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ABSTRACT

Relaxing the assumptions about the experimental setup
in Quantum Key Distribution protocols lays the founda-
tion for Device Independent Quantum Key Distribution
(DIQKD). In the finite key regime of DIQKD, the proto-
cols employ the use of only the CHSH inequality, so far. A
natural question therefore arises whether are there other
Bell inequalities that help achieve better results (in terms
of higher rates, greater noise tolerance and lower num-
ber of minimum rounds required for positive rates) than
those achieved using CHSH inequality? For the inequali-
ties considered, we find that CHSH fares the best on ac-
count of noise tolerance. However, considering the other
two parameters of interest we present two bipartite Bell-
inequalities with three outcomes per party that perform
better than CHSH for a certain range of noise involved.






INTRODUCTION

1.1 KEY DISTRIBUTION

Key distribution is an important task in cryptography, as it is quite rel-
evant to the current need of transmitting information over a network
in a secure as well as a correct manner. Usually, the main information
to be communicated is encrypted using a symmetric key cryptosys-
tem. Symmetric key cryptosystems are effective in performing quick
encryption and decryption of large amounts of data. However, these
cryptosystems require a common shared-key to be established among
the two communicating parties. In order to communicate the com-
mon secret key required for this symmetric encryption and decryp-
tion to the concerned remote users, the classical public-key cryptogra-
phy schemes are being used extensively. Also known as asymmetric
key cryptography, public-key cryptography involves each party hav-
ing its private and public key components. The users broadcast their
public keys. A sender encrypts a particular message (which is usu-
ally the secret key for the symmetric key cryptosystem) using the
receiver’s public key. The receiver can decrypt this encrypted mes-
sage using his/her private key. For a detailed survey on public-key
cryptography, we redirect readers to a relevant survey [Necg1].

These public-key cryptosystems are computationally secure. On the
other hand, Quantum Key Distribution (QKD) protocols are the ones
that help achieve the same objective of key distribution, whilst being
information-theoretically secure. It is therefore, worth taking a careful
look at QKD.

1.2 QUANTUM KEY DISTRIBUTION (QKD)

In 1984, Bennett and Brassard developed a protocol that laid the foun-
dation for quantum cryptography [Ben84; BB14]. Known as BB84, this
QKD protocol involves two parties Alice and Bob that wish to com-
municate with each other and establish a secret key. The protocol is
also robust; in the sense that in case of noise or small disturbance by
an eavesdropper Eve, the protocl can still be secure.

Using similar steps as in case of BB84, a new protocol was proposed
by Artur Ekert in 1991 [Ekeg1]. Known as the Eg1 protocol, unlike
BB84, as per this protocol Alice and Bob shared an entangled state
to begin with. With their measurement outcomes being correlated,
they can broadcast the choice of their bases and the corresponding
outcomes for some of the rounds, called the test rounds. This broad-
cast is exercised after performing the measurements to see if they can

In a symmetric key
encryption-
decryption scheme,
the sender encrypts
the message using a
secret key and the
receiver can decrypt
it using the same
secret key.

Information
-theoretic security
implies
unconditional
security, as long as
the laws of physics
hold. And therefore,
it is more supreme
compared to
computational
security, which is
subject to the notion
that a scheme is
secure till the
appropriate
computational
power (to break it) is
not available.
Naturally,
computational
security also
requires the laws of
physics to hold true.



For the BB84
protocol, a noise
tolerance of

QBER =11%is
encountered.
Generally, the noise
tolerance is
measured in terms of
the Quantum Bit
Error Rate (QBER).

It is assumed (even
in case of DIQKD)
that Alice and Bob
each have
appropriately
functioning local,
classical
apparatuses, as well
as trusted random
number generators.
It is also assumed
that they can
communicate over a
public, classical
authenticated
channel. In some of
the DIQKD
protocols, the
settings are assumed
to be independent
and identically
distributed [Pir+o9].
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achieve the expected Bell violation using the correlations. If they can-
not, then they abort that round and start with a new round again;
else they use the remaining data to generate the key.

QKD protocols not only help ensure correct and secure transmission
of information, but they also provide with constructs to cross-check if
information was being intercepted by a third party, Eve, or not. Dur-
ing the transmission of information from one party to another, some
noise in the channel can cause error in transmission. One type of er-
ror induced can be in the form of bit flips of the classical data being
transmitted. Naturally, a suitable error correction scheme is chosen to
correct these erroneous transmissions. An important factor pertaining
to a QKD scheme is that of noise tolerance, which is often quantified
by the Quantum Bit Error rate (QBER). Simply put, QBER quantifies
the amount of bit flips taking place at the time of transmission. In ad-
dition to all of this, it should also be noted that several assumptions
are made in these protocols regarding Alice’s and Bob’s respective
experimental set-up, as well as about Eve’s attacking capabilities. Re-
laxing many of these assumptions lays the foundation for Device In-
dependent Quantum Key Distribution (DIQKD), which is introduced
in context with our project in the following section.

1.3 DEVICE INDEPENDENT QUANTUM KEY DISTRIBUTION (DIQKD)

While using a normal QKD scheme, it could be the case that the de-
vices of the two parties - Alice and Bob - are faulty. It could also be
the case that an unauthorized distributor has distributed deliberately
manipulated device(s) or states among Alice and Bob, so as to be able
to gain information during the key generation phase. It, therefore, be-
comes important to perform analysis by not assuming beforehand the
ideal functioning of the devices of the communicating parties. While
doing so, we must also consider the possibility of Eve possessing all
the computational power available. Performing QKD by setting these
thumb rules gives rise to what we call Device Independent Quantum
Key Distribution (DIQKD).

DIQKD is the branch of QKD protocols wherein there are no assump-
tions made regarding the quantum set-up of the parties Alice and Bob.
At one point in the analysis of the protocols, it is even assumed that,
the eavesdropper, Eve, could prepare and distribute the state shared
by Alice and Bob. This in turn gives greater power to Eve. Surely, a
lot of other assumptions made in case of QKD are also taken into con-
sideration in case of DIQKD. For a detailed introduction to DIQKD,
we refer the readers to section 1 of [Pir+o9]. In Figure 1, we represent
how DIQKD is a niche class of key distribution protocols.

The BHKo5 protocol by Barrett, Hardy and Kent [BHKo5] was the
earliest DIQKD protocol to be proven secure. Following that, several
other variants of secure DIQKD protocols have been put forth [Pir+o9;
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Key Distribution

Quantum Key Distribution

DIQKD

Figure 1: By preferring information-theoretic secutiy over computational se-
curity, the class of key distribution protocols is restricted to QKD
protocols. Further, relaxing the assumptions pertaining to the set-
tings and shared apparatuses of the communicating parties, the
focus is narrowed down from QKD to DIQKD protocols.

Dha+11; MPA11; VV14]. In fact, in [Pir+o9], the key rate analysis per-
formed has been shown to have a noise tolerance of 7.1% (not too
distant from the noise tolerance of 11%, achieved for BB84 protocol).

All these protocols and their corresponding analyses have been per-
formed in a theoretically-oriented asymptotic key regime. In the asymp-
totic key regime, one assumes an infinite number of rounds for key
generation. A realistic setting should take into account the finite key
regime, which involves large, but a finite number of rounds for key
generation. Before delving into DIQKD in the finite regime, let us first
have a look at DIQKD in the asymptotic key regime.

1.4 DIQKD IN THE ASYMPTOTIC KEY REGIME

Throughout this section and the following one as well, we shall present
the entire framework with respect to the famous CHSH inequality
[Cla+69]. It is a bipartite two-input two-output inequality. The gen-
eral form of this inequality is given as:

<AoBo>+<A081>+<A1Bo>—<A]B]> <2 (1)

We will denote the expression in the above inequality by IcsH. Now,
the full correlations in IcHsH can be expressed as follows:

(AoBo) =Pp(Ao =Bo) —p(Ao # Bo);
(AoB1) =p(Ao =B1) —p(Ao # B1); )
(A1Bo) = p(A1 = Bo) —p(A1 # Bo);
(A1B1) =p(A1 #By) —p(A =By)

5
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For a DIQKD protocol based on the CHSH inequality, we consider
that Alice has two choices of measurements, represented by observ-
ables Ap, A7 and Bob has three measurement choices, represented by
observables By, B, B,. With the extra observable, B;, that Bob has,
he can fix that measurement to be such that it helps ensure as high
correlation between his and Alice’s outcomes as possible.

The overall protocol is composed of a few test rounds followed by the
actual key generation rounds. During the test rounds, Alice and Bob
make use of the aforementioned observables, namely Ay, Ay, Bo, By,
to test if they achieve the appropriate violation for the inequality or
not. However, during the key generation rounds, they use one spe-
cific measurement operator each, Ap and B, respectively. Also, for n
total number of rounds, we denote the fraction of test rounds by y
throughout this report. As such, the entire DIQKD protocol based on
the CHSH inequality, can be jotted using the following steps:

¢ Alice and Bob share a bipartite state and they can choose to
apply one of the measurements out of their respective set of
measurements.

* First, an approach similar to the approach in the QKD protocol
of Eg1 [Ekeg1] is used to check whether, for the measurements
chosen by Alice and Bob, is the chosen Bell inequality violated
or not.

® In case of the occurrence of violation, (we shall denote the vio-
lation value by g), the post-processing is performed. This post-
processing comprises of the error correction phase, parameter
estimation phase and the privacy amplification phase.

* The error correction phase involves communication of classi-
cal information from Alice to Bob regarding the outcome ob-
tained. The need for high correlation among Alice’s and Bob’s
outcomes during this phase is due to the fact that for higher
correlation, lesser and lesser classical information will have to
be communicated across and this will ensure that lesser infor-
mation gets leaked to the adversary Eve.

¢ The parameter estimation step allows Alice and Bob to deter-
mine the QBER and the violation value g. A detailed definition
of this step can be found in [AFRV16].

* The final step of privacy amplification is the one wherein a pri-
vacy amplification protocol (such as universal hashing) is used
to generate the keys of length 1 on Alice and Bob’s respective
ends. The length 1 of the keys generated is lesser in value than
the total number of rounds n. These keys that are generated,
are almost-ideal. Ideal keys are perfectly random strings that
are uncorrelated with Eve’s knowledge.

For the different DIQKD protocols, if 1 is the length of the key gener-
ated at the end of privacy amplification step, and n is the number of
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rounds in the finite key scenario, then the key rate can be expressed
as:

1
te = —.
rate o (3)

As such, the key rate is the effective amount of information communi-
cated per round of the protocol between Alice and Bob. In the context
of key distribution, the effective information concerns the amount
of information pertaining to the key that is to be generated. In the
asymptotic key regime, this key rate is given by [Reno8]:

rate > H(A | E) — EC. (4)

In the above equation, the conditional entropy H(A | E) quantifies
Eve’s knowledge of Alice’s measurement outcomes. As mentioned
earlier, we consider that g denotes the value of the CHSH expression
(Equation 1). Our goal then, is to express this conditional entropy
in terms of the violation g. Now, one guaranteed way of expressing
H(A | E) as a function of g is by using the following bound:

H(A | E) = Hmin(A | E) = _1092(pguess)~ (5)

In the above equation, pguess denotes Eve’s guessing probability. As
shown in [Dha+11; MPA11], Eve’s guessing probability can be ex-
pressed as max{p(Ao = 0)}. It is basically, optimized over all the prob-
ability distributions that lead to the observed violation. This means
that computing pguess can be reduced to the computation of the max-
imum probability of Alice getting an outcome a = 0 or a = 1 for a
fixed input x. This computation can be performed by solving a Semi-
Definite Programming (SDP) problem. SDP problems are analogous
to linear programming (LP) problems, in the sense that the linear
variables and constants in an LP problem are now replaced by vari-
ables and constants in form of matrices. Also, the non-negativity con-
straint on variables in an LP problem is now replaced by the positive
semi-definite constraint on the matrices. This constraint states, that
the variable matrices ought to be >~ 0 (i.e. they need to be positive
semi-definite). The SDP problem to compute Eve’s guessing probabil-
ity is given as:

maximize p(Ay =0)
subject to IcHsn = g; ©)
and p(Ap = 0) and probability distribution in

Ichsh satisfy NPAHierarchy constraints.

This SDP problem can be solved using the NPAHierarchy script of
the QETLAB package [Joho3]. The NPA Hierarchy constraints [NPA08]
specify the constraints that should be satisfied by a superset of the
set of probabilities generated by quantum mechanical systems. This
hierarchy has levels starting from 1. With an increase in the level
number, the scope of the superset decreases and the reduced set ap-
proaches the truly quantum set of probability distributions. Now, hav-
ing solved the SDP problem for the CHSH inequality scenario, the

Here, Hin (A | E)
stands for the
min-entropy and
Pguess denotes
Eve’s guessing
probability. A
description of
min-entropy can be
found in chapter 3 of
[Reno8].

A positive
semi-definite matrix
is the one which has
only non-negative
eigenvalues.

It should be noted
that the quantum set
of probability
distributions cannot
be specified by any
level of the NPA
Hierarchy. However,
for higher levels of
the hierarchy, the set
of probability
distributions under
consideration is very
close to the truly
quantum set.



h in Equation 10
denotes the binary
Shannon entropy.
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analytic expression for pguess, which has already been derived in
[Dha+11; MPA11; Pir+10], is given by:

14+4/2—- &

< —.
Pguess & 3 (7)

The second term (i.e. EC) in the expression for the bound on the key
rate (Equation 4) quantifies the amount of information given away
in the form of error correction. For a depolarising noise model, the
bipartite state, p, shared by Alice and Bob is given by the following
Werner state:

p=v-lo ) oT+(1-v) (8)

I
T
Note that, the state [¢pT) in in the above equation is the maximally
entangled two-qubit state % - (100) 4 [11)). Well-known as one of the
four Bell pair states, this state helps achieve the maximum quantum
violation of 2v/2 for the CHSH expression (Icysy in Equation 1).
Also, the variable v in Equation 8 denotes the visibility of this maxi-
mally entangled state in its mixture with the maximally mixed state.

Now, the error correction term can be expressed as a function of
the visibility v. Assuming that the error correction information is
passed from Alice to Bob, the minimum leakage error correction term
is equal to:

EC = H(A | B); (9)

This conditional entropy takes into account the probability Alice and
Bob getting equal outcomes (i.e. either both get Os or both get 1s),
and the probability that Alice and Bob get opposite outcomes. As
mentioned earlier, QBER quantifies the number of bit flips. Therefore,
we can state that, QBER = p(a # b). Thus, the error correction term
(Equation 9) can be further elaborated as:

H(A |B) = —p(a =b)-log2 pla =b) —p(a # b) -logz p(a # b);
— H(A|B) = h(QBER).
(10)

(1-v)

For the state p defined in Equation 8, QBER = ~——. Thus, from
Equation 10 we can say that the value of error correction term is

given by h(]%") So now, the bound on the rate defined using the
min-entropy can be stated as:

)

2

= rate > 1 —1092(1 +\/2—£f> —h(PTV).

In [Dha+11; MPA11], the bound described in the above equation is
used to study the key rates resulting from the application of the

rate > —logy (

(11)
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CHSH inequality in the asymptotic key regime. A noise tolerance (in
terms of QBER) that is slightly over 5.2% is encountered. The same
computational approach is used to see the implications of the use of
the Chained inequality [BCgo] with three inputs for DIQKD in the
asymptotic regime. It turns out that the protocol based on the CHSH
inequality performs slightly better than the Chained inequality, with
the Chained inequality achieving a noise tolerance of: QBER ~ 5%.

