user preferences at both levels.

Graph-based Recommendation. BGCN [3] integrates Graph Con-
volutional Networks with multi-view learning to exploit various in-
teractions. Addressing the multi-view preference of users, Cross-
CBR [15], MultiCBR [16] adopt InfoNCE [8] to align multi-view
user preferences, while MIDGN [32] models multiple intention hid-
den in users/bundles. BundleGT [30] explores the strategy-aware
ability of user/bundle representations. BunCa [19] proposes a hy-
pothesis of the asymmetric relationship between items to enhance the
modeling process. CoHeat [11] not only improve the cold-start, but
also general performance in bundle recommendation via popularity
and curriculum heating.

Generative Recommendation. In traditional item recommendation,
PURE [33] uses GANs to generate fake user and item embeddings,
covering diverse feature space corners. LARA [25] applies multi-
ple generators on item attributes to create pseudo user profiles, with
a discriminator classifying real user-item pairs. DreamRec [31] em-
ploys a diffusion process to reconstruct item embeddings and retrieve
recommendations based on similarity to these oracles. TIGER [23]
uses Transformer-based architecture to generate item aspects match-
ing user interests, enhancing item representations with auxiliary data.
A recent diffusion approach (DisCo) strives to produce a new bundle
in distribution space for each user to overcome the limitation of cold-
start bundles, fostered through disentangled features of users [1].
Compared to these works, BRIDGE directly guide the generative
process using real items in pseudo bundle, instead of using latent-
feature representation.

Distant Supervision. Distant supervision is an efficient training
strategy applied across various problems and domains, including re-
lation extraction [17, 22], procedural activities recognition [14], and
image captioning [21]. In the context of recommendation systems,
distant supervision has been successfully applied for cross-domain
recommendation [7, 2].

3 BRIDGE - Bundle Recommendation via
Instruction-Driven Generation

The overall architecture of BRIDGE, shown in Fig. 2, consists
of three main components: item-sensitive instruction generation,
pseudo bundle generation and retrieval & ranking modules. Each
component is thoroughly described in the following subsections.

3.1 Problem Formulation.

Given sets of users U = {u1, u2, . . . , u|U|}, bundles B =
{b1, b2, . . . , b|B|}, and items V = {v1, v2, . . . , v|V|}, the observed
user-bundle, bundle-item and user-item interactions are respectively
represented as three binary matrices X ∈ {0, 1}|U|×|B|, Y ∈
{0, 1}|B|×|V| and Z ∈ {0, 1}|U|×|V|, where cells with value of 1
if there exists links between user-bundle, bundle-item or user-item
pairs, and 0 otherwise. For a given user u ∈ U and a predefined bun-
dle b ∈ B, we seek to compute the probability score yu,b that the
user u will adopt the bundle b as:

yu,b = g(b, fθ(u,X, Y, Z)) (1)

where g is a similarity function, and fθ(u,X, Y, Z) is the pseudo
bundle generation function with a learnable parameter θ, which man-
ifests the preferential representation of u. Specifically, our goal is to
maximize the similarity between the target bundle and the generated
bundle. The top-K bundles with the highest similarity values will be
recommended to user u.

3.2 Item-Sensitive Instruction Generation

We assume that two items interacted by a common set of users via
Z may indicate a potential combination within a pseudo bundle, sug-
gesting that they are closely related in the representation space. This
pseudo bundle can serve as a instructive signal to guide the bundle
generator to create a meaningful bundle. Inherited from the inspec-
tion of item relations via co-purchase interaction [13, 18], we com-
pute the item co-occurrence matrix C = ZT · Z,C ∈ R

|V|×|V|.
Next, we establish an item homogeneous graph G = {V, E}, where
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Figure 2. The end-to-end architecture of BRIDGE

V is the set of nodes and E = {ei,j | vi, vj ∈ V} denotes the edge
set, ei,j = 1 if C(i, j) > 0, and 0 otherwise.

