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SUMMARY

Light detection and ranging (LIDAR) is rapidly emerging as a key technology for depth
sensing applications. LIDAR acts as an auxiliary ranging technique, such as radar, ther-
mal image ranging, image recognition, and time-of-flight (TOF) sensor. As a special type
of direct time-of-flight (D-TOF) system, this work presents the system design and the
hardware implementation of a one dimension time-of-flight (1D-TOF) sensor that uses
LIDAR with single-photon avalanche diodes (SPADs). The system is designed for con-
sumer electronics, serving for short-distance target ranging in proximity and face detec-
tion.

A typical 1D-TOF LIDAR system is composed of a pulsed laser which emits photons,
and a sensor which measures the photons that are reflected back from the target. In
1D-TOF LIDAR systems, the following elements are of great importance: SPAD, time-to-
digital converter (TDC), TOF histogram, and depth estimation algorithm.

SPAD is the key component of the system, which is designed to detect a single pho-
ton. The target ranging can be estimated by measuring the travel time of the photons.
With the help of SPADs, the detection of the photons is converted into a response of the
SPAD circuity, in which the optical signal is converted to the electrical signal. And, we
can measure the moment in which the electrical signal is active to estimate the travel
time of the photons.

TDC is a tool for time measurement. In a 1D-TOF LIDAR system, it measures the
exact moment, when a SPAD is triggered by a single photon. The measured time is called
the timestamp of the photon.

A TOF histogram accumulates the timestamps of the photons at every time interval.
In a TOF histogram, we can observe the time distribution of the photons. In essence,
the photons come from two sources, noise and signal. With the help of algorithms, we
can derive signal information and reject noise information from a TOF histogram. Also,
the algorithm enables us to retrieve the TOF information of the histogram, in which the
distance between the target and the sensor lies within.

In this work, the basic concepts of the 1D-TOF LIDAR system is described in chapter
1, and a prototype architecture is discussed in chapter 2. Next, the design is decomposed
into stages, including system modeling in chapter 3, system trade-off analysis in chapter
4, algorithm design in chapter 5 and hardware implementation in chapter 6. Moreover,
we also propose novel approaches both in system level modeling and algorithm design
based on artificial intelligence methods.
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1
INTRODUCTION

Mingzhe CHEN

This chapter focuses on the introduction of a one dimension time-of-flight (1D-TOF) light
detection and ranging (LIDAR) sensor system. Several utilized devices and techniques are
presented and introduced, such as SPAD, time-to-digital converter (TDC) and timestamp
processing mechanism. The aim is to provide the reader with a general understanding of
the basic technical background of this work.

1.1. LIDAR WITH 1D-TOF SENSOR
In general, direct time-of-flight (D-TOF) sensors can be classified into two types accord-
ing to different application fields. For sensors that focus on depth imaging, they are
categorized as TOF imaging sensors; for sensors that only serve for target ranging with
single depth value, they are categorized as 1D-TOF sensors. In this work, we focus on the
study of a 1D-TOF LIDAR sensor system.

The proposed 1D-TOF sensor targets consumer electronics applications. This sys-
tem has a laser source as a transmitter and a SPAD sensor as a receiver. The laser source
emits a light pulse, which arrives at a target. The light is reflected back by the target, cap-
tured and received by the SPAD sensor. By measuring the time difference between the
transmitted pulse and received pulse, the distance is calculated based on how long the
light has traveled. Normally, the system will do multiple measurements based on time-
correlated single-photon counting (TCSPC) cycles, in order to form a histogram with
timestamps. By locating the peak of the histogram, the TOF of photons traveling from
the transmitter to the receiver is known. However, the shape of the histogram is heavily
affected by noise sources like dark count, ambient light and SPAD cross-talk. As a result,
finding the peak of the histogram is not a straight forward task. System modeling and
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algorithm research is needed in order to design a system that fulfills the performance
requirements.

1.2. SINGLE-PHOTON AVALANCHE DIODE
Single-photon avalanche diodes (SPADs) are p-n junctions that are designed to perform
their functions biased above their breakdown voltage, where a high electric field is uti-
lized to detect a single photon with high sensitivity and low timing jitter [1].

In SPAD operation mode, a detected photon generates a photocarrier in the deple-
tion region, which can initiate an avalanche breakdown through impact ionization, gen-
erating avalanche current [2].

Quenching and recharge mechanisms are followed after the SPAD enters into break-
down. The avalanche must be stopped before the device overheats. In general, there are
two types of quenching and recharge techniques: passive and active. Once the avalanche
is quenched, the SPAD needs to be biased above its breakdown voltage again, in which
the passive or active mechanism takes place [3].

1.3. TIME-TO-DIGITAL CONVERTER
A very important block in TOF sensor systems is the time-to-digital converter (TDC). In
this context, it is used for measuring the arrival time of photons reflected by the target
object or noise sources. TDCs, which are included into a per-pixel architecture [4] or
shared architecture [5], are also implemented in TOF LIDAR systems. Due to area and
power trade-offs, shared-TDC architectures are popular choices for TOF LIDAR system
design.

1.4. TIMESTAMP SIGNAL PROCESSING
A timestamp is an output code generated by the TDC, related to the arrival time of a
single photon. Due to the TDC’s least-significant-bit (LSB), the recorded timestamp can
only be integer multiples of it. Typically, TOF systems require the accumulation of TC-
SPC cycles to build a histogram. Multiple timestamps are acquired, and the timestamps
related to signal arrival can be modelled as a Gaussian, located among a certain area of
the histogram, showing a shape of a peak. The timestamps related to noise arrival are
exponentially distributed, showing a noise floor. This gives designers a intuitive under-
standing of how the sensor works. In addition, histogram processing algorithms can be
applied, in order to minimize the influence from background noise, to find the relation
between histogram peaks and real distance.
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2
1D-TOF ARCHITECTURE

Mingzhe CHEN

For a 1D-TOF system, it is desirable to achieve a large maximum measurable distance or
distance range. Accuracy, speed and power are common requirements, while the system
must ensure its proper function [1]. To meet these requirements, many architectures for
a TOF system are proposed. In this section, a general 1D-TOF system-level architecture is
introduced, which is meant to be the prototyping basis for building more complex models
and processing techniques.

2.1. PROPOSED ARCHITECTURE
A simplified block diagram of the proposed architecture is shown in Fig. 2.1. It is a pro-
totype architecture, which is used for understanding the data flow, in order to build mo-
dels, do simulations and apply algorithms. Also, this architecture is the previous proto-
typing step before designing a fully integrated 1D-TOF sensor. It is conceived with three
major modules, including a simplified sensor, field-programmable gate array (FPGA)
and acquisition computer. Each block will be presented in the following sections in de-
tail.

Sensor FPGA PC

Fig. 2.1: Simplified block diagram of the proposed 1D-TOF system.

5
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2.2. SENSOR MODULE

The sensor module mainly includes the SPAD and a basic digital circuitry, as shown in
Fig. 2.2. The laser is integrated into the sensor module, which emits photons to the
target. The photons are reflected by the target and will generate an avalanche current
when they are detected by the SPADs. The SPADs are controlled by their quenching and
recharge circuitry, to ensure their continuous functional use and to protect them from
overheating. In addition, a buffer, a comparator, and a filter block are implemented into
an FPGA. Each SPAD and its circuitry can be controlled independently, so we can choose
the number of SPAD that become active to receive photons.

Data
(T_stop)

Laser

Laser on
(T_start)

Sensor FPGA

Buffer

Comparator

Filter

Sensor part on FPGA

Quenching
Recharge

SPAD

...

Fig. 2.2: Sensor module in the proposed 1D-TOF system.

2.3. FPGA MODULE

The FPGA module is shown in Fig. 2.3. It has an essential block, which is the TDC, that
generates a timestamp after receiving a start signal from the laser and a stop signal from
the sensor part on FPGA. In the proposed architecture, only one TDC is considered in
order to study the trade-offs before increasing the system complexity. The stored time-
stamps are used to build a histogram via the histogram builder, which is connected to a
digital signal processor (DSP) (see Fig. 2.3). The function of the DSP block is calculating
the target distance from the histogram. Random-access memory (RAM) is used to store
either intermediate data for debugging or the final value for output readout (see Fig. 2.3),
as well as the histogram data. In the prototype design stage, the RAM should store the
complete histogram, and let other algorithm processing blocks to read the histogram
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data from it1.

TDC

Data

CLK

TDC_clk

Histogram
His_clk

FPGA

DSP_en

DSP_rst

RAM

Laser onAddress

RAM_read

Sel
Addr_write RAM_write

DSP

DSP_clk

Enable_Sel

En

En

ADDR_read

DSP_save

TDC_out

Wr_en

Rd_en

DSP_out

Histogram data

Fig. 2.3: FPGA module in the proposed 1D-TOF system.

2.4. ACQUISITION COMPUTER MODULE
The acquisition computer block, which is shown in Fig. 2.4, has three main functions:
control, readout, and displaying through a graphic interface. All control signals for the
modules and submodules are generated from a control block (see Fig. 2.4), including
DSP_rst, DSP_en signals and Laser_control, Mode_selector, CLK_control signals. The
readout block can read the FPGA RAM content and convert its data into readable infor-
mation. Or, send it to the graphic user interface (GUI) for displaying purposes, which is
convenient for debugging the system.

2.5. DISCUSSION
To summarize, the proposed architecture is a prototype for model analysis, simulation
and algorithm implementation in later parts of the project. It is expected to use the
results of this work for future integrated sensor analysis and design.

1In order to save area, there are also partial-histogram techniques being applied, in which way the RAM only
needs to store a partitioned inter-frame histogram [2].
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Acquisition
Computer

Readout Control

GUI

ADDR_read
RAM_read

DSP_rst DSP_en

Ctrl_sig

DSP_out

Fig. 2.4: Acquisition computer module in the proposed 1D-TOF system.
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3
LIDAR SYSTEM MODELING

Mingzhe CHEN

As mentioned in the introduction chapter, 1D-TOF LIDAR sensor is a special type of the
D-TOF LIDAR sensor, which focuses on target ranging, only. To study the proposed 1D-
TOF LIDAR sensor performance and evaluate several depth estimation methods, we start
with a simulation and signal processing flow that models general D-TOF LIDAR systems.
In this chapter, the optical modeling stage estimates the detected laser photons per TCSPC
cycle. Also, the noise rate, in terms of counts per second, is calculated in this stage. The
noise events include spurious counts due to background light as well as dark counts. Next,
the time statistics modeling stage simulates the timing behavior of the signal and noise
photons. In the following sections, details about the optical and time-statistics modelings
are described and discussed.

3.1. EYE SAFETY IN LIDAR SYSTEM
In a D-TOF LIDAR system, a laser source is required to emit energy to the target. As this
system is designed for consumer electronics applications, it is very important to keep
the energy under eye safety levels. The goal is to have a Class 1 LIDAR system that is safe
to operate under reasonably foreseeable conditions, including the intrabeam viewing 1

to the laser source [1].
Essentially, the wavelength of the light source is predefined as 940 nm, and the expo-

sure time (Texp) for one measurement is the product of the laser repetitive period (1/ f )
and the total TCSPC cycles. Texp is given by

Texp = 1

f
TCSPC. (3.1)

1A viewing condition, in which the human eye is exposed to all or a part of the laser beam.

11
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According to IEC 60825-1:2014, the maximum accessible emission limits (AEL) for
typical Class 1 laser products can be summarized in table 3.1.

Texp [s] Maximum AEL [J]
10−13 −10−11 3.8×10−8

10−11 −5×10−6 7.7×10−8 C4
1

5×10−6 −10 7×10−4 (Texp)0.75 C4
1

1 C4 is a correction factor. At 940 nm wavelength, C4 is 3.02.

Table 3.1: Maximum AEL for Class 1 laser products [1].

Thus, the maximum average power (Pm,avg) of the laser source can be derived as

Pm,avg = AEL

Texp
. (3.2)

Based on equation 3.2, we can set the laser power in the allowable range, regarding
eye safety. In the following sections of this chapter, we first define the system specifi-
cations, and examine the laser source power level. And, we perform optical and time-
statistics modelings with a safe laser source power.

3.2. OPTICAL MODEL
The optical simulation and signal processing flow can simulate a single D-TOF LIDAR
scenario with fixed simulation parameters. It estimates the detected laser photons per
TCSPC cycle (Sp) and the noise rate (Nr). And, as a result, it outputs a single value that
corresponds to the estimated target depth (D̂), which is calculated based on a timestamp
histogram (H). However, in practice, we simulate several scenarios in the same run by
sweeping the simulation parameters. So, we obtain a set of H and D̂ , in which their
elements correspond to the different simulation parameters (see Fig. 3.1).

Sp

DNr

Fig. 3.1: Simulation flow of the proposed D-TOF LIDAR scenario.

Typically, in D-TOF LIDAR, the target surface is considered to be a perfect light dif-
fuser (a Lambertian reflector). In order to simplify the simulation model, previous works
assumed that the laser ray always perpendicularly hits the target surface [2, 3]. However,
when the D-TOF LIDAR sensor moves closer to the target, the incidence angle of the
light ray cannot be longer considered perpendicular (see θe(i , j ) in Fig. 3.2(a)). And, this
is the typical case in consumer electronics applications, particularly in proximity of face
detection for smartphones.

