
Estimation of physical properties of an object through interaction

Nienke Driessen1

Supervisor(s): R. Venkatesha Prasad1, Kees Kroep1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Nienke Driessen
Final project course: CSE3000 Research Project
Thesis committee: Dr. RangaRao Venkatesha Prasad, Kees Kroep, Dr. M. Weinmann

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Creating a local model of a remote environment is
a way to reduce latency in tactile internet. This
local model contains properties that are estimated
by a non-intrusive estimation method. To prevent
the model from deviating increasingly from reality,
the estimates should be updated once an interac-
tion begins. This research paper investigates how
the physical properties of a remote object can be
estimated. This is done by exerting forces and ob-
serving the resulting motion. The physical proper-
ties that are updated include the mass and center of
mass. These values are calculated to converge to-
ward the actual value. The mass can be estimated
by observing the linear motion, for which the game
engine Unity is used. For the center of mass esti-
mation, it is advised to take a different approach,
since the values received by Unity were not enough
to base an estimate on. This paper also investigates
the influence of update frequency on estimation ac-
curacy and the inaccuracies that the Unity physics
engine presents.

1 Introduction
This research will pertain to the area of Tactile Internet (TI).
This field aims to enable interaction with humans and cyber-
physical systems at a distance as if they were nearby. TI is
useful in situations where human presence is hazardous or
costly [8], for example, remote reparations or remote opera-
tions in healthcare. Since these remote operations are steered
by a local controller, maintaining a perception of the force
exerted by the operating side is crucial. Since the interactions
are performed at a significant distance, the information sent
between both parties always comes with latency. For precise
interactions, the feedback must have little to no delay. This is
because delay can result in the robot performing actions that
result in unintended mishaps.

A solution for this latency problem is the use of a local
model. This is rendered on the local ”control” side, esti-
mating the remote environment where the actual operation
takes place [4]. This is called model-mediated teleoperation
(MMT). Figure 1 shows a schematic view of the system in-
teraction between the local and the operating side. A human
operator makes use of a local physics simulation to dictate or
demonstrate actions. Then the remote device will imitate, or
perform the intended actions. The physics simulation is ini-
tially based on a non-intrusive parameter estimation method.
The remote environment is estimated based on properties de-
tected by a combination of sensors.

However good the initial guess may be, it is never com-
pletely accurate. This results in the model deviating increas-
ingly from reality, resulting in an unstable system. That is
why this specific research is about the adjusting section. The
task is updating the estimated physical properties based on
interactions.

The research question that will be answered in this paper is
the following:

How can the physical properties of an object be estimated
through interaction?

The physical properties that will be estimated in this re-
port are the object’s mass and the Center of Mass (CoM).
Therefore this research question can be divided into two sub-
questions.

• How can the mass of an object be estimated through in-
teraction?

• How can the CoM be estimated through interaction?

To limit the scope of this bachelor thesis, both the local and
remote parts of the MMT will be a virtual setup. This is
called a digital twin methodology, which is an approach that
involves creating a virtual representation or model of a phys-
ical object, system, or process [1].

Figure 1: Schematic explanation of big picture system (Figure cre-
ated by Kees Kroep).

The following contributions have been shown in this paper.

• Mass estimation method,

• An analysis of the influence of different start estimates
on mass estimation,

• An analysis of the influence of the update frequency on
mass estimation,

• Observations on the center of mass estimation.

• Observations of limitations of the Unity physics engine.

The organization of the paper is as follows: Chapter 2
outlines the work that has already been done in this field.
Then a detailed explanation of the development process is
described in Chapter 3. The experimental setup and results
are discussed in Chapter 4. A reflection and discussion is
held in Chapter 5. Chapter 6 discusses ethical concerns re-
garding this research. Future work recommendations will be
discussed in Chapter 7. Finally, Chapter 8 covers the conclu-
sions drawn from this research.

2 Related Works
A fair amount of research has been done on MMT systems.
Tsumaki et al. distinguish between geometric modeling er-
rors (errors in the position) and dynamic modeling errors
(force and motion errors) [11]. Property estimation of a
spring system is discussed by A. Shahdi and S. Sirouspour

[7]. Since a spring system is used, fewer degrees of freedom
are possible than in the system explored in this paper.

