
Delft University of Technology
Software Engineering Research Group

Technical Report Series

A Light-weight Sanity Check for
Implemented Architectures

Eric Bouwers and Arie van Deursen

Report TUD-SERG-2010-003

SERG



TUD-SERG-2010-003

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in IEEE Software, Special Issue on Software Evolution: Maintaining Stake-
holders Satisfaction in a Changing World, July/August 2010, IEEE Computer Society.

c© copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



A Lightweight Sanity Check for Implemented Architectures

Eric Bouwers
Software Improvement Group

Amsterdam, The Netherlands

E-mail: e.bouwers@sig.eu

Arie van Deursen
Delft University of Technology

The Netherlands

E-mail: Arie.vanDeursen@tudelft.nl

Abstract

Architecture evaluations offer many benefits, including
the early detection of problems and a better understanding
of the possibilities of a system. Although many methods are
available to evaluate an architecture, studies have shown
that the adoption of architecture evaluations in industry is
low. A reason for this lack of adoption is that there is limited
out-of-the-box process and tool support available to start
performing architecture reviews.

In this article we introduce LiSCIA, a Light-weight San-
ity Check for Implemented Architectures. It can be used
out-of-the-box to perform a first architectural evaluation of
a system. The check is based on years of experience in eval-
uating the maintainability of software systems. By periodi-
cally performing this check, the erosion of the implemented
architecture as the system (and its requirements) evolves
over time can be controlled.

Keywords Software Architectures, Software Architec-
ture Evaluation, Architecture Erosion, Software Quality

1 Introduction

Software architecture has been loosely defined as the or-
ganizational structure of a software system including com-
ponents, connectors, constraints, and rationale [10]. Evalu-
ating a software architecture of a system helps in checking
whether the architecture complies with the design goals and
wishes of the stakeholders. Additionally, the evaluation can
result in a common understanding of the architecture, its
strengths and weaknesses. All of this helps to determine
which quality criteria the system meets, since “Architec-
tures allow or preclude nearly all of the system’s quality
attributes” [6].

Many architecture evaluation methods are available [2,
8]. Unfortunately, a survey conducted by Babar et al. [1]
showed that the adoption of architecture evaluations in in-
dustry is low. Their conclusion is that “there is limited out

of the box process and tool support for companies that want
to start doing architecture evaluations”.

In this paper we propose a way to bridge this gap, by pre-
senting a Lightweight Sanity Check for Implemented Archi-
tectures (LiSCIA). It is based on nine years of experience in
the evaluation of over 100 different industrial software sys-
tems, as well as on our earlier research on maintainability
indicators [4, 7, 9].

LiSCIA is a concrete, easy-to-apply, architecture eval-
uation method of which the goal is to obtain insight in a
system’s quality within a day. By applying LiSCIA at the
start of a software project and then periodically, for exam-
ple every 6 months or at every release, potential problems
with the implemented architecture can be spotted quickly
and dealt with it at an early stage.

2 Background

Existing methodologies for architecture evaluations have
been divided into early and so-called late evaluations [8].
Early evaluations focus on designed architectures, while
late architecture evaluations focus on an architecture after
it has been implemented. LiSCIA falls in the latter cate-
gory as it is aimed at evaluating an actually implemented
architecture.

Our experience shows that recurrent evaluation of an im-
plemented architecture helps to identify architecture ero-
sion [13], the steady decay of the quality of an implemented
architecture. In the past years, the Software Improvement
Group (SIG) has been offering this type of recurrent eval-
uations as part of its Software Monitoring service [11] and
Software Risk Assessments [7] (SRAs). In both services,
the technical quality of a system is examined and linked
to business risks. In an SRA this is done once, while a
Software Monitor follows the evolution of a system over
a longer period of time.

Recently, we have conducted a study using over 40 risk
assessment reports of the past two years. We identified
15 system attributes that influence the quality of an imple-
mented architecture [4]. These 15 attributes, together with

SERG Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures

TUD-SERG-2010-003 1



our experience in monitoring the development of software
systems in the past years, form the basis of LiSCIA. Be-
cause of this, LiSCIA can be seen as an operationalization
of the identified attributes. Additionally, LiSCIA represents
a basic formalization of the steps we normally undertake at
the start of an SRA and during the re-evaluations within a
Software Monitoring project.