Therefore, we propose a model, in which the target is divided into sub-elements, that
are considered as individual Lambertian reflectors. Also, this pixelated model can con-
sider situations in which the laser field-of-illumination (FOI) exceeds the target surface
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area (see Fig. 3.2(a)). In this model, the detector consists of a lens, an optical band-
pass filter and a SPAD array. The detector collects the summation of the diffused power
from the pixelated sub-elements whose locations are inside the FOI of the laser, and the
field-of-view (FOV) of the detector (see Fig. 3.2(b)).

The optical model is based on a pseudo-sequential ray tracing algorithm that first
calculates light paths between the vertical-cavity surface-emitting laser (VCSEL) and the
target surface. Next, it calculates the light paths between the sub-elements of the pixe-
lated target surface and the SPAD sensor. Fig. 3.2 shows the representation of the D-TOF
LIDAR scene in which the optical model is utilized.

In order to simulate a D-TOF system utilized for consumer electronics applications,
the specifications of the system are presented in table 3.2, which are based on standard
specifications of similar designs.

A laser power check is performed, in order to ensure eye safety. We assume that the
TCSPC is 30,000. Thus, from the laser repetitive frequency, Pm,avg is approximated as

Pm,avg =
7×10−4(Texp)0.75C4

1
f ×30000

≈ 12.77mW, (3.3)

where the 7.36 mW average laser power (Ps) in table 3.2 is lower than Pm,avg.

3.2.1. SIGNAL EVENT
A signal event is defined as a laser photon detection that generates an avalanche current
in a SPAD. The signal light path is divided into two sub-paths:

• the emission path in which laser source emits photons to the target (see Fig. 3.2(a));

• the reflection path in which the target reflects photons back onto the sensor lens
(see Fig. 3.2(b)).

In the first sub-path, the amount of incident VCSEL light received by a sub-element of
the pixelated target surface is calculated. The VCSEL and the sensor are placed at the
beginning of the d-axis and are denoted as d = 0, in which the sensor contains a SPAD
array, a bandpass filter and a lens. And we define dT as the distance from the VCSEL
surface to the target surface. The coverage sphere of the VCSEL is determined by a cone
with its apex angle 2θe, which is equal to the FOI (see Fig. 3.2(a)). The total solid angle
that corresponds to the FOI (Ω) can be approximated as

Ω=
∫ 2π

0

∫ θe

0
sinθdθdφ≈ 4πsin2 θe

2
= 4πsin2 FOI

4
. (3.4)

At every sub-element of the pixelated target surface (∆Ti , j ), we define θe(i , j ) as the
incident angle between a VCSEL light ray and the normal vector to the surface of ∆Ti , j

(see Fig. 3.2(a)). So, the distance de(i , j ) from the VCSEL to ∆Ti , j is given by

de(i , j ) = dT

cosθe(i , j )
. (3.5)
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Fig. 3.2: Optical simulation setup. (a) Diagram of VCSEL light and noise emission. (b) Diagram of SPAD array’s
light detection.
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Parameter Value Note

Laser1

Ps 7.36 mW Average power4

λ 940 nm Wavelength
f 40 MHz Repetitive frequency

FOI 21◦ Field-of-illumination
Noise1 Ev 14k lux Halogen light illuminance

Target1
ρ 8−60% Reflectivity
L 26 cm Length
W 20 cm Width

Lens1
dl 11 mm Lens diameter
Al 9.5×10−5 m2 Lens area
ηl 80% Lens efficiency

Optical filter2 B0 20 nm Passband
ηf 67% Filter efficiency

Sensor3

M 40 Number of SPADs
FOV 24◦ Field-of-view

PDP@940nm 1−2% Photon detection probability
FF 25% Fill factor
TD 20 ns SPAD deadtime

1 The specifications are from custom’s requirements given to Silicon Integrated
(SI) B.V.
2 The specifications are from the device available on Thorlabs [4].
3 The specifications are defined by SI B.V.
4 Unless otherwise specified, the power mentioned in this article is the average
power.

Table 3.2: System specifications.

And the solid angle ∆Ω(i , j ) from ∆Ti , j is approximated as

∆Ω(i , j ) =
ˆ∆Ti , j

d 2
e(i , j )

, (3.6)

where ˆ∆Ti , j is the area of ∆Ti , j .
When ∆Ti , j is located inside the FOI, a radiant flux of ∆Φe is calculated as the ratio

between the total solid angle Ω and the solid angle ∆Ω(i , j ) and multiplied by the total
VCSEL light power (Ps). This calculation can be expressed as

∆Φe(i , j ) =


Ps ˆ∆Ti , j

4πsin2( FOI
4 )d 2

e(i , j )

θe(i , j ) ≤ FOI

2

0 θe(i , j ) > FOI

2

. (3.7)

The second sub-light-path of the ray tracing algorithm corresponds to the detected
light by the D-TOF LIDAR sensor, which is back-reflected from the target surface. The
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radiant flux ∆Φs(i , j ) emitted by the ∆Ti , j is the product of the received radiant flux and
the reflectivity ρ of the target surface, and is defined by

∆Φs(i , j ) = ρ∆Φe(i , j ). (3.8)

The detected radiant intensity (∆Ie) by the D-TOF LIDAR sensor, emitted from∆Ti , j ,
is proportional to the product of the peak radiant intensity I0 and cosine θs(i , j ), which is
the angle between the normal vector of the sensor Ŝ and the normal vector of ∆Ti , j (see
Fig. 3.2(b)). ∆Ie is given by

∆Ie = I0 cosθs(i , j ). (3.9)

A plane radiator or reflector that is perfectly diffusive emits light in all directions.
And, the total emitted power is contained within half sphere with respect to the normal
of that plane (see Fig. 3.2(b)). Therefore, the radiant flux ∆Φs(i , j ) diffused from ∆Ti , j of
the target is calculated as the surface integral of the diffused radiant intensity ∆Ie over
the solid angle dΩ of the half sphere:

∆Φs(i , j ) =
∫
Ω
∆IedΩ=πI0. (3.10)

According to the inverse-square law, the irradiance (∆Ee), which is emitted from
∆Ti , j , can be presented as

∆Ee = Ie

r 2 = ∆Φs(i , j ) cosθs(i , j )

πd 2
s(i , j )

, (3.11)

where ds(i , j ) is the distance from the sub-element to the D-TOF LIDAR sensor [5].
The total radiant flux Φs sampled at the lens, whose area is Al, is the summation of

radiant flux ∆Φs(i , j ) of every ∆Ti , j , but only if they are inside the FOV.Φs is calculated as
follows:

Φs =
∑
i , j


Al∆Φs(i , j )(cosθs(i , j ))2

πd 2
s(i , j )

θs(i , j ) ≤ FOV

2

0 θs(i , j ) > FOV

2

. (3.12)

By combining equations 3.7, 3.8 and 3.12,Φs can be directly calculated based on the
parameters of the system:

Φs =
∑
i , j


Ps ˆ∆Ti , jρAl(cosθs(i , j ))2

4π2 sin2( FOI
4 )d 2

e(i , j )d
2
s(i , j )

θe(i , j ) ≤ FOI

2
,θs(i , j ) ≤ FOV

2

0 otherwise

. (3.13)

Next, we calculate Sp, which represents the photons per laser pulse. Sp considers the
lens efficiency ηl. Also, it accounts for a reduction ratio 2/π since the light-sensitive area
of the sensor is represented as a square, and it is inscribed in a circle that corresponds to
the light projected by the lens [2]. An optical bandpass filter is placed between the lens
and the D-TOF LIDAR sensor, which is used to reduce background ambient light (see
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Fig. 3.2(b)). So, the filter efficiency ηf(λ) is also considered as a power loss. In addition,
it is assumed that there are in total M SPAD pixels in the uniform SPAD array. Therefore,
the number of photons per TCSPC cycle can be calculated as

Sp =Φsηlηf(λ)
2λ

Mπ f hc
PDE, (3.14)

where h is the Plank constant, c is the light speed, f is the VCSEL repetitive frequency
and λ is the VCSEL wavelength. The photon detection efficiency (PDE) is defined as the
product of photon detection probability (PDP) and fill factor (FF) of the SPAD array.

3.2.2. NOISE EVENT
A noise event is defined as any SPAD avalanche that is not triggered by a photon emitted
from the VCSEL. Noise events come from artificial light or natural light in two different
light paths, which are:

• emitted photons from a noise source to the target, and the target reflects photons
to the sensor lens;

• or direct emission of photons to the sensor lens.

Additionally, dark counts can trigger SPAD avalanches, but in practice the dark count
rate (DCR) is significantly smaller than the noise rate produced by background ambient
light. In this model, a background noise of 14k lux halogen light is applied in the simula-
tion (see table 3.2). And we only consider noise counts that are reflected from the target
surface onto the sensor lens (see Fig. 3.2).

When the noise photons are first projected to the target, the total noise power Φ0

over the whole spectrum can be calculated as

Φ0 = Ev Ae

K0
, (3.15)

where Ev is 14k lux, Ae is the effective area for noise photons and K0 is the luminous
efficacy. For a 14k lux halogen light and the target of 0.2 cm×0.26 cm, it is assumed that
its spectral radiance is similar to a black-body radiator radiance Bλ(T ) at temperature
T=2800K, leading to [6]:

Bλ(T = 2800K) = 2hc2

λ5

1

e
hc

2800λk −1
, (3.16)

where h is the Plank constant, c is the light speed and k is the Boltzmann constant.
As mentioned above, an optical filter is placed between the detector and the lens (see

figure 3.2) with a passband (B0) of 20 nm and a maximum efficiency of 67% (see table
3.2). It is assumed that the filter passband has a Gaussian shape. Its standard deviation
(σf) is assumed to be 10 nm and its mean value (µf) is given by the central wavelength
940 nm. So, its characteristic equation is given by

ηf(λ) = e
− 1

2 (
λ−µf
σf

)2

, (3.17)
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where λ is the wavelength. The coefficient Co between the power that can pass the filter
band and the total power over the spectrum band (∆λ) can be calculated as

Co =
∫
∆ληf(λ)Bλ(T = 2800K)dλ∫
∆λBλ(T = 2800K)dλ

. (3.18)

So, the total noise power Φn that can pass the filter passband is given by the target re-
flectivity ρ and equations (3.15) and (3.18):

Φn =Φ0ρCo. (3.19)

The noise rate per time unit (Nr) is calculated by replacing the reflected power and
multiplied by laser repetitive frequency into equation (3.14). It is given by

Nr =Φnηl
2λ

Mπhc
PDE. (3.20)

3.3. TIMESTAMP MODEL
The output of the timestamp model stage is a single histogram (H), when simulating
fixed optical parameters (see Fig. 3.1). Or, multiple histograms when sweeping the op-
tical parameters in the same simulation run. The timestamps of signal and noise events
are generated based on the calculation results of equations (3.14) and (3.20).

In a single TCSPC cycle, the number of detected VCSEL photons is a random variable
(RV) that follows a Poisson process, which is defined as [7]

P (X = k) =
Sk

p

k !
e−Sp , (3.21)

where Sp is the expected number of signal events per TCSPC cycle. We considered that
the VCSEL light pulse has a Gaussian shape and dispersion effects are neglected. There-
fore, the timestamp of a signal event is represented by an RV with a probability density
function (PDF) given by [8]

f (t ) = 1

σ
p

2π
e−

1
2 ( t−µs

σ )2
, (3.22)

where σ that is directly related to the VCSEL pulse width. Also, the mean value µs is the
average TOF for light traveling from the VCSEL to the target and from the target to the
D-TOF LIDAR sensor. As the laser and the sensor located at the same surface, µs is given
by

µs = t0 = 2
dT

c
, (3.23)

where dT is the distance between the laser surface and the target surface (see Fig. 3.2).
The noise events are uniformly distributed over time. Their timestamps, which are

calculated as the time distance between the start of a TCSPC cycle and the noise event
detection, are represented by an RV with exponential PDF. Therefore, the noise event
timestamps’ PDF is defined by
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g (t , Nr) =
{

1−e−Nrt t ≥ 0

0 t < 0
. (3.24)

Algorithm 1 shows the timestamp generation logic for a single TCSPC simulation.
It is assumed that 1 SPAD is activated out of M SPADs, and it is connected to 1 single
TDC. An output example histogram from the simulation is shown in Fig. 3.3, in which
30,000 TCSPC cycles were simulated. It is worth mentioning that the SPAD deadtime is
not utilized in the way we generate timestamps. In each TCSPC cycle, we only record the
first timestamp, and wait for the next TCSPC cycle to start. Its repetitive period is much
longer than the SPAD deadtime (see table 3.2). Thus, the SPAD deadtime is not taken
into consideration in this model.

input : The average number of signal events per TCSPC cycle Sp

input : The noise event rate per second Nr

input : Average TOF µs

input : VCSEL pulse width σ

output : TDC code

for i = 1 : TCSPC do
total_signal_events = poissrnd (mean=Sp);
signal_timestamps [i ] = normrnd (mean=µs, sd=σ);
noise_timestamp = exprnd (mean=Nr);

end
all_timestamps = [noise_timestamp, signal_timestamps ];
all_timestamps = sort(all_timestamps, decreasing = FALSE)
first_timestamp = all_timestamps [1];
tdc_code = tdc_rounding (first_timestamp);

Algorithm 1: Timestamp calculation algorithm.