The first work that considers a physics engine as a model
for MMT is by Xu et al. [15]. It is stated by Li et al. [3]
that Unity3D, an open-source visualization engine, has found
extensive application in numerous digital twin-based systems
[12]. This shows that unity is a useful tool for this field. How-
ever, only a limited number of studies within this domain have
focused on the semantic-level modeling of digital twins [12].

Several studies have been done regarding estimating mass
and CoM. A common CoM estimation method relies on the
weighted segmentation method [5]. Here the CoM is calcu-
lated using the center of mass for each body segment and
summing them to estimate the center of mass for the whole
body. Since in this report, both objects are assumed to be
equal in shape, and the initial CoM location estimate will
probably be based on this tactic, this method can not be used
in this study. No works have been found about estimating
mass and center of mass solely by measuring the reaction on
forces. Setterfield et al. proposed a method of detecting the
CoM of a rotating object in free space by observing the tra-
jectory [6]. In this paper, the object is not free in space.

A lot of latency compensation research has been done in
the field of cloud-based games [9]. This is compensated by
time warp to compensate for latency and reduce network bit
rates. This is however not relevant for this research but can
be useful in the future.

A teleoperation system that is robust to modeling errors
is proposed by Tsumaki et al. [11]. This article discusses
the model-jump effect. This occurs when a model needs to
be updated during the interaction between the controller and
the operator. The controller can for instance experience un-
expected changes in predicted forces, which results in unex-
pected motion. This can result in an unwieldy interaction and
trigger a jump in the remote movement. This can cause in-
stability in the model and eventually result in dangerous be-
havior. [13] A simple way of dealing with the model-jump
effect is presented by Xu et al. [15]. In this paper, the object
geometry updates are said to only be applied when the oper-
ator is free in space to avoid the model-jump effect. When
the difference between the local and real models is too signif-
icant, the controller is asked to command the operator back
to free space and stop the exploration. Xu et al. also explain
how they partition the differences in the two models in two
fields, namely geometry and physical properties [16]. An up-
date is necessary if at least one of the two differs above a
certain threshold. Perception-based model updating is men-
tioned by Xu et al., where only values that can result in sig-
nificant differences in perception will be sent back to the con-
troller [16]. This way only relevant changes will be handled
to reduce computational load.

3 Methodology
The task at hand is developing a system that can estimate the
mass and CoM of the remote cube by converging the proper-
ties of the local cube to approximate the unknown properties
of the remote cube. This will be done by progressively re-
fining the local system until convergence. Estimates will be

derived for both mass and the center of mass location by ana-
lyzing the resulting motion created by applied forces. Figure
2 shows the general concept of the system.

The initial values for the local mass and center of mass will
in reality be determined by the non-intrusive mass and the
mass center prediction. For this study, realistic values will be
assumed.

Local

Action performed on object

Remote system status

Update local system

Remote

Figure 2: Update cycle of the system. The force to be exerted is sent
to the remote object. At a specified rate the local side will receive
information about the resulting remote state. Using this information,
the local model will be updated.

3.1 The Unity setup
For the scope of this project, the actions will be limited to a
2 dimensional (2D) system, looking from a top view. This
is to reduce the degrees of freedom and thus to reduce the
complexity.

Even though Unity supports both 2D and 3D scenes, it was
decided to use Unity3D, since realistic friction with a surface
below is essential to a realistic interaction. In 2d, realism can
be faked to some extent by adding linear and rotational resis-
tance, but this would unnecessarily complicate the problem.

As shown in Figure 3, a scene containing two objects will
be used. For this study the objects are cubes. One is repre-
senting the local object and one is the remote object. The two
cubes do not interfere with each other, but for visualization
purposes, they are placed at the same location. The task is to
get the local cube to behave exactly like the remote cube.

Both cubes get equal forces acting upon them. The move-
ment of the cubes will be constrained to 2D, limiting their
linear movements solely within the x-z plane. The rotational
motion will be limited to the y-axis.

The local system receives information on the state of the
remote cube at a specified rate. This will consist of the fol-
lowing four items

• Position,
• Rotation,
• Linear velocity (v),
• Rotational velocity (ω).

