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Abstract: In this contribution, we study the phase-only ambiguity resolution and positioning
performance of GPS for short baselines. It is well known that instantaneous (single-epoch) ambiguity
resolution is possible when both phase and code (pseudorange) data are used. This requires, however,
a benign multipath environment due to the severe effects multipath has on the code measurements.
With phase-only processing, one would be free from such severe effects, be it that phase-only
processing requires a change in receiver-satellite geometry, as a consequence of which it cannot be
done instantaneously. It is thus of interest to know how much change in the relative receiver-satellite
geometry is needed to achieve successful phase-only ambiguity resolution with correspondingly high
precision baseline solutions. In this contribution, we study the two-epoch phase-only performance
of single-, dual-, and triple-frequency GPS for varying time spans from 60 s down to 1 s. We
demonstrate, empirically as well as formally, that fast phase-only very-precise positioning is indeed
possible, and we explain the circumstances that make this possible. The formal analyses are also
performed for a large area including Australia, a part of Asia, the Indian Ocean, and the Pacific
Ocean. We remark that in this contribution "phase-only" refers to phase-only measurements in the
observation model, while the code data are thus only used to compute the approximate values needed
for linearizing the observation equations.

Keywords: GPS; phase-only; ambiguity resolution; Ambiguity Dilution of Precision (ADOP);
success-rate

1. Introduction

In this contribution, we study, empirically and formally, the phase-only ambiguity resolution
and positioning performance of single-, dual-, and triple-frequency Global Positioning System (GPS)
for short baselines. Phase-only processing, with the purpose of avoiding code multipath, has been
studied in [1,2]. In these studies, however, it is not the double-differenced (DD) phase data, but
their triple-differenced counterpart that is used. As a consequence, the ambiguities are eliminated
from the observation equations, thus making integer ambiguity resolution impossible. In the present
contribution, however, we keep the integer ambiguities in the phase-only model and use the change in
receiver-satellite geometry to enable ambiguity resolution. This principle was first introduced in [3].
It will be shown in this contribution that, although the DD ambiguities have a very poor precision
when the changes in geometry are small, their least-squares ambiguity decorrelation adjustment
(LAMBDA)-decorrelated [4] counterparts can still be of sufficient high precision to enable successful
ambiguity resolution.

By the beginning of September 2018, 31 GPS operational satellites are available consisting of
1 block IIA satellite, 11 block IIR satellites, 7 block IIR-M satellites, and 12 block IIF satellites. The IIF
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satellites transmit signals on the third frequency L5 in addition to L1 and L2 [5]. Making use of the
Multi-GNSS (Global Navigation Satellite System) Experiment (MGEX) broadcast ephemeris [6–8]
on Day of Year (DOY) 240, 2018, the number of the GPS IIA/IIR/IIR-M satellites transmitting L1
(1575.42 MHz) and L2 (1227.6 MHz) signals, and the number of the GPS IIF satellites transmitting
triple-frequency signals on L1, L2, and L5 (1176.45 MHz) are shown in Figure 1 for station CUAA
located in Perth, Australia. The elevation mask is set to be 10 degrees in this study. We see that in more
than 80% of the time at least 8 GPS satellites can be observed. Around 2–5 IIF satellites are visible most
of the time. In this study, all plots are generated using the MGEX broadcast ephemeris on DOY 240,
2018, in GPS time (GPST).
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Figure 1. Number of visible GPS satellites for station CUAA in Perth, Australia, on DOY 240, 2018.

Using the LAMBDA method, in the two-epoch phase-only case, large redundancies are helpful to
push down the conditional standard deviations of the decorrelated ambiguities to a low level and thus
improve the ambiguity resolution performance [3]. Assuming that the receiver coordinates and the
ambiguities remain unchanged, and double-differences are formed on each frequency, the redundancy
of the least-squares adjustment can be formulated for ambiguity-float (R f ) and -fixed cases (Rx) as

R f =
f

∑
j=1

(mj − 1)− 3 (1)

Rx = 2
f

∑
j=1

(mj − 1)− 3 (2)

where mj needs to be larger than 1 to form double-differences on frequency j.
In this study, based on single-, dual-, and triple-frequency phase signals of the current GPS

constellation, we evaluate the phase-only ambiguity resolution and positioning performance using
two epochs separated by different time spans. In the next section, an overview of the processing
strategy is given, which is followed by the introduction of our measurement set up and geometry.
Subsequently, empirical and formal analysis are performed for the two baselines in Perth, followed
by a formal analysis covering a larger area containing Australia, part of the Indian Ocean, the Pacific
Ocean, and Asia. Conclusions are provided at the end of the paper.
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2. Processing Strategy

In a multi-frequency two-epoch scenario, the linearized DD GPS observed-minus-computed (O-C)
terms of the phase (∆φ) observations can be formulated for short baselines as