LiSCIA focuses on the maintainability quality attribute
of a software system. Due to the light-weight nature, a
complete architecture evaluation is not offered. However,
by recurrently applying LiSCIA, insights into the current
status of the implemented architecture of a system can be
obtained. With this recurring insight, the erosion of the im-
plemented architecture can be controlled. Additionally, the
result of LiSCIA offers a platform to discuss current issues
and can justify refactorings or a broader architecture evalu-
ation.

3 LiSCIA

For the design of LiSCIA, the following key-issues were
taken into account to ensure that it is practical, yet generally
applicable:

• The evaluation takes an evaluator no more than a day.

• The evaluation includes ways to improve the system,
i.e., it helps the evaluator to define actions.

• The evaluation is not limited to a specific programming
language or technology.

• The evaluation is able to handle different levels of ab-
straction.

LiSCIA is divided into two different phases, a start-up phase
(done once) and an evaluation phase (performed for every
evaluation). The result of the start-up phase is an overview
report, which is the input for the evaluation phase. The
result of the evaluation phase is an evaluation report, con-
taining the results of the evaluation and actions to be taken.
These actions might require adjustments to the overview re-
port. Both the (possibly adjusted) overview report and the
evaluation report serve as input to a re-evaluation of the sys-
tem. An illustration of the complete process is given in Fig-
ure 1.

Before describing the two phases in depth, three key el-
ements of LiSCIA need to be defined: the module, the unit
and the container.

3.1 Definitions

LiSCIA uses the module viewtype [5] to reason about
the structure of an implemented architecture. This view-
type divides the system into coherent chunks of function-

ality called modules. A module can represent some busi-
ness functionality, such as ”Accounting“ and “Stocks”, or
a more technical functionality, such as “GUI” and “XML-
processing”. LiSCIA can be applied to both decomposi-
tions. Better yet, LiSCIA can be applied to the same ver-
sion of a system using different decompositions. In this
way, different modularization-views on the architecture can
be explored. Each of these views can give different insights,
which can lead to a better understanding of the implemented
architecture as a whole.

A unit within LiSCIA is a logical block of source-code
that implements some sort of functionality. The typical unit
in LiSCIA is that of a source-file. Units are grouped into
containers; within LiSCIA the normal container is a direc-
tory on the file-system.

Using the source-file as a unit complies with the notion
that files are typically the dominant decomposition of func-
tionality [14]. In other words, most programming languages
use the file as a logical grouping of functionality. An argu-
ment against this decomposition is that some technologies
offer a more fine-grained granularity of functionality. For
example, for the Java language, the classes (or even meth-
ods) can be seen as a separate decomposition of functional-
ity. The choice for files is made to make the method inde-
pendent of the evaluated technology.

3.2 Start-up Phase

In the start-up phase, the evaluator first has to define the
modules of the system under review. In some cases, the
modules are defined in the (technical) documentation. In
other cases, the modules are apparent from, for example,
the directory, package or namespace structure. When high-
level documentation is not available, the modules can be
obtained from an interview with the developers of the sys-
tem. In our experience, developers have no problem with
producing a description (and drawing) of the modules and
the relationships between the modules of the system they
work on. These descriptions are often wrong in details, but
adjustments to these descriptions can be defined as actions
in the evaluation phase.

After defining the modules, each unit in the system
should be placed under one of the defined modules. This is
done by placing patterns on the names of the units and the
containers to which they belong. For example, if all units
in the container called ”gui“ are part of the GUI-module, a
logical pattern for this module would be .*/gui/.*.

Every unit should only be matched to a single module to
ensure a well-balanced evaluation. When a unit should actu-
ally be placed under multiple modules, it indicates that this
unit implements parts of different functionalities, which is
a sign of limited separation of concerns. These units should
either be split up into different parts, or a module capturing

2

Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures SERG

2 TUD-SERG-2010-003



Start-up phase Overview
Report Evaluation Phase

Evaluation
Report

Produces

Produces

Perform 
Actions

Possible adjustements

Figure 1. Overall flow of LiSCIA

the two functionalities should be introduced.
As a last step in the start-up phase, the evaluator should

identify the types of technologies used within the project.
For LiSCIA, the term “technologies” can be read as pro-
gramming languages, but can also include frameworks, li-
braries, build tools and possibly even hardware platforms.