These values were chosen because it is realistic that they
could be measured in a physical setup. The update rate is

chosen to be 60 updates per second (60Hz) since it is gener-
ally considered a desirable update rate for smooth and fluid
visual experiences. Even though this is not actual latency, the
system does have to work with receiving information every x
ms, and recalculating the states at each step, as it would in an
actual situation with latency. The performance of the system
using different update rates will be assessed in Chapter 4.

In each update instance, The location, rotation, v, and ω of
the local model are all updated to match the remote model,
to minimize the difference in movement and the number of
unexpected changes. The new mass calculation is then solely
based on the current mass, and the observation is not inter-
fered with by the velocity resulting from the previous masses.

y

z
x

Figure 3: Explanation of unity scene setup.

Since the mass and CoM estimation algorithm can grow
complex quickly, several assumptions have been made.

System assumptions
1. The mesh estimation method works perfectly. There-

fore the shape of both the local and remote objects, the
meshes, are equal.

2. The objects can only move in 2D space.

3. The objects exist of one single shape, a uniform mesh.
No compound objects are used.

4. The force exerted is a point pressure.

The mass estimation algorithm went through a number of
iterations as shown in Figure 4 in order to create a stable sys-
tem with good-quality code on which tests can be performed.

3.2 Approach structure
First, a mass estimation method will be developed, with equal
center of mass locations. Then, the center of mass estimation
will be done with the identical mass. Therefore the task will
be divided into the following sub-tasks to strategically solve
the objective.

1. Mass estimation

(a) Mass estimation based on linear forces
(b) Mass estimation based on linear and rotational

forces

A B C D

Figure 4: All iterations of the mass estimation setup. A) is the first
iteration, where a side view was assumed. A point pressure could
be dragged to tip over the cube. B) Shows the first occurrence of a
local and a remote cube. Both were moved using impulses in stead
of continuous forces. C) Is the first top-view version of the system,
though only one update per force applied could be calculated. D)
is the final 3 dimensional version where the mass is continuously
updated, with forces able to act for a number of seconds.

2. CoM estimation
(a) CoM estimation with difference only in one axis.

3.3 Mass estimation method based on linear
movement

The first objective is a descending method for mass estimation
with only linear forces on the center of mass. This means that
no rotation is possible. Based on the received values of the
remote behavior, The mass m of an object can be determined
through only linear motion. By knowing the linear momen-
tum p and the linear velocity v [2] the equation for linear
momentum,

p = mv, (1)

can be used. Eq. (1), the function for linear momentum p
is used instead of the function for net force F because even
though the force acting upon the object is known, the net force
is not calculable. This is because the force resulting from
friction is not calculable. Friction in Unity is not necessarily
realistic.

”The friction model used by the Nvidia PhysX en-
gine is tuned for performance and stability of sim-
ulation, and does not necessarily present a close
approximation of real-world physics.” [10]

In particular, it is said that for situations where two contact
surfaces are larger than a single point, friction is calculated as
the objects having two contact points[10]. This is the case for
this study.

Although the remote linear momentum can not exactly be
known, it can be estimated. That is why a descent method is
chosen in stead of directly calculating the mass solely based
on physics equations. Since the mass and velocity of the
local object are known, the local linear momentum can be
calculated. Then, with the remote velocity and assuming an
increasingly similar momentum, the remote mass can be ap-
proximated.

Table 1 shows the calculation that is initiated each update
instance,

mnew local =
mlocalvlocal

vremote
. (2)

Table 1: Mass calculation and update sequence. The new mass is
calculated based on received remote velocity.

Step Formula Explanation

1 plocal = mlocalvlocal Calculate local linear
momentum

2 mremote =
plocal
vremote

Calculate remote
mass with local p
and remote v

3 mlocal ← mremote Update local mass

Eq. (2) shows the resulting mass equation. This shows
that if the local velocity is larger than the remote velocity, the
mass will increase and vice versa. Since this way the local
mass will converge to the remote mass, we can assume the
momentum will become more similar as well. Therefore a
descent method based on physics equations will be used as
an approximation method.