In order to learn the item latent embedding of a given item vi using
topological information, we employ a graph convolution network,
i.e., LightGCN[10], on the item homogeneous graph G. Let us denote
r
(l)
i is the item latent representation of item vi at the l−th layer. It is

derived as:

r
(l)
i =

∑
j∈Mi

1√|Mi|
√|Mj |

r
(l−1)
j , (2)

where r
(0)
i ∈ R

d is randomly initialized, Mi represent the neighbor
set of item i in G. The final item latent representation r̂i of item i is
inferred as follows:

r∗i =
1

L+ 1

L∑
l=0

r
(l)
i , r̂i =

r∗i
||r∗i ||22

(3)

where L is the number of propagation layers in the GCN, and the
final representation of item i is obtained from r∗i followed by a sec-
ond order Euclidean normalization. Inspired by [13], we calculate
the relevant score si,j of an item pair (i, j), i, j ∈ V as:

si,j = r̂ᵀi · r̂j (4)

Given an item vi, the instructive item set Ci of k nearest neighbors is
determined using a distance function for each pair of items (vi, vj)
as follows:

di,j =
1

exp(si,j)
, (5)

To facilitate the bundle recommendation task, we aim to construct
a pseudo bundle, which expresses the preferential intention of a given
user u. Inspired by [31], it might be inferred via behavioral history
Hu, i.e., interacted items VHu ∈ V . Using sets of those items built
from the previous section, we suppose that they may create meaning-
ful instructions to better construct the pseudo bundle. Given Bu ∈ B
as the bundle set associated with user u, Vu,VBu ∈ V are the sets of
adopted items of user u extracted from Z , and Bu, we have:

VHu := Vu ∪ VBu (6)

Item-Sensitive Instruction Sampling. For each training iteration of
a user u, we randomly select an item vi from his historical inter-
actions VHu . Using sampled item set Ci of k nearest neighbors of

vi determined from the item-sensitive instruction generation, an in-
structive bundle binst is constructed via:

binst = {v̄1, v̄2, v̄3, . . . , v̄k}, (7)

where it is noted that 1 < k < n, n = |VHu |, k is randomly se-
lected during training to add random noises for improving model ro-
bustness. Depending on the number of historical interactions n, there
may have a set of instructive bundles Bu,inst = {binst} generated
from multiple training iterations for each user u.

3.3 Pseudo Bundle Generation

Historical Encoder. To personalize the bundle generation process,
the user’s historical interactions VHu are encoded to convey the per-
sonalized preferences of user u as:

qu = Ψθ(VHu), (8)

qu represents the encoded information of user u. Ψθ(·) denotes the
Historical Encoder, whose architecture follows Transformer [29].

Instruction-Driven Pseudo Bundle Decoder. In order to form a
pseudo bundle for relevant bundle retrieval, the instructive set Bu,inst

is fed into a sequence-to-sequence architecture, e.g., Transformer,
to aggregate potential items that highly correlate and align with
user preferences. Motivated by [31], we employ the reconstruction
distribution process to reconstruct the temporal distribution of po-
tential item probabilities. Using the collaborative signals from the
user’s previous interactions VHu and a given binst, the probability of
pseudo bundle bgen after the T−th step generation is derived as:

pθ(ṽ
(1:T )) :=

T∏
t=1

pθ(ṽ
(t)|VHu , v̄0:t−1), (9)

pθ(ṽ
(t)|VHu , v̄0:t−1) := N (Φθ(qu), v̄0:t−1), βI),

where ṽ(t) is the t−th candidate item, and ṽ(1:T ) is the candidate
item set after T generation steps for bgen. Likewise, v̄0:t−1 is the
item set including a start-of-bundle pseudo item [sob] at the first in-
dex and the first t − 1 items of bins. N (ε, σ2) denotes the Gaus-
sian distribution. I ∈ R

|V| is the identity tensor. Φθ(·) represents
Instruction-Driven Pseudo Bundle Decoder, following the Trans-
former decoder architecture [29], and β is a hyper-parameter control
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the variance of the probability distribution. The final pseudo bundle
bgen = {ṽ1, ṽ2, . . . , ṽt} is the t candidate items extracted from the
ṽ(1:T ) set, where vt+1 is the end-of-bundle pseudo item [eob].