From Fig. 3.3, we can observe a signal peak and the background noise floor. It can be
found that the background noise floor on the left side of the signal peak has more counts
than that on the right side of the signal peak. An explanation is that the noise events are
uniformly distributed over time and the signal events are distributed in Gaussian. And,
we compare the first noise event with the first signal event in each TCSPC cycle to record
the earlier event in the histogram. For the noise events that are distributed later than the
signal event Gaussian shape, they have a lower probability to be the earlier, compared
to the noise events that are before the Gaussian shape. Therefore, the histogram has a
background noise shape with a high-left and a low- right.

3.4. DISCUSSION
In this chapter, a model for calculating the photon rate and generating timestamp is in-
troduced and simulated. The most important concept, which is the subdivision of the
target into pixels, not only avoids the model from making too many assumptions, but
dividing the light cover area into point diffuse sources. Moreover, as discussed in section
3.3, signal and noise photons follow a specific type of distribution, which is possible to
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Fig. 3.3: Histogram for D-TOF simulation model.

generate and record timestamps in the simulation. The implemented optical and time-
stamp model will serve as a basis for understanding the system trade-offs in chapter 4,
in order to design the final system architecture.
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4
SYSTEM TRADE-OFF ANALYSIS

Mingzhe CHEN

System trade-off analysis is a powerful tool to study parameter dependencies, which helps
us find the detailed specifications that meet the system requirements. For example, it
enables us to evaluate system linearity and accuracy, showing the performance of the sys-
tem under different conditions. In this chapter, we perform a system trade-off analysis by
using the modeling described in the previous chapter.

4.1. INTRODUCTION
In the histogram obtained from the simulation model, we find that two effects interfere
with our ability in obtaining accurate depth information (see Fig. 4.1). First, the level
of background noise needs to be low enough to allow the signal peak to be detected.
Second, the detected signal peak is shifted with respect to the actual target position, and
this effect can be explained by order statistics.

To visualize the impact of background noise, a trade-off analysis can be performed
to evaluate the depth range, which is defined as the range of depths that the system can
detect. By checking the detection range under different parameter conditions, we can
observe the effect of the system parameters in the maximum range. The background
noise rate is the main parameter that restricts the depth range. However, other para-
meters are important, such as VCSEL power, target reflectivity, TDC bin size, and the
total number of TCSPC cycles. This is further elaborated in section 4.2.

Furthermore, it is possible to utilize trade-off analysis to evaluate the system depth
resolution, which includes the linearity as well. This process is based on extracting fea-
tures from the timestamp histograms, and it is elaborated as depth resolution analysis in
section 4.3.

23
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Fig. 4.1: Non-linearities and background noise effects in the output histogram of the 1D-TOF simulation
model.

Once we find an optimal parameter selection, the next step is to perform a failure
rate analysis. We define failure rate as the inverse of the probability that the system fails,
during a certain number of operation cycles under the given specifications. In section
4.4, we perform failure rate analysis to assess the system performance under our optimal
parameter selection.

4.2. DEPTH RANGE
The aim of the depth range analysis is to find the maximum distance the system can
detect under critical conditions. And, the minimum distance the system can detect is
predefined to be 0.1 m (see table 3.2). In the depth range analysis, we do not put special
effort to identify the closer distance, but check if the system can work under the mini-
mum distance of 0.1 m. In all the later simulations, if the distance serves as a parameter,
it will be swept starting from 0.1 m.

This analysis is performed based on the histograms generated for different parameter
conditions, and detecting the depths corresponding to their signal peaks. A parameter
sweeping simulation is run, which attempts to find the depth range under such condi-
tions.

For every fixed group of parameters, a histogram can be generated by the simulation
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model. By increasing the distance of the target and sweeping the parameters in the same
run, we obtain a set of histograms for every target distance point. In addition, we take
advantage of a peak detection (PD) algorithm of MATLAB to perform the peak detection.
Typically, the PD algorithm can find the peak with respect to the peak’s prominence, peak
width, etc. These algorithm details are carefully described in section 5.1.

To perform the depth range analysis, the operation steps are listed as follows.

• First, we define a failure condition (FC) as, when PD algorithm is unable to locate
a signal peak in 10 out of 100 histograms under the same conditions.

• Next, when FC occurs in the histogram set of one distance point with the fixed
parameters, these fixed parameters are considered as the critical conditions. And
this distance is considered as the maximum depth range under such critical con-
ditions.

We first classify the parameters into adjustable and non-adjustable. The adjustable
parameter is the internal parameter of the system that we can control, and the non-
adjustable parameter is the external parameter that depends on the application para-
meters. Table 4.1 and 4.2 show the adjustable and non-adjustable parameters, respec-
tively. It is worth mentioning that, from the noise event analysis in subsection 3.2.2, we
find that the halogen noise level from specs is similar to 100k lux natural light at sea level,
which is equal to 0-0.4 W/m2nm solar irradiance at sea level [1]. Thus, we then use solar
irradiance (Ee) as the swept parameter in the simulations.

Adjustable parameter Description
Ps Laser power

TCSPC Total time-correlated single photon counting cycles
TDC resolution Average TDC bin size

Table 4.1: Adjustable parameters in the system.

Non-adjustable parameter Description
Ee Noise (irradiance)
ρ Target reflectivity

Table 4.2: Non-adjustable parameters in the system.

It is important to mention that the PDP ranges from 1% to 2%. It is a potential ad-
justable parameter, which is evaluated separately. The modeling analysis in the previous
chapter indicates that, changing the PDP has an impact on the noise rate. Therefore, in
practice we simulate the depth range within the PDP range under the conditions that
may be the worst 1. The simulation results can be found in Fig. 4.2.

Fig. 4.2 indicates that, when having a high background noise, the increase of PDP
decreases the depth range. To be specific, the increase of PDP also increases the noise
rate, and it makes the signal peak be difficult to be detected. In order to have a PDP

1This ‘worst case’ is presented in detail in the following paragraphs.
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Fig. 4.2: Depth range under different PDP. The simulation parameters are set as: TCSPC = 30,000, TDC bin size
= 25 ps, Ee = 0.4 W/m2nm, and ρ = 60%.

value that can detect at maximum 0.6 m 2, we picked 1.2% as the PDP in all the later
simulations.

Besides, in order to have a low noise rate, we activate one SPAD of the array out of 40,
which is connected with one TDC, in all simulations3. The reason for having one SPAD
activated is that, the system will easily fail when more SPADs are activated, when the sys-
tem only comprises of one TDC. To be specific, when more SPADs are activated and con-
nected to one TDC, the TDC records the first timestamp among all the activated SPADs,
showing a ‘winner-take-all’ behavior. However, due to the uniform distribution of back-
ground noise events, the TDC will more likely to be triggered by a noise timestamp, and
the final histogram does not contain the signal peak (see Fig. 4.3). So, effectively the
background noise rate at the TDC input is reduced.

We consider the laser power (Ps) is the easiest controllable parameter in the system.
Thus, each time we simulate the depth range, we also sweep the laser power up to its
maximum value, in order to find an optimal laser power at different conditions. The
laser power is an important parameter that determines the total power consumption
of the LIDAR system. Fig. 4.4 shows the maximum depth under different parameter
conditions. And, the observation can be summarized as follows:

• The depth range increases with the increase of Ps.

• The system fails when the total number of TCSPC cycles is lower than 500. When
the system starts working, the depth range increases with the increase of the total

2In table 3.2, we define the detection range is 0.1 - 0.6 m.
3It is assumed that this TDC can only record the first photon timestamp.
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Fig. 4.3: The simulated performance with activating different number of SPADs, connected with one single
TDC. (a) 1 activated SPAD; (b) 40 activated SPADs.

TCSPC cycles 4.

• The depth range increases with the increase of TDC bin size.

• The depth range decreases with the increase of Ee.

• The depth range first increases with the increase of ρ, but becomes almost un-
changed when ρ reaches its maximum.

Moreover, we perform further analyses, in order to explain the potential questions
from the observations.

• TCSPC: We want to know what happened when the total TCSPC cycle is lower than
2000. A further fine-sweep is made, by sweeping TCSPC cycle from 500 to 2000, as
shown in Fig. 4.5(a). In this improved fine-sweep, we can observe that the depth
range increases with the increase of TCSPC cycles.

• TDC bin size: From our observation in Fig. 4.4(b), the larger the TDC bin size is,
the higher depth range is. Essentially, the TDC bin size defines the histogram bin
size. And, with the same number of bin, the TDC full scale range will increase ac-
cordingly. Thus, the increase of TDC bin size increases the depth range. To explain
this, we first give a plot as an example, as shown in Fig. 4.6. A clear observation is
that, at the same distance point, more counts locate in the signal peak region with
larger TDC bin size, which makes the signal peak be easily detected.

• Ee & ρ: We present the depth range simulation with both ρ = 8% and ρ = 60%,
showing the target reflectivity and background noise irradiance are highly depen-
dent parameters when determining the depth range (see Fig. 4.5(b)). It can be

4The depth range for TCSPC = 500 remains at 0.1 m. As 0.1 m is the lowest value of the swept distance value,
we consider the system fails under this condition.
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Fig. 4.4: Depth range under adjustable parameter conditions: (a) Depth range vs. Total TCSPC cycles; (b) Depth
range vs. TDC bin size. Depth range under non-adjustable parameter conditions: (c) Depth range vs. Noise
irradiance; (d) Depth range vs. Target reflectivity. Laser power is the x-axis of the simulation, which is used to
offer the curve under initial condition. When the corresponding parameters are not swept, they are set as: PDP
= 1.2%, TCSPC = 30,000, TDC bin size = 25 ps, Ee = 0.1 W/m2nm, and ρ = 8%.

found that the 60% ρ has a higher depth range at the beginning, and becomes sat-
urated when increasing the Ps. The 8%ρ first has a lower depth range, but its depth
range continues to increase. Crossing point can be found for each two curves with
the same background noise and different ρ, in which the simulations under both
ρ give the same depth range. The explanation to this observation that in the curve
with lower ρ, the depth range is restricted by the laser power, as the noise does not
saturate the model; in the curve with higher ρ, the depth range is restricted by the
noise showing its saturation. Moreover, as the increase of ρ can both increase the
number of signal and noise photons, the impacts from both photons contribute
together to the depth range. Although the depth range changes the trend with the
increase of ρ, we only take its ‘worst case’ into consideration, in which the simula-
tion can cover all possible parameter conditions.
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Fig. 4.5: Improved sweep: (a) a fine-sweep for depth range under total TCSPC cycles from 500-2000; (b) depth
range sweep at ρ = 8% and 60% with respect to Fig. 4.4(c). When the corresponding parameters are not swept,
they are set as: TCSPC = 30,000, TDC bin size = 25 ps, Ee = 0.1 W/m2nm, and ρ = 8%.

From the simulation result of depth range, we are able to find the maximum range
of the system. We first set the worst-case for non-adjustable parameters, which leads
to highest background noise and highest reflectivity (see Fig. 4.4). Then, the maximum
depth range can be found by sweeping other adjustable parameters. It can be found
that the maximum detection range is around 0.3 m under worst-case conditions (see Fig.
4.7). However, it is essential to mention that, this worst-case has reached the limits of the
utilized PD algorithm. Although there is indeed a protruding signal peak, the algorithm
can still miss that peak. This is further elaborated in section 5.1.

4.3. DEPTH RESOLUTION
Depth resolution analysis is defined as the method of studying the depth estimation
mean-square-error (MSE) of the system. In this section, we also use the PD algorithm
from section 5.1 as our estimation method to estimate the signal peak position. Also,
the peak shift effect is quantified, in order to help us understand the relation between
non-linearities and the system parameters.

The peak shift effect can be explained by the bias (b) shift of the main peak. Also, the
detections of the signal peak show a dispersion that can be explained by the standard
deviation (σ). Thus, we measure the MSE of our estimation method, which associates b
and σ together. This relation is given by [2]

MSE =σ2 +b2. (4.1)

Therefore, the peak shift effect is evaluated through MSE of our estimation method. We
also calculate the sample MSE ( ˆMSE) as

ˆMSE = 1

n

n∑
i=1

(D̂i −D0)2, (4.2)
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Fig. 4.6: Histogram difference while sweeping TDC bin size. The zoom-in line plot uses the bin center as the x
coordinate and the bin counts as the y coordinate.

where n is the number of measurements, D̂i is the detected TOF in the ith prediction,
and D0 is the actual depth.

However, as a scale-dependent measure [3], ˆMSE is in the unit of [m2] in our esti-

mator. For a better understanding and observation, we use
√

ˆMSE (in the unit of [m])
instead, in order to show the depth difference directly.

Hence, we define
√

ˆMSE, σ and b as the performance criteria of the depth resolu-
tion analysis. The peak location (D̂i ) for the histograms from the previous simulations

are then obtained, which are used for calculating the
√

ˆMSE. σ and b of the histograms
are calculated from 1,000 histograms under same parameter condition. By sweeping
the parameters in the run, the relation between the depth resolution and the adjustable
parameters are visualized (see Fig. 4.8). Also, we simulate the depth resolution perfor-
mance under non-adjustable parameters (see Fig. 4.9).

There are three points that need to be explained for readers’ better understanding:

• In the depth resolution simulation, we first simulate the depth resolution while

sweeping the total TCSPC cycles. We find that the
√

ˆMSE remains unchanged with
the increase of total TCSPC cycles (see Fig. 4.8(a)). The b is unchanged and the
σ increases by a very small order of magnitude (see Fig. 4.8(b)). Moreover, in Fig.
4.4(a), at 7.36 mW laser power, the curve with TCSPC = 10,000 can reach the detec-
tion range given by the specs. Therefore, in order to present the depth resolution
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Fig. 4.7: Depth range under worst-case conditions. The non-swept parameters are set as: PDP = 1.2%, TCSPC
= 30,000, TDC bin size = 25 ps, and ρ = 60%.

while reducing the simulation time, we use TCSPC = 10,000 to simulate the depth
resolution with other parameters.