E

[
∆φ(ti)

∆φ(ti + ∆t)

]
=

[
DT

m A(ti) Λ
DT

m A(ti + ∆t) Λ

] [
∆b
a

]
(3)

with

DT
m = blkdiag(DT

m1
, · · · , DT

m f
) (4)

Λ = blkdiag(λ1 Im1−1, · · · , λ f Im f−1) (5)

A(ti) = [u1(ti), · · · , um(ti)]
T (6)

m =
f

∑
j=1

mj (7)

where f and mj denote the number of frequencies and the number of visible GPS satellites transmitting
signals on frequency j, respectively. The differencing operator DT

mj
= [−emj−1, Imj−1] forms the

between-satellite differences with emj−1 and Imj−1 denoting the vector of ones and the identity matrix
of size mj − 1, respectively. blkdiag(·) represents the block diagonal matrix of the matrices contained
in (·), and E[·] is the expectation operator. The term uj(ti) represents the unit vector from satellite j to
the rover at the time point ti, and ∆t denotes the time span between the two epochs. The wavelength
on frequency j is denoted by λj. The baseline increment vector and the DD ambiguity vector (in cycles)
are denoted by ∆b and a, respectively. Here, we assume the baseline coordinates and the ambiguities
remain unchanged during the two epochs. The MGEX broadcast ephemeris [6–8] is used to compute
the satellite orbits. The two-epoch processing is only performed when, during the two epochs, the
visible satellites are the same and no cycle slips occur during the two epochs. We remark that in this
contribution "phase-only" refers to phase-only measurements in the observation model (Equation (3)).
Before the two-epoch processing, the GPS L1 code observations were used in a single point positioning
(SPP) procedure to obtain the satellite positions at the signal transmitting time.

Based on the zenith-referenced phase signal standard deviations on each frequency j, denoted as
σj, the variance-covariance matrix of Equation (3) reads

D

[
∆φ(ti)

∆φ(ti + ∆t)

]
=

[
2DT

mQ(ti)Dm 0
0 2DT

mQ(ti + ∆t)Dm

]
(8)

with

Q(ti) = blkdiag(Q1(ti), · · · , Q f (ti)) (9)

Qj(ti) = σ2
j W−1

j (ti) (10)

Wj(ti) = diag(wj,1(ti), · · · , wj,mj(ti)) (11)

where D[·] is the dispersion operator, and diag(·) forms the diagonal matrix with the diagonal elements
contained in (·). The wj,s(ti) represents the elevation-dependent weight of the s-th satellite transmitting
signals on frequency j, which is formulated as [9]

wj,s(ti) = (1 + 10 · exp(− ej,s(ti)

10
))−2 (12)

where exp(·) is the natural exponential function. The term ej,s(ti) denotes the elevation angle from
receiver to the s-th satellite transmitting signals on frequency j at ti, which is given in degrees.
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Using the least-squares variance component estimation (LS-VCE) procedure [10],
the zenith-referenced standard deviations were calculated for two baselines CUAA-CUBB
and CUAA-CUCC in Perth, Australia, on frequencies L1, L2, and L5 for GPS phase measurements
(Table 1). The phase standard deviations were calculated based on the DD phase residuals computed
using the ground truth of the baselines and the reference ambiguities, which were obtained with the
strong baseline-known model [11,12]. The data on DOY 241, 2018, were used for the computation.
Note that the phase multipath was not corrected for the signal standard deviations. In this study,
the phase signals on channels L1C, L2W, and L5X (see Table A.5 of [13], p.1211) were used for the
signal analysis and data processing.

Table 1. Zenith-referenced phase standard deviations for baselines CUAA-CUBB and CUAA-CUCC.

Frequency CUAA-CUBB (mm) CUAA-CUCC (mm)

L1 1 1
L2 1 2
L5 2 2

3. Measurement Geometry

In this study, 1 Hz GPS data of two meter-level short baselines CUAA-CUBB and CUAA-CUCC
located in Perth, Australia, were collected for the data processing. The three stations CUAA, CUBB,
and CUCC are all equipped with Javad receivers (Javad, San Jose, CA, U.S.) of the type JAVAD
TRE_G3TH DELTA and Trimble antennas (Trimble, Sunnyvale, CA, U.S.) of the same type TRM59800.00
SCIS. The skyplot for station CUAA is shown as an example in Figure 2 for all the visible GPS satellites
above the elevation mask of 10◦.

Figure 2. Skyplot of the visible GPS satellites for station CUAA over 24 h on DOY 240, 2018.

