An advanced prospecting method for assessing the quantity of underground metal cables in urban mines

Matthijs Bon

First supervisor: Alexander Wandl Second supervisor: Sisi Zlatanova Co-reader: Pirouz Nourian

Outline

- Introduction
- Research approach
- Process
- Results
- Conclusions and Recommendations

INTRODUCTION

• The Netherlands aims to have a circular Economy by 2050 ⁽¹⁾

⁽¹⁾ Nederland circulair in 2050, Rijksoverheid, 2016

- The Netherlands aims to have a circular Economy by 2050 ⁽¹⁾
- Amsterdam municipality promotes local circular economies ⁽²⁾

⁽¹⁾ Nederland circulair in 2050, Rijksoverheid, 2016
⁽²⁾ Amsterdam circulair, visie en routekaart, 2015

 Reusing or recycling resources dispersed among the urban environment

- Reusing or recycling resources dispersed among the urban environment
- Urban mining challenge
 - Prospecting: how many resources and where?

- Reusing or recycling resources dispersed among the urban environment
- Urban mining challenge
 - Prospecting: how many resources and where?
- Prospected urban mine as a motive for actual mining

Underground Infrastructure

• Many underground resources, seemingly invisible

Underground Infrastructure

• Many underground resources, seemingly invisible

riool

gas

water

warmte/koude

riool

water

gas

Underground Infrastructure

• Many underground resources, seemingly invisible

Electrical Networks

• Hierarchical nature

• Low Voltage distribution network consists of many branches

Electrical Networks

- Hierarchical nature
 - Low Voltage distribution network consists of many branches

"Topology shows the spatial relation of neighbouring vector features."

"Topology shows the spatial relation of neighbouring vector features."

"Topology shows the spatial relation of neighbouring vector features."

"Topology shows the spatial relation of neighbouring vector features."

- Spatial relations in electrical networks
 - Building Low Voltage Network
 - Low Voltage Network Transformer Medium Voltage Network

- Case study areas
 - Slotervaart

- Case study areas
 - Slotervaart
 - Geuzenveld

- Case study areas
 - Slotervaart
 - Geuzenveld
 - Indische Buurt

- Case study areas
 - Slotervaart
 - Geuzenveld
 - Indische Buurt
- Chosen based on similarities

- Case study areas
 - Slotervaart
 - Geuzenveld
 - Indische Buurt
- Chosen based on similarities
 - Building age (built ±1950)
 - Might soon be redeveloped or demolished and provide urban mining opportunities

RESEARCH APPROACH

Research approach

• Research Question:

To what extent can topological networks be used for localization of underground metal cables in order to assess the quantity of an underground urban mine?

Research approach

• Research Question:

To what extent can topological networks be used for localization of underground metal cables in order to assess the quantity of an underground urban mine?

- Research Objectives
 - 1. Explore most suitable datasets
 - 2. Develop automated quantification method
 - 3. Exemplify method on case study areas

Datasets

Process
Datasets

Datasets

• NWB is only a collection of lines

- NWB is only a collection of lines
 - Geometrically connect buildings and transformers

- NWB is only a collection of lines
 - Geometrically connect buildings and transformers
 - 3 methods:

- NWB is only a collection of lines
 - Geometrically connect buildings and transformers
 - 3 methods:
- Closest Point

- NWB is only a collection of lines
 - Geometrically connect buildings and transformers
 - 3 methods:
- Closest Point Closest Junction

- NWB is only a collection of lines
 - Geometrically connect buildings and transformers
 - 3 methods:
- Closest Point Closest Junction Iterative Closest Junctio

Closest Point	vertices	Total edge length (m)	Average edge length (m)
Geuzenveld	4409	59165.47	12.79
Slotervaart	5278	81960.25	14.58
Indische buurt	2415	26016.75	10.43
Closest Junction	vertices	Total edge length (m)	Average edge length (m)
Geuzenveld	2774	72247.88	24.95
Slotervaart	3520	98393.17	26.62
Indische buurt	1455	34503	22.59
Iterative Closest Junction	vertices	Total edge length (m)	Average edge length (m)
Geuzenveld	3634	46936.02	10.25
Slotervaart	4410	69828.31	12.55
Indische buurt	2022	22268.04	8.95