During inference process, we do not utilize the instructive bun-
dle set to neglect biases in constructing the pseudo bundle. It is
merely generated based on the historical interaction of users VHu

and previously-selected candidate items via the following procedure:

pθ(ṽ
(1:T )) :=

T∏
t=1

pθ(v
(t)|VHu , ṽ

(0:t−1)), (10)

pθ(ṽ
(t)|v1:n, ṽ(0:t−1)) := N (Φθ(qu), ṽ

(0:t−1)), βII),

where the final pseudo bundle bgen is built in the similar way as the
training phase.

3.4 Retrieval & Ranking

With the objective of recommending existing bundles, we employ
a retrieval and ranking workflow. The main idea is to discover for
the top−K bundles in B that are most similar to the pseudo bun-
dle bgen. It raises a need to calculate similarity score between the
pseudo bundle bgen and each bundle b ∈ B of a given user u. Gener-
ally, there are two typical similar scores used in BRIDGE including
Jaccard matching score yJ

u,b and Cosine recommendation score yC
u,b.

The former favors the exact matching among bundles while the latter
emphasizes the relative one using latent preferential features.

For Jaccard similarity, let us denote cgen, cb ∈ {0, 1}|V| are bi-
nary vectors that represent the occurrence of items within the pseudo
bundle bgen and a bundle b ∈ B, we have:

yJ
u,b =

cᵀgen · cb
cᵀgen · I+ cᵀb · I− cᵀgen · cb , (11)

Equally important, the recommendation score yCu,b is computed as
the following procedure:

b̂ =
1

cᵀb · I c
ᵀ
b · R̂, (12)

b̂gen =
1

cᵀgen · I c
ᵀ
gen · R̂, (13)

yC
u,b =

b̂ᵀ · b̂gen
||b̂||22 · ||b̂gen||22

, (14)

where R̂ ∈ R
|V|×d is the latent item representation obtained from

the item-sensitive instruction generation module via Eq (3). Finally,
we combine the two metrics to leverage all relevant bundles consid-
ering both two matching strategies:

yu,b = αyJu,b + (1− α)yC
u,b (15)

where α ∈ [0, 1] is a trade-off hyperparameter to control the balance
between two terms. The top-K candidate bundles with the highest
similarity score yu,b are recommended to the user u.

3.5 Optimization

Our model BRIDGE is trained with triplet losses namely item-
sensitive instruction sampling loss LS , the pseudo bundle generation
loss LG and the recommendation loss LR. Specifically, the sampling

Dataset Clothing Electronic Food Steam

#User |U| 965 888 879 29, 634
#Item |I| 4, 487 3, 499 3, 767 2, 819
#Bundle |B| 1, 910 1, 750 1, 784 615
X Density 0.10% 0.11% 0.11% 0.48%
Z Density 0.15% 0.20% 0.19% 1.08%
Avg #I/B 3.31 3.52 3.58 5.73
Avg #B/I 1.40 1.76 1.69 1.25
Avg |VHu | 10.72 11.25 11.80 37.60

Table 1. Statistics of four benchmark datasets.

loss is to maximize the sensitive score between potential items within
bundle instructions. It is calculated as:

LS =
∑

(vi,vj ,vj′ )∈P

−ln σ
(
ln(di,j

−1)− ln(di,j′
−1)

)
, (16)

where σ(·) denotes the Sigmoid function; di,j represents the distance
between the pair of items (vi, vj) in the latent space as Equation (5).
In addition, P = {(vi, vj , vj′) | vi, vj , vj′ ∈ V, Ci,j = 1, vi �=
vj , Ci,j′ = 0, vi �= vj′}.

To distill the knowledge from the instruction-driven bundles to the
pseudo bundle, we apply the cross-entropy loss over T timesteps as:

LG = − 1

T

T∑
t=1

ln
(
pθ(r

t | v1:n, r0:t−1)
ᵀ) · b(t)inst, (17)

where b
(t)
inst is the target distribution at t given by binst.