Based on [14], in the two-epoch phase-only case, the variance-covariance matrix of the
ambiguity-float (Qb̂b̂) and -fixed baseline increments (Qb̌b̌) at ti can be formulated as

Qb̂b̂ = 2(
2

∑
k=1

(DT
m Ak − Ā)T Pk(DT

m Ak − Ā))−1 (13)

Qb̌b̌ = 2(
2

∑
k=1

AT
k DmPkDT

m Ak)
−1 (14)
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with

Ā = (
2

∑
k=1

Pk)
−1

2

∑
k=1

(PkDT
m Ak) (15)

Pk = (DT
mQ(ti + (k− 1)∆t)Dm)

−1 (16)

where the subscript k = 1, 2 represent the time point ti and ti + ∆t. As the average precision in all three

directions, Figure 3 shows the terms
√

tr(Qb̂b̂)/3 and
√

tr(Qb̌b̌)/3 in single-, dual-, and triple-frequency
cases for baseline CUAA-CUBB with ∆t of 30 s, where tr(·) is the trace operator. From Figure 3 it can
be observed that increasing the number of frequency from one (black lines) to three (magenta lines)

reduces the values of
√

tr(Qb̂b̂)/3 and
√

tr(Qb̌b̌)/3 by around 20–30%. Very similar values between
the dual- and triple-frequency cases (the cyan and magenta lines) are caused by the fact that only block
IIF satellites transmit signals on L5. In the case that L5 is transmitted by all available GPS satellites (see
the blue lines), increasing the frequency number from two to three will reduce the average precision by
around 10% from their values in the dual-frequency case. We remark that the uncontinuities observed
in Figure 3b also exist in Figure 3a. They can be observed by zooming in on the figure.

(a)
√

tr(Qb̂b̂)/3 (b)
√

tr(Qb̌b̌)/3

Figure 3.
√

tr(Qb̂b̂)/3 (a) and
√

tr(Qb̂b̂)/3 (b) in the two-epoch case with ∆t of 30 s. The satellite orbit
on DOY 240, 2018, and the ground truth of baseline CUAA-CUBB were used for the plot.

As introduced in [15], the ambiguity dilution of precision (ADOP) is an easy-to-calculate scalar
that measures the model strength of successful ambiguity resolution. It can be computed as

ADOP =
√
|Qââ|

1
m− f

(17)

where Qââ denotes the variance-covariance matrix of the float ambiguities, and | · | is the determinant
operator. When increasing the number of frequencies and the time span, the ADOPs are
correspondingly changed as shown in Figure 4. We see that the ADOPs are highly dependent on
the time span ∆t, i.e., the geometry change between the two epochs. However, even with a ∆t of 1 s,
in the dual- and triple-frequency cases, the ADOPs are smaller than 0.12 cycles in above 90% of all
tested two-epoch cases. For ∆t of 30 and 60 s, the ADOPs in the dual- and triple-frequency cases are
below 0.12 cycles (the gray dashed lines) in all tested two-epoch cases. As described in [16], an ADOP
lower than 0.12 cycles approximately corresponds to an integer least-squares (ILS) ambiguity success
rate (ASR) larger than 99.9%, which is lower bounded by the integer bootstrapping (IB) ASR [17].
This indicates high ASRs in the dual- and triple-frequency cases without needing to wait for a long
time to collect the second epoch of the phase data.
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(a)∆t=1 s (b)∆t=30 s (c)∆t=60 s

Figure 4. Ambiguity dilution of precision (ADOP) of baseline CUAA-CUBB in the phase-only
two-epoch case. The time span between the two epochs is 1 (a), 30 (b), and 60 s (c). The gray
dahsed lines mark the ADOPs of 0.12 cycles. Note that the sub-figures have different scales

The ADOP can be related to the baseline precision before (Qb̂b̂) and after (Qb̌b̌) ambiguity
resolution by means of the gain numbers [14]. The gain numbers γk, (k = 1, 2, 3) are defined as

γk( fk) =
f T
k Qb̂b̂ fk

f T
k Qb̌b̌ fk

(18)

where the 3×1 vectors fk are called gain vectors. The stationary values of the gain numbers γk with
γ1 ≤ γ2 ≤ γ3 are generalized eigenvalues of Qb̂b̂ and Qb̌b̌, which fulfill

|Qb̂b̂ − γkQb̌b̌| = 0 (19)

Based on [16], the determinant of the variance-covariance matrix of the ambiguities Qââ can be
formulated as

|Qââ| =
|(∑2

k=1 Pk/2)−1|
|Λ2| ×

|Qb̂b̂|
|Qb̌b̌|

=
|(∑2

k=1 Pk/2)−1|
|Λ2| ×

3

∏
k=1

γk (20)

As ADOP is equal to
√
|Qââ|

1
m− f (Equation (17)), the outliers that we see in

√
∏3

k=1 γk

1
m− f

for the
L1-only case between around 11900 and 17700 s, as shown in Figure 5, explain the ADOP outliers in
the L1-only case during the same time periods (Figure 4a).