Now, it must be noted that the min-entropy is not a tight bound on
H(A | E). When it comes to the CHSH inequality, in [Pir+o9], the au-
thors have found the von Neumann entropy to bound H(A | E). The

resultant expression for the key rate is given by: Recall that, g stands
for the quantum
14+ (%)2 -1 violation value; and
rate > 1— h(f) —h(QBER). (12)  here,

QBER = 1Y) jf
With the use of this tight von Neumann entropy bound to define the ;’;Z’;‘gi: is as
key rate, the overall rate value and the noise tolerance (of 7.1%) turns Equation 8.

out to be better than the rate and noise tolerance encountered in case

of using CHSH inequality with the min-entropy bound (as given by

Equation 11). The rate curves in Figure 2 show that in case of CHSH

inequality, indeed, the von Neumann entropy leads to considerably

higher rates.

| ——— CHSH min-entropy

091 —— CHSH von

Neumann entropy

08r

0.7

06

0.5

rate

0.4

0.3

0.2F

01r

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
QBER

Figure 2: Key rate versus QBER plots for CHSH inequality in the asymptotic
regime, with the respective rate curves bounded by min-entropy
(Equation 11) and von Neumann entropy (Equation 12).

1.5 DIQKD IN THE FINITE KEY REGIME

Analysis of DIQKD in a robust and truly device independent sense
(as established in [AFRV16]) has been possible only recently, by us-
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The minimum
number of rounds
required for CHSH
using min-entropy
turn out to be
significantly higher
than the ones
encountered while
using CHSH and
the von Neumann
entropy.
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ing the Entropy Accumulation Theorem [DFR16]. All the analyses
proposed prior to this analysis makes one important assumption that
the bits in the string for the key are independent and identically dis-
tributed (i.i.d.). This implies that, the measurements made by Alice
and Bob remain the same over all the rounds. It also narrows down
Eve’s attacks from the general one to collective attacks. Collective at-
tacks involve the same kind of attack being performed by Eve on both,
Alice and Bob’s respective systems. However, the analysis using the
Entropy Accumulation Theorem relaxes even this assumption of in-
dependent and identically distributed keys. Using the approach from
[AFRV16], the rate in Equation 3 can be expressed as:

rate > f[n] —leak—i—(‘)(\%) —. (13)
Owing to the fact that n would be large, the third term in the above
equation (which is of the order of %) is not significant enough. The
second term (i.e. leak) quantifies the amount of information given
away during the error correction phase. If v denotes the fraction of
test rounds out of the total number of rounds n for the finite regime,
then leak is a function of the visibility v as well as of vy.

The first term in the bound on the rate curve, as specified in Equa-
tion 13, is a function of the entropy term m. In case of use of the
min-entropy, 1 is equal to the min-entropy; and in case of use of von
Neumann entropy, n is equal to the von Neumann entropy. Since,
for CHSH inequality, a tight bound on the von Neumann entropy
H(A | E) is known, the focus is only on von Neumann entropy to
define 1. In this way, the key rate has been defined for the finite
regime. This approach has been first introduced and used to define
the key rate in the finite regime in [AFRV16]. It is important to note
that throughout our work, we will be focusing on the use of the orig-
inal Entropy Accumulation Theorem as put forth in the main text of
[AFRV16]. Later on, the authors have proposed a modified entropy
accumulation theorem that reduces the requirement of number of
rounds n by an offset value. It is, however, intuitive that the overall
rate curves for different parameters in the finite regime will have sim-
ilar trends when compared with each other, irrespective of whether
the modification in the entropy accumulation theorem is taken into
account or not.

Now, so far, only the use of the CHSH inequality in the finite regime
has been considered. Figure 3 shows the rate curves obtained by us-
ing CHSH and its associated von Neumann entropy. These curves are
for fixed values of QBER, and the proportion of test round (denoted
by ) is also fixed to be 0.5%.

In order to be able to generate key for QBER ranging from 6% up
to 7.1%, for the same value of y (i.e. 7.1%), the minimum number of
rounds required will have to be even higher that the ones shown in
Figure 3. And even the minimum number of required rounds show-
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Figure 3: Key rate versus number of rounds for CHSH inequality in the
finite regime, with rate curve given by Equation 13. The fraction
of test rounds, (y), is 0.5% and QBER are fixed for the different
curves.

cased is too large to be implemented practically. It, therefore, becomes
a good motivation to find ways to reduce this requirement of mini-
mum number of rounds, especially for greater values of noise. One
way of achieving this could potentially be in lines with one of the
open questions discussed in [AFRV16]; namely, of using a Bell in-
equality other than CHSH inequality and studying the implications
arising in the finite regime. In the following section we specify the
problem statement for the project and elaborate a bit on a few param-
eters that need explicit specification.

1.6 PROBLEM STATEMENT AND DESCRIPTION OF PARAMETERS
OF INTEREST

Problem statement: The main objective of the project is to employ the
use of Bell inequalities other than CHSH inequality in the finite key
regime, and consequently, study the implications on the three param-
eters of interest.

So what are our parameters of interest? While it may already be evi-
dent from the previous section; nevertheless, we give a quick descrip-
tion regarding each of those below:

* Rates achievable: These correspond to the value of key rates at
a particular instance. This means that we are interested in study-
ing the rates achievable at a fixed value of noise, and number of
rounds n. It is intuitive that we would want this parameter to
be as high as possible.

11
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¢ Noise tolerance: Here we take noise tolerance to be a function

of the visibility (v) of the implementation with respect to the
perfect case. This perfect case is characterized by the depolariz-
ing noise model and the bipartite state that maximally violates
the Bell inequality under consideration. In case of depolarizing
noise model, and Bell inequalities with two-outcomes per party
(meaning scenario with the state specified in Equation 8), the
noise tolerance is expressed in the form of the Quantum Bit Er-

ror Rate (QBER), which is of the form ( ;V) in such a scenario.
For other Bell inequalities, we compare noise tolerance in terms
of the least value of visibility (v) that can be tolerated while still
being able to generate some key. Naturally, it is desired to have
as much noise tolerance as possible (meaning, as low a value
of v that can be considered while still producing some positive
key rate).

Minimum number of rounds required: This parameter is very
important when it comes to realizing and implementing finite
key regime protocols practically. As the name suggests, it is the
least number of rounds that are required to generate some pos-
itive key rates. For a particular scenario, we would want this
parameter to have as low a value as possible, especially when
the visibility of the state in use is quite low. This is because, low
visibility would characterize a scenario with greater, and there-
fore, more realistic value of noise that is encountered and dealt
with in experiments.

To conclude this chapter, we now proceed to give an overview of the
organization of the chapters that follow.

1.7 ORGANIZATION OF CHAPTERS

¢ Chapter 2: This, along with Chapter 3 deals entirely with only

the two-outcome Bell inequalities that are maximally violated
by the maximally entangled qubit state. All such kinds of in-
equalities that we apply and study in the framework of DIQKD
are first introduced and studied in detail in this chapter. More
specifically, the derivations of their quantum bounds are pre-
sented.

¢ Chapter 3:

- Having laid the base for the inequalities in question, we go
on to specify the set-up conditions to ensure an optimal er-
ror correction term and lay a foundation to derive generic
bound on the von Neumann entropy:.

— It turns out that, the tightness of the bound we derive de-
pends on how high the value of the ratio of the quantum
bound to the classical bound of the inequality is. From the
inequalities being considered, the highest value for this ra-
tio is v/2, occurring for CHSH inequality.
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— For some of the remaining inequalities, this bound on the
von Neumann entropy does offer some improvement over
the respective min-entropy bound for a low noise regime.
Consequently, none of the inequalities from among the
groups considered, is able to achieve even equal, let alone
better results than CHSH in the finite key regime.

* Chapter 4: This chapter explores the use of tilted inequalities,
introduced in [AMP12; BP15], to perform DIQKD. These in-
equalities are maximally entangled by non-maximally entan-
gled states and have been conjectured to lead to DIQKD with
almost separable states [AMP12].

— The main highlight of this chapter is the derivation of the
error correction term. The amount of information sent dur-
ing the error correction phase is high for the tilted inequal-
ities. This results in some sort of an extra penalty to the
key rate. Therefore, in the almost-separable state scenario,
when the rates are expected to be optimal for tilted inequal-
ities [AMP12], such results are not obtained due to a high
penalty from the error correction term.

— In comparison to the use of CHSH inequality, the use of
tilted inequalities does not offer any advantage in terms
of better rates, higher noise tolerance or a requirement of
lesser number of rounds.

e Chapter 5: In case of standard QKD it is advantageous to up-
grade from a two-outcome to a multiple-outcome Bell inequal-
ity scenario, in order to obtain better noise tolerance and key
rates [SS10]. To see if this holds true for DIQKD as well, or
not, we take into account two different Bell inequalities, namely:
CGLMP-3, and tailored-CGLMP-3.

- For near-pure, bipartite, entangled qutrit state, the rates
achievable using CGLMP-3 are better than the rates achieved
by using CHSH inequality and considering the state to be
of the form mentioned in Equation 8 for lower proportion
of test rounds. Also, in such low noise scenarios, the rates
achieved using the tailored-CGLMP-3 inequality turn out
to be better than the rates achieved using CHSH or even
CGLMP-3 inequality while considering smaller n.

- Noise tolerance is a parameter for which these three-outcome
inequalities cannot outperform CHSH inequality.

— Within the bracket of tolerable noise and for lower pro-
portion of test rounds , the minimum number of rounds
required by CGLMP-3 inequality are lesser than the mini-
mum number of rounds required by CHSH inequality. For
a low noise scenario, the minimum number of rounds re-
quired by tailored-CGLMP-3 inequality are the least among
all of these inequalities.
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— For relatively higher noise regime, after optimizing over all
possible values of the fraction of test rounds y, CHSH in-
equality outperforms even these multiple-outcome inequal-
ities on account of all three parameters of interest (i.e. rate,
noise tolerance and minimum number of rounds required).

¢ Chapter 6: Offers a summary of the results and gives a brief
overview of an inequality that is an extension of CHSH in-
equality in a three-inputs, three-outcomes setting, per party. The
chapter ends with a couple open questions.



INEQUALITIES MAXIMALLY VIOLATED BY
MAXIMALLY ENTANGLED STATE

Based on the CHSH inequality [Cla+69], we introduce different fami-
lies of inequalities in each section. Each of these bipartite inequalities
has two outcomes per party. Additionally, these inequalities are full
correlation inequalities, meaning that their expressions bear no single
marginals of the form (A) or (By). In fact, the terms in the expres-
sions of these inequalities are of the form (A, B, ). As we will show, all
these inequalities are maximally violated by the maximally entangled
state. Next, the maximum quantum bound for each of these families
are established and proved. Additionally, relations between the cor-
relators (A By) at the occurrence of quantum bound are put forth.
This shall help in determining a set of optimal measurements in the
following chapter. The results from this chapter shall help in apply-
ing the inequality expressions, thus defined, as information theoretic
resources in the asymptotic and finite key regimes of DIQKD.

One important construct that shall be used throughout this chapter is
the theory of Semi-Definite Programming (SDP). Indeed, we will use
SDP to compute the quantum bound for inequality expressions. This
approach has been proposed in [Cir8o; Weho6]. As per the approach,
the primal problem is defined for the inequality under consideration.
Moreover, for every primal problem we can define a dual problem
such that the value of the objective function of the dual problem is
always greater than or equal to the value of the objective function of
the primal problem. Both these problems are solved to see if the cor-
responding optimal solutions of the primal and dual problem satisfy
the strong duality conditions or not. The duality condition, arising
from the construction of dual problem, requires all the feasible solu-
tions of the dual problem to be greater than or equal to the quantum
bound of the inequality. It also requires all the feasible solutions of
the primal problem to be lesser than or equal to the quantum bound.
The strong duality condition, on the other hand, implies that the op-
timal solutions of the primal and dual problems are equal. This opti-
mal value is in fact, the exact quantum bound for the Bell inequality
under consideration. Below, in Equation 14 and Equation 15, we men-
tion the primal and dual problems, introduced in [Weho6], to prove
the quantum bound on the expression for CHSH inequality, which
is a full correlation inequality. It has been shown that the quantum
bound of a full correlation inequality can be computed by solving the
following problems:

15

In order to compute
the precise value of
the quantum bound,
it is necessary for
the strong duality
condition to hold.
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Primal SDP problem: Dual SDP problem:
maximize 1. Trl(GW)] minimize Tr[diag(A)]
2 1
subject to G > 0; & Gy = 1V i. | subject to — - - W diag(A) = 0.

(14) (15)
The matrix W corresponding to CHSH inequality is given by:

0 0 1T 1
W= 0 0 1 1 (16)
T 1 0 0
1T =10 0
Recall from It is important to note how the non-zero elements of the matrix W

Equation 1 that the correspond to the coefficients of the correlators in the expression of

expression for the : .
CHSH inequality is: the CHSH inequality.

(AoBo) +
(AoB1) + The variable in the primal problem is the 4 x 4 positive semi-definite

(A1Bo) — (A1By). matrix G; and for the dual problem, the variable is the vector A with
four components. Naturally, diag(A) implies a diagonal matrix with
the elements of the vector A along the diagonal. Now, consider matrix
G to comprise of scalar products of four real, unit vectors x1, X2, yi
and y,. More specifically, let G be:

X1 X1 X2-X1 Y1-X1 Yz-Xg
X1:X2 X2:X2 Y1-X2 Yz2-X2
X1-Y1 X2-Y1 Yi1-Yyr Yz2-y1
X1-Y2 X2-Yz2 Yi1-Yz2 Yz2-y2
Now, Tsirelson’s theorem states that the full correlations in a Bell
inequality can be expressed in the form of scalar products of real val-

ued unit vectors [Cir8o; Weho6]. The full correlations from the CHSH
inequality map to the following scalar products from the matrix G:

G= (17)

(AoBo) =x1-y1; (AoB1) =x1-y2;
(A1Bo) =x2-y1; (A1B1) =x2-y2.
Then, it is intuitive that with the suitably picked elements in matrix

W, the objective function of the primal problem indeed maps to the
expression for the CHSH inequality.

(18)

On solving the primal and dual problems in Equation 14 and Equa-
tion 15, it can be seen that the conditions of duality as well as strong
duality are satisfied. The common optimal value is equal to 2v/2,
which is indeed the quantum bound of CHSH inequality. At this
point, the value of the variables G and A are as follows:

1 1
0 5 5
o 1 L -1 1
G: 1 1 ﬁ \/z ; }\:ﬁ(]l]/1/]) (19)
sz o0
e
V2 V2



2.1 « — CHSH INEQUALITIES

As an additional remark, it can be noted that when the strong duality
condition is met, the following relation holds true:

N

Al =

.ZGij Wi Vi=1to4. (20)

j=1

N —

For the Bell inequalities that we will be considering in this chapter,
we use the same approach of formulating and solving the SDP prob-
lems to compute the quantum bounds of their expressions.

Table 1 gives an overview of results from this chapter. The deriva-
tion of expressions for maximum quantum violation and the choice
of domain for the parameters for a particular family of inequality
expressions can be found in the respective section.

Table 1: Overview of results from Chapter 2

17

Section | Family of expressions | Quantum Bound | Domain of parameters
Section 2.1 oo — CHSH \/w o= %
Section 2.2 of — CHSH (o) /L8P | >0, p >0, 1%l <2
Section 2.3 x — MagicSquare (x+5) x>0
Section 2.4 | «? —MagicSquare 2-(x+2) o> %
Section 2.5 | &« —MagicSquare 3-(oc+1) x> %

21 o — CHSH INEQUALITIES

The main aim of this section is to prove the following claim:

Claim: For o« > %, the maximum value achievable by expressions
of the « — CHSH inequalities, using quantum correlations, is given
by,

(c+1)3
—

Sa = (21)

2.1.1  Definition of inequality
In this subsection, we introduce a family of inequalities that we term
o — CHSH. The inequalities belonging to this group are of the form:

Io = - (AoBo) + (AoB1) + (A1Bo) — (A1B1) < 1 —a +2. (22)

The expression for the inequality in Equation 22 resembles the expres-
sion for CHSH inequality, the only difference being the coefficient for
the correlator (AgBy). In order to restrict the analyses to only non-
trivial scenarios for the expression in Equation 22, for now, we en-
force that « > 0. By non-trivial scenarios we mean scenarios wherein
quantum violations are encountered. We shall see later in subsection

Note: Substituting
a=1in

Equation 22 gives
rise to the expression
for CHSH
inequality (as seen
in Equation 1).