3.4 Mass estimation method based on rotational
movement

The rotational equivalent to linear momentum is angular mo-
mentum L. To determine the moment of inertia I of an object
through only angular motion, we can use

L = Iω, (3)

where ω is the angular velocity. In a similar manner to
how mass determines the force needed for a desired accelera-
tion, rotational inertia represents the quantity that determines
the torque necessary to achieve a desired angular acceleration
around a rotational axis [2]. Generally, the moment of inertia
is defined as

I = mr2, (4)

where m is the sum of the mass’s products, and r is the
distance from the rotation’s axis. Since I also depends on
the mass of the object, the same strategy can be used that has
been used for the linear forces.

mnew =
mlocalωlocal

ωremote
. (5)

3.5 The combination of linear and rotational
estimation

To observe whether combining the two estimation techniques
could bring an improvement, the performance of linear and
rotational mass estimation was compared. This was done by
applying the same force sequence and noting the relative error
of each mass estimation for each update.

Figure 5 and 6 show that the mass estimation based on ob-
serving linear movements shows more accuracy and more sta-
bility. It needs to be noted, however, that this is the result of
a single session. Although over several sessions, the trend

0 1 2 3 4
Time passed (s)

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

er
ro

r m
as

s p
re

di
ct

io
n

(%
)

Convergence for different update rates (updates / s)
Linear
Rotation

Figure 5: Performance linear vs rotational mass estimation.

0 1 2 3 4
Time passed (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
la

tiv
e

er
ro

r m
as

s p
re

di
ct

io
n

(%
)

Convergence for different update rates (updates / s)
Linear
Rotation

Figure 6: Performance linear vs rotational mass estimation, y-axis
limited to 0.4.

0 1 2 3 4 5 6
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Gu
es

s d
ist

an
ce

, %
 to

 a
ct

ua
l w

ei
gh

t

Average guess error and variance over time

Figure 7: Performance linear vs rotational mass estimation. The
distance to the actual weight, in percentage plotted against the time
in seconds. The Translucent area shows the distance to the furthest
guess at that timestamp.

consistently is that linear is more stable and precise than ro-
tation. This can be seen in Figure 7, where over 5 sessions
an average line is drawn, including the variance. It was delib-
erately chosen not to take the absolute error, but the relative
error. This was to see whether the guesses are more likely to

overestimate or underestimate. Figure 7 shows that the large
peaks are mostly over-estimations.

The probable cause for this is the fact that in linear move-
ment you can directly calculate the mass, whereas in the ro-
tational movement, we can calculate the inertia tensor. This
relates to the mass but also to other factors, such as the force
and shape of the object.

Another factor is that friction in unity does not accurately
represent how a cube would behave in the real world. Linear
movement could be less affected by this difference.

In summary, the remote mass can be estimated separately
through both linear and rotational observation. Even though
the original idea was to combine the two for stability, this
will not be done. Linear momentum on itself is already ac-
curate enough to estimate the remote mass. The rotational
movement can be used to observe the inertia and estimate the
center of mass location.

3.6 Center of mass estimation
In Unity, the mass of an object is uniformly distributed across
the volume of the mesh. The way to make objects with a dif-
ference in mass distribution can only be obtained by creating
compound objects. Since Assumption 1 in section 3.1 states
that the local object is the same as the mesh of the remote ob-
ject, and Assumption 3 states that no compound meshes are
used, the only changeable ‘factor’ that can explain a differ-
ence in the moment of inertia is the center of mass. Therefore
a descent method can be created that descends the center of
mass to the remote value using the difference in the moment
of inertia.

To simplify the problem at first, only one estimate update
will be performed. Only forces in the x or z directions will
be used. The updated estimate should be closer to the actual
CoM.

The hypothesis is that based on the reaction of a cube,
amount of difference tells us the factor of how far away the
CoM point in the plane is orthogonal to the force (fdifference).

Then the difference of the rotation tells which side the esti-
mate should move towards (fdir). Figure 8 shows a schematic
view of the hypothesis.