Figure 5. The term
√

∏3
k=1 γk

1
m− f

(Equation (20)) for baseline CUAA-CUBB with ∆t of 1 s.

In Figure 6, the daily average ADOPs are illustrated for short baselines from 55◦ E to 155◦ E in
longitude and from 45◦ S to 35◦ N in latitude. The average ADOPs in the colormaps were computed
based on two-epoch time series with a sampling interval of 30 s. The signal standard deviations
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of the baseline CUAA-CUBB (Table 1) were used for the computation. We see that, in dual- and
triple-frequency cases, even with ∆t of 1 s, the average ADOPs are smaller than 0.12 cycles in the entire
test area.

Figure 6. Daily average ADOPs using single-, dual-, and triple-frequency phase signals with ∆t of 1
(top) and 60 s (bottom). Note that the sub-figures have different scales.

4. Ambiguity Resolution

In this section, the performance of ambiguity resolution is evaluated for the phase-only two-epoch
scenario. Making use of the two baselines introduced in Section 3 and the phase standard deviations
given in Table 1, different frequency combinations and time spans between the two epochs are tested
for both formal and empirical analysis.

In this study, we use the LAMBDA method [4] to decorrelate the float ambiguities, which were
estimated in Equation (3) together with the baseline increments. As given in [18], using the conditional
standard deviations of the decorrelated ambiguities σẑi|I with i = 1, · · · , m− f and I = 1, · · · , i − 1,
the IB ASR, denoted as PIB, can be calculated as

PIB =
m− f

∏
i=1

(2Φ(
1

2σẑi|I

)− 1) (21)

with

Φ(x) =
∫ x

−∞

1√
2π

exp(−y2

2
)dy. (22)

As shown in [3], without decorrelation of the ambiguities, some of the conditional standard
deviations of the original ambiguities σâi|I are large in the phase-only two-epoch case, especially when
the time span between the two epochs is small and almost no geometry change exists between the
two epochs. This leads to difficult search of the integer ambiguities. After decorrelating the ambiguities,
the situation is changed with the conditional standard deviations reduced to a relative low and equal
level. As shown in Figure 7, based on two epochs of data for baseline CUAA-CUBB on DOY 240, 2018,
the conditional standard deviations of the ambiguities before (blue) and after (green) decorrelation
are shown for single-, dual-, and triple-frequency cases. The first epoch is the first second of the test
day, and the time span between the two epochs is set to be 1 and 60 s in the top and bottom panels,
respectively. It can be observed that for a short time span of 1 s between the two epochs (see the top
panels of Figure 7), the largest conditional standard deviations amounting to tens of cycles without
decorrelation are reduced to the level of centi- to deci-cycles. With a longer time span of 60 s between
the two epochs, with a larger geometry change, the conditional standard deviations are reduced both
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before and after decorrelation of the ambiguities. The conditional standard deviations in dual- and
triple-frequency scenarios are in general smaller than those in single-frequency scenario.
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Figure 7. Conditional standard deviations of the ambiguities (σâi|I before the decorrelation and
σẑi|I after the decorrelation with I = 1, · · · , i − 1) in single-, dual-, and triple-frequency cases for
phase-only two-epoch processing. The satellite orbit on DOY 240, 2018, and the ground truth of
baseline CUAA-CUBB were used for the plot. The first epoch is the first second of the test day, and the
time span between the two epochs are 1 (top) and 60 s (bottom).

To have an overview of the conditional standard deviations on different time spans between the
two epochs, we compute the average of the largest three conditional standard deviations of the original
and decorrelated ambiguities for each two-epoch case, denoted as σā(ti) and σz̄(ti), respectively, which
are formulated as

σā(ti) =

√
σ2

âmax
1

(ti) + σ2
âmax

2
(ti) + σ2

âmax
3

(ti)

3
(23)

σz̄(ti) =

√
σ2

ẑmax
1

(ti) + σ2
ẑmax

2
(ti) + σ2

ẑmax
3

(ti)

3
(24)

where σâmax
k

(ti) and σẑmax
k

(ti) represent the k-th largest conditional standard deviation of the original
and decorrelated ambiguities at ti, respectively. The daily average of these values using all tested
two-epoch cases on the test day is defined as

σ̄ā =

√
∑N

i σ2
ā (ti)

N
(25)

σ̄z̄ =

√
∑N

i σ2
z̄ (ti)

N
(26)

where N stands for the number of the tested two-epochs cases within the day, which is larger than
78,600 for all tested frequency combinations and time spans in this study. Figure 8 shows these σ̄ā and
σ̄z̄ in solid and dashed lines, respectively. We see that the large conditional standard deviations are
significantly reduced after decorrelating the ambiguities. After decorrelating the ambiguities (dashed
lines), the reduction is more significant when changing from single- to dual-frequency processing,
and when increasing the ∆t from 1 to 10 s. Making an assumption that all GPS satellites send L5 signals
(see the blue lines), the σ̄ā and σ̄z̄ can be further reduced in the triple-frequency case.
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Figure 8. The terms σ̄ā (Equation (25)) in solid lines and σ̄z̄ (Equation (26)) in dashed lines. The satellite
orbit on DOY 240, 2018, and the ground truth of baseline CUAA-CUBB were used for the plot.