• The depth resolution vs. TDC bin size simulation shows that, the lower TDC bin
size is, the more stable σ is (see Fig. 4.8(d)). An explanation to this is that, when
the target depth locates near the boundary of the bin, the obtained peak value
will jump between the adjacent bins, showing a large fluctuation of σ. However,
when the target depth is located in the center of the TDC bin, the σ fluctuations
are smaller. This effect gets more obvious when choosing large bin sizes (see Fig.
4.8(d)).

• The main factor that increases the
√

ˆMSE is the b and is not the σ. The change of
the b is explained by order statistics because the first photon time PDF is shifted
with respect to the unsorted photons’ time PDF [4, 5].

4.4. FAILURE RATE
We consider that the PD algorithm is the simplest method, which extracts signal infor-
mation from the histogram. Hence, we use it as a reference method for our failure rate
analysis (FRA). Essentially, FC occurs when the parameters are set near the critical con-
ditions. Therefore, we propose the FRA, which is used to evaluate whether a histogram
carries distinguishable information in the detection range under the critical conditions.

To select the parameter sweep space in FRA, we propose the following criteria:

• the non-adjustable parameters are swept linearly within their range, defined as
parameter sweeps. For example, the Ee is swept from 0 to 0.4 W/m2nm and the ρ
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Distance checkpoint [m] Failure rate (from 30,000 simulations)
0.1 0
0.2 0
0.3 0
0.4 7
0.5 332
0.6 2584

Table 4.3: Failure rate at six critical distances.

is swept from 8% to 60%. In total we simulate 300 parameter values and each of
them is simulated for 100 times. Thus, at every distance, 30,000 simulations are
performed.

In table 4.3, the FRA simulation result is presented. The failure rate percentage rep-
resents how many times the PD algorithm failed within the 30,000 simulations.

It is given that the model with PD algorithm has a failure rate within 2584 fails in all
distance values. In particular, we hardly detected FRA occurrence with 30,000 simula-
tions when the distance is within 0.4m.

The results in table 4.3 can also explain the observation is Fig. 4.7, in which the max-
imum depth range under worse-case conditions only reaches 0.4 m. This is because the
maximum depth range simulation is performed under ρ = 60% and Ee = 0.4W/m2nm,
and this parameter choice just locates in the region where the PD algorithm could fail.

4.5. DISCUSSION
In this chapter, we performed a system trade-off analysis, to investigate the effects in
the TOF histogram. The trade-off analysis contains three topics, which are depth range,
depth resolution, and failure rate analysis. The depth range analysis presented the sys-
tem detection range under different parameter conditions. The depth resolution analy-
sis simulated the MSE of the system, and visualized the peak shift effect of the signal
peak. Moreover, the failure rate analysis was performed, in which we evaluate the distin-
guishable information’s existence under critical conditions.

From the system trade-off analysis, we observe the effects in the TOF histogram.
Therefore, the next step is to design the algorithms that can compensate those effects
and identify the target depth.
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Fig. 4.8: Depth resolution under adjustable parameters: (a)
√

ˆMSE vs. Total TCSPC cycles, (b) b, σ vs. Total

TCSPC cycles; (c)
√

ˆMSE vs. TDC bin size, (d) b, σ vs. TDC bin size; (e)
√

ˆMSE vs. Laser power, (f) b, σ vs. Laser
power. When the corresponding parameters are not swept, they are set as: PDP = 1.2%, Ps = 7.36 mW, TCSPC
= 10,000, TDC bin size = 25 ps, Ee = 0.1 W/m2nm, and ρ = 8%.
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Fig. 4.9: Depth resolution under non-adjustable parameters: (a)
√

ˆMSE vs. Noise irradiance, (b) b, σ vs. Noise

irradiance; (c)
√

ˆMSE vs. Target reflectivity, (d) b, σ vs. Target reflectivity. When the corresponding parameters
are not swept, they are set as: PDP = 1.2%, Ps = 7.36 mW, TCSPC = 10,000, TDC bin size = 25 ps, Ee = 0.1
W/m2nm, and ρ = 8%.
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5
ESTIMATION ALGORITHM DESIGN

Mingzhe CHEN

The main purpose of the 1D-TOF system is to estimate the distance from the sensor to
the target. Histograms obtained from modeling contain distinguishable information, in
which we can derive the travel time of the VCSEL photons. However, the analysis in the
previous chapter shows the non-linearities in the depth estimation when using the PD al-
gorithm. The peak shift effect and the background noise prevent us from obtaining accu-
rate depth from the distinguishable information in the histogram. Therefore, histogram
processing algorithms are required to correct these non-linearities and derive the actual
depth from histograms. In this chapter, the PD algorithm mentioned in section 4.2 is first
discussed. A noise rejection algorithm is then introduced. Finally, we propose the use of
artificial neural networks (ANNs) as a robust and unbiased depth estimator.

5.1. PEAK DETECTION ALGORITHM
First, we use the PD algorithm to seek the peak in a histogram as our performance ref-
erence. The feature in the raw histogram that we are most interested in is the signal
timestamping peak (see Fig. 5.1). It represents the distribution of the detected photons
from the VCSEL. According to the analysis in section 4.3, the shape of the signal peak
has a left-skewed shape originating from Gaussian distribution. Therefore, the shape
has its own unique dominant peak. In this section, we further evaluate the performance
of the PD algorithm to detect the signal dominant peak in the histogram. In addition, a
correction of depth is performed to compensate peak shift effect.

5.1.1. ALGORITHM DESCRIPTION
The PD algorithm consists of three stages. The first stage fits a smoothing curve using bin
center and counts. The second stage calculates the main peak of the smoothed curve.

37
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Fig. 5.1: TOF histogram generated from modeling. The adjustable parameters use the value in table 3.2, and
the non-adjustable parameters use the random value in their available value range (Ee ∈ 0 - 0.4 W/m2nm, and
ρ ∈ 8% - 60%).

Last, a compensation equation is utilized in the third stage, in which the compensation
of the peak shift effect is performed.

In the first stage, we perform spline interpolation with not-a-knot end conditions,
in order to filter the histogram poisson noise (see Fig. 5.1). In MATLAB, it is known as
‘spline’ attribute of function interp1. The code is given by

Listing 5.1: Interpolation MATLAB code.

1 X_N = linspace (min( centers ),max( centers ));
2 Y_N = interp1 (centers ,counts ,X_N ,'spline ');

where counts and centers are the old coordinates from the histogram bin property. X_N,
Y_N are the new coordinates after interpolation [1].

Attribute Value Description
Minpeakprominence 0.003∗TCSPC Prominence value

MaxPeakWidth FWHM_LASER Maximum peak width
Annotate extents Add annotation

WidthReference halfheight Measure the width referring to half-height

Table 5.1: Attributes of findpeaks function.

In the second stage, we utilize findpeaks function to the updated coordinates. This
function is included in the Signal Processing Toolbox of MATLAB, which can locate the
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peak of the curve [2]. The attribute ‘Minpeakprominence’ is used, in order to avoid mis-
detections originating from the Poisson noise in the counts of the histogram. The at-
tribute ‘MaxPeakWidth’ is used to avoid that the function recognizes noise-exponential
slope as a peak. It forces the function to discard the peak that is wider than the VCSEL
full-width-half-maximum. Other attributes including ‘Annotate’ and ‘WidthReference’
are put in the code, to store and display the properties of the peak. A general description
of these attributes can be found in table 5.1. It is worth noting that 0.003∗TCSPC in the
table 5.1 is the actual value for the function to identify the prominence. This value is se-
lected by slowly increasing the prominence, until the statistical factor shows no impact
on the signal peak. This means, the function rejects the peak whose value is less than
0.003∗TCSPC with respect to its neighboring coordinates.

And the code for finding the histogram peak can be found as:

Listing 5.2: Peak finding output arguments and attribute settings MATLAB code.

1 [pks ,locs ,w,p] = findpeaks (Y_N ,X_N ,'MinPeakProminence ' ...
2 0.003 TCSPC ,'Annotate ','extents ' ...
3 'WidthReference ','halfheight '...
4 'MaxPeakWidth ',FWHM_LASER );

A description of the output arguments is listed here, in which pks is the height of
the peak, locs is the time-of-flight of the peak, w is the width at half height and p is the
prominence.

In the third stage, we want to obtain the depth by using the output arguments and
system features. We first convert the TOF represented by (l ocs) into depth (l ocsd).

l ocsd = c

2
l ocs. (5.1)

Next, we propose a compensating equation to compensate the effect of peak shift to
get the estimated depth D ′. Based on the output argument l ocs and w , a linear com-
pensation is made as follows:

D ′ = Kdlocsd +Bd, (5.2)

where Kd and Bd are coefficients of the linear compensation. And in practice, these two
coefficients are calculated based on fitting the typical obtained depth with the target
depth. The MATLAB code is given by

Listing 5.3: Calculation of linear compensation coefficients MATLAB code.

1 X = [locs1 ,locs2 ,.., locsN ];
2 Y = [D1 ,D2 ,..,DN];
3 P = polyfit (X,Y ,1);

For readers’ convenience, we use ellipses (..) and ‘N’ suffixes in the code. However,
they should be replaced by actual values in the scripts. After applying the calculation, Kd

and Bd are obtained and stored in the variable P. We obtain that Kd is 0.9496, and Bd is
0.0338.
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Fig. 5.2: The legend of the features of the findpeaks function.

5.1.2. SIMULATION
The simulation aims to present the estimation results of this algorithm. We start with
introducing the simulation conditions, and summarize the simulation results.

First of all, from the FRA in section 4.4, we observe that the PD algorithm could
fail to detect the peak under conditions near the ‘worst case’. Therefore, we define two
types of detection, namely ‘successful detection’ and ‘failed detection’. The former one
means that the algorithm identifies the signal peak from the histogram, and the latter
one means that the algorithm is not able to locate the signal peak. For example, as shown
in Fig. 5.3, there is no peak found by the algorithm, although a protuberance appears
around 4 ns. To ensure the same sample size in the further performance evaluation, in
this subsection, the presented simulation results are based on the ‘successful detection’,
only.

Fig. 5.4 summarizes the simulation results for applying findpeaks function and the
compensation equation to the cells (a) to (f). The histograms in those cells are generated
from the model simulation at distance 0.1, 0.2,...,0.6 m, with random background noise
irradiance ranging from 0 to 0.4 W/m2nm. The second column shows the features of
findpeaks function. And, the legend of the features in the second column is given in Fig.
5.2. The third column shows the numeric results after applying depth compensation
formula. It includes the actual depth in the simulation, and the error between the actual
depth and the estimated depth from the algorithm. For each cell, the obtained depth
is calculated based on 1000 ‘successful detection’ simulations. The obtained depth is
expressed in a form of 2 standard deviation formula, and it is given by

Obtained depth [m] =µ±2σ, (5.3)

where µ is the mean value and σis the standard deviation of 1000 ‘successful detection’
simulations.

5.1.3. PERFORMANCE EVALUATION
From the simulation results, we are able to evaluate the performance of the peak detec-
tion algorithm. In this subsection, the advantage and disadvantage of this algorithm are
discussed.

The PD algorithm is an intuitive algorithm, which can extract signal statistical fea-
tures and find the signal peak. Its accuracy is evaluated by comparing the estimated
error with the required error range in the system specs (see table 3.2). The error com-
parison is shown in table 5.2, which is converted by subtracting the obtained depth from
the actual depth in the third column of Fig. 5.4. It can be found that most of the estima-
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Implement findpeaks functionHistogram

Fig. 5.3: Failure case of the findpeaks function. The simulation conditions are set as: TCSPC = 30,000, TDC LSB
= 25 ps, Ps = 7.36 mW, Ee = 0.4 W/m2nm, and ρ = 60%.

tions have their error locating within the required error range. We can also notice that,
the precision of PD algorithm is around ±0.01 m. This can become very critical at close
distance point, as the close distance point requires a lower absolute error.

Distance checkpoint [m] Requested Error [m] Estimated Error [m]
0.1 ± 0.010 -0.0057± 0.0120
0.2 ± 0.010 0.0022± 0.0102
0.3 ± 0.015 0.0039± 0.0096
0.4 ± 0.020 0.0036± 0.0100
0.5 ± 0.025 0.0007± 0.0100
0.6 ± 0.030 -0.0023± 0.0095

Table 5.2: Performance of PD algorithm.

However, the drawback of this algorithm is, that it is very rigid in checking the relative
prominence height of the peaks. The higher the background noise is, the higher the
exponential counts are. As the total TCSPC cycle is constant, it causes that the signal
peak has less counts. And this can cause the algorithm reject the main signal peak as
well. For example, in Fig. 5.3, the algorithm tells us that ‘no peaks detected’. This is the
cause to ‘failed detection’ in the subsection 5.1.2, which also contributes to the failure
rate simulation results in table 4.3.