A description of the modules, the patterns and a list of
technologies is documented in the report of this phase.

3.3 Evaluation Phase

The evaluation phase of LiSCIA consists of answering
a list of questions concerning the architectural elements
identified in the start-up phase. Many of the questions are
grouped into pairs. Usually, the first question asks for a
specific situation, after which a second question asks for an
explanation. The answer to the first question is either ’yes’
or ’no’, while the answer to the second question is open-
ended. This set-up requires the evaluator to be explicit, but
leaves room for explaining why a certain situation occurs.

In addition to the questions, LiSCIA provides a set of ac-
tions linked to the questions. These actions can be used as a
guide to answer the questions. In principle, the answers to
the open-ended questions must explain why the action be-
longing to a question does not need to be taken. The actions
are defined in such a way that when there is no valid reason
to ignore the action, the maintainability of the implemented
architecture can benefit from performing the given action.

The questions and actions are divided into five different
categories. These categories cover the grouping of sources,
the technologies used in the system, and the functionality,
size, and dependencies of modules. Table 1 lists some key-
properties of these categories such as topic, number of ques-
tions and number of actions. The complete list of 28 ques-

tions and 28 actions can be found online1.
Each category contains questions related to the current

situation, and questions related to the previous evaluation.
During the first evaluation session, the questions in the lat-
ter category can be ignored, since their primary objective is
to reveal the reasons for differences between the versions
compared.

3.3.1 Source Groups

A good example of the re-evaluation questions can be found
in the first category of questions. As a first step in this cate-
gory, the evaluator has to determine whether all units belong
to a module given the patterns described in the overview re-
port. During the start-up phase, the patterns for the module
are designed to capture all units. Because of this, it is to be
expected that during the first evaluation, all units are placed
under a module. Since most of the questions in this cate-
gory are about units that are not matched to a module, the
questions in this category can be ignored for this evaluation
session.

During later evaluation sessions, it sometimes happens
that new units have been added to the system that are not
matched by any module-pattern. We have experienced this
situations on a multitude of occasions. In some cases, these
units are simply misplaced by mistake and the units can eas-
ily be moved to their correct location. In other cases, a new
module (together with a new pattern) needs to be introduced
because new functionality is introduced. Questions regard-
ing the ideas behind this new module, and possibly addi-
tional modules, are also part of this category of questions.

Even though it is to be expected that the mapping of units
to modules is complete during the first evaluation, this is

1http://www.sig.eu/en/liscia

3

SERG Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures

TUD-SERG-2010-003 3



Name Topics of Interest #Questions #Actions
Source Groups current grouping of units in modules, future modules 4 4
Module Functionality decomposition of functionality over modules 5 6
Module Size size of modules, distribution of system size over modules, growth of modules 6 5
Module Dependencies expected, circular, unwanted dependencies and changed dependencies 6 7
Technologies combination, version, usage and size distribution of the used technologies 7 6

Table 1. Key properties of the categories of LiSCIA

not always the case, especially when existing documenta-
tion is used as part of the overview report. For example, in
one of our assessments we evaluated a system containing
over 4 million lines of code. The existing documentation
described several modules. In addition, the documentation
included a file describing the mapping of each source-file
to one of these modules. Evaluating this mapping carefully,
we discovered that over 30 percent of the source-files could
not be assigned to a module. Additionally, a considerable
part of the mapping contained source-files that did not ex-
ists anymore. One of the actions defined for this system was
to re-order the source-files to better resemble the module
structure as outlined in the documentation. This example
illustrates that it is important to verify existing documenta-
tion against the current implementation, instead of assum-
ing that the documentation is correct.

3.3.2 Module Functionality

Within the second category, the evaluator focusses on how
the functionality of the system is spread out over the mod-
ules. For example, one of the questions asks whether the
functionality of each module can be described in a single
sentence. The question help the evaluator in determining
whether the current decomposition of functionality is not
too generic. In several cases, we encountered systems that
defined a module called ’Utilities’ (or something similar).
When the exact functionality of this module is described,
it turns out that this module does not only contain generic
functionality, but also contains business functionality, spe-
cific parsing functionality, or an object model. In these
cases, the action is to split up the module in a truly generic
part and separate modules for the more specific types of
functionality.