For o« <0, the
resultant expression
leads to a trivial
scenario, meaning
that a classical
strategy will be able
to achieve the
maximum possible
value. In other
words, it will be an
inequality with no
quantum violation.
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Section 2.1.2, the minimum value of «, for which the inequality is not
trivial, is strictly larger than 0.

As already seen in case of CHSH inequality in Equation 18, we once
again introduce four real unit vectors x1, x2, y1 and y, such that we
can establish a relation between the full correlations of the x—CHSH
inequality and scalar products of these unit vectors. As per this rela-
tion, the correlators can be expressed in form of the following scalar
products:

(AoBo) =x1-y1; (AoB1) =x1-y2;

(A1Bo) =x2-y1; (A1B1) =x2-Y>.
We will require the above equation in determining the bound on «
and computing values of the correlators when the quantum upper
bound is reached by the inequality expression. In the following sub-
section, we derive the quantum bound of the o« — CHSH expression.

This quantum bound is the maximum value for the x — CHSH expres-
sion that can be attained by quantum correlations.

(23)

2.1.2 Derivation of quantum bound

The optimal solutions of the primal and dual problems specified in
[Weho6] can be used to find the desired expression for the quantum
bound of an &« — CHSH inequality. The dual problem, which is a Semi-
Definite Programming (SDP) problem is given by:

minimize Tr(diag(A))
(24)

1
subject to — §W+ diag(A) = 0.

Here, diag(A) is a diagonal matrix with the elements of the vector
The top-right and A = (A1,A2,A3,A4) along the diagonal. For the scenario of « — CHSH

bottom-left 2 x 2 inequalities, we take the matrix W to be:
submatrices of the

matrix W make up 0 0 o 1
the coefficients of the
correlators on W = 0 0 1T —1 (25)
o — CHSH « 1 0 0
inequality. 1 10 0

The optimal value for the dual problem is attained when at least one
of the non-negative eigenvalues of —%W + diag(W) is 0. This condi-
tion is satisfied by making the following choices for the elements of

(26)

Since the quantum bound for o« — CHSH inequality is, S« = Tr(diag(A)),
and from Equation 26 we have that:

4

a+1)3

Sa < Z] Ay = ((x) (27)
1=
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Now, we make use of the primal problem mentioned in [Weho6],
which is given by:

1
imize = -Tr(GW
maximize > T( ) (28)

st. G=0; and Gy =1 Vi

Here, W is taken same as in Equation 25 and G is the Gram matrix
given by:

X1 X1 X2-X1 Yi1-X1 Yz2-X1

G = X1-X2 X2:X2 Y1-X2 Yz2-X2 (29)
X1-Y1 X2-Yi Yi-yr yYz2-y1
X1-Y2 X2-Y2 Y1-Yy2 yYz2-y2

Due to the definition of the vectors x1, x2, Y1 and y,, the diagonal
elements of G are all equal to 1. Furthermore, if we set:

(ax+1)

X1-Y2 =X2-Y1 = —X2-Y2 = 4o ;
B (x+1) (x+1)y3, (30)

x1-y1—3( 4o )_4< 4 )’

(x—1T)

X1 X2 =Y1 Y2 = 2o ’

then the matrix G is a Gram matrix that not only satisfies the con-
straints of the primal problem but for the values defined in Equa-
tion 30, the objective function of the primal problem even results in
the optimal solution that satisfies the following relation:

Sac> 1 -Tr(Gw) = T 61
2 fod
Clearly, the feasible points leading to optimal primal and dual so-
lutions, satisfy both - the duality and the strong duality conditions.
The optimal solutions for the primal and dual problems are equal (as
can be seen from Equation 27 and Equation 31). Thus, the quantum
(+1)3

bound for the expression of x—CHSH inequalities is Sy = ~

Now, the value of the correlators in the inequality expression ranges
from —1 to 1. Consequently, the values of the scalar products x; -y,
X1-Y2, X2 -y1 and x; -y (as defined in Equation 23) must also range
from —1 to 1. Taking this into consideration and from Equation 30,
and the assumption that & > 0, we have that:

(oc+1)<1.

4o 1 (32)
> .

— >3

Thus, for the constraint on «, specified by the above equation, the

maximum value achievable by the expression of x—CHSH inequality
(a+1)3

using quantum correlations is S = ~

19

Unit vectors
X1,X2,y1andy;
have been defined in
Section 2.1.1.

Also, the relation
between the
variables \, G and
the constant matrix
W at optimality
satisfy the relation
defined in

Equation 20.

Fixing the range of
[—1,1] for just
X1-Y1
automatically
ensures, that all
other scalar products
follow this rule.



20 INEQUALITIES MAXIMALLY VIOLATED BY MAXIMALLY ENTANGLED STATE

Furthermore, the relation between the correlators (ABy) at the quan-
tum bound is given by the relation between the scalar products in
Equation 30. Recall Equation 23, which gives the relations between
the correlators and the scalar products. In Section 3.2.2 we will de-
scribe an optimum quantum strategy in terms of the operators, namely,
Ap, A1, Bo, B;.

Interestingly, for 0 < a < 3, the classical value and the quantum
value of an « — CHSH inequality expression are equal, and so no
quantum advantage is witnessed in that case.

22 off — CHSH INEQUALITIES

Let us now move on to the next group of inequalities and prove the
following claim:

Claim: For o« > 0, > 0 and l“gﬁﬁl < 2, the maximum value achiev-
able by expressions of the «f3 — CHSH inequalities, using quantum
correlations is given by,

Sap = (x+B)- “Z;m (33)

2.2.1 Definition of inequality
Note: Substituting
x=p=1in In this subsection, we introduce a family of inequalities that we term

Equation 34 gives o — CHSH. The inequalities belonging to this group are of the form:
rise to the expression
for CHSH

i Lity.
Substitutﬁ??;% lop = - (AoBo) + B - (AoB1) + (A1Bo) — (A1B1) < la—B[+2. (34)

in Equation 34 gives . . . . .
rise to the expression Expression I4p resembles the expression for CHSH inequality (i.e.

for « — CHSH Ichsh in Equation 1), the only difference being the coefficients for the
inequality, given by correlators (AoBo) and (AoB1). As we did for a—CHSH inequalities,
Equation 22. i order to consider only the non-trivial possibilities of the inequality
group in Equation 34, for now, we enforce that « > 0 and 3 > 0. It
should be noted that if « < 0 and 3 < 0, then the resultant scenarios
are non-trivial as well. But by virtue of similarity among the positive
and negative valued « and {3, we will focus only on the case where
o > 0 and B > 0. We shall see later in Section 2.2.2, an additional
condition that must be satisfied by the parameters « and 3 to ensure

some quantum advantage.

We will continue using the same definition for x1, x2, y1 and y; as
in Section 2.1.1. In the following subsection, we derive the expression
for the maximum value achievable by expressions of «f3 — CHSH in-
equalities, using quantum correlations.



2.2 a3 — CHSH INEQUALITIES

2.2.2  Derivation of quantum bound

The proof for quantum bound of 3 — CHSH inequalities follows the
same steps as the proof for the maximal quantum bound of « — CHSH
inequalities (see Section 2.1.2). The key difference here, however, is in
the matrix W to solve the dual problem given by Equation 25. For the
scenario of a3 — CHSH inequalities, we take the matrix W to be:

8
—1

Q o o

08
1
- (35)
B —1 0

Then, the optimal value of the dual problem is attained when:

((X+ B) xp
—I—ocB

_ oc+[3 /
+“B (36)

[ +oc[3
as) —i—ocﬁ

For these values of elements of the vector A, Syp <
consequently, we have that:

A=

N\—‘

Tr(diag(A)). And

4
Sap <) A= (x+p) “;gﬁ) (37)

i=1

Next, we make use of the primal problem given by Equation 28. The
specifications for the matrices G and W are given by Equation 29 and
Equation 35, respectively. Then for the optimal solution of the primal
problem, the following relations hold:

VO =x1 -y +x1-y2) + /(0 +x1-y))(T—x1-y2)

X2-Y1 = ) ’
062—062-(X1‘y1)2:[32—f32'(xl'92)2)
U 5 <) L
2-Y1 = 2°Yz2 = 2 06[5(14—0([3)1
2 2
= X1-Y1 = oc—P +27B) . o 20p7)

20 /B0 1) 92T 28 /aB(I+ B

x1x2 = (6 y1) ez -yn) =/ (1= (e -yn)2) (1 — (x2 - y1)2);

Y1 y2 = (e -y -y2) = /(1= -y (x -y2)2).
(38)

21

Substituting p =1
in Equation 37 leads
to the expression
derived in

Equation 27.
Substituting o = 3
in Equation 37 leads
to the expression
mentioned for a
maximally
entangled state in
Equation 11 of
[AMP12]. Same
kind of expression
has also been derived
in [NSPS14].

Recall from
Equation 23 how the
scalar products (of
the form x; -y;) in
the equations
alongside map to the
correlators of the
form (AxBy) in the
expression for the
a3—CHSH
inequality.
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The optimal solution for the primal problem with the above men-
tioned values of scalar products sets the following bound:

-Tr(GW) = (a+ B) (14(;2(5) (39)

The feasible points of the primal and dual problems dictate that Syp >
(x+ [5)\/m and Sup < (oc+ )4/ L‘gm, respectively. Thus, the

of3 o
duality and strong duality conditions are satisfied and the quantum

bound of a—CHSH inequalities is: Sog = (ot + 3) “1’(%‘6).

Soc(ﬁ P>

N —

As in the case of o — CHSH inequalities, the relation specified by
Equation 20 holds even for the a3 — CHSH inequalities. Finally, we
need to ensure that the scalar products defined for the optimal sce-
nario are within the permissible limits. Accordingly, from Equation 38,

Ensuring that we have that:
X2 y] < 1

automatically helps (x+B) 1
ensure that the same > «B(1 + «p) <h
constraint is (40)
imposed on the other loc — B
scalar products. - ofp <2
Just like the Thus, for « > 0, > 0 and lo‘ojﬁm < 2, the maximum value achiev-
(xl_ CHS; able by expressions of the «p — CHSH inequalities is Sop = (x +f3) -
inequalities, the . . .
classical value is “ZEB). The relation between correlators (A,B,) at optimality are

equal to the given by Equation 38. Tracing back the relation between the scalar
quantum value for products and the correlators (A By) from Equation 23, we get a rela-

combinations of x . .
and B outside the set tion between these correlators for the optimum quantum strategy.

domain.

This concludes the requisite description for bipartite inequalities with
two inputs per party. Following sections of this chapter provide simi-
lar description for bipartite inequalities with three possible measure-
ments for each party.

23 o — MagicSquare INEQUALITIES

In this section, let us first introduce the MagicSquare inequality and
define the generic expression for the family of Bell inequality expres-
sions that we name o — MagicSquare. Our main claim pertaining to
this class of inequalities is as follows:

Claim: For « > 0, the optimum quantum value of an x —MagicSquare
expression is:

Sk = (+5). (41)

Just like the earlier subsections in this chapter, let us resort to the dual
and primal problems at our disposal to prove the above mentioned
claim.
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2.3.1  Definition of inequality

Consider the following Bell inequality:

(AoBo) — (AoB1) + (AoB2) — (A1Bo) + (A1B1)

(42)
+(A1B2) + (A2Bo) + (A2B1) — (A2B,) <5.

Additionally, let us consider a 3 x 3 matrix whose element in a cell
(i,j) is equal to the coefficient of the correlator (A;B;). Then for the
aforementioned inequality, the sum of each row and column of this
matrix turns out to be equal to 0. Such a matrix is very similar to
a magic square from recreational mathematics. A magic square is
a square grid that comprises of distinct positive integers such that
the sum of each row, column and diagonal is equal to a constant
(magic) value [Scho4]. We will hereafter call this inequality as the
MagicSquare inequality.

Now, let the expression for a Bell inequality be given by:

I, = (ApBo) — - (AoB1) + (ApB2) — (A1Bo)+

(A1B1) + (A1B2) + (A2Bo) + (A2B1) — (A2B2) < o+ 4. 43)

We attribute the inequality whose expression is given by I/, as an
o — MagicSquare inequality; and at o = 1, we attribute the inequal-
ity as simply the MagicSquare inequality. Now, since we would like
to consider only the non-trivial possibilities, we set « to be positive.
Note that, the inequalities introduced here are not equivalent to the
Peres-Mermin inequality [Mergo; Pergo].

Now, using Tsirelson’s theorem, the expectation values of the cor-
relations are equivalent to the following scalar products of the unit
vectors x1, X2, X3, Y1, Yz Or y3:

(AoBo) =x1-y1; (AoB1) =x1-Y2;
(A1Bo) =x2-y1; (A1B1) =x2-y2;
(A2Bo) =x3-y1; (A2B1) =x3-y2;

(AoB2) =x1-y3;
(A1Bz2) =x2-y3; (44)
(A2B2) =x3-ys3.

Let us now derive the expression for the quantum bound.

2.3.2  Derivation of quantum bound

For the derivation, consider the dual problem in Equation 24. Now,
for x —MagicSquare inequalities, A is a vector with six elements and
the matrix W is chosen as:

o o0 0 1T —ax 1
o o o0 -1 1 1
O o0 0 1 I
W= (45)
T -1 1 0 0 *
—x 1 1 0 O
1 1T -1 0 0
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Putting o« = 1in
Equation 43 results
in the expression for
the MagicSquare
inequality. This
expression with a
classical bound of 5,
a quantum bound of
6anda
no-signallinig bound
of 9, has an
interesting
symmetry. For
instance, swapping
the coefficients of
(A()B1 > and
(A1Bg) with
(AoBz) and
(A2Bg) (or (A1B3)
and (A;Bq)) results
in the same bounds.
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Now, if we take:

(x+1)

2’ (46)
M=A3=M=Ac=1,

At =As =

then, not only is the matrix —%W + diag(A) (in the constraint) positive
semi-definite, but even the objective function of the dual problem
attains the minimum value. This choice of feasible points gives rise to
the following bound on the quantum bound S/ :

6
SL <) Ai=(x+5). (47)
i=1

Now let us consider the primal problem specified by Equation 28.
The value for matrix W is given in Equation 45 and Gram matrix G
is given by:

X1-X1 X2-X1 X3-X1 Yi1-X1 Yz2-X1 Y3z-Xq

X1-X2 X2-:X2 X3-:X2 Yi1-X2 Yz2-X2 Y3z-X2

G= | X% X2:X3 X3:X3 Y1-X3 Y2-X3 Y3-x3 (48)
X1-Yyr X2-y1r X3-Yir Yyi-yr yYy2-yr ys-yi
X1-Y2 X2-Y2 X3-Y2 Yr-yz Yz2-yz Yys-yz
X1:Y3 X2-Y3z X3-Y3 Yi1-Ys Yz2-ys Ys-ys
Unit vectors Then the values for the scalar products in matrix G that guarantee

X1,X2,%3,Y1,Y2,Y3  that G > 0 and that the objective function of the primal problem

have been defined in : : . .
. attains the maximum value, are given below:
Section 2.3.1.

X1-Y2 =%x2-Yy1 =x3-Yyz =—1;
1

X1-Y1 =X1-Y3z =X2-Y2 =X2-Yz =X3-Yyy =X3-Y2 = 2; (49)
1

X1-X2=X1-X3=X2"X3=Y1-Y2 =Y1-Y3 :yz.yg':_i.