5.2. NOISE REJECTION ALGORITHM
We propose a background noise rejection method called background ‘subtraction’ in
this section. Essentially, as indicated in section 3.3, the detected photons from any
noise sources show a pseudo exponential distribution over time. In a histogram, we
can observe noise timestamping distribution among the bins, shown as an exponen-
tial slope (see Fig. 5.1). To lower the noise level, previous studies focus on rejecting noise
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Fig. 5.4: Peak detection algorithm simulation. Each cell contains the raw histogram, the properties derived
from findpeaks function, the actual depth and the obtained depth. The obtained depth is presented as µ±2σ,
calculated from 1000 successful simulations. The adjustable parameters are: TCSPC = 30,000, TDC LSB = 25
ps, Ps = 7.36 mW. In the first and second column, the non-adjustable parameters are random values that fit
the specs to plot examples. In the third column, the non-adjustable parameters are swept linearly, until 1,000
‘successful detections’ are obtained, in which Ee ∈ 0-0.4 W/m2nm and ρ ∈ 8-60%.
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counts before the timestamps are recorded into the histogram. Methods such as ‘coinci-
dence detections’, ‘spatio-temporal modulation’ were previously developed, which ana-
lyze temporal and spatial correlation between nearby pixels, to decide whether a time-
stamp is kept or discarded [3–5]. However, those methods are performed by grouping
multiple pixels and adding extra digital circuits to evaluate the behavior of the grouped
pixels. A disadvantage is that it adds extra complexity to the system. So, we propose an
algorithm to filter the noise after a histogram is generated.

5.2.1. ALGORITHM DESCRIPTION

The proposed subtraction algorithm can reject the noise based on two continuous his-
tograms. The former one samples the histogram of counts when the VCSEL is turned off;
the latter one samples the normal histogram with VCSEL on. By subtracting the counts
at the same bin location in two histograms, a new histogram can be made. In the new
histogram, the background noise is filtered out, showing a distinct signal peak.

Algorithm 2 shows the logic for subtraction algorithm for two continuous histograms,
in which one output histogram Ho is obtained.

input : The average number of signal events per TCSPC cycle Sp

input : The noise event rate per second Nr

input : Average TOF µs

input : VCSEL pulse width σ

output : Ho

H1:
for i = 1 : TCSPC do

noise_timestamp = exprnd (mean=Nr);
end
all_timestamps = sort(noise_timestamp, decreasing = FALSE)
first_timestamp = all_timestamps [1];
tdc_code = tdc_rounding (first_timestamp);
H1 = hist (tdc_code);

H2:
for i = (TCSPC+1) : (2∗TCSPC) do

total_signal_events = poissrnd (mean=Sp);
signal_timestamps [i ] = normrnd (mean=µs, sd=σ);
noise_timestamp = exprnd (mean=Nr);

end
all_timestamps = [noise_timestamp, signal_timestamps ];
all_timestamps = sort(all_timestamps, decreasing = FALSE)
first_timestamp = all_timestamps [1];
tdc_code = tdc_rounding (first_timestamp);
H2 = hist (tdc_code);

Ho:
Ho = H2-H1; %Subtract on each identical bin

Algorithm 2: Subtraction algorithm.
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Fig. 5.5: Subtraction algorithm. The simulation parameters are: target distance is 0.6 m, Ps = 7.36 mW, ρ =
60%, TCSPC for Histogram 1 and Histogram 2 is 15,000 each, TDC LSB = 25 ps. The background noise is swept
from 0.1 to 0.4 W/m2nm with an increment of 0.1 W/m2nm, which corresponds to cell (a) to (d) one by one.
Histogram 1 in the first column is obtained by the modeling simulation with noise only, while Histogram 2 is
simulated with both signal and noise. Histogram 3 is the output histogram after subtracting Histogram 1 from
Histogram 2.
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5.2.2. SIMULATION

Fig. 5.5 shows the performance of subtraction algorithm. In the figure, cell (a), (b), (c)
and (d) are simulated with incremental background noise conditions, ranging from 0.1 to
0.4 W/m2nm with a step of 0.1 W/m2nm. The first column includes the histograms with
only background noise and the second column includes the histograms when turning
on the VCSEL. By subtracting the previous histogram (Histogram 1) from the latter one
(Histogram 2), the output histogram (Histogram 3) is then obtained.

As we can observe, the noise floor is filtered out to a large extent. Even in the high-
noise simulation (cell (d)), the statistics to the noise counts results in a substantial reduc-
tion compared to the signal peaks, and the distribution of the noise is even more sparse.
It is worth mentioning that the negative count value appears in the Histogram 3.

5.2.3. PERFORMANCE EVALUATION

The background subtraction algorithm only serves to provide higher quality histograms,
which means it cannot work alone for depth estimation. Therefore, in this subsection,
we only present the advantage and disadvantage of this algorithm.

The validity is supported by the theoretical principle. The principle of this algorithm
is that two continuous histograms often share the same external conditions, so that the
statistical conditions for both histogram background noise are the same. Therefore, the
count value at each identical bin of two histograms has the same statistical properties,
so that they can be subtracted directly. However, there is a clear bias of negative counts
on the right side of the peak in the output histograms (see Fig. 5.5).

The advantage is that this algorithm can assist peak locating algorithm to locate the
signal peak much easier. For example, the PD algorithm presented in section 5.1. How-
ever, the drawback of this algorithm is the frame rate that is reduced by half. This is
because we utilize one more histogram to compute, which takes another time of detec-
tion cycle. Of course, we can make a trade-off between the quality of the noise histogram
and the total frame rate by reducing the number of TCSPC cycles required to build the
noise histogram. But the frame rate will be always reduced to some extent.

5.3. ARTIFICIAL NEURAL NETWORK
Typically, the combination of multiple algorithms leads to an increase in the complexity
of the system. For example, the analyses in the previous sections showed the goals, in-
cluding finding the signal peak and filtering the background noise, require individual
approaches. Especially, after finding the histogram peak, a peak shift compensation is
often required to reduce the non-linearities, in which the system complexity rises ac-
cordingly. By trying to solve the problems directly, a question emerges that is: is there
a direct relationship between the bin counts and the actual depth in one histogram?
We can associate the bin counts with inputs to a non-linear unknown function, and the
depth with its output. Hence, we propose to answer this question with the use of neural
network estimation.

In this section, we propose an artificial neural network (ANN) algorithm, which di-
rectly calculates the depth hidden in the non-linearities of the system. It can automati-
cally learn to robustly estimate depth. Common problems including duplicate datasets
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and over-fitting are evaluated and discussed [6, 7]. In addition, as the algorithm is im-
plemented in an FPGA (see chapter 6). It is also essential to minimize the resource uti-
lization of the ANN.

5.3.1. PROPOSED ANN ARCHITECTURE
The goal of this ANN model is to estimate the depth. Thus, the network is defined as
a signal estimation neural network. Based on the general concept from the previous
section, we first define the input and the output of the network, in which the input are
the counts of the 256 bins of one histogram, and the output is the target depth. Therefore,
the depth estimation process can be summarized as a non-linear transformation from
R256 to R1, and it is given by

R256 =⇒R1
y1

y2
...

y256

=⇒(
D̂

) , (5.4)

where y1, y2, ..., y256 represents the counts at every bin of the histogram, and D̂ is the
estimated depth value.

Usually, when the relation between inputs and outputs is linear, there is no need
to use hidden layer with non-linear transfer functions; for mapping the inputs in one
finite space to the outputs in another finite space, one hidden layer can be applied to
approximate the function [8, 9]. For our application, we assume that one hidden layer is
sufficient for the depth estimation task.

Next, a question arises that how many neurons are required in the hidden layer. From
previous works, some criteria were provided but none were accurate [9]. However, in
practice, we swept the number of hidden neurons and found that 8 neurons for the hid-
den layer is a sufficient value for our model.

Therefore, the complete architecture of the ANN is proposed and shown in Fig. 5.6.
Counts at each of the 256 histogram bins are fed into the architecture model, and a depth
value is defined as the output. The architecture contains one hidden layer of 8 neurons
and one output layer of 1 neurons. Each neuron has its own weights (W) and biases (B).
The hidden neurons utilize non-linear activation function, while the output neuron uses
a linear activation function.

Depth

Hidden
Layer

Counts

Output
Layer

...
256

8
1

1W

B
W

B

Fig. 5.6: Proposed ANN architecture.



5.4. WORKFLOW

5

47

5.4. WORKFLOW
In general, an ANN algorithm workflow includes training and testing stages. The training
stage determines the weights and biases values of each neuron of the algorithm, and
testing stage tests the effectiveness of the trained network. In this section, we present
the workflow of the algorithm, focusing mainly on the training stage.

Essentially, the training stage contains five steps, including

1. initialization of the network,

2. perform forward propagation of the training set,

3. compare the network output with the expected output,

4. perform backward propagation to update weight and bias.

5. repeat this process iteratively, from the second point, until a predefined training
condition.

The steps mentioned above can be expressed in global formulas. In the following, they
are illustrated by taking a simplest ANN algorithm containing one hidden layer as an
example. And it is assumed that its output layer has one output neuron.

Starting from initialization, in which every weight value is randomized between −1
to 1, bias values are set to 0. And the input dataset is normalized between −1 to 1. They
are given by

W1(i , j ) = random[−1,1] i ∈ {1,2, ..., I }, j ∈ {1,2, ..., J }

W2(k) = random[−1,1] k ∈ {1,2, ...,K }

B1(l ) = 0 l ∈ {1,2, ...,L}

B2 = 0 −
y′n = norm(y) −

, (5.5)

where W1, B1 indicate the weight and bias for the hidden layer, W2, B2 indicate the
weight and bias for the output layer, and y′n is the normalized transpose vector of y, in
which the row vector y = [y1, y2, ...yn].

Next, the forward propagation step starts. It is provided by

D̂ = f2(W2 · ( f1(W1 ·y′n +B1))+B2), (5.6)

where D̂ is the predicted depth, f1 represents the activation function for the hidden neu-
rons, and f2 is the linear transfer function for the output neurons.

The training output is then compared with the target output, namely ‘loss’. For ex-
ample, the MSE operation is used to compute the loss (L), given by

L = 1

2N

M∑
i=1

(D̂i −Ti )2, (5.7)

where Ti is the target output, N is the total number of observations and M is the amount
of training output.
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The backward propagation is followed to update the weight and bias, focusing on the
derivative of the loss with respect to the weights and bias. Typically, a gradient descent
(∆wi , j , ∆Bi , j ) works together with the learning rate (α), reflecting the impact of the L on
the weight and bias. It is provided by

∆Wi , j =−α δL

δWi , j

W ′
i , j =Wi , j +∆Wi , j

∆Bi , j =−α δL

δBi , j

B ′
i , j = Bi , j +∆Bi , j

(5.8)

Finally, the global training algorithm will stop, until the algorithm performance meets
the performance conditions set by the designer. After the ANN is trained, designers can
test the performance as well as extracting the key features to evaluate if the training was
successful or not.

The testing stage utilizes a set of testing patterns (V) to test the effectiveness of the
network. It is provided that

T̂ = test(V). (5.9)

In the following subsections, the training and testing stages are described in detail,
which are implemented in MATLAB.

5.4.1. ANN TRAINING
For an ANN training process,the first step is to have sufficient data to build the training
dataset. And, the training set should be composed of representative samples of the ap-
plication. In our design, the dataset is generated from the 1D-TOF LIDAR simulation
model.

As we already define the column vector [y1, y2, ...y256]T as the input of the neural net-
work, sufficient vectors that cover all available input patterns are required. Hence, we
utilize MATLAB to run the optical and statistical simulation by sweeping the parameters
linearly to obtain representative datasheet. At this moment, we assume that the feature
for the internal system is already fixed, and, sweep only the non-adjustable parameters
(see table 4.2). Background noise, target reflectivity and target distance are three exter-
nal parameters that have impact on the output histogram. Based on the value from the
specs (see table 3.2), we prepare the data accordingly. The swept parameters and their
range can be found in table 5.3, in which Step-Train represents the steps when creating
the train set, and Step-Test for creating the test set. It is important to mention that at
every parameter condition, the simulation is repeated for 5 times, in order to cover the
effects from statistical factors.

In this way, we obtain over 300,000 samples to build the training set (D_TR). The
distance value for every sample is recorded accordingly as the target depth (T_TR).

We also create a dataset for the testing in the same way. By applying another distance
sweeping step, which is non-integer multiples of to the step when creating the training
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Parameter Start End Step-Train Step-Test
Ee 0 0.4 W/m2nm 0.05 W/m2nm 0.05 W/m2nm
ρ 8% 60% 1% 1%

dT 0.1 m 0.6 m 0.0025 m 0.01 m

Table 5.3: Range of swept parameters in ANN dataset. At every parameter combination, the simulation is
repeated for 5 times. The adjustable parameters are: TCSPC = 30,000, TDC LSB = 25 ps, Ps = 7.36 mW.

set (see table 5.3). The testing set (D_TE) contains over 90,000 samples, whose distances
are recorded in matrix T_TE.

Next, the proposed ANN is trained by utilizing MATLAB. Its Neural Network Toolbox
calls the feedforwardnet function, in which way an ANN is created [10]. A general setting
of the object properties is shown in table 5.4, in which the training algorithm workflow
is implemented. Other parameters are kept as default.

Property Function/Value Description
net.initFcn initlay Initialization function

net.inputs{1}.processFcns mapminmax Input normalization function
net.outputs{2}.processFcns mapminmax Output de-normalization function

net.layers{1}.transferFcn tansig Hidden layer activation function
net.layers{2}.transferFcn purelin Output layer activation function

net.performFcn mse Loss function
net.trainFcn trainlm Network training function

net.trainParam.epochs 1000 Max. training epoch Ep0

net.trainParam.min_grad 1e-7 Min. gradient ∆0

net.trainParam.max_fail 6 Max. validation check n0

net.trainParam.time Inf Max. running time T0

net.trainParam.goal 0 Min. Loss L0

Table 5.4: MATLAB feedforwardnet property setting.