The only difference that can confidently be calculated of
the CoM is in the orthogonal plane. Therefore only forces
in the x and z directions should be enough the have the cube
converge to the correct value. The equation to calculate the
new CoM is

CoMnew = CoMprevious +
fdirfdifference

rcube
, (6)

where rcube indicates half the size of the cube. fdifference is
a value between 0 and 1. Where 0 means no difference at all,
and 1 means the most difference, while the CoM is still inside
the object. The first task is to get the center of mass to move
in the correct direction based on fdir and the correct amount
based on fdifference, starting from the middle of the cube. Once
this works, the equation can be changed to handle multiple
updates. Figure 9 shows the setup for the CoM estimation.

Regrettably, no underlying logical pattern could be dis-
cerned in the values received from the Unity system. Various
factors were analyzed, including rotational velocity, rotation,

Figure 8: Schematic view of CoM estimation hypothesis.

Figure 9: Test setup center of mass estimation. The white line indi-
cates the location and direction of the force. The pink sphere shows
the location of the CoM of the remote object, while the blue sphere
indicates the location of the CoM of the local object. The force will
rotate to remain in the same direction relative to the cube’s rotation.

Figure 10: Long exposure photo of the force movement.

torque, acceleration, and inertia tensor. Eq. (3) was used
to analyze the movement. Yet no discernible coherence was
found. The observed values displayed a wide range, without

any direct correlation with the applied force or difference in
movement. Furthermore, no apparent relation was observed
between these values and the distance between the centers of
mass along the orthogonal line of force.

4 Results
Several factors need to be tested to get a realistic view of
the estimation method’s performance and accuracy. First, the
mass estimation will be evaluated. Second, CoM estimation
will be tested.

4.1 The experimental setup
It is important that all test runs, where factors are compared,
are based on the same forces and movements. Therefore an
order of forces has been defined on which all tests are based.
This section will explain the test sequence.

The sequence contains different forces that result in lin-
ear and rotational movements over time. Figure 11 shows
the order and the type of forces that are exerted on the cube.
The force magnitude is constant throughout all forces. Using
Unity’s coroutines, tasks are spread across several frames.

z = 0.3 x = 0.5 1

1

1

1

0.5

0.5

0.5

z = -0.5 x = 0.0

z = 0.4 x = -0.5

z = 0.5 x = -0.1

z = 0.0 x = 0.0

z = 0.0 x = 0.0

z = 0.0 x = 0.0

Direction Position Duration (sec) Cube and axes

for reference

x

0.5

0.5

z

Figure 11: Explanation of sequence of forces performed during test
sequence.

Figure 12: Long exposure photo of the test force movement. The
cube starts at the bottom right and moves rotating along the path as
a result of the forces applied.

Figure 12 shows a long exposure photo of the movement of
the cube throughout the test sequence, to get a better insight
into the movement. The force sequence is explained by Fig-
ure 11. The video of the test run is available on YouTube via
this link.

4.2 Performance of the mass estimation method

Mass estimation performance with different initial
estimate error
First, the mass estimation performance based on linear move-
ment will be evaluated. Test runs were performed starting at
different start values, where a mass of value 1 in Unity is as-
sumed to be 1 kilogram (kg). The start values ranged from
0.5 kg to 6 kg. Figure 14 shows that the poorest perform-
ing values are the values with a much lower initial estimate,
compared to the actual mass. These values both converge at
a slightly higher error rate and have more noise than the es-
timates starting at higher values. It is also noteworthy that
lower values have high peaks in mass estimation error at the
beginning, which occur less in the higher values. Overall, if
the initial estimates are kept above 50% of the actual mass,
the error will remain below 0.02% of the mass of 3 kg.

0 1 2 3 4 5
Time passed (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
la

tiv
e

er
ro

r m
as

s p
re

di
ct

io
n

(%
)

Convergence to mass 3 for different start values
0.5
1
1.5
2
2.5
3
4
5
6

Figure 13: Convergence of different start values. The mass start
values are kg.