Consequently, using the feasible solutions of the primal problem, we
can say that:

Sl > %Tr(GW) = (x+5). (50)
Since using the primal problem, S/, > («+5) and using the dual prob-
lem, S| < (x+5), we can say that indeed, S/, = («+5). This com-
mon optimal solution, therefore, gives the expression for the quantum
bound for a—MagicSquare expressions.

Interestingly, the expression S, = (x +5) also gives the quantum
upper bound for the expression of x — MagicSquare inequality at
o = 0. Thus, the claim made at the beginning of this section holds
true.

Since, all the scalar product values in Equation 49 are within the per-
missible limits of —1 to 1, there is no additional constraint that needs
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to be enforced on the parameter x. Combining Equation 44 and Equa-
tion 49, we get the relation that must hold true among the correlators
(AxBy) when the quantum bound is attained. In addition to this, it
is important to note that at optimality, the following relation between
the parameters A and G and matrix W of SDP problems holds true:

A= -ZGijoi V1. (51)

i=1

N —

To conclude the section, it can be observed that the generic expression
for the quantum bound of o« — MagicSquare expressions is (& + 5).
This holds true for all « > 0.

2.4 «?—MagicSquare INEQUALITIES

We now prove the following claim for another variant of the Magic-
Square inequality (Equation 42):

Claim: For o > 1, the quantum bound that the expression of a
o? —MagicSquare inequality can take is of the form:

w2 =2-(a+2). (52)

oz =
2.4.1 Definition of inequality

Under the name of «?> — MagicSquare, we denote a group of Bell
inequalities of the form:

(’XZ = <AoBo> — - <AOB]> + <AoBz> — - <A]Bo>+

(A1B1) + (A1B2) + (A2Bo) + (A2B1) — (A2B2) < 2a+ 3. (53)

Carrying forth the same definition for scalar products of the unit
vectors x1, X2, X3, Y1, Y2, Y3 as in Equation 44 in Section 2.3.1, we
now compute an expression giving the maximum quantum bound
for the expression represented by I/ ,.

2.4.2  Derivation of quantum bound

Once again, we make use of the dual problem in Equation 24, where
A = (A1,A2,A3, A4, A5, A¢). Now, for o? — MagicSquare inequalities,
the matrix W is:

— O O O

(54)

—_ = O O O

S O o =
o © © = =
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Substituting o = 1
in Equation 53
results in the
expression for the
MagicSquare
inequality
(Equation 42).
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For values of
O<a< % there
does exist some
quantum advantage
and the quantum
bound is greater
than the classical
bound. However, in
the present work, we
will not be deriving
any analytical
expressions for o —
MagicSquare
with « in that range.
For « <0,

o? —MagicSquare
inequalities have no
quantum advantage.
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For o > %, Equation 55 gives the choice of the elements of A that
help satisfy the constraint of the dual problem and ensure that the
objective function attains the optimal value.

1
M=A=A=As= ((X; );
A3 =N =1,

(55)

By solving the dual problem we have the following bound on the
quantum value S/ ,:

<D Ai=2-(x+2). (56)

i=1

For o« > l, it can be seen that for W given by Equation and G
3 8 y Eq 54

given by Equation 48 and Equation 49, optimal solution for the primal

problem is encountered. Consequently, we have that:

o> S TH(GW) = 2-(a+2). (57)

Since the feasible points given by Equation 56 and Equation 57 sat-
isfy the duality and strong duality conditions, the quantum bound
for a®?—MagicSquare inequalities is given by: S w2 =2 (a+2).

Thus, the claim in Equation 52 holds true. Also, to state explicitly, the
value of correlators (ABy) for attaining the quantum bound should
be of the form:

(AoB1) = (A1Bo) = (A2B2) = —1;
8
(AoBo) = (AoBa) = (A1B1) = (A1By) = (AsBo) = (AB1) = % G®)

In the next section, the final family of Bell inequalities is introduced
and analyzed.

25 a3 —MagicSquare INEQUALITIES
Let us now look at the proof for the following claim:

Claim: For « > 7, the quantum bound of a® —MagicSquare Bell
inequality expressions can be stated as:

(/xs: (o4 1). (59)

2.5.1 Definition of inequality
Considering positive values for o, we define a® — MagicSquare to
be a group of Bell inequalities given by:

1&3 = <AoBo> — - <AoB1> + <AoBz> — - </\]Bo>+

(A1B1) + (A1B2) + (A2Bo) + (A2By) — - (A2B2) < 3-a+2. (60)
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2.5.2  Derivation of quantum bound

We use the same approach as in Section 2.4.2, the only differences
being slight modifications to the matrix W and vector A. We take:

0 0 1 —ax 1
0 0 —a 1 1
wolo© 0 1 1 -«
1 —« 1 0 0 0
“x 1 1 0 0 (61)
1 1 —ax O 0
And A, = (“;” v i

Indeed, for this choice of vector A and the constraint that o« > %, the
dual problem constraints are satisfied. Consequently, we have that:

<) AM=3-(at1) (62)

i=1

Now, to solve the primal problem, as specified in Equation 28, we take
the matrix G to be the matrix in Equation 48. Once again, by choosing
the values of the scalar products in G to be the ones in Equation 49,
we get the solution for the primal problem. And consequently, we
have that:
1

- STH(GW) =3 (a4 1). (63)
Since the feasible optimal solutions to the primal and dual prob-
lems have the same value, the optimal strategy leads to the quantum
bound of this common value, thatis S/ ; =3 - (e +1).
Thus, for o > %, the quantum bound is 3 - (x + 1). Also, since the
optimal quantum strategy is the same as the optimal strategies for
x—MagicSquare and ocz—MagiCSquare inequalities, the values of the
correlators (ABy) at optimality are as mentioned in Equation 58.

The results derived in this chapter shall be used in the following chap-
ter for the key-rate analyses in the asymptotic and finite regimes.
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Before delving into the finite key regime, it is important to discuss
some results pertaining to the asymptotic key regime and to establish
constructs that, apart from being relevant to the asymptotic regime,
are primarily useful for the analyses in the finite regime.

Section 3.1 shows that with the x — CHSH inequalities (defined in Sec-
tion 2.1), it is possible to achieve marginally higher rate and marginally
greater noise tolerance for certain values of «, as compared to the

rate and noise tolerance achieved using the lower bound on the min-
entropy using the CHSH inequality.

Section 3.2 transitions from the use of min-entropy to the use of von
Neumann entropy, which, as described in Section 1.4, helps achieve
significantly better noise tolerance. For this scenario, we derive a
bound on the von Neumann entropy and show that the tightness of
this bound is dependent on how high the value of the ratio of an in-
equality’s quantum bound to its classical bound is. The overall bound
is tight only in case of the CHSH inequality. And therefore, among
the inequalities that we are considering in this chapter, the best re-
sults, in terms of all three parameters of our interest (i.e. rate, noise
tolerance and minimum number of rounds required), are yielded by
CHSH inequality.

3.1 CONSIDERING BOUND ON THE MIN-ENTROPY

In this section, we compare the use of o« — CHSH inequality versus
the use of CHSH inequality in a scenario that employs the use of min-
entropy to compute the key rate. The approach used is the one pre-
sented in the paper by Masanes et al. [MPA11]. For both these inequal-
ities, the maximal violation using quantum correlations is achieved
using the maximally entangled state. And so, we fix the state under
consideration to be the Bell state [p+) = (00T 36 for a depolar-
izing noise model and the visibility of the Bell state given by v, the
state p can be expressed as:

o=V IO+ (1) 5. (64

Now, from Section 1.4, we can recall how Bob has an extra choice of
observable B; for the error correction phase. For this error correction
procedure, it is important to ensure that the need for transmission of
information is as little as possible. This requires as perfect correlation
as can be achieved among Alice and Bob’s outcomes. Now, for the
inequalities under consideration, it is possible to fix B, for Alice’s
choice of A, such that their outcomes in the error correction phase

29
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Section 3.2.2.1 gives
an elaborate
description on the
measurements that
ensure that this
requirement of
perfect correlations
is satisfied by

o — CHSH while
attaining the
maximum quantum
value.

In Equation 65,
Hwin(A | E) is the
min-entropy and h
denotes the binary
Shannon entropy.
As seen in

Section 1.4, the
min-entropy relates
to Eve’s guessing
probability as:
Hmin(A | E) =
—logz2(Pguess)-
An upper bound on
this guessing
probability can be
computed using the
QETLAB [Joho3]
package’s
NPAHierarchy
module.
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can be perfectly correlated. Considering Ao to be o,, we can thereby
fix B, to also be o,. For the state p defined in Equation 64, we have
seen in Section 1.4 that the error correction term facilitating minimum

leakage of information is of the form H(A | B) = h(]%")

Now, for both, x—CHSH as well as CHSH, the equation below gives
the expression for the computation of the key rate, as a function of
the visibility, v, of the state p:

rate > Hyin (A 1E) (1Y), (65)

Now, the min-entropy, Hmin(A | E), for « — CHSH, for cos? (g) <
o < 1, is higher than the min-entropy for the CHSH inequality. Since
the error correction term (i.e. the second term in Equation 65) will
be the same for both the inequalities, the overall lower bound on the
rate curve will be better for x—CHSH. Although this improvement
is very marginal and at most of the order of half a percent, it is at
least evident that while considering the min-entropy scenario, CHSH
is not the best alternative. Figure 4 gives a comparison of x — CHSH
and CHSH inequality in the asymptotic key regime whilst consid-
ering the min-entropy to bound the corresponding rate curves. For
a detailed derivation of Equation 65, we redirect the readers to Sec-
tion 1.4.

It is, however, evident from the plots in Figure 4 that the von Neu-

Y a=CHSH min-entrapy
0.9 N, — CHSH min-entropy

CHSH voen Neumann ent.

08r

0.7

06

0.5

rate

0.4

0.3

0.2F

01r

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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Figure 4: Rate vs visibility plot for the scenario involving o« — CHSH for o« =
(g)and = 1.

mann entropy for the CHSH inequality is significantly higher than
the min-entropy for x—CHSH inequality. Note that for all these sce-
narios, the error correction term has the same value. It is therefore, a
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good motivation to derive a bound on the conditional von Neumann
entropy for x—CHSH inequalities and to compare it with the von
Neumann entropy for CHSH inequality. So, let us now focus on find-
ing a bound on the von Neumann entropy for the x—CHSH inequal-
ity, and subsequently for other inequalities that have been introduced
earlier (in Chapter 2). Our attempt to derive such a bound on the von
Neumann entropy for inequalities other than CHSH is new.

3.2 BOUNDING THE VON NEUMANN ENTROPY

For the CHSH inequality, a tight bound on the key rate is given
by the conditional von Neumann entropy. Unlike min-entropy, von
Neumann entropy cannot be easily computed by numerical methods,
such as SDP. It needs to be derived using other techniques. So far,
such a derivation has been performed only for the CHSH inequality
[Pir+o9]. In this section, we shall attempt to extend the proof pre-
sented in [Pir+og] and derive our own bound on the von Neumann
entropy, and in turn, bound the key rate.

In [Pir+o9], Pironio et al. give the proof for the derivation of the
Holevo quantity, x, between Eve and Bob. This Holevo quantity can
be defined as:

x =H(A)—H(A | E). (66)
From Section 1.4, we already know that:

rate > H(A | E) — EC. (67)
The Holevo quantity can, thus, be used to define the key rate as:

rate > H(A) —x —h(QBER). (68)

As per the proof in [Pir+og], for the CHSH inequality, the value of x
is upper bound in the following manner:

x<?(1+_sz_1)- (69)

In the above equation, g denotes the quantum violation value achieved
for the CHSH inequality.

For the inequalities that we will be considering in this chapter, the
third term in the lower bound for the rate (Equation 68), which char-
acterizes the error correction term, is equal to the binary entropy of
QBER.

Intuitively, a tight bound on the Holevo quantity would imply a tight
bound on H(A | E) and thereby, an overall tight bound on the rate.

While proving the upper bound for the Holevo quantity, the authors
of [Pir+o9] take into account various considerations. In the following
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As already seen in
the previous section,
QBER = U5
and is the Quantum
Bit Error Rate
(QBER) which helps
gauge the noise
tolerance.
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+y _ (100)+11))

) = Qo0

o) = (100)—[11))

\/2 2

pt) = (101)+[10))
V2

and

W) = (101)—110))

are the four Bell pair
states that are
orthogonal to each
other. They define
the two-qubit Bell
basis.
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subsections, we first list out all these considerations. Next, ensuring
that these considerations are adhered to, and using the relations be-
tween correlators at optimality, we derive a generic upper bound for
the Holevo quantity for all the families of inequalities described in
Chapter 2. Additionally, a set of measurement operators, leading to
the optimal quantum bound and satisfaction of all the considerations,
is given for each of those families of inequalities. Finally, we focus on
how the rates trend for different families of inequalities and have a
look at their respective noise tolerances as well.

3.2.1  Considerations regarding set-up

In order to derive the Holevo quantity for the families of Bell inequal-
ities in the same way as the Holevo quantity is derived for the CHSH
inequality, certain considerations need to be taken into account. These
are listed as follows:

® Let us assume that the state under consideration can be reduced
to the Bell diagonal state of two qubits. This means that for the
Bell basis ordered as {|¢p "), [d ), W), [ ~)}, the state p) can be
given by:

PA = . (70)
0 0 0 Ay

where the eigenvalues are chosen in such a way that: Ay+ > Ay~
and )\q)f > 7\11)+ .

If one restricts the subspace of the system to dimension d = 2,
then it is general enough to look at states of the form Equa-
tion 70 [Reno8; Pir+og]. Now, for Bell inequalities with two in-
puts and two outcomes per party it is enough to consider the
analysis of systems of dimension 2. For inequalities with three
inputs and two outputs per party, we will take this assumption
of d = 2 into account for the ease of the derivation. However,
for the inequalities with three inputs, we restrict the setup to a
subspace of dimension d = 2.

¢ In the paper [Pir+o9], it is assumed that, the measurement op-
erators are restricted to be in the XZ plane. A detailed proof
for this consideration can be found in the lemma presented in
[Maso6]. Among the families of inequalities introduced in Chap-
ter 2, this assumption of restricting the system to a subspace
of dimension 2 is general enough to cover all possible arbitrary
measurements for inequalities with two inputs, two outputs per
party. On the other hand, for inequalities with multiple inputs
and two outputs per party, this restriction on the subspace di-
mension is still an assumption. A more detailed description of
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the choice of operators to achieve maximum quantum value can
be found in the following subsection.

3.2.2  Prospective setup for optimality

For each family of inequalities introduced in Chapter 2, we now con-
sult the relations defined between the correlators when these inequal-
ities achieve the maximum quantum value. These have been men-
tioned under the subsection of optimum quantum strategy for each
group of inequalities. We also take into account the requirements set
forth in Section 3.2.1. Additionally, it is assumed that Alice and Bob’s
operators, in general, are of the form:

Ap =COS U1 -0, +SiN W - Ox; A7 =COS Uy -0, + SIN W2 - Oy;

1
Bo =cos uz -0, +sin uz-ox; By =cos g -0, + sin yg - oy. 71)
Accordingly, the optimal measurement operators for the different
families of inequality that help them achieve their respective maxi-
mum quantum values for the state [p1)(p | are presented below.