Closest Point	vertices	Total edge length (m)	Average edge length (m)	
Geuzenveld	4409	59165.47	12.79	
Slotervaart	5278	81960.25	14.58	
Indische buurt	2415	26016.75	10.43	
Closest Junction	vertices	Total edge length (m)	Average edge length (m)	
Geuzenveld	2774	72247.88	24.95	
Slotervaart	3520	98393.17	26.62	
Indische buurt	1455	34503	22.59	
Iterative Closest Junction	vertices	Total edge length (m)	Average edge length (m)	
Geuzenveld	3634	46936.02	10.25	
Slotervaart	4410	69828.31	12.55	
Indische buurt	2022	22268.04	8.95	

Closest Point	vertices	Total edge length (m)	Average edge length (m)
Geuzenveld	4409	59165.47	12.79
Slotervaart	5278	81960.25	14.58
Indische buurt	2415	26016.75	10.43
Closest Junction	vertices	Total edge length (m)	Average edge length (m)
Geuzenveld	2774	72247.88	24.95
Slotervaart	3520	98393.17	26.62
Indische buurt	1455	34503	22.59
Iterative Closest Junction	vertices	Total edge length (m)	Average edge length (m)
Geuzenveld	3634	46936.02	10.25
Slotervaart	4410	69828.31	12.55
Indische buurt	2022	22268.04	8.95

Closest Point	vertices	Total edge length (m)	Average edge length (m)	
Geuzenveld	4409	59165.47	12.79	
Slotervaart	5278	81960.25	14.58	
Indische buurt	2415	26016.75	10.43	
Closest Junction	vertices	Total edge length (m)	Average edge length (m)	
Geuzenveld	2774	72247.88	24.95	
Slotervaart	3520	98393.17	26.62	
Indische buurt	1455	34503	22.59	
Iterative Closest Junction	vertices	Total edge length (m)	Average edge length (m)	
Geuzenveld	3634	46936.02	10.25	
Slotervaart	4410	69828.31	12.55	
Indische buurt	2022	22268.04	8.95	

Shortest Paths

- Finding closest transformer
 - Shortest path from building to all transformers

Shortest Paths

Power consumption

Power consumption

- Amount of households influences maximum power consumption
 - More households -> more power consumed
 - Average household consumes ±2400 3300 kWh / year

Power consumption

- Amount of households influences maximum power consumption
 - More households -> more power consumed
 - Average household consumes ±2400 3300 kWh / year

- For each edge
 - Calculate maximum power
 - Compute current supposed to be flowing through a cable

Cable types

Cu	Al	I (A)	
10	16	63	
16	25	85	
25	35	110	
35	50	130	
50	70	160	
70	95	190	
-	120	205	
95	150	240	
120	185	275	
150	240	320	
185	-	350	
240	-	410	
300	400	450	

GPLK 3-ad.

	Cu	AI	I (A)
-ad.	-	95	215
ЪЩ	-	150	280
XLF	-	240	360

	95	-	335
	dria	240	355
-ad.	hoek	400	450
ΡE 1.		630	575
XLF	plat	630	645

• Total metal mass in the network

• Total metal mass in the network

$$\sum_{1}^{n} M = \sum_{1}^{n} l_n \cdot A_n \cdot d_n$$

M = Total mass (kg) $l_n = \text{length of edge } n \text{ (cm)}$ $A_n = \text{cross section area of edge } n \text{ (cm}^2\text{)}$ $d = \text{density of the edge } n \text{ material (g/cm}^3\text{)}$

• Total metal mass in the network

$$\sum_{1}^{n} M = \sum_{1}^{n} l_n \cdot A_n \cdot d_n$$

M = Total mass (kg) l_n = length of edge n (cm) A_n = cross section area of edge n (cm^2) d = density of the edge n material (g/ cm^3)

- Unsure whether a cable is made of copper or aluminium
 - Ratio of 70/30 (Cu/Al) is used to quantify metal content