In Table 2, both the empirical and average formal IB ASRs are given for different frequency
combinations and time spans. The empirical ASR PE is calculated as

PE =
NC
N

(27)

where NC represents the number of tested two-epoch cases with ambiguities correctly fixed. We see
that for a short time span of 1 and 10 s in the single-frequency case, the empirical and the average
formal ASR do not correspond well with each other. This is caused by the fact that the formal ASRs
are very sensitive to the phase signal standard deviations in such cases. Note that the phase signal
standard deviations given in Table 1 are rounded values and amount to around 1.0, 1.3, and 1.5 mm on
L1, L2, and L5 for CUAA-CUBB. Increasing them by sub-millimetres could, e.g., lead to reduction in
the average formal ASRs to around 0.2 for ∆t of 1 s in the L1-only case. At the same time, it can also be
observed that the ASRs in dual- and triple-frequency cases are almost 100% even for a short time span
of 1 s. Using GPS dual-frequency signals on L1 and L2, or triple-frequency signals on L1, L2, and L5,
ambiguities can be quickly resolved when collecting 2 s of phase data.

Table 2. Empirical and average formal IB ASRs (in brackets) for the phase-only two-epoch scenario.
The data on DOY 240, 2018, was used for the computation.

Frequency
CUAA-CUBB CUAA-CUCC

1 s 10 s 60 s 1 s 10 s 60 s

L1 0.186(0.317) 0.695(0.823) 0.966(0.989) 0.185(0.303) 0.677(0.808) 0.961(0.987)
L1/L2 0.988(0.999) 1.000(1.000) 1.000(1.000) 0.974(0.998) 1.000(1.000) 1.000(1.000)

L1/L2/L5 0.996(1.000) 1.000(1.000) 1.000(1.000) 0.988(0.999) 1.000(1.000) 1.000(1.000)

Apart from the baselines in Perth, the average formal IB ASRs are also computed for short
baselines from 55◦ E to 155◦ E in longitude and from 45◦ S to 35◦ N in latitude (Figure 9). The signal
standard deviations of baseline CUAA-CUBB (Table 1) were used for the processing. The average
ASRs in the colormaps were computed based on two-epoch time series with a sampling interval of 30 s.
The time span ∆t between the two epochs are set to be 1 and 60 s, respectively. As for the baselines in
Perth, the formal average ASRs in dual- and triple-frequency cases are high even with a short ∆t of 1 s,
i.e., above 0.99 in the entire test area.
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Figure 9. Average formal IB ASRs on single-, dual-, and triple-frequencies in the phase-only two-epoch
case. The time span between the two epochs are 1 (top) and 60 s (bottom).

5. Positioning Performance

Using the 1 Hz phase data of the two baselines introduced in Section 3, the baseline increments are
estimated in both the ambiguity-float and -fixed cases. The precision of the ambiguity-float and -fixed
baseline increments will be discussed in Sections 5.1 and 5.2.

5.1. Ambiguity-Float Solutions

In Figure 10, the baseline errors are shown in the north-, east-, and up-directions in the phase-only
two-epoch case with a time span of 30 s. The gray and blue dots illustrate the ambiguity-float
baseline errors and their 95% formal confidence intervals, and the green and red dots represent the
solutions with ambiguities correctly and wrongly fixed, respectively. The frequently appearing red
dots from around 0.5 × 104 to 2.2 × 104 s and from around 3.6 × 104 to 5.2 × 104 s in the L1-only
case also correspond to the relatively high ADOP (above 0.12 cycles) during these time periods
in Figure 4b. In dual- and triple-frequency cases, with the time span between the two epochs of 30 s,
the ambiguity-float baseline errors are within 1 m in all three directions in about 75% of the time.