Inspired by [24], the bundle recommendation loss is computed us-
ing Bayesian Personalized Ranking loss as:

LR =
∑

(u,b,b′)∈Q

−lnσ
(
yCu,b − yC

u,b′
)
, (18)

where Q = {(u, b, b′)|u ∈ U ; b, b′ ∈ B;Zu,b = 1, Zu,b′ = 0}. Fi-
nally, the combined loss function of BRIDGE is achieved as follows:

L = LG + LS + LR + λ||θ||22, (19)

where ||θ||22 denotes the L2 regularization, and λ indicates a hyper-
parameter to control regularization term.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on four datasets in diverse do-
mains namely Clothing, Electronics, Food and Steam. The data
statistics are illustrated in Table 1. Clothing, Electronic, Food [28]
are constructed from Amazon with high quality bundles of prod-
ucts using crowd-sourcing resources. Steam2 [20] includes bundles
of games purchased together on the Australian game platform.

Comparative Models. To demonstrate the effectiveness, we com-
pare BRIDGE with several state-of-the-art models for bundle rec-
ommendation. Factorization Models: BPRMF [24] and DAM [4];
Graph-based Models: LightGCN [10], BGCN [3], MIDGN [32],
CrossCBR [15], BundleGT [30], MultiCBR [16], CoHeat [11] and
BunCa [19]. The overall performances are illustrated in Table 2.

Evaluation Strategy & Metrics. To ensure a fair comparison, we
divide the data into training, validation, and test sets using a 7:1:2 ra-
tio, consistent with the comparative models. For performance evalu-
ation, we utilize two typical metrics for the Top-K recommendation

2 http://cseweb.ucsd.edu/~jmcauley/
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Dataset Metric BPRMF DAM LightGCN BGCN MIDGN CrossCBR MultiCBR CoHeat BundleGT BunCa
BRIDGE

Imp
[24] [4] [10] [3] [32] [15] [16] [11] [30] [19] (↑ %)

Steam
R@1 0.0033 0.0016 0.0017 0.0014 0.0022 0.0619 0.0664 0.2355 0.0014 0.0489 0.3472† 43.4%
R@2 0.0046 0.0025 0.0013 0.0218 0.0267 0.1221 0.1139 0.3435 0.0124 0.1253 0.4298† 20.6%
N@1 0.0032 0.0023 0.0017 0.0044 0.0058 0.1074 0.1112 0.2913 0.0013 0.0897 0.4504† 54.6%
N@2 0.0032 0.0043 0.0012 0.0195 0.0212 0.1327 0.1344 0.3336 0.0075 0.1350 0.4532† 32.7%

Electronic
R@1 0.0214 0.0135 0.0337 0.0533 0.0781 0.5528 0.4632 0.7514 0.2779 0.6566 0.8451† 12.4%
R@2 0.0275 0.0567 0.0645 0.0672 0.1229 0.7348 0.5917 0.8810 0.3555 0.8044 0.9673† 9.7%
N@1 0.0217 0.0135 0.0345 0.0557 0.1036 0.5907 0.4968 0.8052 0.2981 0.7582 0.9055† 12.4%
N@2 0.0247 0.0324 0.0535 0.0646 0.1621 0.6842 0.5554 0.8544 0.3351 0.7693 0.9464† 10.7%

Clothing
R@1 0.0126 0.0174 0.0213 0.0616 0.1057 0.6806 0.5775 0.7197 0.3496 0.7043 0.8511† 18.2%
R@2 0.0282 0.0354 0.0426 0.0937 0.1635 0.8334 0.6995 0.8509 0.3942 0.8594 0.9871† 14.9%
N@1 0.0142 0.0216 0.0328 0.0669 0.1324 0.7356 0.6211 0.7778 0.3667 0.7560 0.9248† 18.8%
N@2 0.0266 0.0305 0.0574 0.0836 0.1781 0.7987 0.6704 0.8245 0.3823 0.8212 0.9653† 17.0%