The function is then called, creating and training the ANN as following codes:

Listing 5.4: ANN training MATLAB code.

1 net = feedforwardnet (8,'trainlm ');
2 [net ,tr] = train(net ,D_TR ,T_TR);

where ‘8’ is the number of neurons in the hidden layer, and ‘trainlm’ is taken as the
backward propagation algorithm to calculate the Jacobian matrix that leads to ∆wi , j ,
∆Bi , j in equation (5.8).

Essentially, the implemented training algorithm will stop, until one of the following
condition happens:

1. training epoch is greater than a set value Ep0;

2. training time is greater than a set value T0;
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3. training loss L is less than a target value L0;

4. updated gradient ∆wi , j , ∆Bi , j is less than a set value ∆w0, ∆B0;

5. the loss L of an individual dataset keeps steady for n0 times (see table 5.4)

At the stop of the training process, it must be ensured that no overfitting has oc-
curred. The MATLAB Neural Network Toolbox allows us to observe the performance of
both the validation and training sets. We can determine whether overfitting occurs by
observing whether their corresponding curves diverge when training process is stopped.
However, in general, overfitting does not occur during this process. Because MATLAB
has a default early stopping function, training is interrupted when overfitting starts to
occur [11].

5.4.2. ANN TESTING
To evaluate the effectiveness of the implemented training algorithm, we use testing set
(D_TE), generated by the parameter sweep in table 5.3, to test the network. The testing
process is coded as:

Listing 5.5: ANN testing MATLAB code.

1 DEPTH = net(D_TE);

where DEPTH is the estimated depth matrix.
We want to know, the performance of the ANN to input histograms that were not

used during training. Considering the way we generate the testing dataset, every possi-
ble pattern at one distance point is created individually. We call all the patterns at one
distance point as a ‘subset’, in which a ‘subset’ contains all possible patterns at that dis-
tance point. To plot out the simulation results, a box-plot is made. At every distance
point, the box contains the distribution of estimated depth values for the whole subset.
The entire box-plot is shown in Fig. 5.7(a).

Distance checkpoint [m] Estimated Depth [m]
0.1 0.1000±0.0016
0.2 0.1999±0.0028
0.3 0.3000±0.0033
0.4 0.4000±0.0029
0.5 0.4998±0.0035
0.6 0.6001±0.0049

Table 5.5: Estimated depth summary using µ± 2σ.

The most important observation from the simulation result is that, the ANN algo-
rithm never fails in estimating the depth. To make the plot readable, we select six groups
in the plot with linear step, and calculate the estimated depth as well as the relative error
of the data in those groups.

The estimated depth is also expressed in the form ofµ± 2σ, as introduced in equation
(5.3). The result can be found in table 5.5.
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Fig. 5.7: ANN testing simulation result. (a) Estimated depth vs. target depth; (b) Estimated error vs. target
error.

The improved box-plot is made as follows. First, every group subtract the group me-
dian, to normalize the center of the box to 0. Next, we create the error boundary accord-
ing to the specs (see table 3.2), and compare the normalized box-plot with respect to the
error boundary (see Fig. 5.7(b)). An obvious result is that the error between the esti-
mated depth and the target depth is within the allowable range as far as the specification
is concerned.

5.4.3. PERFORMANCE EVALUATION

It is essential to mention first that the training dataset plays an crucial role in the al-
gorithm. Indeed, a well-functional neural network requires sufficient training before
putting into testing. One needs to train the network to let it recognize possible data
patterns. Hence, having a training dataset that covers all possible cases is the guarantee
of the success of the ANN.

In our application, once the proposed ANN is well trained, one can obtain the esti-
mated depth D̂e by just feeding the count-vector under test (CvUT) to the network, and
apply forward propagation, once. It can be given that

D̂e = f2(W2 · ( f1(W1 ·CvUT+B1))+B2), (5.10)

where W1, W2, B1 and B2 are the trained weight and bias from the neural network. A
hyperbolic tangent sigmoid function f1, and a linear function f2 are the layer transfer
functions.

As we can also notice, except for a non-linear transfer function f1, all the forward
propagation process only requires additions and multiplications. This makes it possible
to implement a well-trained algorithm into the field-programmable gate array (FPGA).

We also want to compare the performance of the ANN to the other two algorithms
proposed in this chapter. First of all, the subtraction algorithm is not possible to work
alone to identify the peak, which only works for filtering the noise. For the ANN and the
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PD algorithm, we can compare their performance from Fig. 5.7(b) and Fig. 5.4. One
crucial point is that the PD algorithm may fail in 0.4 to 0.6 m distance range, but the
ANN does not. Considering the robustness of the algorithm, the ANN is better than the
PD algorithm.

5.5. DISCUSSION
In this chapter, three algorithms including PD, subtraction and ANN are introduced and
evaluated. The final goal of the algorithm, is to identify the depth from the timestamping
histogram. Based on this goal, we compare the performance of the three algorithms.

The PD algorithm is intuitive, but it does not work well near maximum distance of 0.6
m. And it requires an extra compensation to offset the effects originated from the system
non-linearity. Also, the PD algorithm requires one more step to perform the correction
to compensate the peak shift effect, while the ANN automatically compensates any non-
linearity.

The Subtraction algorithm acts only for filtering the noise, which also needs to work
together with the PD algorithm to accomplish the final goal. The ANN is robust and
accurate in the detection range, and the trained ANN can give valid depth without the
need of noise filtering. Hence, we conclude that the ANN is the most effective algorithm.
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6
SYSTEM IMPLEMENTATION

Mingzhe CHEN

In this chapter, the proposed 1D-TOF system is implemented on an FPGA. The system is
designed in a modular structure. In the following sections, the top-level block diagram is
first introduced, which is then divided into sub-modules that are described in detail. The
characterization results are provided later, which were measured utilizing the integrated-
logic-analyzer (ILA) available in the FPGA.

6.1. INTRODUCTION
In the previous chapters, the 1D-TOF LIDAR system modeling and the TOF processing
algorithms were introduced. In this chapter, the proposed system and the trained ANN
algorithm are decomposed into sub-modules and implemented on an FPGA.

The proposed 1D-TOF system is implemented on a Xilinx Kintex-7 KC705 evaluation
kit that is connected to a printed circuit board (PCB) from Silicon Integrated (SI) B.V. 1,
which contains a SPAD sensor. The system sub-modules control the sensor and perform
the depth estimation task to give the estimated distance.

The trained ANN algorithm is also implemented in the FPGA for real time processing.
It is worth mentioning that the depth estimation algorithm sub-module serves as a stand-
alone and replaceable system component. This means that one can switch to different
algorithms to obtain the depth, just by connecting the ports to a new algorithm sub-
module.

1The PCB board contains a vertical-cavity surface-emitting laser (VCSEL) and Single-photon avalanche diodes
(SPADs). Its pins are designed specially for high-pin-count (HPC) connectors on the KC705 evaluation kit.
Silicon Integrated Co., Ltd: https://www.si-in.com
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6.2. BLOCK DIAGRAM
In chapter 2, a prototype system architecture was introduced. Fig. 6.1 shows a detailed
part of the architecture that is implemented on the FPGA. The SPAD pixel and VCSEL
driver are implemented in the SI prototype PCB. A simplified block diagram is made, in
order to show the connections between the FPGA and the SI prototype board (see Fig.
6.2).
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Fig. 6.1: 1D-TOF system architecture. This diagram was generated with the block design tool of Xilinx Vivado.

The modular architecture contains five input ports, four output ports and six sub-
modules at the top level. The modules can be divided into three types, including clock
distribution, system control and data processing.

One of the main signal input ports is called TDC_STOP. It is the response signal from
the SPAD circuity, which is utilized by the time-to-digital (TDC) module to calculate the
timestamp of a detection. In addition, a 200 MHz system clock and a reset port are in-
cluded in the top level ports. They serve as global clock source and reset function. More-
over, there are other two ports called MODE and LASER_FREQ. Port MODE serves as the
SPAD reset selection. And, port LASER_FREQ selects the laser repetitive frequency, with
5, 10, 15, 20 MHz.

The output ports have three control execution ports and one final depth output. The
control execution ports control the laser and the SPADs. It is important to mention that,
the output port called SPAD_SEL can enable the selected SPAD 2. The SPAD_RST is used

2On the PCB board, there is a SPAD array of 40 × 30 SPADs. The SPAD_SEL port will specify a row, and we can
choose 1 SPAD out of 30 to record its response.
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Fig. 6.2: A simplified block diagram: connections between KC705 FPGA and SI B.V. PCB. The clock module on
FPGA is not presented.

for resetting the SPADs, and the LASER_ON_LVDS is connected to the input of the VCSEL
driver. The final depth output is the final result of the entire on-board system, which is
the estimated depth coded in binary.

The six modules of the top level architecture contain the clock generation, PCB con-
trol and data processing functions. The clock generation module is implemented with
the internal phase lock loop (PLL) of the FPGA, with 200 MHz clock oscillator connected
at the input 3. A 125 MHz and a 250 MHz output is generated by the PLL, corresponding
to the nets CLK_125 and net CLK_250 (see Fig. 6.1). The other five modules are explained
in the following sections.

6.3. VERTICAL-CAVITY SURFACE-EMITTING LASER DRIVER
The vertical-cavity surface-emitting laser (VCSEL) is included on the PCB board from SI
B.V.. The control process of the VCSEL driver is introduced in the following paragraphs.

To drive the VCSEL, a 2 ns low-voltage differential signaling (LVDS) pulse width is
required 4. In the VCSEL driver, a counter works under 125 MHz clock, to approximate
the period under the specified laser repetition frequency. A period conversion can be
found in table 6.1. The effect of the repetitive frequency on the timing of the LASER_ON
signal is shown in Fig 6.3. It is important to mention that the VCSEL repetitive frequency
is different from that in the specs in table 3.2. And, this group of 5 MHz to 20 MHz
repetitive frequency is only used for sub-module validation.

Next, the module generates a half-cycle pulse under 250 MHz clock domain every
required cycle (the second column in table 6.1). The single-ended pulse further requires

3On KC705, the board has a 2.5V LVDS differential 200 MHz oscillator, which is Si Time SiT9102AI-
243N25E200.00000 (200 MHz)

4The value 2 ns is the full-width-half-maximum (FWHM) of the pulse.
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VCSEL repetitive frequency Cycles required under 125 MHz clock Description
5 MHz 25 25 = 125/5

10 MHz 13 13 ≈ 125/10
15 MHz 8 8 ≈ 125/15
20 MHz 6 6 ≈ 125/20

Table 6.1: Period conversion table.

Repetitive frequency

5 MHz
10 MHz
15 MHz
20 MHz

LASER_ON (logic level ‘1’)

25 cycles
13 cycles

8 cycles
6 cycles

Fig. 6.3: VCSEL repetitive frequency selection timing logic. Every logic level ‘1’ represents the moment that the
single-ended LASER_ON signal is activited. And, ‘cycles’ represents the period cycle under 125 MHz clock.

a differential output buffer module (OBUFDS) to convert it into LVDS.

6.4. SINGLE-PHOTON AVALANCHE DIODE CONTROL
The SPAD control module has two major functions, including reset the SPAD before each
detection cycle, and select the desired SPAD from the SPAD array. It works simultane-
ously with the VCSEL driver.

For SPAD reset, the logic table of the reset choice is given in table 6.2. Once MODE is
set as 0, the SPAD will be reset 8 ns before the VCSEL driving pulse is emitted. Otherwise
the SPADs will be passive quenched once it is triggered by a photon [1].

MODE Reset SPAD before VCSEL Description
0 On Default
1 Off -

Table 6.2: SPAD mode logic table.

As for the selection of the SPAD out of the SPAD array, a block diagram of the SPAD
array is shown in Fig. 6.4. It is worth mentioning that, here we utilize a different SPAD
array comparing to the SPAD array mentioned in the specs from table 3.2, due to avail-
ability issues. Also, here we present the connection showing one activated SPAD, which
will futher be connected to one single TDC. To be specific, the SPAD array itself has 40
rows, and there are 30 individual SPADs in each row. The SPAD_SEL can specify a row
entirely to the output SPAD_out0 to SPAD_out29. As we only need 1 SPAD in this case,
a default selection is made, in which the first row is selected, and the middlemost SPAD
output is connected to the TDC.
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... ...

...

...

...

SPAD(0,0) SPAD(0,1) SPAD(0,29)

SPAD(39,0) SPAD(39,1) SPAD(39,29)

ROW_SEL
SPAD_SEL[5:0]

...

...

SPAD_out0 SPAD_out1 SPAD_out29

Fig. 6.4: SPAD array block diagram.

6.4.1. HARDWARE VALIDATION
To check if the control logic can work independently before the data processing sub-
modules are implemented, we perform hardware validation, which includes a validation
with an ILA core and raw signal detection with oscilloscope (see Fig. 6.5). It is impor-
tant to note that the dashed-line modules are not included in the validation, and the
TDC_STOP is connected to a float pin on the FPGA.