3.2.2.1  «— CHSH inequalities

For the expressions of the « — CHSH inequalities, if we take the mea-
surement operators to be of the form given by Equation 71, and if we
take into account the relations established in Equation 30, then the set
of values for the four angles (i.e. 1y to p4) at optimality is given by:

1y =cos ! (3- (064;1) —4. ( (0(4—;”>3> +cos™! < (oc4—;1))’_
3 =cos ™ (3- (“41”—4.< (0‘44;”)3);

W =0; py=—cos ' < LC:”)-

(72)

3.2.2.2  «f3 — CHSH inequalities

In case of expressions from the «f3 — CHSH group of inequalities, we
take into account the relations established in Equation 38. Now, the
values for the four angles of Equation 71 at optimality can be stated
as:

o 2
(¢ — B+ 2 B))+cos*1 ((ochrB) “B“Lam);

|
Ha = €08 <Zoc\/oc[3(1 + )
(c— B +20P) )

—0 — e
1 =0; s = cos <Zoc (14 op)
g = —cos ! < (B— ot 2ap°) )
2B/ B (1+ )

(73)
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It is important to
recollect that for
inequalities with
two inputs per party
defined in Chapter 2,
it is general enough
to consider that the
operators are in the
XZ plane. For
inequalities with
three inputs per
party considered in
this chapter, in order
to derive bound on
Holevo quantity in
the same way as in
[Pir+o9], we assume
that the operators lie
in the XZ plane.
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Chained inequality
withm = 2 is
equivalent to the
CHSH inequality.
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3.2.2.3 Variants of the MagicSquare inequality

To recall, we denote the MagicSquare inequality by:

(AoBo) — (AoB1) + (AoB2) — (A1Bo) + (A1B1)

+(A1B2) + (A2Bo) + (A2B1) — (A2B3) < 5. 74)

As we have seen in the previous chapter, at a point when the max-
imum quantum violation is attained by this inequality, the value of
the correlators is given as:

(AoB1) = (A1Bo) = (A2B2) = —1;
1 (75)

(AoBo) = (AoB2) = (A1B1) = (A1B2) = (A2Bp) = (A2By) = 7

And in fact, it has been observed that for the defined domains of (o« >
0), (x> %) and (o > %) for « — MagicSquare, o — MagicSquare
and o® — MagicSquare inequalities, respectively, the values of the
correlators at optimality are the same as the ones mentioned in Equa-
tion 75. Thus, we establish the set of measurement operations that
work at optimality for all these inequalities alike. These measure-

ments are given by:

T T
Ag =0, Bp=cos (—) 0, + sin (—) Oy,

3 3
A1 = cos (?)Gz—sin (?)Gx; B = —0y;
Ay = cos <2§) 0, +sin (?) 0x, B2 =cos (%[) 0, —sin (g) Ox.
(76)

Notice how it is possible to attain the optimal quantum strategy for
the three input variants of the MagicSquare inequalities even after
restricting the operators to be in the XZ plane.

3.2.2.4 Chained inequalities

As discussed in Section 1.4, chained inequalities [BC9o] have been
used in the asymptotic key regime while considering the min-entropy
to define the key rate. The general form of expression of these inequal-
ities with m inputs per party is given as:

n

n—1
D (AiB)+ ) (Ai1Bi)— (A1Bp) <2m—2. (77)
i=1

i=1

Let us explore the implications of using the chained inequality in the
asymptotic regime (and later, in the finite regime) by directly bound-
ing the von Neumann entropy. These bipartite Bell inequalities, with

m inputs and 2 outputs per party, have a classical bound of the form
(2m —2) and quantum bound of the form 2m - cos <i> [Weho6].

2m

The Chained inequality for 3 inputs per party is given by:

<AoBo> + <AoB1 > + <A1 B1> + <A] Bz) + <Asz> — <AoBz> < 4. (78)
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When the number of inputs is m = 3, it is possible to achieve the
optimal strategy with the restriction of Section 3.2.1. A possibility of
measurement operators at optimality, for the maximally entangled
state |p ™), is given by:

Ao = 05, Bp =cos (g) 0, +sin (E> Ox;

6
A1 =cos (g)cz—i—sm (;j)crx; B1 = 0y
Ay =cos (?) 0, + sin <2§) ox; B2 =cos (5%[) 0z +sin (%) Ox.-
(79)

Having established in detail the various conditions and settings for
optimality, let us now look at a generalized derivation of the Holevo
quantity for the inequalities in question.

3.2.3 A new lower bound for the von Neumann entropy

Section 3.2.1 gives a gist of requirements considering which we can
proceed with the derivation of the bound on the von Neumann en-
tropy. One of the considerations is that of restricting the subspace
to dimension 2. As mentioned earlier and shown in [Pir+o9], this
assumption is general enough to cover all possible arbitrary measure-
ments for inequalities with two inputs per party. On the other hand,
for inequalities with multiple inputs per party, this restriction on the
subspace dimension is still an assumption.

In addition to this, the description in Section 3.2.2 gives an opti-
mal strategy for each group of inequalities under consideration. Tak-
ing these strategies into account, Alice’s outcomes are random, and
each of the two possibilities are equally probable. Thus, we have that

H(A) = h(%) = 1. The definition in Equation 66 equation thereby
simplifies to:

x=1—H(A|E);
= HA|BE)=1—x; (80)
= rate > 1—x—h(QBER).

Thus, for the inequalities under consideration, the conditional von
Neumann entropy can be expressed as a function of the Holevo quan-
tity x as: H(A | E) = 1 —x. Therefore, choosing an upper bound on
the Holevo quantity can set a bound on the von Neumann entropy.
Now, as per Lemma 6 of [Pir+o9], for Bell diagonal state of the form
of pj in Equation 70, we have that:

VIRZ —
X<h<w) v R2>1;
: : (81)

And x <1V R?

N

2
Here, RZ = (7\¢+ —7\1],—)2 + (7\¢— —7\1],4—)2.
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Notice how it is
possible to attain the
optimal quantum
strategy for the three
input variant of the
Chained inequality
even after restricting
the operators to be
in the XZ plane.
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Now, for the state pj (as defined in Equation 70), we need to estab-
lish a relation between the maximum quantum value, S, attainable
using a particular Bell inequality, and the parameter R. In that regard,
we present the following claim and the corresponding proof for the
claim follows.

Claim: Let C be the classical bound of a particular two-outcome Bell
inequality expression, with only full correlations, that is maximally
violated by a maximally entangled two-qubit state. Then for the state
pa and the maximum quantum violation for the state given by Sy, we
have the following lower bound on the von Neumann entropy:

w

1 S92 1
H(A|E)>1—h( i (zC) ) (82)

Proof. Let us first prove this claim for « — CHSH inequalities. For
that, let the measurement operators be of the form described in Equa-
tion 71. Then, for a combination of values of Ag+, Agp—, Ay+, Ay, the
quantum value of applying the « — CHSH inequality, with arbitrary

It is intuitive to see measurements in XZ plane, on the state p, is given by:
that TT(<A080> .

DHOTN= Sy = (Agr —Ag-)- (o~ cos (11— p3) +cos (11— pia) + cos (12 — p3)
cos (1 — H3).
Likewise, the other —cos (u2 —pug)) + ()‘ctf - )‘llﬁ) - (ac-cos (g + p3)
terms in +cos (11 + 1g) + cos (U2 + u3) —cos (uz +1g)).
Equation 83 emerge
and the expression (83)
Sy is th
fo}m};ﬂljlut:{; It is quite trivial to notice that taking Ag+ = Ag,~ = Ay+ = Ay~ = %
results in the maximally mixed state for p,, and the value of S, is, ev-
idently, equal to 0. Also, it should be noted that as per the condition
imposed on these eigenvalues in Equation 70, both (Ap+ —Ay-) > 0
and (Ag- —Ay+) > 0 hold true.
Now, barring the case where the eigenvalues of p, are equal to each
other, i.e. Ap+ = Agp- = Ay+ = Ay~ = %), if we consider the other
possibilities of the values of these eigenvalues, and the fact that RZ =
(Ap+ — ?\4,7)2 + Ay — ?\¢,+)2, we can define some 0 such that (Ag+ —
Ayp-) = IR[-cos 0 and consequently, (A~ —Ay+) = [R| - sin 0. Then
Since.  for @ ranging from 0 to 7 radians, all the different combinations
Ap+—Ayp-) 22 of eigenvalues can be covered. With this trigonometric substitution,
an . .
(Mo —Aps) >0 Equation 83 now becomes:
hold true, © can
range from 0 to % Sx =IR[-cos 0 (a-cos (11 —H3) +cos (11 — Hg) +cos (12 — u3)
only. For —cos (t2 —a)) +[R[-sin 8- (« - cos (u1 + u3)
T<0< G, we
szmply plug in —us +cos (U] + “‘4) +cos (P'Z + p‘?)) —Cos (PLZ + p‘4))
and —pg, instead of (84)
w3 and pg in
Equation 84. Now, as 0 increases from 0 to 7, the maximum value that S) can

obtain starts increasing. This has been verified numerically. At 6 =0,
the term bearing sin 6 vanishes; and S, is merely given by:

Sx = IR[- (&~ cos (11 —u3) +cos (g —pa) +cos (2 —pu3) —cos (12 —pa)).
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(85)

Now, since (x-cos (w1 —u3) +cos (11 —pg) +cos (12 —p3) —cos (u2 —
1)) denotes the expression resulting from applying quantum corre-

lations of the &« — CHSH inequality to the |¢p") state, the maximum

value that it can procure is quantum bound of the inequality (which

we are denoting by Q). Thus, we have that, at 0 = 0:

Sy =2 Q- [Rl. (86)
Next, for 0 = 7, the expression in Equation 84 will modify to:

Sx = V2R (- cos W - COS U3 + COS (L] - COS g 87)
+C€0S Uy - COS U3 — COS W2 - COS Lyg). 7

It is interesting to note that the maximum value of («-cos py - cos p3 +
COS IL7 - COS M4 + COS [ - COS |13 — COS U - €OS Hg4) is in fact, equal to
the classical bound of the x—CHSH inequality. This has been verified
numerically. And in fact, the maximum value for this expression is
attained by applying the commuting operators that help attain the
classical bound. And since we are denoting this classical bound by C,
we have that:

V2.C-[R| = Sy. (88)
Combining Equation 86 and Equation 88, we have that:
V2.C-RI>Sy>Q R (89)

Also, from the bound on x in Equation 81 and the relation established

in the above equation, we have that, for RZ > %:

T+4/(32)2-1 1+4/2(3)2 -1
>Y = .
h( 5 ) >X 2 h( 3 ) (90)
Since, for the inequalities under our consideration, H(A | E) =1 —x,
the claim in Equation 82 follows from Equation go. ]

3.2.4 Transitioning from Sy to g

For the derivation of the bound on the von Neumann entropy in the
previous subsection, we have assumed the system to be confined to a
subspace of dimension 2. Also, S, is the maximum violation that can
be attained using quantum correlations in this subspace. In this sub-
section, we extend the convexity argument used in [Pir+o9] to extend
the scope of the derived bound from being a function of S) to being
a function of the violation g considering the overall space, for all the
inequalities under consideration. For each subspace i of dimension 2,
let F(Sa;) denote the von Neumann entropy of that subspace. Thus,
we have that:

w

T+4/()2—1
F(Sxi) = HA [ E)i > 1 —h(————). (91)
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Equation 87 arises
from the fact that
cos (A—B)+
cos (A+B) =
2-cos A-cos B.
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Now, owing to the concavity of the monotonically decreasing func-
tion F, the overall von Neumann entropy satisfies:

H(ATE) =) pi-F(Sai) <F(Q_pi-Sai)- (92)

And since we can express the violation g as: g = ) ; pi - {Sa}i, we
have that:

H(A | E) < F(g). (93)

in this manner, the assumption of reduction of the state shared by
Alice and Bob to a Bell diagonal state and the assumption of their
measurement operations being in the XZ plane only can be general-
ized to arbitrary measurements and dimension for Bell inequalities
with full correlations and two inputs, two outcomes per party. For
Bell inequalities with three inputs per party, these assumptions are,
however, assumptions after all, which help in easily extending the
same proof for the derivation of the von Neumann entropy from the
two inputs case to the three inputs case.

Now, for an arbitrary state p with the depolarising noise model (recall
Equation 64), the quantum value can be expressed in terms of Q - v.
Consequently, from Equation go we can say that:

h<1+ (82\/)2—1)>X>h(]+./22v2_])'
— 1—h<]+ (%zv)z_])gH(ME)@_h(” \/22\/2—1)

(94)

In the following sections of this chapter, we will see the implications
of the bounds defined on the von Neumann entropy to study the key
rate curves in the asymptotic and finite key regimes.

3.3 KEY RATE ANALYSES IN THE ASYMPTOTIC KEY REGIME

In this section, using the constructs established in the previous sec-
tions of this chapter, results of key rate analyses in the asymptotic
regime are discussed.

Firstly, for the bounds derived on the Holevo quantity in Equation 94,
it is important to notice that in case of CHSH inequality, the upper
and lower bounds coincide. So the bound on the Holevo quantity
is tight. However, for the other inequalities that we have considered
in this chapter, certain gap starts emerging between the upper and
lower bounds that we have defined for the Holevo quantity. More
specifically, this gap depends on the value of the ratio %. The higher
the value of this ratio, the lesser is the gap between the upper and
lower bounds that have been defined for the Holevo quantity.
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As such, from the equation for the key rate that has been mentioned
in Equation 65 and from the bound that we defined in Equation 9o,
the lower bound on the rate in the asymptotic regime can be derived
to be:

Ao

rate>1—h(]+ ( Z'V)Z—])_h<1;\/)' (95)

It is important to notice that the bound that we have defined gets
loose, and hence worse, as the value of the ratio % starts straying
away from V2 towards 1. It is, therefore, important to inspect the
ratio of % for the different inequalities that we have analyzed so far.
Table 2 lists down the different families of inequalities and specifies

the corresponding expressions for ratio ¢.

Table 2: Table specifying the % expressions for different families of inequal-

ities.
# Family of inequalities %
1. «B—CHSH Rl -/ et
2. x—MagicSquare %}:2
3 «?—MagicSquare Zats
4. o> —MagicSquare Jats
5. | Chained inequality (with m inputs per party) 2mc§;—(7n2/2m)

In case of the «3—CHSH inequalities, the ratio % attains the highest

value of V2 at o = B =1, which is the case of CHSH inequality, after
all. It is important to notice how the expression for % is symmetric
in o and 3, which in turn ensures the occurrence of the maximum at
a point where « = f3. In short, among the «a—CHSH and «f3—CHSH
group of inequalities, the only inequality with a tight bound on the
Holevo quantity (as a function of the violation) is the CHSH inequal-
ity. As the values of the parameters o and/or 3 deviate from 1, the
value of % starts falling from v/2 and the overall bounds on the rate

curve start becoming loose.

Among the variants of the MagicSquare inequality, namely, the o—
MagicSquare, o> —MagicSquare and o> —MagicSquare inequalities, for
the permissible range of values of « (as can be found in Table 1), the
highest value that % achieves is £ = 1.2 (which is low compared to
V2 = 1.4142) for the inequality arising by putting o = 0 in the generic
framework for x—MagicSquare inequalities.

Finally, in case of Chained inequalities, the value of % starts dropping
from /2 as the number of inputs, m, increases. To give a quantitative
representation of this decline, we present the plot for the value of
% versus the number of inputs per party for the Chained inequality
in Figure 5. Thus, among the Chained inequalities as well, the best
choice is the inequality for m = 2, which is, in fact, the CHSH in-
equality. Taking into consideration that the noise tolerance is defined
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Substituting p =1
in the xp—CHSH
inequality gives rise
to the x—CHSH
group of inequalities;
and therefore it has
not been mentioned
explicitly in the
table.
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As can be seen in
Figure 6, for

% <2, itis
evident that the
lower bound on the
rate cannot attain
the value 1; and
even the noise
tolerance will
deteriorate. It might
even happen that the
rate curve obtained
for a particular
inequality using the
min-entropy bound
might turn out to be
better than the rate
curve obtained by
using the loose von
Neumann entropy
bound (from
Equation 94).

Note that for the
«—CHSH
inequality at
o= cos (%),
Qx~13372
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in terms of the Quantum Bit Error Rate, QBER = ]%", we use our
bounds on the von Neumann entropy for the inequalities in question
to see how the rate curves behave for different values of % As can be
seen in Figure 6, with a drop in the value of %, there is a drop in the
maximum rate achievable and the noise tolerance.