Food
R@1 0.0105 0.0124 0.0193 0.0822 0.0961 0.5665 0.4986 0.7428 0.3177 0.6401 0.8335† 12.2%
R@2 0.0242 0.0210 0.0372 0.1052 0.1986 0.7184 0.6305 0.8885 0.4314 0.7655 0.9465† 6.5%
N@1 0.0133 0.0141 0.0215 0.0887 0.1238 0.6216 0.5399 0.8125 0.3453 0.7019 0.9041† 11.2%
N@2 0.0253 0.0154 0.0307 0.0988 0.3034 0.6821 0.5966 0.8631 0.4028 0.7392 0.9466† 9.6%

Table 2. Overall performances on four benchmark datasets. The best results are in bold, and the second best results are underlined. The symbol † indicates
statistically significant improvements over the second-best models with (p < 0.01)

Dataset Steam Imp Electronic Imp
Metric CoHeat BRIDGE (↑ %) CoHeat BRIDGE (↑ %)

R@1 0.2355 0.3422 45.3% 0.7514 0.8451 12.4%
R@2 0.3434 0.4228 23.1% 0.8810 0.9673 9.7%
R@5 0.5008 0.7437 48.5% 0.9334 0.9650 3.3%

R@10 0.6153 0.7679 24.8% 0.9481 0.9691 2.2%

N@1 0.2914 0.4559 56.4% 0.8052 0.9055 12.4%
N@2 0.3337 0.4495 34.7% 0.8544 0.9464 10.7%
N@5 0.4031 0.5772 43.1% 0.8797 0.9580 8.9%

N@10 0.4460 0.5856 31.3% 0.8838 0.9582 8.4%

Dataset Clothing Imp Food Imp
Metric CoHeat BRIDGE (↑ %) CoHeat BRIDGE (↑ %)

R@1 0.7197 0.8511 18.2% 0.7428 0.8335 12.2%
R@2 0.8509 0.9871 16.0% 0.8885 0.9465 6.5%
R@5 0.9099 0.9969 9.5% 0.9448 0.9870 4.4%

R@10 0.9369 0.9999 6.8% 0.9671 0.9875 2.1%

N@1 0.7778 0.9248 18.8% 0.8125 0.9041 11.2%
N@2 0.8245 0.9653 17.0% 0.8631 0.9466 9.6%
N@5 0.8531 0.9656 13.1% 0.8873 0.9538 7.4%

N@10 0.8611 0.9666 12.2% 0.8957 0.9537 6.4%

Table 3. Performance of BRIDGE compared to most comparative baseline
over size of retrieval list.

task: Recall (R@K) and Normalized Discounted Cumulative Gain
(N@K). Specifically, R@K reflects the ratio of true recommended
bundles to all ground truth bundles (exact matched), calculated as:

R@K =

∑k
i=1 reli

#rel

where reli ∈ {0, 1} indicates if the i-th item in the ranking list is
relevant or not and #rel indicates the number of all relevant items.
While N@K is higher when the true recommended bundles appear
at the top of the retrieval ranking list and is formulated as:

DCG@K =
k∑

i=1

reli
log2(i+ 1)

, iDCG@K =

k∑
i=1

1

log2(i+ 1)
,

N@K =
DCG@K

iDCG@K
,

For both metrics, we report the average performance of all models
on the test bundles using 5 runs with different random initializations.
Significant differences are validated using a two-tailed paired-sample
Student’s t-test at a 0.01 significance level.

Implementation Details. All comparative models are reproduced
using their official source code while BRIDGE is implemented using

Flax3. We utilize Adam optimizer [12] with the learning rate tuned in
the set of {1e− 2, 1e− 3, 1e− 4}. The number of encoder/decoder
blocks, attention heads, and graph encoder layers are empirically se-
lected in the range of values {1, 2, 3, 4}. For top-K recommendation,
we select K ∈ {1, 2} for all datasets to favor ideal recommendation.
All experiments are conducted on a single NVIDIA P100 GPU.