3.3.3 Module Size

This third category of questions is related to the size of the
modules. In order to keep LiSCIA usable for a large range
of systems, the exact definition of “size of a module” is in-
tentionally kept abstract. Nevertheless, in most cases the
size of a module can be represented by the sum of the Lines
of Code of all units in the module.

The questions in this category are not only related to the
size of the individual modules, but also consider the distri-
bution of the size of the complete system over the modules.
Additionally, this category contains questions related to the
growth of the modules. These last type of questions are es-
pecially useful in detecting unwanted evolution within the
system, but also help in detecting unwanted development
effort.

For example, in one of our monitoring projects we had
several modules marked as “old”. These old modules con-
tained poor quality legacy code which was still used, but
which was not actively maintained. After inspection of the
growth of the size of the modules, it was discovered that
new functionality was still being added to the “old” mod-
ules. The explanation given was that it was easier to add the
new functionality in this module. Even though it was easier,
it also resulted in the addition of large and complex pieces
of code because it had to follow the structure of the legacy-
code. The action that resulted from this observation was
the migration of the functionality to a new module, where it
would be easier to maintain and test.

3.3.4 Module Dependencies

To answer the questions in this category, the dependencies
between modules need to be available. Similar to the size of
a module, the concept of “dependencies between modules”
is kept abstract. However, the dependencies between mod-
ules can be calculated by first determining the dependencies
between units (for example, the calls between methods in-
side the source-files), after which these dependencies can
be lifted to the module level.

The questions in this category help the evaluator to as-
sess the wanted, unwanted and circular dependencies be-
tween modules. In addition, questions about added and re-
moved dependencies are defined for when a previous evalu-
ation is available. One of the questions in the latter category
is whether there are any new dependencies added, as was
the case on one of our monitoring projects. The follow-up
question is whether this dependency is expected, which, in
the case of this project, it was not. The new dependency
was not allowed according to previously defined layering
rules. After reporting this violation of the architecture, the
project-lead was surprised and asked the developers for an

4

Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures SERG

4 TUD-SERG-2010-003



explanation. The developers recognized the violation, and
explained that it was introduced because a third module was
not finished yet. As soon as this third module was finished,
the dependency would be removed. All of this was docu-
mented in an evaluation report. Four months later, when the
third module was finished, the developers were reminded of
this undesired dependency and it was removed.

3.3.5 Technologies

The last category of LiSCIA assist the evaluator to evaluate
the combination of the technologies used within the system.
In addition, the questions in this category deal with the age,
the usage and support for each of the used technologies. As
an example, one of the questions asks whether the latest ver-
sion of each technology is used. In many projects we have
seen that this is not the case. The usual explanation for this
is that there is no time to upgrade the system. In these situa-
tions, an action is defined to upgrade to the latest technology
as soon as possible. This is to prevent the situation in which
a legacy technology is used without an easy upgrade path.
A different explanation for the same situation is that man-
agement decided to always use the second-last version of a
technology, because this version has already proven itself in
practice. In these cases, there is no action defined, but the
explanation for not implementing the action is documented.

3.3.6 Result

The answers to all the questions and, if applicable, a list of
actions is documented in the report of this phase. With this
report, certain refactorings can be justified. In addition, the
report provides a basic overview of the architecture as it is
currently implemented. Because of this, the report can serve
as a factual basis for discussions about the current architec-
ture. Lastly, the report is used as input to the next evaluation
session.

4 Discussion

Because LiSCIA is based on monitoring existing soft-
ware systems, we were able to provide examples in the
last section showing how the different parts of the method
can be used to discover problems in an implemented ar-
chitecture. Currently, we are applying the complete LiS-
CIA method as described in this article more and more in
our current practice. The consultants who implemented the
method thusfar gave positive reactions. They appreciated
the structure of the methodology, as well as the type and the
ordering of the questions. One of the consultants was par-
ticularly pleased because the straight-forward application of
LiSCIA has, in his words, “mercilessly led to the discov-
ery of the embedding of a forked open source system in the
code.”