To wrap up the analyses in the asymptotic regime, we present the

1.4 N
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135F N\
N
\.
N
\
13F .
125 f \
%) \
g 12t .
115 f
11F T
1.05f
4 . . , , . .
2 3 4 5 6 7 8 9 10

number of inputs per party (m)

Figure 5: % versus number of inputs (m) plot for the Chained inequality for
m ranging from 2 to 10.
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Figure 6: Rate versus noise tolerance using the bounds defined for von Neu-
mann entropy for different values of %.

rate curve for a particular inequality from the group of x—CHSH in
Figure 7. It can be seen that for very low value of QBER, surely min-

entropy turns out to be a better alternative to bound the rate curve

for the «—CHSH inequality, at « = cos <% . However, for high noise

regime, the bound that we have derived for the von Neumann en-
tropy turns out to be the better alternative over min-entropy, both in
terms of maximum rate achievable and noise tolerance. This improve-
ment, however, is not enough to outperform the maximum rate and
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noise tolerance values attainable by using CHSH inequality and the
associated tight von Neumann entropy bound.
1 _\‘..‘. L) T L] 1 T L] L]
b 0-CHSH min-entropy
0.9 _'l, Y — CHSH von Meumann entropy 1
' , — o-CHSH von Neumann entropy
o
E .
] L L L 1 i 1 Hh.h'r‘--
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

QBER

Figure 7: Rate versus QBER plot comparisons of a«—CHSH inequality, at o =
cos (7/8) (red curve shows the rate curve bound by min-entropy,
blue curve shows the rate curve bound by von Neumann entropy)
with CHSH inequality (by using only its von Neumann entropy).

Apart from the key rate analyses done so far, we would like to look

at yet another lower bound for H(A | E) which has been derived in
[KR14]. Since this bound is applicable only for inequalities with two
outcomes per party, we can use it to compare it with the von Neu-
mann bound that we have derived for the inequalities considered in
this chapter. As per the derivation by Kim and Ruskai in [KR14], it
can be said that

H(A | E) > 2 200=Hmin(A 1 E)) (96)

Now, plugging this into the overall lower bound on the rate, which is
given by:

rate > H(A | E) —h(%), (97)
it can be seen that this other bound on H(A | E) is clearly better than
the min-entropy bound. Additionally, the bound in Equation 96 does
better than the bound that we have defined on the von Neumann
entropy for inequalities with a % ratio that is much lesser than v/2.
We show this through the plots in Figure 8, wherein we choose an

We would like to
thank Ernest Tan
from ETH Zurich
for pointing out the
result in [KR14] to
us.
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As already
mentioned in
Section 1.5, recall
that the key rate
analysis that we are
taking into account
is in lines with the
original entropy
accumulation
theorem that has
been specified in the
main text of
[AFRV16].

Since in this chapter
we are considering
only the Bell
inequalities with
two outcomes per
party, the value of d
is, naturally, equal
to 2.
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inequality that we have already used to plot results before, i.e. the
a—CHSH for o« = cos (%) However, as the % ratio for a Bell inequal-

ity, with two-outcomes per party, starts approaching /2, the bound
that we have defined on the von Neumann entropy turns out to give
better rate and noise tolerance in the high noise regime. To show
this, we once again pick the x—CHSH inequality, but this time with
o = 0.98. The relevant plots can be seen in Figure 9.

Let us now focus once again only on the bound derived on the von
Neumann entropy, but this time in the finite key regime.

3.4 KEY RATE ANALYSES IN THE FINITE KEY REGIME

Key rate analysis in a truly Device Independent sense was first per-
formed and reported in [AFRV16]. In this section, we first introduce
the parts of the protocol from [AFRV16] that will be modified with the
application of each of the different groups of Bell inequalities. Next,
the analysis in finite regime is performed in the sense as to what im-
plications these modifications hold.

Firstly, let us recall the expression for the rate curve from Equation 13,
which is based on equation 7 and 24 of [AFRV16]:

rate > f[n] —leak —vy-f1(d) + O(\;ﬁ);

where 1) =n——=(2() +1 ¥ ).
In the above equation, k denotes a value that is very close to 2; and
f1 and f; are functions of the number of outcomes d per party. Also,
Il Vn || denotes the first derivative of n with respect to p, which is the
probability of getting correlated outcomes. Recall from Section 1.5
that n in the above equation is very much related to the conditional
entropy H(A | E).

(98)

For the inequalities that have been considered in this chapter, the
function n can be expressed in terms of the bound that we have de-
rived and presented in Equation 95.

megwp—w

n _h< (99)

Now, the part that shall contribute towards a change in the key rates
with a change in choice of inequalities includes the definition of the
expression for 1. Among the x—CHSH, «3—CHSH, x—MagicSquare,
o?—MagicSquare, o> —MagicSquare and Chained inequalities, the high-
est value for 1 is attained for the CHSH inequality. So the maximum
rate achievable, noise tolerance and least number of rounds required
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for all other inequalities in these groups will not be any better than
those for the CHSH inequality. To give a quantitative view of this, we
present as an example the comparative plots of an «—CHSH inequal-
ity and CHSH inequality in Figure 10.

So far, we have inspected the use of such two-outcome Bell inequal-
ities in asymptotic as well as finite regimes that are maximally vio-
lated by a maximally entangled two-qubit state. In the next chapter,
we look at a class of two-outcome Bell inequalities whose inequal-
ity expressions are violated maximally by non-maximally entangled
two-qubit states.

43
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Figure 8: Rate versus QBER plot comparisons of x—CHSH inequality, at « =
cos (%) (red curve shows the rate curve bound by min-entropy,

blue curve shows the rate curve bound by von Neumann entropy,
and green curve shows the rate curve bound by the entropy in

Equation 96).
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Figure 9: Rate versus QBER plot comparisons of «—CHSH inequality, at
a = 0.98 (red curve shows the rate curve bound by min-entropy,
blue curve shows the rate curve bound by von Neumann entropy,
and green curve shows the rate curve bound by the entropy in
Equation 96).
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Figure 10: Comparison between Rate and minimum rounds required by
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portion of test rounds, y.
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DIQKD USING TILTED INEQUALITIES

Chapter 3 presents the key rate analyses of DIQKD using two- out-
come Bell inequalities that are maximally violated by the maximally
entangled two-qubit state. While considering inequalities with two
outcomes per party, it is possible to achieve the maximal quantum
violation using the maximally entangled state because the expres-
sion for these inequalities involves only full correlators (i.e. terms
like (AxBy)), and no single marginals. In this chapter, we will make
use of a class of Bell inequalities that, once again, have two outcomes
per party, but additionally, the inequality expression comprises of a
marginal as well. In literature, these inequalities are called the tilted
inequalities [BP15]. The work in [AMP12] conjectures that these in-
equalities can be used for optimal key rate generation in DIQKD by
using almost-local correlations in the scenario involving the almost
separable state. In this chapter we elaborate further upon that argu-
ment and show that the scenario involving the use of almost-local
correlations brings along with it a heavy penalty from the error cor-
rection phase. This penalty from the error correction term is so large
that the key cannot be achieved by arbitrarily separable states.

The first section gives a general description of the class of inequalities
under consideration. In the next section the rate curves are computed
and a detailed explanation is provided on why these inequalities are
not a good alternative for achieving optimal key rates in DIQKD.

4.1 GENERAL DESCRIPTION OF TILTED INEQUALITIES

The general form of the expression of tilted inequalities, as introduced
in [AMP12], is given as follows:

Ltittea s - (A1) + B - (AoBo) + B - (AoB1) + (A1Bo) — (A1B1);
(100)

where x > 0; &3 > 1.

From the point of view of parameters of our interest, namely, maxi-
mum key rates attainable, noise tolerance and least number of rounds
required, setting (3 to be equal to 1 imparts some sort of symmetry
and thus, turns out to be a better case than the cases where § > 1.
Therefore, we shall fix the parameter (3 in Equation 100 to be 1. Thus,
the expression for this restricted class of inequalities becomes:

Ltittea : & (A1) + (A0Bo) + (AoB1) + (A1Bo) — (A1B1);
(101)

where o > 0.

A striking feature of the tilted inequalities is that with the inclusion
of the single marginal (Ay), the inequality is able to achieve a min-
entropy of 1 for a partially entangled state. At this point, Eve can
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The scenarios with

« < 0andfor p <1
are equivalent to the
ones described in
Equation 100 with
appropriate shuffling
in the measurement
and operation
settings.

Also, we have seen
in case of
ap—CHSH
inequalities of how
the optimal choice
for DIQKD is, in
fact, the scenario
with o =p =1.
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Eve’s guessing
probability, given by
Pguess in the
equation alongside
can be computed
using the
NPAHierarchy
script in the
QETLAB package
[Joho3].

Bob’s choice of
measuring in the
X-basis during error
correction (for
Alice’s fixed
measurement in the
X-basis) will result
in optimal error
correction term for
such a case.
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guess Alice’s outcome with a probability of only 3, which is the least
value that the guessing probability can procure for binary outcomes.
The amount of entanglement in a state that facilitates complete ran-
domness depends on the coefficient o« of the single marginal. The
classical bound of the expression in Equation 101 is equal to 2 4 «.
Now, the inclusion of the single marginal in the expression for the
inequality helps ensure that the maximum quantum violation be at-
tained by a non-maximally entangled state. Specifically, it is possi-
ble to define some angle 0 as a function of «, such that the state
cos 0 ]00) + sin 0 |[11) maximally violates the inequality. The relation
between this angle 0 and the coefficient « can be stated as:

x = ; (102)

V14 2tan? 20

Also, the maximum quantum value that can be achieved by the ex-
pression in Equation 101 is equal to v/8 4+ 2«?. The optimal setting of
operators to attain this maximal value is given as:

Ao =0x; A1 =0z

Bo =cos p o, +sin u oy;
By =cospo,—sin noy;, (103)

where tan u = sin 26;

and 0., ox are Pauli Z and X matrices respectively.

In the next section we will put forth the implications of the setting de-
scribed in this section, and in turn, the results obtained by exploring
the use of tilted inequalities for DIQKD.

4.2 DIQKD USING TILTED INEQUALITIES

As seen in earlier chapters, the lower bound on the rate in the asymp-
totic regime is given by:

rate > H(A | E) —EC. (104)

The first conditional entropy (i.e. the one specifying the entropy of
Alice’s state conditioned on Eve’s knowledge) is bounded by the
min-entropy in the following manner:

H(A|E) > Hnin(A | E) = _logz(pguess)- (105)

The next term quantifies the amount of information to be communi-
cated from Alice to Bob as part of error correction. Now, irrespective
of the value of «, the optimal choices for the operators Ap and A; in
this case are always oy and o, respectively. The operator Ay is fixed
for Alice as the same as what she uses for the inequality (i.e. o). This
fixed operator that she has projects her state onto the X-basis when
she measures it for the error correction phase. In such a case, as Bob
is free to choose a basis for error correction, he will pick the X-basis
as well. The main goal for them is to keep the amount of error cor-
rection information to be sent as minimal as possible. And Bob fixing
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his operator B, to ox helps ensure that there’s maximum correlation
between Alice and Bob’s outcomes during the error correction phase.
Considering that for ) = cos 0 [00) + sin 6 [11), Alice and Bob
share the following two-qubit state:

(1—v)
4

Pa = V- [Wo)(Wal + -0, (106)

where v denotes the visibility of the state ip), the expression for the
error correction term becomes:

(107)

EC = H(A | B) = h(M>.

2

It is important to note that this expression for the error correction
term has been arrived upon by optimizing over all possible measure-
ments that Bob can have.

In the equation right above (i.e. Equation 107), it is intuitive that when
0 = 7 (i.e. in case of the maximally entangled state and CHSH in-
equality), the value of the error correction term is optimal. However,
as the value of 6 moves towards 0 (or even towards 7 for that matter),
the error correction term increases; and this is quite undesirable for
the overall expression for key rates. Just to give a quantitative per-
spective on the value of the error correction term for different values
of 0, we present the plots for different values of 6 (corresponding to
different values of the coefficient o in the inequality) in Figure 11.

0 0.1 02 0.3 0.4 0.5 06 0.7 0.8 09 1
visibility ()

Figure 11: Error correction values for different values of 6 as a function of
the visibility, v, of the state p mentioned in Equation 106.

Now, as « — 2, the state that leads to optimal violation tends to
an almost-separable state. Indeed, at this point the value of the con-
ditional entropy term, H(A | E), in Equation 104 will be quite high,
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‘h' in the equation
alongside denotes
the binary entropy
function.

For the CHSH
inequality, Bob can
choose B> such that
the error correction
is the one
corresponding to
0=7in

Equation 107.
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The range of values
of « considered is
[0, 2]. This is because
for this range, ©
ranges from 0 to 7.
For other range of 6,
the scenario will be
similar, with only
the role of cosine
and sine ratios in
defining the state,
W) = cos 6 ]00) +
sin 0 [11), to be
interchanged.

Notice how the
maximum rate
attainable in

Figure 12 doesn’t
reach 1. This is
owing to the fact
that v has been fixed
to be 0.998.

DIQKD USING TILTED INEQUALITIES

but the value of the second term, EC, in the same same equation will
also be quite high for almost all values of the visibility, v, for the state
p mentioned in Equation 106. Therefore, all the advantage procured
from a low guessing probability for Eve will be overshadowed by a
lot of error correction information to be sent from Alice to Bob.

We browse through different values of o and compute the rates for
different values of v. Later we compare the rate achievable using the
tilted inequality with the rate achievable using the CHSH inequality
(with the min-entropy and in another scenario with von Neumann en-
tropy to bound the rate curve) for the best p, that was chosen for the
tilted inequality. It is found that for v > 0.99, there is a certain range
of values of « for which the maximum rate achieved by using the
min-entropy bound on the rate for the tilted inequality is more than
the maximum rate achieved by using the min-entropy bound on the
rate for the CHSH inequality. However, the maximum rate achieved
by using the von Neumann entropy bound on the rate for the CHSH
inequality, is the highest, no matter what the visibility of the state
be. For v = 0.998, Figure 12 shows such plots of the maximum rate
achievable versus the value of 8 corresponding to the value of « in
the tilted inequality. However, with a slight increase in the value of
the visibility, a drastic improvement can be observed in the rate for
the tilted inequality. In Figure 13 we show the plots for maximum
rate achievable at v = 1. For this maximum value of visibility, the
rates achieved by tilted inequality are as good as the rates for CHSH
inequality that are bound by the von Neumann entropy. However, it
must be noted that for the overall range of values of 0 (and therefore,
even o) and the range of values of v, the rate achieved by using the
von Neumann entropy bound of CHSH inequality is still the best.

Using an approach similar to the one used to compute the maxi-
mum rates achievable, we just check numerically the maximum noise
that can be tolerated by the different tilted inequalities. It turns out
that the maximum noise tolerable by the tilted inequalities is poorer
than even the maximum noise tolerable by CHSH inequality (while
just considering the min-entropy to bound its rate curve).

Now, these analyses pertaining to the rate and noise tolerance have
been performed in the asymptotic regime. But it should be intuitive
that since none of the tilted inequalities outperform the use of CHSH
inequality (with the von Neumann entropy to bound the rate curve),
in terms of either the rate or the noise tolerance, the tilted inequali-
ties cannot perform better than CHSH on account of any of the three
parameters (namely rate, noise tolerance and minimum number of
rounds required) in the finite regime.