Cable length

Geuzenveld	Computed length	Real length	%
Closest Junction	72.247,9	73.876,7	97,8%
Closest Point	59.165,5	73.876,7	80,1%
Iterative Closest Junction	46.936,0	73.876,7	63,5%
Indische buurt	Computed length	Real length	%
Closest Junction	34.503,0	58.028,2	59,5%
Closest Point	26.016,8	58.028,2	44,8%
Iterative Closest Junction	22.268,0	58.028,2	38,4%
Slotervaart	Computed length	Real length	%
Closest Junction	98.393,2	107.375,7	91,6%
Closest Point	81.960,3	107.375,7	76,3%
Iterative Closest Junction	69.828,3	107.375,7	65,0%

Results

Cable length

Geuzenveld	Computed length	Real length	%
Closest Junction	72.247,9	73.876,7	97,8%
Closest Point	59.165,5	73.876,7	80,1%
Iterative Closest Junction	46.936,0	73.876,7	63,5%
Indische buurt	Computed length	Real length	%
Closest Junction	34.503,0	58.028,2	59,5%
Closest Point	26.016,8	58.028,2	44,8%
Iterative Closest Junction	22.268,0	58.028,2	38,4%
Slotervaart	Computed length	Real length	%
Closest Junction	98.393,2	107.375,7	91,6%
Closest Point	81.960,3	107.375,7	76,3%
Iterative Closest Junction	69.828,3	107.375,7	65,0%

Results

Adjustment

Adjustment

- Simplification of the NWB results in underestimation of cables
 - Adjustment of quantity to compensate

Adjustment

Simplification of the NWB results in underestimation of cables
Adjustment of quantity to compensate

Final quantification

Geuzenveld	Iterative Clos- est Junction		Closest Po	oint	Closest Ju	Closest Junction		
Calculated cable length Real cable length	36.078,6 73.813,4 <i>Cu (kg)</i>	(m) (m) <i>Al (kg)</i>	49.824,8 73.813,4 <i>Cu (kg)</i>	(m) (m) <i>Al (kg)</i>	60.685,6 73.813,4 <i>Cu (kg)</i>	(m) (m) <i>Al (kg)</i>		
Metal mass from algorithm Metal mass in reality Adjusted metal mass	14.147,0 44.013,1 28.294,0	2.816,6 13.262,9 5.633,3	16.766,9 44.013,1 33.533,7	3.351,5 13.262,9 6.703,0	19.557,6 44.013,1 39.115,2	3.961,4 13.262,9 7.922,7		
Indische Buurt								
Calculated cable length Real cable length	19.082,2 57.792,4 Cu (kg)	(m) (m) Al (kg)	23.377,7 57.792,4 Cu (kg)	(m) (m) <i>Al (kg</i>)	30.253,0 57.792,4 Cu (kg)	(m) (m) Al (kg)		
Metal mass from algorithm Metal mass in reality Adjusted metal mass	9.910,2 44.449,7 19.820,3	1.898,2 13.394,4 3.796,4	10.681,6 44.449,7 21.363,3	2.064,6 13.394,4 4.129,1	13.153,1 44.449,7 26.306,3	2.581,2 13.394,4 5.162,4		
Slotervaart								
Calculated cable length Real cable length	46.795,2 107.282,4 <i>Cu (kg)</i>	(m) (m) <i>Al (kg)</i>	60.450,7 107.282,4 <i>Cu (kg)</i>	(m) (m) <i>Al (kg)</i>	74.060,5 107.282,4 <i>Cu (kg)</i>	(m) (m) <i>Al (kg)</i>		
Metal mass from algorithm Metal mass in reality Adjusted metal mass	15.625,1 84.255,3 31.250,2	3.074,5 25.389,4 6.149,0	18.061,8 84.255,3 36.123,6	3.568,6 25.389,4 7.137,3	21.386,7 84.255,3 42.773,4	4.219,8 25.389,4 8.439,5		