0 1 2 3 4 5
Time passed (s)

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e

er
ro

r m
as

s p
re

di
ct

io
n

(%
)

Convergence to mass 3 for different start values
0.5
1
1.5
2
2.5
5
6

Figure 14: Convergence of different start values, y limit at 0.05. The
mass start values are in kg.

https://youtu.be/_aNKPFInkWY

Mass estimation performance sensitivity to update
frequency
It is useful to know what the effect of update frequency is
on the performance of the mass estimation to know at what
latency this method still works. A number of different la-
tency’s have been tested, where a mass initial estimate of 1kg
converges to the actual mass which is 2kg. Figure 16 shows
that only once the update rate

0 1 2 3 4
Time passed (s)

0

2

4

6

8

10

Re
la

tiv
e

er
ro

r m
as

s p
re

di
ct

io
n

(%
)

Convergence for different update rates (updates / s)
10
30
45
60

Figure 15: Convergence of different update rates.

0 1 2 3 4
Time passed (s)

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

er
ro

r m
as

s p
re

di
ct

io
n

(%
)

Convergence for different update rates (updates / s)
10
30
45
60

Figure 16: Convergence of different update rates, y limit at 0.5.

An interesting note is that while the ”10 Hz” rate performs
slightly less, 30 and 45 have a higher performance. A the-
ory as to why this occurs relates to the fact that Unity also by
default runs 60 FPS. In Unity, the FPS is determined by the
performance of your game and the capabilities of the hard-
ware running it. Unity has two update functions that perform
at different rates.

1. Update: This is called every frame, typically 60 times
per second. This is primarily used for regular game up-
dates and input handling.

2. FixedUpdate: This is also called every frame but is syn-
chronized with the physics engine’s time step. By de-

fault, this is at a fixed rate of 50 FPS. This is primarily
used for handling physics-related calculations.

Since using 60Hz to update the mass update system as
well, it can happen that this interferes with both Update and
FixedUpdate. It is noticeable that the 30 and 45 update rate
both have less noise. It should be noted that the artificial de-
lay that we used the update rate for, is not actually a substitute
for latency, since we receive values of the current state of the
remote system, instead of the state of a certain delay previ-
ously. There the so-called model-jump effect could have a
greater impact at lower frequencies.

5 Discussion
As there has been no existing methodology for estimating
mass in this manner, there is currently no basis for compari-
son regarding concrete results.

Since the system underwent a lot of versions, it was easy
to iterate on the design. That way the impractical decisions
could be undone or improved. The unity training course that
I took before this project helped me to write better-quality
code. This ensured that I did not make unnecessary mistakes
and gave me insight into how Unity deals with certain func-
tions.

0 1 2 3 4
Time (s)

0

5

10

15

20

25

30

35
Ve

lo
cit

y
m

ag
ni

tu
de

Difference velocity of object when selected or not
Selected
Not selected
Hidden and selected

Figure 17: Significant difference in velocity based on whether the
object was selected in the editor at the time of the run.

5.1 Unity physics
One improvement I will take into account next time is doing
more research on how Unity works with physics. There are
a number of factors that influence how the object reacts to
forces. This created some unforeseen difficulties. One exam-
ple is the fact that when the object was selected in the object
inspector during the run of a test, the object reacted differ-
ently when the object was not selected. The velocity of the
object became significantly smaller in the selected run. This
can be seen in Figure 17. This strange behavior ended up be-
ing the result of the inspector being present. In Unity, the val-
ues inside the inspector can be changed during the run of the
system. If the inspector is open, the system checks whether
the values are changed in each frame. This might influence
the behavior of the object.

5.2 Reproducibility
Even though Unity’s physics engine is deterministic, each run
results in a slightly different outcome. This could be because
of the different frame rates. Just like physical experiments,
multiple runs are necessary to collect reliable data.

6 Responsible Research
One of the primary ethical concerns in model-mediated tele-
operation is system stability. A stable system is crucial for
maintaining a safe and reliable environment for both the hu-
man operator and the remote object. An unstable system may
lead to unexpected movements or even failures, which can
endanger the operator and disrupt the task at hand. Since the
current mass estimation can have sudden disruptions in pre-
dicted mass, these should be diminished. This can be done by
adding a certainty value or making sure that the system is cali-
brated beforehand and no changes in mass can be done during
the operation. Furthermore, since no humans were involved
in this study, there is little ethical risk related to humans.