4.2 Comparisons with Comparative Models

Table 2 presents the performance comparison between BRIDGE
and other comparative models. Conventional recommendation tech-
niques, such as BPRMF and LightGCN, are less effective for bundle
recommendation because they focus on optimizing representations
of users and bundles but fail to capture item-level information ad-
equately. In contrast, state-of-the-art methods like CrossCBR, Mul-
tiCBR, and CoHeat perform well across all four datasets by mod-
eling user preferences at the item level and minimizing inconsis-
tencies between different levels of preferences through multi-view
learning. Our model, BRIDGE, consistently outperforms all compar-
ative methods across both evaluation metrics on the four benchmark
datasets, demonstrating its effectiveness for bundle recommendation.

For Steam, BRIDGE shows significant improvements from 20.6%
to 54.6% compared to the second-best approach. It could be ex-
plained by the statistics of Steam dataset, in which the average num-
ber of items in a bundle is 5.73, and each item appears in an average
of 1.25 bundles. This implies that any two randomly selected bun-
dles are likely to have relatively low similarity, as they will contain
different combinations of the available items. If the pseudo bundle
has just one item matching the unseen truth bundles, it increases the
probability to retrieve the truth bundle. For three Amazon datasets the
improvement is still considerable on Electronic from 9.7% to 12.4%,
Clothing from 14.9% to 18.8% and Food from 6.5% to 12.2% com-
pared to the second best baseline method.

When comparing on larger retrieval recommendation size,
BRIDGE still consistently outperform the second best baseline Co-
Heat as shown in Table 3, where on the Steam dataset, the improve-
ment is still significant fluctuates between 24.8% to 48.5%.

4.3 Model Component Contribution

We conduct various ablation studies to investigate the importance of
BRIDGE main components. We mainly present the analysis for the
3 https://github.com/google/flax
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Dataset Steam Electronic
Metric R@1 R@2 N@1 N@2 R@1 R@2 N@1 N@2

BRIDGE 0.3472 0.4298 0.4504 0.4532 0.8451 0.9673 0.9055 0.9464

w/o Inst(↓%) 0.2758↓19.5% 0.3267↓24.0% 0.3657↓18.8% 0.3574↓21.1% 0.7020↓16.9% 0.8295↓14.2% 0.7621↓15.8% 0.8045↓15.0%
w/o Gen(↓%) 0.0711↓79.2% 0.1283↓70.1% 0.1078↓76.2% 0.1322↓70.8% 0.3944↓53.3% 0.4392↓54.6% 0.4280↓52.7% 0.4346↓54.1%

Dataset Clothing Food
Metric R@1 R@2 N@1 N@2 R@1 R@2 N@1 N@2

BRIDGE 0.8511 0.9871 0.9248 0.9653 0.8335 0.9465 0.9041 0.9466

w/o Inst(↓%) 0.773↓9.1% 0.913↓7.4% 0.843↓8.7% 0.887↓8.0% 0.690↓17.1% 0.822↓13.1% 0.759↓16.0% 0.800↓15.4%
w/o Gen(↓%) 0.361↓57.5% 0.399↓59.5% 0.399↓56.8% 0.397↓58.8% 0.453↓45.6% 0.497↓47.4% 0.493↓45.4% 0.495↓47.6%

Table 4. Impact of key components on the performance of BRIDGE.

(a) Steam (b) Electronic

Figure 3. Impact of the number of Encoder-Decoder block on Steam and
Electronic.

(a) Steam (b) Electronic

Figure 4. Impact of max-context length T on Steam and Electronic.

Steam and Electronic datasets, with the remaining results provided
in the Appendix.