From the results presented in the current as well as the previous chap-
ter, it becomes clear that in order to outperform the CHSH inequality
in at least one of the three parameters (i.e. rate, noise tolerance and
minimum number of rounds required), it is important that the rate
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curve for a particular inequality not only has a high value for the
conditional entropy (H(A | E)), but also has a low value for the error
correction term. This means that Eve’s guessing probability should
be as low as possible; and at the same time, Alice and Bob’s opti-
mal states and measurements should facilitate as much closeness to
perfect (anti-)correlation as possible.
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MOVING TO THREE-OUTCOME BELL
INEQUALITIES

Having explored the use of Bell inequalities with two outcomes, we
now focus on the use of Bell inequalities with more than two out-
comes per party. Specifically, the use of three-outcome inequalities in
the finite key regime is studied in this chapter. The main motivation
to study the use of three-outcome inequalities lies in the fact that for
such inequalities information sent in each round is in form of trits,
as opposed to bits. We want to see if the advantage of better noise
tolerance and key rates with an increase in the number of outcomes
per party, holds for DIQKD or not. Such an advantage has already
been shown to hold in case of standard QKD [SS10].

The first inequality under consideration is the CGLMP-3 inequal-
ity [Col+o2]. This is a two-input and three-output inequality that
achieves maximal quantum violation for a non-maximally entangled
three-dimensional state. Next, we consider the three outcome Bell
inequality that has been tailored to achieve maximal quantum viola-
tion using the maximally entangled two quitrit state [Sal+17], namely
% -(]00) + [11) +122)).

To define the key rate curves while using each of these inequali-
ties, we bound the min-entropy of Alice’s state conditioned on Eve’s
knowledge. This min-entropy is basically the logarithm (with base
= 2) of the inverse of Eve’s guessing probability. Therefore, for bet-
ter key rates, it is desirable to have lower guessing probability. Out
of the two inequalities considered in this chapter, it is observed that
CGLMP-3 inequality with three outcomes has a significantly low guess-
ing probability. In fact, this guessing probability leads to a min-entropy
that is higher than the min-entropy for CHSH inequality. However,
since the maximal violation for this inequality is not achieved by the
maximally entangled state, the error correction term arising for this
inequality is non-zero even when the state shared by Alice and Bob
is the one leading to maximal violation. As such, the overall key rate
analyses for these inequalities suggest that their usage does not of-
fer any better noise tolerance. The overall rate achieved for signifi-
cantly low values of noise, however, is one parameter where these
multi-outcome inequalities offer an advantage. This is mainly because
the raw key sent in each round now is in qudits, which amounts to
log,d bits for a d—dimensional system. In the finite key regime, this
has been found to hold true for CGLMP-3 and tailored-CGLMP-3 in-
equalities. Consequently, the requirement of the minimum number of
rounds for these inequalities is lower than the requirement for CHSH
inequality in the low noise regime and for lower proportion of test
rounds.
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This tailored Bell
inequality is a
variant of the
CGLMP inequality;
the difference being
in the coefficients of
the probability terms
in the expression of
CGLMP inequality.
These coefficients are
formulated in such a
way as to achieve the
maximum violation
using the maximally
entangled state.
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Here, the variable
A (By) stands for
Alice’s (Bob’s)
outcome for an
input i.

Here, L:Z\/—1 and
w =e" 3. In fact,
w is one of the three

cube roots of unity.

Here, U;T denotes
the complex
conjugate transpose
Of uFT-

MOVING TO THREE-OUTCOME BELL INEQUALITIES

In the following sections we present the key rate analyses with the
use of CGLMP-3 and tailored-CGLMP-3 inequalities in the asymp-
totic as well as the finite key regimes.

5.1 DIQKD USING THE CGLMP INEQUALITY

In this section, first the CGLMP-3 inequality is described and the
settings that help attain maximal quantum violation are specified. In
the next subsection, we explore the use of CGLMP-3 in the asymptotic
key regime and the final subsection deals with the use of CGLMP-3
inequality in the finite key regime.

5.1.1 General description of CGLMP-3 inequality

The CGLMP-3 inequality for three outcomes per party is given by:

o [P(Ap =Bo)+P(A1 =B1)+P(B1 =Ap)+
P(Bo=A1+1)]—B-[P(Ao=Bo—1)+P(A; =B —1)
+P(B1 =Ao—1)+P(Bo =A1)] <2

where x =3 =1.

(108)

Let the expression of the above mentioned inequality be denoted by
Icgimp. As shown in [Aci+02; Che+06], the maximal quantum viola-
tion attained by applying this inequality to the maximally entangled
two-qutrit state, %(IOO) +111) +122)), is equal to (% + %) ~ 2.8729.
The optimal setting for this state dictates that Alice and Bob perform
the following operations:

* For the inputs o and 1, respectively, Alice applies the operators
that are eigenvectors of the following unitaries:

100 0 0
01 0| and —w? 0 |- (109)
0 0 1 0 w

For the inputs o and 1, respectively, Bob applies the operators
that are eigenvectors of the following unitaries:

1 0 0 1 0
0O w O and [0 w? 0 |- (110)
0 0 —w? 0 0 —w

e Next, Alice applies a dicrete Quantum Fourier transform, Ut
and Bob applies U.J{ET.

¢ Finally, they both measure in the computational basis (i.e. the
generalized Z basis).
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Now, as mentioned in [Aci+02], the maximum value attainable by this

inequality using quantum correlations is, in fact, equal to 1+ 4/ % A

2.9149. The state that helps achieve the quantum bound is given by
p = ) (|, where

2 VI1—V3
|¢>:1/m-(|oo>+#-|n>+|zz>). (111)

Naturally, this state is a non-maximally entangled one. Also, perform-
ing a Fourier transform on the unitaries in Equation 110 means that
Alice’s operator Ay, which is initially in the generalized Z-basis, is
projected onto a different basis after applying Urr. This basis is char-
acterized by the eigenvectors of:

0
Ao= 10 (112)
1

o o =
o = O

Now, for the error-correction phase, Bob must measure in the basis
that gives maximal correlation for the choice of unitary Ay. Here,
Bob’s basis is given by the eigenvectors of the unitary B, that he
would apply during the error correction phase. Such a choice of Ay
and B3, will modify the optimal choice of other unitaries, as well as
the choice of the optimal state p = [p) (\|. Using numerical methods,
we have been able to compute an optimal quantum strategy involving
Ao, A1, Bo and Bj for the test rounds, and Ay and B, for the key
generation and error correction phase. As per this strategy, we fix the
unitary A to be

o O

10
Ao=10 w (113)
0 0

S

After fixing this, we compute the corresponding changes in the other
three operators A7, Bp, B7 and B,. We also compute the two-qutrit
state for attaining maximum violation. This state is:

Wegrimp) = w-[00) +81-101) 46 -102)
—ou-[10) +p-[11) 4+ 0t -112)

46 -120) — 8- [21) + - |22);

where pu ~ 0.5742, & ~ 0.0427 and v = v/—1.

(114)

For the choice of this non-maximally entangled state (\pcgrmp), and
Ao as mentioned in Equation 113, it is possible to attain the maximal

value of 1+ \/g . Thus, we have seen that the CGLMP-3 inequality
is maximally violated for a non-maximally entangled two-qutrit state.
We shall use the results established in this subsection to derive the
rate curves in the asymptotic and finite key regimes.
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Note that the clock
and shift matrix in
Equation 112 isa
non-hermitian
generalization of
Pauli matrix in
dimension d = 3.

This is owing to the
fact that the X and
Z-bases are
orthogonal to each
other and each is an
equal superposition
of the other’s basis
states.
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Here, Hinin (A | E)
is the min-entropy
and EC denotes the
error correction
term.

Recall that the
problem specified by
Equation 117 can be

solved using the
NPA Hierarchy
function in the
QETLAB package
[Johos].

The conditional
entropy in
Equation 118
denotes the entropy
of Alice’s outcome
on the knowledge of
Bob’s outcome for
their respective
inputs for key
generation.

MOVING TO THREE-OUTCOME BELL INEQUALITIES

5.1.2 CGLMP-3 inequality in the asymptotic key regime

To recall, for a generic Bell inequality, the lower bound on the key
rate in the asymptotic regime (as seen in Equation 4 and Equation 5)
is given by:

rate > Hin(A | E) —EC. (115)

The min-entropy in the above equation can be computed by estimat-
ing Eve’s guessing probability about Alice’s state, in the following
way:

Hmin(A | E) = *logz(pguess)~ (116)

The guessing probability as a function of the violation g can be com-
puted from the following SDP problem:

maximize pguess = P(Ao =0)

subject to IcgLmp = g;

and probability distributions P(Ap) and

the distribtuion in Icgrmp follow NPA Hierarchy constraints.
(117)

Note that, Icgrmp denotes the expression of the CGLMP-3 inequal-
ity and the violation g ranges from the classical bound of 2 to the

quantum bound of T+ /1L

Additionally, for the error correction phase, we take into consider-
ation Alice and Bob’s outcomes for the inputs used during the key
generation rounds. Therefore, the error correction term EC in Equa-
tion 115 can be specified by:

EC = H(A0|Bz). (118)

Let us consider that the two-qutrit state distributed among Alice and
Bob is of the form:

I

p=v-pecgimpr)Wcoimpl+ (1 —v)3

=3 (119)

where v denotes the visibility of the state (pcgrmp) as specified in
Equation 114. Then, the value of the error-correction term in Equa-
tion 119 becomes:

ce = v 5o v+ 152

+2- <62v+ a ;V))logz (3' (62v+ L ;V)>>}; (120)
where 1~ 0.5742, & ~ 0.0427.

It is extremely important to note that the scenario involved herein
is still device independent. For a different choice of quantum strat-
egy to be applied on Icgimp, there would still be a unitary B,
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that would result in maximal correlations during the error correction
phase. Also, the non-maximally entangled state helping in achieving
maximal value can be expressed in form of the depolarising noise
model involving any arbitrary state being shared by Alice and Bob.
Consequently, the error correction term would turn out to be the one
in Equation 120. Considering the results established in this subsec-
tion (i.e. Equation 115 to Equation 120), we plot the key rate curve for
the CGLMP inequality with 3 outcomes in the asymptotic key regime
in Figure 14. It should be noted that for each inequality here, we con-
sider the corresponding bipartite states that yield the quantum bound.
Therefore, for CGLMP-3 inequality, the state under consideration is
the arbitrary state mentioned in Equation 119. For CHSH inequality,
the state is the arbitrary state in Equation 64. The min-entropy term
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Figure 14: Comparison of rate curves using CGLMP (d = 3) (while consider-
ing min-entropy to bound the rate curve) and CHSH inequalities
(while considering min-entropy as well as von Neumann entropy
to bound the respective rate curves).

for the CGLMP-3 inequality achieves the maximum value of log,3 at
v = 1. The Y-axis in the figure above goes from 0 to log,3; and thus,
for the non-maximally entangled state that we are considering, it can
be seen that even at 100% visibility of the state, there will be some
error correction value subtracted from the min-entropy term. Never-
theless, for v > 0.97 the rate achieved using CGLMP inequality, with
three outcomes, is better than the optimal rate for CHSH inequality.
This is owing to the fact that in case of CGLMP-3 inequality here,
the information transmitted is in form of trits (as opposed to bits, in

This advantage is
observed thanks to
the fact that in case
of CGLMP-3, in
every round, a trit of
information is sent,
as opposed to bits.
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case of Bell inequalities with two outcomes per party). This notion has
already been established before, in a slightly different context [HP13].

The noise tolerance, on the other hand is a parameter for which
CGLMP-3 does worse than even the scenario where min-entropy is
used to bound the rate curve for CHSH inequality. As can be seen
in Figure 14, the noise tolerance offered by CGLMP-3 is lesser than
the noise tolerance offered by CHSH inequality (considering min-
entropy). As such, CGLMP-3 produces some key for a bipartite state
with v, of the order of 0.899. This is significantly worse compared to
the tolerance of as low as v = 0.858, in case of CHSH inequality. It is
extremely important to recollect that for CHSH inequality we are con-
sidering a two-qubit state being shared amon Alice and Bob; whereas
for CGLMP-3 inequality, we are considering a two-qutrit state being
shared among them.

5.1.3 CGLMP-3 in the finite key regime

Firstly let us recall the expression for the rate in the finite regime from
Equation 98.
1

rate > fln] —leak —vy - f1(d) + O<ﬁ);

where fln) =n——=(f2() +1 V).
Note that this bound on the key rate is based on equation 7 in the
paper [AFRV16]. Now, here, since we are looking at an inequality
with three outcomes per party, the value of d will change and ac-
cordingly, the value of the functions f; and f, will also change. To
study the implications of the use of CGLMP-3 inequality in the finite
key regime, we bound the von Neumann entropy used to define the
key rate for the CHSH inequality in [AFRV16] by the min-entropy
for the CGLMP-3 inequality. The other major and significant change
in the rate curve will be in the leak term where the error correction
term for the maximally entangled two-qubit state is replaced by the
error correction defined in Equation 120. Also, since the third term
in the above equation (the one involving vy and f1) is constant in the
number of rounds n, the change in that term also turns out to be sig-
nificant. The subsequent plots for CGLMP-3 in the finite regime are
showcased in Figure 15 and Figure 16. From the plots of rate curves
in the asymptotic regime it is evident that the advantage, if any, can
be witnessed only in the low noise regime. We therefore showcase the
rate curves for the visibility v = 0.99 of the two-qutrit state, given by
Equation 114. For the purpose of compare and contrast, we present
the plots for CHSH in the finite key regime for the same choice of
value of v of the two-qubit state given by Equation 8.

(121)

It should be noted already that the noise tolerance offered by CGLMP-
3 is much less compared to the noise tolerance offered by CHSH
inequality. In terms of the rate and minimum number of rounds re-



5.1 DIQKD USING THE CGLMP INEQUALITY 59

1 T T T

—— CGLMP-3 for ~ = 10%

0.9 — CHSH for + = 10%

0.8

0.7

0.6

rate

0.5

0.4

0.3

0.2r1

01r

D | 'l |
107 108 10° 1010
number of rounds

Figure 15: Comparison of rate curves for CGLMP-3 inequality (with min-
entropy bound) and CHSH inequality (with von Neumann en-
tropy bound) in the finite key regime. The proportion of test
rounds is Yy = 10% and the visibility has been set to v = 0.99.

quired, it can be observed from the plots in Figure 15 that for y = 10%,
even in the low noise regime, the rate for CGLMP-3 is lesser than the
rate for CHSH for lower number of rounds. Also, the requirement of

minimum number of rounds is lesser in case of CHSH compared to
CGLMP-3.

If we use a smaller fraction of rounds for testing, say y = 5%, then
there is slight advantage observed in terms of the minimum number
of rounds required for CGLMP-3 compared to the value of the same
parameters for vy = 5%. This can be seen in the plots in Figure 16.
It is also evident that for lower values of n, the plot for CGLMP-3
at v = 5% offers no advantage, for any parameter, over the plot for
CHSH at v = 10%. While, we are free to choose a value of y that
gives the best results, in practice, carrying out the Bell’s experiment
for test rounds can be a costly affair. So if a smaller value for v is of
interest, then CGLMP-3 offers better rates and requires lesser num-
ber of rounds than CHSH in the low noise scenario. Nevertheless,
looking at the overall picture and considerinng the lower values of n,
CHSH is still the better alternative in terms of noise tolerance, rates
and minimum number of rounds required.

1M
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Figure 16: Comparison of rate curves for CGLMP-3 inequality (with min-
entropy) and CHSH inequality (with von Neumann entropy) in
the finite key regime. The proportion of test rounds is v = 5% for
CGLMP-3; and for CHSH curves for vy = 5% and y = 10% are
shown.

5.2 DIQKD USING THE TAILORED-CGLMP-3 INEQUALITY

In this section we explore the implications arising from the use of a
three-outcome Bell inequality that has been tailored so as to achieve
the maximum quantum value for the maximally entangled two-qutrit
state. The generic, multi-output (d-output) and multi-input (m-input)
form of this inequality has been introduced and studied in [Sal+17].
For ease of notation, we shall call the two-input, three-output scenario
of this inequality as tailored-CGLMP-3 inequality.