(a)North (b)East (c)Height

Figure 10. Baseline errors for CUAA-CUBB in the phase-only two-epoch case. The time span between
the two epochs is 30 s. The gray, green, and red dots represent the ambiguity-float, -correctly-fixed,
and -wrongly-fixed solutions, and the blue dots represent the 95% formal confidence intervals of the
ambiguity-float solutions. Note that the scales in different sub-figures are different.
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Using the time span of 60 s instead, as shown in Figure 11, fewer red dots appear in the top panels
of the L1-only case. This corresponds to the fact that the L1-only ADOPs larger than 0.12 cycles in
Figure 4c are less than those in Figure 4b. The red dots from around 1 × 104 to 2 × 104 s and from
around 4.3 × 104 to 4.9 × 104 s also correspond to the time periods with ADOPs larger than 0.12 cycles
(Figure 4c).

(a)North (b)East (c)Height

Figure 11. Baseline errors for CUAA-CUBB in the phase-only two-epoch case. The time span between
the two epochs is 60 s. The gray, green, and red dots represent the ambiguity-float, -correctly-fixed,
and -wrongly-fixed solutions, and the blue dots represent the 95% formal confidence intervals of the
ambiguity-float solutions. Note that the scales in different sub-figures are different.

Table 3 lists the empirical and average formal (in brackets) standard deviations of the
ambiguity-float baseline errors. The average formal standard deviation is defined as the square
root of the average formal variances in all tested two-epoch cases. We see that increasing the number
of frequencies does not lead to dramatic changes in the ambiguity-float positioning performance,
but the length of the time span is essential for the positioning precision. Taking the triple-frequency
case as an example, as shown in Figure 12, the average formal standard deviations show dramatic
changes when varying the time span from 1 to 10 s. For both baselines in the tested single-, dual-,
and triple-frequency scenarios, with a time span of 10 s, the average formal standard deviations are
within meter level in all three directions. The values are further reduced to within or around 1 m
when increasing the time span to 30 s. From Table 3, we also see that the average formal and empirical
standard deviations of the baseline errors (Table 3) have shown certain differences when the time span
between the two epochs is short. This can be explained by the fact that the weak model with almost no
geometry changes between the two epochs is more sensitive to the model deficiency by calculating
the signal standard deviations. As the real signal noise containing phase multipath does not perfectly
follow the elevation-dependent weighting function (Equation (12)), slight differences could result
between the formal signal standard deviations given in Table 1 and the real data. The influences of
these differences on the ambiguity-float baseline errors are related to the model strength.
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Table 3. Empirical and average formal (in brackets) standard deviations of the ambiguity-float baseline
errors for the phase-only two-epoch scenario. The data on DOY 240, 2018, was used for the computation.
The results are given in the format of the north/east/up directions.

Frequency
CUAA-CUBB (m) CUAA-CUCC (m)

1 s 60 s 1 s 60 s

L1 7(12)/23(37)/14(22) 0.2(0.2)/0.6(0.6)/0.4(0.4) 7(13)/23(38)/14(23) 0.2(0.2)/0.6(0.6)/0.4(0.4)
L1/L2 8(10)/24(29)/15(17) 0.2(0.2)/0.5(0.5)/0.3(0.3) 7(11)/24(32)/15(19) 0.2(0.2)/0.5(0.5)/0.3(0.3)

L1/L2/L5 8(9)/25(28)/15(17) 0.2(0.2)/0.5(0.5)/0.3(0.3) 7(10)/24(31)/15(18) 0.2(0.2)/0.5(0.5)/0.3(0.3)

0 10 20 30 40 50 60
∆t (s)

0

5

10

15

20

25

30

(m
)

North
East
Height

Figure 12. Average formal standard deviations of the baseline errors in the ambiguity-float case. GPS
triple-frequency phase data of baseline CUAA-CUBB was used for the plots.

As shown by Equation (13), the ambiguity-float baseline variance-covariance matrix Qb̂b̂ is highly
related to the time change of Ak, which is reflected in Ak − Ā. This explains the fact that the standard
deviations of the baseline errors are sensitive to the time span ∆t between the two epochs in the
ambiguity-float case (Table 3). Additionally, in the ambiguity-float case, we observe that the east
precision is worse than those in the other two directions (Figures 10 and 11, Table 3). This is related to
the fact that the GPS satellites moves in general slower in the west–east direction than in the other two
directions for our baselines. Figure 13 shows the average change of Ak in all three directions in the
L1-only case, which is defined for each two-epoch case as

∆A =
∑m

s=1 |As
2 − As

1|
m

(28)

where As
1 and As

2 denote the s-th row of the matrices A1 and A2, respectively. From Figure 13, we see
that the smallest time change can be achieved in the east direction, while the largest time change
happens in the north direction. This explains the poorest baseline precision in the east direction,
and the best precision in the north direction (Table 3).