Final quantification

Geuzenveld	Iterative est Junctio	Clos- on	Closest Po	oint	Closest Junction		
Calculated cable length	36.078,6	(m)	49.824,8	(m)	60.685,6	(m)	
Real cable length	73.813,4 <i>Cu (kg)</i>	(m) Al (kg)	73.813,4 <i>Cu (kg)</i>	(m) Al (kg)	73.813,4 Cu (kg)	(m) Al (kg)	
Metal mass from algorithm	14.147,0	2.816,6	16.766,9	3.351,5	19.557,6	3.961,4	
Metal mass in reality	44.013,1	13.262,9	44.013,1	13.262,9	44.013,1	13.262,9	
Adjusted metal mass	28.294,0	5.633,3	33.533,7	6.703,0	39.115,2	7.922,7	
Indische Buurt							
Calculated cable length	19.082,2	(m)	23.377,7	(m)	30.253,0	(m)	
Real cable length	57.792,4	(m)	57.792,4	(m)	57.792,4	(m)	
	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	
Metal mass from algorithm	9.910,2	1.898,2	10.681,6	2.064,6	13.153,1	2.581,2	
Metal mass in reality	44.449,7	13.394,4	44.449,7	13.394,4	44.449,7	13.394,4	
Adjusted metal mass	19.820,3	3.796,4	21.363,3	4.129,1	26.306,3	5.162,4	
Slotervaart							
Calculated cable length	46.795,2	(m)	60.450,7	(m)	74.060,5	(m)	
Real cable length	107.282,4	(m)	107.282,4	(m)	107.282,4	(m)	
	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	
Metal mass from algorithm	15.625,1	3.074,5	18.061,8	3.568,6	21.386,7	4.219,8	
Metal mass in reality	84.255,3	25.389,4	84.255,3	25.389,4	84.255,3	25.389,4	
Adjusted metal mass	31.250,2	6.149,0	36.123,6	7.137,3	42.773,4	8.439,5	

Method comparison

			Geuzenveld		Indi	Indische Buurt			Slotervaart		
			Closest Junction	Closest Point	Iterative Closest Junction	Closest Junction	Closest Point	Iterative Closest Junction	Closest Junction	Closest Point	Iterative Closest Junction
	eld	Closest Junction		117%	138%	149%	183%	197%	91%	108%	125%
	naenve	Closest Point	86%		119%	127%	157%	169%	78%	93%	107%
	Gei	Iterative Closest Junction	72%	84%		108%	132%	143%	66%	78%	91%
	uurt	Closest Junction	67%	78%	93%		123%	133%	62%	73%	84%
	che B	Closest Point	55%	64%	76%	81%		108%	50%	59%	68%
_	Indis	Iterative Closest Junction	51%	59%	70%	75%	93%		46%	55%	63%
	art	Closest Junction	109%	128%	151%	163%	200%	216%		118%	137%
	terva	Closest Point	92%	108%	128%	137%	169%	182%	84%		116%
	Slc	Iterative Closest Junction	80%	93%	110%	119%	146%	158%	73%	87%	

Method comparison

-			Ge	euzenv	eld	Indi	Indische Buurt			Slotervaart		
			Closest Junction	Closest Point	Iterative Closest Junction	Closest Junction	Closest Point	Iterative Closest Junction	Closest Junction	Closest Point	Iterative Closest Junction	
	ple	Closest Junction		117%	138%	149%	183%	197%	91%	108%	125%	
	IZenve	Closest Point	86%		119%	127%	157%	169%	78%	93%	107%	
	Gen	Iterative Closest Junction	72%	84%		108%	132%	143%	66%	78%	91%	
	uurt	Closest Junction	67%	78%	93%		123%	133%	62%	73%	84%	
	che B	Closest Point	55%	64%	76%	81%		108%	50%	59%	68%	
	India	Iterative Closest Junction	51%	59%	70%	75%	93%		46%	55%	63%	
	art	Closest Junction	109%	128%	151%	163%	200%	216%		118%	137%	
	terva	Closest Point	92%	108%	128%	137%	169%	182%	84%		116%	
	Slo	Iterative Closest Junction	80%	93%	110%	119%	146%	158%	73%	87%		