7 Future work
Certainty factor
The first addition that would have a great impact on the sta-
bility is a certainty factor. The system will keep track of the
certainty of a certain mass and CoM. Once this certainty level
is high enough, the mass will not be updated anymore. Then
the mass could also be the median of all estimates. And thus
the risk of disrupting a good system because of measurement
errors will be minimized. However, even though it is very ro-
bust to measurement noise, it can lose flexibility. For exam-
ple, if the friction gets a bit less or more during an operation,
if you don’t keep updating the system can get unrealistic.

Calibration
The second suggestion is to have a ”calibration mode” that
will occur before the operation. Then the certainty factor can
be used to determine which forces need to be exerted to effi-
ciently eliminate any uncertainty. Then the system will not or
only slightly be updated during the operation.

Also for the CoM determination, if a calibration mode
would be used, the CoM could be determined very efficiently.
Then other, more efficient methods can be used such as the
plumb line method [14]. By lifting the object twice, or three
times in 3D, at a different anchor point and comparing the
plumb line intersections, the CoM can be determined much
more efficiently. This is shown in Figure 18.

Compound objects
Since changing the center of An interesting idea is to investi-
gate the creation of compound objects to estimate an object’s
mass distribution.

The model jump effect
As discussed in Section 2 about related works, the model-
jump effect is an interesting problem that accompanies MMT
and tactile internet. It would be interesting to look into the
perceived effect of the updates, and how updating the values
more gradually can improve interaction but make the system
less stable.

Pivot Pivot

Center
of
mass

Center
of
mass

Plumb line

Plumb line

Figure 18: Plumb line method for estimating CoM.

3 Dimensions
Since in 2 dimensions, there is significantly less complex-
ity in estimating properties. The mass estimation will likely
not increase in complexity, but especially the CoM estimation
will present more problems. Other factors like tilting and tip-
ping over will come into play. Then most of all will it be
useful to have a calibration mode.

8 Conclusion
In conclusion, this research has successfully developed a
method for estimating the physical properties of a remote ob-
ject through interaction. In answer of sub-question ”How can
the mass of an object be estimated through interaction?” The
established technique achieves stable mass estimation with
an error rate of less than 0.01%. The mass estimation system
also shows solid performance at lower update frequencies, al-
though it is important to note that the introduction of a delay
can lead to an increase in the model jump effect at lower fre-
quencies.

Furthermore, the accuracy of the initial guess has been
found to have minimal impact on the convergence time and
eventual accuracy of the estimation. However, lower esti-
mates may result in early peaks during the estimation pro-
cess. The type of forces exerted on the system has a more
significant influence on the convergence time.

To ensure stability and reliability in mass estimation, it is
advisable to initiate slight movements of the objects before
engaging in any high-risk operations. The introduction of a
certainty value proves beneficial in achieving convergence to-
wards a stable and dependable mass estimate.

The Center of Mass prediction method has proven to be
more complex than anticipated. While a descent method
can theoretically be developed, Unity is optimized for perfor-
mance and not necessarily for realism in physics aspects, thus
relying solely on differences in rotational velocity values and
physics-based calculations is challenging. As a conclusion
for sub-question ”How can the CoM be estimated through in-
teraction?”, further research is recommended in this direction
to enhance our understanding and address this limitation.

References
[1] P. Aivaliotis, K. Georgoulias, Z. Arkouli, and S. Makris.

Methodology for enabling digital twin using advanced

physics-based modelling in predictive maintenance.
Procedia CIRP, 81:417–422, 2019. 52nd CIRP Con-
ference on Manufacturing Systems (CMS), Ljubljana,
Slovenia, June 12-14, 2019.

[2] Hyperphysics. Rotational-linear parallels, moment of
inertia. http://hyperphysics.phy-astr.gsu.edu/hbase/mi.
html. Accessed Jun. 16, 2023.

[3] Xin Li, Bin He, Zhipeng Wang, Yanmin Zhou, Gang
Li, and Rong Jiang. Semantic-enhanced digital twin
system for robot–environment interaction monitoring.
IEEE Transactions on Instrumentation and Measure-
ment, 70:1–13, 2021.

[4] Carolina Passenberg, Angelika Peer, and Martin Buss.
Model-mediated teleoperation for multi-operator multi-
robot systems. In 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 4263–
4268, 2010.