5.2.1 General description of tailored-CGLMP-3 inequality
The tailored-CGLMP-3 inequality can be stated as follows:

- [P(Ag =Bg)+P(A; =B1)+P(By =Ap)+
P(Bo =A1+1)]—B-[P(Ao =Bo—1)+P(A; =By —1)
3-cot(m/12) —1
2
1 s 51 1 571
where @ = c [°°t<Tz) —cot<1—2)} & B = c [1 +cot<§>}.
(122)

+P(B1 =A0—1)+P(Bo=A1)] <

1012
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We denote the expression of the above inequality by Itqitored—cGrLmp-

The classical bound of the expression for tailored-CGLMP-3 is equal
to M —2 ~ 3.0981; and the quantum bound of the same
expression is 4 [Sal+17]. The operators applied to achieve the maxi-
mum quantum value are the same as in case of CGLMP-3 (specified
in Equation 109 and Equation 110). The key advantage here, however,
is the fact that the state that is facilitating the achievement of the

maximal violation is the maximally entangled two-qutrit state:

1
W=7 (100) +111) +122)).
For the error correction phase, the choice of bases for Alice and Bob
should be such that there is maximal correlation. This causes the
amount of error correction information, which is to be sent across,
to be the least. Now, even though the operator Ay (as specified in
Equation 112) is in the generalized X-basis, since the inequality maxi-
mally violates the maximally entangled state, during error correction,
Bob can choose a unitary B, such that information leaked during the
error correction phase is as little as possible. In the following subsec-
tions we present the results of the rate curves for the use of tailored-
CGLMP-3 inequality in the asymptotic and finite key regimes, respec-
tively.

(123)

5.2.2  Tailored-CGLMP-3 in the asymptotic key regime

The equation for the rate curve for this scenario is going to be the
same as the one put forth in Equation 115. Additionally, the relations
mentioned in Equation 116 and Equation 118 hold in this case as well.
By replacing the probabilities in Icgrmp with the probabilities in
Ltaitorea—ccrLmp, the SDP problem specified in Equation 117 can be
used to formulate the problem to be solved.

Now, for the depolarizing noise model considered in Equation 119,
where the state \p) is given by Equation 123, the error correction term
is given by:

o= (s (52) 2 (5 mm(57).

Consequently, the rate curve in the asymptotic key regime is as plot-
ted in Figure 17.

As can be seen, the noise tolerance offered by the use of tailored-
CGLMP-3 inequality is even worse than noise tolerance offered by
the use of CGLMP-3 inequality.

The advantage, that the use of this inequality to bound the rate curve
has, is in terms of the maximum rate attainable. Since there is no need
for error correction when the state shared between Alice and Bob is
the pure, maximally entangled two-qutrit state, the maximum value
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Note that the only
difference between
the expressions of
CGLMP-3
(Equation 108) and
tailored-CGLMP-3
inequalities is in the
values of the
coefficients « and f3.
These coefficients in
Equation 122 are
tuned in such a way
that the inequality is
maximally violated
by the maximally
entangled state.

Since the qutrit state
in consideration this
time is the
maximally
entangled state, at
v =1, the visibility
of the state is 100%
and there will be
maximal correlation
in Alice and Bob’s
outcomes; therefore,
no error correction
information will
have to be sent from
Bob to Alice. By
substituting v =1
in Equation 124 we
can see that indeed,
the error correction
term becomes 0.
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For Figure 17, it is
important to note
that for each of three
inequalities
considered here, the
respective states
yielding the
quantum bound are
considered while
defining the
bipartite state with
depolarizing noise
model.

The unequal
coefficients for the
probabilities in the
expression for
tailored-CGLMP-3
breaks the otherwise
existing symmetry
in the expression for
CGLMP inequality.
This, in turn,
increases Eve’s
guessing probability
and results in a
shorter range of low
noise regime with
rates better than
CHSH.
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Figure 17: Comparison of rate curves using tailored-CGLMP-3, CGLMP-3
inequalities (while considering min-entropy to bound the rate
curve) and CHSH inequalities (while considering min-entropy
as well as von Neumann entropy to bound the respective rate
curves).

that the key rate can reach in the asymptotic regime is log,3. How-
ever, it should be noted that the range of value of visibility for which
the rate attained is better than the rate attained by considering CHSH,
is merely [0.98,1].

5.2.3 Tailored-CGLMP-3 in the finite key regime

An approach similar to the one described for CGLMP-3 inequality in
Section 5.1.3 is used to analyze the use of tailored-CGLMP-3 inequal-
ity in the finite key regime. Figure 18 showcases the resultant rate
curves for the visibility v fixed at 0.99.

As far as the rates are concerned, for small values of n, and for
high values of visibility of the state (given by Equation 119 and Equa-
tion 123), meaning for v > 0.98, the rate attained is higher than
the rate attained by using CHSH inequality. Also, in this low noise
regime, the minimum number of rounds required is the least for
tailored-CGLMP-3 among CHSH, CGLMP-3 and tailored-CGLMP-3
inequalities.

It can be observed from the plots in Figure 18 that for larger val-
ues of n, the rates achieved using tailored-CGLMP-3 inequality are
not higher than the rates achieved using CHSH inequality. Recall that
these plots are for v = 0.99; and from the rate curves in the asymp-
totic regime (Figure 17) it is clear that the rates for tailored-CGLMP-3
inequality should plateau to a higher value than the rates for CHSH
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Figure 18: Comparison of rate curves for tailored-CGLMP-3 inequality (with
min-entropy) and CHSH inequality (with von Neumann entropy)
in the finite key regime. The proportion of test rounds is y = 10%,
and the visibility is v = 0.99.

inequality for greater number of rounds. This observation is due to
the significance of the fraction of test rounds (y) in setting the lower
bound on the rate curve in the finite regime. In figure Figure 19, we
can see that tailored-CGLMP-3 evidently achieves better rate as well
as has a lower requirement of minimum number of rounds, as com-
pared to CHSH inequality. For these plots, the value of v has been
kept 0.99 and the fraction of test rounds is y = 0.1%.

Finally, the lowest value of visibility for which there is some positive
key rate using the tailored-CGLMP-3 inequality is v ~ 0.92. Thus, the
overall noise tolerance of this inequality is relatively poor compared
to the scenarios involving the use of CGLMP-3 or CHSH inequality.

This concludes, the analyses using inequalities with three outcomes
per party to perform device independent quantum key distribution.
For the two inequalities studied, increasing the number of outcomes
per party has not been advantageous in achieving better noise toler-
ance than CHSH. However, the tailored-CGLMP-3 inequality offers
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Figure 19: Comparison of rate curves for tailored-CGLMP-3 inequality (with
min-entropy) and CHSH inequality (with von Neumann entropy)
in the finite key regime. The proportion of test rounds is y = 0.1%,
and the visibility is v = 0.99.

better rates and requires lesser number of rounds for key generation
compared to CHSH in the low noise regime. In the following chapter,
which is the concluding chapter, all the results are summarized. Also,
some potential future scope is discussed.
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CONCLUSION AND DISCUSSION

6.1 SUMMARY OF RESULTS

Use of different Bell inequalities in a DIQKD setting results in dif-
ferent key rate analyses. We have focused on the parameters of rate
achievable, noise tolerance and minimum number of rounds required
to study the suitability of applying a particular inequality in the finite
key regime. In this chapter, the key results encountered so far are sum-
marized. We end this final chapter by posing a couple open questions.

Firstly, various groups of two-outcome, bipartite Bell inequalities have
been analyzed. These groups of inequalities, namely, x—CHSH, x3—
CHSH, «3—CHSH, a—MagicSquare, «?—MagicSquare, «>— Magic-
Square and Chained inequalities are inequalities that attain the quan-
tum bound using the maximally entangled state. To verify this, we
have derived the generic quantum bound for these groups (except for
Chained inequalities, which have already been studied extensively
[BCgo; Weho6]), and then specified the set-up for Alice and Bob to
achieve the proven quantum bound. Next, using the recipe to de-
rive the bound on von Neumann entropy for CHSH inequality, as
in [Pir+og], we have derived generic bounds on the von Neumann
entropy as a function of the violation of these groups of inequalities.
For inequalities with three inputs per party, the bound assumes the
restriction of the system to a subspace of dimension d = 2. Based
on the bounds that are derived, it is evident that the bound is only
tight in case of CHSH inequality. In addition to this, as the ratio of
the quantum bound, Q, of an inequality to its classical bound, C,
starts waning, the bound on the von Neumann entropy starts getting
loose. This affects the rate curves and renders poor results in terms of
all three parameters of interest compared to CHSH inequality. And
while the derived von Neumann entropy bound does offer an advan-
tage over the min-entropy bound, especially in the high noise regime,
it should also be noted that below a certain value for the ratio % the
bound on von Neumann entropy is so low that it is better to just con-
sider min-entropy to bound the rate curve.

Next, we look at the tilted inequalities, which are two-outcome bi-
partite inequalities that attain the maximum violation when using a
non-maximally entangled state. For these inequalities, we use the rate
curve bound by the min-entropy and find that for non-maximally en-
tangled states, the value of the min-entropy is quite high; and as we
move towards an almost separable state, the value of min-entropy for
tilted inequality surpasses the von Neumann entropy value of CHSH
inequality. Owing to this, it was conjectured that high key rates can
be achieved for the almost-separable states. However, it is quintessen-
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tial to recall that the expression for the key rate also has an error
correction term. We show that for the tilted inequality, as we move
from the maximally entangled state towards the separable state, the
amount of information to be communicated during the error correc-
tion phase keeps increasing, thereby increasing the penalty on the
error correction term in the expression for rate. Thus, the potential
advantage that the tilted inequality could have offered in terms of op-
timal rates is also lost. However, this improvement is not enough, and
for all the states CHSH is still the better option. Also, in terms of noise
tolerance, tilted inequalities cannot do better than CHSH inequality.
These results clearly suggest that even in terms of minimum number
of rounds required, tilted inequalities are incapable of outperforming
the CHSH inequality.

Finally, we switch from bipartite inequalities having two outcomes
per party to bipartite inequalities having three outcomes per party. In
this regard, we study and apply CGLMP-3 inequality and tailored-
CGLMP-3, with the rate curves bound by the corresponding min-
entropy. In the finite regime, both these inequalities perform worse
compared to CHSH (with von Neumann entropy bound) on account
of the parameter of noise tolerance. However, as far as the rates and
minimum number of rounds are concerned, the tailored-CGLMP-3
inequality turns out to be the best choice among CHSH, CGLMP-3
and tailored-CGLMP-3 inequalities in the low noise regime. For a
high noise scenario, CHSH inequality is yet again the best choice for
attaining high rates and having a lower requirement of minimum
rounds.

Noise tolerance is one parameter for which no improvement has been
procured in the value compared to the noise tolerance of 7.1% offered
by CHSH inequality. We now take a brief look at a Bell inequality with
three-outcomes per party. Next, we put forth two open questions, one
that arises as a result of the derivations performed in Chapter 3 and
the other directly relevant to DIQKD in the finite key regime.

6.2 OPEN QUESTIONS

6.2.1  Bell inequality with a higher % ratio than CHSH?

For the inequalities inspected in Chapter 3 for their use in DIQKD,
it was observed that the highest value of the ratio % is v/2, which
occurs for CHSH inequality. So is there a two-outcome, bipartite Bell
inequality that is not only maximally violated by a maximally entan-
gled state, but also has % > /22 Or, is there a way to prove that for
such Bell inequalities, the maximum value of % is /22 While the an-
swer to this may not have direct applications immediately, but it still
is an interesting riddle to solve!



6.2 OPEN QUESTIONS

6.2.2 A potential von Neumann entropy bound for CHSH-3 inequality?

To recall, the rate in asymptotic regime has the following lower bound:

rate > H(A | E) — EC. (125)

For CHSH inequality, while using min-entropy to bound the rate
curve, we have that:
T+v2—2-v2
H(A | E) = —log, (f) (126)
And while using von Neumann entropy to bound the rate curve for
CHSH inequality, the following holds:

1+v2-v2 -1
—5 )

H(A|E) =1 —h( (127)

To quantitatively see how von Neumann entropy is better than min-

entropy in binding the rate curve, the corresponding plots are show-
cased in Figure 20.

Extending the approach used in [Pir+og], the bounds derived in
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Figure 20: Plots of the quantity H(A | E) versus the visibility v, for the CHSH
inequality.

Chapter 3 on the von Neumann entropy achieve an improvement
over the min-entropy for the inequalities considered. However, this
bound is not a tight bound. It becomes a good motivation to derive a
bound on von Neumann entropy for other inequalities which is tight,
just like the tight bound on the von Neumann entropy for CHSH in-

equality.
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= 197 ) (b +
7— I, the
parameter v in
Equation 126 and
Equation 127,
denotes the visibility
and ‘W’ in
Equation 127
denotes the binary
entropy function.
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Note that the
subscript 3 denotes
the application of
modulo3 after
performing the
addition or
multiplication
operation.

CONCLUSION AND DISCUSSION

To lay a foundation in the direction of this motivation, we briefly
look at a Bell inequality that is analogous to the CHSH inequality but
in a field 3 subspace instead of a field 2 subspace. We shall denote
this inequality as CHSH-3 inequality.

Applying the CHSH inequality, with inputs x, y and outcomes a, b
for Alice and Bob respectively, is equivalent to playing a game and
allocating a score of +1 when a® b = x x y and a score of 0 other-
wise. This was the case for a field 2 scenario, with two possible input
options and two possible output options. Now, let us extrapolate the
same premise of the game to a field 3 scenario with three input and
three output options each (i.e. a, b, x, y each can take values from
either 0, 1 or 2). For this scenario, if we allocate the scores of +1 for
a®3 b =x x3y, and 0, otherwise, then the expression for the game
that arises thereby is the expression for the CHSH-3 inequality. In
general, CHSH-d inequalities have been studied in depth [LLD+o9;
RAM16; BS15] for d possible inputs and outcomes per party.

Now, since CHSH-3 inequality is quite analogous to CHSH inequal-
ity, the question we pose is: is it possible to derive a bound on the
von Neumann entropy for CHSH-3 inequality which is significantly
higher than the corresponding min-entropy for it? Consequently, is it
possible to surpass the noise tolerance threshold that CHSH inequal-
ity has already set?
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SOME OF THE EASTER EGGS IN THIS DOCUMENT

Shadow block on the title page

The shadow block on the title page of this thesis is inspired from the
shadow block on the cover page of the amazing book — Godel, Escher,
Bach: an Eternal Golden Braid — by Douglas Hofstadter. In the shadow
block diagram I have tried to amalgamate ideas from two very differ-
ent fields that I find very fascinating.

First of, it aims to herald the metaphysical notion of Anekantvada or
many-sidedness. Indeed, there can be many subjective views pertain-
ing to an idea. And these views may vary based on the variations in
the perspective of the observer(s).

Secondly, since the thesis deals with quantum information theory;, it
can be interesting to streamline the main theme of the diagram in this
direction. The block suspended in the diagram has been chosen to be
such that based on the point of view (analogous to the choice of ba-
sis for measurement), one can encounter the corresponding shadow
(analogous to the resultant outcome of the measurement). The three
shadows aim to showcase the representations of three of the six car-
dinal states in a Bloch sphere. While it may be clear that the shadows
on the walls stand for the |0) and the [+) states, the shadow on the
floor is supposed to denote the |+ i) state, which is orthogonal to
both [0) and |+). If you viewed the shadow on the floor as ‘I’, then
it is easy to see the analogy between this shadow representation and
| +1). If however, you viewed the shadow on the floor as ‘H’, then
notice how the Hadamard gate transforms the state along the Y-basis
into the other state along the Y-basis (i.e. Hadamard basis transforms
|+ 1) to | — 1), and vice versa).

Emphasized words in the acknowledgements

Look closely, and you will find that the emphasized words in the
acknowledgements combine together to form the phrase Device Inde-
penedent Quantum Key Distribution!
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