SPAD_CTRL

VCSEL_CTRL

VCSEL_DRIVER

SPAD_ARRAY

TDC

HIST_BUILDER

DEPTH
ESTIMATE

SI B.V. PCB

KC705

DEPTH

ILA

Oscilloscope

PC

IBUFDS

LASER_ON_LVDS

SPAD_RST
SPAD_SEL

TDC_STOP

ILA
waveform

Fig. 6.5: Block diagram: SPAD control and VCSEL driver with ILA setup.

VALIDATING OPERATION

An ILA core is added in the design, which can probe the net and record the samples. It is
worth mentioning that the ILA validates the actual FPGA firmware running in the FPGA,
by probing signals under testing, and it is not a simulation study. In our implementa-
tion setup, the LASER_ON_LVDS and SPAD_RST signal are probed by the ILA core. The
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LASER_ON_LVDS signal is converted into the single-ended signal for easy observation.
The ILA core can send the recorded waveform to the personal computer (PC). By ob-
serving the results recorded by the ILA core, we can compare the performance to what
we expect.

VALIDATION RESULTS

In Fig. 6.6, the waveforms for driving the selected SPAD is shown, in which the VC-
SEL_ON signal is the VCSEL trigger and SPAD_RST_DO is the SPAD reset signal. In this
waveform, the SPAD is set as always reset itself before the VCSEL is on.

Fig. 6.6: ILA results screenshot for VCSEL & SPAD control.

We also take advantage of an oscilloscope to measure the SPAD outputs (TDC_STOP).
The validation result is shown in Fig. 6.7. We can observe that the SPAD is triggered, and
its outputs are captured on the screen. In addition, the oscilloscope also accumulates a
histogram, which can be observed in this plot.

Fig. 6.7: Oscilloscope measurement at SPAD output.

6.5. TIME-TO-DIGITAL CONVERTER
The timestamp information of the SPAD output is acquired by the time-to-digital con-
verter (TDC). In this project, one single TDC is implemented on FPGA, connecting the



6.5. TIME-TO-DIGITAL CONVERTER

6

61

single SPAD from the SPAD array to the stop signal, while the start signal is the single
ended LASER_ON signal.

6.5.1. BLOCK DIAGRAM

In general, FPGAs have predefined structures, such as slices, PLLs, block RAMs etc. It is
possible to implement the core component of a TDC, which is a delay chain, utilizing
the carry chain of the FPGA’s slices. In our design, we implement the TDC based on the
carry logic of the KC705 evaluation kit.

The architecture of the TDC is given in Fig. 6.8, which contains four major sub-
modules, including a coarse counter, a fine counter, a latch group and a decoder. The
inputs of the main TDC itself are the start and stop signals, and the outputs contain the
digital code and a valid signal. Additionally, the TDC have extra control signals, such as
reset, clk, etc.

Coarse
Counter

Fine
Counter

Latch
Group

Decoder

TDC_START

TDC_STOP TDC_CODE

VALID

Fig. 6.8: Block diagram of TDC module.

A timing diagram can be found in Fig. 6.9. It is worth mentioning that, in our im-
plementation, the start signal of the TDC is the driver signal of the VCSEL. Hence, the
rising edge of the start signal is the same as the main 125 MHz clock. The stop signal
is connected to the SPAD output, which is considered as an asynchronous input. The
coarse counter calculates T1, which is the integer multiples of one clock cycle. T1 starts
at the rising edge of the start signal, and it ends at the next rising edge of the clock right
after the rising edge of the stop signal. The fine counter records the T3, which is the time
between the rising edge of the stop signal and its next clock’s rising edge. Thus, the time
T2 is then calculated as:

T2 = T1−T3. (6.1)

To be more specific, the coarse counter is implemented as a period counter of the
system clock. And, the fine counter is implemented by the carry chain logic, in which the
delay of the carry logic serves as the least-significant-bit (LSB) of the TDC. In this design,
it is also essential that the delay chain should cover one clock cycle to avoid sparkle-
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Clock
TDC_START
TDC_STOP

T1

T2 T3

Fig. 6.9: TDC timing logic.

code 5. The latch group records the values fine counters every time the TDC is triggered
by a stop signal. And, the recorded values are then proceeded by a decoder to obtain a
corresponding digital code.

6.5.2. CHARACTERIZATION
To characterize the TDC, we perform basic characterization evaluation about the TDC
full scale range and its least-significant-bit (LSB).

TDC FULL SCALE RANGE

The TDC full scale range depends on T1, which is the coarse period counter (see Fig.
6.9). In the design, we set the full scale range is 64 ns, which is exactly 8 cycles of the
clock period 6.

TDC LSB
The TDC LSB is the cell delay in the fine counter, which is the carry-delay of a carry
chain in our design. To measure the LSB of the TDC, we need to further understand
the architecture of the TDC on FPGA. One essential step is to fix the location within the
FPGA available slices of the carry chain of the fine counter, in order to ensure a same
delay between the carry chain cells. Therefore, in the design, we fix the carry chain as a
column, as shown in Fig. 6.10.

Next, we input signals in the start and stop pins of the TDC with 2 ns, 4 ns and 8 ns
difference. And, measure the value recorded by the carry chain. And the fine counter
result T3 is given by

T3 = T1−T2, (6.2)

T3 = NT0, (6.3)

where T0 is the unit delay of the cell, known as LSB in our TDC, and N is the number
of the carry cells it passed in the simulation. It is important to mention that the system
clock period is 8 ns, that the T1 for 2 ns and 4 ns inputs is 8 ns. But an input of T2 = 8 ns
has the same rising edge as the system clock, in which it triggers the setup time violation.
And, it will cause the coarse counter to count one more clock cycle, until the next rising

5It means that an incorrect value is given by the delay chain, in which the digital code does not cover a certain
range of the time.

6The set of 64 ns full scale range is to cover potential circuitry delay.
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Carry chain

Fig. 6.10: Implemented design device mapping of the TDC. The yellow mark shows the first and the last cell of
the carry chain.

edge of the system clock. Thus, the T1 for T2 = 8 ns input is 16 ns. The result of this
experiment is recorded in table 6.3.

Input (T2) [ns] T1 [ns] T3 = T1-T2 [ns] Number of carry cells it passed (N)
2 8 6 328
4 8 4 154
8 16 8 492

Table 6.3: Measured number of delay cells using 2 ns, 4 ns and 8 ns inputs.

To remove the circuit delay or the TDC offset from the LSB estimation, we subtract
each two of them to measure the delay for a carry cell. And, the LSB is 11.5 ps.

6.6. HISTOGRAM BUILDER
The histogram builder (HB) module creates the timestamp histogram that is used as the
input data of the depth estimation algorithm. In the digital approach of this report, its
function is achieved by using random access memory (RAM) on the FPGA as core com-
ponents, which are available in the FPGA.

To group the numeric timestamps, an essential step is to define the range of the bins.
Based on the feature of the TDC, in theory, the bin size should be equal to the TDC LSB,
which is 25 ps. And there are in total 256 bins, which corresponds to the TDC full scale
range. Therefore, whenever a TDC binary code is fed to this HB module, its correspond-
ing bin will perform an accumulation of ‘plus one’. The behavior can be depicted as
follow, in simplified Verilog:
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Listing 6.1: Key ports and behavior description of HB sub-module in Verilog.

...
input [7:0] TDC_CODE ,
output [15:0] Histogram [0:255],
...
Histogram [ TDC_CODE ] = Histogram [ TDC_CODE ] + 1;

In the register-transfer level (RTL), the above mentioned behavior is then achieved
by utilizing the distributed RAM7. The depth of the RAM is 256, so that the TDC digital
code can be used to define the address of the RAM. Once a TDC code is available, the
module will convert the code into an address. Next, it extracts the stored value from the
corresponding RAM address, performs a ‘plus one’ operation, and stores the updated
value back to the same address in the RAM.

6.6.1. HARDWARE VALIDATION
To validate HB module independently, we preload TDC codes in the FPGA memory. And,
we compared the results from this module and the histogram generated by MATLAB, to
examine the effectiveness of this module. A block diagram can be found in Fig. 6.11, in
which the modules with solid lines are implemented for validation.

SPAD_CTRL

VCSEL_CTRL

VCSEL_DRIVER

SPAD_ARRAY

Pre-load
TDC

HIST_BUILDER

DEPTH
ESTIMATE

SI B.V. PCB

KC705

DEPTH

ILA PC

LASER_ON_LVDS

SPAD_RST
SPAD_SEL

TDC_STOP

ILA
waveform

Fig. 6.11: Block diagram: Pre-loaded TDC and histogram builder with ILA setup.

VALIDATING OPERATION (MATLAB)
The way a pre-loaded TDC codes work is the same as a true TDC, but its digital code is al-
ready set to be fixed. We generated two sets of TDC codes in advance, which should pro-
duce the same histogram. One set is created within MATLAB, and another set is stored
in the FPGA configuration file, which effectively acts as a read-only memory (ROM). The
MATLAB histogram is elaborated by calling function hist. It is given by

7The synthesis tool automatically synthesizes the design into distributed RAM using LUT slices on the FPGA.
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Listing 6.2: Histogram generation with specified range in MATLAB.

1 BIN_RANGE = 0: TDC_LSB : TDC_FULL_SCALE_RANGE ;
2 TARGET_HIST = hist(TDC_CODE , BIN_RANGE );

where BIN_RANGE is defined by the TDC LSB and the full scale range of the TDC. The
resulting histogram is recorded as TARGET_HIST.

VALIDATING OPERATION (HARDWARE)

The dataset for RTL is first stored in a ROM. Considering the control logic for VCSEL
driver (see section 6.3), the validation logic is defined as, the HB module will read a data
from the ROM 10 ns after every time of VCSEL-on. The logic can be found in Fig. 6.12.
After all data is read, the final histogram (Hb) is obtained. An ILA screen capture is shown
in Fig. 6.13, in which the bin count 0-6 in the final histogram result (COUNT[0-6][15:0])
is shown.

Fig. 6.12: Pre-load TDC logic screenshot from ILA.

VALIDATION RESULTS

In Fig. 6.14, we evaluate the performance of the HB module. By comparing the two his-
tograms probed by ILA and that generated by MATLAB, we observe that they are exactly
the same.

6.7. DEPTH ESTIMATOR
The goal of the depth estimator (DE) module is, as its name indicates, to perform the
target depth estimation by using the HB output as its input data. From the discussion of
the previous chapter, we summarize that a well-trained ANN has the best performance
for this estimation task. Therefore, the trained ANN is implemented in the depth esti-
mator sub-module. Moreover, to implement a software algorithm, a general topic is to
accommodate the algorithm to the digital signal processor (DSP) algorithm [2]. To have
a higher throughput and lower resource usage, an algorithm that uses fixed-point data is
required. Hence, it is also essential to evaluate the performance between the fixed-point
algorithm and the float-point algorithm.
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Fig. 6.13: Partial final histogram builder results screenshot from ILA.

6.7.1. FIXED-POINT ALGORITHM CONVERSION
To covert the algorithm into fixed-point, it is first essential to identify the float-point data
flow in the algorithm. The float-point trained ANN algorithm is shown in algorithm 3,
in which it only contains the forward propagation part. The weight (W) and bias (B) are
extracted from the trained ANN in section 5.3.

input : Input column vector y = [y1, y2, ...y256]′
output : Estimated depth D̂e

L1_IN = W1 ·y+B1;
L1_OUT = tansig(L1_IN);
L2_IN = W2 ·L1_OUT+B2;
%The resulting L2_IN is for certain not a matrix.
L2_OUT = L2_IN;
D̂e = L2_OUT;

Algorithm 3: Float-point trained ANN forward propagation calculation.

From algorithm 3, three types of data can be found as float-point data, which are W,
B and tansig(L1_IN) 8. It is first needed to convert these three types of data into fixed-
point.

A common binary fixed-point data format is depicted in Fig. 6.15, in which a word-
length including a sign bit, an integer length, a binary point and a fraction length can be
found. To represent binary fixed-point data, we need to know at least the wordlength,
the sign bit, and the fraction length.

8In this ANN algorithm, tansig function is the hidden layer activation function (see table 5.4).
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...

Fig. 6.14: Comparison of ILA resulting histogram and matlab resulting histogram.

S I F
Sign bit Binary point

Integer length

Wordlength

Fraction length 

Fig. 6.15: Common binary fixed-point data format.

Therefore, the conversion formula from a float-point data (D_FL) into a binary fixed-
point data (B_FI) is provided by

Listing 6.3: Fixed point data conversion MATLAB code.

1 D_FI = round(D_FL .*(2^F)); %F is the fraction length .
2 B_FI = dec2bin (D_FI ,W_0);

where D_FI is the fixed-point decimal integer, F is the fraction length, and W_0 is the
wordlength. The function round can let the value be rounded to its nearest integer, and
dec2bin converts the decimal format into binary with the specified digits W_0 [3].

Next, we define the rules for data conversion as:

• the converted data integer length (I) must cover the full range of the data,

• sign bit and fraction length can be 0, if the first rule is not violated,

• if implicit leading zeros exists after the binary point and before the binary repre-
sentation of the stored integer, the fraction length can be greater than the word-
length,

• tansig function is replaced by a look-up-table (LUT),
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• try to minimize the wordlength, while keeping the fraction length the same 9.

Following the rules above, the data are then converted into fixed-point data. The
conversion table is shown in table 6.4. The relative difference for the converted data and
the original data is shown in Fig. 6.16, including W1, W2, B1, B2, and tansig output. It
is worth mentioning that, there is no need to check the input vector y = [y1, y2, ...y256]′,
as its values are pure integers so that the fixed-point data does not lose precision during
conversion.