Accuracy

Geuzenveld	Compute	d metal mass	Real meta	Accuracy		
	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	Си	Al
Closest Junction	39.115,20	7.922,75	44.013,09	13.262,87	88,9%	59,7%
Closest Point	33.533,73	6.702,95	44.013,09	13.262,87	76,2%	50,5%
Iterative Closest Junction	28.294,03	5.633,29	44.013,09	13.262,87	64,3%	4 2, 5%
Indische buurt	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	Си	Al
Closest Junction	26.306,27	5.162,36	44.449,66	13.394,43	59,2%	38,5%
Closest Point	21.363,26	4.129,12	44.449,66	13.394,43	48,1%	30,8%
Iterative Closest Junction	19.820,31	3.796,40	44.449,66	13.394,43	44,6%	28,3%
Slotervaart	Cu (kg)	Al (kg)	Cu (kg)	Al (kg)	Си	Al
Closest Junction	42.773,36	8.439,52	84.255,30	25.389,43	50,8%	33,2%
Closest Point	36.123,55	7.137,28	84.255,30	25.389,43	42,9%	28,1%
Iterative Closest Junction	31.250,22	6.149,05	84.255,30	25.389,43	37,1%	24,2%

Disused parts of the network

- Paths affects the cable use. Some parts of the network are not used
 - Could be caused by investigating residential buildings only.

Disused parts of the network

- Paths affects the cable use. Some parts of the network are not used
 - Could be caused by investigating residential buildings only.

CONCLUSIONS

• Using the NWB provided a good skeleton to perform network analysis

- Using the NWB provided a good skeleton to perform network analysis
- This methodology is suitable for quantification and finds a minimum quantity of metal in the underground urban mine
 - On average 70% accuracy when adjusted for errors
 - Most likely more metal available, at least not less

- Using the NWB provided a good skeleton to perform network analysis
- This methodology is suitable for quantification and finds a minimum quantity of metal in the underground urban mine
 - On average 70% accuracy when adjusted for errors
 - Most likely more metal available, at least not less
- Closest Junction method most accurate connecting method

Trade-off between location accuracy and quantification accuracy

- Trade-off between location accuracy and quantification accuracy
- Recovering metal in the underground urban mine of Geuzenveld
 - Approximately €145.000 from Cu and Al recycling
 - Not taking into account tram lines, street lighting, unregistered cables

- Trade-off between location accuracy and quantification accuracy
- Recovering metal in the underground urban mine of Geuzenveld
 - Approximately €145.000 from Cu and Al recycling
 - Not taking into account tram lines, street lighting, unregistered cables

- Trade-off between location accuracy and quantification accuracy
- Recovering metal in the underground urban mine of Geuzenveld
 - Approximately €145.000 from Cu and Al recycling
 - Not taking into account tram lines, street lighting, unregistered cables
- This methodology *can* find a minimum quantity of underground metals, but is *not suitable* for finding the exact location of these cables

DISCUSSION & RECOMMENDATIONS

Discussion & recommendations

Data limitations

- Data limitations
 - Building points

- Data limitations
 - Building points
 - Transformers

- Data limitations
 - Building points
 - Transformers
- Method limitations

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect

Closest Point

Discussion & recommendations

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect

Discussion & recommendations

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect
 - NWB is simplified into a single line

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect
 - NWB is simplified into a single line

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect
 - NWB is simplified into a single line

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect
 - NWB is simplified into a single line

- Data limitations
 - Building points
 - Transformers
- Method limitations
 - Connecting methods are imperfect
 - NWB is simplified into a single line

Quantity ratio between metals is not exact

Future work & recommendations

Discussion & recommendations
Future work & recommendations

- Improve *location* of cables
 - Offset NWB network to both sides
 - Find the centreline of pavements
 - Self driving cars with GPR

Future work & recommendations

- Improve *location* of cables
 - Offset NWB network to both sides
 - Find the centreline of pavements
 - Self driving cars with GPR
- Improve *completeness*
 - Tram lines
 - Public Lighting
 - Other materials (pipes and optical fibres)

Future work & recommendations

- Improve *location* of cables
 - Offset NWB network to both sides
 - Find the centreline of pavements
 - Self driving cars with GPR
- Improve *completeness*
 - Tram lines
 - Public Lighting
 - Other materials (pipes and optical fibres)
- Improve buildings points by cooperation with network operators

THANK YOU FOR YOUR ATTENTION