The ablation results are shown in Table 4. Specifically, for the
w/o Inst scenario, instructions are removed, meaning the generation
module is trained without any guidance from the instructions. In the
w/o Gen scenario, instead of generating pseudo ideal bundles, we
aggregate all user instructions as user preferences. Without guid-

ance from instructions (w/o Inst), there is a significant drop on both
the Steam and Electronic datasets: R@1 decreases by 19.5%, R@2
by 24%, N@1 by 18.8%, and N@2 by 21.1% on Steam. On Elec-
tronic, the reductions range from 14% to 17%. This shows the impor-
tance of training the bundle generation within the relevant guidance
signals. Without it, not only does it affect the quality of the gener-
ated bundles, but it also drags down the similarity between pseudo
bundle and predefined ones due to introducing more noisy items to
the ‘ideal’ bundles. The effectiveness of the generation component is
also highlighted. Without pseudo bundle generation (w/o Gen), a
substantial drop in performance is consistently observed, with reduc-
tions exceeding 70% on Steam and over 50% on Electronic.

We also conduct experiments to further analyze the impact of the
number of encoder-decoder layers and the maximum context length
T on the Pseudo Bundle Generation module. As shown in Figure 3,
the number of encoder-decoder layers noticeably impacts model
performance. Increasing the number of encoder/decoder blocks from
1 to 2 leads to a clear improvement on Electronic, while performance
on Steam remains stable across different numbers of layers. The
maximum context length T has varying effects on results across

(a) Steam (b) Electronic

Figure 5. Impact of trade-off coefficient α on Steam and Electronic.

different datasets. Figure 3(a) shows that BRIDGE maintains stable
performance on Steam across different values of T, while T ≥ 50
performs better than T = 20 on Electronic (see Figure 4(b)). This
is because a longer context length captures more aspects of user his-
torical interactions. On Steam, where the average number of past in-
teractions is 37.60, T = 20 is insufficient for capturing user collab-
orative signals. On Electronic, with an average of 11.25 interactions
and 8.8% of users having more than 20 past interactions, T = 20 re-
sults in performance degradation. With T ≥ 50, BRIDGE effectively
captures all user preferences, leading to more stable performance.

In the Retrieval & Ranking module, we investigate the impact of
the trade-off coefficient α between two similarities on the model
performance as described in Figure 5. Without the combination of
two similarity metrics, i.e., α = 0 or 1, the BRIDGE’s performance
drops considerably. On Steam dataset, α = 0 makes a sharp drop
in performance, while with α = 1, R@1 decreases from 0.347 to
0.336. The results on the Electronic dataset also show a noticeable
decrease in performance for both α = 0, and α = 1, highlight-
ing the importance of using a combined similarity metric for retriev-
ing bundles. Our model generates a single pseudo ‘ideal’ bundle for
each user but struggles to recommend multiple bundles with varied
interests using Jaccard similarity. The model is also experimented
with using cosine similarity when retrieving the recommendation list.
This allows the generated bundles to cover a broader range of aspects
that may be relevant to the user. But this comes at the potential cost
of losing the ‘ideal’ nature of the bundle, as the focus shifts more
towards diversity rather than optimization for a single aspect. The
trade-off between accuracy and aspect diversity is shown in Table 5.
With small values of top-K, BRIDGE performs better with Jaccard
(BRIDGE-J), whereas with larger values of top-K, it has lower per-
formance than the variant with Cosine similarity (BRIDGE-C) due to
the noisy signal of large bundles. To take advantages of the two vari-
ants, BRIDGE combine two retrieval strategies as Eq (15), which
obtain the best result over all the retrieval recommendation size.

We also study the sensitivity of BRIDGE to training hyper-
parameters. Specifically, using a learning rate that is too high or
too low (i.e., 1e−2 or 1e−4) results in convergence difficulties for
BRIDGE, as shown in Figure 6(b). Compared to a learning rate of
1e−3, the loss values for the other two settings remain significantly
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Recall top− {K} 1 2 5 10 20 50

BRIDGE-J (α = 1) 0.336 0.415 0.741 0.752 0.752 0.780
BRIDGE-C (α = 0) 0.134 0.169 0.227 0.360 0.646 0.961

BRIDGE (full) 0.342 0.423 0.744 0.768 0.800 0.979

Table 5. Performance of BRIDGE variants on Steam over size of retrieval
recommendation list.