The average formal standard deviations of the ambiguity-float baseline errors are also computed
for short baselines in a large area from 55◦ E to 155◦ E in longitude and from 45◦ S to 35◦ N in latitude.
The signal standard deviations of baseline CUAA-CUBB (Table 1) were used for the processing.
The height components of the average formal standard deviations are given as examples in the
ambiguity-float case in Figure 14. As for the baselines in Perth (Table 3), for a short time span of 1 s,
the standard deviations of the baseline errors are at the level of tens of meters, while they are reduced
to dm-level when the time span is increased to 60 s.
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Figure 13. Average change of Ak (Equation (28)) in the north-, east-, and up-directions. The time span
between the two epochs is 1 s. Data of baseline CUAA-CUBB was used for the plot.

Figure 14. Average formal standard deviations of ambiguity-float heights in the phase-only two-epoch
case. The time span between the two epochs are 1 (top) and 60 s (bottom). Note that the scales of the
sub-figures are different.

5.2. Ambiguity-Fixed Solutions

With Figure 10 zoomed in, the ambiguity-fixed solutions and their 95% formal confidence intervals
are illustrated for the same baseline CUAA-CUBB with the same time span of 30 s between the
two epochs (Figure 15). In dual- and triple-frequency cases, the correctly fixed ambiguity solutions are
within 1 cm in the north and east directions in 100% of the time, and in the height directions in above
98% of the time.

The empirical and average formal standard deviations of the baseline errors are also given
in Table 4 in the ambiguity-fixed case. Only the two-epoch cases with ambiguities successfully
fixed contribute to the ambiguity-fixed standard deviations. The L1-only standard deviations of
the ambiguity-fixed solutions are not shown for the time span of 1 s due to the low ASR (Table 2).
As shown in Table 4 and Figure 16, compared to the ambiguity-float case, the standard deviations of
the ambiguity-fixed baseline errors do not vary much with the time spans between the two epochs.
The models with different time spans also become almost equally sensitive to the differences between
the formal phase signal standard deviations and the real data. In dual- and triple-frequency cases,
the standard deviations of the ambiguity-fixed baseline errors are at the mm-level even with a short ∆t
of 1 s.
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(a)North (b)East (c)Height

Figure 15. Ambiguity-fixed baseline errors for CUAA-CUBB in the phase-only two-epoch case.
The time span between the two epochs is 30 s. The green dots represent the ambiguity-correctly-fixed
solutions, and the blue dots represent their 95% formal confidence intervals. Note that the scales in
different sub-figures are different.

Table 4. Empirical and average formal (in brackets) standard deviations of the ambiguity-fixed baseline
errors for the phase-only two-epoch scenario. The data on DOY 240, 2018, was used for the computation.
The results are given in the format of the north/east/up directions.

Frequency
CUAA-CUBB (mm) CUAA-CUCC (mm)

1 s 60 s 1 s 60 s

L1 – 2(1)/2(1)/4(3) – 2(1)/2(1)/4(3)
L1/L2 2(1)/2(1)/4(2) 2(1)/1(1)/4(2) 2(1)/2(1)/4(3) 2(1)/2(1)/4(3)

L1/L2/L5 2(1)/2(1)/4(2) 2(1)/1(1)/4(2) 2(1)/2(1)/4(2) 2(1)/1(1)/3(2)

0 10 20 30 40 50 60
∆t (s)

0.5

1

1.5

2

2.5

(m
m

)
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Height

Figure 16. Average formal standard deviations of the baseline errors in the ambiguity-fixed case. GPS
triple-frequency phase data of baseline CUAA-CUBB was used for the plots.

After fixing the ambiguities, the formal precision improvement of the baseline errors in the
north- (γN), east- (γE), and up-directions (γH) can be defined as

γN =
σ2

N̂
σ2

Ň

, γE =
σ2

Ê
σ2

Ě

, γH =
σ2

Ĥ
σ2

Ȟ

(29)
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where σN̂, σÊ and σĤ represent the formal standard deviation of the north, east, and up baseline
increments in the ambiguity-float case, and σŇ, σĚ, and σȞ represent those in the ambiguity-fixed
case. Based on Equation (18), γN, γE, and γH are gain numbers in the north-, east-, and up-directions
with the gain vectors fN = [1, 0, 0]T , fE = [0, 1, 0]T , and fH = [0, 0, 1]T . Figure 17a shows the square
roots of the average precision gain over the entire day (

√
γ̄N,
√

γ̄E, and
√

γ̄H) in the L1-only case.
We see that the largest improvement can be achieved in the east direction, and in all three directions,
the improvements are more significant at short time spans. Note that, compared to the amplitudes
of the improvements, the differences between the single-, dual-, and triple-frequency scenarios are
not significant.
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√
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√

γ̄E,
√

γ̄H
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Figure 17. Square roots of the daily average γN, γE, γH (a, Equation (29)), and γk (b, Equation (19)).
The L1 data of baseline CUAA-CUBB on DOY 240, 2018, was used for the plot.