[5] Gabriel Ploof, Bassam Alqahtani, Farwan Alghamdi,
Garret Flynn, and Cai Xia Yang. Center of mass es-
timation using motion capture system. In 2017 IEEE
15th Intl Conf on Dependable, Autonomic and Secure
Computing, 15th Intl Conf on Pervasive Intelligence
and Computing, 3rd Intl Conf on Big Data Intelli-
gence and Computing and Cyber Science and Technol-
ogy Congress (DASC/PiCom/DataCom/CyberSciTech),
pages 287–292. IEEE, 2017.

[6] Timothy P Setterfield, David W Miller, John J Leonard,
and Alvar Saenz-Otero. Mapping and determining the
center of mass of a rotating object using a moving ob-
server. The International Journal of Robotics Research,
37(1):83–103, 2018.

[7] Ali Shahdi and Shahin Sirouspour. Model-based de-
centralized control of time-delay teleoperation sys-
tems. The International Journal of Robotics Research,
28(3):376–394, 2009.

[8] Jingzhou Song, Yukun Ding, Zhihao Shang, and
Ji Liang. Model-mediated teleoperation with improved
stability. International Journal of Advanced Robotic
Systems, 15:172988141876113, 03 2018.

[9] Jiawei Sun and Mark Claypool. Evaluating streaming
and latency compensation in a cloud-based game. In
Proceedings of the 15th IARIA Advanced International
Conference on Telecommunications (AICT), 2019.

[10] Unity Technologies. Physic material. https:
//docs.unity3d.com/520/Documentation/Manual/
class-PhysicMaterial.html. Accessed Jun. 14, 2023.

[11] Yuichi Tsumaki and Masaru Uchiyama. A model-based
space teleoperation system with robustness against
modeling errors. In Proceedings of International Con-
ference on Robotics and Automation, volume 2, pages
1594–1599. IEEE, 1997.

[12] Kung-Jeng Wang, Ying Hao Lee, and Septianda Angel-
ica. Digital twin design for real-time monitoring – a case
study of die cutting machine. International Journal of
Production Research, 59:1–15, 09 2020.

[13] Bert Willaert, Hendrik Van Brussel, and Günter
Niemeyer. Stability of model-mediated teleoperation:
Discussion and experiments. In Haptics: Percep-
tion, Devices, Mobility, and Communication: Interna-
tional Conference, EuroHaptics 2012, Tampere, Fin-
land, June 13-15, 2012. Proceedings, Part I, pages 625–
636. Springer, 2012.

[14] Science World. Finding the centre of gravity. https://
www.scienceworld.ca/resource/finding-centre-gravity/.
Accessed Jun. 15, 2023.

[15] Xiao Xu, Burak Cizmeci, Anas Al-Nuaimi, and Eck-
ehard Steinbach. Point cloud-based model-mediated
teleoperation with dynamic and perception-based model
updating. IEEE Transactions on Instrumentation and
Measurement, 63(11):2558–2569, 2014.

[16] Xiao Xu, Burak Cizmeci, Clemens Schuwerk, and Eck-
ehard Steinbach. Model-mediated teleoperation: To-
ward stable and transparent teleoperation systems. IEEE
Access, 4:425–449, 2016.

http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html
https://docs.unity3d.com/520/Documentation/Manual/class-PhysicMaterial.html
https://docs.unity3d.com/520/Documentation/Manual/class-PhysicMaterial.html
https://docs.unity3d.com/520/Documentation/Manual/class-PhysicMaterial.html
https://www.scienceworld.ca/resource/finding-centre-gravity/
https://www.scienceworld.ca/resource/finding-centre-gravity/

	Introduction
	Related Works
	Methodology
	The Unity setup
	System assumptions

	Approach structure
	Mass estimation method based on linear movement
	Mass estimation method based on rotational movement
	The combination of linear and rotational estimation
	Center of mass estimation

	Results
	The experimental setup
	Performance of the mass estimation method
	Mass estimation performance with different initial estimate error
	Mass estimation performance sensitivity to update frequency

	Discussion
	Unity physics
	Reproducibility

	Responsible Research
	Future work
	Certainty factor
	Calibration
	Compound objects
	The model jump effect
	3 Dimensions

	Conclusion