Naturally, there were also points of critique. For exam-
ple, one of the consultants stressed that LiSCIA should be
applied by an expert outside the development team, point-
ing out that “. . . it is hard for a software engineer to remain
objective when it concerns his own code”. It is indeed true
that LiSCIA relies heavily on the opinion of the evaluator.
After all, the evaluator is the person who decides whether
a given explanation is “good enough” in the setting of the
project. Therefore we believe that it is a good idea to let a
second expert examine the evaluation report, just to make
sure that none of the explanations is flawed.

Different consultants also pointed out a second limita-
tion of LiSCIA. They stated that the method relies on some
of the functionality of our internal toolset, which might limit
the usability outside of our company. This is a correct ob-
servation, since LiSCIA relies on tool-support to statically
determine the size of units of the system and the dependen-
cies between these units. However, we believe that these
types of measurements can be done by freely available open
source tools. The only investment needed is in the aggrega-
tion of the raw output of these tools, which is a relatively
minor investment.

A third limitation of LiSCIA is the fact that it is only
aimed to discover potential risks related to maintainability.
Additionally, because LiSCIA uses only a single viewpoint
to evaluate the architecture it is likely that it does not even
cover all potential risks in this area.

These limitations are seen as one of the strengths of the
method. First of all, we believe that when a system is not
maintainable, dealing with other quality issues such as per-
formance and reliability becomes more difficult. Because
of this, a first focus on maintainability is justified. Also, the
limited focus of LiSCIA allows for a precise and concrete
design that can be easily implemented in current projects
without too much effort. Moreover, LiSCIA is deliberately
positioned as a light-weight check to ensure that it is seen
as a stepping-stone towards more broader architecture eval-
uations. In addition, the collection of questions and actions
reflect years of experience in conducting architectural eval-
uations, therefore we are confident that they cover the most
important maintainability risks.

5 Related Work

5.1 Evaluating Architectures

Comparing LiSCIA against the architecture evaluation
techniques mentioned by Babar [2] and Dobricia [8], there
are several distinctions. First, where most of the methods
are designed to evaluate the designed architecture, LiSCIA
is specifically aimed at the implemented architecture. How-
ever, one can argue that these methods can be applied to a
design of the architecture that is extracted from the imple-

5

SERG Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures

TUD-SERG-2010-003 5



mentation. While this is true, we believe that extracting the
complete architecture from an implementation is difficult
and labour intensive, which might eliminate the benefits of
performing the architecture evaluation.

The most distinctive difference between LiSCIA and
other available architecture evaluation methods is the fact
that LiSCIA pre-defines a notion of quality, namely that
of maintainability. Other available architecture evaluation
methods, even the ones explicitly aimed at an implemented
architecture such as [3], do not provide such a notion. In-
stead, virtually all methods contain a phase in which the
notion of quality should be defined by the evaluators. As
discussed before, this limits the use of LiSCIA to a specific
purpose, but makes it easier to start with performing an ar-
chitecture evaluation.

5.2 Software Erosion

Approaches for dealing with software erosion typically
try to incorporate a solution into the design of the architec-
ture. This approach helps in avoiding software erosion, but
van Gurp et al. [15] conclude that “even an optimal design
strategy for the design phase does not deliver an optimal de-
sign”. In other words, there is no way to completely avoid
changes to an implemented architecture. Therefore, the ar-
chitecture that is currently implemented should be taken
into account when dealing with software erosion.

One approach that does this is the one proposed by Med-
vidovic [12]. In this approach, an evaluator first extracts
the main components of a systems architecture and then
maps these components to a notion of the “ideal” architec-
ture for a system. Through this mapping, the evolution of
the architecture can be controlled by first applying the de-
sired change to the ideal architecture, after which the imple-
mented architecture can be adapted.

The main difference between this (and similar) ap-
proaches and LiSCIA is the time at which erosion is dealt
with. LiSCIA tries to detect erosion when it has actually
happened, whereas other approaches try to prevent erosion
from happening. Since these approaches are complemen-
tary, we believe that they are both useful and necessary. We
realize that dealing with erosion after is has happened is
more difficult and costly, but it is better to deal with erosion
as soon as it has been introduced rather than when other
issues need to be solved.