The stationary values of the gain numbers, which fulfill Equation (19), also vary with the time
spans between the two epochs. Figure 17b shows the square roots of the daily average gain numbers
(
√

γ̄k) in the L1-only case. We see that, on a daily average, the largest precision gain in 3-dimensional
space is around 3.8 × 104 at the short time span of 1 s. The value of

√
γ̄3 (red line) is reduced to around

600 at the time span of 60 s. The dual- and triple-frequency scenarios show similar patterns as in the
single-frequency case.

In Figure 18a, the square roots of these gain numbers (
√

γk) are shown for DOY 240, 2018,
and baseline CUAA-CUBB in the L1-only case with the time span ∆t of 1 s. We see that the largest
daily value of

√
γ3 has reached more than 9 × 104. The gain vector f3 indicates the direction in which

the largest precision gain can be achieved. Figure 18b shows the f3 for the same baseline on DOY 240,
2018, in the horizontal plane. The vectors start at the point (0,0) and end at the positions of the green
dots. The height components are not shown since they are small, i.e. within ±0.2 during the entire
day. In Figure 18b, we see that the largest precision improvement is mainly achieved in the west–east
direction. This corresponds to the fact shown in Figure 17a that among the three directions (north, east,
and up), the east precision has achieved the largest improvement after ambiguity fixing.

The average formal standard deviations of the height errors in the ambiguity-fixed case are shown
in Figure 19. Note that only the two-epoch cases with a formal ASR larger than 0.999 contribute to the
average formal standard deviations here. In the L1-only case with ∆t of 1 s (left top panel of Figure 19),
the ambiguity-fixed solutions are not plotted because of the low ASRs. As for the baselines in Perth,
in the ambiguity-fixed cases, the standard deviations of the baseline errors are at the mm-level in the
dual- and triple-frequency cases.
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(a)√γk (b) f3

Figure 18. Square roots of the stationary values of the gain numbers (a, Equation (19)) and the
corresponding gain vectors f3 in the horizontal plane (b). Data of baseline CUAA-CUBB is used for the
L1-only case. The time span between the two epochs is 1 s.

60 100 140

-40

-20

0

20

La
tit

ud
e 

(d
eg

)

L1(∆t = 1 s) (mm)

2

2.5

3

60 100 140

-40

-20

0

20

L1/L2(∆t = 1 s)(mm)

2

2.5

3

60 100 140

-40

-20

0

20

L1/L2/L5(∆t = 1 s)(mm)

2

2.5

3

60 100 140
Longitude (deg)

-40

-20

0

20

La
tit

ud
e 

(d
eg

)

L1(∆t = 60 s) (mm)

2

2.5

3

60 100 140
Longitude (deg)

-40

-20

0

20

L1/L2(∆t = 60 s)(mm)

2

2.5

3

60 100 140
Longitude (deg)

-40

-20

0

20

L1/L2/L5(∆t = 60 s)(mm)

2

2.5

3

Figure 19. Average formal standard deviations of ambiguity-fixed heights in the phase-only two-epoch
case. The time span between the two epochs are 1 (top) and 60 s (bottom).

6. Conclusions

To avoid the code multipath effects in GNSS processing, in this study, phase-only GPS phase
measurements of two epochs were used to resolve the integer ambiguities and to estimate the baseline
errors in ambiguity-float and -fixed cases. Using different frequency combinations and time spans
between the two epochs, the ambiguity resolution and positioning performances were evaluated
with 1 Hz data collected from two baselines in Perth, Australia, based on both formal and empirical
analysis. Formal analysis is also performed for a large area covering Australia, part of the Indian Ocean,
the Pacific Ocean, and Asia. We remark that in this contribution "phase-only" refers to phase-only
measurements in the observation model, while the code data are thus only used to compute the
approximate values needed for linearizing the observation equations.

Based on the empirical and formal analysis of the two baselines in Perth and the signal standard
deviations used for these two baselines, using dual- and triple-frequency GPS signals, high ASRs can
be achieved even when the time span between the two epochs is as short as 1 s. In the ambiguity-float
case, the standard deviations of the baseline errors are highly dependent on the time span between
the two epochs. In L1-only, L1/L2-combined, and the triple-frequency cases, with a time span of
10 s, the standard deviations of the ambiguity-float baseline errors are at meter-level. The standard
deviations are further reduced to within or around 1 m, when the time span is increased to 30 s. In the
ambiguity-fixed case, the standard deviations of the baseline errors are at the mm-level in dual- and
triple-frequency cases.
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Formal analysis was also performed for a large area including Australia, part of the Indian Ocean,
the Pacific Ocean, and Asia. High ASRs can be obtained in dual- and triple-frequency cases for
a short time span of 1 s, and the ambiguity-fixed positioning precision is at the mm-level in dual- and
triple-frequency cases.
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