(a) Recall@2 (b) Total Loss

Figure 6. Accuracy and loss of three Amazon datasets on different
learning rates.

higher, even after 100 training epochs. A learning rate that is too high
causes overly large gradient steps, while it is too low, even when
using a warm-up scheduler, fails to sufficiently optimize BRIDGE
within 100 epochs, leading to a noticeable performance drop.

4.4 Qualitative Analysis

The quality of a generated pseudo ideal bundle is hard to evaluate.
Pathak et al. [20], Han et al. [9] compute the compatibility score
between items within the generated bundles as a way to measure their
quality. Inspired by these approaches, we evaluate generated bundles
through a downstream bundle recommendation task. By such mean,
a generated bundle is considered as a meaningful bundle if it is highly
similar to an unseen bundle of a user.

Item-Sensitive Instruction. Before demonstrating that the gener-
ated bundles are meaningful, we show some examples of the instruc-
tions given to the generator are consistent wherein the items have
same underlying representation. Figure 7 shows the latent represen-
tations for items where items with high relevant are close to each
other, some of the meaningful sets are shown: the “Desktop” item-
sensitive set contains “Logitech Speakers”, “Audio Headphones”,
“Wireless Keyboard”, and “Wireless Mouse”. While the “Camera”
item-sensitive set is a combination of “Lens for Digital Cameras”,
“Light Stand” and “Backdrop Background”.

Pseudo ‘Ideal’ Bundle. For user in the testing set, the output bun-
dles generated by our model are highly similar with the ground truth
bundles at item level. This leads to very significant improvement over
all baseline methods, on Steam the generated bundle tends to be a
jointly subset of ground truth bundles that make BRIDGE can re-
trieve multiple bundles with different aspects which match user var-
ied interest. The product bundles generated by the BRIDGE model
have been shown to exhibit meaningful and useful combinations of
items, as illustrated in Figure 8. The occurrence of items in a gen-
erated bundles is similar compare to the bundles in retrieval recom-
mendation list of users. Additionally, the distribution of the gener-
ated bundles is similar to the distribution of the ground truth bundles,
which demonstrates that the generated bundles cover all the aspects
of the pre-constructed bundles in a diverse manner.

Figure 7. T-SNE visualization of item-sensitive instruction on Electronic.

Figure 8. T-SNE visualization of pseudo ideal bundles and ground-truth
ones on Electronic.

4.5 Complexity Analysis

Space Complexity. For the comparative baseline methods follow
matrix factorization-based framework [15, 16, 11], the space com-
plexity include user,bundle and item embedding hence the space
complexity is: O ((|U|+ |B|+ |I|)× d) where d is the number of
embedding space dimension. For BRIDGE the complexity include
storing user and item embedding: O ((|U|+ |I|)× d) with model’s
learnable parameters follow [29] and our mentioned configuration.

Time Complexity. Time complexity analysis of CoHeat can be
found in [11]. For theoretical complexity analysis of BRIDGE, the
Item-Sensitive Instruction Generation module is O(|I|log(|I|)) for
sorting and retrieving top-k highest items while the Pseudo Bun-
dle Generation module is O((T2d + d2T) × L) with T, d, L is the
number of token, dimension, the total layer of encoder-decoder, re-
spectively. For Steam, CoHeat takes 42.4s for each training epoch
and 0.66s for each mini-batch inference. With a similar efficiency,
BRIDGE takes 41s for each training epoch, 2.43s for each inference.

5 Conclusion

This paper introduces BRIDGE, a novel framework for bundle rec-
ommendation inspired by distant supervision strategies and the gen-
erative paradigm. The framework integrates item-sensitive instruc-
tion generation module that enables the generation of auxiliary in-
formation without relying on external data. By combining this with
collaborative signals from user historical interactions, BRIDGE can
produce pseudo ’ideal’ bundles, which allows exploring a broader
range of potential bundles beyond those predefined ones. This ap-
proach effectively narrows the gap between user expectations and
available bundles, leading to the soundness over prominent models
for bundle recommendation on four public datasets.
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