Bias 1 Bias 2

Weight 1 Weight 2

D
if

fe
re

nc
e

0

-5

-5

0

-5

-5

10-8 10-5

10-5

0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

0
-1

-0.5

0

0

2

4

-2

0.5

1

0.5 1 1.5 2

(a)

Input X range

D
if

fe
re

nc
e

-15 -10 -5 0 5 10 15

-1.5

-1

-0.5

0

0.5

1

1.5
10-5

(b)

Fig. 6.16: Difference between fixed-point data and float-point data. (a) Weight & bias; (b) tansig function.

Data name Sign bit Wordlength Fraction length
y 0 16 0

W1 1 16 23
W2 1 16 14
B1 1 16 13
B2 1 16 17

tansig LUT output 1 16 15

Table 6.4: Fixed-point conversion.

The converted algorithm is then validated in MATLAB, with the same validation data-
set used in section 5.3. It is given that, although the relative error increases compared to
the float-point algorithm result, the calculated relative error is still within the allowable
range (see Fig. 6.17).

6.7.2. BLOCK DIAGRAM
A block diagram is made in Fig. 6.18 to present the architecture of the DE sub-module,
in order to perform the fixed-point algorithm on the FPGA.

9An approach to decrease the memory size for further implementation.
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Fig. 6.17: Estimated error comparison. (a) Float point algorithm; (b) fixed-point algorithm.

MEM1

U_CTRL

U_S1
y[0:255]

U_S2 U_S3
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Depth
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Fig. 6.18: Block diagram of depth estimator module.

RTL abstraction is used to build the sub-modules in Fig. 6.18. It is given that, the
input of the DE module is a vector with 256 elements. And the output ports are esti-
mated depth and valid, in which the signal valid is pulled to digital one when the depth
estimation is ready.

The sub-module U_S1 operates step 1. It reads MEM1, in which W1 and B1 is stored.
U_S2 executes the step 2, to perform a tansig LUT. MEM2 stores the output values of a
tansig function, and its addresses are coded as the corresponding inputs of the function.
And, U_S3 and MEM3 operates the step 3, calculating with W2 and B2. U_CTRL is a
control sub-module, which forces U_S1, U_S2 and U_S3 to work pipelined.

6.7.3. TIMING ANALYSIS

From the fixed-point conversion analysis the block diagram overview, we know that it is
possible to implement the ANN into the FPGA. The process in algorithm 3 shows that,
the calculation contains matrix multiplication and addition, as well as a tansig LUT re-
placement. Therefore, we propose a pipelined timing logic for matrix multiplication and
addition. An important constraint is that the algorithm has to be faster than the frame
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rate.

In general, the algorithm 3 can be divided into three steps. The overall timing be-
havior of the module can be described by the timing diagrams in Fig. 6.19, which corres-
ponds to the three sequential steps in algorithm 3. In total, 267 clock cycles are required
by the DE module to calculate a single depth point.

It is worth mentioning that, considering the hidden layer weight W1 is a 8×256 ma-
trix, we assign each row to one DSP block of the FPGA [4], leading to a self-contained
multiplication and addition. So, it can also be said that one DSP is engaged in the partial
function of a neuron (without the activation function). The nets L1_IN, L1_OUT, Depth
correspond to the L1_IN, L1_OUT, and D̂e in algorithm 3, respectively.

L1_IN(1,1)
L1_IN(2,1)
......

L1_IN(8,1)

+W11,1y1,1 +W11,2y2,1 +W11,256y256,1 +B11,1

+W12,1y1,1 +W12,2y2,1 +W12,256y256,1 +B12,1

+W18,1y1,1 +W18,2y2,1 +W18,256y256,1 +B18,1

257 clock cycles

(a)

L1_OUT(1,1)
L1_OUT(2,1)
......

L1_OUT(8,1)

L1_IN(1,1) rdy LUT

L1_IN(2,1) rdy LUT

L1_IN(8,1) rdy LUT

1 clock cycle

(b)

Depth L1_OUT rdy +W21,1L1_OUT1,1 +W21,2L1_OUT2,1 +W21,8L1_OUT8,1 +B2

9 clock cycles

(c)

Fig. 6.19: Pipelined timing diagram of the proposed algorithm: (a) Step 1: L1_IN = W1 · y + B1; (b) Step 2:
L1_OUT = tansig(L1_IN); (c) Step 3: Depth (D̂e ) = W2 ·L1_OUT+B2.

The algorithm is triggered once per frame, in which a frame is considered as finishing
every 30,000 cycles of the TCSPC. With the fastest VCSEL repetitive frequency 20 MHz
(see table 6.1), the shortest time for one frame is 1.5 ms. Therefore, it is essential to
compare the time for the fastest frame rate and the time to achieve the algorithm. It is
clear that, under a 125 MHz clock, the algorithm needs 2.136µs, which is far shorter than
the frame time.
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6.7.4. HARDWARE VALIDATION
In order to evaluate the performance of the DE module, the hardware validation is per-
formed. A dataset for validation is pre-stored in the FPGA, and the validation dataflow is
verified by reading out intermediate FPGA value with the ILA. A block diagram is given
in Fig. 6.20, in which the ILA probes are connected to the final output DEPTH, and the
internal signals of the DE module.

SPAD_CTRL

VCSEL_CTRL

VCSEL_DRIVER

SPAD_ARRAY

Pre-load
TDC

HIST_BUILDER

DEPTH
ESTIMATE

SI B.V. PCB

KC705

DEPTH

LASER_ON_LVDS

SPAD_RST
SPAD_SEL

TDC_STOP

ILA PC

ILA
waveform

Fig. 6.20: Block diagram: Depth estimator with ILA setup.

VALIDATING OPERATION

The module operates under a clock frequency of 125 MHz. The input histogram comes
from the histogram object generated in the section 6.6. The histogram object Hb is now
utilized as the input of DE module. We also put an ILA core to probe the estimated depth,
and the outputs at each stage in Fig. 6.18.

VALIDATION RESULTS

The probed results can be found in Fig. 6.21, in which the module outputs the final
depth in fixed-point binary code 10 when a valid signal (ALGO_DONE) appears high.
The annotations ‘Step 1’, ‘Step 2’, and ‘Step 3’ correspond to the pipelined timing dia-
gram (a), (b), and (c) in Fig. 6.19. Three enable signals (FORWARD1_EN, TANSIG_EN,
FORWARD2_EN) ensure the sub-modules to work pipelined.

The probed signal L1_IN and signal Depth in Fig. 6.21 represent the signal with
the same name in Fig. 6.19. Here we choose not to probe the result of the tansig LUT
(L1_OUT) 11.

In table 6.5, we list six groups of depth, which are the actual depth ranging from 0.1
m to 0.6 m, the depth estimated by the model in MATLAB and the depth estimated by

10For presentation purposes, this number has been manually converted to hexadecimal in the figure.
11The tansig LUT need 1 clock cycle in the whole pipelining calculation. And, the DE module runs contin-

uously and periodically under our validation settings. It means that the output of the tansig LUT always
remains the same. Therefore, the probed output of tansig LUT from ILA, is always the same.
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Depth & Valid signal Step 1 Step 2 Step 3

Fig. 6.21: Depth estimator workflow screenshot probed by ILA.

the hardware. At every distance point, we run the validation for 10 different patterns,
and the results for estimated depth are shown in µ±2σ12. We can find that, although the
DE module has a higher σ value than MATLAB, the results are still good, which give valid
results and acceptable errors.

Distance checkpoint [m]
Estimated depth [m]

MATLAB DE module
0.1 0.1000±0.0016 0.1000±0.0056
0.2 0.1999±0.0028 0.1978±0.0074
0.3 0.3000±0.0033 0.2979±0.0100
0.4 0.4000±0.0029 0.4016±0.0189
0.5 0.4998±0.0035 0.4966±0.0046
0.6 0.6001±0.0049 0.5967±0.0112

Table 6.5: Depth estimator performance summary table.

6.8. DISCUSSION
In this chapter, the implementation of the proposed 1D-TOF system is described. The
main idea is to produce self-contained sub-modules for the system. So, the modular de-
sign is able to adapt a more complex 1D-TOF system according to a designer’s require-
ments.

In the listed sections, the system is decomposed into sub-modules, which are pre-
sented and validated individually. Each sub-module is designed based on the specifi-
cations in table 3.2. Among them, more space is used to describe the hardware imple-
mentation of the trained ANN algorithm, to ensure a reliable estimation of depth. The

12The estimated depth results for MATLAB are from table 5.5. They are listed for performance comparison.
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results are also compared with the simulation results from MATLAB. Although less accu-
rate than the results from the MATLAB, the DE module still works well to recognize these
patterns and give valid results.
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7
CONCLUSION

7.1. INTRODUCTION
The presented work described the system level design, and hardware implementation of
a 1D-TOF LIDAR system. In this chapter, the achievements of this work are provided.
Also, the recommendations for future works in the field of 1D-TOF LIDAR ranging is
discussed in section 7.3.

7.2. ACHIEVEMENTS
As stated in the beginning, the goal of this work is to develop a 1D-TOF system for dis-
tance ranging, in the context of consumer electronics applications. Based on the goal,
the work was divided into system modeling, algorithm design and hardware implemen-
tation stages. In the following sections, the achievements obtained from each chapter
are provided.

7.2.1. SYSTEM MODELING

In chapter 3, a novel approach of optical modeling of D-TOF LIDAR is proposed. This
approach is aimed to be applicable to any D-TOF LIDAR context and it is not limited to
short distance ranging only. And, it is able to simulate photon timestamp generation, in
order to obtain time-of-flight (TOF) histograms.

This optical model is developed for arbitrary D-TOF LIDAR scenarios. The key idea
of the modeling approach is to use a pixellated target surface and a pseudo-sequential
ray tracing algorithm, to avoid strong assumptions [1, 2]. In the model, the target is di-
vided into sub-elements. And, the pseudo-sequential ray tracing algorithm is utilized in
every sub-element to trace rays between the laser source and the target, and between the
target and the SPAD array. For example, the light reflected back from the target is divided
into point diffuse sources, in which each source is modeled as a standalone perfect light
diffuser.

The photon processing flow follows after the optical model, in which the photons
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from signal and noise follow specific types of probability density functions. The time-
stamps of the photons are then recorded to build a TOF histogram.

This novel approach overcomes the disadvantage that traditional D-TOF LIDAR model
gives inaccurate values at a very close distance, which let the D-TOF optical model be
further refined.

7.2.2. TRADE-OFF ANALYSIS
The approach to evaluate system trade-offs enables us to observe the dependency of
the system parameters and how they impact its performance. The proposed approach
contains three analyses: depth range, depth resolution and failure rate. They serve as
the tools which can visualize the non-linear effects. Moreover, the results from trade-off
analysis can be used to find an optimal parameter set for a 1D-TOF LIDAR system, given
a specific set of requirements.

A major contribution is, that the trade-off analysis provides a methodology about the
non-linearity study in TOF histograms. It gives an intuitive observation on the depen-
dencies, which helps designers to adjust their system parameter selections.

7.2.3. DEPTH ESTIMATION ALGORITHM
The achievement of this chapter is the proposed application of an ANN algorithm in
1D-TOF system. In chapter 5, we present three algorithms, including peak detection,
noise rejection and ANN algorithm. They focus on finding the TOF in the histogram and
filtering the noise. By comparing the performance of each of them, we conclude that the
ANN algorithm appears to be the most effective one to identify the depth. The analysis
in this chapter gives simulation results that meet the design requirements, with respect
to the accuracy and robustness of the algorithm.

7.2.4. HARDWARE IMPLEMENTATION
In chapter 6, the implementation of the proposed 1D-TOF LIDAR system is described.
One contribution is that the system components are designed to be modular blocks,
which can be used for a more complex system without any major changes in future hard-
ware implementations. Also, we examine the performance of every sub-module, to give
an independent validation analysis. We described in detail the trained ANN algorithm,
which gives accurate results after implementation on the FPGA.

7.3. OUTLOOK AND FUTURE WORK
During the development of this work, there were some interesting observations that can
serve as recommendations for the future works. And, they are the followings:

• The optical model can be further improved, in order to model some environmental
conditions such as rain, foggy weather. This is an essential step for an automotive
LIDAR, in which occlusion penetration is the most challenging obstacle.

• In all simulations, the target is assumed as a 0.26×0.2 m2 rectangle. However, we
believe that the shape of the target plays a role in the LIDAR detection. So, we
propose to verify the ANN performance for different target shapes.
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• In Fig. 5.1, the counts are marked in two colors, in which the blue counts are from
noise timestamping and the orange counts are from signal timestamping. Two ef-
fects can be found. First, the noise photons show an exponential shape, but plenty
of spiny protrusions on curves are observed. They might interfere with the signal
peak detection. Moreover, it can be found that there is an overlapped area for both
photons, which could aggravate the peak-shift effect of the system non-linearity.
The ANN was able to perform an accurate depth estimation regardless of these two
effects. However, the development of an analytical model, which includes these
effects, would contribute to gain a deeper understanding of their causes.

From these observations and considerations, we believe that 1D-TOF LIDAR system
is an interesting topic in the future for target ranging. We believe that the neural net-
work estimation methods will become popular in 1D-TOF LIDAR systems. In particular,
we found that the ANN algorithm is a robust and efficient depth estimation method.
However, a question arises that, what will be the final limitation of the neural network
estimation method, the accuracy, the resources utilization, or the network complexity?
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