6 Conclusion

LiSCIA provides a lightweight sanity check to keep con-
trol over the erosion of an implemented architecture. A first
introduction of LiSCIA within our company has received
positive feedback. LiSCIA is simple to apply, and therefore

will not provide the same depth as a full-fledged architec-
ture evaluation. In spite of that, the results are useful and
help in detecting software erosion.

We are currently evaluating the formal LiSCIA method
by applying it in our current practice. In addition, we are
very interested to see whether LiSCIA is useful in environ-
ments outside SIG. For this, we call upon you to try out
LiSCIA and share the results with us. Combining our own
experience with the feedback of the community we hope
to report on an improved version of LiSCIA in the coming
year. The complete LiSCIA method can be found online at:

http://www.sig.eu/en/liscia

Acknowledgements The authors would like to thank all
the colleagues at the Software Improvement Group for
their time and contributions to the making of the LiSCIA
methodology and this article.

About the authors Eric Bouwers is a software engineer
at the Software Improvement Group and a part-time PhD
student at Delft University of Technology. He is interested
in architectural and linguistic aspects of software quality.
He can be reached at e.bouwers@sig.eu.

Arie van Deursen is a full professor in Software Engi-
neering at Delft University of Technology, where he leads
the Software Engineering Research Group. He can be
reached at Arie.vanDeursen@tudelft.nl.

References

[1] M. Babar and I. Gorton. Software architecture review: The
state of practice. Computer, 42(7):26–32, 2009.

[2] M. Babar, L. Zhu, and D. R. Jeffery. A framework for classi-
fying and comparing software architecture evaluation meth-
ods. In ASWEC ’04: Proceedings of the 2004 Australian
Software Engineering Conference, page 309. IEEE Com-
puter Society, 2004.

[3] P. Bengtsson and J. Bosch. Scenario-based software ar-
chitecture reengineering. In ICSR ’98: Proceedings of the
5th International Conference on Software Reuse, page 308.
IEEE Computer Society, 1998.

[4] E. Bouwers, J. Visser, and A. v. Deursen. Criteria for the
evaluation of implemented architectures. In Proceedings of
the 25th International Conference on Software Maintenance
(ICSM 2009), pages 73–83. IEEE Computer Society, 2009.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, Boston,
MA, 2003.

[6] P. Clements, R. Kazman, and M. Klein. Evaluating software
architectures. Addison-Wesley, 2005.

[7] A. v. Deursen and T. Kuipers. Source-based software
risk assessment. In ICSM ’03: Proceedings of the Inter-
national Conference on Software Maintenance, page 385.
IEEE Computer Society, 2003.

6

Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures SERG

6 TUD-SERG-2010-003



[8] L. Dobrica and E. Niemelä. A survey on software archi-
tecture analysis methods. IEEE Transactions of Software
Engineering, 28(7):638–653, 2002.

[9] I. Heitlager, T. Kuipers, and J. Visser. A practical model for
measuring maintainability. In QUATIC ’07: Proceedings of
the 6th International Conference on Quality of Information
and Communications Technology, pages 30–39. IEEE Com-
puter Society, 2007.

[10] P. Kogut and P. Clements. The software architecture renais-
sance. The Software Engineering Institute, Carnegie Mellon
University, 3:11–18, 1994.

[11] T. Kuipers and J. Visser. A tool-based methodology for soft-
ware portfolio monitoring. In Software Audit and Metrics,
pages 118–128. INSTICC Press, 2004.

[12] N. Medvidovic and V. Jakobac. Using software evolution to
focus architectural recovery. Automated Software Engineer-
ing, 13(2):225–256, 2006.

[13] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[14] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N
degrees of separation: multi-dimensional separation of con-
cerns. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 107–119. ACM,
1999.

[15] J. van Gurp and J. Bosch. Design erosion: problems and
causes. Journal of Systems and Software, 61(2):105–119,
2002.

7

SERG Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures

TUD-SERG-2010-003 7



Bouwers, E. & van Deursen, A – A Light-weight Sanity Check for Implemented Architectures SERG

8 TUD-SERG-2010-003





TUD-SERG-2010-003
ISSN 1872-5392 SERG


